WO2021002374A1 - 電子装置 - Google Patents

電子装置 Download PDF

Info

Publication number
WO2021002374A1
WO2021002374A1 PCT/JP2020/025756 JP2020025756W WO2021002374A1 WO 2021002374 A1 WO2021002374 A1 WO 2021002374A1 JP 2020025756 W JP2020025756 W JP 2020025756W WO 2021002374 A1 WO2021002374 A1 WO 2021002374A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
flexible portion
component mounting
rigid
sensor
Prior art date
Application number
PCT/JP2020/025756
Other languages
English (en)
French (fr)
Inventor
秀幸 原
拓朗 金澤
成俊 山田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112020003244.2T priority Critical patent/DE112020003244T5/de
Priority to CN202080045308.1A priority patent/CN114008899A/zh
Priority to US17/623,650 priority patent/US11647588B2/en
Publication of WO2021002374A1 publication Critical patent/WO2021002374A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • H05K1/0281Reinforcement details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0215Grounding of printed circuits by connection to external grounding means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0275Security details, e.g. tampering prevention or detection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/148Arrangements of two or more hingeably connected rigid printed circuit boards, i.e. connected by flexible means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09336Signal conductors in same plane as power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2009Reinforced areas, e.g. for a specific part of a flexible printed circuit

Definitions

  • the present invention relates to an electronic device using a bendable circuit board that can be assembled to a housing in a bent state.
  • Patent Document 1 as a circuit board to be incorporated in a motor unit of a power steering device, a plurality of rigid portions are connected by a flexible portion thinner than the rigid portion, so that the circuit board is bent into a substantially U shape.
  • a multi-layer circuit board that enables the above is disclosed.
  • the present invention comprises, in one embodiment, a circuit board having two component mounting portions and a flexible portion that is thinner and more flexible than the component mounting portion, and the flexible portion is the two component mounting portions.
  • the wiring between multiple component mounting parts which is the power supply positive wiring or signal wiring extending between the two, and one or one whose outer edge along the side edge of the flexible part is located closer to the side edge of the flexible part than the wiring between the component mounting parts. It has multiple ground wirings.
  • the generation of cracks in the flexible portion or the growth of the generated cracks is suppressed by the ground wiring located relatively outside, and the insulation of the power supply positive electrode wiring and the signal wiring located inside the outer edge of the ground wiring. Defects and disconnections are suppressed.
  • FIG. 5 is an enlarged cross-sectional view showing a flexible portion of a modified example.
  • the plan view of the main part which shows 1st Example of wiring in a flexible part. Explanatory drawing which shows typically the structure of the wiring of 1st Example.
  • the plan view of the main part which shows the 2nd Example of wiring in a flexible part Explanatory drawing which shows typically the structure of the wiring of 2nd Example.
  • the plan view of the main part which shows 3rd Example of wiring in a flexible part Explanatory drawing which shows typically the structure of the wiring of 3rd Example.
  • the plan view of the main part which shows 4th Example of wiring in a flexible part Explanatory drawing which shows typically the structure of the wiring of 4th Example.
  • the plan view of the main part which shows 5th Example of wiring in a flexible part Explanatory drawing which shows typically the structure of the wiring of 5th Example.
  • FIG. 3 is a plan view of a main part showing a sixth embodiment of wiring in a flexible part.
  • the plan view of the main part which shows the 7th Example of wiring in a flexible part Explanatory drawing which shows typically the structure of the wiring of 7th Example.
  • FIG. 1 is an exploded perspective view of an electric actuator device that applies a steering assist force to a steering mechanism (not shown) in the electric power steering device.
  • FIG. 2 is a cross-sectional view of the electric actuator device.
  • This electric actuator device includes a cylindrical motor unit 1, an inverter power module 2, a circuit board 3 composed of a bendable multilayer wiring board, a connector member 4 in which a plurality of connectors are integrally assembled, and a connector member 4 thereof.
  • a motor cover 5 attached to one end of the motor unit 1 is provided so as to cover the inverter power module 2, the circuit board 3, and the connector member 4.
  • a motor 1A (FIG. 2) corresponding to an electric actuator composed of a stator 1B and a rotor 1C is housed inside a cylindrical housing 7, and a rotating shaft 6 protruding from the tip surface of the housing 7 It has a connecting portion 6a such as a gear or a spline at the tip of the head, and is connected to a steering mechanism (not shown) via the connecting portion 6a.
  • the motor 1A is a three-phase permanent magnet type brushless motor
  • the stator 1B includes a three-phase coil
  • a permanent magnet is arranged on the outer peripheral surface of the rotor 1C.
  • the motor 1A includes two coils and corresponding permanent magnets to provide redundancy.
  • One end of the housing 7 opposite to the connecting portion 6a is configured as a bottom wall portion 7a having a horseshoe-shaped contour in which a part of the outer peripheral edge extends in the radial direction, and covers the bottom wall portion 7a.
  • the motor cover 5 having a horseshoe-shaped contour corresponding to the bottom wall portion 7a is attached.
  • the inverter power module 2, the circuit board 3, and the connector member 4 are housed in the space formed between the bottom wall portion 7a and the motor cover 5 so as to be overlapped with each other in the axial direction of the rotating shaft 6.
  • the inverter power module 2 includes two inverter modules 2A that drive the motor 1A and a relay module 2B that serves as a neutral point relay of the coil, so that these three parties form a substantially U shape surrounding the rotating shaft 6. It is located in. Then, these inverter modules 2A and relay modules 2B are fixed to the end faces of the motor unit 1 via the pressing member 2C.
  • the connector member 4 includes three connectors pointing in the same direction along the axial direction of the rotating shaft 6. Specifically, the power supply connector 4a located in the center, the sensor input connector 4b to which signals from sensors (for example, steering angle sensor, torque sensor, etc.) arranged on the steering mechanism side are input, and other components in the vehicle. It is provided with a communication connector 4c for performing communication (for example, CAN communication) with the control device. These connectors 4a, 4b, 4c project to the outside through the opening 8 of the motor cover 5.
  • control device including the inverter power module 2 and the circuit board 3 is integrated with the motor unit 1, whereby the entire device can be miniaturized. ing.
  • FIG. 3 is a perspective view showing an outline of the circuit board 3 in a state of being bent into a substantially U shape
  • FIG. 4 is a side view.
  • the circuit board 3 is incorporated in the electric actuator device in a substantially U-shaped shape as shown in FIGS. 3 and 4.
  • the circuit board 3 is relatively relative to the first rigid portion 11 which is a power system board on which a group of electronic components through which a relatively large current flows for driving the motor 1A via the inverter power module 2 is mounted. It includes a second rigid portion 12 that serves as a control system board on which a control system electronic component through which a small current flows is mounted, and a flexible portion 13 between the two.
  • the first rigid unit 11 corresponds to the "first component mounting unit”
  • the second rigid unit 12 corresponds to the "second component mounting unit”.
  • the circuit board 3 has a case and a case in which the flexible portion 13 is bent and deformed so that the first rigid portion 11 and the second rigid portion 12 overlap each other in the axial direction of the rotating shaft 6.
  • first rigid portion 11 and the second rigid portion 12 in the bent state are separated by a distance such that the electronic components mounted on the first rigid portion 11 and the second rigid portion 12 do not come into contact with each other, and are in a flat state. It is fixedly supported by the electric actuator device in a state of being parallel to each other while maintaining the above.
  • FIG. 5 is a cross-sectional view showing the circuit board 3 in an unfolded state, that is, in a state before being bent (hatching of the board portion is omitted).
  • the circuit board 3 composed of one multilayer wiring board includes a first surface 3A and a second surface 3B.
  • FIG. 6 is a plan view showing the configuration of the first surface 3A in the unfolded state of the circuit board 3
  • FIG. 7 is a plan view showing the configuration of the second surface 3B.
  • the circuit board 3 has the first rigid portion 11, the second rigid portion 12, and the flexible portion 13 as one circuit board along one plane in the developed state as shown in FIGS. 5 to 7. It is formed and is finally folded into a substantially U shape after mounting the components.
  • the first rigid portion 11 and the second rigid portion 12 each have a shape similar to a quadrangle having mounting holes 15 at the four corners. Then, the central portion of one side of the first rigid portion 11 and the central portion of one side of the second rigid portion 12 adjacent to each other are connected to each other by a flexible portion 13 forming a band shape having a constant width. That is, the width of the flexible portion 13 is narrower than the width of the first rigid portion 11 and the second rigid portion 12 (dimensions in the direction orthogonal to the bending direction). Therefore, the circuit board 3 has an I-shape or an 8-shape as a whole. By making the widths of the first and second rigid portions 11 and 12 relatively wide and the width of the flexible portions 13 relatively narrow in this way, a large component mounting area can be secured, while the flexible portions 13 can be secured. It becomes easy to bend and deform in.
  • the circuit board 3 is composed of a multi-layer printed wiring board, specifically, a so-called 6-layer printed wiring board having 6 layers of metal foil.
  • this multilayer printed wiring board several base materials made of, for example, glass epoxy, which are provided with metal foil layers on one side or both sides, are laminated via a prepreg (adhesive layer) and heated and pressed to integrate them. It is composed of. Therefore, the metal leaf layers on the surface layers of the first surface 3A and the second surface 3B and the four inner metal foil layers form six metal foil layers to be wiring layers.
  • a base material as an insulating layer that insulates between the metal foil layers is interposed between the metal foil layers. Then, in the first rigid portion 11 and the second rigid portion 12, a desired circuit pattern is formed by etching the six metal foil layers and forming vias extending in the stacking direction.
  • the flexible portion 13 is formed to be relatively thin compared to the thickness (dimension in the stacking direction) of the substrates of the first rigid portion 11 and the second rigid portion 12 having a six-layer structure. As a result, it is configured to have higher flexibility than the first rigid portion 11 and the second rigid portion 12.
  • the flexible portion is subjected to secondary machining. At the time of bending in No. 13, the inner four layers are scraped off to make the wall thinner.
  • the base material of the first and second rigid portions 11 and 12 and the base material of the flexible portion 13 are made of the same material, and the two metal leaf layers remaining as the flexible portion 13 are the first and second rigid portions. It is continuous over the three parts 11, 12 and the flexible part 13.
  • the intermediate rigid portion 14 is left as a 6-layer structure in the central portion of the flexible portion 13 in order to secure a printed surface such as a barcode, and a pair of concave grooves are formed on both sides of the intermediate rigid portion 14.
  • a thin portion is formed as 16.
  • the intermediate rigid portion 14 is not essential, and the entire flexible portion 13 may be thinned. In this embodiment, the entire space between the first rigid portion 11 and the second rigid portion 12 including the intermediate rigid portion 14 is referred to as a flexible portion 13.
  • the concave groove 16 is recessed in a groove shape on the first surface 3A of the circuit board 3.
  • the flexible portion 13 has a surface continuous with the first and second rigid portions 11 and 12.
  • the pair of recesses 16 that provide the flexible portion 13 with the required flexibility are formed along one side of the first rigid portion 11 and the second rigid portion 12, whereby the first and second rigid portions 12 are formed.
  • the boundary 18 between the portions 11 and 12 and the flexible portion 13 is defined.
  • a pair of linear boundaries 18 are defined by the outer edges of the thinned concave groove 16, and when bent as shown in FIG. 4, the thin flexible portion 13 bends and deforms between the pair of boundaries 18.
  • the width of the circuit board 3 (dimensions in the direction orthogonal to the bending direction) is reduced at the boundary 18 transitioning from the first and second rigid portions 11 and 12 to the flexible portion 13.
  • the flexible portion 13 is formed in a strip shape having a constant width so as to be easily bent and deformed.
  • the corner portions at both ends of the boundary 18 where the first and second rigid portions 11 and 12 and the flexible portion 13 are connected are flexible portions. 13 is rounded into an arc shape having an appropriate radius (see FIGS. 5 and 6).
  • the metal foil layer on the surface layer on the second surface 3B side which is the outer surface at the time of bending, and the inner layer adjacent thereto (that is, the second).
  • the metal foil layer (second layer) when viewed from the surface 3B side remains.
  • only these two metal leaf layers are used to form the wiring pattern.
  • four further metal foil layers are used to form the wiring pattern.
  • the intermediate rigid portion 14 has 6 metal foil layers, but the metal foil layers corresponding to the 3rd to 6th layers when viewed from the 2nd surface 3B side are not used for forming the wiring pattern. ..
  • a linear boundary 19 exists between the pair of concave grooves 16 and the intermediate rigid portion 14.
  • the four boundaries 18, 19 including the pair of boundaries 18 and the pair of boundaries 19 are parallel to each other.
  • FIG. 8 shows one modification of the concave groove 16.
  • the thickness of the substrate changes smoothly, that is, continuously at the boundaries 18 and 19.
  • the thickness of the substrate is flexible from the thickness of the first and second rigid portions 11 and 12.
  • the thickness of the insulating base material gradually decreases so as to continuously change to the thickness of the portion 13.
  • the thickness of the substrate is insulated so as to continuously change from the thickness of the intermediate rigid portion 14 to the thickness of the flexible portion 13.
  • the thickness of the base material gradually decreases.
  • the longitudinal direction of the circuit board 3 in the deployed state is defined as the L direction as shown in FIGS. 6 and 7, and the width direction orthogonal to this is defined as the W direction.
  • the pair of boundaries 18 of the flexible portion 13 described above are straight lines extending in the W direction. Assuming that a straight line along the L direction is drawn on the circuit board 3 in the unfolded state, the straight line on the first rigid portion 11 and the straight line on the second rigid portion 12 in the state where the circuit board 3 is bent into a substantially U shape.
  • One plane (a plane orthogonal to the boundary 18) is defined by.
  • a line that intersects the rotation center axis of the motor 1A and extends parallel to the L direction at the time of assembly is referred to as a substrate center line M.
  • the circuit board 3 of this embodiment includes two independent control systems corresponding to the two coils of the motor 1A. When one of the systems fails or becomes abnormal, the motor 1A can be driven by the other system.
  • one individual control system is configured by arranging parts on the circuit board 3 along the L direction, which is the longitudinal direction thereof, and the two control systems are basically formed in the width direction of the circuit board 3. It is configured side by side in the W direction. Except for the differences in details, the two control systems are symmetrically configured with the substrate center line M as the center.
  • one control system includes one filter unit 31 and one power supply capacitor unit 34.
  • the filter portion 31 is composed of a coil 32 having a rectangular case and a capacitor 33 having the same rectangular case located closer to the flexible portion 13 than the coil 32.
  • the power supply capacitor unit 34 is configured to include capacitors 34A, 34B, 34C having a plurality of, for example, three rectangular cases.
  • the group of electronic components constituting one control system that is, the capacitors 33, the coils 32, and the capacitors 34A, 34B, and 34C are arranged in a line in the L direction, although they are not on a perfect straight line.
  • the capacitors 33, the coil 32, and the capacitors 34A, 34B, and 34C constituting one control system and the capacitors 33, the coil 32, and the capacitors 34A, 34B, and 34C constituting the other control system are the center lines of the substrate. They are arranged symmetrically with respect to M as the center.
  • a total of four power cutoff switching elements 35 are mounted in each control system between the capacitor 33 of the filter unit 31 and the flexible unit 13. Two power cutoff switching elements 35 of each control system are arranged adjacent to the capacitor 33. Further, a total of four power cutoff switching elements 35 are arranged in a substantially straight line along the W direction.
  • the second rotation sensor 38 is an analog type rotation sensor that detects the rotation of the rotation shaft 6 in combination with a magnetic pole provided at the end of the rotation shaft 6 of the motor 1A, and is the center of the rotation shaft 6 at the time of assembly. It is located on the axis.
  • the second rotation sensor 38 is shared by two control systems, is branched into two signal circuits on the first rigid unit 11, and is used in each control system.
  • a first power supply terminal 40 is attached to each of the pair of side edge portions 11a of the first rigid portion 11 facing the W direction.
  • Each first power supply terminal 40 includes a positive electrode terminal 40A and a negative electrode terminal 40B, and a set of first power supply terminals 40 including a positive electrode terminal 40A and a negative electrode terminal 40B corresponds to one control system, respectively. There is.
  • These power supply terminals 40 are located outside the electronic component group (that is, the capacitor 33, the coil 32, the capacitors 34A, 34B, 34C) constituting each control system in the W direction of the circuit board 3.
  • the positive electrode terminal 40A and the negative electrode terminal 40B are each made of a metal piece bent into a substantially L shape, and rise from the first surface 3A along the side edge of the first rigid portion 11 so as to be orthogonal to the first surface 3A. There is.
  • the positive electrode terminal 40A and the negative electrode terminal 40B are arranged side by side along the L direction, and the positive electrode terminal 40A is located closer to the flexible portion 13 than the negative electrode terminal 40B.
  • the positive electrode terminal 40A is located on the side of the capacitor 33 of the filter unit 31, and the negative electrode terminal 40B is located on the side of the coil 32.
  • the first power supply terminal 40 is connected to the terminal piece of the power supply connector 4a of the connector member 4 described above.
  • the two sets of first power supply terminals 40 are symmetrically configured with the substrate center line M as the center.
  • the first rigid unit 11 further includes a gate signal port 41 connected to a switching element of each arm of the inverter power module 2 and an inverter power supply port 42 for supplying a power supply voltage to the inverter power module 2. I have. All of these are formed as through-hole-shaped terminals.
  • the gate signal port 41 is arranged in the vicinity of the first power supply terminal 40, and the inverter power supply port 42 is arranged on the side (outside in the W direction) of the power supply capacitor portion 34. In the final assembled state as an electric actuator device, pin-shaped terminal pieces of the inverter power module 2 are inserted into these ports 41 and 42 and electrically connected.
  • the CPU 21 comprises an integrated circuit having a substantially square flat package.
  • the two CPUs 21 are arranged symmetrically about the substrate center line M.
  • the pre-driver circuit element 22 is mounted at a position closer to the flexible portion 13 than the two CPUs 21.
  • the pre-driver circuit element consists of an integrated circuit having a substantially square flat package smaller than the CPU 21.
  • the two pre-driver circuit elements 22 correspond to the two control systems, respectively, and are arranged symmetrically about the substrate center line M.
  • the individual pre-driver circuit elements 22 are arranged side by side with the CPU 21 of the corresponding control system along the L direction.
  • a notch 24 for avoiding interference with the first power supply terminal 40 of the first rigid portion 11 described above in the bent state is formed on each of the pair of side edge portions 12a of the second rigid portion 12 facing the W direction. ing. These notch portions 24 are generally located on the sides of the CPU 21 and the pre-driver circuit element 22. Further, a second power supply terminal 25 composed of two positive and negative through holes is provided at a position along each notch 24. These two sets of second power supply terminals 25 correspond to their respective control systems. In the final assembled state as the electric actuator device, the pin-shaped terminal piece of the power connector 4a of the connector member 4 described above is inserted into the through-hole-shaped second power supply terminal 25 and electrically connected. ..
  • An external sensor input unit 27 composed of a plurality of through-hole-shaped terminals is provided in the end region of the second rigid unit 12 near the flexible unit 13.
  • the plurality of through-hole-shaped terminals are arranged side by side in a straight line along the W direction.
  • the pin-shaped terminal piece of the sensor input connector 4b of the connector member 4 is inserted into the external sensor input unit 27, and the signal of the external sensor such as the steering angle sensor or the torque sensor is inserted. Is input to each control system via the external sensor input unit 27.
  • a communication port 28 composed of a plurality of through-hole-shaped terminals is provided.
  • the plurality of through-hole-shaped terminals are arranged side by side in a straight line along the W direction.
  • the pin-shaped terminal piece of the communication connector 4c of the connector member 4 is inserted into the communication port 28, and communication is performed with other external control devices. ..
  • a first rotation sensor 37 is mounted in the central portion as a detection element for detecting the operating state of the motor 1A.
  • the first rotation sensor 37 is a digital rotation sensor that detects the rotation of the rotation shaft 6 in combination with a magnetic pole provided at the end of the rotation shaft 6 of the motor 1A, and is the center of the rotation shaft 6 at the time of assembly. It is located on the axis.
  • the first rotation sensor 37 is shared by two control systems like the second rotation sensor 38, is branched into two signal circuits on the first rigid unit 11, and is used in each control system. Will be done.
  • the first rotation sensor 37 arranged on the second surface 3B and the second rotation sensor 38 arranged on the first surface 3A are positioned so as to overlap each other when the circuit board 3 is projected and viewed.
  • the first rotation sensor 37 is located on the outer surface of the circuit board 3 having a substantially U shape and faces the end surface of the rotation shaft 6.
  • the second rotation sensor 38 is inside the circuit board 3 having a substantially U shape.
  • the first rotation sensor 37 is the main rotation sensor
  • the second rotation sensor 38 is, for example, a preliminary rotation sensor used when the first rotation sensor 37 is abnormal.
  • one of the rotation sensors arranged on the first surface 3A and the second surface 3B may be used for one control system and the other may be used for the other control system independently of each other.
  • two power supply / communication ICs 29 including an integrated circuit including a power supply circuit for the second rigid unit 12 and a communication circuit for the communication port 28 are mounted.
  • the power / communication IC 29 has a substantially square flat package smaller than the CPU 21.
  • the two power supply / communication ICs 29 correspond to the two control systems, respectively, and are arranged at positions substantially symmetrical with respect to the substrate center line M. In the L direction, the power supply / communication IC 29 is arranged in the end region of the second rigid portion 12 opposite to the flexible portion 13, and is located between the second power supply terminal 25 and the communication port 28. Located in.
  • the power supply / communication IC 29 is located between the CPU 21 and the communication port 28, and the CPU 21 is located closer to the flexible unit 13 than the power supply / communication IC 29. Therefore, the CPU 21 is located in the intermediate portion between the power supply / communication IC 29 and the external sensor input unit 27.
  • the power supply / communication IC 29 communicates with other external control devices via the communication port 28, and uses the terminal voltage input to the second power supply terminal 25 as the operating voltage for the second rigid unit 12. Convert.
  • the power supply circuit and the communication circuit may be configured by individual integrated circuits.
  • the detection signals of the first rotation sensor 37 and the second rotation sensor 38 arranged in the first rigid portion 11 include the CPU 21 via the wiring (sensor signal wiring) linearly provided in the flexible portion 13. 2 It is sent to the rigid portion 12 side.
  • two control systems corresponding to the two coils of the motor 1A are configured independently of each other, and these two control systems are the first and second rotation sensors 37. , 38 are arranged substantially symmetrically with respect to the substrate center line M.
  • the detection signals of the first and second rotation sensors 37 and 38 in response to the rotation of the motor 1A are transmitted from the first rigid unit 11 to the second rigid unit via the sensor signal wiring in the flexible unit 13. It is sent to 12.
  • the CPU 21 of the second rigid unit 12 performs arithmetic processing using this detection signal as one parameter, calculates an operation amount for the motor 1A, and generates an instruction signal based on this operation amount.
  • This instruction signal is amplified by the pre-driver circuit element 22 and converted into a control signal for the inverter circuit.
  • This control signal is sent from the second rigid unit 12 to the first rigid unit 11 via the wiring (drive signal wiring) linearly provided in the flexible unit 13, and finally the gate signal of the first rigid unit 11. It is output as a gate signal from the port 41 to the inverter power module 2.
  • a power supply voltage is applied to the inverter power module 2 from the first power supply terminal 40 of the first rigid unit 11 via a power supply cutoff switching element 35, a filter unit 31, a power supply capacitor unit 34, and an inverter power supply port 42.
  • the motor 1A is driven by the inverter action based on the gate signal.
  • the plurality of sensor signal wirings and the plurality of drive signal wirings are all formed in the flexible portion 13 in a straight line along the L direction parallel to each other.
  • both will be collectively referred to as "wire between rigid parts" (corresponding to wiring between component mounting parts according to claim) as necessary.
  • the wiring between the rigid portions includes a large number of wirings for exchanging signals between the first rigid portion 11 and the second rigid portion 12, and the power supply positive electrode wiring (not shown) is also included. included.
  • the electronic component group (capacitor 33, coil 32 and capacitors 34A, 34B, 34C) of the first rigid unit 11 and the CPU 21 of the second rigid unit 12 constituting one control system are used for signal wiring in the flexible unit 13. Since they are arranged along the wiring direction (that is, the L direction), interference between electronic components on the layout and complication of wiring patterns between components (for example, generation of a large number of bypass circuits) can be suppressed, and a limited area
  • Each control system can be efficiently arranged in the circuit board 3 which has the above and is divided by the flexible portion 13.
  • the two control systems are arranged symmetrically with the substrate center line M in between, the two control systems are arranged along the wiring direction of the signal wiring. Can be arranged efficiently.
  • each control system is elongated along the wiring direction (that is, the L direction) of the signal wiring, the wiring path in the control system tends to be straightened along the L direction as a whole, and the wiring path The increase in wiring distance due to complexity is reduced. Along with this, it becomes advantageous in terms of noise resistance.
  • rotation sensors 37 and 38 are arranged so as to be sandwiched between rows of electronic components (capacitor 33, coil 32 and capacitors 34A, 34B, 34C) of two control systems in the first rigid unit 11 and rotate. Since the sensor signal wiring extends from the sensors 37 and 38 to the flexible portion 13 side along the substrate center line M, the intersection of the respective signal wirings is reduced.
  • the sensor signal wiring and the drive signal wiring are arranged side by side on the metal foil layer serving as the surface layer or the inner layer and extend in parallel with each other, a large number of wirings are provided on the flexible portion 13 having a limited width. Can be wired in a simplified form. That is, high-density wiring is possible. Then, it becomes possible to provide a relatively wide ground wiring on the metal foil layer which is the surface layer or the inner layer.
  • the presence of the wide ground wiring in the flexible portion 13 improves the bending strength in the flexible portion 13.
  • the ground wiring functions as a kind of reinforcing member, and cracks that are likely to occur at the side edge 13a of the flexible portion 13 Protect the signal wiring from.
  • the ground wiring is conducted to the ground-side terminal of the power connector 4a via the first rigid portion 11 or the second rigid portion 12. Alternatively, it may be conducted to the vehicle body side (see FIG. 1) via the screw member inserted into the mounting hole 15 and the housing 7.
  • FIG. 9 and 10 show the first embodiment.
  • FIG. 9 is a plan view of the flexible portion 13 portion as viewed from the second surface 3B side, which is the outer surface when bent
  • FIG. 10 is an explanatory view schematically showing the wiring of the surface layer and the wiring of the inner layer individually. Is.
  • a wide strip-shaped ground wiring 51 is formed on the metal leaf layer that is the surface layer on the second surface 3B side, and the sensor signal wiring and the drive signal are formed on the metal leaf layer that is the inner layer.
  • a plurality of rigid inter-section wirings 55 including wirings are formed in parallel.
  • the ground wiring 51 has a width that occupies almost the entire width (W direction dimension) of the flexible portion 13, and the lateral outer edge 51a along the side edge 13a of the flexible portion 13 is the side edge 13a of the flexible portion 13. It is located nearby.
  • a plurality of rigid inter-unit wirings 55 including the sensor signal wiring and the drive signal wiring are arranged inside the pair of outer edges 51a of the ground wiring 51 in the W direction. That is, when the flexible portion 13 is projected in the thickness direction, the outer edge 51a of the ground wiring 51 is located closer to the side edge 13a of the flexible portion 13 than the rigid portion wiring 55.
  • the ground wiring 51 functions as a kind of reinforcing member, so that the occurrence of cracks that are likely to occur at the side edge 13a of the flexible portion 13 is suppressed. Even if a crack occurs, the growth of the crack is suppressed by the ground wiring 51, so that it becomes difficult to reach the rigid portion wiring 55. Therefore, poor insulation and disconnection of the rigid inter-rigid wiring 55 due to the intrusion of moisture into the rigid inter-rigid wiring 55 are suppressed.
  • the wide ground wiring 51 is arranged on the surface layer having high stress, whereby the occurrence of cracks in the portion near the surface layer is effectively suppressed.
  • FIG. 11 and 12 show a second embodiment.
  • FIG. 11 is a plan view of the flexible portion 13 portion as viewed from the second surface 3B side, which becomes the outer surface when bent
  • FIG. 12 is an explanatory view schematically showing the wiring of the surface layer and the wiring of the inner layer individually. Is.
  • a pair of ground wirings 51 and a plurality of rigid section wirings 55 are formed on the surface layer on the second surface 3B side, and a plurality of rigid section wirings 55 are formed on the inner layer.
  • a pair of ground wirings 51 are located outside the width direction (W direction) of the flexible portion 13, and a plurality of rigid portion wirings 55 are arranged inside the two ground wirings 51.
  • the ground wiring 51 is formed to be wider than the rigid inter-section wiring 55. Further, the outer edge 51a of the ground wiring 51 along the side edge 13a of the flexible portion 13 is located near the side edge 13a of the flexible portion 13.
  • a plurality of rigid inter-section wirings 55 are arranged inside the pair of ground wirings 51 in the W direction with respect to the outer edge 51a. That is, when the flexible portion 13 is projected in the thickness direction, the outer edge 51a of the ground wiring 51 is located closer to the side edge 13a of the flexible portion 13 than the rigid portion wiring 55.
  • the pair of ground wirings 51 protects the wiring 55 between the plurality of rigid portions of the surface layer and the inner layer from cracks.
  • this second embodiment as compared with the first embodiment, it is possible to arrange a larger number of rigid inter-section wirings 55.
  • the width of the ground wiring 51 does not necessarily have to be wider than that of the rigid inter-rigid wiring 55, and if it has at least the same width as the rigid inter-rigid wiring 55, it has an effect of suppressing the generation and growth of cracks. sell.
  • FIG. 13 and 14 show a third embodiment.
  • FIG. 13 is a plan view of the flexible portion 13 portion as viewed from the second surface 3B side, which becomes the outer surface when bent
  • FIG. 14 is an explanatory view schematically showing the wiring of the surface layer and the wiring of the inner layer individually. Is.
  • a pair of ground wirings 51A and a plurality of rigid portion wirings 55 are formed on the surface layer on the second surface 3B side, and a wide band-shaped ground wiring 51B is formed in the inner layer. Has been done.
  • a pair of ground wirings 51A are located outside the width direction (W direction) of the flexible portion 13, and the rigid portion wirings 55 are arranged inside the two ground wirings 51A.
  • the ground wiring 51A is formed to be wider than the rigid portion wiring 55. Further, the outer edge 51a of the ground wiring 51A along the side edge 13a of the flexible portion 13 is located near the side edge 13a of the flexible portion 13.
  • the ground wiring 51B in the inner layer has a width that occupies almost the entire width (W direction dimension) of the flexible portion 13, and the outer edge 51a on the side thereof is substantially equal to the outer edge 51a of the ground wiring 51A in the surface layer. In position.
  • the generation and growth of cracks are suppressed by both the ground wiring 51A on the surface layer and the ground wiring 51B on the inner layer, and the rigid portion wiring 55 located inside in the W direction is protected.
  • the presence of the ground wirings 51A and 51B on both the surface layer and the inner layer more reliably suppresses the generation and growth of cracks as compared with the first embodiment.
  • FIG. 15 and 16 show a fourth embodiment.
  • FIG. 15 is a plan view of the flexible portion 13 portion as viewed from the second surface 3B side, which is the outer surface when bent
  • FIG. 16 is an explanatory view schematically showing the wiring of the surface layer and the wiring of the inner layer individually. Is.
  • a plurality of rigid inter-section wirings 55 are formed on the surface layer on the second surface 3B side, and a wide band-shaped ground wiring 51 is formed on the inner layer.
  • the ground wiring 51 has a width that occupies almost the entire width (W direction dimension) of the flexible portion 13, and the lateral outer edge 51a along the side edge 13a of the flexible portion 13 is the side edge 13a of the flexible portion 13. It is located nearby.
  • the plurality of rigid portion wirings 55 on the surface layer are arranged inside the pair of outer edges 51a of the ground wiring 51 in the W direction.
  • two sensors for supplying the detection signal of the first rotation sensor 37 from the first rigid portion 11 to the second rigid portion 12 in the plurality of rigid portion wirings 55.
  • the signal wiring 55A is arranged near one side edge 13a of the flexible portion 13, and two sensor signal wirings 55B for supplying the detection signal of the second rotation sensor 38 from the first rigid portion 11 to the second rigid portion 12. Is arranged closer to the other side edge 13a of the flexible portion 13. That is, the sensor signal wirings 55A and 55B are located on the outermost side in the width direction of the flexible portion 13 among the plurality of rigid portion wirings 55.
  • the drive signal wiring is located inside the sensor signal wirings 55A and 55B.
  • the detection signal of the first rotation sensor 37 is branched into two systems in the first rigid unit 11, and each is supplied to the second rigid unit 12 via the sensor signal wiring 55A.
  • the detection signal of the second rotation sensor 38 is branched into two systems in the first rigid unit 11, and each is supplied to the second rigid unit 12 via the sensor signal wiring 55B.
  • FIG. 17 and 18 show a fifth embodiment.
  • FIG. 17 is a plan view of the flexible portion 13 portion as viewed from the second surface 3B side, which becomes the outer surface when bent
  • FIG. 18 is an explanatory view schematically showing the wiring of the surface layer and the wiring of the inner layer individually. Is.
  • a plurality of rigid inter-section wirings 55 are formed on the surface layer on the second surface 3B side, and a wide band-shaped ground wiring 51 is formed on the inner layer.
  • the ground wiring 51 has a width that occupies almost the entire width (W direction dimension) of the flexible portion 13, and the lateral outer edge 51a along the side edge 13a of the flexible portion 13 is the side edge 13a of the flexible portion 13. It is located nearby.
  • the plurality of rigid portion wirings 55 on the surface layer are arranged inside the pair of outer edges 51a of the ground wiring 51 in the W direction.
  • two sensors for supplying the detection signal of the second rotation sensor 38 from the first rigid unit 11 to the second rigid unit 12 in the plurality of rigid unit wirings 55 are located on the outermost side in the width direction (W direction) of the flexible portion 13.
  • two sensor signal wirings 55A for supplying the detection signal of the first rotation sensor 37 from the first rigid unit 11 to the second rigid unit 12 are arranged adjacent to each other inside the sensor signal wiring 55B.
  • the sensor signal wiring 55A for the first rotation sensor 37 and the sensor signal wiring 55B for the second rotation sensor 38 used in one control system are located on one side edge 13a side of the flexible portion 13, and control the other.
  • the sensor signal wiring 55A for the first rotation sensor 37 and the sensor signal wiring 55B for the second rotation sensor 38 used in the system are located on the other side edge 13a side of the flexible portion 13.
  • the sensor signal wiring 55B for the second rotation sensor 38 is arranged on the outside.
  • the sensor signal wiring 55A for the first rotation sensor 37 may be arranged on the outside.
  • FIG. 19 and 20 show a sixth embodiment.
  • FIG. 19 is a plan view of the flexible portion 13 portion as viewed from the second surface 3B side, which becomes the outer surface when bent
  • FIG. 20 is an explanatory view schematically showing the wiring of the surface layer and the wiring of the inner layer individually. Is.
  • a plurality of rigid inter-section wirings 55 are formed on the surface layer on the second surface 3B side, and a wide band-shaped ground wiring 51 is formed on the inner layer.
  • the ground wiring 51 has a width that occupies almost the entire width (W direction dimension) of the flexible portion 13, and the lateral outer edge 51a along the side edge 13a of the flexible portion 13 is the side edge 13a of the flexible portion 13. It is located nearby.
  • the plurality of rigid portion wirings 55 on the surface layer are arranged inside the pair of outer edges 51a of the ground wiring 51 in the W direction.
  • the pair of wirings located on the outermost side of the plurality of rigid unit wirings 55 are configured as the disconnection detection wirings 55C.
  • an appropriate wiring such as the sensor signal wiring for the rotation sensors 37 and 38 can be used as the disconnection detection wiring 55C, and the disconnection is detected by including the disconnection detection circuit in the circuit to which the wiring is connected. be able to. Therefore, if one of the disconnection detection wirings 55C is disconnected due to a crack, an abnormality can be detected at that time, and it is possible to take measures such as parts replacement before inviting a serious situation.
  • the motor 1A can be driven and controlled by the other control system.
  • the disconnection detection wiring 55C when the pair of disconnection detection wirings 55C is used as the sensor signal wiring or the drive signal wiring, an equivalent pair of signal wirings that exchange the same signal in each of the pair of control systems is selected as the disconnection detection wiring 55C. Is desirable. Thereby, the disconnection in one control system can be detected while ensuring the driving and control of the motor 1A by the other control system.
  • FIG. 21 and 22 show a seventh embodiment.
  • FIG. 21 is a plan view of the flexible portion 13 portion as viewed from the second surface 3B side, which becomes the outer surface when bent
  • FIG. 22 is an explanatory view schematically showing the wiring of the surface layer and the wiring of the inner layer individually. Is.
  • a plurality of rigid inter-section wirings 55 are formed on the surface layer on the second surface 3B side, and a wide band-shaped ground wiring 51 is formed on the inner layer.
  • the ground wiring 51 has a width that occupies near the entire width (W direction dimension) of the flexible portion 13, and the plurality of rigid portion wirings 55 on the surface layer are in the W direction rather than the pair of outer edges 51a of the ground wiring 51. It is placed inside.
  • the disconnection detection wiring 56 is provided further outside the outer edge 51a of the ground wiring 51 in the inner layer.
  • the disconnection detection wiring 56 is connected to the disconnection detection circuit, and can detect the disconnection due to a crack.
  • the disconnection detection wiring 56 may be a wiring provided simply for disconnection detection without exchanging other signals. Alternatively, similarly to the disconnection detection wiring 55C of the sixth embodiment, it may also serve as an appropriate sensor signal wiring or the like. Since the disconnection detection wiring 56 of the seventh embodiment is not protected from cracks by the ground wiring 51, it may be a signal wiring that does not seriously affect the drive and control of the motor 1A even if the disconnection occurs. desirable. At least, as described above, it is desirable to select an equivalent pair of signal wirings that exchange the same signal in each of the pair of control systems as the disconnection detection wiring 56. Thereby, the disconnection in one control system can be detected while ensuring the driving and control of the motor 1A by the other control system.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the flexible portion 13 has a strip-shaped structure having a constant width, but the present invention can be applied even when the flexible portion does not have such a simple shape.
  • the flexible portion 13 is configured by removing four layers of the circuit board having a six-layer structure, but the present invention is not limited to such a configuration. Further, it is not essential that the width of the flexible portion 13 in the W direction is smaller than the width of the rigid portions 11 and 12 in the W direction.
  • the outer edge 51a of the ground wiring 51 is configured to be located outside the rigid inter-rigid wiring 55 with respect to the left and right side edges 13a of the flexible portion 13, but the flexible portion 13 is configured, for example.
  • the outer edge 51a of the ground wiring 51 may be located outside the rigid inter-rigid wiring 55 only on the side of either side edge 13a.
  • the present invention is not limited to the circuit board of the electric actuator for the power steering device described above, and can be applied to electronic circuit devices for various purposes.
  • some electronic component other than the above-mentioned electronic component may be mounted on the intermediate rigid section 14 existing between the first rigid section 11 and the second rigid section 12, and the present invention excludes such a configuration. It is not something to do.
  • the present invention An electronic device equipped with a circuit board on which electronic components are mounted.
  • the above circuit board At least two component mounting parts on which the above electronic components are mounted, and A flexible portion located between two adjacent component mounting portions, which is formed thinner than the thickness of the substrate of the component mounting portion and has higher flexibility than the component mounting portion.
  • the wiring between a plurality of component mounting portions which is the power supply positive electrode wiring or the signal wiring extending between the two component mounting portions, One that is provided in the same layer as or different from the wiring between the component mounting portions in the flexible portion, and the outer edge along the side edge of the flexible portion is located closer to the side edge of the flexible portion than the wiring between the component mounting portions. Or with multiple ground wires Is equipped with.
  • An electronic component of an arithmetic processing unit that calculates the amount of operation on the electric actuator is mounted on the first component mounting unit, and a sensor that detects the operating state of the electric actuator is mounted on the second component mounting unit.
  • the flexible portion is provided with a drive signal wiring through which a control signal based on the operation amount flows and a sensor signal wiring through which a detection signal of the sensor flows as wiring between the component mounting portions.
  • the sensor signal wiring is located closer to the side edge of the flexible portion than the drive signal wiring.
  • the senor includes a first sensor and a second sensor having the same detection target.
  • the pair of sensor signal wirings of the first sensor are located closer to the side edges of the flexible portion than the pair of sensor signal wirings of the second sensor.
  • the wiring between component mounting parts includes a disconnection detection wiring as one of the wirings between component mounting parts. This disconnection detection wiring is located closest to the side edge of the flexible portion among the wiring between the plurality of component mounting portions.
  • a disconnection detection wiring is provided.
  • the disconnection detection wiring is located closer to the side edge of the flexible portion than the outer edge of the ground wiring.
  • the disconnection detection wiring includes a pair of disconnection detection wirings arranged corresponding to the side edges on both sides of the flexible portion.
  • the circuit board includes two control systems, each of which includes an electronic component group mounted on the first component mounting section, a CPU mounted on the second component mounting section, and one of the disconnection detection wirings. And The disconnection of the disconnection detection wiring is detected for each control system.
  • the disconnection detection wiring includes a pair of disconnection detection wirings arranged corresponding to the side edges on both sides of the flexible portion.
  • the pair of disconnection detection wirings are sensor signal wirings through which the same detection signal from a sensor mounted on one of the component mounting portions flows.
  • the thickness of the insulating base material is increased so that the thickness of the substrate continuously changes from the thickness of the component mounting portion to the thickness of the flexible portion. It will gradually decrease.
  • the flexible portion has a relatively thickened intermediate rigid portion in the intermediate portion between the two component mounting portions.
  • the insulating group is such that the thickness of the substrate continuously changes from the thickness of the intermediate rigid portion to the thickness of the flexible portion. The thickness of the material gradually decreases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Printed Boards (AREA)
  • Power Steering Mechanism (AREA)

Abstract

回路基板(3)は、6層の金属箔層を有する第1,第2リジッド部(11,12)と、両者を接続した2層の金属箔層を有する薄肉のフレキシブル部(13)と、を備える。表層の金属箔層には幅の広い帯状をなすグラウンド配線(51)が形成され、内層の金属箔層には複数のリジッド部間配線(55)が平行な直線状に形成される。グラウンド配線(51)の外縁(51a)は、リジッド部間配線(55)よりもフレキシブル部(13)の側縁(13a)寄りに位置する。グラウンド配線(51)がリジッド部間配線(55)をクラックから保護する。

Description

電子装置
 この発明は、撓めた状態でハウジングに組み付けることができる折り曲げ可能な回路基板を用いた電子装置に関する。
 特許文献1には、パワーステアリング装置のモータユニット内に組み込む回路基板として、複数のリジッド部を該リジッド部よりも薄くしたフレキシブル部で連結することにより、略U字形に折り曲げた形で使用することができるようにした多層回路基板が開示されている。
 上記のようにフレキシブル部を備えた回路基板にあっては、フレキシブル部とりわけリジッド部との境界付近において基材に微小なクラックが発生しやすく、このクラックを介して経時的に水分が進入して内部の配線に絶縁不良が生じたり、クラックの成長により配線が断線してしまう、といった懸念があった。
特開2014-60903号公報
 この発明は、その一つの態様において、2つの部品実装部と該部品実装部よりも薄く可撓性を有するフレキシブル部とを有する回路基板を備えており、上記フレキシブル部は、2つの部品実装部の間に延びた電源正極配線ないし信号配線である複数の部品実装部間配線と、フレキシブル部の側縁に沿う外縁が部品実装部間配線よりもフレキシブル部の側縁寄りに位置する1つもしくは複数のグラウンド配線と、を備えている。
 この発明によれば、フレキシブル部におけるクラックの発生ないし発生したクラックの成長が相対的に外側に位置するグラウンド配線によって抑制され、グラウンド配線の外縁よりも内側に位置する電源正極配線や信号配線の絶縁不良や断線が抑制される。
本発明に係る回路基板を組み込んだパワーステアリング装置用電動アクチュエータ装置の分解斜視図。 電動アクチュエータ装置の断面図。 折り曲げた状態の回路基板の斜視図。 折り曲げた状態の回路基板の側面図。 展開した状態の回路基板の断面図。 展開した状態の回路基板の第1面を示す平面図。 展開した状態の回路基板の第2面を示す平面図。 変形例のフレキシブル部部分を拡大して示す断面図。 フレキシブル部における配線の第1実施例を示す要部の平面図。 第1実施例の配線の構成を模式的に示した説明図。 フレキシブル部における配線の第2実施例を示す要部の平面図。 第2実施例の配線の構成を模式的に示した説明図。 フレキシブル部における配線の第3実施例を示す要部の平面図。 第3実施例の配線の構成を模式的に示した説明図。 フレキシブル部における配線の第4実施例を示す要部の平面図。 第4実施例の配線の構成を模式的に示した説明図。 フレキシブル部における配線の第5実施例を示す要部の平面図。 第5実施例の配線の構成を模式的に示した説明図。 フレキシブル部における配線の第6実施例を示す要部の平面図。 第6実施例の配線の構成を模式的に示した説明図。 フレキシブル部における配線の第7実施例を示す要部の平面図。 第7実施例の配線の構成を模式的に示した説明図。
 以下、この発明を例えば自動車の電動パワーステアリング装置の制御装置に適用した一実施例について、図面に基づいて詳細に説明する。
 図1は、電動パワーステアリング装置において図示せぬステアリング機構に操舵補助力を与える電動アクチュエータ装置の分解斜視図である。また、図2は、電動アクチュエータ装置の断面図である。この電動アクチュエータ装置は、円筒形状のモータ部1と、インバータ・パワーモジュール2と、折り曲げ可能な多層配線基板からなる回路基板3と、複数のコネクタを一体に集合させたコネクタ部材4と、これらのインバータ・パワーモジュール2、回路基板3、コネクタ部材4を覆うように、上記モータ部1の一端部に取り付けられるモータカバー5と、を備えている。
 モータ部1は、ステータ1Bおよびロータ1Cからなる電動アクチュエータに相当するモータ1A(図2)が円筒状のハウジング7の内部に収容されたものであり、ハウジング7の先端面から突出した回転軸6の先端にギヤないしスプライン等の連結部6aを有し、この連結部6aを介して図外のステアリング機構に連結される。モータ1Aは、三相の永久磁石型ブラシレスモータであり、ステータ1Bが三相のコイルを備え、ロータ1Cの外周面に永久磁石が配置されている。ここで、モータ1Aは、冗長性を与えるために、2系統のコイルおよび対応する永久磁石を備えている。
 連結部6aとは反対側となるハウジング7の一端部は、外周縁の一部が半径方向へ延びた馬蹄型の輪郭を有する底壁部7aとして構成されており、この底壁部7aを覆うように、該底壁部7aに対応した馬蹄型の輪郭を有するモータカバー5が取り付けられる。そして、底壁部7aとモータカバー5との間に構成される空間内に、インバータ・パワーモジュール2と回路基板3とコネクタ部材4とが回転軸6の軸方向に重ねて収容されている。
 インバータ・パワーモジュール2は、モータ1Aを駆動する2つのインバータモジュール2Aと、コイルの中性点リレーとなるリレーモジュール2Bと、を含み、これら三者が回転軸6を囲む略U字形をなすように配置されている。そして、これらのインバータモジュール2Aおよびリレーモジュール2Bが、押さえ部材2Cを介してモータ部1の端面に固定されている。
 コネクタ部材4は、回転軸6の軸方向に沿った同じ方向を指向する3つのコネクタを備えている。詳しくは、中央に位置する電源用コネクタ4aと、ステアリング機構側に配置されるセンサ類(例えば舵角センサやトルクセンサなど)からの信号が入力されるセンサ入力用コネクタ4bと、車内の他の制御機器との間で通信(例えばCAN通信)を行うための通信用コネクタ4cと、を備えている。これらのコネクタ4a,4b,4cは、モータカバー5の開口部8を通して外部へ突出している。
 この実施例の電動アクチュエータ装置においては、インバータ・パワーモジュール2と回路基板3とを含む制御装置(電子装置)がモータ部1と一体化されており、これにより、装置全体の小型化が図られている。
 図3は、略U字形に折り曲げた状態における回路基板3の概略を示す斜視図であり、図4は側面図である。回路基板3は、前述したように、これらの図3,図4に示すように、略U字形に折り曲げた形でもって電動アクチュエータ装置に組み込まれている。
 すなわち、回路基板3は、インバータ・パワーモジュール2を介したモータ1Aの駆動のために相対的に大きな電流が流れる電子部品群を実装したパワー系基板となる第1リジッド部11と、相対的に小さな電流が流れる制御系電子部品を実装した制御系基板となる第2リジッド部12と、両者間のフレキシブル部13と、を備えている。第1リジッド部11は「第1部品実装部」に相当し、第2リジッド部12は「第2部品実装部」に相当する。そして、回路基板3は、これらの第1リジッド部11と第2リジッド部12とが回転軸6の軸方向に互いに重なり合った形となるようにフレキシブル部13が撓み変形した状態でもって、ケースとなるハウジング7とモータカバー5との間に収容されている。具体的な実施例においては、折り曲げ状態となった第1リジッド部11と第2リジッド部12とは、各々に実装された電子部品が互いに接触しない程度の距離だけ離れているとともに、各々平面状態を保ちつつ互いに平行となった状態でもって電動アクチュエータ装置に固定支持されている。
 図5は、回路基板3を展開した状態つまり折り曲げる前の状態でもって示した断面図である(基板部分のハッチングは省略してある)。1枚の多層配線基板からなる回路基板3は、第1面3Aと第2面3Bとを備えている。図6は、回路基板3を展開した状態における第1面3Aの構成を示す平面図、図7は、第2面3Bの構成を示す平面図、である。回路基板3は、これらの図5~図7に示すような展開した状態で、第1リジッド部11および第2リジッド部12とフレキシブル部13とが一つの平面に沿った1枚の回路基板として形成されたものであり、部品実装後に最終的に略U字形に折り曲げられる。
 第1リジッド部11および第2リジッド部12は、それぞれ四隅に取付孔15を備えた四角形に近似した形状をなしている。そして、互いに隣接した第1リジッド部11の1辺の中央部と第2リジッド部12の1辺の中央部とが、一定幅の帯状をなすフレキシブル部13でもって互いに連結されている。つまり、フレキシブル部13は、第1リジッド部11および第2リジッド部12の幅(曲げ方向に直交する方向の寸法)に比較して、その幅が狭くなっている。従って、回路基板3は、全体としてI字状ないし8の字状をなしている。このように第1,第2リジッド部11,12の幅が相対的に広くかつフレキシブル部13の幅が相対的に狭い構成とすることで、部品実装面積を大きく確保できる一方で、フレキシブル部13における撓み変形が容易となる。
 回路基板3は、多層のプリント配線基板、具体的には6層の金属箔層を備えたいわゆる6層構造のプリント配線基板から構成されている。この多層プリント配線基板は、片面もしくは両面に金属箔層を備えた例えばガラスエポキシからなる何層かの基材をプリプレグ(接着剤層)を介して積層し、かつ加熱加圧して一体化することにより構成されている。従って、第1面3Aおよび第2面3Bのそれぞれの表層の金属箔層と、4つの内層の金属箔層と、によって配線層となる6層の金属箔層が構成されている。金属箔層の間には、これら金属箔層の間を絶縁する絶縁層としての基材が介在する。そして、第1リジッド部11および第2リジッド部12においては、これらの6層の金属箔層のエッチングならびに積層方向に延びるビアの形成によって、所望の回路パターンが形成されている。
 フレキシブル部13は、図4に明らかなように、6層構造を有する第1リジッド部11および第2リジッド部12の基板の厚さ(積層方向の寸法)に比較して相対的に薄く形成することによって、第1リジッド部11および第2リジッド部12よりも高い可撓性を有するように構成されている。一実施例においては、第1リジッド部11,第2リジッド部12およびフレキシブル部13を包含する例えば矩形状に6層構造の回路基板3を形成した後に、二次的な機械加工によって、フレキシブル部13における折り曲げ時に内側となる4層分を削り取り、薄肉化してある。従って、第1,第2リジッド部11,12の基材とフレキシブル部13の基材とは同じ材質であり、かつフレキシブル部13として残存する2層の金属箔層は、第1,第2リジッド部11,12およびフレキシブル部13の三者に亘って連続している。
 なお、図示例では、バーコード等の印刷面を確保するためにフレキシブル部13の中央部に中間リジッド部14を6層構造のまま残してあり、この中間リジッド部14の両側に一対の凹溝16として薄肉部分が形成されている。この中間リジッド部14は、必須のものではなく、フレキシブル部13の全体を薄肉化してもよい。本実施例では、中間リジッド部14を含めて、第1リジッド部11と第2リジッド部12との間の全体をフレキシブル部13と呼ぶ。
 凹溝16は、図5および図6から明らかなように、回路基板3の第1面3Aにおいて溝状に窪んでいる。第2面3Bにおいては、フレキシブル部13は、第1,第2リジッド部11,12と連続した面を有している。
 フレキシブル部13に必要な可撓性を与える一対の凹溝16は、第1リジッド部11および第2リジッド部12の一つの辺に沿って形成されており、これにより、第1,第2リジッド部11,12とフレキシブル部13との境界18が画定される。換言すれば、薄肉化した凹溝16の外側の縁によって一対の直線状の境界18が画定され、図4のように折り曲げると、この一対の境界18の間で薄肉のフレキシブル部13が撓み変形する。回路基板3の幅(曲げ方向に直交する方向の寸法)は、第1,第2リジッド部11,12からフレキシブル部13へと移行する境界18において減少する。そして、フレキシブル部13は、容易に撓み変形するように一定幅の帯状に形成されている。なお、境界18での幅寸法の減少に伴う応力集中を抑制するために、第1,第2リジッド部11,12とフレキシブル部13とが接続される境界18の両端のコーナ部では、フレキシブル部13が適宜な半径の円弧形に丸められている(図5,図6参照)。
 フレキシブル部13(凹溝16の部分)においては、6層の金属箔層の中で、折り曲げ時に外側面となる第2面3B側の表層の金属箔層とこれに隣接する内層(つまり第2面3B側から見て2層目)の金属箔層とが残存している。フレキシブル部13においては、これら2つの金属箔層のみが配線パターンの形成に利用される。第1,第2リジッド部11,12においては、さらに4つの金属箔層が配線パターンの形成に利用されている。なお、中間リジッド部14は、6層の金属箔層を有するが、第2面3B側から見て3層目~6層目に相当する金属箔層は配線パターンの形成には使用されていない。
 一対の凹溝16と中間リジッド部14との間にも、同様に直線状の境界19が存在する。一対の境界18と一対の境界19とを含む4つの境界18,19は、互いに平行である。
 ここで、図8は、凹溝16の一つの変形例を示しており、この例では、境界18,19において、基板の厚さが滑らかにつまり連続的に変化する。例えば、第1,第2リジッド部11,12と凹溝16(フレキシブル部13)との間の境界18においては、基板の厚さが第1,第2リジッド部11,12の厚さからフレキシブル部13の厚さへと連続的に変化するように、絶縁基材の厚さが徐々に減少していく。同様に、中間リジッド部14と凹溝16との間の境界19においては、基板の厚さが中間リジッド部14の厚さからフレキシブル部13の厚さへと連続的に変化するように、絶縁基材の厚さが徐々に減少していく。
 このように厚さが滑らかに変化することで、境界18,19における応力集中が抑制され、クラックの発生が抑制される。
 次に、回路基板3における種々の部品のレイアウトについて主要な構成を説明する。なお、以下では、理解を容易にするために、展開状態での回路基板3の長手方向を図6,図7に示すようにL方向とし、これに直交する幅方向をW方向とする。前述したフレキシブル部13の一対の境界18は、W方向に延びた直線となる。仮にL方向に沿った直線を展開状態の回路基板3上に描いたとすると、回路基板3を略U字形に折り曲げた状態では、第1リジッド部11上の直線と第2リジッド部12上の直線とによって一つの平面(境界18に直交する平面)が規定される。さらに、説明の便宜のために、図6,図7に示すように、組立時にモータ1Aの回転中心軸と交差しかつL方向と平行に延びる線を基板中心線Mとする。
 この実施例の回路基板3は、モータ1Aの2系統のコイルに対応して互いに独立した2つの制御系統を具備している。いずれか一方の系統が故障ないし異常となったときには他方の系統でもってモータ1Aの駆動が可能である。基本的に個々の1つの制御系統は、回路基板3にその長手方向であるL方向に沿って部品を配列して構成されており、2つの制御系統は、基本的に回路基板3の幅方向であるW方向に並んで構成されている。細部の差異を除くと、2つの制御系統は、基板中心線Mを中心として対称に構成されている。
 図6に示すように、第1リジッド部11の第1面3Aにおいては、該第1リジッド部11のL方向の中央部付近に、ノイズ除去のための2つのフィルタ部31が配置されており、これらフィルタ部31よりもフレキシブル部13とは反対側となる位置に、2つの電源コンデンサ部34が配置されている。すなわち、1つの制御系統に1つのフィルタ部31と1つの電源コンデンサ部34とが含まれている。フィルタ部31は、矩形状のケースを備えたコイル32と、このコイル32よりもフレキシブル部13寄りに位置する同じく矩形状のケースを備えたコンデンサ33と、から構成される。また、電源コンデンサ部34は複数例えば3つの矩形状のケースを備えたコンデンサ34A,34B,34Cを含んで構成される。1つの制御系統を構成する電子部品群つまりコンデンサ33、コイル32およびコンデンサ34A,34B,34Cは、完全な一直線上ではないもののL方向に順に並んで概ね一列に配列されている。そして、1つの制御系統を構成するコンデンサ33、コイル32、コンデンサ34A,34B,34Cと、他の1つの制御系統を構成するコンデンサ33、コイル32、コンデンサ34A,34B,34Cとは、基板中心線Mを中心としてそれぞれ対称に配置されている。
 また、フィルタ部31のコンデンサ33とフレキシブル部13との間には、各制御系統に2つずつ計4つの電源遮断用スイッチング素子35が実装されている。各制御系統の2つの電源遮断用スイッチング素子35はコンデンサ33に隣接して配置されている。また、計4つの電源遮断用スイッチング素子35は、W方向に沿ってほぼ一直線上に並んでいる。
 第1リジッド部11の第1面3Aにおいて、2つの制御系統の電子部品群の間、具体的には2つのフィルタ部31の間には、モータ1Aの作動状態を検出する検出素子として第2回転センサ38が実装されている。この第2回転センサ38は、モータ1Aの回転軸6の端部に設けられた磁極と組み合わされて該回転軸6の回転を検出するアナログ式の回転センサであり、組立時に回転軸6の中心軸線上となる位置に配置されている。この第2回転センサ38は、2つの制御系統に共用されるものであり、第1リジッド部11上で2つの信号回路に分岐されて、各々の制御系統で利用される。
 第1リジッド部11のW方向に向かう一対の側縁部11aには、それぞれ第1電源端子40が取り付けられている。各々の第1電源端子40は、正極端子40Aと負極端子40Bとを含んでおり、正極端子40Aと負極端子40Bとからなる1組の第1電源端子40が1つの制御系統にそれぞれ対応している。これらの電源端子40は、回路基板3のW方向について、各々の制御系統を構成する電子部品群(つまりコンデンサ33、コイル32、コンデンサ34A,34B,34C)よりも外側に位置する。
 正極端子40Aおよび負極端子40Bは、それぞれ略L字形に折り曲げられた金属片からなり、第1リジッド部11の側縁に沿って第1面3Aから該第1面3Aに直交するように立ち上がっている。正極端子40Aと負極端子40Bは、L方向に沿って並んで配置されており、正極端子40Aの方が負極端子40Bよりもフレキシブル部13寄りに位置している。詳しくは、正極端子40Aはフィルタ部31のコンデンサ33の側方に位置し、負極端子40Bはコイル32の側方に位置する。電動アクチュエータ装置として最終的に組み立てられた状態では、第1電源端子40は、上述したコネクタ部材4の電源用コネクタ4aの端子片に接続される。なお、2組の第1電源端子40は、基板中心線Mを中心として互いに対称に構成されている。
 第1リジッド部11は、さらに、インバータ・パワーモジュール2の各アームのスイッチング素子に接続されるゲート信号ポート41と、インバータ・パワーモジュール2に電源電圧を供給するためのインバータ電源ポート42と、を備えている。これらは、いずれもスルーホール状の端子として形成されている。ゲート信号ポート41は、第1電源端子40の近傍に配置されており、インバータ電源ポート42は電源コンデンサ部34の側方(W方向で外側)に配置されている。電動アクチュエータ装置として最終的に組み立てられた状態では、これらのポート41,42に、インバータ・パワーモジュール2のピン状の端子片が挿入され、かつ電気的に接続される。
 第2リジッド部12の第1面3Aにおいては、該第2リジッド部12のL方向の中央部付近に、2つの制御系統にそれぞれ対応する2つのCPU21が実装されている。CPU21は、略正方形の偏平なパッケージを有する集積回路からなる。2つのCPU21は、基板中心線Mを中心として対称に配置されている。2つのCPU21よりもフレキシブル部13寄りの位置には、プリドライバ回路素子22がそれぞれ実装されている。プリドライバ回路素子は、CPU21よりも小さな略正方形の偏平なパッケージを有する集積回路からなる。2つのプリドライバ回路素子22は、2つの制御系統にそれぞれ対応し、基板中心線Mを中心として対称に配置されている。個々のプリドライバ回路素子22は、対応する制御系統のCPU21とL方向に沿って並んで配置されている。
 第2リジッド部12のW方向に向かう一対の側縁部12aには、折り曲げた状態における前述した第1リジッド部11の第1電源端子40との干渉を避けるための切欠部24がそれぞれ形成されている。これらの切欠部24は、概ねCPU21とプリドライバ回路素子22の側方に位置している。また、各々の切欠部24に沿った位置に、正負2つのスルーホールからなる第2電源端子25が設けられている。これら2組の第2電源端子25は、それぞれの制御系統に対応している。電動アクチュエータ装置として最終的に組み立てられた状態では、スルーホール状の第2電源端子25に、上述したコネクタ部材4の電源用コネクタ4aのピン状の端子片が挿入され、電気的に接続される。
 第2リジッド部12のフレキシブル部13寄りの端部領域には、複数のスルーホール状の端子からなる外部センサ入力部27が設けられている。複数のスルーホール状の端子は、W方向に沿った一直線上に並んで配置されている。電動アクチュエータ装置として最終的に組み立てられた状態では、コネクタ部材4のセンサ入力用コネクタ4bのピン状の端子片が外部センサ入力部27に挿入され、舵角センサやトルクセンサ等の外部センサの信号が外部センサ入力部27を介して各制御系統に入力される。
 また、第2リジッド部12のフレキシブル部13とは反対側となる端部領域には、複数のスルーホール状の端子からなる通信用ポート28が設けられている。複数のスルーホール状の端子は、W方向に沿った一直線上に並んで配置されている。電動アクチュエータ装置として最終的に組み立てられた状態では、コネクタ部材4の通信用コネクタ4cのピン状の端子片が通信用ポート28に挿入され、外部の他の制御機器との間で通信が行われる。
 図7に示すように、第1リジッド部11の第2面3Bにおいては、中央部に、モータ1Aの作動状態を検出する検出素子として第1回転センサ37が実装されている。この第1回転センサ37は、モータ1Aの回転軸6の端部に設けられた磁極と組み合わされて該回転軸6の回転を検出するデジタル式の回転センサであり、組立時に回転軸6の中心軸線上となる位置に配置されている。この第1回転センサ37は、第2回転センサ38と同様に2つの制御系統に共用されるものであり、第1リジッド部11上で2つの信号回路に分岐されて、各々の制御系統で利用される。
 第2面3Bに配置された第1回転センサ37と第1面3Aに配置された第2回転センサ38は、回路基板3を投影して見たときに、互いに重なる位置にある。電動アクチュエータ装置として最終的に組み立てられた状態では、略U字形をなす回路基板3の外側面に第1回転センサ37があり、回転軸6の端面に対向する。第2回転センサ38は、略U字形をなす回路基板3の内側となる。一実施例においては、第1回転センサ37が主たる回転センサであり、第2回転センサ38は例えば第1回転センサ37の異常時に利用される予備的な回転センサである。
 なお、第1面3Aと第2面3Bにそれぞれ配置される回転センサの一方を一方の制御系統用とし、他方を他方の制御系統用として、互いに独立して用いるようにしてもよい。
 第2リジッド部12の第2面3Bにおいては、第2リジッド部12用の電源回路と通信用ポート28用の通信回路とを含む集積回路からなる2つの電源/通信IC29が実装されている。電源/通信IC29は、CPU21よりも小さな略正方形の偏平なパッケージを有する。2つの電源/通信IC29は、2つの制御系統にそれぞれ対応しており、基板中心線Mを中心として略対称となる位置に配置されている。L方向については、電源/通信IC29は、第2リジッド部12の中でフレキシブル部13とは反対側となる端部領域に配置されており、第2電源端子25と通信用ポート28との間に位置する。また第2リジッド部12を投影して見たときに、電源/通信IC29は、CPU21と通信用ポート28との間に位置し、CPU21は電源/通信IC29よりもフレキシブル部13寄りに位置する。従って、CPU21は、電源/通信IC29と外部センサ入力部27との間の中間部に位置する。
 電源/通信IC29は、通信用ポート28を介して外部の他の制御機器との間で通信を行うとともに、第2電源端子25に入力された端子電圧を第2リジッド部12用の作動電圧に変換する。なお、電源回路と通信回路とをそれぞれ個別の集積回路で構成してもよい。
 以上、主要な電子部品の配置について説明したが、第1リジッド部11および第2リジッド部12には、上記の電子部品のほかにも、図示を省略した比較的小型の多数の電子部品が表面実装されている。
 第1リジッド部11に配置された第1回転センサ37および第2回転センサ38の検出信号は、フレキシブル部13に直線状に設けられた配線(センサ信号配線)を介して、CPU21を具備した第2リジッド部12側へ送られる。
 一実施例の回路基板3においては、モータ1Aの2系統のコイルにそれぞれ対応した2系統の制御系統が互いに独立して構成されており、これら2つの制御系統が第1,第2回転センサ37,38を横切る基板中心線Mを中心として実質的に対称に配置されている。1つの制御系統について説明すると、モータ1Aの回転に応答した第1,第2回転センサ37,38の検出信号が、フレキシブル部13におけるセンサ信号配線を介して第1リジッド部11から第2リジッド部12へと送られる。第2リジッド部12のCPU21は、この検出信号を1つのパラメータとして演算処理を行い、モータ1Aに対する操作量を演算し、かつこの操作量に基づく指示信号を生成する。この指示信号は、プリドライバ回路素子22により増幅されてインバータ回路用の制御信号に変換される。この制御信号は、フレキシブル部13に直線状に設けられた配線(駆動信号配線)を介して第2リジッド部12から第1リジッド部11へ送られ、最終的に第1リジッド部11のゲート信号ポート41からインバータ・パワーモジュール2へゲート信号として出力される。インバータ・パワーモジュール2には、第1リジッド部11の第1電源端子40から、電源遮断用スイッチング素子35、フィルタ部31および電源コンデンサ部34さらにはインバータ電源ポート42を介して、電源電圧が与えられており、ゲート信号に基づくインバータ作用によりモータ1Aを駆動することとなる。
 複数のセンサ信号配線および複数の駆動信号配線は、いずれもフレキシブル部13において互いに平行なL方向に沿った直線状に形成されている。なお、以下では必要に応じて両者をまとめて「リジッド部間配線」(請求項の部品実装部間配線に相当する)と呼ぶ。リジッド部間配線には、上記のセンサ信号配線等のほかにも第1リジッド部11と第2リジッド部12との間で信号の授受を行う多数の配線が含まれ、図示しない電源正極配線も含まれる。
 ここで、1つの制御系統を構成する第1リジッド部11の電子部品群(コンデンサ33、コイル32およびコンデンサ34A,34B,34C)および第2リジッド部12のCPU21が、フレキシブル部13における信号配線の配線方向(つまりL方向)に沿って配列されているので、レイアウト上の電子部品同士の干渉や部品間の配線パターンの複雑化(例えば多数の迂回回路の発生)を抑制でき、限られた面積を有しかつフレキシブル部13で分断された形となる回路基板3の中で各制御系統を効率良く配置することができる。特に上記実施例では、2つの制御系統が基板中心線Mを挟んで対称に配置されるので、各制御系統を信号配線の配線方向に沿って配置したことと相俟って、2つの制御系統を効率良く配置することができる。また、個々の制御系統が信号配線の配線方向(つまりL方向)に沿って細長く構成されることで、制御系統内の配線経路が全体としてL方向に沿って直線化する傾向となり、配線経路の複雑化に伴う配線距離の増加が少なくなる。そして、これに伴い、耐ノイズ性の上で有利となる。
 また、回転センサ37,38は、第1リジッド部11において2つの制御系統の電子部品群(コンデンサ33、コイル32およびコンデンサ34A,34B,34C)の列に挟まれるように配置されており、回転センサ37,38からは基板中心線Mに沿うようにしてフレキシブル部13側へセンサ信号配線が延びていくので、各々の信号配線の交錯が少なくなる。
 フレキシブル部13においては、表層もしくは内層となる金属箔層にセンサ信号配線と駆動信号配線とが並んで配置され、かつ互いに平行に延びているので、限られた幅のフレキシブル部13に多数の配線を単純化した形で配線できる。つまり、高密度化した配線が可能である。そして、表層もしくは内層となる金属箔層に相対的に幅の広いグラウンド配線を設けることが可能となる。
 幅の広いグラウンド配線がフレキシブル部13に存在することで、フレキシブル部13における折り曲げ強度が向上する。特に、グラウンド配線の外縁の位置を信号配線の位置よりもフレキシブル部13の側縁13a寄りとすることで、グラウンド配線が一種の補強部材として機能し、フレキシブル部13の側縁13aで生じやすいクラックから信号配線を保護する。
 なお、グラウンド配線は、第1リジッド部11もしくは第2リジッド部12を経由して電源用コネクタ4aのグラウンド側の端子に導通している。あるいは、取付孔15に挿通されるネジ部材およびハウジング7を介して図示しない車体側へと導通するようにしてもよい(図1参照)。
 次に、本発明の要部であるフレキシブル部13における信号配線とグラウンド配線のレイアウトについて、いくつかの実施例を説明する。
 図9および図10は、第1実施例を示している。図9は、フレキシブル部13部分を折り曲げ時に外側面となる第2面3B側から見た平面図であり、図10は、表層の配線と内層の配線とを個別に模式的に示した説明図である。
 この第1実施例においては、第2面3B側の表層となる金属箔層に、幅の広い帯状をなすグラウンド配線51が形成されており、内層となる金属箔層にセンサ信号配線と駆動信号配線とを含む複数のリジッド部間配線55が平行に形成されている。グラウンド配線51は、フレキシブル部13の幅(W方向寸法)のほぼ全体を占める幅を有しており、フレキシブル部13の側縁13aに沿う側方の外縁51aがフレキシブル部13の側縁13aの近くに位置している。そして、センサ信号配線と駆動信号配線とを含む複数のリジッド部間配線55がグラウンド配線51の一対の外縁51aよりもW方向で内側に配置されている。つまり、フレキシブル部13を厚さ方向に投影して見たときに、グラウンド配線51の外縁51aは、リジッド部間配線55よりもフレキシブル部13の側縁13a寄りに位置する。
 このようにグラウンド配線51およびリジッド部間配線55を構成することで、グラウンド配線51が一種の補強部材として機能することから、フレキシブル部13の側縁13aで生じやすいクラックの発生が抑制される。そして仮にクラックが発生したとしても、クラックの成長がグラウンド配線51によって抑制されるため、リジッド部間配線55まで到達しにくくなる。従って、リジッド部間配線55への水分の侵入による絶縁不良やリジッド部間配線55の断線が抑制される。
 なお、回路基板3を折り曲げた状態では、一般に、折り曲げ時に外側面となる表層寄りの方が内層付近よりも応力が高くなりやすい。そのため、第1実施例では、応力の高い表層に幅の広いグラウンド配線51を配置してあり、これにより、表層寄り部分でのクラックの発生が効果的に抑制される。
 図11および図12は、第2実施例を示している。図11は、フレキシブル部13部分を折り曲げ時に外側面となる第2面3B側から見た平面図であり、図12は、表層の配線と内層の配線とを個別に模式的に示した説明図である。
 この第2実施例においては、第2面3B側の表層に、一対のグラウンド配線51と複数のリジッド部間配線55とが形成されており、内層に複数のリジッド部間配線55が形成されている。
 表層においては、一対のグラウンド配線51がフレキシブル部13の幅方向(W方向)外側に位置し、この2本のグラウンド配線51の内側に複数のリジッド部間配線55が配置されている。グラウンド配線51は、リジッド部間配線55よりも幅が広く形成されている。またフレキシブル部13の側縁13aに沿うグラウンド配線51の外縁51aは、フレキシブル部13の側縁13aの近くに位置している。
 内層においては、複数のリジッド部間配線55が一対のグラウンド配線51の外縁51aよりもW方向で内側に配置されている。つまり、フレキシブル部13を厚さ方向に投影して見たときに、グラウンド配線51の外縁51aは、リジッド部間配線55よりもフレキシブル部13の側縁13a寄りに位置する。
 このような構成では、第1実施例と同様に、一対のグラウンド配線51によって表層および内層の複数のリジッド部間配線55がクラックから保護される。この第2実施例では、第1実施例に比較して、より多数のリジッド部間配線55を配置することが可能となる。
 なお、グラウンド配線51の幅は、必ずしもリジッド部間配線55よりも広くなくともよく、少なくともリジッド部間配線55と同等の幅を有していれば、クラックの発生および成長を抑制する作用を奏しうる。
 図13および図14は、第3実施例を示している。図13は、フレキシブル部13部分を折り曲げ時に外側面となる第2面3B側から見た平面図であり、図14は、表層の配線と内層の配線とを個別に模式的に示した説明図である。
 この第3実施例においては、第2面3B側の表層に、一対のグラウンド配線51Aと複数のリジッド部間配線55とが形成されており、内層に幅の広い帯状をなすグラウンド配線51Bが形成されている。
 表層においては、一対のグラウンド配線51Aがフレキシブル部13の幅方向(W方向)外側に位置し、この2本のグラウンド配線51Aの内側にリジッド部間配線55が配置されている。グラウンド配線51Aは、リジッド部間配線55よりも幅が広く形成されている。またフレキシブル部13の側縁13aに沿うグラウンド配線51Aの外縁51aは、フレキシブル部13の側縁13aの近くに位置している。
 内層におけるグラウンド配線51Bは、フレキシブル部13の幅(W方向寸法)のほぼ全体を占める幅を有しており、その側方の外縁51aは、表層におけるグラウンド配線51Aの外縁51aと実質的に等しい位置にある。
 このような構成では、表層のグラウンド配線51Aおよび内層のグラウンド配線51Bの双方によってクラックの発生および成長が抑制され、W方向で内側に位置するリジッド部間配線55が保護される。この第3実施例では、第1実施例に比較して、表層および内層の双方にグラウンド配線51A,51Bが存在することで、クラックの発生および成長がより確実に抑制される。
 図15および図16は、第4実施例を示している。図15は、フレキシブル部13部分を折り曲げ時に外側面となる第2面3B側から見た平面図であり、図16は、表層の配線と内層の配線とを個別に模式的に示した説明図である。
 この第4実施例においては、第2面3B側の表層に、複数のリジッド部間配線55が形成されており、内層に幅の広い帯状をなすグラウンド配線51が形成されている。グラウンド配線51は、フレキシブル部13の幅(W方向寸法)のほぼ全体を占める幅を有しており、フレキシブル部13の側縁13aに沿う側方の外縁51aがフレキシブル部13の側縁13aの近くに位置している。そして、表層の複数のリジッド部間配線55は、グラウンド配線51の一対の外縁51aよりもW方向で内側に配置されている。
 ここで、第4実施例においては、複数のリジッド部間配線55の中で、第1回転センサ37の検出信号を第1リジッド部11から第2リジッド部12へ供給するための2本のセンサ信号配線55Aがフレキシブル部13の一方の側縁13a寄りに配置され、第2回転センサ38の検出信号を第1リジッド部11から第2リジッド部12へ供給するための2本のセンサ信号配線55Bがフレキシブル部13の他方の側縁13a寄りに配置されている。つまり、複数のリジッド部間配線55の中でセンサ信号配線55A,55Bがフレキシブル部13の幅方向で最も外側に位置している。駆動信号配線は、センサ信号配線55A,55Bよりも内側に位置する。なお、前述したように、第1回転センサ37の検出信号は第1リジッド部11において2系統に分岐され、それぞれセンサ信号配線55Aを介して第2リジッド部12へ供給される。同様に、第2回転センサ38の検出信号は第1リジッド部11において2系統に分岐され、それぞれセンサ信号配線55Bを介して第2リジッド部12へ供給される。
 このような構成では、仮にフレキシブル部13のいずれかの側縁13aにおいてクラックが発生し、このクラックがリジッド部間配線55の領域に達して、最も外側に位置するセンサ信号配線55A,55Bのいずれかが断線したとしても、第1回転センサ37および第2回転センサ38のいずれかの検出信号が有効に第2リジッド部12へ供給されるので、何ら支障なくモータ1Aの駆動・制御を行うことができる。仮にセンサ信号配線55Aおよびセンサ信号配線55Bのいずれが2本とも断線しても同様であり、深刻な状況を招来することがない。
 図17および図18は、第5実施例を示している。図17は、フレキシブル部13部分を折り曲げ時に外側面となる第2面3B側から見た平面図であり、図18は、表層の配線と内層の配線とを個別に模式的に示した説明図である。
 この第5実施例においては、第2面3B側の表層に、複数のリジッド部間配線55が形成されており、内層に幅の広い帯状をなすグラウンド配線51が形成されている。グラウンド配線51は、フレキシブル部13の幅(W方向寸法)のほぼ全体を占める幅を有しており、フレキシブル部13の側縁13aに沿う側方の外縁51aがフレキシブル部13の側縁13aの近くに位置している。そして、表層の複数のリジッド部間配線55は、グラウンド配線51の一対の外縁51aよりもW方向で内側に配置されている。
 ここで、第5実施例においては、複数のリジッド部間配線55の中で、第2回転センサ38の検出信号を第1リジッド部11から第2リジッド部12へ供給するための2本のセンサ信号配線55Bがフレキシブル部13の幅方向(W方向)で最も外側に位置している。そして、第1回転センサ37の検出信号を第1リジッド部11から第2リジッド部12へ供給するための2本のセンサ信号配線55Aが、それぞれセンサ信号配線55Bの内側に隣接して配置されている。つまり、一方の制御系統で用いられる第1回転センサ37用のセンサ信号配線55Aおよび第2回転センサ38用のセンサ信号配線55Bがフレキシブル部13の一方の側縁13a側に位置し、他方の制御系統で用いられる第1回転センサ37用のセンサ信号配線55Aおよび第2回転センサ38用のセンサ信号配線55Bがフレキシブル部13の他方の側縁13a側に位置する。
 なお、本実施例では第1回転センサ37を主たる回転センサとし第2回転センサ38を予備的な回転センサとしているので、第2回転センサ38用のセンサ信号配線55Bが外側に配置されているが、第1回転センサ37用のセンサ信号配線55Aを外側に配置してもよい。
 このような構成では、仮にフレキシブル部13のいずれかの側縁13aにおいてクラックが発生し、このクラックがリジッド部間配線55の領域に達して、最も外側に位置する第2回転センサ38用のセンサ信号配線55Bの一方が断線したとしても、第1回転センサ37の検出信号が有効に2系統に入力されるので、何ら支障なくモータ1Aの駆動・制御を行うことができる。仮に一方の側に位置するセンサ信号配線55Aとセンサ信号配線55Bが2本とも断線しても、他方の制御系統によるモータ1Aの駆動・制御が可能である。
 図19および図20は、第6実施例を示している。図19は、フレキシブル部13部分を折り曲げ時に外側面となる第2面3B側から見た平面図であり、図20は、表層の配線と内層の配線とを個別に模式的に示した説明図である。
 この第6実施例においては、第2面3B側の表層に、複数のリジッド部間配線55が形成されており、内層に幅の広い帯状をなすグラウンド配線51が形成されている。グラウンド配線51は、フレキシブル部13の幅(W方向寸法)のほぼ全体を占める幅を有しており、フレキシブル部13の側縁13aに沿う側方の外縁51aがフレキシブル部13の側縁13aの近くに位置している。そして、表層の複数のリジッド部間配線55は、グラウンド配線51の一対の外縁51aよりもW方向で内側に配置されている。
 ここで、第6実施例においては、複数のリジッド部間配線55の中で、最も外側に位置する一対の配線が断線検出配線55Cとして構成されている。例えば、回転センサ37,38用のセンサ信号配線など適宜な配線を断線検出配線55Cとして利用することができ、当該配線が接続される回路中に断線検出回路を含むことで、その断線を検出することができる。従って、仮にいずれか一方の断線検出配線55Cがクラックにより断線すると、その時点で異常を検出することができ、深刻な状況を招来する前に部品交換等の対処が可能となる。なお、前述したように、仮に断線検出配線55Cの断線に伴って一方の制御系統が不能となっても、他方の制御系統によるモータ1Aの駆動・制御が可能である。
 すなわち、一対の断線検出配線55Cをセンサ信号配線もしくは駆動信号配線として利用する場合には、一対の制御系統のそれぞれで同一の信号をやり取りする等価な一対の信号配線を断線検出配線55Cとして選択することが望ましい。これにより、一方の制御系統での断線を、他方の制御系統によるモータ1Aの駆動・制御を確保しつつ検出することができる。
 図21および図22は、第7実施例を示している。図21は、フレキシブル部13部分を折り曲げ時に外側面となる第2面3B側から見た平面図であり、図22は、表層の配線と内層の配線とを個別に模式的に示した説明図である。
 この第7実施例においては、第2面3B側の表層に、複数のリジッド部間配線55が形成されており、内層に幅の広い帯状をなすグラウンド配線51が形成されている。グラウンド配線51は、フレキシブル部13の幅(W方向寸法)の全体近くを占める幅を有しており、表層の複数のリジッド部間配線55は、グラウンド配線51の一対の外縁51aよりもW方向で内側に配置されている。
 ここで、第7実施例においては、内層のグラウンド配線51の外縁51aよりもさらに外側に、断線検出配線56がそれぞれ設けられている。この断線検出配線56は、断線検出回路に接続されており、クラックによる断線の検出が可能である。
 断線検出配線56としては、他の信号の授受を行わずに単に断線検出のために設けられた配線であってもよい。あるいは、第6実施例の断線検出配線55Cと同様に、適当なセンサ信号配線などを兼ねたものであってもよい。この第7実施例の断線検出配線56は、グラウンド配線51によるクラックからの保護作用を受けないので、仮に断線してもモータ1Aの駆動・制御に深刻な影響を及ぼさない信号配線であることが望ましい。少なくとも、上述したように一対の制御系統のそれぞれで同一の信号をやり取りする等価な一対の信号配線を断線検出配線56として選択することが望ましい。これにより、一方の制御系統での断線を、他方の制御系統によるモータ1Aの駆動・制御を確保しつつ検出することができる。
 以上、この発明の一実施例を詳細に説明したが、この発明は上記実施例に限定されるものではなく、種々の変更が可能である。例えば、上記実施例ではフレキシブル部13が一定幅の帯状の構成となっているが、フレキシブル部がこのような単純形状でない場合でも、本発明は適用可能である。また、上記実施例では、6層構造の回路基板のうちの4層分を除去することでフレキシブル部13を構成しているが、本発明はこのような構成に限られない。また、フレキシブル部13のW方向の幅がリジッド部11,12のW方向の幅よりも小さいことは必須ではない。
 さらに、上記実施例では、フレキシブル部13の左右両側の側縁13aについてグラウンド配線51の外縁51aがリジッド部間配線55よりも外側に位置するように構成されているが、例えばフレキシブル部13の構成が左右非対称であるような場合に、いずれか一方の側縁13aの側のみでグラウンド配線51の外縁51aがリジッド部間配線55よりも外側に位置する関係としてもよい。
 また、本発明は、上記のパワーステアリング装置用電動アクチュエータの回路基板に限定されず、種々の用途の電子回路装置に適用が可能である。
 なお、第1リジッド部11と第2リジッド部12との間に存在する中間リジッド部14に、上述した電子部品以外の何らかの電子部品を搭載してもよく、本発明はこのような構成を排除するものではない。
 以上のように、本発明は、
 電子部品が実装される回路基板を備えた電子装置であって、
 上記回路基板は、
 上記電子部品が実装される少なくとも2つの部品実装部と、
 隣接する2つの部品実装部の間に位置し、上記部品実装部の基板の厚さよりも薄く形成されて上記部品実装部よりも高い可撓性を有するフレキシブル部と、
 上記フレキシブル部において2つの部品実装部の間に延びた電源正極配線ないし信号配線である複数の部品実装部間配線と、
 上記フレキシブル部において上記部品実装部間配線と同一もしくは異なる層に設けられ、かつ上記フレキシブル部の側縁に沿う外縁が上記部品実装部間配線よりも上記フレキシブル部の側縁寄りに位置する1つもしくは複数のグラウンド配線と、
 を備えている。
 好ましい一つの態様では、
 第1の部品実装部に、電動アクチュエータに対する操作量を演算する演算処理部の電子部品が実装されているとともに、第2の部品実装部に、上記電動アクチュエータの作動状態を検出するセンサが実装されており、
 上記フレキシブル部には、上記部品実装部間配線として、上記操作量に基づく制御信号が流れる駆動信号配線と、上記センサの検出信号が流れるセンサ信号配線と、が設けられており、
 上記センサ信号配線は上記駆動信号配線よりも上記フレキシブル部の側縁寄りに位置する。
 例えば、上記センサは、検出対象が同じである第1のセンサと第2のセンサとを含み、
 上記フレキシブル部において、上記第1のセンサの一対のセンサ信号配線が上記第2のセンサの一対のセンサ信号配線よりもそれぞれフレキシブル部の側縁寄りに位置する。
 また好ましい一つの態様では、
 上記部品実装部間配線は該部品実装部間配線の一つとして断線検出配線を含み、
 この断線検出配線は、複数の部品実装部間配線の中で最も上記フレキシブル部の側縁寄りに位置する。
 他の態様では、
 上記部品実装部間配線とは別に断線検出配線を備え、
 この断線検出配線は、上記グラウンド配線の上記外縁よりも上記フレキシブル部の側縁寄りに位置する。
 望ましくは、
 上記断線検出配線として、上記フレキシブル部の両側の側縁にそれぞれ対応して配置される一対の断線検出配線を含み、
 上記回路基板には、2つの制御系統がそれぞれ第1の部品実装部に実装された電子部品群と第2の部品実装部に実装されたCPUと上記断線検出配線の一つとを含んで構成されており、
 上記断線検出配線の断線が各々の制御系統毎に検出される。
 あるいは、
 上記断線検出配線は、上記フレキシブル部の両側の側縁にそれぞれ対応して配置される一対の断線検出配線を含み、
 この一対の断線検出配線は、いずれかの部品実装部に実装したセンサからの同じ検出信号が流れるセンサ信号配線である。
 また好ましい一つの態様では、
 上記部品実装部と上記フレキシブル部との境界においては、基板の厚さが上記部品実装部の厚さから上記フレキシブル部の厚さへと連続的に変化するように、絶縁基材の厚さが徐々に減少していく。
 さらに他の一つの態様では、
 上記フレキシブル部は、2つの部品実装部の間の中間部に、相対的に厚くなった中間リジッド部を有し、
 上記中間リジッド部と相対的に薄い隣接するフレキシブル部との境界においては、基板の厚さが上記中間リジッド部の厚さから上記フレキシブル部の厚さへと連続的に変化するように、絶縁基材の厚さが徐々に減少していく。

Claims (9)

  1.  電子部品が実装される回路基板を備えた電子装置であって、
     上記回路基板は、
     上記電子部品が実装される少なくとも2つの部品実装部と、
     隣接する2つの部品実装部の間に位置し、上記部品実装部の基板の厚さよりも薄く形成されて上記部品実装部よりも高い可撓性を有するフレキシブル部と、
     上記フレキシブル部において2つの部品実装部の間に延びた電源正極配線ないし信号配線である複数の部品実装部間配線と、
     上記フレキシブル部において上記部品実装部間配線と同一もしくは異なる層に設けられ、かつ上記フレキシブル部の側縁に沿う外縁が上記部品実装部間配線よりも上記フレキシブル部の側縁寄りに位置する1つもしくは複数のグラウンド配線と、
     を備えてなる電子装置。
  2.  第1の部品実装部に、電動アクチュエータに対する操作量を演算する演算処理部の電子部品が実装されているとともに、第2の部品実装部に、上記電動アクチュエータの作動状態を検出するセンサが実装されており、
     上記フレキシブル部には、上記部品実装部間配線として、上記操作量に基づく制御信号が流れる駆動信号配線と、上記センサの検出信号が流れるセンサ信号配線と、が設けられており、
     上記センサ信号配線は上記駆動信号配線よりも上記フレキシブル部の側縁寄りに位置する、
     請求項1に記載の電子装置。
  3.  上記センサは、検出対象が同じである第1のセンサと第2のセンサとを含み、
     上記フレキシブル部において、上記第1のセンサの一対のセンサ信号配線が上記第2のセンサの一対のセンサ信号配線よりもそれぞれフレキシブル部の側縁寄りに位置する、
     請求項2に記載の電子装置。
  4.  上記部品実装部間配線は該部品実装部間配線の一つとして断線検出配線を含み、
     この断線検出配線は、複数の部品実装部間配線の中で最も上記フレキシブル部の側縁寄りに位置する、
     請求項1~3のいずれかに記載の電子装置。
  5.  上記部品実装部間配線とは別に断線検出配線を備え、
     この断線検出配線は、上記グラウンド配線の上記外縁よりも上記フレキシブル部の側縁寄りに位置する、
     請求項1~3のいずれかに記載の電子装置。
  6.  上記断線検出配線として、上記フレキシブル部の両側の側縁にそれぞれ対応して配置される一対の断線検出配線を含み、
     上記回路基板には、2つの制御系統がそれぞれ第1の部品実装部に実装された電子部品群と第2の部品実装部に実装されたCPUと上記断線検出配線の一つとを含んで構成されており、
     上記断線検出配線の断線が各々の制御系統毎に検出される、
     請求項4または5に記載の電子装置。
  7.  上記断線検出配線は、上記フレキシブル部の両側の側縁にそれぞれ対応して配置される一対の断線検出配線を含み、
     この一対の断線検出配線は、いずれかの部品実装部に実装したセンサからの同じ検出信号が流れるセンサ信号配線である、
     請求項4または5に記載の電子装置。
  8.  上記部品実装部と上記フレキシブル部との境界においては、基板の厚さが上記部品実装部の厚さから上記フレキシブル部の厚さへと連続的に変化するように、絶縁基材の厚さが徐々に減少していく、
     請求項1~7のいずれかに記載の電子装置。
  9.  上記フレキシブル部は、2つの部品実装部の間の中間部に、相対的に厚くなった中間リジッド部を有し、
     上記中間リジッド部と相対的に薄い隣接するフレキシブル部との境界においては、基板の厚さが上記中間リジッド部の厚さから上記フレキシブル部の厚さへと連続的に変化するように、絶縁基材の厚さが徐々に減少していく、
     請求項8に記載の電子装置。
PCT/JP2020/025756 2019-07-03 2020-07-01 電子装置 WO2021002374A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020003244.2T DE112020003244T5 (de) 2019-07-03 2020-07-01 Elektronische Vorrichtung
CN202080045308.1A CN114008899A (zh) 2019-07-03 2020-07-01 电子装置
US17/623,650 US11647588B2 (en) 2019-07-03 2020-07-01 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124152 2019-07-03
JP2019124152A JP7256707B2 (ja) 2019-07-03 2019-07-03 電子装置

Publications (1)

Publication Number Publication Date
WO2021002374A1 true WO2021002374A1 (ja) 2021-01-07

Family

ID=74101368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025756 WO2021002374A1 (ja) 2019-07-03 2020-07-01 電子装置

Country Status (5)

Country Link
US (1) US11647588B2 (ja)
JP (1) JP7256707B2 (ja)
CN (1) CN114008899A (ja)
DE (1) DE112020003244T5 (ja)
WO (1) WO2021002374A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084830A1 (ja) * 2022-10-19 2024-04-25 日立Astemo株式会社 電子装置、電動駆動装置及び電動パワーステアリング装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6712793B1 (ja) * 2020-02-13 2020-06-24 パナソニックIpマネジメント株式会社 情報処理装置、及び、情報処理装置の製造方法
CN113771940A (zh) * 2021-10-27 2021-12-10 杭州湘滨电子科技有限公司 一种电动助力转向装置及车辆

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230504A (ja) * 2000-02-18 2001-08-24 Denso Corp フレキシブル配線基板およびその回路基板への接続構造
JP2001275022A (ja) * 2000-03-23 2001-10-05 Sony Corp ビデオカメラ
JP2005236205A (ja) * 2004-02-23 2005-09-02 Sharp Corp 多層プリント配線板の製造方法及び多層プリント配線板
JP2005247220A (ja) * 2004-03-05 2005-09-15 Toyoda Mach Works Ltd スパイラルケーブル装置及び、これを用いた可変伝達比ユニット
JP2005285887A (ja) * 2004-03-29 2005-10-13 Fujikura Ltd 断線検知回路付回路基板
JP2007088229A (ja) * 2005-09-22 2007-04-05 Daisho Denshi:Kk フレックスリジッドプリント配線板
JP2009218447A (ja) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd フレキシブルプリント配線板
JP2009289923A (ja) * 2008-05-28 2009-12-10 Kyocera Corp 基板接続構造及び電子機器
JP2012060043A (ja) * 2010-09-13 2012-03-22 Nikon Corp 接続体及び片面フレキシブル配線板
JP2017107439A (ja) * 2015-12-10 2017-06-15 凸版印刷株式会社 フィルムセンサーモジュール及びフィルムセンサーモジュール用のフレキシブル基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043318A1 (ja) 2009-10-05 2011-04-14 株式会社村田製作所 回路基板
US9379443B2 (en) * 2012-07-16 2016-06-28 Fractus Antennas, S.L. Concentrated wireless device providing operability in multiple frequency regions
JP2014060903A (ja) 2012-09-19 2014-04-03 Jtekt Corp モータ制御装置
WO2014129278A1 (ja) 2013-02-19 2014-08-28 株式会社村田製作所 インダクタブリッジおよび電子機器
US10665959B2 (en) * 2017-07-24 2020-05-26 Apple Inc. Millimeter wave antennas having dual patch resonating elements

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230504A (ja) * 2000-02-18 2001-08-24 Denso Corp フレキシブル配線基板およびその回路基板への接続構造
JP2001275022A (ja) * 2000-03-23 2001-10-05 Sony Corp ビデオカメラ
JP2005236205A (ja) * 2004-02-23 2005-09-02 Sharp Corp 多層プリント配線板の製造方法及び多層プリント配線板
JP2005247220A (ja) * 2004-03-05 2005-09-15 Toyoda Mach Works Ltd スパイラルケーブル装置及び、これを用いた可変伝達比ユニット
JP2005285887A (ja) * 2004-03-29 2005-10-13 Fujikura Ltd 断線検知回路付回路基板
JP2007088229A (ja) * 2005-09-22 2007-04-05 Daisho Denshi:Kk フレックスリジッドプリント配線板
JP2009218447A (ja) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd フレキシブルプリント配線板
JP2009289923A (ja) * 2008-05-28 2009-12-10 Kyocera Corp 基板接続構造及び電子機器
JP2012060043A (ja) * 2010-09-13 2012-03-22 Nikon Corp 接続体及び片面フレキシブル配線板
JP2017107439A (ja) * 2015-12-10 2017-06-15 凸版印刷株式会社 フィルムセンサーモジュール及びフィルムセンサーモジュール用のフレキシブル基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084830A1 (ja) * 2022-10-19 2024-04-25 日立Astemo株式会社 電子装置、電動駆動装置及び電動パワーステアリング装置

Also Published As

Publication number Publication date
CN114008899A (zh) 2022-02-01
US11647588B2 (en) 2023-05-09
JP2021009967A (ja) 2021-01-28
DE112020003244T5 (de) 2022-04-14
JP7256707B2 (ja) 2023-04-12
US20220264746A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2021002374A1 (ja) 電子装置
WO2019131991A1 (ja) 電子制御装置
US11419208B2 (en) Electronic circuit board and electronic circuit device
TWI551008B (zh) 馬達繞組
US11404941B2 (en) Power conversion device
US11387716B2 (en) Redundant circuit device
US10834856B2 (en) Electronic control unit
JP7406301B2 (ja) 電子制御装置
WO2023095386A1 (ja) 電子装置
WO2022130980A1 (ja) 電子装置およびその製造方法
JP7152971B2 (ja) 電子回路装置
WO2019230066A1 (ja) 回転機器
JP7423919B2 (ja) 電子装置
WO2023127380A1 (ja) 電子制御装置
JP7215322B2 (ja) 電子装置
JP4155441B2 (ja) 結線基板
WO2022230098A1 (ja) 多層回路基板、駆動制御装置および電動パワーステアリング用モータユニット
JP6547919B2 (ja) 電気素子
JP2023116854A (ja) 電子装置
KR101353625B1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834287

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20834287

Country of ref document: EP

Kind code of ref document: A1