WO2018192210A1 - 导电图案结构及其制备方法、阵列基板和显示装置 - Google Patents

导电图案结构及其制备方法、阵列基板和显示装置 Download PDF

Info

Publication number
WO2018192210A1
WO2018192210A1 PCT/CN2017/109722 CN2017109722W WO2018192210A1 WO 2018192210 A1 WO2018192210 A1 WO 2018192210A1 CN 2017109722 W CN2017109722 W CN 2017109722W WO 2018192210 A1 WO2018192210 A1 WO 2018192210A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal pattern
pattern
conductive pattern
copper
Prior art date
Application number
PCT/CN2017/109722
Other languages
English (en)
French (fr)
Inventor
谢蒂旎
张晓晋
李伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP17897218.8A priority Critical patent/EP3614426A4/en
Priority to US16/062,344 priority patent/US10790309B2/en
Priority to JP2018549775A priority patent/JP7074683B2/ja
Publication of WO2018192210A1 publication Critical patent/WO2018192210A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • H01L21/76852Barrier, adhesion or liner layers the layer covering a conductive structure the layer also covering the sidewalls of the conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53233Copper alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53242Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53242Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
    • H01L23/53252Additional layers associated with noble-metal layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • Embodiments of the present disclosure relate to a conductive pattern structure and a method of fabricating the same, an array substrate, and a display device.
  • a thin film transistor liquid crystal display TFT-LCD
  • materials such as Ta, Cr or Mo which are relatively stable in chemical properties but have high resistivity are generally selected as materials of gate lines, gate electrodes, source electrodes, drain electrodes and data lines. Or an alloy formed by any combination of the above metals.
  • the delay of the gate signal is not obvious, so that the influence on the display effect of the device is not obvious.
  • the gate line length also increases, the signal delay time also becomes longer, the signal delay time is increased to a certain extent, and some pixels are not fully charged.
  • the gate line, the gate, the source, the drain, and the data line can be made of a low-resistance metal such as Cu to solve the above problem.
  • At least one embodiment of the present disclosure provides a conductive pattern structure including: a first metal pattern and a second metal pattern, wherein the second metal pattern at least partially covers a side surface of the first metal pattern;
  • the metal material of the first metal pattern is more active than the first
  • the metal material of the two metal pattern is weak in activity.
  • the metal material of the first metal pattern includes at least one of a copper-based metal and a silver-based metal.
  • the metal material of the second metal pattern includes at least one of nickel, molybdenum, niobium, aluminum, and titanium.
  • the copper-based metal includes Cu, CuMo, CuTi, CuMoW, CuMoNb or CuMoTi; and the silver-based metal includes Ag, AgMo, AgTi, AgMoW, AgMoNb or AgMoTi.
  • the mass percentage of copper is about 90% by weight to 100% by weight; in the silver-based metal, the mass of silver is 100%.
  • the content of the fraction is from about 90% by weight to 100% by weight.
  • the conductive pattern structure provided by at least one embodiment of the present disclosure further includes a buffer layer, wherein the first metal pattern is on the buffer layer.
  • the material of the buffer layer includes Mo, Nb, Ti, MoW, MoNb, MoTi, WNb, WTi, TiNb, silicon nitride, silicon oxide, and oxynitride. At least one of silicon.
  • the conductive pattern structure provided by at least one embodiment of the present disclosure further includes a third metal pattern covering an upper surface of the first metal pattern.
  • the material of the third metal pattern includes at least one of Mo, Nb, Ti, MoW, MoNb, MoTi, WNb, WTi, and TiNb.
  • At least one embodiment of the present disclosure also provides an array substrate including any of the above conductive pattern structures.
  • At least one embodiment of the present disclosure also provides a display device including any of the above array substrates.
  • At least one embodiment of the present disclosure further provides a method of fabricating a conductive pattern structure, the method comprising: forming a first metal pattern; forming a second metal pattern on a side surface of at least a portion of the first metal pattern; wherein The activity of the metal material of the first metal pattern is weaker than the activity of the metal material of the second metal pattern.
  • forming the second metal pattern on the side surface of the first metal pattern includes: placing the substrate substrate on which the first metal pattern is formed to include the second a solution of metal ions to form a side surface covering the first metal pattern The second metal pattern of the face.
  • the metal material of the first metal pattern includes at least one of a copper-based metal and a silver-based metal.
  • the metal material of the second metal pattern includes at least one of nickel, molybdenum, niobium, aluminum, and titanium.
  • the solution containing the second metal ion includes a chloride, nitrate or sulfate solution of nickel, molybdenum, niobium, aluminum or titanium.
  • the preparation method before the forming the first metal pattern, further comprising forming a buffer layer.
  • the material of the buffer layer includes Mo, Nb, Ti, MoW, MoNb, MoTi, WNb, WTi, TiNb, silicon nitride, silicon oxide, and silicon oxynitride. At least one of them.
  • the preparation method provided in at least one embodiment of the present disclosure further includes forming a third metal pattern on an upper surface of the first metal pattern.
  • the material of the third metal pattern includes at least one of Mo, Nb, Ti, MoW, MoNb, MoTi, WNb, WTi, and TiNb.
  • FIG. 1 is a schematic cross-sectional structural view of a conductive pattern structure
  • FIG. 3 is a schematic cross-sectional structural view of a conductive pattern structure according to an embodiment of the present disclosure
  • Figure 4 is a diagram showing the conductive mechanism of the electrolyte solution
  • FIG. 5 is a schematic cross-sectional structural view of another conductive pattern structure according to an embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional structural diagram of still another conductive pattern structure according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional view showing another conductive pattern structure according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view of an array substrate according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a method for fabricating a conductive pattern structure according to an embodiment of the present disclosure.
  • TFTs Thin Film Transistors
  • the above various types of thin film transistors generally employ a low resistance metal as a material of a wire or a metal electrode.
  • the low-resistance metal is easily oxidized, and the electrical conductivity of the oxidized metal wiring and the metal electrode is lowered, thereby seriously affecting the performance of the thin film transistor.
  • low-resistance metal ions are easily diffused into the active layer of the thin film transistor, so that the performance of the thin film transistor is deteriorated.
  • the above-mentioned metal wiring or metal electrode is particularly oxidized and metal ions are diffused.
  • FIG. 1 is a schematic cross-sectional view of a conductive pattern structure.
  • the three-layer structure of the first buffer layer/metal/second buffer layer is subsequently engraved. After the etching process and other process steps, the side of a layer of low-resistance metal in the middle of the three-layer structure may be exposed to the air.
  • FIG. 2 is a scanning electron micrograph of the side of Cu metal in the MoNb/Cu/MoNb metal layer being oxidized. As can be seen from Fig. 2, a loose protrusion is formed on the side of the copper metal, and the loose protrusion is an oxide of copper.
  • At least one embodiment of the present disclosure provides a conductive pattern structure including: a first metal pattern and a second metal pattern, the second metal pattern at least partially covering a side surface of the first metal pattern, and the first metal pattern
  • the activity of the metal material is weaker than the activity of the metal material of the second metal pattern.
  • Embodiments of the present disclosure prevent a side surface of a first metal pattern from being oxidized by forming a second metal pattern at least partially coated on a side surface thereof on the first metal pattern, thereby avoiding a decrease in conductivity of the first metal pattern.
  • the problem avoids the problem of falling product yield.
  • the conductive pattern structure provided by at least one embodiment of the present disclosure also reduces the requirements on the production equipment and the external environment, thereby reducing the complexity of the manufacturing process of the conductive pattern structure and reducing the production cost.
  • the metal activity refers to the degree of flexibility in which the metal is displaced. According to the order of the metal arrangement in the metal activity sequence table, the activity of the metal gradually decreases from the point of travel. In the metal activity sequence table, the position of the metal forming the first metal pattern is later than the position of the metal forming the second metal pattern.
  • the second metal pattern at least partially covering the side surface of the first metal pattern means that the second metal pattern covers all or a side surface of the first metal pattern.
  • the second metal pattern covers the entire side surface of the first metal pattern for the purpose of better protecting the first metal pattern.
  • the second metal pattern may also cover the upper surface and/or the lower surface of the first metal pattern.
  • FIG. 3 is a schematic cross-sectional structural view of a conductive pattern structure provided by the embodiment.
  • the second metal pattern 202 covers the first metal pattern.
  • the side surface of the case 201 completely isolates the side surface of the exposed first metal pattern 201 from the outside, thereby preventing the first metal pattern 201 from being oxidized, and avoiding the problem that the conductivity of the first metal pattern 201 is lowered.
  • the side surface of the first metal pattern 201 is covered by the second metal pattern 202, and the second metal pattern 202 is exposed, in which case the second metal pattern 202 may be oxidized even if the second metal pattern 202 Oxidation also rapidly forms a relatively thin and dense oxide film on the surface thereof, which prevents the oxidation reaction from further occurring.
  • the material of the first metal pattern is a low-resistance metal material
  • the low-resistance metal material includes at least one of a copper-based metal and a silver-based metal, that is, may include only a copper-based metal, or may only include a silver-based metal. Both copper and silver can be included.
  • the copper-based metal includes Cu, CuMo, CuTi, CuMoW, CuMoNb, or CuMoTi
  • the silver-based metal includes Ag, AgMo, AgTi, AgMoW, AgMoNb, or AgMoTi.
  • the mass percentage of copper is from about 90% by weight to 100% by weight, for example, 90% by weight, 92% by weight, 94% by weight, 96% by weight, 98% by weight, or 100% by weight
  • the silver-based metal silver
  • the percentage by mass is from about 90% by weight to 100% by weight, for example, 90% by weight, 92% by weight, 94% by weight, 96% by weight, 98% by weight or 100% by weight.
  • the metal material of the second metal pattern includes at least one of nickel, molybdenum, niobium, aluminum, and titanium.
  • the above metal is located before the copper, and the metal oxide corresponding to the above metal has good compactness, thereby preventing further occurrence of the oxidation reaction.
  • the first metal pattern has a thickness of about 200 to 400 nm, for example, 200 nm, 250 nm, 300 nm, 350 nm, or 400 nm.
  • the second metal pattern has a thickness of about 10 to 50 nm, for example, 10 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, or 50 nm.
  • the process of forming the second metal pattern on the side surface of at least a portion of the first metal pattern may be accomplished using an electrolytic cell reaction.
  • electrolysis the process of converting electrical energy into chemical energy
  • the corresponding device is an electrolytic cell
  • the working medium of the electrolytic cell is an electrolyte solution.
  • Figure 4 is a diagram showing the conduction mechanism of an electrolyte solution.
  • the conductivity mechanism of the electrolyte solution is: anion on the anode. Loss of electrons undergoes oxidation reaction, and the lost electrons flow to the positive electrode of the power source through the external circuit.
  • the anode when the material of the anode is the active electrode material, the anode itself loses electrons and is oxidized to form a cation corresponding to the anode metal; the cation is obtained on the cathode.
  • the electrons supplied from the negative electrode of the external power source are subjected to a reduction reaction.
  • the electrolytic cell reaction in the embodiments of the present disclosure includes the following examples:
  • the material of the first metal pattern is a copper metal element
  • the copper metal element is used as a cathode
  • the anode material is an inert electrode (for example, platinum or palladium, etc.)
  • the electrolyte solution is a nickel chloride solution (NiCl 2 ).
  • the anion Cl -1 in the electrolyte solution moves toward the anode, and an oxidation reaction occurs on the anode; the cation Ni 2+ moves toward the cathode, and electrons are generated at the cathode to form a simple substance of nickel metal.
  • the electrolytic cell reaction is:
  • a nickel metal element can be formed on the electrode which is a single element of copper metal as a cathode, that is, a second metal pattern (a simple substance of nickel metal) is formed on the first metal pattern (a simple substance of copper metal).
  • the above-mentioned copper metal element can be replaced by a silver metal element, a copper-based metal alloy or a silver-based metal alloy
  • the nickel chloride solution (NiCl 2 ) can be replaced by a nickel sulfate solution (NiSO 4 ) or a nickel nitrate solution (Ni).
  • the electrolytic cell reaction is similar to the above anode reaction and cathode reaction.
  • the material of the first metal pattern is a copper metal element, the copper metal element is used as a cathode, the anode material is a nickel metal element, the electrolyte solution is a nickel chloride solution (NiCl 2 ), and the anode material is a nickel metal element, that is, the anode is electrode active material, the anode itself will lose electrons is oxidized to metal ions Ni 2+; Ni 2+ solution and the anode is formed by oxidation of Ni 2+ is moved to the cathode, and electrons on the cathode have to form elemental nickel metal.
  • the copper metal element is used as a cathode
  • the anode material is a nickel metal element
  • the electrolyte solution is a nickel chloride solution (NiCl 2 )
  • the anode material is a nickel metal element, that is, the anode is electrode active material, the anode itself will lose electrons is oxidized to metal ions Ni 2+; Ni 2+ solution
  • the electrolytic cell reaction is:
  • Ni-2e - Ni 2+
  • a nickel metal element can be formed on the electrode which is a single element of copper metal as a cathode, that is, a second metal pattern (a simple substance of nickel metal) is formed on the first metal pattern (a simple substance of copper metal).
  • the above-mentioned copper metal element can be replaced by a silver metal element, a copper-based metal alloy or a silver-based metal alloy
  • the electrolyte solution can be replaced by a nickel sulfate solution (NiSO 4 ) or a nickel nitrate solution (Ni(NO 3 ) 2 ).
  • a salt plasma solution, or an aqueous solution is similar to the above anode and cathode reactions.
  • metals which are susceptible to passivation such as nickel, aluminum, molybdenum, niobium and titanium, can be selected from metals whose metal activity is stronger than copper or silver.
  • the above metal rapidly forms a dense oxide film even if it is oxidized in the air, thereby preventing the oxidation reaction from proceeding intensively.
  • the conductive pattern structure is applied to the array substrate, the oxidation reaction does not further occur in the subsequent chemical vapor deposition and annealing processes in the process of fabricating the array substrate, thereby effectively preventing the formation of copper or silver metal materials.
  • the problem that the first metal pattern is oxidized and the yield due to corrosion is lowered.
  • a metal thin film may be deposited by magnetron sputtering, and then the metal thin film may be patterned to form a second metal pattern; however, the magnetron sputtering process needs to be completed in a vacuum chamber, requiring expensive equipment, Production costs are high.
  • the method for forming the second metal pattern on the side surface of the first metal pattern by the method of the electrolytic cell reaction provided by the embodiment of the present disclosure is simple, and does not require harsh external conditions, thereby saving manufacturing costs.
  • FIG. 5 is a schematic cross-sectional view of another conductive pattern structure according to an embodiment of the present disclosure, and the second metal pattern 202 covers the upper surface and all side surfaces of the first metal pattern 201. This can prevent the upper surface of the first metal pattern 201 from being oxidized.
  • FIG. 6 is a schematic cross-sectional structural view of still another conductive pattern structure provided by the embodiment.
  • the conductive pattern structure further includes a buffer layer 203 on which the first metal pattern 201 is.
  • the material forming the buffer layer 203 includes a metal material or an inorganic non-metal material that does not easily cause ion diffusion.
  • the buffer layer 203 can prevent the lower surface of the first metal pattern 201 from being oxidized and prevent diffusion of metal in the first metal pattern 201.
  • the metal material includes Mo, Nb, Ti, MoW, MoNb, MoTi, WNb, WTi or TiNb
  • the inorganic non-metal material includes at least one of silicon nitride, silicon oxide, and silicon oxynitride.
  • the second metal pattern 202 may also be formed on the side surface of the buffer layer 203, and formed on the upper surface of the first metal pattern 201.
  • the buffer layer has a thickness of about 20 to 30 nm, for example, 20 nm, 25 nm, or 30 nm. It should be noted that, not limited to the range of the thickness of the buffer layer described above, the fluctuation of 10% up and down also includes Within the scope of this application.
  • FIG. 7 is a schematic cross-sectional structural view of still another conductive pattern structure provided by the embodiment.
  • the conductive pattern structure 20 further includes a third metal pattern 204 covering the upper surface of the first metal pattern 201.
  • the third metal pattern 204 may prevent the upper surface of the first metal pattern 201 from being oxidized and prevent diffusion of metal in the first metal pattern 201.
  • the material forming the third metal pattern 204 includes at least one of Mo, Nb, Ti, MoW, MoNb, MoTi, WNb, WTi, and TiNb.
  • At least one embodiment of the present disclosure also provides an array substrate comprising any of the conductive pattern structures as described above.
  • the conductive pattern structure may be at least one of a gate electrode, a gate line, a first source drain electrode, a second source drain electrode, a data line, and a common electrode line in the array substrate.
  • the thin film transistor disposed on the array substrate mainly includes an amorphous silicon thin film transistor, a polycrystalline silicon thin film transistor, a single crystal silicon thin film transistor, a metal oxide thin film transistor, or a carbon nanotube thin film transistor.
  • Most of the array substrates used for preparing display devices are metal oxide thin film transistors.
  • the metal oxide thin film transistor has the advantage of high carrier mobility, so that the thin film transistor can be made small, thereby improving the resolution of the flat panel display and improving the display effect of the display device; and the metal oxide thin film transistor also has characteristics. The phenomenon of less unevenness, low material and process cost, low process temperature, availability of coating process, high transparency of semiconductor layer, and large band gap.
  • a thin film transistor in an array substrate as a bottom gate type metal oxide thin film transistor will be described as an example.
  • FIG. 8 is a schematic cross-sectional view of an array substrate provided by the embodiment.
  • the array substrate 30 includes a base substrate 301, a gate 302 disposed on the base substrate 301, a gate insulating layer 303, an active layer 304, a first source/drain electrode 305, and a second source drain.
  • the gate 302, the gate line (not shown), the first source/drain electrode 305, the second source/drain electrode 306, the data line (not shown), and the common electrode line 311 in the array substrate 30 may be the present disclosure.
  • nickel, aluminum, molybdenum, niobium and titanium form a thin and dense oxide film even if oxidized, thereby preventing the oxidation reaction from proceeding in depth.
  • the oxidation reaction does not further occur in the subsequent chemical vapor deposition and annealing processes in the process of fabricating the array substrate, thereby effectively preventing the formation of copper or silver metal materials.
  • the problem that the first metal pattern is oxidized and the yield due to corrosion is lowered.
  • a metal thin film may be deposited by magnetron sputtering, and then the metal thin film may be patterned to form a second metal pattern; however, the magnetron sputtering process needs to be completed in a vacuum chamber, requiring expensive equipment, High cost.
  • the method for forming the second metal pattern on the side surface of the first metal pattern by the method of electrolytic cell reaction provided by at least one embodiment of the present disclosure is simple, and does not require harsh external conditions, thereby saving manufacturing costs.
  • the active layer 304 is a metal oxide semiconductor, and the material of the active layer 304 includes IGZO, HIZO, IZO, a-InZnO, a-InZnO, ZnO, In 2 O 3 :Sn, In 2 O 3 :Mo, Cd 2 SnO 4 , ZnO: Al, TiO 2 : Nb or Cd-Sn-O.
  • the material of the gate insulating layer 303 includes at least one of silicon oxide, silicon nitride, and silicon oxynitride.
  • the material of the gate insulating layer 303 may also have the same material properties as the above materials or Other inorganic insulating materials similar.
  • the base substrate 301 includes a transparent insulating substrate, the material of which may be glass, quartz, plastic, or other suitable material.
  • the material of the organic insulating layer 307 includes one or more of polyimide, tetrafluoroethylene-perfluoroalkoxy vinyl ether copolymer, acrylic resin or polyethylene terephthalate.
  • the material of the passivation layer 308 includes one or more of silicon nitride, silicon oxide, silicon oxynitride, titanium oxide, and aluminum oxide.
  • the first electrode 309 is a pixel electrode, and the second electrode 310 is a common electrode; or the first electrode 309 is a common electrode, and the second electrode 310 is a pixel electrode.
  • the first electrode 309 and the second electrode 310 may be formed of a transparent conductive material or a metal material
  • the transparent conductive material includes indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), Gallium zinc oxide (GZO) zinc oxide (ZnO), indium oxide (In 2 O 3 ), aluminum zinc oxide (AZO), and carbon nanotubes.
  • the metal material includes silver, aluminum, and the like.
  • the forming order of the first electrode 309 and the second electrode 310 may be reversed, that is, the second electrode 310 may be located above the first electrode 309, and the first electrode 309 may also be located above the second electrode 310, which is not limited herein. .
  • the thin film transistor in the array substrate may be a bottom gate type thin film transistor, for example, an ES (etch stop layer) structure thin film transistor or a BCE (back channel etch) structure thin film transistor. It can also be a top gate thin film transistor or a double gate thin film transistor.
  • ES etch stop layer
  • BCE back channel etch
  • FIG. 9 is a block diagram of a display device according to at least one embodiment of the present disclosure. As shown in FIG. 9, the display device 40 includes an array substrate 30.
  • the display device 40 is a liquid crystal display device in which an array substrate and a counter substrate are opposed to each other to form a liquid crystal cell in which a liquid crystal material is filled.
  • the opposite substrate is, for example, a color filter substrate.
  • the pixel electrode of each sub-pixel of the array substrate is used to apply an electric field to control the degree of rotation of the liquid crystal material to perform a display operation.
  • the liquid crystal display device further includes a backlight that provides backlighting for the array substrate.
  • the display device may be an organic light emitting diode (OLED) display device or an electronic paper display device or the like.
  • OLED organic light emitting diode
  • the display device 40 can be, for example, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, or any product or component having a display function.
  • Other indispensable components of the display device are understood by those skilled in the art, and are not described herein, nor should they be construed as limiting the disclosure.
  • FIG. 10 is a flowchart of a method for fabricating a conductive pattern structure according to an embodiment of the present disclosure.
  • the preparation method includes:
  • the process of forming the first metal pattern includes depositing a first metal thin film on the base substrate, and patterning the first metal thin film to form a first metal pattern.
  • a first metal thin film having a thickness of about 200 to 400 nm is continuously deposited by sputtering or thermal evaporation.
  • the thickness of the first metal thin film is 200 nm, 250 nm, 300 nm, 350 nm or 400 nm. It should be noted that, not limited to the range of the thickness of the first metal thin film described above, fluctuations of 10% up and down are also included in the scope of the present application.
  • the base substrate may be a transparent insulating substrate, and the material thereof may be glass, quartz, Plastic or other suitable material.
  • the material of the first metal pattern is a low-resistance metal material
  • the low-resistance metal material includes at least one of a copper-based metal and a silver-based metal, that is, may include only a copper-based metal, or may only include a silver-based metal. Both copper and silver can be included.
  • the copper-based metal includes Cu, CuMo, CuTi, CuMoW, CuMoNb, or CuMoTi
  • the silver-based metal includes Ag, AgMo, AgTi, AgMoW, AgMoNb, or AgMoTi.
  • the mass percentage of copper is about 90% by weight to 100% by weight
  • the mass percentage of silver is about 90% by weight to 100% by weight, for example, 90% by weight, 92% by weight, 94 wt%, 96 wt%, 98 wt% or 100 wt%.
  • fluctuations of 10% up and down are also included in the scope of the present application.
  • the process of patterning the first metal film includes: coating a photoresist on the first metal pattern, exposing and developing the photoresist by using a mask, and forming a photoresist by photolithography. a glue-unretained region and a photoresist-retained region, wherein the photoresist-retained region corresponds to the first metal pattern (eg, a gate, a gate line, a first source/drain electrode, a second source/drain electrode, and a data line in the array substrate) Or a region where the common electrode line is located, a region where the photoresist is not reserved corresponds to a region other than the above-mentioned pattern; an etching process is performed to completely etch away the first metal film of the unretained region of the photoresist; and the remaining photoresist is peeled off, A first metal pattern is formed.
  • the first metal pattern eg, a gate, a gate line, a first source/drain electrode, a second source
  • S102 forming a second metal pattern on a side surface of the first metal pattern, and a metal forming the first metal pattern is less active than a metal forming the second metal pattern.
  • the metal activity refers to the degree of flexibility in which the metal is displaced. According to the order of the metal arrangement in the metal activity sequence table, the activity of the metal gradually decreases from the point of travel. In the metal activity sequence table, the position of the metal forming the first metal pattern is later than the position of the metal forming the second metal pattern.
  • the second metal pattern covers the side surface of the first metal pattern to completely isolate the exposed side surface of the first metal pattern from the outside, thereby preventing the first metal pattern from being oxidized and avoiding The problem that the conductivity of the first metal pattern is lowered.
  • the process of forming the second metal pattern on the side surface of the first metal pattern may be completed by an electrolytic cell reaction.
  • the process includes: placing a base substrate on which the first metal pattern is formed in a solution containing the second metal ion, and converting the electrical energy into chemical energy under the action of an external current to form a side covering the first metal pattern a second metal pattern of the surface.
  • the electrolytic cell reaction includes the following examples:
  • the material of the first metal pattern is a copper metal element
  • the copper metal element is used as a cathode
  • the anode material is an inert electrode (for example, platinum or palladium, etc.)
  • the electrolyte solution is a nickel chloride solution (NiCl 2 ).
  • the anion Cl -1 in the electrolyte solution moves toward the anode, and a reaction occurs on the anode; the cation Ni 2+ moves toward the cathode, and electrons are generated at the cathode to form a simple substance of nickel metal.
  • the electrolytic cell reaction is:
  • a nickel metal element can be formed on an electrode having a single element of copper metal as a cathode, that is, a second metal pattern (a simple substance of nickel metal) is formed on the first metal pattern (a simple substance of copper metal).
  • the above-mentioned copper metal element can be replaced by a silver metal element, a copper-based metal alloy or a silver-based metal alloy
  • the electrolyte solution can be replaced by a nickel sulfate solution (NiSO 4 ) or a nickel nitrate solution (Ni(NO 3 ) 2 ).
  • aluminum chloride solution (AlCl 3 ) aluminum sulfate solution (Al 2 (SO 4 ) 3 ), aluminum nitrate solution (Al(NO 3 ) 3 ), and sulfate, nitrate or chloride of molybdenum, niobium and titanium
  • the plasma solution, the electrolytic cell reaction is similar to the above anode and cathode reactions.
  • the material of the first metal pattern is a copper metal element, the copper metal element is used as a cathode, the anode material is a nickel metal element, the electrolyte solution is a nickel chloride solution (NiCl 2 ), and the anode material is a nickel metal element, which is an active electrode. material, the anode itself will lose electrons is oxidized to metal ions Ni 2+; Ni 2+ solution and the anode is formed by oxidation of Ni 2+ is moved to the cathode, and electrons on the cathode have to form elemental nickel metal.
  • the electrolytic cell reaction is:
  • Ni-2e - Ni 2+
  • a nickel metal element can be formed on an electrode having a single element of copper metal as a cathode, that is, a second metal pattern (a simple substance of nickel metal) is formed on the first metal pattern (a simple substance of copper metal).
  • the above-mentioned copper metal element can be replaced by a silver metal element, a copper-based metal alloy or a silver-based metal alloy
  • the electrolyte solution can be replaced by a nickel sulfate solution (NiSO 4 ) or a nickel nitrate solution (Ni(NO 3 ) 2 ).
  • a salt plasma solution, or an aqueous solution is similar to the above anode and cathode reactions.
  • nickel, aluminum, molybdenum, niobium and titanium are oxidized in air to form a thin and dense oxide film, thereby preventing the oxidation reaction from proceeding in depth.
  • the oxidation reaction does not further occur in the subsequent chemical vapor deposition and annealing processes in the process of fabricating the array substrate, thereby effectively preventing the formation of copper or silver metal materials.
  • the problem that the first metal pattern is oxidized and the yield due to corrosion is lowered.
  • a metal thin film may be deposited by magnetron sputtering, and then the metal thin film may be patterned to form a second metal pattern; however, the magnetron sputtering process needs to be completed in a vacuum chamber, requiring expensive equipment, High cost.
  • the method for forming the second metal pattern on the side surface of the first metal pattern by the method of electrolytic cell reaction provided by at least one embodiment of the present disclosure is simple, and does not require harsh external conditions, thereby saving manufacturing costs.
  • the preparation method provided by the embodiment of the present disclosure further includes forming a buffer layer before forming the first metal pattern.
  • the method before forming the first metal pattern, that is, before depositing the first metal film on the substrate, the method further comprises forming a buffer layer film by a magnetron sputtering method or a chemical vapor deposition method, and forming a buffer layer by a patterning process.
  • the process of depositing a buffer layer film includes continuously depositing a film layer of an oxide, a nitride or an oxynitride compound by a plasma enhanced chemical vapor deposition (PECVD) method, followed by etching to form a buffer layer.
  • the corresponding reaction gas may be SiH 4 , NH 3 , N 2 , SiH 2 Cl 2 or N 2 .
  • the PECVD method has the advantages of low temperature, fast deposition rate, good film formation quality, less pinholes and less cracking.
  • the material of the buffer layer includes at least one of Mo, Nb, Ti, MoW, MoNb, MoTi, WNb, WTi, TiNb, silicon nitride, silicon oxide, and silicon oxynitride.
  • the method of fabricating the conductive pattern structure further includes forming a third metal pattern on an upper surface of the first metal pattern.
  • the material forming the third metal pattern includes at least one of Mo, Nb, Ti, MoW, MoNb, MoTi, WNb, WTi, and TiNb.
  • the process of forming the third metal pattern can be referred to the above process of forming the first metal pattern, and details are not described herein again.
  • the buffer film, the first metal film, and the third metal film may be sequentially formed first, and then the buffer layer, the first metal pattern, and the third metal pattern are formed by one patterning process using one mask.
  • the conductive pattern structure and the preparation method thereof, the array substrate and the display device provided by at least one embodiment of the present disclosure have at least one of the following beneficial effects:
  • a conductive pattern structure provided by at least one embodiment of the present disclosure, a second metal pattern covering a side surface thereof is formed on the first metal pattern to prevent oxidation of a side surface of the first metal pattern, thereby avoiding the first The problem of reduced conductivity of the metal pattern, thereby avoiding the problem of a drop in product yield;
  • the conductive pattern structure provided by at least one embodiment of the present disclosure reduces the requirements on the production equipment and the external environment, thereby reducing the complexity of the manufacturing process of the conductive pattern structure;
  • the conductive pattern structure provided by at least one embodiment of the present disclosure reduces the production cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

提供了一种导电图案结构,该导电图案结构(20)包括:第一金属图案(201)和第二金属图案(202),其中,第二金属图案(202)至少部分覆盖第一金属图案(201)的侧表面;第一金属图案(201)的金属材料的活性比第二金属图案(202)的金属材料的活性弱。通过在第一金属图案(201)上形成至少部分包覆于其侧表面的第二金属图案(202)以防止第一金属图案的侧表面被氧化,从而避免了第一金属图案(201)导电性降低的问题,进而避免了产品良率下降的问题,除此之外,还降低了对生产设备和外界环境的要求,从而降低了导电图案结构制作工艺的复杂性,降低了生产成本。

Description

导电图案结构及其制备方法、阵列基板和显示装置
本申请要求于2017年4月20日递交的中国专利申请第201710263475.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种导电图案结构及其制备方法、阵列基板和显示装置。
背景技术
目前,在薄膜晶体管液晶显示器(TFT-LCD)中,栅线、栅极、源极、漏极和数据线的材料一般选择化学性质比较稳定但电阻率较高的Ta、Cr或者Mo等金属,或者上述金属的任意组合形成的合金。在TFT-LCD器件的尺寸较小、分辨率比较低的情形下,栅极信号的延迟不明显,从而对器件的显示效果的影响也不明显。然而,随着TFT-LCD的尺寸和分辨率不断地提高,栅线长度也逐渐增大,信号延迟时间也随之变长,信号延迟时间增加到一定的程度,一些像素得不到充分的充电,会造成显示亮度不均匀,使TFT-LCD的对比度下降,这样严重地影响了图像的显示质量。为此,可以采用低电阻的金属例如Cu制作栅线、栅极、源极、漏极和数据线来解决上述问题。
当采用低电阻金属制作金属线或者金属电极时,又会出现低电阻金属被氧化以及低电阻金属离子扩散到半导体层中,使得薄膜晶体管的性能恶化的问题,从而严重影响了TFT产品的性能。当低电阻金属制作的金属线或者金属电极处于高温条件下时,上述问题尤其严重。
发明内容
本公开至少一实施例提供一种导电图案结构,该导电图案结构包括:第一金属图案和第二金属图案,其中,所述第二金属图案至少部分覆盖所述第一金属图案的侧表面;所述第一金属图案的金属材料的活性比所述第 二金属图案的金属材料的活性弱。
例如,在本公开至少一实施例提供的导电图案结构中,所述第一金属图案的金属材料包括铜基金属和银基金属中的至少之一。
例如,在本公开至少一实施例提供的导电图案结构中,所述第二金属图案的金属材料包括镍、钼、铌、铝和钛中的至少之一。
例如,在本公开至少一实施例提供的导电图案结构中,所述铜基金属包括Cu、CuMo、CuTi、CuMoW、CuMoNb或者CuMoTi;所述银基金属包括Ag、AgMo、AgTi、AgMoW、AgMoNb或者AgMoTi。
例如,在本公开至少一实施例提供的导电图案结构中,在所述铜基金属中,铜的质量百分含量为大约90wt%~100wt%;在所述银基金属中,银的质量百分含量为大约90wt%~100wt%。
例如,本公开至少一实施例提供的导电图案结构还包括缓冲层,其中,所述第一金属图案在所述缓冲层上。
例如,在本公开至少一实施例提供的导电图案结构中,所述缓冲层的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi、TiNb、氮化硅、氧化硅和氮氧化硅中的至少之一。
例如,本公开至少一实施例提供的导电图案结构还包括覆盖所述第一金属图案的上表面的第三金属图案。
例如,在本公开至少一实施例提供的导电图案结构中,所述第三金属图案的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi和TiNb中的至少之一。
本公开至少一实施例还提供一种阵列基板,包括上述任一导电图案结构。
本公开至少一实施例还提供一种显示装置,包括上述任一阵列基板。
本公开至少一实施例还提供一种导电图案结构的制备方法,该制备方法包括:形成第一金属图案;在至少部分所述第一金属图案的侧表面形成第二金属图案;其中,所述第一金属图案的金属材料的活性比所述第二金属图案的金属材料的活性弱。
例如,在本公开至少一实施例提供的制备方法中,在所述第一金属图案的侧表面形成第二金属图案包括:将形成有所述第一金属图案的衬底基板置于包含第二金属离子的溶液中,以形成包覆所述第一金属图案的侧表 面的第二金属图案。
例如,在本公开至少一实施例提供的制备方法中,所述第一金属图案的金属材料包括铜基金属和银基金属中的至少之一。
例如,在本公开至少一实施例提供的制备方法中,所述第二金属图案的金属材料包括镍、钼、铌、铝和钛中的至少之一。
例如,在本公开至少一实施例提供的制备方法中,所述包含第二金属离子的溶液包括镍、钼、铌、铝或者钛的氯化物、硝酸盐或者硫酸盐溶液。
例如,在本公开至少一实施例提供的制备方法中,形成所述第一金属图案之前,还包括形成缓冲层。
例如,在本公开至少一实施例提供的制备方法中,所述缓冲层的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi、TiNb、氮化硅、氧化硅和氮氧化硅中的至少之一。
例如,本公开至少一实施例提供的制备方法,还包括:在所述第一金属图案的上表面形成第三金属图案。
例如,在本公开至少一实施例提供的制备方法中,所述第三金属图案的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi和TiNb中的至少之一。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种导电图案结构的截面结构示意图;
图2为MoNb/Cu/MoNb金属层中Cu金属的侧面被氧化的扫描电镜图;
图3为本公开一实施例提供的一种导电图案结构的截面结构示意图;
图4为电解质溶液的导电机理图;
图5为本公开一实施例提供的另一种导电图案结构的截面结构示意图;
图6为本公开一实施例提供的又一种导电图案结构的截面结构示意图;
图7为本公开一实施例提供的又一种导电图案结构的截面结构示意 图;
图8为本公开一实施例提供的一种阵列基板的截面结构示意图;
图9为本公开一实施例提供的一种显示装置的框图;以及
图10为本公开一实施例提供的一种导电图案结构的制备方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在显示器件的制作过程中,目前已实现产业化的薄膜晶体管(Thin Film Transistor,TFT)主要包括使用非晶硅、多晶硅、单晶硅、金属氧化物或碳纳米管等作为有源层材料的TFT。上述各种类型的薄膜晶体管通常采用低电阻金属作为导线或者金属电极的材料。低电阻的金属极易被氧化,被氧化的金属配线和金属电极的导电性能会降低,从而严重影响了薄膜晶体管的性能。除此之外,低电阻的金属离子容易扩散到薄膜晶体管的有源层中,使得薄膜晶体管的性能恶化。对于金属氧化物作为有源层的薄膜晶体管,上述金属配线或者金属电极被氧化和金属离子扩散的现象尤其严重。
通常,在低电阻金属的上下两侧分别形成有第一缓冲层和第二缓冲层,以防止低电阻金属被氧化,以及减少金属离子向半导体层中扩散的现 象。例如,图1为一种导电图案结构的截面结构示意图。如图1所示,在低电阻金属102的上下两侧分别形成第一缓冲层101和第二缓冲层103后,在后续对第一缓冲层/金属/第二缓冲层的三层结构进行刻蚀等工艺步骤后,三层结构中间的一层低电阻金属的侧面可能会暴露于空气中,在后续的沉积绝缘层薄膜和高温退火工艺等步骤中,侧面的低电阻金属102极易被氧化,除此之外,还可能导致低电阻金属102缩进以及金属线断线的问题。例如,图2为MoNb/Cu/MoNb金属层中Cu金属的侧面被氧化的扫描电镜图。从图2中可以看出,在铜金属的侧面形成了疏松状的突出物,该疏松状的突出物为铜的氧化物。
本公开至少一实施例提供一种导电图案结构,该导电图案结构包括:第一金属图案和第二金属图案,第二金属图案至少部分覆盖第一金属图案的侧表面,且第一金属图案的金属材料的活性比第二金属图案的金属材料的活性弱。
本公开的实施例通过在第一金属图案上形成至少部分包覆于其侧表面上的第二金属图案以防止第一金属图案的侧表面被氧化,从而避免了第一金属图案导电性降低的问题,进而避免了产品良率下降的问题。除此之外,如下所述,本公开至少一实施例提供的导电图案结构还降低了对生产设备和外界环境的要求,从而降低了导电图案结构制作工艺的复杂性,降低了生产成本。
需要说明的是,金属活性是指金属被置换出来的灵活程度,根据金属活动顺序表中金属排布的顺序,从前往后金属活性逐渐降低。在金属活性顺序表中,形成第一金属图案的金属的位置比形成第二金属图案的金属的位置更靠后。
需要说明的是,第二金属图案至少部分覆盖第一金属图案的侧表面是指第二金属图案覆盖第一金属图案的全部侧表面或部分侧表面。基于更好地保护第一金属图案的目的,第二金属图案覆盖第一金属图案的全部侧表面。
需要说明的是,在第二金属图案覆盖第一金属图案的侧表面的情形下,第二金属图案也可以覆盖第一金属图案的上表面和/或下表面。
例如,图3为本实施例提供的一种导电图案结构的截面结构示意图。如图3所示,在该导电图案结构20中,第二金属图案202覆盖第一金属图 案201的侧表面,以将暴露出的第一金属图案201的侧表面与外界完全隔绝,从而防止了第一金属图案201被氧化,避免了第一金属图案201的导电性降低的问题。
如图3所示,第一金属图案201的侧表面被第二金属图案202覆盖,第二金属图案202暴露在外,在此情形下,第二金属图案202可能被氧化,即使第二金属图案202被氧化也会在其表面快速地形成一层比较薄的且致密性好的氧化物薄膜,可以阻止氧化反应进一步发生。
例如,第一金属图案的材料为低电阻金属材料,该低电阻金属材料包括铜基金属和银基金属中的至少之一,即可以仅包括铜基金属,也可以仅包括银基金属,还可以同时包括铜和银。
例如,铜基金属包括Cu、CuMo、CuTi、CuMoW、CuMoNb或者CuMoTi;银基金属包括Ag、AgMo、AgTi、AgMoW、AgMoNb或者AgMoTi。
例如,在铜基金属中,铜的质量百分含量为大约90wt%~100wt%,例如,90wt%、92wt%、94wt%、96wt%、98wt%或者100wt%;在银基金属中,银的质量百分含量为大约90wt%~100wt%,例如,90wt%、92wt%、94wt%、96wt%、98wt%或者100wt%。需要说明的是,不局限于上述铜的质量百分含量和银的质量百分含量的范围,上下波动10%也包含在本申请的范围之内。
例如,第二金属图案的金属材料包括镍、钼、铌、铝和钛中的至少之一。在金属活动顺序表中,上述金属位于铜之前,且上述金属对应的金属氧化物的致密性好,从而阻止了氧化反应的进一步发生。
例如,该第一金属图案的厚度为大约200~400nm,例如,200nm、250nm、300nm、350nm或者400nm。
例如,该第二金属图案的厚度为大约10~50nm,例如,10nm、20nm、25nm、30nm、35nm、40nm或者50nm。
需要说明的是,不局限于上述第一金属图案和第二金属图案的厚度的范围,上下波动10%也包含在本申请的范围之内。
例如,在至少部分第一金属图案的侧表面形成第二金属图案的过程可以采用电解池反应完成。需要说明的是,将电能转化为化学能的过程称为电解,相应的装置为电解池,电解池的工作介质为电解质溶液。例如,图4为电解质溶液的导电机理图,电解质溶液的导电机理为:阴离子在阳极上 失去电子发生氧化反应,失去的电子经外电路流向电源的正极,或者,当阳极的材料为活性电极材料时,阳极自身会失电子被氧化,形成与阳极金属对应的阳离子;阳离子在阴极上得到外电源负极提供的电子以发生还原反应。
例如,本公开实施例中的电解池反应包括如下示例:
示例一:第一金属图案的材料为铜金属单质,该铜金属单质作为阴极,阳极材料为惰性电极(例如,铂或者钯等),电解质溶液为氯化镍溶液(NiCl2)。电解质溶液中的阴离子Cl-1向阳极移动,在阳极上发生氧化反应;阳离子Ni2+向阴极移动,并在阴极上得电子以形成镍金属单质。
该电解池反应为:
阳极:2Cl-1-2e-=Cl2(g)
阴极:Ni2++2e-=Ni
通过上述电化学反应就可以在以铜金属单质作为阴极的电极上形成镍金属单质,即在第一金属图案(铜金属单质)上形成第二金属图案(镍金属单质)。
需要说明的是,上述铜金属单质可以替换为银金属单质、铜基金属合金或者银基金属合金,氯化镍溶液(NiCl2)可以替换为硫酸镍溶液(NiSO4)、硝酸镍溶液(Ni(NO3)2)、氯化铝溶液(AlCl3)、硫酸铝溶液(Al2(SO4)3)、硝酸铝溶液(Al(NO3)3)以及钼、铌和钛的硫酸盐、硝酸盐或者氯化盐等离子溶液,电解池反应类似于上述阳极反应和阴极反应。
示例二:第一金属图案的材料为铜金属单质,该铜金属单质作为阴极,阳极材料为镍金属单质,电解质溶液为氯化镍溶液(NiCl2),阳极材料为镍金属单质,即阳极为活性电极材料,阳极本身会失电子被氧化成金属离子Ni2+;阳极被氧化形成的Ni2+和溶液中的Ni2+向阴极移动,并在阴极上得电子以形成镍金属单质。
该电解池反应为:
阳极:Ni-2e-=Ni2+
阴极:Ni2++2e-=Ni
通过上述电化学反应就可以在以铜金属单质作为阴极的电极上形成镍金属单质,即在第一金属图案(铜金属单质)上形成第二金属图案(镍金属单质)。
需要说明的是,上述铜金属单质可以替换为银金属单质、铜基金属合金或者银基金属合金,电解质溶液可以替换为硫酸镍溶液(NiSO4)、硝酸镍溶液(Ni(NO3)2)、氯化铝溶液(AlCl3)、硫酸铝溶液(Al2(SO4)3)、硝酸铝溶液(Al(NO3)3),或者钼、铌和钛的硫酸盐、硝酸盐或者氯化盐等离子溶液,或者水溶液,电解池反应类似于上述阳极和阴极反应。
例如,可以从金属的活性比铜或者银更强的金属中选择易发生钝化反应的金属,例如镍、铝、钼、铌和钛。上述金属即使在空气中被氧化也是快速形成一层致密的氧化物薄膜,从而可以阻止氧化反应深入地进行。当该导电图案结构应用于阵列基板中时,在制作阵列基板的过程中,在后续的化学气相沉积和退火工艺中氧化反应也不会进一步地发生,从而可以有效防止铜或者银金属材料形成的第一金属图案被氧化和被腐蚀带来的良率下降的问题。
例如,可以通过磁控溅射的方式沉积金属薄膜,然后再对金属薄膜进行图案化以形成第二金属图案;然而,磁控溅射的过程需要在真空腔室中完成,需要昂贵的设备,生产成本很高。用本公开实施例提供的电解池反应的方法在第一金属图案的侧表面形成第二金属图案的制作过程简单,且不需要苛刻的外界条件,从而节省了制作成本。
例如,图5为本公开实施例提供的另一种导电图案结构的截面结构示意图,第二金属图案202覆盖第一金属图案201的上表面和全部的侧表面。这样可以防止第一金属图案201的上表面被氧化。
例如,图6为本实施例提供的又一种导电图案结构的截面结构示意图。如图6所示,该导电图案结构还包括缓冲层203,该第一金属图案201在该缓冲层203上。例如,形成该缓冲层203的材料包括不容易产生离子扩散现象的金属材料或者无机非金属材料。缓冲层203可以防止第一金属图案201的下表面被氧化并防止第一金属图案201中的金属发生扩散。例如,该金属材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi或者TiNb,该无机非金属材料包括氮化硅、氧化硅和氮氧化硅中的至少之一。
如图6所示,第二金属图案202还可以形成在缓冲层203的侧表面上,以及形成在第一金属图案201的上表面上。
例如,该缓冲层的厚度为大约20~30nm,例如,20nm、25nm或者30nm。需要说明的是,不局限于上述缓冲层的厚度的范围,上下波动10%也包含 在本申请的范围之内。
例如,图7为本实施例提供的又一种导电图案结构的截面结构示意图。如图7所示,该导电图案结构20还包括覆盖在第一金属图案201的上表面的第三金属图案204。第三金属图案204可以防止第一金属图案201的上表面被氧化并防止第一金属图案201中的金属发生扩散。
例如,形成该第三金属图案204的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi和TiNb中的至少之一。
本公开至少一实施例还提供一种阵列基板,该阵列基板包括如上所述的任一导电图案结构。
例如,该导电图案结构可以为阵列基板中的栅极、栅线、第一源漏电极、第二源漏电极、数据线和公共电极线中的至少之一。
例如,设置在阵列基板上的薄膜晶体管主要包括非晶硅薄膜晶体管、多晶硅薄膜晶体管、单晶硅薄膜晶体管、金属氧化物薄膜晶体管或碳纳米管薄膜晶体管等。用于制备显示器件的阵列基板使用较多的是金属氧化物薄膜晶体管。金属氧化物薄膜晶体管具有载流子迁移率高的优点,这样,薄膜晶体管可以做得很小,从而可以提高平板显示器的分辨率,改善显示器件的显示效果;同时金属氧化物薄膜晶体管还具有特性不均现象少、材料和工艺成本低、工艺温度低、可利用涂布工艺、半导体层透明度高、带隙大等优点。以下以阵列基板中的薄膜晶体管为底栅型金属氧化物薄膜晶体管为例加以说明。
例如,图8为本实施例提供的一种阵列基板的截面结构示意图。如图8所示,该阵列基板30包括:衬底基板301、设置在衬底基板301上的栅极302、栅绝缘层303、有源层304、第一源漏电极305、第二源漏电极306、有机绝缘层307、钝化层308、第一电极309、第一绝缘层312、第二电极310和公共电极线311。
例如,该阵列基板30中的栅极302、栅线(未示出)、第一源漏电极305、第二源漏电极306、数据线(未示出)和公共电极线311可以为本公开实施例中的任一导电图案结构,这样,通过在第一金属图案(例如,铜金属图案或者银金属图案)的侧表面上形成金属活性相对较强的第二金属图案(例如,镍、钼、铌、铝和钛金属图案),可以有效防止铜或者银材料形成的第一金属图案被深入氧化和被腐蚀带来的良率下降的问题。
例如,镍、铝、钼、铌和钛即使被氧化也是形成一层薄且致密的氧化物薄膜,从而可以阻止氧化反应深入地进行。当该导电图案结构应用于阵列基板中时,在制作阵列基板的过程中,在后续的化学气相沉积和退火工艺中氧化反应也不会进一步地发生,从而可以有效防止铜或者银金属材料形成的第一金属图案被氧化和被腐蚀带来的良率下降的问题。
例如,可以通过磁控溅射的方式沉积金属薄膜,然后再对金属薄膜进行图案化以形成第二金属图案;然而,磁控溅射的过程需要在真空腔室中完成,需要昂贵的设备,成本很高。用本公开至少一实施例提供的电解池反应的方法在第一金属图案的侧表面形成第二金属图案的制作过程简单,且不需要苛刻的外界条件,从而节省了制作成本。
例如,有源层304为金属氧化物半导体,该有源层304的材料包括IGZO、HIZO、IZO、a-InZnO、a-InZnO、ZnO、In2O3:Sn、In2O3:Mo、Cd2SnO4、ZnO:Al、TiO2:Nb或者Cd-Sn-O。
例如,本公开至少一实施例中栅绝缘层303的材料包括氧化硅、氮化硅和氮氧化硅中的至少之一,栅绝缘层303的材料还可以采用与上述各物质的材料特性相同或相近的其他无机绝缘材料。
例如,衬底基板301包括透明绝缘基板,其材料可以是玻璃、石英、塑料或其他适合的材料。
例如,有机绝缘层307的材料包括聚酰亚胺、四氟乙烯-全氟烷氧基乙烯基醚共聚物、丙烯酸树脂或者聚对苯二甲酸乙二醇酯中的一种或多种。
例如,钝化层308的材料包括氮化硅、氧化硅、氮氧化硅、二氧化钛和三氧化二铝中的一种或多种。
例如,该第一电极309为像素电极,第二电极310为公共电极;或者,第一电极309为公共电极,第二电极310为像素电极。
例如,该第一电极309和第二电极310可以由透明导电材料或金属材料形成,例如,该透明导电材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。该金属材料包括银、铝等。
例如,该第一电极309和第二电极310的形成顺序可以调换,即第二电极310可以位于第一电极309之上,第一电极309也可以位于第二电极310之上,在此不作限制。
例如,本公开至少一实施例提供的阵列基板中的薄膜晶体管可以为底栅型薄膜晶体管,例如,ES(刻蚀阻挡层)结构的薄膜晶体管或者BCE(背沟道刻蚀)结构的薄膜晶体管,还可以为顶栅型薄膜晶体管或者双栅型薄膜晶体管。
本公开至少一实施例还提供一种显示装置,该显示装置包括如上所述的任一阵列基板。例如,图9为本公开至少一实施例提供的一种显示装置的框图。如图9所示,该显示装置40包括阵列基板30。
该显示装置40的一个示例为液晶显示装置,其中,阵列基板与对置基板彼此对置以形成液晶盒,在液晶盒中填充有液晶材料。该对置基板例如为彩膜基板。阵列基板的每个子像素的像素电极用于施加电场对液晶材料的旋转的程度进行控制从而进行显示操作。在一些示例中,该液晶显示装置还包括为阵列基板提供背光的背光源。
例如,该显示装置的其他示例可以为有机发光二极管(OLED)显示装置或电子纸显示装置等。
例如,该显示装置40中的其他结构可参见常规设计。该显示装置例如可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不再赘述,也不应作为对本公开的限制。该显示装置的实施例可以参见上述中阵列基板的实施例,重复之处不再赘述。
本公开至少一实施例还提供一种导电图案结构的制备方法,例如,图10为本公开一实施例提供的一种导电图案结构的制备方法的流程图。例如,该制备方法包括:
S101:形成第一金属图案;
例如,形成第一金属图案的过程包括:在衬底基板上沉积第一金属薄膜,对第一金属薄膜进行图案化处理,以形成第一金属图案。
例如,采用溅射或热蒸发的方法,连续沉积厚度为大约200~400nm的第一金属薄膜。例如,该第一金属薄膜的厚度为200nm、250nm、300nm、350nm或者400nm。需要说明的是,不局限于上述第一金属薄膜的厚度的范围,上下波动10%也包含在本申请的范围之内。
例如,该衬底基板可以是透明绝缘基板,其材料可以是玻璃、石英、 塑料或者其他适合的材料。
例如,第一金属图案的材料为低电阻金属材料,该低电阻金属材料包括铜基金属和银基金属中的至少之一,即可以仅包括铜基金属,也可以仅包括银基金属,还可以同时包括铜和银。
例如,铜基金属包括Cu、CuMo、CuTi、CuMoW、CuMoNb或者CuMoTi;银基金属包括Ag、AgMo、AgTi、AgMoW、AgMoNb或者AgMoTi。
例如,在铜基金属中,铜的质量百分含量为大约90wt%~100wt%;在银基金属中,银的质量百分含量为大约90wt%~100wt%,例如,90wt%、92wt%、94wt%、96wt%、98wt%或者100wt%。需要说明的是,不局限于上述铜的质量百分含量和银的质量百分含量的范围,上下波动10%也包含在本申请的范围之内。
例如,对第一金属薄膜进行图案化处理的过程包括:在第一金属图案上涂覆一层光刻胶,采用掩膜板对光刻胶进行曝光和显影处理,使光刻胶形成光刻胶未保留区域和光刻胶保留区域,其中,光刻胶保留区域对应于第一金属图案(例如,阵列基板中栅极、栅线、第一源漏电极、第二源漏电极、数据线或者公共电极线)所在区域,光刻胶未保留区域对应于上述图形以外的区域;进行刻蚀工艺以完全刻蚀掉光刻胶未保留区域的第一金属薄膜;剥离剩余的光刻胶,形成第一金属图案。
S102:在第一金属图案的侧表面形成第二金属图案,形成该第一金属图案的金属的活性比形成该第二金属图案的金属的活性弱。
金属活性是指金属被置换出来的灵活程度,根据金属活动顺序表中金属排布的顺序,从前往后金属活性逐渐降低。在金属活性顺序表中,形成第一金属图案的金属的位置比形成第二金属图案的金属的位置更靠后。
例如,在导电图案结构中,第二金属图案覆盖第一金属图案的侧表面,以将暴露出的第一金属图案的侧表面与外界完全隔绝,从而防止了第一金属图案被氧化,且避免了第一金属图案的导电性降低的问题。
例如,在本公开至少一实施例提供的制备方法中,在第一金属图案的侧表面形成第二金属图案的过程可以采用电解池反应完成。例如,该过程包括:将形成有第一金属图案的衬底基板置于包含第二金属离子的溶液中,在外电流的作用下将电能转化成化学能,形成包覆该第一金属图案的侧表面的第二金属图案。
例如,电解池反应包括如下示例:
示例一:第一金属图案的材料为铜金属单质,该铜金属单质作为阴极,阳极材料为惰性电极(例如,铂或者钯等),电解质溶液为氯化镍溶液(NiCl2)。电解质溶液中的阴离子Cl-1向阳极移动,在阳极上发生反应;阳离子Ni2+向阴极移动,并在阴极上得电子以形成镍金属单质。
该电解池反应为:
阳极:2Cl-1-2e-=Cl2(g)
阴极:Ni2++2e-=Ni
通过上述电化学反应可以在以铜金属单质作为阴极的电极上形成镍金属单质,即在第一金属图案(铜金属单质)上形成第二金属图案(镍金属单质)。
需要说明的是,上述铜金属单质可以替换为银金属单质、铜基金属合金或者银基金属合金,电解质溶液可以替换为硫酸镍溶液(NiSO4)、硝酸镍溶液(Ni(NO3)2)、氯化铝溶液(AlCl3)、硫酸铝溶液(Al2(SO4)3)、硝酸铝溶液(Al(NO3)3)以及钼、铌和钛的硫酸盐、硝酸盐或者氯化盐等离子溶液,电解池反应类似于上述阳极和阴极反应。
示例二:第一金属图案的材料为铜金属单质,该铜金属单质作为阴极,阳极材料为镍金属单质,电解质溶液为氯化镍溶液(NiCl2),阳极材料为镍金属单质,为活性电极材料,阳极本身会失电子被氧化成金属离子Ni2+;阳极被氧化形成的Ni2+和溶液中的Ni2+向阴极移动,并在阴极上得电子以形成镍金属单质。
该电解池反应为:
阳极:Ni-2e-=Ni2+
阴极:Ni2++2e-=Ni
通过上述电化学反应可以在以铜金属单质作为阴极的电极上形成镍金属单质,即在第一金属图案(铜金属单质)上形成第二金属图案(镍金属单质)。
需要说明的是,上述铜金属单质可以替换为银金属单质、铜基金属合金或者银基金属合金,电解质溶液可以替换为硫酸镍溶液(NiSO4)、硝酸镍溶液(Ni(NO3)2)、氯化铝溶液(AlCl3)、硫酸铝溶液(Al2(SO4)3)、硝酸铝溶液(Al(NO3)3),或者钼、铌和钛的硫酸盐、硝酸盐或者氯化 盐等离子溶液,或者水溶液,电解池反应类似于上述阳极和阴极反应。
例如,镍、铝、钼、铌和钛即使在空气中被氧化也是形成一层薄且致密的氧化物薄膜,从而可以阻止氧化反应深入地进行。当该导电图案结构应用于阵列基板中时,在制作阵列基板的过程中,在后续的化学气相沉积和退火工艺中氧化反应也不会进一步地发生,从而可以有效防止铜或者银金属材料形成的第一金属图案被氧化和被腐蚀带来的良率下降的问题。例如,可以通过磁控溅射的方式沉积金属薄膜,然后再对金属薄膜进行图案化以形成第二金属图案;然而,磁控溅射的过程需要在真空腔室中完成,需要昂贵的设备,成本很高。用本公开至少一实施例提供的电解池反应的方法在第一金属图案的侧表面形成第二金属图案的制作过程简单,且不需要苛刻的外界条件,从而节省了制作成本。
例如,本公开实施例提供的制备方法,在形成第一金属图案之前还包括形成缓冲层。例如,形成第一金属图案之前,即在衬底基板上沉积第一金属薄膜之前,还包括采用磁控溅射的方法或者化学气相沉积的方法形成缓冲层薄膜,并采用构图工艺形成缓冲层。
例如,沉积缓冲层薄膜的过程包括通过等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)方法连续沉积氧化物、氮化物或者氧氮化合物的膜层,然后刻蚀形成缓冲层。对应的反应气体可以为SiH4、NH3、N2、SiH2Cl2或N2。采用PECVD方法沉积具有温度低、沉积速率快、成膜质量好、针孔较少以及不易龟裂的优点。
例如,缓冲层的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi、TiNb、氮化硅、氧化硅和氮氧化硅中的至少之一。
例如,该导电图案结构的制备方法还包括:在第一金属图案的上表面形成第三金属图案。
例如,形成第三金属图案的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi和TiNb中的至少之一。
例如,形成第三金属图案的过程可以参见上述形成第一金属图案的过程,在此不再赘述。
例如,可以首先依次形成缓冲薄膜、第一金属薄膜和第三金属薄膜,然后通过采用一块掩模板的一次构图工艺形成缓冲层、第一金属图案和第三金属图案。
本公开至少一实施例提供的导电图案结构及其制备方法、阵列基板和显示装置具有以下至少一项有益效果:
(1)本公开至少一实施例提供的导电图案结构,在第一金属图案上形成包覆于其侧表面的第二金属图案以防止第一金属图案的侧表面被氧化,从而避免了第一金属图案导电性降低的问题,进而避免了产品良率的下降的问题;
(2)本公开至少一实施例提供的导电图案结构,降低了对生产设备和外界环境的要求,从而降低了导电图案结构制作工艺的复杂性;
(3)本公开至少一实施例提供的导电图案结构,降低了生产成本。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种导电图案结构,包括:第一金属图案和第二金属图案,
    其中,所述第二金属图案至少部分覆盖所述第一金属图案的侧表面;
    所述第一金属图案的金属材料的活性比所述第二金属图案的金属材料的活性弱。
  2. 根据权利要求1所述的导电图案结构,其中,所述第一金属图案的金属材料包括铜基金属和银基金属中的至少之一。
  3. 根据权利要求1或2所述的导电图案结构,其中,所述第二金属图案的金属材料包括镍、钼、铌、铝和钛中的至少之一。
  4. 根据权利要求2所述的导电图案结构,其中,所述铜基金属包括Cu、CuMo、CuTi、CuMoW、CuMoNb或者CuMoTi;所述银基金属包括Ag、AgMo、AgTi、AgMoW、AgMoNb或者AgMoTi。
  5. 根据权利要求2或4所述的导电图案结构,其中,在所述铜基金属中,铜的质量百分含量为大约90wt%~100wt%;在所述银基金属中,银的质量百分含量为大约90wt%~100wt%。
  6. 根据权利要求1-5中任一项所述的导电图案结构,还包括缓冲层,其中,所述第一金属图案在所述缓冲层上。
  7. 根据权利要求6所述的导电图案结构,其中,所述缓冲层的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi、TiNb、氮化硅、氧化硅和氮氧化硅中的至少之一。
  8. 根据权利要求1-5中任一项所述的导电图案结构,还包括覆盖所述第一金属图案的上表面的第三金属图案。
  9. 根据权利要求8所述的导电图案结构,其中,所述第三金属图案的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi和TiNb中的至少之一。
  10. 一种阵列基板,包括权利要求1-9中任一项所述的导电图案结构。
  11. 一种显示装置,包括权利要求10所述的阵列基板。
  12. 一种导电图案结构的制备方法,包括:
    形成第一金属图案;
    在至少部分所述第一金属图案的侧表面形成第二金属图案;其中,
    所述第一金属图案的金属材料的活性比所述第二金属图案的金属材料的活性弱。
  13. 根据权利要求12所述的制备方法,其中,在所述第一金属图案的侧表面形成第二金属图案包括:将形成有所述第一金属图案的衬底基板置于包含第二金属离子的溶液中,以形成包覆所述第一金属图案的侧表面的第二金属图案。
  14. 根据权利要求12或13所述的制备方法,其中,所述第一金属图案的金属材料包括铜基金属和银基金属中的至少之一。
  15. 根据权利要求14所述的制备方法,其中,所述第二金属图案的金属材料包括镍、钼、铌、铝和钛中的至少之一。
  16. 根据权利要求13所述的制备方法,其中,所述包含第二金属离子的溶液包括镍、钼、铌、铝或者钛的氯化物、硝酸盐或者硫酸盐溶液。
  17. 根据权利要求12-16中任一项所述的制备方法,其中,形成所述第一金属图案之前,还包括:形成缓冲层。
  18. 根据权利要求17所述的制备方法,其中,所述缓冲层的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi、TiNb、氮化硅、氧化硅和氮氧化硅中的至少之一。
  19. 根据权利要求12-16中任一项所述的制备方法,还包括:在所述第一金属图案的上表面形成第三金属图案。
  20. 根据权利要求19所述的制备方法,其中,所述第三金属图案的材料包括Mo、Nb、Ti、MoW、MoNb、MoTi、WNb、WTi和TiNb中的至少之一。
PCT/CN2017/109722 2017-04-20 2017-11-07 导电图案结构及其制备方法、阵列基板和显示装置 WO2018192210A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17897218.8A EP3614426A4 (en) 2017-04-20 2017-11-07 CONDUCTIVE SAMPLE STRUCTURE AND MANUFACTURING PROCESS FOR IT AS WELL AS ARRAY SUBSTRATE AND DISPLAY DEVICE
US16/062,344 US10790309B2 (en) 2017-04-20 2017-11-07 Conductive pattern structure, manufacturing method thereof, array substrate and display device
JP2018549775A JP7074683B2 (ja) 2017-04-20 2017-11-07 導電パターン構造及びその製造方法、アレイ基板、表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710263475.3 2017-04-20
CN201710263475.3A CN108735761A (zh) 2017-04-20 2017-04-20 导电图案结构及其制备方法、阵列基板和显示装置

Publications (1)

Publication Number Publication Date
WO2018192210A1 true WO2018192210A1 (zh) 2018-10-25

Family

ID=63855480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109722 WO2018192210A1 (zh) 2017-04-20 2017-11-07 导电图案结构及其制备方法、阵列基板和显示装置

Country Status (5)

Country Link
US (1) US10790309B2 (zh)
EP (1) EP3614426A4 (zh)
JP (1) JP7074683B2 (zh)
CN (1) CN108735761A (zh)
WO (1) WO2018192210A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613629B (zh) 2020-06-28 2022-09-09 武汉华星光电技术有限公司 一种导电膜层、导电膜层制备方法及显示装置
CN112732115B (zh) * 2020-12-30 2023-03-24 武汉华星光电半导体显示技术有限公司 触控显示面板及触控显示面板的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270493A (zh) * 2007-03-23 2008-09-24 富士胶片株式会社 导电性材料的制造方法及制造装置
CN102983157A (zh) * 2012-11-29 2013-03-20 昆山工研院新型平板显示技术中心有限公司 一种铝栅极及其制备方法和包括该铝栅极的薄膜晶体管
CN104332474A (zh) * 2014-09-02 2015-02-04 重庆京东方光电科技有限公司 一种阵列基板及其制作方法和显示装置
CN104882489A (zh) * 2015-06-26 2015-09-02 京东方科技集团股份有限公司 薄膜晶体管及制作方法、阵列基板及制作方法、显示装置
CN105762112A (zh) * 2016-04-28 2016-07-13 京东方科技集团股份有限公司 薄膜晶体管阵列基板及其制备方法、显示装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547760A (ja) * 1991-08-12 1993-02-26 Hitachi Ltd 半導体集積回路装置、その製造方法およびその製造に用いるスパツタターゲツト
JP3101197B2 (ja) * 1994-12-01 2000-10-23 イビデン株式会社 多層プリント配線板およびその製造方法
KR100190023B1 (ko) * 1996-02-29 1999-06-01 윤종용 박막트랜지스터-액정표시장치 및 그 제조방법
JP4247772B2 (ja) * 1998-12-14 2009-04-02 エルジー ディスプレイ カンパニー リミテッド 配線とこれを用いた薄膜トランジスタ基板およびその製造方法と液晶表示装置
JP2002093809A (ja) 2000-09-14 2002-03-29 Fujitsu Ltd 半導体装置及びその製造方法
JP2003124216A (ja) 2001-10-16 2003-04-25 Sony Corp 配線用シード膜および半導体装置の配線方法
CN1909248A (zh) * 2005-08-02 2007-02-07 中华映管股份有限公司 薄膜晶体管及其制造方法
WO2010140725A1 (ko) * 2009-06-05 2010-12-09 (주)탑엔지니어링 박막 금속 전도선의 형성 방법
US8242012B2 (en) * 2010-07-28 2012-08-14 International Business Machines Corporation Integrated circuit structure incorporating a conductor layer with both top surface and sidewall passivation and a method of forming the integrated circuit structure
JP2012204585A (ja) 2011-03-25 2012-10-22 Renesas Electronics Corp 半導体装置の製造方法
CN103199113B (zh) 2013-03-20 2018-12-25 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板、显示装置
KR102075529B1 (ko) * 2013-05-29 2020-02-11 삼성디스플레이 주식회사 평판 표시 장치 및 이의 제조 방법
KR20150061302A (ko) 2013-11-27 2015-06-04 삼성디스플레이 주식회사 표시 기판, 표시 기판의 제조 방법 및 표시 기판을 포함하는 표시 장치
KR102169013B1 (ko) * 2013-12-17 2020-10-23 삼성디스플레이 주식회사 박막트랜지스터 어레이 기판, 유기 발광 표시 장치 및 박막트랜지스터 어레이 기판의 제조 방법
CN103794651A (zh) 2014-01-23 2014-05-14 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、阵列基板、显示装置
US9633957B2 (en) * 2014-11-28 2017-04-25 Infineon Technologies Ag Semiconductor device, a power semiconductor device, and a method for processing a semiconductor device
CN107112365A (zh) * 2014-12-25 2017-08-29 夏普株式会社 半导体装置
CN104465786B (zh) * 2014-12-30 2018-09-04 京东方科技集团股份有限公司 薄膜晶体管及其制造方法、显示基板和显示装置
US9564362B2 (en) * 2015-02-05 2017-02-07 International Business Machines Corporation Interconnects based on subtractive etching of silver
CN104766803B (zh) * 2015-04-01 2018-09-11 京东方科技集团股份有限公司 Tft的制作方法及tft、阵列基板、显示装置
CN104992949B (zh) * 2015-06-04 2018-03-09 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN105226070A (zh) 2015-10-08 2016-01-06 京东方科技集团股份有限公司 一种薄膜晶体管阵列基板及其制备方法、显示装置
KR102550322B1 (ko) * 2016-03-22 2023-07-03 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR20180061903A (ko) * 2016-11-30 2018-06-08 엘지디스플레이 주식회사 두 개의 전극들 사이에 위치하는 다수의 절연막들을 포함하는 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270493A (zh) * 2007-03-23 2008-09-24 富士胶片株式会社 导电性材料的制造方法及制造装置
CN102983157A (zh) * 2012-11-29 2013-03-20 昆山工研院新型平板显示技术中心有限公司 一种铝栅极及其制备方法和包括该铝栅极的薄膜晶体管
CN104332474A (zh) * 2014-09-02 2015-02-04 重庆京东方光电科技有限公司 一种阵列基板及其制作方法和显示装置
CN104882489A (zh) * 2015-06-26 2015-09-02 京东方科技集团股份有限公司 薄膜晶体管及制作方法、阵列基板及制作方法、显示装置
CN105762112A (zh) * 2016-04-28 2016-07-13 京东方科技集团股份有限公司 薄膜晶体管阵列基板及其制备方法、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3614426A4 *

Also Published As

Publication number Publication date
US10790309B2 (en) 2020-09-29
JP7074683B2 (ja) 2022-05-24
JP2020522118A (ja) 2020-07-27
EP3614426A1 (en) 2020-02-26
CN108735761A (zh) 2018-11-02
EP3614426A4 (en) 2020-12-09
US20190280012A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
US11049975B2 (en) Dual-gate thin film transistor, manufacturing method thereof, array substrate and display device
US10394098B2 (en) Conductive pattern structure and its array substrate and display device
WO2018099052A1 (zh) 阵列基板的制备方法、阵列基板及显示装置
US7956947B2 (en) Thin film transistor array substrate having improved electrical characteristics and method of manufacturing the same
US9991135B2 (en) Method for fabricating a metal oxide thin film transistor
WO2019071725A1 (zh) 顶栅自对准金属氧化物半导体tft及其制作方法
US8035110B2 (en) Thin-film transistor substrate having oxide active layer patterns and method of fabricating the same
US11398505B2 (en) Display substrate and manufacturing method thereof, display panel, and display device
JP2016519847A (ja) 薄膜トランジスタ及びその製造方法、アレイ基板、並びにディスプレイ
WO2018192217A1 (zh) 薄膜晶体管及其制备方法、阵列基板及其制备方法、显示面板
WO2016155155A1 (zh) 薄膜晶体管的制作方法、薄膜晶体管及使用其的阵列基板和显示装置
WO2017201791A1 (zh) Tft基板的制作方法及tft基板
WO2022193657A1 (zh) 薄膜晶体管及其制备方法、显示面板、显示装置
WO2013139135A1 (zh) 阵列基板及其制作方法、显示装置
CN103545221A (zh) 金属氧化物薄膜晶体管及其制备方法
CN105161523A (zh) 一种电极、薄膜晶体管、阵列基板及显示设备
WO2018192210A1 (zh) 导电图案结构及其制备方法、阵列基板和显示装置
US9620729B2 (en) Organic thin film transistor and method of manufacturing the same, array substrate and display device
WO2019127726A1 (zh) 阵列基板及其制备方法、显示装置
WO2016000363A1 (zh) 低温多晶硅薄膜晶体管阵列基板及其制备方法、显示装置
CN114883346A (zh) 阵列基板及其制作方法、显示面板
WO2016192447A1 (zh) 一种阵列基板及其制备方法、显示装置
KR20120014380A (ko) 버티컬 산화물 반도체 및 그 제조방법
US20240096977A1 (en) Tft substrate and manufacturing method thereof, liquid crystal display panel and oled display panel
US20230343837A1 (en) Display panel and display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549775

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017897218

Country of ref document: EP

Effective date: 20191120