WO2020262509A1 - 生分解性樹脂粒子及びそれを含有する外用剤 - Google Patents

生分解性樹脂粒子及びそれを含有する外用剤 Download PDF

Info

Publication number
WO2020262509A1
WO2020262509A1 PCT/JP2020/024938 JP2020024938W WO2020262509A1 WO 2020262509 A1 WO2020262509 A1 WO 2020262509A1 JP 2020024938 W JP2020024938 W JP 2020024938W WO 2020262509 A1 WO2020262509 A1 WO 2020262509A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin particles
parts
biodegradable resin
particles
Prior art date
Application number
PCT/JP2020/024938
Other languages
English (en)
French (fr)
Inventor
健悟 西海
晋弥 松野
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74060176&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020262509(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to JP2021527716A priority Critical patent/JP7125558B2/ja
Priority to CA3144952A priority patent/CA3144952C/en
Priority to EP20833604.0A priority patent/EP3991798A4/en
Priority to CN202080026893.0A priority patent/CN113677759B/zh
Priority to US17/622,392 priority patent/US20220356326A1/en
Publication of WO2020262509A1 publication Critical patent/WO2020262509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/85Polyesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Definitions

  • the present invention relates to biodegradable resin particles and an external preparation containing the same.
  • Resin particles are used for modification and improvement of various materials by utilizing a large specific surface area and particle structure.
  • the main applications are cosmetic compounding agents such as foundations, antiperspirants and scrubs, paint matting agents, rheology modifiers, blocking inhibitors, slippering agents, light diffusing agents, medical diagnostic inspection agents. And the like, as an additive to molded products such as automobile materials and building materials.
  • the resin particles include urethane, acrylic, silicone, polyethylene and the like.
  • Patent Document 1 pulverization method typified by freeze pulverization
  • Patent Document 2 dissolution in a solvent at a high temperature, cooling and precipitation, or use as a solvent.
  • Patent Document 2 A solvent-dissolving precipitation method (Patent Document 2) or the like is known in which precipitation is performed by adding a poor solvent after dissolution.
  • the resin particles of Patent Document 1 when used as an external preparation such as cosmetics, the resin particles of Patent Document 1 have problems such as not being spherical and the particle diameter not becoming small, and further improvement is required in terms of elongation on the skin. ing. Further, although the resin particles obtained in Patent Document 2 are relatively spherical particles, there is a problem that the particle size does not become small. Further, since the surface is porous, there is a problem that the particles become brittle and the stability is low.
  • An object of the present invention is to provide biodegradable resin particles having a small particle size and excellent adhesion to the skin and light elongation on the skin when applied to the skin, and an external preparation containing the same. ..
  • the present invention relates to the following [1] and [2].
  • Biodegradable resin particles made of polyhydroxyalkanoate the amount of Ca component contained in the particles is 10 to 10,000 ppm, the volume average particle diameter is 2 to 50 ⁇ m, and the BET specific surface area is 0. .
  • Biodegradable resin particles having a thickness of 8 to 10 m 2 / g and an oil absorption of flaxseed oil of 50 to 300 ml / 100 g.
  • biodegradable resin particles having a small particle size and excellent adhesion to the skin and light elongation on the skin when applied to the skin, and an external preparation containing the same. ..
  • Example 3 is an SEM photograph of the biodegradable resin particles of Example 1.
  • the biodegradable resin particles of the present invention are biodegradable resin particles made of polyhydroxyalkanoate.
  • the polyhydroxy alkanoate includes a polymer consisting of one or more repeating units selected from the group consisting of 3-hydroxybutyrate, 3-hydroxyvalirate, 3-hydroxyhexanoate, and 3-hydroxyoctanoate. Copolymers can be mentioned. Of these, poly (3-hydroxybutyrate-co-3-hydroxy), which is a copolymer of 3-hydroxybutyrate unit and 3-hydroxyhexanoate unit, is used from the viewpoint of improving handleability and usability.
  • the "biodegradable resin particles composed of polyhydroxy alkanoate” means that the resin particles are substantially composed of polyhydroxy alkanoate, and Ca component, 3-alkoxy-3, is contained in the particles. It does not exclude the inclusion of various components such as -methyl-1-butanol and 3-alkoxy-3-methyl-1-butyl acetate, but may contain various components.
  • the biodegradable resin particles of the present invention have a volume average particle diameter of 2 to 50 ⁇ m. If the volume average particle size is smaller than 2 ⁇ m, slippage on the skin may be impaired. If the volume average particle size is larger than 50 ⁇ m, the feel tends to deteriorate when used on the skin with an external preparation or the like.
  • the preferred range is 3 to 45 ⁇ m, the more preferred range is 5 to 35 ⁇ m, the more preferred range is 8 to 30 ⁇ m, the more preferred range is 8 to 25 ⁇ m, and the further preferred range is 8 to 20 ⁇ m.
  • the volume average particle size is measured by the method described in Examples described later.
  • the coefficient of variation (CV value) of the particle size of the biodegradable resin particles of the present invention is not particularly limited, but is preferably 45% or less. When the coefficient of variation is 45% or less, the number of coarse particles is small, and a good feel can be obtained when used as an external preparation. It is more preferably 40% or less, still more preferably 35% or less.
  • the biodegradable resin particles of the present invention have a BET specific surface area of 0.8 to 10 m 2 / g. If the specific surface area is lower than 0.8, the specific gravity of the particles becomes heavy and the particles tend to settle, which deteriorates the handleability of the external preparation during preparation, which is not preferable. If the specific surface area is higher than 10 m 2 / g, the surface becomes a large uneven structure or a porous shape, so that the particle strength is low and the storage stability is lowered, which is not preferable.
  • the preferred range is 0.9 to 8 m 2 / g, and the more preferred range is 1 to 5 m 2 / g.
  • the BET specific surface area is measured by the method described in Examples below.
  • the biodegradable resin particles of the present invention have a linseed oil oil absorption amount of 50 to 300 ml / 100 g. If the amount of linseed oil absorbed is less than 50 ml / 100 g, the slipperiness to the skin may decrease. If the oil absorption amount is higher than 300 ml / 100 g, the viscosity tends to increase when the external preparation or the liquid foundation is prepared, and the handleability is significantly lowered, which is not preferable.
  • the preferred range is 55 to 250 ml / 100 g, and the more preferred range is 60 to 200 ml / 100 g.
  • the amount of linseed oil absorbed is measured by the method described in Examples described later.
  • the biodegradable resin particles of the present invention contain 10 to 10,000 ppm of Ca component in the particles.
  • the Ca component is contained in an amount of 10 ppm or more, the compatibility with the lipophilic substance is improved, and lumps are less likely to occur when the external preparation is prepared, and as a result, the slip on the skin tends to be good.
  • the Ca component is 10,000 ppm or less, the release of the Ca component from the resin particles can be effectively suppressed.
  • the Ca component is more than 10,000 ppm, the adhesion to the skin tends to decrease when the Ca component is used on the skin due to the influence of the hardness of the Ca component, which is not preferable.
  • the preferred range is 20 to 5,000 ppm, and the more preferred range is 30 to 500 ppm.
  • the amount of Ca component is measured by the method described in Examples described later.
  • the 10% compressive strength of the biodegradable resin particles of the present invention is not particularly limited, but is preferably 0.5 MPa or more, more preferably 0.7 MPa or more, from the viewpoint of improving slippage on the skin. Yes, more preferably 1 MPa or more, and from the viewpoint of obtaining a soft feel, preferably 10 MPa or less, more preferably 8 MPa or less, still more preferably 6 MPa or less, and the range of any combination of these May be good.
  • the compressive strength is measured by the method described in Examples described later.
  • the biodegradable resin particles of the present invention may be coated with a dispersion stabilizer on the particle surface, or the dispersion stabilizer may be removed if necessary.
  • the coating amount of the dispersion stabilizer can be estimated from the amount of ash after heating the resin particles at 750 ° C. for 30 minutes. By removing the ash content to 0.01 to 3%, it is possible to effectively suppress the release of the dispersion stabilizer from the particles.
  • the ash content is measured by the method described in Examples below.
  • the dispersion stabilizer is not particularly limited, but a poorly water-soluble inorganic compound such as calcium carbonate or calcium phosphate can be used.
  • calcium carbonate is preferable in that the dispersion stabilizer can be easily removed.
  • calcium carbonate surface-treated with a silane coupling agent is preferable because it is highly compatible with biodegradable resins, has excellent dispersion stability, and is easy to control the particle size.
  • the particle size of the dispersion stabilizer is not particularly limited, but one having a small primary particle size is preferable from the viewpoint of high specific surface area.
  • the average primary particle size of the preferred dispersion stabilizer is 10 to 1000 nm, more preferably 10 to 500 nm, and even more preferably 10 to 100 nm.
  • the biodegradable resin particles of the present invention are of 3-alkoxy-3-methyl-1-butanol and 3-alkoxy-3-methyl-1-butyl acetate (both of which have 1 to 5 carbon atoms in the alkoxy group). At least one of them may be further included.
  • the content is preferably 0.010 to 0.500% by mass, more preferably 0.020 to 0.100% by mass, in consideration of handleability for handling as a powder.
  • the method for producing the biodegradable resin particles of the present invention is not particularly limited, and examples thereof include a production method including the steps shown in (1) to (4) below.
  • the biodegradable resin polyhydroxyalkanoate resin is used as 3-alkoxy-3-methyl-1-butanol and 3-alkoxy-3-methyl-1-butyl acetate (however, both have the number of carbon atoms of the alkoxy group).
  • a solvent containing at least one of (1 to 5) water, and a dispersion stabilizer, when the temperature peak at which the maximum melting point of the resin is measured by DSC is T max , the temperature is T max ⁇ 15 ° C.
  • Emulsification / dispersion process (emulsification / dispersion process) (2) A step of obtaining a biodegradable resin particle dispersion in which a dispersion stabilizer is coated on the particle surface obtained by cooling thereafter (cooling / particleization step). (3) A step of obtaining a biodegradable resin particle dispersion obtained by removing the coated dispersion stabilizer (dispersion stabilizer removing step). (4) A step of obtaining biodegradable resin particle powder by filtering, washing, dehydrating, drying, and classifying the particles obtained in (2) or (3) (powdering step).
  • a skin-irritating organic solvent for example, xylene, toluene, n-methylpyrrolidone, chloroform, methylene chloride, dioxolane, THF, etc.
  • a highly safe alcohol solvent is used without using it, and biodegradable resin particles having a spherical shape, a small particle size, and a narrow particle size distribution can be produced.
  • 3-alkoxy-3-methyl-1-butanol and / or 3-alkoxy-3-methyl-1-butyl acetate has biodegradability and low skin irritation, so that they are like cosmetics.
  • biodegradable resin particles obtained by this production method have an effect of being excellent in oil absorption characteristics as compared with the particles obtained by other production methods.
  • the solvent is 3-alkoxy-3-methyl-1-butanol and / or 3-alkoxy-3.
  • -Methyl-1-butyl acetate (hereinafter, also referred to as a specific solvent) is contained.
  • the ratio of the specific solvent in the solvent is preferably 10 to 90%, more preferably 20 to 80%, and further preferably 30 to 70% from the viewpoint of oil absorption characteristics and particle formation. ..
  • Examples of usable solvents other than the specific solvent include lower alcohols such as methanol and ethanol, and acetic acid ester solvents such as ethyl acetate and butyl acetate.
  • the specific solvent a solvent commercially available from Kuraray under the trade name of Solfit can also be used. Further, 3-alkoxy-3-methyl-1-butanol can be produced, for example, by the method described in International Publication WO2013 / 146370.
  • the number of carbon atoms of the alkoxy group in the specific solvent is 1 to 5 independently. If the alkoxy group has more than 5 carbon atoms, the solubility may deteriorate.
  • Specific examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentyloxy group.
  • the propoxy group, butoxy group and pentyloxy group include not only linear but also possible structural isomers.
  • Preferred alkoxy groups are methoxy group, ethoxy group and propoxy group.
  • the amount of the solvent used is preferably 100 to 1200 parts by mass, and more preferably 100 to 1200 parts by mass, from the viewpoint of sufficient stirring and mixing with 100 parts by mass of the biodegradable resin and from the viewpoint of productivity. It is 800 parts by mass, and a more preferable amount to be used is 100 to 400 parts by mass.
  • the above-mentioned ones can be used, and when the primary particle size is submicron or less, most of them are aggregates in the powder state, and it is preferable to crush them.
  • the crushing method is not particularly limited, but a wet ball mill or bead mill can be preferably used from the viewpoint of preventing reaggregation.
  • the dispersion stabilizer is preferably stored in the form of a solvent dispersion from the viewpoint of preventing reaggregation.
  • the solid content concentration of the solvent dispersion is not particularly limited, but is preferably 3% to 20%, more preferably 4 to 18%, from the viewpoint of suppressing sedimentation / aggregation and preventing crushing defects. More preferably, it is 5 to 15%.
  • a surfactant such as an anionic surfactant in combination.
  • the amount of the surfactant added can be, for example, 0.01 to 0.5 parts by mass with respect to 100 parts by mass of water.
  • mixing can be performed by a commonly known method such as a liquid phase stirring method using a stirring blade, a mixing method using a homogenizer, or an ultrasonic irradiation method.
  • the stirring speed and time are appropriately selected so that the biodegradable resin is uniformly dispersed in the solvent. Heating and stirring are usually performed under pressure.
  • the solvent containing the biodegradable resin is cooled after heating and stirring. It is preferable to cool slowly from the temperature at the time of heating and stirring to the cooling temperature, and specifically, it is preferable to cool at a rate of 0.5 to 5.0 ° C./min. Further, it is preferable that the cooling is performed while stirring.
  • the stirring speed can be in the same range as the stirring speed of heating and stirring.
  • (C) Dispersion Stabilizer Removal Step / Powdering Step The biodegradable resin particles in the solvent after cooling are removed from the solvent through filtration, washing, dehydration, and drying.
  • a step of removing the dispersion stabilizer with an acid or the like is added before the filtration step.
  • decomposing the dispersion stabilizer from the viewpoint of suppressing hydrolysis and elongation on the skin, 1.05 to 1.50 times the required number of moles, more preferably 1.05 to 1.20, so as not to become a strong acid. It is preferable to add twice as much acid, stir at 40 ° C. or lower, and filter and wash within 24 hours, more preferably within 12 hours.
  • the biodegradable resin particles of the present invention can be obtained by classifying the biodegradable resin particles after drying.
  • the classification method include wind power classification and screen classification.
  • Wind power classification is a method of classifying particles using the flow of air.
  • Screen classification is a method in which biodegradable resin particles are supplied onto the screen and the screen is vibrated to classify the biodegradable resin particles on the screen into particles that pass through the mesh of the screen and particles that do not.
  • the classification is preferably performed in an atmosphere of dehumidified air so that the biodegradable resin particles do not absorb moisture in the air, and specifically, in an atmosphere in which the relative humidity of the air is 30% or less.
  • the air is carried out in an atmosphere where the relative humidity of the air is 20% or less.
  • the biodegradable resin particles thus obtained are preferably sealed with a packaging material that does not easily allow moisture to permeate and stored as a packaged article so as not to absorb moisture in the air.
  • the biodegradable resin particles of the present invention can be suitably used by being blended with external preparations such as cosmetics and quasi-drugs, for example.
  • cosmetics include powder foundations, milky lotions, and liquid foundations.
  • quasi-drugs include scrubs.
  • the content of the biodegradable resin particles of the present invention in the cosmetic of the present invention can be appropriately set according to the type of cosmetic, but is preferably 0.1% by mass or more from the viewpoint of exhibiting a desired effect. It is preferably 0.5% by mass or more, more preferably 1% by mass or more, and preferably 50% by mass or less, more preferably 30% by mass, from the viewpoint of improving production cost, stability, and feel. The following is possible, and the range may be any combination of these.
  • the cosmetic of the present invention is not particularly limited, but for example, whitening, face powder (loose powder, pressed powder, etc.), foundation (powder foundation, liquid foundation, emulsified foundation, etc.), lipstick, lip cream, cheek red, etc. Makeup cosmetics such as eyebrow cosmetics and manicure; cleaning cosmetics such as soap, body shampoo, face wash cream, scrub pigment, toothpaste; lotion agents such as pre-shave foundation and body lotion, body powder, baby powder, etc.
  • Skin care cosmetics such as external preparations, foundations, creams, emulsions (cosmetic emulsions); sunscreen cosmetics, suntan products, antiperspirants (liquid antiperspirants, solid antiperspirants, cream antiperspirants, etc.), Examples include packs, hair wash cosmetics, hair dyes, hair conditioners, aromatic cosmetics, bathing agents, shaving creams and the like.
  • skin care cosmetics, cleaning cosmetics, sunscreen cosmetics and the like are preferable.
  • the cosmetics of the present invention may contain commonly used main agents or additives according to the purpose, as long as the effects of the present invention are not impaired.
  • Such main agents or additives include, for example, water, lower alcohols (alcohols having 5 or less carbon atoms), fats and oils and waxes, hydrocarbons, higher fatty acids, higher alcohols, sterols, fatty acid esters, metal soaps, moisturizers, etc.
  • fats and waxes include avocado oil, almond oil, olive oil, cacao fat, beef fat, sesame fat, wheat germ oil, safflower oil, shea butter, turtle oil, camellia oil, persic oil, castor oil, and grape oil.
  • hydrocarbon examples include liquid paraffin, petrolatum, paraffin, selecin, microcrystalline wax, squalane and the like.
  • higher fatty acid examples include fatty acids having 11 or more carbon atoms such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid, undecylenic acid, oxystearic acid, linoleic acid, lanolin fatty acid, and synthetic fatty acid. Can be mentioned.
  • higher alcohols include lauryl alcohol, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, oleyl alcohol, behenyl alcohol, lanolin alcohol, hydrogenated lanolin alcohol, hexyldecanol, octyldecanol, isostearyl alcohol, and jojoba alcohol. , Alcohols having 6 or more carbon atoms such as decyltetradecanol.
  • sterol examples include cholesterol, dihydrocholesterol, phytocholesterol and the like.
  • the fatty acid ester include a linoleic acid ester such as ethyl linoleate; a lanolin fatty acid ester such as isopropyl lanolin fatty acid; a lauric acid ester such as hexyl laurate; isopropyl myristate, myristyl myristate, cetyl myristate, and myristic acid.
  • a linoleic acid ester such as ethyl linoleate
  • a lanolin fatty acid ester such as isopropyl lanolin fatty acid
  • a lauric acid ester such as hexyl laurate
  • isopropyl myristate, myristyl myristate, cetyl myristate, and myristic acid include a linoleic acid ester such as ethyl linoleate; a lanolin fatty acid ester such as is
  • Myristic acid esters such as octyldodecyl; oleic acid esters such as decyl oleate and octyldodecyl oleate; dimethyloctanoic acid esters such as hexyldecyl dimethyloctanoate; isooctanoic acid esters such as cetyl isooctanoate (cetyl 2-ethylhexanoate) Isononanoic acid esters such as ethylhexyl isononanoate, isononyl isononanoate, isotridecyl isononanoate; palmitate esters such as isopropyl palmitate, ethylhexyl palmitate, decyl palmitate; glycerin trimyristate, tri (capril capric acid) glycerin , Glyceryl diisostearate, glycerin
  • the oils and fats and waxes, hydrocarbons, higher fatty acids, higher alcohols, sterols, fatty acid ester oils and the like are preferably non-volatile oils, and more preferably have a viscosity of 550 mPa ⁇ s at 20 ° C.
  • the following non-volatile oils more preferably 1 to 550 mPa ⁇ s non-volatile oils, still more preferably 5 to 550 mPa ⁇ s non-volatile oils.
  • Non-volatile oils having a viscosity of 550 mPa ⁇ s or less at 20 ° C. include liquid paraffin, squalane, olive oil, castor oil, jojoba oil, minced oil, macadamian nut oil, hexyl laurate, isopropyl myristate, octyldodecyl myristate, and isooctane.
  • Cetyl acid cetyl 2-ethylhexanate
  • ethylhexyl isononanoate cetyl acid
  • isononyl isononanoate isotridecyl isononanoate
  • isopropyl palmitate ethylhexyl palmitate
  • decyl palmitate tri (capril capric acid)
  • glycerin glycerin triisostearate
  • Glycerin triisooctanoate and the like are preferably exemplified.
  • the content of the non-volatile oil in the cosmetic of the present invention is preferably 1 to 20% by mass from the viewpoint of exhibiting the above effects.
  • the non-volatile oil means an oil that remains on the skin for at least several hours at room temperature and atmospheric pressure, and in particular has a vapor pressure of less than 0.13 Pa (0.01 mmHg).
  • metal soap examples include zinc laurate, zinc myristate, magnesium myristate, zinc palmitate, zinc stearate, aluminum stearate, calcium stearate, magnesium stearate, zinc undecylate and the like.
  • moisturizer examples include glycerin, propylene glycol, 1,3-butylene glycol, polyethylene glycol, sodium dl-pyrrolidone carboxylate, sodium lactate, sorbitol, sodium hyaluronate, polyglycerin, xylit, maltitol and the like. Be done.
  • the surfactant include anionic surfactants such as higher fatty acid soaps, higher alcohol sulfate esters, N-acylglutamates and phosphate ester salts; and cationic surfactants such as amine salts and quaternary ammonium salts.
  • anionic surfactants such as higher fatty acid soaps, higher alcohol sulfate esters, N-acylglutamates and phosphate ester salts
  • cationic surfactants such as amine salts and quaternary ammonium salts.
  • Activators amphoteric surfactants such as betaine type, amino acid type, imidazoline type, lecithin
  • fatty acid monoglyceride polyethylene glycol, propylene glycol fatty acid ester, sorbitan fatty acid ester, citrus fatty acid ester, polyglycerin fatty acid ester, ethylene oxide condensate, etc.
  • nonionic surfactants include nonionic surfactants.
  • polymer compound examples include natural polymer compounds such as Arabic rubber, tragant gum, guar gum, locust bean gum, karaya gum, iris moss, quince seed, gelatin, cellac, rosin, and casein; sodium carboxymethyl cellulose, hydroxyethyl cellulose, and the like.
  • Semi-synthetic polymer compounds such as methylcellulose, ethylcellulose, sodium alginate, ester gum, nitrocellulose, hydroxypropylcellulose, crystalline cellulose; polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinylmethyl ether, polyamide resin, silicone Synthetic polymer compounds such as oil, nylon particles, poly (meth) acrylic acid ester particles (for example, polymethyl methacrylate particles, etc.), polystyrene particles, silicone particles, urethane particles, polyethylene particles, resin particles such as silica particles, etc. Can be mentioned.
  • color material raw material examples include iron oxide (red iron oxide, yellow iron oxide, black iron oxide, etc.), ultramarine blue, corn, chromium oxide, chromium hydroxide, carbon black, manganese violet, titanium oxide, zinc oxide, etc.
  • powder raw material such as the above-mentioned polymer compound powder raw material and coloring material raw material
  • those which have been surface-treated in advance can also be used.
  • a surface treatment method known surface treatment techniques can be used. For example, oil treatment with hydrocarbon oil, ester oil, lanolin, etc., silicone treatment with dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, etc.
  • Silane coupling agent treatment with silane coupling agent treatment isopropyltriisostearoyl titanate, titanium coupling agent treatment with isopropyltris (dioctylpyrophosphate) titanate, metal soap treatment, amino acid treatment with acylglutamic acid, etc., lecithin treatment with hydrocarbon egg yolk lecithin, collagen Treatment methods such as treatment, polyethylene treatment, moisturizing treatment, inorganic compound treatment, and mechanochemical treatment can be mentioned.
  • fragrance examples include anisaldehyde, benzyl acetate, geraniol and the like.
  • clay minerals include components having several functions such as extender pigments and adsorbents, such as talc, mica, sericite, titanium sericite (titanium oxide-coated sericite), and white cloud.
  • extender pigments and adsorbents such as talc, mica, sericite, titanium sericite (titanium oxide-coated sericite), and white cloud.
  • examples include mother, VEEGUM (registered trademark) manufactured by Bander Built.
  • preservative / bactericidal agent examples include methylparapen, ethylparapen, propylparapen, benzalkonium, benzethonium and the like.
  • antioxidants include dibutylhydroxytoluene, butylhydroxyanisole, propyl gallate, tocopherol and the like.
  • the ultraviolet absorber include inorganic absorbents such as fine particle titanium oxide, fine particle zinc oxide, fine particle cerium oxide, fine particle iron oxide, and fine particle zirconium oxide, benzoic acid type, paraaminobenzoic acid type, and anthranic acid type. , Sarcylic acid-based, cinnamic acid-based, benzophenone-based, dibenzoylmethane-based, and other organic absorbents.
  • the special compound additive include hormones such as estradiol, estron, ethynyl estradiol, cortisone, hydrocortisone, and prednison, vitamins such as vitamin A, vitamin B, vitamin C, and vitamin E, citric acid, tartrate acid, and lactic acid.
  • hormones such as estradiol, estron, ethynyl estradiol, cortisone, hydrocortisone, and prednison
  • vitamins such as vitamin A, vitamin B, vitamin C, and vitamin E, citric acid, tartrate acid, and lactic acid.
  • volume average particle diameter of the resin particles is measured by Coulter Multisizer TM 4e (manufactured by Beckman Coulter, Inc.). The measurement is carried out after appropriately selecting according to the size of the particles to be measured for the aperture calibrated according to the user's manual.
  • a touch mixer manufactured by Yamato Scientific Co., Ltd., "TOUCHMIXER MT-31”
  • an ultrasonic cleaner Co., Ltd.
  • the BET specific surface area of the resin particles was measured by the BET method (nitrogen adsorption method) described in ISO 9277 1st edition JIS Z 8830: 2001.
  • the BET nitrogen adsorption isotherm was measured using the automatic specific surface area / pore distribution measuring device Tristar II 3020 manufactured by Shimadzu Corporation, and the ratio was calculated from the amount of nitrogen adsorption using the BET multipoint method.
  • the surface area was calculated. After performing the pretreatment by heating gas purging, nitrogen was used as the adsorbent, and the measurement was carried out using the constant volume method under the condition of the adsorbate cross-sectional area of 0.162 nm 2 .
  • a container containing resin particles is heated at 65 ° C., nitrogen purging is performed for 15 minutes, the container is allowed to cool at room temperature, and then the container is heated at 65 ° C. to create a vacuum. This was done by degassing for 90 minutes.
  • the 10% compression strength (S10 strength) of the resin particles was measured under the following measurement conditions using a micro-compression tester "MCTM-210" manufactured by Shimadzu Corporation. Specifically, a dispersion liquid in which resin particles were dispersed in ethanol was applied to a mirror-finished SKS flat plate and dried to prepare a sample for measurement. Then, in an environment of room temperature of 20 ° C. and relative humidity of 50 ⁇ 20%, one independent fine resin particle (a state in which no other resin particle is present within a range of at least 100 ⁇ m in diameter) is selected by an optical microscope of MCTM-210. , The diameter of the selected resin particles was measured with the particle size measurement cursor of MCTM-210.
  • Particles having a particle size close to the volume average particle size were selected.
  • the resin particles were gradually loaded up to a maximum load of 9.81 mN, and the diameter of the previously measured resin particles was displaced by 10%. From the load at that time, the compressive strength was calculated by the following formula. Each resin particle was measured 6 times, and the compression strength (S10 strength) at the time when the average value of the 4 data excluding the maximum value and the minimum value data was displaced by 10% was used.
  • ⁇ Measurement method of ash The ash content of the resin particles is measured by the following method. After weighing 1.0 g of the resin particles, the weighed resin particles were burnt at 750 ° C. for 30 minutes in a microwave muffle furnace Phoenix (manufactured by CEM), and the mass (g) of the remaining residue was measured. Then, the mass (g) of the measured residue was divided by the mass (1.0 g) of the particles before the measurement and converted into a percentage to obtain a ignition residue (mass%).
  • ICPE-9000 manufactured by Shimadzu Corporation
  • the measurement sample was measured by the above-mentioned multi-type ICP emission spectroscopic analyzer under the following measurement conditions to obtain the peak intensity of the wavelength of the Ca metal element.
  • the concentration ( ⁇ g / ml) of the Ca metal element in the measurement sample was determined from the peak intensity of the wavelength of the obtained Ca metal element based on the calibration curve for quantification prepared by the following calibration curve preparation method.
  • the obtained concentration C ( ⁇ g / ml) of the Ca metal element and the mass W (g) of the finely weighed resin particles were substituted into the following formula to calculate the amount of residual metal in the resin particles.
  • Amount of residual metal (C ( ⁇ g / ml) / W (g)) x 50 (ml) ⁇ Measurement conditions> Measurement wavelength: Ca (183.801 nm) Observation direction: Axial direction High frequency output: 1.20 kW Carrier flow rate: 0.7 L / min Plasma flow rate: 10.0 L / min Auxiliary flow rate: 0.6 L / min Exposure time: 30 seconds ⁇ Calibration curve creation method> Standard solution for calibration curve (manufactured by US SPEX, "XSTC-13 (general-purpose mixed standard solution)", 31 element mixture (base 5% HNO 3 ) -about 10 mg / l each) is gradually diluted with ultrapure water.
  • the amount of 3-methoxy-3-methyl-1-butanol in the biodegradable resin particles was measured by the following method. 0.2 g of the resin particles were precisely weighed in a 10 ml centrifuge tube, 5 ml of methanol was added and mixed, and then ultrasonic extraction was performed for 15 minutes. Then, centrifugation was performed at 3,500 rpm for 30 minutes. Then, 20 ⁇ l of 1,000 ppm toluene d8 (methanol solution) was added to a 2 ml volumetric flask as an internal standard substance, and the volume was adjusted with the supernatant after centrifugation.
  • a sample was prepared by filtering the constant volume solution with a non-aqueous 0.20 ⁇ m GL chromatodisc manufactured by GL Sciences Co., Ltd., and measured under the following equipment and conditions.
  • Measuring device "JMS-Q1000GCMkII” manufactured by JEOL Ltd.
  • Mass spectrometer “7890A” manufactured by Agilent Technologies Co., Ltd.
  • Manufacturing example 1 3500 g of 5 mm zirconia beads in a 2 L quartz glass pot mill, 100 g of calcium carbonate (manufactured by Shiraishi Calcium, ACTIFORT700; primary particle size: 20 nm) treated with a silane coupling agent, 450 g of ion-exchanged water, 3-methoxy-3.
  • a calcium carbonate dispersion was obtained by treating 450 g of -methyl-1-butanol (Solfit Fine Grade manufactured by Kuraray Co., Ltd.) with a ball mill rotary stand at a peripheral speed of 100 rpm for 24 hours.
  • Example 1 120 g of a copolymer resin of 3-hydroxyhexanoate and 3-hydroxybutyrate (DAN-01210 manufactured by Danimer; melting point T max 142 ° C.) as a biodegradable resin in a 2 L autoclave equipped with a stirring blade and a thermometer. , 486 g of 3-methoxy-3-methyl-1-butanol as a solvent, 486 g of ion-exchanged water, and 120 g of the calcium carbonate dispersion obtained in Production Example 1 as a dispersion stabilizer were added, and the internal temperature was stirred at a rotation speed of 600 rpm.
  • DAN-01210 manufactured by Danimer; melting point T max 142 ° C.
  • a classifier (trade name "High Bolter NR300” manufactured by Toyo Hi-Tech Co., Ltd.) equipped with a screen with a spread of 45 ⁇ m was prepared.
  • the biodegradable resin particles were classified using a classifier in an air atmosphere having a relative humidity of 20%. Large particles are removed by placing the biodegradable resin particles in an air stream with a relative humidity of 20%, causing the biodegradable resin particles to collide with the screen, and removing the particles that do not pass through the mesh of the screen. , A biodegradable resin was obtained.
  • Example 2 Except for changing to 240 g of biodegradable resin, 372 g of 3-methoxy-3-methyl-1-butanol as a solvent, 372 g of ion-exchanged water, and 240 g of the calcium carbonate dispersion obtained in Production Example 1 as a dispersion stabilizer.
  • a suspension was obtained in the same manner as in Example 1.
  • a dispersion stabilizer removing step, a washing step, and a drying step were carried out in the same manner as in Example 1 except that 100 g (1.14 times the required number of moles) of 20% hydrochloric acid was added to the obtained suspension. ..
  • a biodegradable resin was obtained by carrying out the classification step in the same manner as in Example 1 except that the screen was changed to a screen having an opening of 63 ⁇ m.
  • Example 3 A biodegradable resin was obtained in the same manner as in Example 1 except that the emulsification temperature was changed to 135 ° C.
  • Example 4 The dispersion stabilizer removing step, the washing step, and the drying step were carried out in the same manner as in Example 1 except that they were changed to 702 g of 3-methoxy-3-methyl-1-butanol and 270 g of ion-exchanged water.
  • a biodegradable resin was obtained by carrying out the classification step in the same manner as in Example 1 except that the screen was changed to a screen having an opening of 96 ⁇ m.
  • Example 5 The dispersion stabilizer removing step, the washing step, and the drying step were carried out in the same manner as in Example 1 except that the amount was changed to 162 g of 3-methoxy-3-methyl-1-butanol and 810 g of ion-exchanged water.
  • a biodegradable resin was obtained by carrying out the classification step in the same manner as in Example 1 except that the screen was changed to a screen having an opening of 63 ⁇ m.
  • Example 6 The dispersion stabilizer is the same as in Example 1 except that 120 g of the calcium carbonate dispersion obtained in Production Example 1 as a dispersion stabilizer is changed to 120 g of the calcium carbonate dispersion obtained in Production Example 2 as a dispersion stabilizer. A removal step, a washing step, and a drying step were performed. A biodegradable resin was obtained by carrying out the classification step in the same manner as in Example 1 except that the screen was changed to a screen having a mesh size of 53 ⁇ m.
  • Example 7 120 g of a copolymer resin of 3-hydroxyhexanoate and 3-hydroxybutyrate (DAN-01210 manufactured by Danimer; melting point T max 142 ° C.) was added to 3-hydroxyhexanoate, 3-hydroxybutyrate and 3-hydroxybutyrate.
  • the dispersion stabilizer removing step, the washing step, and the drying step were carried out in the same manner as in Example 1 except that the copolymer resin with hydroxyvariate (DAN-02265 manufactured by Danimer; melting point T max 142 ° C.) was changed to 120 g. went.
  • a biodegradable resin was obtained by carrying out the classification step in the same manner as in Example 1 except that the screen was changed to a screen having a mesh size of 53 ⁇ m.
  • Example 8 A biodegradable resin was obtained in the same manner as in Example 1 except that the rotation speed was changed to 1200 rpm.
  • Comparative Example 1 The dispersion stabilizer removing step, the washing step, and the drying step were carried out in the same manner as in Example 1 except that the emulsification temperature was changed to 120 ° C.
  • a biodegradable resin was obtained by carrying out the classification step in the same manner as in Example 1 except that the screen was changed to a screen having an opening of 150 ⁇ m.
  • Comparative Example 3 The dispersion stabilizer removing step, the washing step, and the drying step were carried out in the same manner as in Example 1 except that 1026 g of ion-exchanged water was added without adding 3-methoxy-3-methyl-1-butanol.
  • a biodegradable resin was obtained by carrying out the classification step in the same manner as in Example 1 except that the screen was changed to a screen having an opening of 150 ⁇ m.
  • Comparative Example 5 A copolymer resin of 3-hydroxybutyrate and 3-hydroxyhexanoate (Aonilex X131A manufactured by Kaneka; melting point T max 137 ° C.) 56 g, hydroxypropyl cellulose 40 g, acetoaceto in a 2 L autoclave equipped with a stirring blade and a thermometer. 704 g of ethyl acetate was added, the mixture was heated to 120 ° C., and the mixture was stirred for 2 hours until the resin was completely dissolved.
  • the biodegradable resin particles of Examples 1 to 8 having a small particle size, excellent adhesion to the skin and light elongation on the skin, and having a certain strength have a particle size.
  • excellent adhesion to the skin, elongation on the skin, and smoothness on the skin could be realized. ..
  • the biodegradable resin particles of Example 1, 10 parts by mass of talc, 5.5 parts by mass of titanium dioxide, and the pigment were well stirred with a kneader (powder part). 1 part by mass of triethanolamine was added to 50 parts by mass of purified water and kept at 70 ° C. (aqueous phase). 1.5 parts by mass of stearic acid, 5 parts by mass of lanolin, 5 parts by mass of squalane, and 2 parts by mass of sorbitan sesquioleic acid ester were mixed, melted by heating, and kept at 70 ° C. (oil phase).
  • the oil phase was added to the aqueous phase, emulsified uniformly with a homomixer, added to the powder portion, kneaded with a kneader, and then the water content was evaporated and pulverized with a pulverizer. Further, the fragrance was uniformly sprayed while stirring the pulverized product well, and compression molding was performed to obtain a solid white powder cosmetic product.
  • the obtained solid white powder cosmetics were able to realize excellent adhesion to the skin, elongation on the skin, and smoothness on the skin.
  • Isotridecyl isononanoate 5 parts by mass, propylparaben 0.25 parts by mass, dimethicone / PEG-10 / 15 crosspolymer 3.5 parts by mass, PEG-9 polydimethylsiloxyethyl dimethicone 2 parts by mass, cyclopentasiloxane 20.1 parts by mass , 2 parts by mass of ethylhexyl methoxycinnamate and 2 parts by mass of disteardimonium hectrite were mixed and dissolved by heating at 70 ° C. (oil phase).
  • the parts were mixed and melted by heating at 70 ° C. (oil phase).
  • An oil phase was added to the powder part and mixed uniformly, then pulverized, passed through a sieve, and compression molded to prepare a pressed powder.
  • the obtained pressed powder was able to realize excellent adhesion to the skin, elongation on the skin, and smoothness on the skin.
  • Example 1 biodegradable resin particles 5 parts by mass, talc 44.1 parts by mass, mica 20 parts by mass, titanium dioxide-coated mica 10 parts by mass, lauroyl lysine 8 parts by mass, zinc laurate 2 parts by mass, red No. 7 0 .5 parts by mass and 0.4 parts by mass of Yellow No. 5 were mixed with a kneader (powder part).
  • a kneader kneader
  • To 6 parts by mass of mineral oil 2 parts by mass of dimethicone and 2 parts by mass of sorbitan sesquioleate were added and dissolved by heating (oil phase). An oil phase was added to the powder portion and kneaded with a kneader, and then compression molding was performed to obtain an eye shadow.
  • the obtained eye shadow was able to realize excellent adhesion to the skin, elongation on the skin, and smoothness on the skin.
  • Example 1 1 part by mass of the biodegradable resin particles of Example 1 was added to the oil phase, and the aqueous phase was added while dispersing with a homomixer to uniformly emulsify. To this, 0.5 mass of a 10% aqueous sodium hydroxide solution was added, and the mixture was cooled to room temperature while stirring with a disper to obtain a skin cream. The obtained skin cream was able to realize excellent adhesion to the skin, spread on the skin, and smoothness on the skin.
  • (Making body lotion) Thoroughly mix 3 parts by mass of biodegradable resin particles, 50 parts by mass of ethanol, 0.1 parts by mass of glycyrrhizic acid, 0.5 parts by mass of fragrance and 46.4 parts by mass of purified water of Example 1 with a mixer to prepare a body lotion. Obtained. The obtained body lotion was able to achieve stretchability and smoothness when applied to the skin.
  • (Making sunscreen cream) 3 parts by mass of biodegradable resin particles, 7 parts by mass of dimethicone, 1 part by mass of polysilicone-13, 1 part by mass of PEG-10 dimethicone, and 1.5 parts by mass of titanium oxide of Example 1 were stirred at room temperature for 1 hour (oil).
  • Phase A 8.5 parts by mass of dimethicone, 4 parts by mass of cyclopentasiloxane, 1 part by mass of polysilicone-13, and 10 parts by mass of zinc oxide were stirred at room temperature for 1 hour (oil phase B).
  • 0.2 parts by mass of phenoxyethanol, 0.1 parts by mass of sodium pyrosulfate, 3 parts by mass of 1,3-butylene glycol, 1 part by mass of glycerin, 0.5 parts by mass of PEG / PPG / polybutylene glycol-8 / 5/3 glycerin , 27.9 parts by mass of purified water was previously heated and dissolved at 80 ° C., the whole oil phase was added thereto, and the mixture was uniformly emulsified and dispersed with a homomixer, and then cooled while stirring to obtain a sunscreen cream.
  • the resulting sunscreen cream was able to achieve excellent skin adhesion, spread on the skin, and smoothness on the skin.
  • the resin particles of the present invention can be suitably used by being blended with external preparations such as cosmetics and quasi-drugs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ポリヒドロキシアルカノエートからなる生分解性樹脂粒子であり、粒子中に含まれるCa成分量が10~10,000ppmであり、体積平均粒子径が2~50μmであり、BET比表面積が0.8~10m/gであり、アマニ油吸油量が50~300ml/100gである、生分解性樹脂粒子。本発明の樹脂粒子は、化粧料、医薬部外品等の外用剤に配合されて好適に使用することができる。

Description

生分解性樹脂粒子及びそれを含有する外用剤
 本発明は、生分解性樹脂粒子及びそれを含有する外用剤に関する。
 樹脂粒子は、大きな比表面積及び粒子の構造を利用して、各種材料の改質及び改良に用いられている。主要用途としては、ファンデーション、制汗剤、スクラブ剤等の化粧品用の配合剤、塗料用艶消し剤、レオロジー改質剤、ブロッキング防止剤、滑り性付与剤、光拡散剤、医療用診断検査剤等の各種剤、自動車材料、建築材料等の成形品への添加剤等の用途が挙げられる。樹脂粒子としては、例えば、ウレタン、アクリル、シリコーン、ポリエチレン等が挙げられる。
 一方、近年の環境問題への関心が高まる中、環境負荷を低減するため、樹脂を使用するあらゆる分野で、非石油原料由来の材料や生分解性の材料を使用することが求められている。例えば、化粧品、塗料等の樹脂粒子が使用される分野でもそのように求められている。
 これまでの生分解性の材料を用いた樹脂粒子の製造方法としては、凍結粉砕に代表される粉砕法(特許文献1)、高温下の溶媒に溶解し、冷却して析出させたり、溶媒に溶解した後に貧溶媒を加えることにより析出させたりする溶媒溶解析出法(特許文献2)等が知られている。
特開2017-2291号公報 特開2016-102152号公報
 しかしながら、化粧料等の外用剤に用いる場合において、特許文献1の樹脂粒子は球形状ではない、粒子径が小さくならない等の課題があり、肌上での伸びの点で更なる向上が求められている。また特許文献2で得られる樹脂粒子は、比較的球状の粒子が得られているが、粒子径が小さくならないという課題があった。また表面が多孔質状であるため、粒子が脆くなり、安定性が低いという課題もあった。
 本発明の課題は、粒子径が小さく、肌に適用した場合、肌への付着性と肌上での軽やかな伸びに優れる生分解性樹脂粒子及びそれを含有する外用剤を提供することである。
 本発明は、下記の[1]、[2]に関する。
[1]ポリヒドロキシアルカノエートからなる生分解性樹脂粒子であり、粒子中に含まれるCa成分量が10~10,000ppmであり、体積平均粒子径が2~50μmであり、BET比表面積が0.8~10m/gであり、アマニ油吸油量が50~300ml/100gである、生分解性樹脂粒子。
[2][1]に記載の生分解性樹脂粒子を含む、外用剤。
 本発明によれば、粒子径が小さく、肌に適用した場合、肌への付着性と肌上での軽やかな伸びに優れる生分解性樹脂粒子及びそれを含有する外用剤を提供することができる。
実施例1の生分解性樹脂粒子のSEM写真である。
(生分解性樹脂樹脂粒子)
 本発明の生分解性樹脂粒子(以下、「本発明の樹脂粒子」とも称する)は、ポリヒドロキシアルカノエートからなる生分解性樹脂粒子である。ポリヒドロキシアルカノエートとしては、3-ヒドロキシブチレート、3-ヒドロキシバリレート、3-ヒドロキシヘキサノエート、及び3-ヒドロキシオクタノエートからなる群より選ばれる1種以上の繰り返し単位からなる重合体や共重合体が挙げられる。このうち、ハンドリング性や使用感を良好なものとする観点から、3-ヒドロキシブチレート単位と3-ヒドロキシヘキサノエート単位の共重合体であるポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、3-ヒドロキシブチレート単位と3-ヒドロキシオクタノエート単位の共重合体であるポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、及び3-ヒドロキシブチレート単位と3-ヒドロキシヘキサノエート単位と3-ヒドロキシバリレート単位の共重合体であるポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート-コ-3-ヒドロキシバリレート)が好ましい。なお、本発明において「ポリヒドロキシアルカノエートからなる生分解性樹脂粒子」とは、樹脂粒子が実質的にポリヒドロキシアルカノエートにより構成されているが、該粒子中にCa成分、3-アルコキシ-3-メチル-1-ブタノール、3-アルコキシ-3-メチル-1-ブチルアセテート等、各種の成分の含有を排除するものではなく、各種成分を含み得るものである。
 本発明の生分解性樹脂粒子は体積平均粒子径が2~50μmである。体積平均粒子径が2μmより小さいと肌への滑りが悪くなる事がある。体積平均粒子径が50μmより大きいと、外用剤などで肌に使用した際に感触が悪くなる傾向がある。好ましい範囲は3~45μm、より好ましい範囲は5~35μm、更に好ましい範囲は8~30μm、更に好ましい範囲は8~25μm、更に好ましい範囲は8~20μmである。体積平均粒子径は、後述の実施例に記載の方法により測定される。
 本発明の生分解性樹脂粒子の粒子径の変動係数(CV値)は特に限定されないが、45%以下であることが好ましい。変動係数が45%以下であると粗大粒子が少なく、外用剤として使用した場合、良好な感触を得ることができる。より好ましくは40%以下、さらに好ましくは35%以下である。
 本発明の生分解性樹脂粒子はBET比表面積が0.8~10m/gである。比表面積が0.8より低いと粒子の比重が重くなり、沈降し易くなる為、外用剤の調液時のハンドリング性が低下し、好ましくない。比表面積が10m/gより高いと、表面が大きな凹凸構造あるいは多孔質形状となるため、粒子強度が低く、保存安定性が低下する為、好ましくない。好ましい範囲は0.9~8m/g、より好ましい範囲は1~5m/gである。BET比表面積は、後述の実施例に記載の方法により測定される。
 本発明の生分解性樹脂粒子はアマニ油吸油量が50~300ml/100gである。アマニ油吸油量が50ml/100gより低いと、肌への滑り性が低下する事がある。吸油量が300ml/100gより高いと、外用剤やリキッドファンデーションの調液時に粘度増加しやすく、ハンドリング性が著しく低下する為好ましくない。好ましい範囲は55~250ml/100g、より好ましい範囲は60~200ml/100gである。アマニ油吸油量は、後述の実施例に記載の方法により測定される。
 本発明の生分解性樹脂粒子は粒子中に含まれるCa成分が10~10,000ppmである。Ca成分が10ppm以上含まれることで親油性物質との馴染みが向上し、外用剤の調液時にダマができにくくなるため、結果として肌への滑りを良好なものとする傾向がある。また、Ca成分が10,000ppm以下であることで、樹脂粒子からCa成分が遊離することを効果的に抑制することができる。また、Ca成分が10,000ppmより多いと、Ca成分の硬度の影響から、外用剤などで肌に使用した際に肌への付着性が低下する傾向があるため、好ましくない。好ましい範囲は20~5,000ppm、より好ましい範囲は30~500ppmである。Ca成分量は、後述の実施例に記載の方法により測定される。
 本発明の生分解性樹脂粒子の10%圧縮強度は、特に限定されないが、肌への滑りを良好なものとする観点から、好ましくは0.5MPa以上であり、より好ましくは0.7MPa以上であり、さらに好ましくは1MPa以上であり、また、軟らかな感触を得る観点から、好ましくは10MPa以下であり、より好ましくは8MPa以下であり、さらに好ましくは6MPa以下であり、これらいずれの組み合わせによる範囲としてもよい。圧縮強度は、後述の実施例に記載の方法により測定される。
 本発明の生分解性樹脂粒子は、粒子表面に分散安定剤が被覆されていてもよいし、必要に応じて分散安定剤を除去してもよい。分散安定剤の被覆量は樹脂粒子を750℃で30分加熱した後の灰分量により見積もることができる。除去により、灰分量を0.01~3%にすることで、分散安定剤が粒子から遊離する事を効果的に抑制することができる。灰分は、後述の実施例に記載の方法により測定される。
 分散安定剤としては、特に限定されないが、炭酸カルシウム、リン酸カルシウム等の難水溶性無機化合物等を用いることができる。上記の中でも、分散安定剤を容易に除去できるという点において、炭酸カルシウムが好ましい。特に、シランカップリング剤で表面処理した炭酸カルシウムは生分解性樹脂と馴染みが高く、分散安定性に優れており、粒子径のコントロールがし易いため、好ましい。分散安定剤の粒子径は、特に限定されないが、比表面積が高い観点から1次粒子径が小さいものが好ましい。好ましい分散安定剤の平均1次粒子径は10~1000nm、より好ましくは10~500nm、さらに好ましくは10~100nmである。
 本発明の生分解性樹脂粒子は3-アルコキシ-3-メチル-1-ブタノール及び3-アルコキシ-3-メチル-1-ブチルアセテート(但し、いずれもアルコキシ基の炭素数は1~5個)のうち少なくとも1つを更に含んでもよい。上記物質を含むことで親水性物質、親油性物質との馴染みが向上する。含有量は粉体として取り扱うためのハンドリング性を考慮すると、0.010~0.500質量%が好ましく、0.020~0.100質量%がさらに好ましい。
(生分解性樹脂粒子の製造方法)
 本発明の生分解性樹脂粒子の製造方法は、特に限定されるものではないが、以下の(1)~(4)に示される工程を含む製造方法が例示される。
(1)生分解性樹脂として、ポリヒドロキシアルカノエート樹脂を、3-アルコキシ-3-メチル-1-ブタノール及び3-アルコキシ-3-メチル-1-ブチルアセテート(但し、いずれもアルコキシ基の炭素数は1~5個)のうち少なくとも1つを含む溶媒、水及び分散安定剤の存在下、DSC測定による前記樹脂の融点の最大となる温度ピークをTmaxとした場合、Tmax±15℃で乳化・分散する工程(乳化・分散工程)
(2)その後冷却することで得られる粒子表面に分散安定剤が被覆された生分解性樹脂粒子分散体を得る工程(冷却・粒子化工程)
(3)被覆された分散安定剤を除去することで得られる生分解性樹脂粒子分散体を得る工程(分散安定剤除去工程)
(4)(2)又は(3)で得られた粒子をろ過・洗浄・脱水・乾燥・分級することで生分解性樹脂粒子粉体を得る工程(粉体化工程)
 上記製造方法によれば、通常生分解性樹脂の微粒子化法でよく用いられる皮膚刺激性のある有機溶媒(例えば、キシレン、トルエン、n-メチルピロリドン、クロロホルム、塩化メチレン、ジオキソラン、THF等)を用いることなく、安全性の高いアルコール溶媒を使用しており、球状で、小粒子径で、粒度分布の狭い生分解性樹脂粒子を製造できる。また、3-アルコキシ-3-メチル-1-ブタノール及び/又は3-アルコキシ-3-メチル-1-ブチルアセテートは、生分解性を有し、かつ低皮膚刺激性であるため、化粧品のような用途で用いる際の残留による悪影響を抑制できる。加えて、3-アルコキシ-3-メチル-1-ブタノール及び/又は3-アルコキシ-3-メチル-1-ブチルアセテートは、高温で生分解性樹脂を溶解又は可塑化するが、常温では生分解性樹脂を溶解しないので、これらアルコール系溶媒を容易に再利用でき、工業的に有利である。この製造方法により得られた生分解性樹脂粒子は、他の製造方法により得られた粒子に比べ、吸油特性に優れるという効果を有する。
(a)乳化・分散工程
 溶媒は、3-アルコキシ-3-メチル-1-ブタノール及び/又は3-アルコキシ-3
-メチル-1-ブチルアセテート(以下、特定溶媒とも称する)を含む。特定溶媒が溶媒
中に占める割合は、吸油特性や粒子化の観点から、好ましい範囲は10~90%であり、より好ましい範囲は20~80%であり、更に好ましい範囲は30~70%である。特定溶媒以外の使用可能溶媒としては、メタノール、エタノール等の低級アルコール、酢酸エチル、酢酸ブチル等の酢酸エステル系溶剤が挙げられる。特定溶媒としては、クラレ社製からソルフィットの商品名で市販されている溶媒も使用できる。また、3-アルコキシ-3-メチル-1-ブタノールは、例えば、国際公開WO2013/146370号に記載の方法により製造できる。ここで、特定溶媒中のアルコキシ基の炭素数は、それぞれ独立して1~5個である。アルコキシ基の炭素数が5より大きい場合、溶解性が悪化することがある。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基が挙げられる。プロポキシ基、ブトキシ基及びペンチルオキシ基には、直鎖状だけではなく、取り得る構造異性体も含まれる。好ましいアルコキシ基は、メトキシ基、エトキシ基、プロポキシ基である。溶媒の使用量は、生分解性樹脂100質量部に対して、十分な攪拌混合を行う観点や生産性の観点から、好ましい使用量は100~1200質量部であり、より好ましい使用量は100~800質量部であり、更に好ましい使用量は100~400質量部である。
 分散安定剤は、上記したものを使用することができ、1次粒子径がサブミクロン以下の場合、粉体の状態では凝集体のものが多く、解砕処理することが好ましい。解砕方法に関しては、特に限定されないが、再凝集の防止の観点から湿式でのボールミルやビーズミルなどが好適に用いる事ができる。分散安定剤は、再凝集の防止の観点から、溶媒分散体の状態で保存することが好ましい。溶媒分散体の固形分濃度は特に限定されないが、沈降・凝集を抑制する観点や解砕不良を防止する観点から、好ましくは3%~20%であり、より好ましくは4~18%であり、さらに好ましくは5~15%である。
 また、上記の分散安定剤に加えて、アニオン性界面活性剤等の界面活性剤を併用することも可能である。界面活性剤の添加量としては、例えば、水100質量部に対して0.01~0.5質量部で使用することができる。
 加熱攪拌時にエマルションを形成させるに十分な剪断力を得るためには、撹拌羽根による液相撹拌法、ホモジナイザーによる混合法、超音波照射法等の通常公知の方法で混合することができる。撹拌の速度及び時間は、生分解性樹脂が溶媒中に均一に分散する様に、適宜選択される。加熱撹拌は、通常、加圧下で行われる。
(b)冷却・粒子化工程
 生分解性樹脂を含む溶媒は、加熱撹拌後、冷却される。加熱撹拌時の温度から冷却温度までは緩やかに冷却することが好ましく、具体的には0.5~5.0℃/分の速度で冷却することが好ましい。また、冷却は、撹拌しつつ行うことが好ましい。撹拌速度は、加熱撹拌の撹拌速度と同様の範囲とすることができる。
(c)分散安定剤除去工程・粉体化工程
 冷却後の溶媒中の生分解性樹脂粒子は、ろ過、洗浄、脱水、乾燥を経て、溶媒から取り出される。分散安定剤が被覆されていない生分解性樹脂粒子を得る場合は、上記ろ過工程の前に分散安定剤を酸などで除去する工程を追加する。分散安定剤を分解する際は、加水分解抑制及び肌上での伸びの観点から、強酸とならない様に必要モル数の1.05~1.50倍、より好ましくは1.05~1.20倍の酸を加え、40℃以下で攪拌し、24時間以内、より好ましくは12時間以内にろ過、洗浄することが好ましい。乾燥は、減圧乾燥法やスプレードライ法を用いることができる。乾燥後の生分解性樹脂粒子を分級することで本発明の生分解性樹脂粒子を得ることができる。分級方法としては、風力分級、スクリーン分級などが挙げられる。風力分級とは、空気の流れを利用して粒子を分級する方法をいう。スクリーン分級とは、スクリーン上に生分解性樹脂粒子を供給し、スクリーンを振動させることによって、スクリーン上の生分解性樹脂粒子を、スクリーンの網目を通過する粒子と通過しない粒子とに分級する方法をいう。分級は、生分解性樹脂粒子が空気中の水分を吸収しないように除湿された空気の雰囲気下にて行われることが好ましく、具体的には、空気の相対湿度が30%以下の雰囲気下にて行われることが好ましく、空気の相対湿度が20%以下の雰囲気下にて行われることがより好ましい。このようにして得られた生分解性樹脂粒子は、空気中の水分を吸収しないように、製造後は、湿気を透過しにくい包装材料で密封し包装物品として保存しておくことが好ましい。
(外用剤)
 本発明の生分解性樹脂粒子は、例えば、化粧料、医薬部外品等の外用剤に配合されて好適に使用することができる。化粧料としては、パウダーファンデーション、乳液、リキッドファンデーションなどが挙げられる。医薬部外品としてはスクラブなどが挙げられる。
 
 本発明の化粧料における本発明の生分解性樹脂粒子の含有量は、化粧料の種類に応じて適宜設定できるが、所望の効果を発現させる観点から、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、また、生産コスト、安定性、感触を良好なものとする観点から、好ましくは50質量%以下、より好ましくは30質量%以下であり、これらいずれの組み合わせによる範囲としてもよい。
 本発明の化粧料としては、特に限定されないが、例えば、おしろい類、フェイスパウダー(ルースパウダー、プレストパウダー等)、ファンデーション(パウダーファンデーション、リキッドファンデーション、乳化型ファンデーション等)、口紅、リップクリーム、頬紅、眉目化粧品、マニキュア等のメイクアップ化粧料;石鹸、ボディシャンプー、洗顔クリーム、スクラブ洗顔料、歯磨き等の洗浄用化粧料;プレシェーブローション、ボディローション等のローション剤、ボディーパウダー、ベビーパウダー等のボディー用外用剤、化粧水、クリーム、乳液(化粧乳液)等のスキンケア化粧料;日焼け止め化粧料、サンタン製品、制汗剤(液状制汗剤、固形状制汗剤、クリーム状制汗剤等)、パック類、洗髪用化粧品、染毛料、整髪料、芳香性化粧品、浴用剤、ひげ剃り用クリーム等が挙げられる。特に、環境負荷低減の観点から、スキンケア化粧料、洗浄用化粧料、日焼け止め化粧料等が好ましい。
 本発明の化粧料には、本発明の効果を損なわない範囲で、一般に用いられている主剤または添加物を目的に応じて配合できる。そのような主剤または添加物としては、例えば、水、低級アルコール(炭素数5以下のアルコール)、油脂及びロウ類、炭化水素、高級脂肪酸、高級アルコール、ステロール、脂肪酸エステル、金属石鹸、保湿剤、界面活性剤、高分子化合物、色材原料、香料、粘土鉱物類、防腐・殺菌剤、抗炎症剤、酸化防止剤、紫外線吸収剤、有機無機複合粒子、pH調整剤(トリエタノールアミン等)、特殊配合添加物、医薬品活性成分等が挙げられる。
 前記油脂及びロウ類の具体例としては、アボガド油、アーモンド油、オリーブ油、カカオ脂、牛脂、ゴマ脂、小麦胚芽油、サフラワー油、シアバター、タートル油、椿油、パーシック油、ひまし油、ブドウ油、マカダミアナッツ油、ミンク油、卵黄油、モクロウ、ヤシ油、ローズヒップ油、硬化油、シリコーン油、オレンジラフィー油、カルナバロウ、キャンデリラロウ、鯨ロウ、ホホバ油、モンタンロウ、ミツロウ、ラノリン等が挙げられる。
 前記炭化水素の具体例としては、流動パラフィン、ワセリン、パラフィン、セレシン、マイクロクリスタリンワックス、スクワラン等が挙げられる。
 前記高級脂肪酸の具体例としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニン酸、ウンデシレン酸、オキシステアリン酸、リノール酸、ラノリン脂肪酸、合成脂肪酸等の炭素数11以上の脂肪酸が挙げられる。
 前記高級アルコールの具体例としては、ラウリルアルコール、セチルアルコール、セトステアリルアルコール、ステアリルアルコール、オレイルアルコール、ベヘニルアルコール、ラノリンアルコール、水素添加ラノリンアルコール、へキシルデカノール、オクチルデカノール、イソステアリルアルコール、ホホバアルコール、デシルテトラデカノール等の炭素数6以上のアルコールが挙げられる。
 前記ステロールの具体例としては、コレステロール、ジヒドロコレステロール、フィトコレステロール等が挙げられる。
 前記脂肪酸エステルの具体例としては、リノール酸エチル等のリノール酸エステル;ラノリン脂肪酸イソプロピル等のラノリン脂肪酸エステル;ラウリン酸ヘキシル等のラウリン酸エステル;ミリスチン酸イソプロピル、ミリスチン酸ミリスチル、ミリスチン酸セチル、ミリスチン酸オクチルドデシル等のミリスチン酸エステル;オレイン酸デシル、オレイン酸オクチルドデシル等のオレイン酸エステル;ジメチルオクタン酸ヘキシルデシル等のジメチルオクタン酸エステル;イソオクタン酸セチル(2-エチルヘキサン酸セチル)等のイソオクタン酸エステル;イソノナン酸エチルヘキシル、イソノナン酸イソノニル、イソノナン酸イソトリデシル等のイソノナン酸エステル;パルミチン酸イソプロピル、パルミチン酸エチルへキシル、パルミチン酸デシル等のパルミチン酸エステル;トリミリスチン酸グリセリン、トリ(カプリル・カプリン酸)グリセリン、ジオレイン酸プロピレングリコール、トリイソステアリン酸グリセリン、トリイソオクタン酸グリセリン、乳酸セチル、乳酸ミリスチル、リンゴ酸ジイソステアリル、イソステアリン酸コレステリル、12-ヒドロキシステアリン酸コレステリル等の環状アルコール脂肪酸エステル等が挙げられる。
 上記の油脂及びロウ類、炭化水素類、高級脂肪酸類、高級アルコール類、ステロール類、脂肪酸エステル油類等の油剤として、好ましくは不揮発性油であり、より好ましくは20℃の粘度が550mPa・s以下の不揮発性油、さらに好ましくは1~550mPa・sの不揮発性油、さらに好ましくは5~550mPa・sの不揮発性油である。このような不揮発性油は、本発明の生分解性樹脂粒子と組合せることで、油との馴染みが良く、粒子を均一に塗布することができ、塗布後のキメの整った明るい仕上がり、優れた肌への付着性、肌上での軽やかな伸び、優れた経時安定性といった効果が得られる。20℃の粘度が550mPa・s以下の不揮発性油としては、流動パラフィン、スクワラン、オリーブ油、ひまし油、ホホバ油、ミンク油、マカデミアンナッツ油、ラウリン酸ヘキシル、ミリスチン酸イソプロピル、ミリスチン酸オクチルドデシル、イソオクタン酸セチル(2-エチルヘキサン酸セチル)、イソノナン酸エチルヘキシル、イソノナン酸イソノニル、イソノナン酸イソトリデシル、パルミチン酸イソプロピル、パルミチン酸エチルへキシル、パルミチン酸デシル、トリ(カプリル・カプリン酸)グリセリン、トリイソステアリン酸グリセリン、トリイソオクタン酸グリセリンなどが好適に例示される。本発明の化粧料における上記不揮発性油の含有量は、上記効果を発現させる観点から1~20質量%が好ましい。本明細書における不揮発性油とは、室温および大気圧下で、少なくとも数時間皮膚上に残存し、かつ特に0.13Pa(0.01mmHg)未満の蒸気圧を有する油を意味する。
 前記金属石鹸の具体例としては、ラウリン酸亜鉛、ミリスチン酸亜鉛、ミリスチン酸マグネシウム、パルミチン酸亜鉛、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ウンデシレン酸亜鉛等が挙げられる。
 前記保湿剤の具体例としては、グリセリン、プロピレングリコール、1,3-ブチレングリコール、ポリエチレングリコール、dl-ピロリドンカルボン酸ナトリウム、乳酸ナトリウム、ソルビトール、ヒアルロン酸ナトリウム、ポリグリセリン、キシリット、マルチトール等が挙げられる。
 前記界面活性剤の具体例としては、高級脂肪酸石鹸、高級アルコール硫酸エステル、N-アシルグルタミン酸塩、リン酸エステル塩等のアニオン性界面活性剤;アミン塩、第4級アンモニウム塩等のカチオン性界面活性剤;ベタイン型、アミノ酸型、イミダゾリン型、レシチン等の両性界面活性剤;脂肪酸モノグリセリド、ポリエチレングリコール、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、酸化エチレン縮合物等の非イオン性界面活性剤が挙げられる。
 前記高分子化合物の具体例としては、アラビアゴム、トラガントガム、グアーガム、ローカストビーンガム、カラヤガム、アイリスモス、クインスシード、ゼラチン、セラック、ロジン、カゼイン等の天然高分子化合物;カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、アルギン酸ナトリウム、エステルガム、ニトロセルロース、ヒドロキシプロピルセルロース、結晶セルロース等の半合成高分子化合物;ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリビニルメチルエーテル、ポリアミド樹脂、シリコーン油、ナイロン粒子、ポリ(メタ)アクリル酸エステル粒子(例えば、ポリメタクリル酸メチル粒子等)、ポリスチレン粒子、シリコーン系粒子、ウレタン粒子、ポリエチレン粒子、シリカ粒子等の樹脂粒子等の合成高分子化合物が挙げられる。
 前記色材原料の具体例としては、酸化鉄(赤色酸化鉄、黄色酸化鉄、黒色酸化鉄等)、群青、コンジョウ、酸化クロム、水酸化クロム、カーボンブラック、マンガンバイオレット、酸化チタン、酸化亜鉛、タルク、カオリン、炭酸カルシウム、炭酸マグネシウム、雲母、ケイ酸アルミニウム、ケイ酸バリウム、ケイ酸カルシウム、ケイ酸マグネシウム、シリカ、ゼオライト、硫酸バリウム、焼成硫酸カルシウム(焼セッコウ)、リン酸カルシウム、ヒドロキシアパタイト、セラミックパウダー等の無機顔料、アゾ系、ニトロ系、ニトロソ系、キサンテン系、キノリン系、アントラキノリン系、インジゴ系、トリフェニルメタン系、フタロシアニン系、ピレン系等のタール色素が挙げられる。
 なお、上記した高分子化合物の粉体原料や色材原料などの粉体原料は、予め表面処理を行ったものも使用することができる。表面処理の方法としては、公知の表面処理技術が利用でき、例えば、炭化水素油、エステル油、ラノリン等による油剤処理、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン等によるシリコーン処理、パーフルオロアルキル基含有エステル、パーフルオロアルキルシラン、パーフルオロポリエーテルおよびパーフルオロアルキル基を有する重合体等によるフッ素化合物処理、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等によるシランカップリング剤処理、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート等によるチタンカップリング剤処理、金属石鹸処理、アシルグルタミン酸等によるアミノ酸処理、水添卵黄レシチン等によるレシチン処理、コラーゲン処理、ポリエチレン処理、保湿性処理、無機化合物処理、メカノケミカル処理等の処理方法が挙げられる。
 前記香料の具体例としては、アニスアルデヒド、ベンジルアセテート、ゲラニオール等が挙げられる。
 前記粘土鉱物類の具体例としては、体質顔料および吸着剤などの数種の機能を兼ね備えた成分、例えば、タルク、マイカ、セリサイト、チタンセリサイト(酸化チタンで被覆されたセリサイト)、白雲母、バンダービルト社製のVEEGUM(登録商標)等が挙げられる。
 前記防腐・殺菌剤の具体例としては、メチルパラペン、エチルパラペン、プロピルパラペン、ベンザルコニウム、ベンゼトニウム等が挙げられる。
 前記酸化防止剤の具体例としては、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸プロピル、トコフェロール等が挙げられる。
 前記紫外線吸収剤の具体例としては、微粒子酸化チタン、微粒子酸化亜鉛、微粒子酸化セリウム、微粒子酸化鉄、微粒子酸化ジルコニウム等の無機系吸収剤、安息香酸系、パラアミノ安息香酸系、アントラニリック酸系、サルチル酸系、桂皮酸系、ベンゾフェノン系、ジベンゾイルメタン系等の有機系吸収剤が挙げられる。
 前記特殊配合添加物の具体例としては、エストラジオール、エストロン、エチニルエストラジオール、コルチゾン、ヒドロコルチゾン、プレドニゾン等のホルモン類、ビタミンA、ビタミンB、ビタミンC、ビタミンE等のビタミン類、クエン酸、酒石酸、乳酸、塩化アルミニウム、硫酸アルミニウム・カリウム、アラントインクロルヒドロキシアルムニウム、パラフェノールスルホン酸亜鉛、硫酸亜鉛等の皮膚収斂材剤、カンタリスチンキ、トウガラシチンキ、ショウキョウチンキ、センブリエキス、ニンニクエキス、ヒノキチオール、塩化カルプロニウム、ペンタデカン酸グリセリド、ビタミンE、エストロゲン、感光素等の発毛促進剤、リン酸-L-アスコルビン酸マグネシウム、コウジ酸等の美白剤等が挙げられる。
 以下、実施例を示して本発明を具体的に説明する。なお、この実施例は、単なる本発明の例示であり、何ら限定を意味するものではない。
<体積平均粒子径の測定>
 樹脂粒子の体積平均粒子径は、コールターMultisizerTM 4e(ベックマン・コールター株式会社製)により測定する。測定は、ユーザーズマニュアルに従って校正されたアパチャーを測定する粒子の大きさによって、適宜選択した上で、実施する。測定用試料としては、樹脂粒子0.1gを0.1質量%ノニオン性界面活性剤水溶液10ml中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)及び超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散液としたものを使用する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、樹脂粒子を10万個測定する。樹脂粒子の体積平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均である。
 樹脂粒子の粒子径の変動係数(CV値)を、以下の数式によって算出する。
 
樹脂粒子の粒子径の変動係数=(樹脂粒子の体積基準の粒度分布の標準偏差
               ÷樹脂粒子の体積平均粒子径)×100
<BET比表面積の測定方法>
 樹脂粒子のBET比表面積は、ISO 9277第1版 JIS Z 8830:2001記載のBET法(窒素吸着法)により測定した。対象となる樹脂粒子について、株式会社島津製作所社製の自動比表面積/細孔分布測定装置Tristar II 3020を用いてBET窒素吸着等温線を測定し、窒素吸着量からBET多点法を用いて比表面積を算出した。
 加熱ガスパージによる前処理を実施した後、吸着質として窒素を用い、吸着質断面積0.162nm2の条件下で定容量法を用いて測定を行った。なお、前記前処理は、具体的には、樹脂粒子が入った容器を65℃で加熱しながら、窒素パージを15分行い、室温放冷した後、その容器を65℃で加熱しながら、真空脱気を90分間行うことにより、行った。
<アマニ油吸油量測定方法>
 樹脂粒子のアマニ油吸油量は、JIS K 5101-13-2:2004の測定方法を参考に、煮アマニ油に代えて一級アマニ油を使用し、終点の判断基準を変更した方法によって、測定した。吸油量の測定の詳細は、以下の通りである。
 (A)装置及び器具
 測定板:縦200mm×横200mm×厚み5mmの平滑なガラス板  
 パレットナイフ(ヘラ):鋼製又はステンレス製の刃を持った柄つきのもの
 化学はかり(計量器): 10mgオーダーまで計れるもの
 ビュレット:JIS R 3505:1994に規定する容量10mlのもの
 (B)試薬:一級アマニ油(和光純薬工業株式会社製)
 (C)測定方法
 (1)樹脂粒子1gを測定板上の中央部に取り、一級アマニ油をビュレットから一回に4、5滴ずつ、徐々に樹脂粒子の中央に滴下し、その都度、樹脂粒子および一級アマニ油の全体をパレットナイフで充分練り合わせる。
 (2)上記の滴下及び練り合わせを繰り返し、樹脂粒子および一級アマニ油の全体が固いパテ状の塊になったら1滴ごとに練り合わせて、一級アマニ油の最後の1滴の滴下によりペースト(樹脂粒子および一級アマニ油の混練物)が急激に軟らかくなり、流動を始める点を終点とする。
 (3)流動の判定
 一級アマニ油の最後の1滴の滴下により、ペーストが急激に軟らかくなり、測定板を垂直に立てた時にペーストが動いた場合に、ペーストが流動していると判定する。測定板を垂直に立てた時もペーストが動かない場合には、更に一級アマニ油を1滴加える。
 (4)終点に達したときの一級アマニ油の消費量を読み取る。
 (5)1回の測定時間は7~15分以内に終了するように実施し、測定時間が15分を超えた場合は再測定し、規定の時間内で測定を終了した時の数値を採用する。
 (D)吸油量の計算
 下記式により試料100g当たりの吸油量を計算する。
 O=(V/m)×100
 ここで、O:吸油量(ml/100g)、m:樹脂粒子の質量(g)、V:消費した一級アマニ油の容量(ml)
なお、測定は3回行い、その平均値をアマニ油吸油量とした。
<10%圧縮強度の測定方法>
 樹脂粒子の10%圧縮強度(S10強度)は、株式会社島津製作所製の微小圧縮試験機「MCTM-210」を用いて、下記測定条件にて測定した。具体的には、エタノール中に樹脂粒子を分散させた分散液を、鏡面仕上げしたSKS平板に塗布し、乾燥させて、測定用試料を調製した。次いで、室温20℃、相対湿度50±20%の環境下、MCTM-210の光学顕微鏡で一個の独立した微細な樹脂粒子(少なくとも直径100μmの範囲内に他の樹脂粒子が存在しない状態)を選び出し、選び出した樹脂粒子の直径を、MCTM-210の粒子径測定カーソルで測定した。粒子は体積平均粒子径に近い粒子径のものを選び出した。選び出した樹脂粒子の頂点に試験用圧子を下記の負荷速度で降下させることにより、最大荷重9.81mNまで、徐々に樹脂粒子に荷重をかけ、先に測定した樹脂粒子の直径が10%変位した時点の荷重から、次式により、圧縮強度を求めた。各樹脂粒子に対して6回の測定を行い、最大値、最小値のデータを除く4データの平均値を10%変位した時点での圧縮強度(S10強度)とした。
 <圧縮強度の算出式>
 圧縮強度(Mpa)=2.8×荷重(N)/{π×(粒子径(mm))
 <圧縮強度の測定条件>
 試験温度:常温(20℃)相対湿度50±20%
 上部加圧圧子:直径50μmの平面圧子(材質:ダイヤモンド)
       (直径が50μmより大きい粒子は直径500μmの平面圧子を使用)
 下部加圧板:SKS平板
 試験種類:圧縮試験(MODE1)
 試験荷重:9.81mN
 負荷速度:0.732mN/sec
<灰分の測定方法>
 樹脂粒子の灰分は下記の方法で測定する。
 樹脂粒子1.0gを計量した後、計量した樹脂粒子を750℃で30分間、マイクロウェーブマッフル炉Phoenix(CEM社製)内で焼失させて、残った残渣の質量(g)を測定した。そして、測定した残渣の質量(g)を、測定前の粒子の質量(1.0g)で除し、百分率換算して、強熱残分(質量%)を得た。
<Ca成分量>
 樹脂粒子に含まれるCa成分量は、マルチタイプICP発光分光分析装置(株式会社島津製作所製、「ICPE-9000」)を用いて、測定した。
 具体的には、樹脂粒子1.0gを坩堝に精秤し、精秤した樹脂粒子を、電気炉(株式会社いすず製のマッフル炉STR-15K)を用いて450℃で3時間加熱することにより、灰化させた。灰化した樹脂粒子を濃塩酸2mlに溶解させ、超純水にて50mlに定容して測定試料とした。そして、測定試料について、下記測定条件にて、上記マルチタイプICP発光分光分析装置による測定を実施し、Ca金属元素の波長のピーク強度を得た。次いで、得られたCa金属元素の波長のピーク強度から、下記検量線作成方法により作成した定量用の検量線に基づき、測定試料中のCa金属元素の濃度(μg/ml)を求めた。そして、求めたCa金属元素の濃度C(μg/ml)と、上記の精秤した樹脂粒子の質量W(g)とを以下の式に代入し、樹脂粒子中の残存金属量を算出した。
 残存金属量=(C(μg/ml)/W(g))×50(ml)
 <測定条件>
 測定波長:Ca(183.801nm)
 観測方向:軸方向
 高周波出力:1.20kW
 キャリアー流量:0.7L/min
 プラズマ流量:10.0L/min
 補助流量:0.6L/min
 露光時間:30秒
 <検量線作成方法>
 検量線用標準液(米国SPEX社製、「XSTC-13(汎用混合標準溶液)」、31元素混合(ベース5%HNO)-各約10mg/l)を超純水で段階的に希釈調製して、0ppm(ブランク)、0.25ppm、1ppm、2.5ppm、及び5ppmの濃度の標準液をそれそれ調製した。各濃度の標準液について、上記測定条件にて上記マルチタイプICP発光分光分析装置による測定を実施し、Ca金属元素の波長のピーク強度を得た。Ca金属元素について、濃度とピーク強度をプロットし、最小二乗法による近似線(直線あるいは二次曲線)を求め、求めた近似線を定量用の検量線とした。
<3-メトキシ-3-メチル-1-ブタノール量の測定>
 生分解性樹脂粒子中の3-メトキシ-3-メチル-1-ブタノール量は下記方法で測定した。樹脂粒子0.2gを10ml遠沈管に精秤し、メタノール5mlを加えて混合後、15分間超音波抽出を行った。その後、3,500rpmで30分間遠心分離を行った。その後、2mlメスフラスコに内部標準物質として1,000ppmトルエンd8(メタノール溶液)を20μl添加し、上記遠心分離後の上澄み液で定容した。定容した溶液をジーエルサイエンス(株)製GLクロマトディスク非水系0.20μmでろ過することで試料を作成し、以下の装置及び条件で測定した。
[GC/MS測定条件]
測定装置=日本電子(株)製「JMS-Q1000GCMkII」質量分析計
アジレントテクノロジー(株)製「7890A」ガスクロマトグラフ装置
カラム=Phenomenex製「ZB-1」キャピラリーカラム(1.0μm×0.25mmΦ×60m )
[GCオーブン昇温条件]
初期温度=40℃(3min保持)  
第1段階昇温速度=15℃/min(200℃まで)
第2段階昇温速度=25℃/min(250℃まで)
最終温度=250℃(6.33min保持)
キャリアーガス=He
He流量=1ml/min
注入口温度=250℃
インターフェイス温度=250℃
検出器電圧=-900V
スプリット比=1/50
イオン源温度=250℃
イオン化電流=300uA
イオン化エネルギー=70eV
検出方法=SIM法(3-メトキシ-3-メチル-1-ブタノール(m/z=41、69)、トルエンd8(m/z=98、100)) 
 
 得られた抽出試料のGC/MSクロマトグラムのうちの3-メトキシ-3-メチル-1-ブタノール由来ピーク面積を、内部標準物質であるトルエンd8のピーク面積に対する相対面積比として算出し、予め作成しておいた検量線より測定値を求め、生分解性樹脂粒子中の3-メトキシ-3-メチル-1-ブタノール量とした。
製造例1
 2Lの石英ガラスポットミルに5mmジルコニアビーズ3,500g、シランカップリング剤で処理された炭酸カルシウム(白石カルシウム社製、ACTIFORT700;1次粒子径:20nm)100g、イオン交換水450g、3-メトキシ-3-メチル-1-ブタノール(クラレ社製  ソルフィットファイングレード)450gを添加したものをボールミル回転架台で周速100rpmで24時間処理する事で炭酸カルシウム分散液を得た。
製造例2
 シランカップリング剤で処理された炭酸カルシウム(白石カルシウム社製、ACTIFORT700;1次粒子径:20nm)100gをシランカップリング剤で処理された炭酸カルシウム(白石カルシウム社製、RK53BR;1次粒子径:150nm)100g
に変更したこと以外は製造例1と同様に炭酸カルシウム分散液を得た。
実施例1
 撹拌翼及び温度計を取り付けた2Lオートクレーブに生分解性樹脂として3-ヒドロキシヘキサノエートと3-ヒドロキシブチレートとの共重合体樹脂(Danimer社製DAN-01210;融点Tmax142℃)を120g、溶媒として3-メトキシ-3-メチル-1-ブタノール486g、イオン交換水486g、分散安定剤として製造例1で得られた炭酸カルシウム分散液120gを投入し、回転数600rpmで攪拌しながら内温が142℃となるように加熱し、142℃到達後、60分乳化した。その後、撹拌回転数を維持したまま30℃まで1時間かけて冷却し、懸濁液を得た。得られた懸濁液に20%塩酸を50g(必要モル数の1.14倍)加え、10分間攪拌して炭酸カルシウムを分解した後、遠心分離機(タナベウィルテック社製)を用いて生分解性樹脂粒子を分離し、得られた生分解性樹脂粒子を樹脂の添加量に対して20倍量のイオン交換水を用いて洗浄した。次に、得られた生分解性樹脂粒子を60℃、真空度0.05MPaの条件にて20時間に亘って乾燥した。目開き45μmのスクリーンを設置した分級機(東洋ハイテック社製  商品名「ハイボルターNR300」)を用意した。分級機を用いて生分解性樹脂粒子を相対湿度が20%の空気雰囲気下にて分級した。生分解性樹脂粒子を相対湿度が20%の空気の流れにのせて、生分解性樹脂粒子をスクリーンに衝突させ、スクリーンの網目を通過しない粒子を除去することによって粒径の大きな粒子を除去し、生分解性樹脂を得た。
実施例2
 生分解性樹脂を240g、溶媒として3-メトキシ-3-メチル-1-ブタノール372g、イオン交換水372g、分散安定剤として製造例1で得られた炭酸カルシウム分散液240g、に変更したこと以外は実施例1と同様にして懸濁液を得た。得られた懸濁液に20%塩酸を100g(必要モル数の1.14倍)加えたこと以外は、実施例1と同様にして分散安定剤除去工程、及び洗浄工程、乾燥工程を行った。分級工程は目開き63μmのスクリーンに変更したこと以外は実施例1同様にして行う事で生分解性樹脂を得た。
実施例3
 乳化温度を135℃に変更したこと以外は実施例1と同様にして生分解性樹脂を得た。
実施例4
 3-メトキシ-3-メチル-1-ブタノール702g、イオン交換水270gに変更した以外は実施例1と同様にして分散安定剤除去工程、及び洗浄工程、乾燥工程を行った。分級工程は目開き96μmのスクリーンに変更したこと以外は実施例1同様にして行う事で生分解性樹脂を得た。
実施例5
 3-メトキシ-3-メチル-1-ブタノール162g、イオン交換水810gに変更したこと以外は実施例1と同様にして分散安定剤除去工程、及び洗浄工程、乾燥工程を行った。分級工程は目開き63μmのスクリーンに変更したこと以外は実施例1同様にして行う事で生分解性樹脂を得た。
実施例6
 分散安定剤として製造例1で得られた炭酸カルシウム分散液120gを、分散安定剤として製造例2で得られた炭酸カルシウム分散液120gに変更した事以外は実施例1と同様にして分散安定剤除去工程、及び洗浄工程、乾燥工程を行った。分級工程は目開き53μmのスクリーンに変更したこと以外は実施例1同様にして行う事で生分解性樹脂を得た。
実施例7
 3-ヒドロキシヘキサノエートと3-ヒドロキシブチレートとの共重合体樹脂(Danimer社製DAN-01210;融点Tmax142℃)120gを、3-ヒドロキシヘキサノエートと3-ヒドロキシブチレートと3-ヒドロキシバリレートとの共重合体樹脂(Danimer社製DAN-02265;融点Tmax142℃)120gに変更したこと以外は実施例1と同様にして分散安定剤除去工程、及び洗浄工程、乾燥工程を行った。分級工程は目開き53μmのスクリーンに変更したこと以外は実施例1同様にして行う事で生分解性樹脂を得た。
実施例8
 回転数1200rpmに変更したこと以外は実施例1と同様にして生分解性樹脂を得た。
比較例1
 乳化温度を120℃に変更したこと以外は実施例1と同様にして分散安定剤除去工程、及び洗浄工程、乾燥工程を行った。分級工程は目開き150μmのスクリーンに変更したこと以外は実施例1同様にして行う事で生分解性樹脂を得た。
比較例2
 3-メトキシ-3-メチル-1-ブタノール1026gに変更し、イオン交換水を添加しなかったこと以外は実施例1と同様に行ったところ、冷却後のスラリーはゲル状化しており、脱液困難で粒子として取り出すことができなかった。
比較例3
 3-メトキシ-3-メチル-1-ブタノールを添加せず、イオン交換水1026g添加したこと以外は実施例1と同様にして分散安定剤除去工程、及び洗浄工程、乾燥工程を行った。分級工程は目開き150μmのスクリーンに変更したこと以外は実施例1同様にして行う事で生分解性樹脂を得た。
比較例4
 20%塩酸を加えなかったこと以外は、実施例6と同様にして生分解性樹脂粒子を得た。
比較例5
 撹拌翼及び温度計を取り付けた2Lオートクレーブに、3-ヒドロキシブチレートと3-ヒドロキシヘキサノエートの共重合体樹脂(カネカ社製アオニレックスX131A;融点Tmax137℃)56g、ヒドロキシプロピルセルロース40g、アセト酢酸エチル704gを加え、120℃に加熱し、樹脂が完全に溶解するまで2時間攪拌を行った。系の温度を70℃に戻した後に、攪拌しながら、50質量%エタノール水溶液800gを、ポンプを使って2時間で滴下し、滴下後70℃を維持したまま30分攪拌した。その後、30℃まで冷却して得られた懸濁液をろ過紙、イオン交換水400gで洗浄し、ろ別したものを、80℃、真空度0.05MPaの条件にて10時間に亘って乾燥して樹脂粒子を得た。
(粉体特性試験)
 実施例1~8、比較例1、3、4、5の樹脂粒子を皮膚塗布時の感触(さらさら感、滑らかさ)を専門検査員10名によって評価した。尚、判定は感触について良いと答えた人の人数で以下の様に評価した。9~10名を◎、7~8名を○、4~6名を△、3名以下を×として評価した。
(パウダーファンデーションの作製)
 実施例1~8、比較例1、3、4、5の樹脂粒子15質量部、セリサイト21質量部、白雲母51質量部、赤色酸化鉄0.6質量部、黄色酸化鉄1質量部及び黒色酸化鉄0.1質量部をヘンシェルミキサーを用いて混合して混合物を作製した。一方、2-エチルヘキサン酸セチル10質量部にソルビタンセスキオレエート1質量部及び防腐剤0.2質量部を混合溶解させて溶解物を作製した。上記混合物と上記溶解物とを均一に混合させた後に香料0.1質量部を加えて均一に混合した後に粉砕して篩に通してファンデーション材料を作製した。このファンデーション材料を金皿に圧縮成形してパウダーファンデーションを作製した。10名のパネラーが、得られたパウダーファンデーションを手首に塗り伸ばす行為を行い、肌への付着性、肌上での軽やかな伸びについて次の基準で評価した。結果を表1に示す。尚、表中の数値は10名の試験結果の平均値である。
5:非常に良い
4:良い
3:やや良い
2:あまり良くない
1:良くない
 実施例1~8及び比較例1~5で使用した原料の種類、量、及び乳化温度と、実施例1~8及び比較例1~5で得られた生分解樹脂粒子における体積平均粒子径、変動係数、BET比表面積、アマニ油吸油量、10%圧縮強度、灰分、Ca成分量、及び実施例1~8及び比較例1~5で得られた生分解性樹脂粒子を配合したファンデーションの付着性、及び伸びの官能評価を表1、2にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上のように、DSC測定による樹脂の融点の最大となる温度ピークをTmaxとした場合、Tmax±15℃で乳化・分散しなかった比較例1では、樹脂粒子が粗大化してしまい、当該目的の体積平均粒子径の樹脂粒子を得ることができなかった。3-アルコキシ-3-メチル-1-ブタノール及び3-アルコキシ-3-メチル-1-ブチルアセテート(但し、いずれもアルコキシ基の炭素数は1~5個)のみを使用した比較例2では、樹脂が可塑化しすぎることでゲル状化して粒子として取り出すことができず、水のみを使用した比較例3では、樹脂が可塑化しないため、粗大粒子化してしまい、当該目的の体積平均粒子径の樹脂粒子を得ることができなかった。また、比較例4では、Ca成分を除去しなかったため、Ca残存量が多い影響で肌への付着性が悪くなる結果となった。比較例5では、当該目的の体積平均径より大きな粒子径となり、粒子が多孔質状となって脆くなるため、BET比表面積及びアマニ油吸油量が当該範囲より高くなり、目的の粒子を得ることができなかった。これに対し、実施例1~8では、目的の体積平均粒子径の樹脂粒子を得ることができた。また、以上のように、粒子径が小さく肌への付着性と肌上での軽やかな伸びに優れており、一定の強度をもつ実施例1~8の生分解性樹脂粒子は、粒子径が大きい比較例1、3、4、5と比較して、パウダーファンデーションとして適用した際に、優れた肌への付着性、肌上での伸び、肌上での滑らかさを実現することができた。
(固形白粉化粧品の作製)
 実施例1の生分解性樹脂粒子10質量部、タルク70質量部、二酸化チタン5.5質量部及び顔料をニーダーでよくかきまぜた(粉末部)。トリエタノールアミン1質量部を50質量部の精製水に加え70℃に保温した(水相)。ステアリン酸1.5質量部、ラノリン5質量部、スクワラン5質量部、ソルビタンセスキオレイン酸エステル2質量部を混合し、加熱溶解して70℃に保温した(油相)。水相に油相を加え、ホモミキサーで均一に乳化し、これを粉末部に加え、ニーダーで練り合わせた後、水分を蒸発させ、粉砕機で粉砕した。更に粉砕物をよくかきまぜながら香料を均一に噴霧し、圧縮成型して固形白粉化粧品を得た。得られた固形白粉化粧品は、優れた肌への付着性、肌上での伸び、肌上での滑らかさを実現することができた。
(ルースパウダーの作製)
 実施例1の生分解性樹脂粒子5質量部、タルク74.6質量部、合成金雲母12質量部、ラウリン酸亜鉛5質量部、ラウロイルリシン3質量部、酸化鉄0.4質量部をヘンシェルミキサーで均一混合してルースパウダーを得た。得られたルースパウダーは、優れた肌への付着性、肌上での伸び、肌上での滑らかさを実現することができた。
(リキッドファンデーションの作製)
 実施例1の生分解性樹脂粒子5質量部、二酸化チタン11.2質量部、赤色酸化鉄0.3質量部、黄色酸化鉄2.2質量部、黒色酸化鉄0.2質量部をニーダーで混合した(粉末部)。イソノナン酸イソトリデシル5質量部、プロピルパラベン0.25質量部、ジメチコン/PEG-10/15クロスポリマー3.5質量部、PEG-9ポリジメチルシロキシエチルジメチコン2質量部、シクロペンタシロキサン20.1質量部、メトキシケイ皮酸エチルヘキシル2質量部、ジステアルジモニウムヘクトライト2質量部を混合し、70℃に加熱溶解した(油相)。精製水40.41質量部にグリセリン5質量部、塩化ナトリウム0.5質量部、デヒドロ酢酸ナトリウム0.12質量部、メチルパラベン0.12質量部、フェノキシエタノール0.1質量部を加え70℃に加熱溶解した(水相)。油相に粉末部を加え、ホモミキサーで粉末を均一に分散させた後、ここに水相を加えてホモミキサーで均一に乳化・分散後、かきまぜながら冷却させてリキッドファンデーションを得た。得られたリキッドファンデーションは、優れた肌への付着性、肌上での伸び、肌上での滑らかさを実現することができた。
(プレストパウダーの作製)
 実施例1の生分解性樹脂粒子8質量部、タルク60.8質量部、マイカ20質量部、二酸化チタン1.9質量部、赤色酸化鉄0.14質量部、黄色酸化鉄0.8質量部、黒色酸化鉄0.1質量部をヘンシェルミキサーを用いて混合して混合物を作製した(粉末部)。スクワラン4質量部、ラウリン酸亜鉛2質量部、ジイソステアリルマレート2質量部、ブチルパラベン0.1質量部、メチルパラベン0.1質量部、水酸化アルミニウム0.05質量部、トコフェロール0.01質量部を混合し、70℃に加熱溶解した(油相)。粉末部に油相を加えて均一に混合した後に粉砕して篩に通し、圧縮成形してプレストパウダーを作製した。
得られたプレストパウダーは、優れた肌への付着性、肌上での伸び、肌上での滑らかさを実現することができた。
(アイシャドウの作製)
 実施例1の生分解性樹脂粒子5質量部、タルク44.1質量部、マイカ20質量部、二酸化チタン被覆雲母10質量部、ラウロイルリシン8質量部、ラウリン酸亜鉛2質量部、赤色7号0.5質量部、黄色5号0.4質量部をニーダーで混合した(粉末部)。ミネラルオイル6質量部にジメチコン2質量部、セスキオレイン酸ソルビタン2質量部を加え加熱溶解した(油相)。粉末部に油相を加えてニーダーで混練した後、圧縮成型してアイシャドウを得た。得られたアイシャドウは、優れた肌への付着性、肌上での伸び、肌上での滑らかさを実現することができた。
(スキンクリームの作製)
 グリセリン13質量部、モノステアリン酸デカグリセリル1質量部、モノラウリン酸デカグリセリル0.5質量部、モノステアリン酸グリセリル1質量部、ステアリルアルコール2質量部、トリ(カプリル酸/カプリン酸)グリセリル3質量部、メドウフォーム油2質量部、ホホバ油2質量部、ラウロイルグルタミン酸ジ(フィトステリル/オクチルドデシル)0.1質量部、ジメチコン3質量部、シクロペンタシロキサン3質量部を70℃に加熱溶解した(油相)。(アクリレーツ/アクリル酸アルキル(C10-30))クロスポリマー0.2質量部、ヒドロキシプロピルメチルセルロース0.1質量部、エデト酸二ナトリウム0.05質量部、ヒアルロン酸ナトリウム0.01質量部、フェノキシエタノール0.3質量部、1,3-ブチレングリコール4質量部、ピロリドンカルボン酸ナトリウム0.1質量部、精製水63.1質量部を70℃に加熱溶解した(水相)。油相に実施例1の生分解性樹脂粒子1質量部を加え、ホモミキサーで分散させながら、水相を加えて均一に乳化させた。ここに10%水酸化ナトリウム水溶液0.5質量を加え、ディスパーで攪拌しながら室温まで冷却してスキンクリームを得た。得られたスキンクリームは、優れた肌への付着性、肌上での伸び、肌上での滑らかさを実現することができた。
(ボディローションの作製)
 実施例1の生分解性樹脂粒子3質量部、エタノール50質量部、グリチルリチン酸0.1質量部、香料0.5質量部及び精製水46.4質量部をミキサーで十分混合し、ボディローションを得た。得られたボディローションは、肌に塗布する際の伸び、滑らかさを実現することができた。
(日焼け止めクリームの作製)
 実施例1の生分解性樹脂粒子3質量部、ジメチコン 7質量部、ポリシリコーン―13 1質量部、PEG-10ジメチコン1質量部、酸化チタン1.5質量部を室温で1時間攪拌した(油相A)。ジメチコン8.5質量部、シクロペンタシロキサン4質量部、ポリシリコーン―13 1質量部、酸化亜鉛 10質量部を室温で1時間攪拌した(油相B)。パラメトキシケイ皮酸2-エチルヘキシル10.5質量部、ビスエチルヘキシルオキシフェノールメトキシフェニルトリアジン2.7質量部、ジメチコン8.4質量部、イソノナン酸エチルヘキシル2.5質量部、スクアラン2.5質量部、ステアリン酸0.2質量、タルク2.5質量部、クオタニウム-90ベントナイト1質量部を80℃で加熱溶解した(油相C)。油相Cに、油相A、油相Bの順に加え、80℃で攪拌混合した。フェノキシエタノール0.2質量部、ピロ亜硫酸ナトリウム0.1質量部、1,3-ブチレングリコール3質量部、グリセリン1質量部、PEG/PPG/ポリブチレングリコール-8/5/3グリセリン0.5質量部、精製水27.9質量部を事前に80℃で加熱溶解し、ここに全油相を加え、ホモミキサーで均一に乳化・分散後、かきまぜながら冷却させて日焼け止めクリームを得た。得られた日焼け止めクリームは、優れた肌への付着性、肌上での伸び、肌上での滑らかさを実現することができた。
(口紅の作製)
 実施例1の生分解性樹脂粒子10質量部、二酸化チタン3質量部、赤色202号0.5質量部、赤色206号2質量部を流動パラフィン15質量部に加えコーラーでよく混合した(顔料部)。赤色223号0.05質量部をブチルステアリン酸エステル11.45質量部に溶解させた(染料部)。セレシン12質量部、ミツロウ8質量部、セチルアルコール5質量部、鯨ロウ4質量部、カルバナロウ1質量部、流動パラフィン6質量部、液体ラノリン20質量部、ソルビタンセスキオレイン酸エステル2質量部及び香料、酸化防止剤を混合し、加熱溶解した後、顔料部と染料部とを加え、ホモミキサーで均一に分散させた。分散後、型に流し込み、急冷してスティック状の口紅を得た。得られた口紅は、優れた付着性、塗布の際の伸び、滑らかさを実現することができた。
 本発明の樹脂粒子は、化粧料、医薬部外品等の外用剤に配合されて好適に使用することができる。

Claims (8)

  1.  ポリヒドロキシアルカノエートからなる生分解性樹脂粒子であり、粒子中に含まれるCa成分量が10~10,000ppmであり、体積平均粒子径が2~50μmであり、BET比表面積が0.8~10m/gであり、アマニ油吸油量が50~300ml/100gである、生分解性樹脂粒子。
  2.  粒子径の変動係数が45%以下である、請求項1に記載の生分解性樹脂粒子。
  3.  750℃で30分加熱後の灰分が0.01~3%である、請求項1又は2に記載の生分解性樹脂粒子。
  4.  3-アルコキシ-3-メチル-1-ブタノール及び3-アルコキシ-3-メチル-1-ブチルアセテート(但し、いずれもアルコキシ基の炭素数は1~5個)のうち少なくとも1つを更に含む、請求項1~3いずれかに記載の生分解性樹脂粒子。
  5.  体積平均粒子径が8~20μmである、請求項1~4いずれかに記載の生分解性樹脂粒子。
  6.  請求項1~5いずれかに記載の生分解性樹脂粒子を含む、外用剤。
  7.  20℃の粘度が550mPa・s以下である不揮発性油を更に含む、請求項6記載の外用剤。
  8.  スキンケア化粧料、洗浄用化粧料、日焼け止め化粧料である、請求項6または7記載の外用剤。
     
     
PCT/JP2020/024938 2019-06-28 2020-06-25 生分解性樹脂粒子及びそれを含有する外用剤 WO2020262509A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021527716A JP7125558B2 (ja) 2019-06-28 2020-06-25 生分解性樹脂粒子及びそれを含有する外用剤
CA3144952A CA3144952C (en) 2019-06-28 2020-06-25 Biodegradable resin particles and formulation for external use includingthe same
EP20833604.0A EP3991798A4 (en) 2019-06-28 2020-06-25 BIODEGRADABLE RESIN PARTICLES AND EXTERNAL PREPARATION CONTAINING THEM
CN202080026893.0A CN113677759B (zh) 2019-06-28 2020-06-25 生物降解性树脂颗粒和含有其的外用剂
US17/622,392 US20220356326A1 (en) 2019-06-28 2020-06-25 Biodegradable resin particles and external preparation including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019121383 2019-06-28
JP2019-121383 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020262509A1 true WO2020262509A1 (ja) 2020-12-30

Family

ID=74060176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024938 WO2020262509A1 (ja) 2019-06-28 2020-06-25 生分解性樹脂粒子及びそれを含有する外用剤

Country Status (6)

Country Link
US (1) US20220356326A1 (ja)
EP (1) EP3991798A4 (ja)
JP (1) JP7125558B2 (ja)
CN (1) CN113677759B (ja)
CA (1) CA3144952C (ja)
WO (1) WO2020262509A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009129499A1 (en) * 2008-04-17 2009-10-22 Metabolix, Inc. Nucleating agents for polyhydroxyalkanoates
WO2013146370A1 (ja) 2012-03-27 2013-10-03 株式会社クラレ 3-アルコキシ-3-メチル-1-ブタノールの製造方法
JP2016102152A (ja) 2014-11-28 2016-06-02 東レ株式会社 ポリマー微粒子
JP2016222897A (ja) * 2015-06-03 2016-12-28 積水化成品工業株式会社 熱可塑性樹脂からなる略球状樹脂粒子、その製造方法及びその用途
JP2017002291A (ja) 2015-06-05 2017-01-05 三菱化学株式会社 脂肪族ポリエステル粒子
WO2017056908A1 (ja) * 2015-09-30 2017-04-06 積水化成品工業株式会社 多孔質樹脂微粒子及びその製造方法
JP2018095794A (ja) * 2016-12-16 2018-06-21 積水化成品工業株式会社 樹脂粒子群及びその製造方法
JP2018522059A (ja) * 2015-08-12 2018-08-09 ザ プロクター アンド ギャンブル カンパニー 生分解性研磨材粒子を含む皮膚クレンジング組成物
WO2018178899A1 (en) * 2017-03-30 2018-10-04 Bio-On S.P.A. Cosmetic composition comprising a biodegradable polyester and an oily phase

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013018678B1 (pt) * 2011-01-31 2021-04-13 Toray Industries, Inc Processo para produzir micropartículas de resina, micropartículas de resina e cosméticos
JP5996330B2 (ja) * 2012-08-21 2016-09-21 株式会社シャネル化粧品技術開発研究所 複合粒子及びそれを含む化粧料組成物
JP6436578B2 (ja) * 2015-09-28 2018-12-12 積水化成品工業株式会社 ポリエステル系樹脂粒子、その製造方法及びその用途
ITUA20163314A1 (it) * 2016-05-10 2017-11-10 Bio On Spa Composizione comprendente un poliestere di origine biologica e un composto inorganico biocompatibile, e relativo uso in campo cosmetico.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009129499A1 (en) * 2008-04-17 2009-10-22 Metabolix, Inc. Nucleating agents for polyhydroxyalkanoates
WO2013146370A1 (ja) 2012-03-27 2013-10-03 株式会社クラレ 3-アルコキシ-3-メチル-1-ブタノールの製造方法
JP2016102152A (ja) 2014-11-28 2016-06-02 東レ株式会社 ポリマー微粒子
JP2016222897A (ja) * 2015-06-03 2016-12-28 積水化成品工業株式会社 熱可塑性樹脂からなる略球状樹脂粒子、その製造方法及びその用途
JP2017002291A (ja) 2015-06-05 2017-01-05 三菱化学株式会社 脂肪族ポリエステル粒子
JP2018522059A (ja) * 2015-08-12 2018-08-09 ザ プロクター アンド ギャンブル カンパニー 生分解性研磨材粒子を含む皮膚クレンジング組成物
WO2017056908A1 (ja) * 2015-09-30 2017-04-06 積水化成品工業株式会社 多孔質樹脂微粒子及びその製造方法
JP2018095794A (ja) * 2016-12-16 2018-06-21 積水化成品工業株式会社 樹脂粒子群及びその製造方法
WO2018178899A1 (en) * 2017-03-30 2018-10-04 Bio-On S.P.A. Cosmetic composition comprising a biodegradable polyester and an oily phase

Also Published As

Publication number Publication date
CN113677759B (zh) 2023-05-02
EP3991798A1 (en) 2022-05-04
CA3144952C (en) 2023-10-03
US20220356326A1 (en) 2022-11-10
CN113677759A (zh) 2021-11-19
CA3144952A1 (en) 2020-12-30
JPWO2020262509A1 (ja) 2021-11-25
JP7125558B2 (ja) 2022-08-24
EP3991798A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
KR101555345B1 (ko) 제립화 실리카 입자, 복합 분체, 그리고 이들의 제조 방법 및 이들을 함유하는 화장료
JP6019218B2 (ja) 多孔質樹脂粒子、その製造方法、分散液およびその用途
EP2921162B1 (en) Oil-in-water emulsion composition
WO1998017730A1 (fr) Poudre d'oxyde de zinc inactivee et preparation cosmetique
JP2000128755A (ja) 極微小二酸化チタンの有機分散体
JP7197681B2 (ja) 生分解性樹脂粒子、該粒子を含有する生分解性樹脂粒子群、及びその用途
KR101600058B1 (ko) 금속산화물 복합화 고편평 셀룰로스 분체 및 이것을 함유하는 화장료
JP3714881B2 (ja) (メタ)アクリル酸エステル系樹脂粒子湿潤物およびその製造方法、ならびに外用剤
JP2009102236A (ja) 水中油型乳化組成物及びその製造方法
WO2020262509A1 (ja) 生分解性樹脂粒子及びそれを含有する外用剤
WO2013039483A1 (en) Spf enhanced extended color bulk powders and methods of making thereof
JP2004168913A (ja) 紫外線吸収性複合粉体
JP6199222B2 (ja) 複合粒子、複合粒子の製造方法、及び外用剤
JP6436578B2 (ja) ポリエステル系樹脂粒子、その製造方法及びその用途
JP2000302624A (ja) アクリル酸エステル系樹脂粒子及びそれを含む外用剤
JP6557275B2 (ja) アクリル系樹脂粒子及びこれを用いた外用剤
JP2008214267A (ja) 粉末化粧料の製造方法
JPH10212211A (ja) 化粧料
JP2014198804A (ja) アクリル系樹脂粒子及びこれを用いた外用剤
US8383689B2 (en) Skin cosmetics comprising cocoon-shaped polymer fine particles
JP2006232681A (ja) アイメーキャップ化粧料
KR20100047799A (ko) 판상 갈색계 안료
JP3664963B2 (ja) 樹脂粒子の製造方法ならびに樹脂粒子およびその用途
KR101943851B1 (ko) 아크릴계 수지 입자 및 이것을 사용한 외용제
JP2022543481A (ja) 懸濁液中の成分の有効性及び安定性を向上させる方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527716

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3144952

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020833604

Country of ref document: EP