WO2024037324A1 - 显示基板、显示装置及显示基板的制备方法 - Google Patents

显示基板、显示装置及显示基板的制备方法 Download PDF

Info

Publication number
WO2024037324A1
WO2024037324A1 PCT/CN2023/110307 CN2023110307W WO2024037324A1 WO 2024037324 A1 WO2024037324 A1 WO 2024037324A1 CN 2023110307 W CN2023110307 W CN 2023110307W WO 2024037324 A1 WO2024037324 A1 WO 2024037324A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic insulating
insulating layer
conductive layer
display substrate
display
Prior art date
Application number
PCT/CN2023/110307
Other languages
English (en)
French (fr)
Other versions
WO2024037324A9 (zh
Inventor
曾朝军
何宝生
王小龙
王明慧
刘全
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024037324A1 publication Critical patent/WO2024037324A1/zh
Publication of WO2024037324A9 publication Critical patent/WO2024037324A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a display substrate, a display device and a preparation method of the display substrate.
  • organic electroluminescent diode (OLED) display substrate it is necessary to use multiple layers of organic insulating layers to planarize the structure. Due to the thick thickness of the organic insulating layer and the structural requirements for binding and bending in the peripheral area of the OLED display substrate, multiple layers of organic insulating layers will be stacked at the edge of the OLED display substrate to form thicker steps.
  • OLED organic electroluminescent diode
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art and provide a display substrate, a display device and a method for manufacturing the display substrate.
  • an embodiment of the present disclosure provides a display substrate having a display area and a peripheral area surrounding the display area, wherein the display substrate includes: a base, located on the base and along a surface away from the base. A first conductive layer and a second conductive layer arranged in sequence, and a first organic insulating layer located between the first conductive layer and the second conductive layer; the first conductive layer includes: along the first direction A plurality of first metal traces extending; the second conductive layer includes: a plurality of second metal traces extending along the first direction;
  • the first organic insulating layer is disconnected and its edge extends along the second direction to form a first step; the second direction intersects with the first direction;
  • the first step includes: at least one protruding structure and at least one recessed structure located between adjacent second metal traces.
  • the second metal trace and the first metal trace are electrically connected at the first step.
  • the display substrate further includes: a third conductive layer located on a side of the second conductive layer facing away from the substrate, and a second conductive layer located between the second conductive layer and the third conductive layer.
  • An organic insulating layer; the third conductive layer includes: a plurality of third metal traces extending along the first direction;
  • the second organic insulating layer is disconnected and its edge extends along the second direction and forms a second step
  • the second step includes: at least one convex structure and at least one recessed structure located between adjacent third metal traces.
  • the third metal trace and the second metal trace are electrically connected at the second step.
  • the orthographic projection of the second step on the base coincides with the orthographic projection of the first step on the base.
  • the display substrate further includes: a fourth conductive layer located between the first conductive layer and the substrate and insulated from the first conductive layer; the fourth conductive layer includes: Multiple fourth metal traces extending in two directions;
  • the first organic insulating layer is disconnected and its edge extends along the first direction and forms a third step
  • the third step includes: at least one protruding structure and at least one recessed structure located between adjacent fourth metal traces.
  • the first organic insulating layer forms a first water and oxygen blocking groove at the third step.
  • the second organic insulating layer is disconnected and its edge extends along the first direction and forms a fourth step
  • the fourth step includes: at least one convex structure and at least one recessed structure located between adjacent fourth metal traces.
  • the second organic insulating layer forms a second water and oxygen blocking groove at the fourth step.
  • the orthographic projection of the fourth step on the base coincides with the orthographic projection of the third step on the base.
  • the display substrate further includes: a third organic insulating layer located on a side of the third conductive layer facing away from the substrate;
  • the third organic insulating layer covers the first step and the second step, and is disconnected at the first water and oxygen barrier groove and the second water and oxygen barrier groove.
  • the shape of the groove structure is at least one of semicircle, triangle, and square.
  • an embodiment of the present disclosure provides a display device, wherein the display device includes the display substrate provided as above.
  • embodiments of the present disclosure provide a method for preparing a display substrate.
  • the display substrate has a display area and a peripheral area surrounding the display area, wherein the method for preparing the display substrate includes:
  • first conductive layer on the substrate, and use a patterning process to form a plurality of first metal traces extending along the first direction;
  • a first organic insulating layer is formed on the first conductive layer, and the first organic insulating layer is patterned so that the first organic insulating layer is disconnected in the peripheral area, and the The edge of the first organic insulating layer extends along the second direction to form a first step; wherein the first step includes: at least one protruding structure and at least one recessed structure;
  • a second organic insulating layer is formed on the second conductive layer, and the second organic insulating layer is patterned so that the second organic insulating layer is disconnected in the peripheral area, and the The edge of the second organic insulating layer extends along the second direction to form a second step; wherein the second step includes: at least one protruding structure and at least one recessed structure;
  • Figure 1 is a schematic structural diagram of an exemplary display substrate.
  • FIG. 2 is a schematic cross-sectional structural diagram of the display substrate shown in FIG. 1 along the A-A’ direction.
  • FIG. 3 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic cross-sectional structural diagram of the display substrate shown in Figure 3 along the B-B' direction.
  • FIG. 5 is a schematic top structural view of the display substrate shown in FIG. 4 .
  • FIG. 6 is a schematic cross-sectional structural diagram of the display substrate shown in FIG. 3 along the C-C’ direction.
  • FIG. 7 is a schematic structural diagram of a top view of the display substrate shown in FIG. 6 .
  • FIG. 8 is another top structural schematic diagram of the display substrate shown in FIG. 4 .
  • FIG. 9 is another top structural schematic diagram of the display substrate shown in FIG. 4 .
  • FIG. 10 is another top structural schematic diagram of the display substrate shown in FIG. 6 .
  • FIG. 11 is another top structural schematic diagram of the display substrate shown in FIG. 6 .
  • FIG. 12 is a schematic flowchart of a method for preparing a display substrate according to an embodiment of the present disclosure.
  • Figure 1 is a schematic structural diagram of an exemplary display substrate.
  • the display substrate has a display area and a peripheral area surrounding the display area.
  • Figure 2 shows the display substrate shown in Figure 1 along the AA' direction.
  • the display substrate includes: a substrate 100 and multiple conductive layers located on the substrate 100 , such as a first conductive layer 101 , a second conductive layer 102 and a third conductive layer 103 .
  • An organic insulating layer is disposed between adjacent conductive layers.
  • a first organic insulating layer 201 is disposed between the first conductive layer 101 and the second conductive layer 102, and a first organic insulating layer 201 is disposed between the second conductive layer 102 and the third conductive layer 103.
  • a second organic insulating layer 202 is provided, and a third organic insulating layer 203 is provided on the third conductive layer 103 .
  • the first conductive layer 101 may specifically include a plurality of first metal traces 1011 extending along the first direction
  • the second conductive layer 102 may specifically include a plurality of second metal traces 1021 extending along the first direction.
  • the third conductive layer 103 may specifically include a plurality of third metal traces 1031 extending in the first direction.
  • the first organic insulating layer 201, the second organic insulating layer 202 and the third organic insulating layer 203 can not only prevent short circuits between adjacent conductive layers, but also flatten the surfaces of the metal traces in the conductive layers they cover. to form a relatively flat surface to ensure good contact with other film layers fit.
  • the display substrate is also provided with multiple signal lines, such as data lines, scanning lines, power signal lines, initialization signal lines, reset signal lines, etc.
  • the signal lines generally adopt a multi-layer conductive layer structure.
  • the data lines can use the first metal trace 1011, the second metal trace 1021 and the third metal trace 1031.
  • a three-layer structure is formed. In the peripheral area, the first metal trace 1011, the second metal trace 1021, and the third metal trace 1031 may be electrically connected.
  • each organic insulating layer in the display substrate is generally made thicker.
  • the thickness of a single organic insulating layer can reach 1.5 microns to 3 microns, and the thickness of three organic insulating layers can reach nearly 10 microns.
  • the thicker organic insulating layer has a larger cross-section difference and is prone to forming higher steps.
  • the bottom of the step is prone to insufficient light during exposure, often causing Photoresist residue appears, resulting in metal residue, and the risk of short circuit easily occurs between adjacent metal traces across the cross-section.
  • embodiments of the present disclosure provide a display substrate, a display device, and a method for preparing a display substrate.
  • the display substrate, display device, and display substrate provided by embodiments of the present disclosure will be described below in conjunction with the drawings and specific implementations. The device and the preparation method of the display substrate are described in further detail.
  • an embodiment of the present disclosure provides a display substrate.
  • Figure 3 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure. As shown in Figure 3, the display substrate has a display area and a periphery surrounding the display area. district.
  • Figure 4 is a schematic cross-sectional structural view of the display substrate shown in Figure 3 along the BB' direction.
  • Figure 5 is a schematic top view structural view of the display substrate shown in Figure 4.
  • the display substrate includes: a substrate 100, a first conductive layer 101 and a second conductive layer 102 located on the substrate 100 and sequentially arranged in a direction away from the substrate 100, and a third conductive layer 101 located between the first conductive layer 101 and the second conductive layer 102.
  • the substrate 100 can be made of rigid materials such as glass, which can improve the carrying capacity of other film layers on the substrate 100 .
  • the substrate 100 can also be made of flexible materials such as polyimide (PI), which can improve the bending resistance and tensile resistance of the overall display substrate and avoid the bending, stretching, and twisting processes. The stress causes the substrate 100 to break, resulting in poor circuit breaking.
  • the material of the substrate 100 can be reasonably selected according to actual needs to ensure that the display substrate has good performance.
  • the first conductive layer 101 and the second conductive layer 102 can be made of the same conductive material, for example, one of aluminum, titanium, copper, molybdenum and other metal materials.
  • the first conductive layer 101 may include a plurality of first metal traces 1011 extending along the first direction; the second conductive layer 102 may include a plurality of second metal traces 1021 extending along the first direction.
  • the first metal trace 1011 and the second metal trace 1021 may extend from the display area of the display substrate to the peripheral area. Specifically, the first metal trace 1011 and the second metal trace 1021 may form a thin film transistor in the display area.
  • the film layer can also form a signal line for transmitting signals, such as a data line.
  • the first metal trace 1011 and the second metal trace 1021 are insulated by the first insulating layer 201.
  • the first metal trace 1011 and the second metal trace 1021 overlap each other. , to transmit the same data signal.
  • the first organic insulating layer 201 is provided in some areas and is not provided in some areas, the first organic insulating layer 201 is disconnected, and its edge extends along the second direction and forms The second direction of the first step 301 intersects the first direction, that is, the extension direction of the first step 301 intersects the extension direction of the first metal trace 1011 (or the second metal trace 1021).
  • the first step 301 includes: at least one protruding structure a and at least one recessed structure b located between adjacent second metal traces 1021 .
  • the convex structure a and the recessed structure b can change the side surface of the first step 301 from the original flat straight-side cross-section into an uneven curved cross-section.
  • the plurality of first metal traces 1011 and the plurality of second metal traces 1021 extend in the same direction from the display area to the peripheral area, and a thicker third metal trace is provided between them.
  • An organic insulating layer 201 In the peripheral area, the first organic insulating layer 201 is disconnected. In the disconnected position, the edge of the first organic insulating layer 201 extends along the second direction and forms a first step 301.
  • the side of the first step 301 has a convex shape. From structure a and recessed structure b, at least one raised structure a and one recessed structure b are provided between adjacent second metal traces 1021.
  • the light-receiving area of the photoresist coated on the convex structure a will be greatly increased and can be completely removed. Even if some of the photoresist coated on the recessed structure b remains, the entire first step Continuous residual metal will not be formed at the bottom of 301, thereby avoiding short circuits between adjacent first metal traces 1011 and adjacent second metal traces 1021, thereby improving the display effect of the display substrate.
  • the second metal trace 1021 and the first metal trace 1011 are electrically connected at the first step 301 .
  • the second metal trace 1021 and the first metal trace 1011 are electrically connected at the first step 301 to form a double-layer structure signal line, such as a double-layer structure data line.
  • the double-layer structure can increase the thickness of the signal line.
  • the resistance of the signal line is reduced, the signal transmission efficiency is improved, and the display effect of the display substrate is improved.
  • the display substrate further includes: a third conductive layer 103 located on the side of the second conductive layer 102 facing away from the substrate 100; 103 between the second organic insulating layer 202; the third conductive layer 103 includes: a plurality of third metal traces 1031 extending along the first direction; in the peripheral area, the second organic insulating layer 202 is disconnected, and its edge is along The second direction extends and forms a second step 302; the second step 302 includes: at least one protruding structure a and at least one recessed structure b located between adjacent third metal traces 1031.
  • the third conductive layer 102 may be made of the same conductive material as the first conductive layer 101 and the second conductive layer 102, for example, one of metal materials such as aluminum, titanium, copper, and molybdenum.
  • the third conductive layer 103 may include: a plurality of third metal traces 1031 extending along the first direction. Likewise, the third metal goes The line 1031 may extend from the display area of the display substrate to the peripheral area. Specifically, the third metal line 1031 may also form a film layer of a thin film transistor in the display area, or may form a signal line for transmitting signals, such as a data line. . In the display area, the third metal trace 1031 and the second metal trace 1021 are insulated by the second insulating layer 202. In the peripheral area, the third metal trace 1031 and the second metal trace 1021 overlap each other. , to transmit the same data signal.
  • the second organic insulating layer 202 is disconnected. In the disconnected position, the edge of the second organic insulating layer 202 extends along the second direction and forms a second step 302.
  • the side of the second step 302 has a convex shape. From the structure a and the recessed structure b, at least one raised structure a and one recessed structure b are provided between adjacent third metal traces 1031.
  • the light-receiving area of the photoresist coated on the convex structure a will be greatly increased and can be completely removed. Even if some of the photoresist coated on the recessed structure b remains, the entire second step Continuous residual metal will not be formed at the bottom of 302, which can avoid short circuits between adjacent third metal traces 1011, thereby improving the display effect of the display substrate.
  • the third metal trace 1031 and the second metal trace 1021 are electrically connected at the second step 302 .
  • the third metal trace 1031 and the second metal trace 1021 are electrically connected at the second step 302, and can form a double-layer structure or even a three-layer structure signal line, such as a double-layer structure or a three-layer structure data line, which can increase
  • the thickness of the signal line can thereby reduce the resistance of the signal line, improve the signal transmission efficiency, and thereby improve the display effect of the display substrate.
  • the orthographic projection of the second step 302 on the substrate 100 coincides with the orthographic projection of the first step 301 on the substrate 100 .
  • the first step 301 and the second step 302 have the same shape. During the preparation process, they can be made by using the same mask plate, which can reduce the number of mask plates and save preparation costs. At the same time, the first step 301 and the second adjustment 302 completely overlap, which can ensure the stability of the overlap between the first metal trace 1011, the second metal trace 1021 and the third metal trace 1031, and avoid weak overlap. increase access contact resistance.
  • first conductive layer 101 can be a first source-drain conductive layer, which can form the source and drain electrodes of the thin film transistor in the display area, and can also form signal lines such as data lines.
  • the second conductive layer 102 can be a second conductive layer.
  • Source-drain conductive layer, the third conductive layer 103 can specifically be a third source-drain conductive layer, which can form a transfer electrode between the drain of the thin film transistor in the display area and the anode of the light-emitting device, and can also form a data line, etc. Signal.
  • the source and drain conductive layers in the display substrate can also be set to two layers. layers or other numbers.
  • the display substrate is provided with only the first conductive layer 101 (first source-drain conductive layer) and the second conductive layer 102 (second source-drain conductive layer).
  • Figure 6 is a schematic cross-sectional structural view of the display substrate shown in Figure 3 along the CC' direction.
  • Figure 7 is a schematic top view structural view of the display substrate shown in Figure 6.
  • the display substrate also includes: a fourth conductive layer 104 located between the first conductive layer 101 and the substrate 100 and insulated from the first conductive layer 101; the fourth conductive layer 104 includes: a plurality of fourth metal strips extending along the second direction.
  • the third step 303 includes: located between the adjacent fourth metal traces 1041 at least one protruding structure a and at least one concave structure b.
  • the fourth conductive layer 104 may specifically be a gate conductive layer, which may be made of one or more metal materials such as gold, silver, aluminum, titanium, copper, and molybdenum.
  • An inorganic insulating layer may be disposed between the fourth conductive layer 104 and the first conductive layer 101 to form an insulating layer between the two.
  • the inorganic insulating layer may be one or more of silicon nitride, silicon oxide, and silicon oxynitride. production.
  • the fourth conductive layer 104 may include: a plurality of fourth metal traces 1041 extending in the second direction, and the fourth metal traces 1041 may extend from the display area of the display substrate to the peripheral area.
  • the fourth metal trace 1041 may be a scan line and may transmit a gate scan signal.
  • the first insulating layer 201 may be disconnected. In the disconnected position, the edge of the first organic insulating layer 201 extends along the first direction and forms a third step 303.
  • the side of the third step 303 may have a convex shape. From the raised structure a and the recessed structure b, at least one raised structure a and recessed structure b are provided between adjacent fourth metal traces 1041. During the photolithography process, the light-receiving area of the photoresist coated on the convex structure a will be greatly increased and can be completely removed.
  • the entire third step There will also be no continuous residual metal formed at the bottom of 303 (the residual metal is the metal of the second conductive layer 102), thereby avoiding short circuits between adjacent fourth metal traces 1041, thereby improving the display effect of the display substrate. .
  • the first organic insulating layer 101 forms a first water and oxygen barrier groove V1 at the third step 303 .
  • the first water and oxygen blocking groove V1 can disconnect the first organic insulating layer 201 to prevent water and oxygen from infiltrating from the peripheral area of the display substrate into the display area, and prevent water and oxygen from damaging the light-emitting devices in the display area. It should be noted here that since the thickness of the inorganic insulating layer is small and does not conduct water, oxygen, etc., the inorganic insulating layer does not need to be disconnected, so that the first conductive layer 101 does not have a step structure during the preparation process. remain, so the structures of the first conductive layer 101 and the inorganic insulating layer are not shown in FIGS. 6 and 7 .
  • the second organic insulating layer 202 is disconnected, and its edge extends along the first direction to form a fourth step 304;
  • the fourth step 304 includes: an adjacent fourth metal trace 1041 between at least one protruding structure a and at least one concave structure b.
  • the second insulating layer 202 may be disconnected. In the disconnected position, the edge of the second organic insulating layer 202 extends along the first direction and forms a fourth step 304.
  • the side of the third step 304 may have a convex shape. From the raised structure a and the recessed structure b, at least one raised structure a and recessed structure b are provided between adjacent fourth metal traces 1041. During the photolithography process, the light-receiving area of the photoresist coated on the convex structure a will be greatly increased and can be completely removed.
  • the bottom of 303 will not form a continuous residue Metal (the residual metal is the metal of the third conductive layer 103) can avoid short circuit between adjacent fourth metal traces 1041, thereby improving the display effect of the display substrate.
  • the second organic insulating layer 202 forms a second water and oxygen barrier groove V2 at the fourth step 304 .
  • the second water and oxygen barrier groove V2 can disconnect the second organic insulating layer 202 to prevent water and oxygen from infiltrating from the peripheral area of the display substrate into the display area, and prevent water and oxygen from damaging the light-emitting devices in the display area.
  • the fourth step 304 and the third step 303 need to completely overlap. On the one hand, it can reduce the number of mask plates and save preparation costs.
  • the overlap of the two can make the first water and oxygen barrier groove V1 formed. It completely overlaps with the second water and oxygen barrier groove V2 to ensure that the first organic insulating layer 201 and the second insulating layer 202 are disconnected at the same position to avoid water and oxygen intrusion.
  • the display substrate further includes: a third organic insulating layer 203 located on the side of the third conductive layer 103 facing away from the substrate 100; the third organic insulating layer 203 covers the first step 301 and the second step 302, and is on the third step 301 and the second step 302.
  • the first water and oxygen barrier tank V1 and the second water and oxygen barrier tank V2 are disconnected.
  • the third organic insulating layer 203 can further planarize the first step 301 and the second step 302 to ensure adhesion with other film layers.
  • the third organic insulating layer 203 can be connected with the first organic insulating layer 201 and The second organic insulating layer 202 is disconnected at the same position to avoid water and oxygen intrusion.
  • FIG. 8 is another schematic structural view from a top view of the display substrate shown in FIG. 4
  • FIG. 9 is another schematic structural view from a top view of the display substrate shown in FIG. 4
  • FIG. 10 is a schematic view from the top view of the display substrate shown in FIG. 6
  • Figure 11 is another schematic diagram of the top structure of the display substrate shown in Figure 6.
  • the shape of the groove structure b is semicircular, triangular, At least one of the square shapes.
  • the shape of the groove structure b can be at least one of semicircle, triangle, and square, so that the side of the step structure formed by the edge of the organic insulating layer changes from the original flat straight-edge cross-section to an uneven curved cross-section. Avoid forming continuous residual metal when forming a conductive layer on the organic insulating layer. This can prevent short circuits between adjacent metal traces across the cross-section. risk, thereby improving the display effect of the display substrate.
  • an embodiment of the present disclosure provides a display device.
  • the display device includes the display substrate provided in any of the above embodiments.
  • the display device includes the display substrate provided in any of the above embodiments.
  • the display device may be Embodiments of the present disclosure are not limited to any product or component with a display function such as mobile phones, tablet computers, televisions, monitors, notebook computers, digital photo frames, and navigators. The implementation principles and technical effects are the same as those of the display substrate provided in any of the above embodiments, and will not be described again here.
  • FIG. 12 is a schematic flow chart of a method of preparing a display substrate provided by an embodiment of the disclosure. As shown in Figure 12, the method for preparing a display substrate It includes the following steps S101 to S103.
  • first organic insulating layer on the first conductive layer, and pattern the first organic insulating layer so that the first organic insulating layer is disconnected in the peripheral area, and the edge of the first organic insulating layer is along the The second direction extends to form a first step; wherein the first step includes: at least one convex structure and at least one concave structure.
  • the plurality of first metal traces and the plurality of second metal traces are formed to extend in the same direction from the display area to the peripheral area, and a relatively small gap is provided between them.
  • Thick first organic insulating layer In the peripheral area, the first organic insulating layer is disconnected. At the disconnected position, the edge of the first organic insulating layer extends along the second direction and forms a first step.
  • the side of the first step has a convex structure and a depression. structure, at least one convex structure and one recessed structure are provided between adjacent second metal traces.
  • the photolithography coating on the raised structure The photoresist area of the photoresist will be greatly increased and can be completely removed. Even if the photoresist coated on the recessed structure partially remains, no continuous residual metal will be formed at the bottom of the entire first step, thus avoiding the adjacent second step. A short circuit occurs between a metal trace and an adjacent second metal trace, thereby improving the display effect of the display substrate.
  • the display substrate preparation method further includes the following steps S104 and S105.
  • S104 form a second organic insulating layer on the second conductive layer, and pattern the second organic insulating layer so that the second organic insulating layer is disconnected in the peripheral area, and the edge of the second organic insulating layer is along the The second direction extends to form a second step; wherein the second step includes: at least one convex structure and at least one concave structure.
  • S105 form a third conductive layer on the second organic insulating layer, and use a patterning process to form a plurality of third metal traces extending in the first direction, so that there is at least one bump between adjacent third metal traces. structure and at least one recessed structure.
  • the formed second organic insulating layer is disconnected.
  • the edge of the second organic insulating layer extends along the second direction and forms a second step.
  • the side of the second step has a protruding structure. and a recessed structure, at least one convex structure and one recessed structure are provided between adjacent third metal traces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供一种显示基板、显示装置及显示基板的制备方法,属于显示技术领域,其可解决现有的显示基板中相邻的金属走线之间发生短路的问题。本公开的显示基板,具有显示区及围绕显示区的周边区,其中,显示基板包括:基底、位于基底上且沿着背离基底方向依次设置的第一导电层和第二导电层、及位于第一导电层和第二导电层之间的第一有机绝缘层;第一导电层包括:沿第一方向延伸的多条第一金属走线;第二导电层包括:沿第一方向延伸的多条第二金属走线;在周边区,第一有机绝缘层断开设置,其边缘沿第二方向延伸并形成第一台阶;第二方向与第一方向相交;第一台阶包括:位于相邻的第二金属走线之间的至少一个凸起结构和至少一个凹陷结构。

Description

显示基板、显示装置及显示基板的制备方法 技术领域
本公开属于显示技术领域,具体涉及一种显示基板、显示装置及显示基板的制备方法。
背景技术
有机电致发光二极管(Organic Light-Emitting Diode,OLED)显示基板在制备过程中,需要采用多层有机绝缘层来对其中的结构进行平坦化处理。由于有机绝缘层的厚度较厚,并且在OLED显示基板的周边区中绑定及弯折的结构需要,在OLED显示基板的边缘会出现多层有机绝缘层堆叠,形成较厚的台阶。
在台阶的底部,容易出现曝光不足的现象,导致在有机绝缘层上形成金属走线时,相邻的金属走线之间的金属容易残留,使得相邻的金属走线之间发生短路,造成电路结构损坏,从而影响OLED基板的显示效果。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提供一种显示基板、显示装置及显示基板的制备方法。
第一方面,本公开实施例提供了一种显示基板,具有显示区及围绕所述显示区的周边区,其中,所述显示基板包括:基底、位于所述基底上且沿着背离所述基底方向依次设置的第一导电层和第二导电层、及位于所述第一导电层和所述第二导电层之间的第一有机绝缘层;所述第一导电层包括:沿第一方向延伸的多条第一金属走线;第二导电层包括:沿第一方向延伸的多条第二金属走线;
在所述周边区,所述第一有机绝缘层断开设置,其边缘沿第二方向延伸并形成第一台阶;所述第二方向与所述第一方向相交;
所述第一台阶包括:位于相邻的所述第二金属走线之间的至少一个凸起结构和至少一个凹陷结构。
可选地,所述第二金属走线与所述第一金属走线在所述第一台阶处电连接。
可选地,所述显示基板还包括:位于所述第二导电层背离所述基底一侧的第三导电层、及位于所述第二导电层和所述第三导电层之间的第二有机绝缘层;所述第三导电层包括:沿第一方向延伸的多条第三金属走线;
在所述周边区,所述第二有机绝缘层断开设置,其边缘沿第二方向延伸并形成第二台阶;
所述第二台阶包括:位于相邻的所述第三金属走线之间的至少一个凸起结构和至少一个凹陷结构。
可选地,所述第三金属走线与所述第二金属走线在所述第二台阶处电连接。
可选地,所述第二台阶在所述基底上的正投影与所述第一台阶在所述基底上的正投影相重合。
可选地,所述显示基板还包括:位于所述第一导电层与所述基底之间且与所述第一导电层绝缘设置的第四导电层;所述第四导电层包括:沿第二方向延伸的多条第四金属走线;
在所述周边区,所述第一有机绝缘层断开设置,其边缘沿第一方向延伸并形成第三台阶;
所述第三台阶包括:位于相邻的所述第四金属走线之间的至少一个凸起结构和至少一个凹陷结构。
可选地,所述第一有机绝缘层在所述第三台阶处形成第一水氧阻挡槽。
可选地,在所述周边区,所述第二有机绝缘层断开设置,其边缘沿第一方向延伸并形成第四台阶;
所述第四台阶包括:位于相邻的所述第四金属走线之间的至少一个凸起结构和至少一个凹陷结构。
可选地,所述第二有机绝缘层在所述第四台阶处形成第二水氧阻挡槽。
可选地,所述第四台阶在所述基底上的正投影与所述第三台阶在所述基底上的正投影相重合。
可选地,所述显示基板还包括:位于所述第三导电层背离所述基底一侧的第三有机绝缘层;
所述第三有机绝缘层覆盖所述第一台阶和所述第二台阶,且在所述第一水氧阻挡槽和所述第二水氧阻挡槽处断开设置。
可选地,所述凹槽结构的形状为半圆形、三角形、方形中的至少一种。
第二方面,本公开实施例提供了一种显示装置,其中,所述显示装置包括如上述提供的显示基板。
第三方面,本公开实施例提供了一种显示基板的制备方法,显示基板具有显示区及围绕所述显示区的周边区,其中,所述显示基板的制备方法包括:
在基底上形成第一导电层,并利用构图工艺,形成沿第一方向延伸的多条第一金属走线;
在所述第一导电层上形成第一有机绝缘层,并对所述第一有机绝缘层进行图案化处理,使得所述第一有机绝缘层在所述周边区中断开设置,并且所述第一有机绝缘层的边缘沿第二方向延伸形成第一台阶;其中,所述第一台阶包括:至少一个凸起结构和至少一个凹陷结构;
在所述第一有机绝缘层上形成第二导电层,并利用构图工艺形成沿第一方向延伸的多条第二金属走线,使得相邻的所述第二金属走线之间具有至少一个凸起结构和至少一个凹陷结构。
可选地,在所述第一有机绝缘层上形成第二导电层,并利用构图工艺形成沿第一方向延伸的多条第二金属走线,之后还包括:
在所述第二导电层上形成第二有机绝缘层,并对所述第二有机绝缘层进行图案化处理,使得所述第二有机绝缘层在所述周边区中断开设置,并且所述第二有机绝缘层的边缘沿第二方向延伸形成第二台阶;其中,所述第二台阶包括:至少一个凸起结构和至少一个凹陷结构;
在所述第二有机绝缘层上形成第三导电层,并利用构图工艺形成沿第一方向延伸的多条第三金属走线,使得相邻的所述第三金属走线之间具有至少一个凸起结构和至少一个凹陷结构。
附图说明
图1为一种示例性的显示基板的结构示意图。
图2为图1所示的显示基板沿A-A’方向上的截面结构示意图。
图3为本公开实施例提供的一种显示基板的结构示意图。
图4为图3所示的显示基板沿B-B’方向上的一种截面结构示意图。
图5为图4所示的显示基板的一种俯视结构示意图。
图6为图3所示的显示基板沿C-C’方向上的一种截面结构示意图。
图7为图6所示的显示基板的一种俯视结构示意图。
图8为图4所示的显示基板的另一种俯视结构示意图。
图9为图4所示的显示基板的又一种俯视结构示意图。
图10为图6所示的显示基板的另一种俯视结构示意图。
图11为图6所示的显示基板的又一种俯视结构示意图。
图12为本公开实施例提供的一种显示基板的制备方法的流程示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具 体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为一种示例性的显示基板的结构示意图,如图1所示,该显示基板具有显示区及围绕显示区的周边区,图2为图1所示的显示基板沿A-A’方向上的截面结构示意图,如图2所示,显示基板包括:基底100、位于基底100上的多层导电层,例如,第一导电层101、第二导电层102和第三导电层103。相邻的导电层之间设置有有机绝缘层,例如,第一导电层101与第二导电层102之间设置有第一有机绝缘层201,第二导电层102与第三导电层103之间设置有第二有机绝缘层202,第三导电层103上设置有第三有机绝缘层203。
其中,第一导电层101具体可以包括沿第一方向上延伸的多条第一金属走线1011,第二导电层102具体可以包括沿第一方向上延伸的多条第二金属走线1021,第三导电层103具体可以包括沿第一方向上延伸的多条第三金属走线1031。第一有机绝缘层201、第二有机绝缘层202和第三有机绝缘层203不仅可以防止相邻的导电层之间发生短路,还可以对其覆盖的导电层中的金属走线的表面进行平坦化,以形成较为平坦的表面,保证与其他膜层之间的 贴合。
显示基板中还设置有多条信号线,例如,数据线、扫描线、电源信号线、初始化信号线、复位信号线等。为了降低显示基板中的信号线的电阻,一般将信号线采用多层导电层的结构,例如,数据线可以采用第一金属走线1011、第二金属走线1021和第三金属走线1031的三层结构形成。在周边区中,第一金属走线1011、第二金属走线1021和第三金属走线1031可以电连接。
为了增加平坦性,一般将显示基板中的各层有机绝缘层的厚度做的较厚,例如,单层有机绝缘层的厚度可以达到1.5微米至3微米,三层有机绝缘层的厚度可以达到将近10微米。较厚的有机绝缘层的断面的断差较大,容易形成较高的台阶,在其上进行导电层成膜并进行图案化形成金属走线时,台阶底部在曝光照射时容易受光不足,常会出现光刻胶残留,从而导致金属残留,在此跨断面的相邻的金属走线之间容易发生短路的风险。
为了至少解决上述的技术问题之一,本公开实施例提供了一种显示基板、显示装置及显示基板的制备方法,下面将结合附图及具体实施方式,对本公开实施例提供的显示基板、显示装置及显示基板的制备方法进行进一步详细描述。
第一方面,本公开实施例提供了一种显示基板,图3为本公开实施例提供的一种显示基板的结构示意图,如图3所示,该显示基板具有显示区及围绕显示区的周边区。图4为图3所示的显示基板沿B-B’方向上的一种截面结构示意图,图5为图4所示的显示基板的一种俯视结构示意图,如图4和图5所示,显示基板包括:基底100、位于基底100上且沿着背离基底100方向依次设置的第一导电层101和第二导电层102、及位于第一导电层101和第二导电层102之间的第一有机绝缘层201;第一导电层101包括:沿第一方向延伸的多条第一金属走线1011;第二导电层102包括:沿第一方向延伸的多条第二金属走线1021;在周边区,第一有机绝缘层201断开设置,其 边缘沿第二方向延伸并形成第一台阶301;第二方向与第一方向相交;第一台阶301包括:位于相邻的第二金属走线1021之间的至少一个凸起结构a和至少一个凹陷结构b。
基底100可以采用玻璃等刚性材料制成,可以提高基底100对其上的其他膜层的承载能力。当然,基底100还可以采用聚酰亚胺(polyimide,PI)等柔性材料制成,可以提高整体显示基板的抗弯折、抗拉伸性能,避免在弯折、拉伸、扭曲过程中产生的应力使得基底100发生断裂,造成断路不良。在实际应用中,可以根据实际需要,合理选择基底100的材料,以保证显示基板具有良好的性能。
第一导电层101和第二导电层102可以采用相同的导电材料制成,例如,铝、钛、铜、钼等金属材料中的一种。第一导电层101可以包括:沿第一方向延伸的多条第一金属走线1011;第二导电层102可以包括:沿第一方向延伸的多条第二金属走线1021。第一金属走线1011和第二金属走线1021可以由显示基板的显示区延伸至周边区中,具体地,第一金属走线1011和第二金属走线1021可以形成显示区中的薄膜晶体管的膜层,也可以形成用于传输信号的信号线,例如数据线。在显示区中,第一金属走线1011和第二金属走线1021之间采用第一绝缘层201绝缘设置,在周边区中,第一金属走线1011和第二金属走线1021相互搭接,以传输同一数据信号。
在周边区中,由于部分区域中设置有第一有机绝缘层201,部分区域中未设置有第一有机绝缘层201,使得第一有机绝缘层201断开,其边缘沿第二方向延伸并形成第一台阶301,第二方向与第一方向相交,即第一台阶301的延伸方向与第一金属走线1011(或第二金属走线1021)的延伸方向相交。
第一台阶301包括:位于相邻的第二金属走线1021之间的至少一个凸起结构a和至少一个凹陷结构b。凸起结构a和凹陷结构b可以使得第一台阶301的侧面由原来的平整直边断面变成凹凸不平的曲面断面。
本公开实施例提供的显示基板中,多条第一金属走线1011和多条第二金属走线1021均由显示区向周边区沿着同一方向延伸,二者之间设置有较厚的第一有机绝缘层201。在周边区中,第一有机绝缘层201断开设置,在断开的位置,第一有机绝缘层201的边缘沿第二方向延伸,并且形成第一台阶301,第一台阶301的侧面具有凸起结构a和凹陷结构b,相邻的第二金属走线1021之间至少设置有一个凸起结构a和一个凹陷结构b。在进行光刻工艺时,凸起结构a处涂覆的光刻胶的受光面积会大大增加,可以被完全去除,即使凹陷结构b处涂覆的光刻胶有部分残留,在整个第一台阶301的底部也不会形成连续的残留金属,从而可以避免相邻的第一金属走线1011及相邻的第二金属走线1021之间发生短路,进而可以提高显示基板的显示效果。
在一些实施例中,第二金属走线1021与第一金属走线1011在第一台阶301处电连接。
第二金属走线1021与第一金属走线1011在第一台阶301处电连接,可以形成双层结构的信号线,例如双层结构的数据线,双层结构可以增大信号线的厚度,从而减小信号线的电阻,提高信号的传输效率,进而提高显示基板的显示效果。
在一些实施例中,如图4和图5所示,显示基板还包括:位于第二导电层102背离基底100一侧的第三导电层103、及位于第二导电层102和第三导电层103之间的第二有机绝缘层202;第三导电层103包括:沿第一方向延伸的多条第三金属走线1031;在周边区,第二有机绝缘层202断开设置,其边缘沿第二方向延伸并形成第二台阶302;第二台阶302包括:位于相邻的第三金属走线1031之间的至少一个凸起结构a和至少一个凹陷结构b。
第三导电层102可以与第一导电层101及第二导电层102采用相同的导电材料制成,例如,铝、钛、铜、钼等金属材料中的一种。第三导电层103可以包括:沿第一方向延伸的多条第三金属走线1031。同样地,第三金属走 线1031可以由显示基板的显示区延伸至周边区,具体地,第三金属走线1031也可以形成显示区中的薄膜晶体管的膜层,也可以形成用于传输信号的信号线,例如数据线。在显示区中,第三金属走线1031和第二金属走线1021之间采用第二绝缘层202绝缘设置,在周边区中,第三金属走线1031和第二金属走线1021相互搭接,以传输同一数据信号。
在周边区中,第二有机绝缘层202断开设置,在断开的位置,第二有机绝缘层202的边缘沿第二方向延伸,并且形成第二台阶302,第二台阶302的侧面具有凸起结构a和凹陷结构b,相邻的第三金属走线1031之间至少设置有一个凸起结构a和一个凹陷结构b。在进行光刻工艺时,凸起结构a处涂覆的光刻胶的受光面积会大大增加,可以被完全去除,即使凹陷结构b处涂覆的光刻胶有部分残留,在整个第二台阶302的底部也不会形成连续的残留金属,从而可以避免相邻的第三金属走线1011之间发生短路,进而可以提高显示基板的显示效果。
在一些实施例中,第三金属走线1031与第二金属走线1021在第二台阶302处电连接。
第三金属走线1031与第二金属走线1021在第二台阶302处电连接,可以形成双层结构甚至三层结构的信号线,例如双层结构或三层结构的数据线,可以增大信号线的厚度,从而减小信号线的电阻,提高信号的传输效率,进而提高显示基板的显示效果。
在一些实施例中,第二台阶302在基底100上的正投影与第一台阶301在基底100上的正投影相重合。
第一台阶301和第二台阶302的形状相同,在制备过程中,可以采用同一掩膜板制成,这样可以减少掩膜板的数量,节约制备成本。同时,第一台阶301和第二调节302完全重合,可以保证第一金属走线1011、第二金属走线1021和第三金属走线1031之间的搭接稳定性,避免出现搭接不牢增大接 触电阻。
在此需要说明的是,上述的第一导电层101、第二导电层102和第三导电层103均可以为显示基板中的源漏导电层。例如,第一导电层101具体可以为第一源漏导电层,其可以形成显示区中的薄膜晶体管的源漏电极,还可以形成数据线等信号线,第二导电层102具体可以为第二源漏导电层,第三导电层103具体可以为第三源漏导电层,其可以形成显示区中的薄膜晶体管的漏极与发光器件的阳极之间的转接电极,还可以形成数据线等信号。可以理解的是,在显示基板中,一般将显示基板中的源漏导电层设置为三层即可以达到相应的减小电阻的效果,当然还可以将显示基板中的源漏导电层设置为两层或者其他数量,例如,显示基板中仅设置有第一导电层101(第一源漏导电层)和第二导电层102(第二源漏导电层)。
图6为图3所示的显示基板沿C-C’方向上的一种截面结构示意图,图7为图6所示的显示基板的一种俯视结构示意图,如图6和图7所示,显示基板还包括:位于第一导电层101与基底100之间且与第一导电层101绝缘设置的第四导电层104;第四导电层104包括:沿第二方向延伸的多条第四金属走线1041;在周边区,第一有机绝缘层201断开设置,其边缘沿第一方向延伸并形成第三台阶303;第三台阶303包括:位于相邻的第四金属走线1041之间的至少一个凸起结构a和至少一个凹陷结构b。
第四导电层104具体可以为栅极导电层,其可以采用金、银、铝、钛、铜、钼等金属材料中的一种或多种制成。第四导电层104与第一导电层101之间可以设置有无机绝缘层,使得二者之间绝缘层,无机绝缘层可以采用氮化硅、氧化硅及氮氧化硅中的一种或多种制成。第四导电层104可以包括:沿第二方向延伸的多条第四金属走线1041,第四金属走线1041可以由显示基板的显示区延伸至周边区。具体地,第四金属走线1041可以为扫描线,可以传输栅极扫描信号。
在周边区中,第一绝缘层201可以断开设置,在断开位置,第一有机绝缘层201的边缘沿第一方向延伸,并且形成第三台阶303,第三台阶303的侧面可以具有凸起结构a和凹陷结构b,相邻的第四金属走线1041之间至少设置有一个凸起结构a和凹陷结构b。在进行光刻工艺时,凸起结构a处涂覆的光刻胶的受光面积会大大增加,可以被完全去除,即使凹陷结构b处涂覆的光刻胶有部分残留,在整个第三台阶303的底部也不会形成连续的残留金属(该残留金属为第二导电层102的金属),从而可以避免相邻的第四金属走线1041之间发生短路,进而可以提高显示基板的显示效果。
在一些实施例中,第一有机绝缘层101在第三台阶303处形成第一水氧阻挡槽V1。
第一水氧阻挡槽V1可以将第一有机绝缘层201断开,避免水氧等由显示基板的周边区向显示区浸入,防止水氧等对显示区中的发光器件造成损坏。在此需要说明的是,由于无机绝缘层的厚度较小,且不会传导水氧等,无机绝缘层可以不必断开设置,使得第一导电层101在制备过程中不会由于台阶结构而发生残留,因此在图6和图7中均未示出第一导电层101及无机绝缘层的结构。
在一些实施例中,在周边区,第二有机绝缘层202断开设置,其边缘沿第一方向延伸并形成第四台阶304;第四台阶304包括:位于相邻的第四金属走线1041之间的至少一个凸起结构a和至少一个凹陷结构b。
在周边区中,第二绝缘层202可以断开设置,在断开位置,第二有机绝缘层202的边缘沿第一方向延伸,并且形成第四台阶304,第三台阶304的侧面可以具有凸起结构a和凹陷结构b,相邻的第四金属走线1041之间至少设置有一个凸起结构a和凹陷结构b。在进行光刻工艺时,凸起结构a处涂覆的光刻胶的受光面积会大大增加,可以被完全去除,即使凹陷结构b处涂覆的光刻胶有部分残留,在整个第三台阶303的底部也不会形成连续的残留 金属(该残留金属为第三导电层103的金属),从而可以避免相邻的第四金属走线1041之间发生短路,进而可以提高显示基板的显示效果。
在一些实施例中,第二有机绝缘层202在第四台阶304处形成第二水氧阻挡槽V2。
第二水氧阻挡槽V2可以将第二有机绝缘层202断开,避免水氧等由显示基板的周边区向显示区浸入,防止水氧等对显示区中的发光器件造成损坏。在实际应用中,第四台阶304与第三台阶303需要完全重合,一方面可以减少掩膜板的数量,节约制备成本,另一方面,二者重合可以使得形成的第一水氧阻挡槽V1和第二水氧阻挡槽V2完全重合,保证第一有机绝缘层201和第二绝缘层202在相同的位置断开,避免水氧侵入。
在一些实施例中,显示基板还包括:位于第三导电层103背离基底100一侧的第三有机绝缘层203;第三有机绝缘层203覆盖第一台阶301和第二台阶302,且在第一水氧阻挡槽V1和第二水氧阻挡槽V2处断开设置。
第三有机绝缘层203可以对第一台阶301和第二台阶302进行进一步平坦化处理,以保证与其他膜层之间的贴合,第三有机绝缘层203可以与第一有机绝缘层201及第二有机绝缘层202在同样的位置断开,以避免水氧侵入。
在一些实施例中,图8为图4所示的显示基板的另一种俯视结构示意图,图9为图4所示的显示基板的又一种俯视结构示意图,图10为图6所示的显示基板的另一种俯视结构示意图,图11为图6所示的显示基板的又一种俯视结构示意图,如图8至图11所示,凹槽结构b的形状为半圆形、三角形、方形中的至少一种。
凹槽结构b的形状可以为半圆形、三角形、方形中的至少一种,可以使得有机绝缘层的边缘形成的台阶结构侧面为由原来的平整直边断面变成凹凸不平的曲面断面,可以避免在有机绝缘层上形成导电层时,避免形成连续的残留金属,这样可以防止在此跨断面的相邻的金属走线之间容易发生短路的 风险,从而提高显示基板的显示效果。
第二方面,本公开实施例提供了一种显示装置,该显示装置包括如上述任一实施例提供的显示基板,该显示装置包括如上述任一实施例提供的显示基板,该显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本公开的实施例对此不做限定。其实现原理及技术效果与上述任一实施例提供的显示基板的实现原理及技术效果相同,在此不再赘述。
第三方面,本公开实施例提供了一种显示基板的制备方法,图12为本公开实施例提供的一种显示基板的制备方法的流程示意图,如图12所示,该显示基板的制备方法包括如下步骤S101至步骤S103。
S101,在基底上形成第一导电层,并利用构图工艺,形成沿第一方向延伸的多条第一金属走线。
S102,在第一导电层上形成第一有机绝缘层,并对第一有机绝缘层进行图案化处理,使得第一有机绝缘层在周边区中断开设置,并且第一有机绝缘层的边缘沿第二方向延伸形成第一台阶;其中,第一台阶包括:至少一个凸起结构和至少一个凹陷结构。
S103,在第一有机绝缘层上形成第二导电层,并利用构图工艺形成沿第一方向延伸的多条第二金属走线,使得相邻的第二金属走线之间具有至少一个凸起结构和至少一个凹陷结构。
本公开实施例提供的显示基板的制备方法中,形成的多条第一金属走线和多条第二金属走线均由显示区向周边区沿着同一方向延伸,二者之间设置有较厚的第一有机绝缘层。在周边区中,第一有机绝缘层断开设置,在断开的位置,第一有机绝缘层的边缘沿第二方向延伸,并且形成第一台阶,第一台阶的侧面具有凸起结构和凹陷结构,相邻的第二金属走线之间至少设置有一个凸起结构和一个凹陷结构。在进行光刻工艺时,凸起结构处涂覆的光刻 胶的受光面积会大大增加,可以被完全去除,即使凹陷结构处涂覆的光刻胶有部分残留,在整个第一台阶的底部也不会形成连续的残留金属,从而可以避免相邻的第一金属走线及相邻的第二金属走线之间发生短路,进而可以提高显示基板的显示效果。
在一些实施例中,如图13所示,该显示基板的制备方法还包括如下步骤S104步骤S105。
S104,在第二导电层上形成第二有机绝缘层,并对第二有机绝缘层进行图案化处理,使得第二有机绝缘层在周边区中断开设置,并且第二有机绝缘层的边缘沿第二方向延伸形成第二台阶;其中,第二台阶包括:至少一个凸起结构和至少一个凹陷结构。
S105,在第二有机绝缘层上形成第三导电层,并利用构图工艺形成沿第一方向延伸的多条第三金属走线,使得相邻的第三金属走线之间具有至少一个凸起结构和至少一个凹陷结构。
在周边区中,形成的第二有机绝缘层断开设置,在断开的位置,第二有机绝缘层的边缘沿第二方向延伸,并且形成第二台阶,第二台阶的侧面具有凸起结构和凹陷结构,相邻的第三金属走线之间至少设置有一个凸起结构和一个凹陷结构。在进行光刻工艺时,凸起结构处涂覆的光刻胶的受光面积会大大增加,可以被完全去除,即使凹陷结构处涂覆的光刻胶有部分残留,在整个第二台阶的底部也不会形成连续的残留金属,从而可以避免相邻的第三金属走线之间发生短路,进而可以提高显示基板的显示效果。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (15)

  1. 一种显示基板,具有显示区及围绕所述显示区的周边区,其中,所述显示基板包括:基底、位于所述基底上且沿着背离所述基底方向依次设置的第一导电层和第二导电层、及位于所述第一导电层和所述第二导电层之间的第一有机绝缘层;所述第一导电层包括:沿第一方向延伸的多条第一金属走线;第二导电层包括:沿第一方向延伸的多条第二金属走线;
    在所述周边区,所述第一有机绝缘层断开设置,其边缘沿第二方向延伸并形成第一台阶;所述第二方向与所述第一方向相交;
    所述第一台阶包括:位于相邻的所述第二金属走线之间的至少一个凸起结构和至少一个凹陷结构。
  2. 根据权利要求1所述的显示基板,其中,所述第二金属走线与所述第一金属走线在所述第一台阶处电连接。
  3. 根据权利要求2所述的显示基板,其中,所述显示基板还包括:位于所述第二导电层背离所述基底一侧的第三导电层、及位于所述第二导电层和所述第三导电层之间的第二有机绝缘层;所述第三导电层包括:沿第一方向延伸的多条第三金属走线;
    在所述周边区,所述第二有机绝缘层断开设置,其边缘沿第二方向延伸并形成第二台阶;
    所述第二台阶包括:位于相邻的所述第三金属走线之间的至少一个凸起结构和至少一个凹陷结构。
  4. 根据权利要求3所述的显示基板,其中,所述第三金属走线与所述第二金属走线在所述第二台阶处电连接。
  5. 根据权利要求4所述的显示基板,其中,所述第二台阶在所述基底上的正投影与所述第一台阶在所述基底上的正投影相重合。
  6. 根据权利要求3所述的显示基板,其中,所述显示基板还包括:位于所述第一导电层与所述基底之间且与所述第一导电层绝缘设置的第四导 电层;所述第四导电层包括:沿第二方向延伸的多条第四金属走线;
    在所述周边区,所述第一有机绝缘层断开设置,其边缘沿第一方向延伸并形成第三台阶;
    所述第三台阶包括:位于相邻的所述第四金属走线之间的至少一个凸起结构和至少一个凹陷结构。
  7. 根据权利要求6所述的显示基板,其中,所述第一有机绝缘层在所述第三台阶处形成第一水氧阻挡槽。
  8. 根据权利要求7所述的显示基板,其中,在所述周边区,所述第二有机绝缘层断开设置,其边缘沿第一方向延伸并形成第四台阶;
    所述第四台阶包括:位于相邻的所述第四金属走线之间的至少一个凸起结构和至少一个凹陷结构。
  9. 根据权利要求8所述的显示基板,其中,所述第二有机绝缘层在所述第四台阶处形成第二水氧阻挡槽。
  10. 根据权利要求9所述的显示基板,其中,所述第四台阶在所述基底上的正投影与所述第三台阶在所述基底上的正投影相重合。
  11. 根据权利要求10所述的显示基板,其中,所述显示基板还包括:位于所述第三导电层背离所述基底一侧的第三有机绝缘层;
    所述第三有机绝缘层覆盖所述第一台阶和所述第二台阶,且在所述第一水氧阻挡槽和所述第二水氧阻挡槽处断开设置。
  12. 根据权利要求1、3、6、8任一项所述的显示基板,其中,所述凹槽结构的形状为半圆形、三角形、方形中的至少一种。
  13. 一种显示装置,其中,所述显示装置包括如权利要求1至12任一项所述的显示基板。
  14. 一种显示基板的制备方法,显示基板具有显示区及围绕所述显示区的周边区,其中,所述显示基板的制备方法包括:
    在基底上形成第一导电层,并利用构图工艺,形成沿第一方向延伸的多 条第一金属走线;
    在所述第一导电层上形成第一有机绝缘层,并对所述第一有机绝缘层进行图案化处理,使得所述第一有机绝缘层在所述周边区中断开设置,并且所述第一有机绝缘层的边缘沿第二方向延伸形成第一台阶;其中,所述第一台阶包括:至少一个凸起结构和至少一个凹陷结构;
    在所述第一有机绝缘层上形成第二导电层,并利用构图工艺形成沿第一方向延伸的多条第二金属走线,使得相邻的所述第二金属走线之间具有至少一个凸起结构和至少一个凹陷结构。
  15. 根据权利要求14所述的显示基板的制备方法,其中,在所述第一有机绝缘层上形成第二导电层,并利用构图工艺形成沿第一方向延伸的多条第二金属走线,之后还包括:
    在所述第二导电层上形成第二有机绝缘层,并对所述第二有机绝缘层进行图案化处理,使得所述第二有机绝缘层在所述周边区中断开设置,并且所述第二有机绝缘层的边缘沿第二方向延伸形成第二台阶;其中,所述第二台阶包括:至少一个凸起结构和至少一个凹陷结构;
    在所述第二有机绝缘层上形成第三导电层,并利用构图工艺形成沿第一方向延伸的多条第三金属走线,使得相邻的所述第三金属走线之间具有至少一个凸起结构和至少一个凹陷结构。
PCT/CN2023/110307 2022-08-16 2023-07-31 显示基板、显示装置及显示基板的制备方法 WO2024037324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210980600.3 2022-08-16
CN202210980600.3A CN115528046A (zh) 2022-08-16 2022-08-16 显示基板、显示装置及显示基板的制备方法

Publications (2)

Publication Number Publication Date
WO2024037324A1 true WO2024037324A1 (zh) 2024-02-22
WO2024037324A9 WO2024037324A9 (zh) 2024-04-25

Family

ID=84696123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110307 WO2024037324A1 (zh) 2022-08-16 2023-07-31 显示基板、显示装置及显示基板的制备方法

Country Status (2)

Country Link
CN (1) CN115528046A (zh)
WO (1) WO2024037324A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115528046A (zh) * 2022-08-16 2022-12-27 京东方科技集团股份有限公司 显示基板、显示装置及显示基板的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507840A (zh) * 2017-08-29 2017-12-22 上海天马有机发光显示技术有限公司 一种显示面板和显示装置
CN109742091A (zh) * 2019-01-10 2019-05-10 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN112420788A (zh) * 2020-11-12 2021-02-26 合肥维信诺科技有限公司 一种显示面板及其制作方法、显示装置
CN115528046A (zh) * 2022-08-16 2022-12-27 京东方科技集团股份有限公司 显示基板、显示装置及显示基板的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507840A (zh) * 2017-08-29 2017-12-22 上海天马有机发光显示技术有限公司 一种显示面板和显示装置
CN109742091A (zh) * 2019-01-10 2019-05-10 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN112420788A (zh) * 2020-11-12 2021-02-26 合肥维信诺科技有限公司 一种显示面板及其制作方法、显示装置
CN115528046A (zh) * 2022-08-16 2022-12-27 京东方科技集团股份有限公司 显示基板、显示装置及显示基板的制备方法

Also Published As

Publication number Publication date
WO2024037324A9 (zh) 2024-04-25
CN115528046A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US10803776B2 (en) Flexible display panel, display device, and method for manufacturing flexible display panel
WO2018214727A1 (zh) 柔性显示基板及其制作方法、显示装置
US11335870B2 (en) Display substrate and preparation method thereof, and display device
US11665940B2 (en) Display substrate for avoiding breaks and preparation method thereof, bonding method of display panel and display apparatus
WO2017045341A1 (zh) 触控结构及其制作方法、触控基板和显示装置
WO2022012259A1 (zh) 柔性显示装置及电子设备
CN111312742B (zh) 背光模组及其制备方法、显示装置
US20230075199A1 (en) Display substrate and manufacturing method therefor, and display device
TWI671572B (zh) 顯示面板及其製造方法
CN109860224B (zh) 显示基板及其制作方法、显示面板、显示装置
WO2021190034A1 (zh) 显示基板、其制备方法及显示装置
JP6521534B2 (ja) 薄膜トランジスタとその作製方法、アレイ基板及び表示装置
WO2021218418A1 (zh) 驱动基板及其制备方法和显示装置
WO2024037324A1 (zh) 显示基板、显示装置及显示基板的制备方法
WO2018171268A1 (zh) 基板及其制备方法、显示面板和显示装置
WO2021081765A1 (zh) 显示基板及其制备方法、显示装置
WO2020088218A1 (zh) 柔性显示面板及其封装方法和显示装置
CN113053990B (zh) 显示面板和显示装置
US20240130175A1 (en) Display substrate and manufacturing method therefor, and display device
WO2018188388A1 (zh) 阵列基板的制备方法、阵列基板、显示面板和显示装置
WO2018196403A1 (zh) 阵列基板及其制作方法、显示装置
WO2015039493A1 (zh) 电致发光装置及其制备方法
WO2015010404A1 (zh) 薄膜晶体管及其制作方法、阵列基板及显示装置
WO2020088368A1 (zh) 薄膜晶体管及其制作方法、阵列基板、显示装置
WO2018161781A1 (zh) 绑定区结构及其制造方法、面板以及触控显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854228

Country of ref document: EP

Kind code of ref document: A1