JP2016222897A - 熱可塑性樹脂からなる略球状樹脂粒子、その製造方法及びその用途 - Google Patents

熱可塑性樹脂からなる略球状樹脂粒子、その製造方法及びその用途 Download PDF

Info

Publication number
JP2016222897A
JP2016222897A JP2016078818A JP2016078818A JP2016222897A JP 2016222897 A JP2016222897 A JP 2016222897A JP 2016078818 A JP2016078818 A JP 2016078818A JP 2016078818 A JP2016078818 A JP 2016078818A JP 2016222897 A JP2016222897 A JP 2016222897A
Authority
JP
Japan
Prior art keywords
resin
thermoplastic resin
substantially spherical
particle
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016078818A
Other languages
English (en)
Other versions
JP6542155B2 (ja
JP2016222897A5 (ja
Inventor
香織 ▲桑▼垣
香織 ▲桑▼垣
Kaori Kuwagaki
日下 明芳
Akiyoshi Kusaka
明芳 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57746654&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2016222897(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Publication of JP2016222897A publication Critical patent/JP2016222897A/ja
Publication of JP2016222897A5 publication Critical patent/JP2016222897A5/ja
Application granted granted Critical
Publication of JP6542155B2 publication Critical patent/JP6542155B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】高い光散乱性を有する略球状の熱可塑性樹脂粒子を提供することを課題とする。
【解決手段】真球度が0.90〜1.00、かつ光散乱指数が0.5〜1.0、かつアマニ油吸油量が30〜150ml/100gである熱可塑性樹脂からなる略球状樹脂粒子により上記課題を解決する。
【選択図】なし

Description

本発明は、真球度が高くかつ光学特性、及び配合時のハンドリング特性に優れた熱可塑性樹脂からなる略球状樹脂粒子、その製造方法及びその用途に関する。
熱可塑性樹脂粒子は、大きな比表面積及び粒子の構造を利用して、各種材料の改質及び改良に用いられている。主要用途としては、ファンデーション、制汗剤、スクラブ剤等の化粧品用の配合剤、塗料用艶消し剤、レオロジー改質剤、ブロッキング防止剤、滑り性付与剤、光拡散剤、医療用診断検査剤等の各種剤、自動車材料、建築材料等の成形品への添加剤等の用途が挙げられる。
一方、近年の環境問題への関心が高まる中、環境負荷を低減するため、樹脂を使用するあらゆる分野で、非石油原料由来の材料を使用することが求められている。例えば、化粧品、塗料等の樹脂粒子が使用される分野でもそのように求められている。
これまでの熱可塑性樹脂粒子の製造方法としては、凍結粉砕に代表される粉砕法(特開2001−288273号公報:特許文献1)、高温下の溶媒に溶解し、冷却して析出させたり、溶媒に溶解した後に貧溶媒を加えることにより析出させたりする溶媒溶解析出法(特開2000−7789号公報:特許文献2、特開2005−2302号公報:特許文献3、特開2009−242728号公報:特許文献4、特開平11−35693号公報:特許文献5)、2軸押出機等の混合機内で熱可塑性樹脂と非相溶の樹脂とを混合し、熱可塑性樹脂を分散相に、熱可塑性樹脂と非相溶の樹脂を連続相にもつ、樹脂組成物を形成させた後に、非相溶の樹脂を除去することにより熱可塑性樹脂粒子を得る溶融混錬法(特開2004−269865号公報:特許文献6、特開2005−200663号公報:特許文献7)等が知られている。
特に、生分解性樹脂からなる粒子を得る提案としては、特許文献1では、有機溶媒を用いずに、ポリ乳酸系樹脂からなるチップ又は塊状物を−50℃〜−180℃の低温に冷却しながら機械粉砕・分級して微細な粒子を得る技術が提案されている。また、特許文献2〜4では、ポリ乳酸系樹脂を有機溶媒に溶解した後、溶液を水のような貧溶媒に滴下したり、中和・塩化したりすることで微粒子状に析出させることが提案されている。
特許文献8(国際公開WO2012−105140号)では、ポリ乳酸及び異なる種類の樹脂をエーテル系溶剤に溶解させ、次いで、せん断力を加えてエマルションを形成した後、貧溶媒に接触させることで、小粒子径で吸油量の大きな多孔質状のポリ乳酸系樹脂粒子を得る方法が提案されている。
特開2001−288273号公報 特開2000−7789号公報 特開2005−2302号公報 特開2009−242728号公報 特開平11−35693号公報 特開2004−269865号公報 特開2005−200663号公報 国際公開WO2012−105140号
しかし、特許文献1〜7の製法で作られる従来の熱可塑性樹脂粒子は、得られる粒子が球形状ではない、粒子径が細かくならない、粒度分布が広い、場合によっては繊維状のものを含む等の課題を抱えている。中でも触感、質感を重視する化粧品分野、レオロジー制御が重要になる塗料分野等では、従来の熱可塑性樹脂粒子は、現状のままでは、微粒子添加による効果を十分発揮していなかった。
特に、熱可塑性を有した生分解性の樹脂は、柔らかすぎたり、粘りが強すぎたりする。そのために一般的な機械粉砕にて粉体を製造しようとした場合、
(1)微細な粉体にすることが困難である
(2)脆すぎるために得られる粉体は大粒径のものから微小な粒径のものまでが混在してしまう
(3)使用中に更に微粉化してしまうために研磨効果が持続しない
ことがあった。
加えて、特許文献1では、この技術を用いることにより粉体を製造することは可能になるものの、微細な粉体を製造することは依然として困難である。また、液体窒素のような冷媒を取り扱うための複雑な設備が必要になったり、工程が追加されるために生産に要する時間が大幅に長くなったりしてしまい、生産性が極度に悪化してしまう。
また、特許文献2〜4では、溶解や析出、乾燥といった多段階の工程を要するために生産性が悪いだけではなく、不純物を含んだ廃溶媒が多量に発生する。この廃溶媒は、排出すると環境に悪影響を与えてしまう可能性が高く、また、再利用するための不純物を取り除く処理には多大な労力が必要になる。加えて、この処理の際にも環境に悪影響を与える恐れのある物質が生成してしまう可能性が高い。また、得られる粉体中には必ず微量の溶媒が残ってしまい、この残留溶媒が最終製品の品質に悪影響を及ぼす恐れもある。
特に、特許文献4では、ポリ乳酸系樹脂をベンゼンに溶解させ、次いでm−キシレンを60℃未満で混合してポリ乳酸系樹脂の粉末を析出させているため、大量の有機溶媒が必要となるだけでなく、有機溶媒の樹脂中への残存が懸念される。更には、球形の粒子が得られた場合でも、例えば化粧品分野や塗料分野等での使用においては、特に光学特性が充分に発揮されないことが懸念される。
特許文献8では、表面平滑な微粒子が得られるものの、真球度と光散乱指数が十分に優れたものは得られなかった。
本発明の発明者等は、樹脂粒子の真球度と光散乱特性とアマニ油吸油量を特定の範囲とすることで、上記の課題を解決可能であることを見出し、本発明に至った。また、この樹脂粒子は、熱可塑性樹脂粒子を乳化・分散させるための溶媒として、常温での樹脂の溶解性は低いが、高温での樹脂の溶解性が高い、特定の構造の安全性の高いアルコール溶媒を用いることにより作製可能であることを見出し、本発明に至った。
かくして本発明によれば、真球度0.90〜1.00、かつ、光散乱指数が0.5〜1.0、かつアマニ油吸油量が30〜150mL/100gであることを特徴とする熱可塑性樹脂からなる略球状樹脂粒子が提供される。
また、本発明によれば、上記熱可塑性樹脂からなる略球状樹脂粒子が、3−アルコキシ−3−メチル−1−ブタノール及び/又は3−アルコキシ−3メチル−1−ブチルアセテート(アルコキシ基の炭素数は1〜5個)を含む溶媒、水及び分散安定剤の存在下、熱可塑性樹脂を100℃以上の温度で乳化・分散し、その後冷却することで得られる熱可塑性樹脂からなる略球状樹脂粒子の製造方法が提供される。
更に、上記熱可塑性樹脂からなる略球状樹脂粒子を配合した化粧料が提供される。
また、上記熱可塑性樹脂からなる略球状樹脂粒子を配合したコーティング材料が提供される。
本発明によれば、高い光散乱性を有する略球状の熱可塑性樹脂粒子を提供できる。また、本発明によれば、この樹脂粒子を簡便に作製可能な製造方法を提供できる。
以下のいずれかの場合、より高い光散乱性を有する略球状の熱可塑性樹脂粒子を提供できる。
(1)熱可塑性樹脂が、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂及びポリアミド系樹脂からなる群より選ばれた少なくとも1種の樹脂である。
(2)熱可塑性樹脂が、ポリエチレン、ポリプロピレン、エチレン/酢酸ビニル共重合体、エチレン/(メタ)アクリル酸共重合体、エチレン/(メタ)アクリル酸エステル共重合体、ポリ乳酸、ポリブチレンサクシネート、ポリヒドロキシアルカノエート、ナイロン12、ナイロン6及びポリカプロラクタムからなる群より選ばれた少なくとも1種の樹脂である。
(3)熱可塑性樹脂が、生分解性を有し、かつポリエステル系樹脂及びポリエーテル系樹脂、からなる群より選ばれた少なくとも1種の樹脂である。
光散乱指数の測定法を説明する概略図である。
(熱可塑性樹脂からなる略球状樹脂粒子:以下、略球状粒子ともいう)
(1)諸物性
略球状粒子は、0.90〜1.00の真球度、0.5〜1.0の光散乱指数、30〜150mL/100gのアマニ油吸油量を有する。真球度及び光散乱指数及びアマニ油吸油量の測定法は、実施例の欄に記載する。
真球度が0.90未満の場合、化粧料等に配合した際に、流動性が低下し、触感や滑り性が悪くなることがある。好ましい真球度は0.92〜1.00であり、より好ましい真球度は0.93〜1.00である。
光散乱指数が0.5より小さい場合、十分な光散乱性を示さず、化粧料等に配合した場合にはソフトフォーカス特性に劣ることがある。好ましい光散乱指数は0.55〜1.0であり、より好ましい光散乱指数は0.6〜1.0である。
また、アマニ油吸油量が上記範囲であることで、略球状粒子を含む製品を製造する際に、略球状粒子の配合時のハンドリング特性を良好とすることができる。30mL/100g未満の場合、化粧料等に配合した際に化粧崩れをおこしやすく、化粧もちが悪くなる場合がある。アマニ油吸油量が150mL/100gより大きい場合、他の成分が吸収されてしまい、流動性が低下するため、ハンドリング性が悪化することがある。より好ましいアマニ油吸油量は30〜145mL/100gである。
更に、略球状粒子は、1〜500μmの体積平均粒子径を有することが好ましい。略球状粒子は用途に応じて様々な粒子径を使用することができる。例えば、ファンデーション用途の場合は3〜20μm、スクラブ剤の場合は、200〜500μm、塗料用途の場合は3〜100μm等、用途に応じて適宜選択することができる。平均粒子径の測定法は、実施例の欄に記載する。
(2)熱可塑性樹脂
熱可塑性樹脂は、特に限定されない。例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂及びポリアミド系樹脂からなる群より選ばれた少なくとも1種の樹脂が挙げられる。ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレン、エチレン/酢酸ビニル共重合体、エチレン/(メタ)アクリル酸共重合体、エチレン/(メタ)アクリル酸エステル共重合体等が挙げられる。(メタ)アクリル酸エステルのエステル成分は、例えば、メチル、エチル、プロピル、ブチル等が挙げられる。ポリエステル系樹脂としては、ポリ乳酸、ポリブチレンサクシネート、ポリヒドロキシアルカノエート、ポリカプロラクタム等が挙げられる。ポリヒドロキシアルカノエートの中でも好ましいのは、一般式(1)[−CH(R)−CHCO−O−](ただし、式中Rは−C2n+1で表されるアルキル基であり、nは1〜15の整数)で示される繰り返し単位からなるポリ(3−ヒドロキシアルカノエート)重合体又は共重合体である。より具体的には、3−ヒドロキシブチレートと、3−ヒドロキシプロピオネート、3−ヒドロキシバレレート、3−ヒドロキシヘキサノエート、3−ヒドロキシヘプタノエート、3−ヒドロキシオクタノエート、3−ヒドロキシナノエート、3−ヒドロキシデカノエート、3−ヒドロキシテトラデカノエート、3−ヒドロキシヘキサデカノエート、3−ヒドロキシオクタデカノエート、4−ヒドロキシブチレート、4−ヒドロキシバレレート、5−ヒドロキシバレレート、6−ヒドロキシヘキサノエートからなる群から選ばれる、少なくとも1種のモノマーとのコポリマーを使用できる。具体的な(3−ヒドロキシアルカノエート)重合体または共重合体としては、前記3−ヒドロキシアルカノエートのホモポリマー、又はnの異なる2種以上の3−ヒドロキシアルカノエートからなる共重合体、前記ホモポリマー及び前記共重合体の群より選ばれる2種以上をブレンドした混合体が挙げられる。なかでも、n=1の3−ヒドロキシブチレート繰り返し単位、n=2の3−ヒドロキシバレレート繰り返し単位、n=3の3−ヒドロキシヘキサノエート繰り返し単位、n=5の3−ヒドロキシオクタノエート繰り返し単位、n=15の3−ヒドロキシオクタデカノエート繰り返し単位からなる群より構成されるホモポリマー、共重合体及び混合物が好ましく、3−ヒドロキシブチレート繰り返し単位と、3−ヒドロキシバレレート、3−ヒドロキシヘキサノエート、及び3−ヒドロキシオクタノエートからなる群より選ばれる少なくとも1つの繰り返し単位とからなる共重合体がより好ましい。最も好ましくは、3−ヒドロキシブチレート繰り返し単位と3−ヒドロキシヘキサノエート単位の共重合体であるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)である。より具体的には、カネカ社製 製品名アオニレックスシリーズが挙げられる。ポリエーテル系樹脂としては、ポリエーテルスルホン等が挙げられる。ポリアミド系樹脂としては、ナイロン12、ナイロン6等が挙げられる。
これら例示樹脂は、1種のみで使用してもよく、複数種混合して使用してもよい。なお、熱可塑性樹脂の分子量は特に限定されない。最終的な用途・目的に応じて適宜選択することができる。
本発明の製造方法は、一般に粒子化が困難である生分解性を有し、かつポリエステル系樹脂及びポリエーテル系樹脂からなる群より選ばれた少なくとも1種の樹脂にも適用できる。そのような樹脂としては、ポリ乳酸、ポリブチレンサクシネート、ポリヒドロキシアルカノエート、ポリカプロラクトン等のポリエステル系樹脂が挙げられる。
熱可塑性樹脂は、以下の製造方法の欄に記載する特定溶媒に対して、高温で溶解又は可塑化するが、常温では溶解しない樹脂であることが好ましい。この性質を有する樹脂は、特定の真球度及び光散乱指数の略球状粒子を簡便に提供できるという効果を奏する。
(3)その他成分
略球状粒子は、必要に応じて、公知の流動性調整剤、紫外線吸収剤、光安定剤、顔料(例えば、体質顔料、着色顔料、金属顔料、マイカ粉顔料等)、染料等を含んでいてもよい。
(4)用途
略球状粒子は、ファンデーション、制汗剤、スクラブ剤等の化粧品用の配合剤、塗料用艶消し剤、レオロジー改質剤、ブロッキング防止剤、滑り性付与剤、光拡散剤、ファインセラミックス焼結成形用助剤、接着剤用充填剤、医療用診断検査剤等の各種剤、自動車材料、建築材料等の成形品への添加剤等の用途で使用できる。
(熱可塑性樹脂からなる略球状樹脂粒子の製造方法)
略球状粒子は、
(1)熱可塑性樹脂を、3−アルコキシ−3−メチル−1−ブタノール及び/又は3−アルコキシ−3−メチル−1−ブチルアセテート(アルコキシ基の炭素数は1〜5個)を含む溶媒、水、分散安定剤の存在下、前記熱可塑性樹脂を100℃以上の温度で乳化・分散する工程(乳化・分散工程)、
(2)その後冷却することで熱可塑性樹脂を粒子として得る工程(冷却工程)
を経ることで得ることができる。
上記製造方法によれば、通常熱可塑性樹脂の微粒子化法でよく用いられる皮膚刺激性のある有機溶媒(例えば、キシレン、トルエン、n−メチルピロリドン、クロロホルム、塩化メチレン、ジオキソラン、THF等)を用いることなく、安全性の高いアルコール溶媒を使用しており、球状で、小粒子径で、狭粒度分布で、光学特性に優れた熱可塑性樹脂粒子を製造できる。また、3−アルコキシ−3−メチル−1−ブタノール及び/又は3−アルコキシ−3−メチル−1−ブチルアセテートは、生分解性を有し、かつ低皮膚刺激性であるため、化粧品のような用途で用いる際の残留による悪影響を抑制できる。更に、本発明の製造方法は、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリヒドロキシアルカノエート(PHA)等の結晶性を有する生分解性の熱可塑性樹脂を湿式で球状化する方法への使用に有用である。加えて、3−アルコキシ−3−メチル−1−ブタノール及び/又は3−アルコキシ−3−メチル−1−ブチルアセテートは、高温で熱可塑性樹脂を溶解又は可塑化するが、常温では熱可塑性樹脂を溶解しないので、これらアルコール系溶媒を容易に再利用でき、工業的に有利である。
この製造方法により得られた略球状粒子は、他の製造方法により得られた粒子に比べ、光学特性(ソフトフォーカス効果)及び吸油特性に優れるという効果を奏する。
(a)乳化・分散工程
(i)溶媒
溶媒は、3−アルコキシ−3−メチル−1−ブタノール及び/又は3−アルコキシ−3−メチル−1−ブチルアセテート(以下、特定溶媒とも称する)を含む。特定溶媒が溶媒中に占める割合は、50重量%以上が好ましく。70重量%以上がより好ましく、100重量%であることが更に好ましい。特定溶媒以外の使用可能溶媒としては、メタノール、エタノール等の低級アルコール、酢酸エチル、酢酸ブチル等の酢酸エステル系溶剤が挙げられる。特定溶媒としては、クラレ社製からソルフィットの商品名で市販されている溶媒も使用できる。また、3−アルコキシ−3−メチル−1−ブタノールは、例えば、国際公開WO2013/146370号に記載の方法により製造できる。
ここで、特定溶媒中のアルコキシ基の炭素数は1〜5個である。アルコキシ基の炭素数が5より大きい場合、溶解性が悪化することがある。アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基が挙げられる。プロポキシ基、ブトキシ基及びペンチルオキシ基には、直鎖状だけではなく、取り得る構造異性体も含まれる。好ましいアルコキシ基は、メトキシ基、エトキシ基、プロポキシ基である。
溶媒の使用量は、熱可塑性樹脂100重量部に対して、100〜1200重量部であることが好ましい。使用量が100重量部未満の場合、熱可塑性樹脂の濃度が高すぎて充分に撹拌混合することが難しいことがある。1200重量部より多い場合、装置の大きさに比して生産量が少なくなることがある。より好ましい使用量は100〜800重量部であり、更に好ましい使用量は100〜400重量部である。
(ii)分散安定剤
分散安定剤としては、疎水化処理した無機微粒子が好適に使用できる。具体例としては、疎水性フュームドシリカ(日本アエロジル社製;商品名 AEROSIL(R:登録商標) R972、AEROSIL(R) R974、AEROSIL(R) R976S、AEROSIL(R) R104、AEROSIL(R) R106、AEROSIL(R) R202、AEROSIL(R) R805、AEROSIL(R) R812、AEROSIL(R) R812S、AEROSIL(R) R816、AEROSIL(R) R7200、AEROSIL(R) R8200、AEROSIL(R) R9200、AEROSIL(R) R711、AEROSIL(R) RY50、AEROSIL(R) NY50、AEROSIL(R) RY200、AEROSIL(R) RY200S、AEROSIL(R) RX50、AEROSIL(R) NAX50、AEROSIL(R) RX200、AEROSIL(R) RX300、AEROSIL(R) R504)、疎水性アルミナ(日本アエロジル社製;商品名 AEROXIDO(R) Alu C)、疎水性酸化チタン(日本アエロジル社製;商品名AEROXIDE(R) TiO2 T805:チタン工業社製;商品名 超微粒子酸化チタンSTシリーズ、ST−455、STV−455、ST−557SA、ST−457EC、ST−457EC、ST−605EC:堺化学工業社製;商品名 超微粒子酸化チタンSTRシリーズ、STR−100C−LP、STR−60c−LP、STR−100W−LP、STR−100C−LF)等が挙げられる。
また、分散安定剤として、第三リン酸カルシウム(太平化学産業社製;商品名 TCP−10U等)、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛等のリン酸塩、ピロリン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸アルミニウム、ピロリン酸亜鉛等のピロリン酸塩、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、コロイダルシリカ(日産化学社製:商品名 スノーテックスシリーズ スノーテックス40、スノーテックスS、スノーテックスXS等)等の親水性の難水溶性無機化合物等を用いることもできる。
上記の中でも、目的とする樹脂粒子を安定して得ることができるという点において、第三リン酸カルシウム、コロイダルシリカが特に好ましい。
分散安定剤の熱可塑性樹脂に対する添加量は、0.5〜15重量%が好ましい。
また、本発明の方法では、上記の分散安定剤に加えて、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤等の界面活性剤を併用することも可能である。
アニオン性界面活性剤としては、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等がある。ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン−オキシプロピレンブロックポリマー等がある。カチオン性界面活性剤としては、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等がある。両性イオン界面活性剤としては、ラウリルジメチルアミンオキサイド等がある。
界面活性剤の添加量は、水に対して0.01〜0.5重量%が好ましい。
これら分散安定剤や界面活性剤は、得られる樹脂粒子の粒子径及び分散安定性を考慮して、それらの選択や組合せ、使用量等を適宜調整して使用される。
(iii)水の使用量
水の使用量は、熱可塑性樹脂100重量部に対して、100〜2200重量部であることが好ましい。使用量が100重量部未満の場合、熱可塑性樹脂の濃度が濃すぎて十分に撹拌混合することが難しいことがある。2200重量部より多い場合は、装置の大きさに比して生産量が少なくなることがある。より好ましい使用量は150〜1000重量部であり、更に好ましい使用量は200〜800重量部である。
(iv)加熱撹拌
加熱撹拌は、100℃以上の加熱温度下で行われる。加熱温度が、100℃未満の場合、熱可塑性樹脂が軟化せず、微粒子化できないことがある。加熱撹拌は、180℃以下の温度で行うことができる。
本製造方法で得られる略球状粒子は、粒子径分布の小さな粒子になるが、これは、エマルション形成の段階において、非常に均一なエマルションが得られるからである。このため、エマルションを形成させるに十分な剪断力を得るためには、公知の方法による撹拌を用いれば十分であり、撹拌羽根による液相撹拌法、ホモジナイザーによる混合法、超音波照射法等の通常公知の方法で混合することができる。
撹拌の速度及び時間は、熱可塑性樹脂が溶媒に溶解又は溶媒中に均一に分散できさえすれば特に限定されず、適宜選択するのが好ましい。
加熱撹拌は、通常、大気圧下で行われるが、必要に応じて、減圧下又は加圧下で行ってもよい。
(b)冷却工程
熱可塑性樹脂を粒子として析出させるために、熱可塑性樹脂を含む溶媒は、加熱撹拌後、冷却される。冷却温度は、通常、常温(約25℃)である。加熱撹拌時の温度から冷却温度に達する時間はできるだけ早いことが好ましい。また、冷却は、撹拌しつつ行うことが好ましい。撹拌速度は、加熱撹拌の撹拌速度と同様の範囲とすることができる。
冷却後の溶媒中の略球状粒子は、必要に応じて、ろ過、脱水、乾燥を経て、溶媒から取り出されてもよい。ろ過、脱水、乾燥は、特に限定されず、公知の方法により行うことができる。
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。まず、実施例及び比較例中の測定方法及び評価方法について説明する。
(真球度の測定)
フロー式粒子像分析装置(商品名「FPIA(登録商標)−3000S」、シスメックス社製)を用いて測定する。
具体的な測定方法としては、イオン交換水20mLに、分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩0.05gを加えて界面活性剤水溶液を得る。その後、上記界面活性剤水溶液に、測定対象の樹脂粒子群0.2gを加え、分散機としてBRANSON社製の超音波分散機「BRANSON SONIFIER 450」(出力400W、周波数20kHz)を用いて超音波を5分間照射して、樹脂粒子群を界面活性剤水溶液中に分散させる分散処理を行い、測定用の分散液を得る。
測定には、標準対物レンズ(10倍)を搭載した上記フロー式粒子像分析装置を用い、上記フロー式粒子像分析装置に使用するシース液としては、パーティクルシース(商品名「PSE−900A」、シスメックス社製)を使用する。上記手順に従い調整した測定用の分散液を上記フロー式粒子像分析装置に導入し、下記測定条件にて測定する。
測定モード:HPF測定モード
粒子径の測定範囲:2.954μm〜30.45μm
粒子の真球度の測定範囲:0.5〜1.0
粒子の測定個数:1000個
測定にあたっては、測定開始前に標準ポリマー粒子群の懸濁液(例えば、Thermo Fisher Scientific社製の「5200A」(標準ポリスチレン粒子群をイオン交換水で希釈したもの))を用いて上記フロー式粒子像分析装置の自動焦点調整を行う。なお、真球度は、樹脂粒子を撮像した画像と同じ投影面積を有する真円の直径から算出した周囲長を、樹脂粒子を撮像した画像の周囲長で除した値である。
(体積平均粒子径及び変動係数(CV値)の測定)
・コールターカウンター法
樹脂粒子の体積平均粒子径は、コールターMultisizerTM3(ベックマン・コールター社製測定装置)により測定する。測定は、ベックマン・コールター社発行のMultisizerTM3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施するものとする。
なお、測定に用いるアパチャーは、測定する樹脂粒子の大きさによって、適宜選択する。測定する樹脂粒子の想定の体積平均粒子径が1μm以上10μm以下の場合は50μmのサイズを有するアパチャーを選択し、測定する樹脂粒子の想定の体積平均粒子径が10μmより大きく30μm以下の場合は100μmのサイズのアパチャーを選択し、樹脂粒子の想定の体積平均粒子径が30μmより大きく90μm以下の場合は280μmのサイズを有するアパチャーを選択し、樹脂粒子の想定の体積平均粒子径が90μmより大きく150μm以下の場合は400μmのサイズを有するアパチャーを選択する等、適宜行う。測定後の体積平均粒子径が想定の体積平均粒子径と異なった場合は、適正なサイズを有するアパチャーに変更して、再度測定を行う。
Current(アパチャー電流)及びGain(ゲイン)は、選択したアパチャーのサイズによって、適宜設定する。例えば、50μmサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は−800、Gain(ゲイン)は4と設定し、100μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は−1600、Gain(ゲイン)は2と設定し、280μm及び400μmのサイズを有するアパチャーを選択した場合、Current(アパチャー電流)は−3200、Gain(ゲイン)は1と設定する。
測定用試料としては、樹脂粒子0.1gを0.1重量%ノニオン性界面活性剤水溶液10mL中にタッチミキサー(ヤマト科学社製、「TOUCHMIXER MT−31」)及び超音波洗浄器(ヴェルヴォクリーア社製、「ULTRASONIC CLEANER VS−150」)を用いて分散させ、分散液としたものを使用する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、樹脂粒子を10万個測定した時点で測定を終了する。樹脂粒子の体積平均粒子径は、10万個の樹脂粒子の体積基準の粒度分布における算術平均である。
樹脂粒子の粒子径の変動係数(CV値)を、以下の数式によって算出する。
樹脂粒子の粒子径の変動係数=(樹脂粒子の体積基準の粒度分布の標準偏差÷樹脂粒子の体積平均粒子径)×100
(アマニ油吸油量の測定)
樹脂粒子のアマニ油吸油量は、JIS K 5101−13−2−2004の測定方法を参考にして、煮アマニ油に代えて精製アマニ油を使用し、終点の判断基準を変更した(「測定板を垂直に立てた時にペースト(樹脂粒子及び生成アマニ油の混錬物)が流動を始める」点に変更した)方法によって、測定する。アマニ油吸油量の測定の詳細は、以下の通りである。
(A)装置及び器具
測定板:300×400×5mmより大きい平滑なガラス板
パレットナイフ(ヘラ):鋼製又はステンレス製の刃を持った柄つきのもの
化学はかり(計量器):10mgオーダーまで計れるもの
ビュレット:JIS R 3505:1994に規定する容量10mLのもの
(B)試薬
精製アマニ油:ISO 150:1980に規定するもの(今回は一級アマニ油(和光純薬工業社製)を用いる)
(C)測定方法
(1)樹脂粒子1gを測定板上の中央部に取り、精製アマニ油をビュレットから一回に4、5滴ずつ、徐々に樹脂粒子の中央に滴下し、その都度、樹脂粒子及び精製アマニ油の全体をパレットナイフで充分練り合わせる。
(2)上記の滴下及び練り合わせを繰り返し、樹脂粒子及び精製アマニ油の全体が固いパテ状の塊になったら1滴ごとに練り合わせて、精製アマニ油の最後の1滴の滴下によりペースト(樹脂粒子及び精製アマニ油の混練物)が急激に軟らかくなり、流動を始める点を終点とする。
(3)流動の判定
精製アマニ油の最後の1滴の滴下により、ペーストが急激に軟らかくなり、測定板を垂直に立てた時にペーストが動いた場合に、ペーストが流動していると判定する。測定板を垂直に立てた時もペーストが動かない場合には、更に精製アマニ油を1滴加える。
(4)終点に達したときの精製アマニ油の消費量をビュレット内の液量の減少分として読み取る。
(5)1回の測定時間は7〜15分以内に終了するように実施し、測定時間が15分を超えた場合は再測定し、規定の時間内で測定を終了した時の数値を採用する。
(D)アマニ油吸油量の計算
下記式により試料100g当たりのアマニ油吸油量を計算する。
O=(V/m)×100
ここで、O:アマニ油吸油量(mL/100g)、m:樹脂粒子の重量(g)、V:消費した精製アマニ油の容量(mL)
(光散乱指数の測定)
(i)反射光度分布の測定
以下に示す方法により、樹脂粒子の表面で反射した光の拡散性を評価する。
樹脂粒子の反射光度分布を、三次元光度計(村上色彩研究所社製のゴニオフォトメーターGP−200)を用い、室温20℃、相対湿度65%の環境下で測定する。
具体的には、
(1)図1に示すように、厚み2mmの黒色ABS樹脂板(タキロン社製)4の中心に、2cm角の正方形にカットした両面テープ(日東電工製 ORT−1)3を貼る。
(2)次いで、前記黒色ABS樹脂板4の黒色部分上の両面テープ3の粘着面に、樹脂粒子2を見かけ密度測定器の漏斗及び漏斗台(JIS K5101−12−1−2004)を用いて落としてから、その粘着面上の余分な樹脂粒子2を0.05〜0.1MPaの圧縮空気で吹き飛ばす。
(3)前記黒色ABS樹脂板4を平坦なガラス板の上に載せ、別の平坦な5cm角の正方形の250gのガラス板を樹脂粒子2の点着面に載せ、樹脂粒子2に荷重を加えて1分間静置する。その後、再び、前記粘着面上の余分な樹脂粒子を圧縮空気で吹き飛ばす。
(4)(2)及び(3)の操作を3回繰り返した試験片を反射光度分布測定用の試験片1とする。そして、得られた試験片1の反射光を次のようにして測定する。図1に示すように、試験片1(樹脂粒子2)の法線(0°)に対して−45°の角度で、ハロゲンランプを光源とした光5を試験片1(樹脂粒子2)に入射させ、反射した反射光6の反射角−90°〜+90°における光度分布を三次元光度計により測定する。測定に際しては全ての入射光が試験片1の黒色部分に入射するように試験片1の位置を調整する。なお、反射光検出は分光感度185〜850nm、最高感度波長530nmの光電子増倍管により検出する。
(ii)+45°の反射光強度100に対する0°の反射光強度の算出
前記反射光度分布の測定により得られた反射角0°、+45°における反射光強度データ(ピーク光度データ)から、反射角+45°の反射光強度(ピーク光度)を100としたときの、反射角0°における反射光強度(ピーク光度)を求める。反射角+45°(正反射方向)の反射光強度を100としたとき、反射角0°の反射光強度が100に近づくほど、化粧料に配合したときのソフトフォーカス効果が大きくなる。光散乱指数は下記式により算出する。
光散乱指数=(0°の散乱光強度)/(45°の散乱光強度)
より1に近い値を示すほど、角度依存性のない高い光散乱特性を示すといえる。
(実施例1)
300mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ71PD)を20g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)60g、イオン交換水100g、分散剤として10%第三リン酸カルシウム水溶液(太平化学産業社製TCP−10U)20g、界面活性剤としてラウリル硫酸ナトリウム0.24gを投入し、反応温度(加熱撹拌温度)120℃、撹拌回転数400rpmにて90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付すことで略球状粒子を得た。
(実施例2)
300mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ71PD)を20g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)60g、イオン交換水120g、分散剤として疎水性フュームドシリカ(日本アエロジル社製AEROSIL(R)R972)1.5gを分散させた混合溶液を投入した。投入後、反応温度120℃、撹拌回転数400rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付すことで略球状粒子を得た。
(実施例3)
300mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ71PD)を40g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)60g、イオン交換水100g、分散剤として疎水性フュームドシリカ(日本アエロジル社製AEROSIL(R)R972)3gを分散させた混合溶液を投入した。投入後、反応温度120℃、撹拌回転数400rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付すことで略球状粒子を得た。
(実施例4)
300mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ71PD)を20g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)60g、イオン交換水120g、界面活性剤としてポリオキシエチレンスチレン化フェノルエーテル(第一工業製薬社製 製品名;ノイゲンEA-167)を0.12g、分散剤として、疎水性フュームドシリカ(日本アエロジル社製AEROSIL(R)R972)1.5gを分散させた混合溶液を投入した。投入後、反応温度120℃、撹拌回転数400rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付すことで略球状粒子を得た。
(実施例5)
1500mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ71PD)を120g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)360g、イオン交換水720g、分散剤として疎水性フュームドシリカ(日本アエロジル社製AEROSIL(R)R972)を6g分散させた混合溶液を投入した。投入後、反応温度120℃、撹拌回転数400rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付すことで略球状粒子を得た。
(実施例6)
1500mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ71PD)を240g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)420g、イオン交換水540g、分散剤として疎水性シリカ(日本アエロジル社製AEROSIL(R)R972)を18g分散させた混合溶液を投入した。投入後、反応温度120℃、撹拌回転数600rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付すことで略球状粒子を得た。
(実施例7)
1500mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ91PD)を240g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)480g、イオン交換水480g、分散剤として疎水性フュームドシリカ(日本アエロジル社製AEROSIL(R)R972)を18g分散させた混合溶液を投入した。投入後、反応温度120℃、撹拌回転数600rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付すことで略球状粒子を得た。
(実施例8)
1500mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ71PD)を240g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)480g、イオン交換水480g、分散剤として疎水性フュームドシリカ(日本アエロジル社製AEROSIL(R)R976S)を12g分散させた混合溶液を投入した。投入後、反応温度120℃、撹拌回転数600rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付すことで略球状粒子を得た。
(実施例9)
1500mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ71PD)を240g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)480g、イオン交換水240g、分散剤として10%第三リン酸カルシウム水溶液(太平化学産業社製 TCP−10U)240g、界面活性剤としてラウリル硫酸ナトリウム0.48gを投入し、反応温度(加熱撹拌温度)120℃、撹拌回転数600rpmにて90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで 30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付すことで略球状粒子を得た。
(実施例10)
1500mLオートクレーブに熱可塑性樹脂としてポリ乳酸(ユニチカ社製 テラマック(R) 品番:TE−2500)を240g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィット ファイングレード)480g、イオン交換水480g、分散剤として疎水性フュームドシリカ(日本アエロジル社製AEROSIL(R)R972)を18g分散させた混合溶液を投入した。投入後、反応温度140℃、撹拌回転数600rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付することで略球状粒子を得た。
(実施例11)
1500mLオートクレーブに熱可塑性樹脂として3−ヒドロキシブチレート/3−ヒドロキシヘキサノエートの共重合体(カネカ社製 カネカバイオポリマーアオニレックス(R) 品番:X131A)を240g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)480g、イオン交換水480g、分散剤として疎水性フュームドシリカ(日本アエロジル社製AEROSIL(R)974)を24g分散させた混合溶液を投入した。投入後、反応温度130℃、撹拌回転数600rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急例(25℃まで30分間)した後、内容物を取り出した。内容物を脱水・ろ過・乾燥に付することで略球状粒子を得た。
(比較例1)
アイカ工業社製ガンツパール GMX−0810を用いて各種測定を行った。
(比較例2)
300mLオートクレーブに熱可塑性樹脂としてポリブチレンサクシネート(三菱化学社製GS−Pla(R) 品番:FZ71PD)を20g、溶剤として3−メトキシ−3−メチル−1−ブタノール(クラレ社製 ソルフィットファイングレード)60g、イオン交換水120g、分散剤として疎水性フュームドシリカ(日本アエロジル社製AEROSIL(R)R972)1.5gを分散させた混合溶液を投入した。投入後、反応温度90℃、撹拌回転数400rpmで90分撹拌した。
その後、撹拌回転数を維持したまま急冷(25℃まで30分間)した後、内容物を取り出したところ、ペレット形状のまま残っており、微粒子化することができなかった。
実施例で得られた略球状粒子の各種物性を下記表に示す。
Figure 2016222897
実施例で得られた略球状粒子は、特定溶媒を使用しかつ、加熱撹拌温度が熱可塑性樹脂を100℃以上の温度で加熱撹拌し、その後冷却することで得られているため、球状であり、小粒子径であり、狭粒度分布であり、高い光散乱性を有することが分かる。
1 試験片、2 樹脂粒子、3 両面テープ、4 黒色ABS樹脂板、5 光、6 反射光

Claims (7)

  1. 真球度が0.90〜1.00、かつ光散乱指数が0.5〜1.0、かつアマニ油吸油量が30〜150mL/100gである熱可塑性樹脂からなる略球状樹脂粒子。
  2. 前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂及びポリアミド系樹脂からなる群より選ばれた少なくとも1種の樹脂である請求項1に記載の熱可塑性樹脂からなる略球状樹脂粒子。
  3. 前記熱可塑性樹脂が、ポリエチレン、ポリプロピレン、エチレン/酢酸ビニル共重合体、エチレン/(メタ)アクリル酸共重合体、エチレン/(メタ)アクリル酸エステル共重合体、ポリ乳酸、ポリブチレンサクシネート、ポリヒドロキシアルカノエート、ポリカプロラクタム、ナイロン12及びナイロン6からなる群より選ばれた少なくとも1種の樹脂である請求項1又は2に記載の熱可塑性樹脂からなる略球状樹脂粒子。
  4. 前記熱可塑性樹脂が、生分解性を有し、かつポリエステル系樹脂及びポリエーテル系樹脂からなる群より選ばれた少なくとも1種の樹脂である請求項1〜3のいずれか1つに記載の熱可塑性樹脂からなる略球状樹脂粒子。
  5. 請求項1〜4のいずれか1つに記載の熱可塑性樹脂からなる略球状樹脂粒子が、3−アルコキシ−3−メチル−1−ブタノール及び/又は3−アルコキシ−3メチル−1−ブチルアセテート(アルコキシ基の炭素数は1〜5個)を含む溶媒、水及び分散安定剤の存在下、熱可塑性樹脂を100℃以上の温度で乳化・分散し、その後冷却することで得られる熱可塑性樹脂からなる略球状樹脂粒子の製造方法。
  6. 請求項1〜4のいずれか1つに記載の熱可塑性樹脂からなる略球状樹脂粒子を配合した化粧料。
  7. 請求項1〜4のいずれか1つに記載の熱可塑性樹脂からなる略球状樹脂粒子を配合したコーティング材料。
JP2016078818A 2015-06-03 2016-04-11 熱可塑性樹脂からなる略球状樹脂粒子の製造方法 Active JP6542155B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015113404 2015-06-03
JP2015113404 2015-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019109600A Division JP6794499B2 (ja) 2015-06-03 2019-06-12 熱可塑性樹脂からなる略球状樹脂粒子及びその用途

Publications (3)

Publication Number Publication Date
JP2016222897A true JP2016222897A (ja) 2016-12-28
JP2016222897A5 JP2016222897A5 (ja) 2018-12-13
JP6542155B2 JP6542155B2 (ja) 2019-07-10

Family

ID=57746654

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016078818A Active JP6542155B2 (ja) 2015-06-03 2016-04-11 熱可塑性樹脂からなる略球状樹脂粒子の製造方法
JP2019109600A Active JP6794499B2 (ja) 2015-06-03 2019-06-12 熱可塑性樹脂からなる略球状樹脂粒子及びその用途
JP2020185691A Active JP7277425B2 (ja) 2015-06-03 2020-11-06 熱可塑性樹脂からなる略球状樹脂粒子及びその用途

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019109600A Active JP6794499B2 (ja) 2015-06-03 2019-06-12 熱可塑性樹脂からなる略球状樹脂粒子及びその用途
JP2020185691A Active JP7277425B2 (ja) 2015-06-03 2020-11-06 熱可塑性樹脂からなる略球状樹脂粒子及びその用途

Country Status (1)

Country Link
JP (3) JP6542155B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3076731A1 (fr) * 2018-01-18 2019-07-19 Laboratoires Clarins Composition cosmetique comprenant des particules polymeres thermoplastiques biodegradables, utilisation cosmetique de ces particules et procede de traitement cosmetique
FR3076744A1 (fr) * 2018-01-18 2019-07-19 Laboratoires Clarins Procede de fabrication de particules polymeres thermoplastiques biodegradables, et utilisations de ces particules
JP2020512365A (ja) * 2017-03-30 2020-04-23 バイオ−オン エス.ピー.エイBio−On S.P.A. 生分解性ポリエステルと油相を含む化粧品組成物
JP2020516726A (ja) * 2017-04-21 2020-06-11 エルジー・ハウシス・リミテッド バイオ物質をベースとしたuvコーティング組成物
WO2020262509A1 (ja) * 2019-06-28 2020-12-30 積水化成品工業株式会社 生分解性樹脂粒子及びそれを含有する外用剤
CN113574097A (zh) * 2019-03-15 2021-10-29 积水化成品工业株式会社 生物降解性树脂颗粒、含有该颗粒的生物降解性树脂颗粒群及其用途
JP7443605B2 (ja) 2022-07-14 2024-03-05 松本油脂製薬株式会社 ポリマー粒子及びその用途

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489281B1 (en) 2016-07-22 2023-04-19 Sekisui Plastics Co., Ltd. Generally spherical resin particles formed of thermoplastic resin, method for producing same and use of same
WO2023110106A1 (de) 2021-12-16 2023-06-22 Wacker Chemie Ag Metalloxid-beschichtete thermoplastische micropartikel mit biologischer abbaubarkeit
JP7443614B1 (ja) 2022-10-05 2024-03-05 松本油脂製薬株式会社 樹脂粒子及びその用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056085A (ja) * 2005-08-23 2007-03-08 Toray Ind Inc ポリカプロアミド樹脂微粒子およびそれを含む化粧品
JP2009114241A (ja) * 2007-11-02 2009-05-28 Sakuranomiya Kagaku Kk シリカ微粒子を被覆したエチレン−酢酸ビニル共重合体ケン化物微粒子からなる複合微粒子
WO2012105140A1 (ja) * 2011-01-31 2012-08-09 東レ株式会社 ポリ乳酸系樹脂微粒子の製造方法、ポリ乳酸系樹脂微粒子およびそれを用いてなる化粧品
JP2013049825A (ja) * 2011-07-29 2013-03-14 Sekisui Plastics Co Ltd 異形樹脂粒子、その製造方法、およびその用途
JP2013133473A (ja) * 2011-12-26 2013-07-08 Toray Ind Inc ポリ乳酸系樹脂微粒子の製造方法
WO2015098654A1 (ja) * 2013-12-25 2015-07-02 東レ株式会社 ポリフェニレンサルファイド微粒子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143404A (ja) 2002-08-28 2004-05-20 Sekisui Chem Co Ltd ポリオレフィン系樹脂微粒子
FR2878434B1 (fr) 2004-11-30 2008-03-07 Arkema Sa Composition cosmetique comprenant une poudre fine et poreuse
JP2007119632A (ja) * 2005-10-28 2007-05-17 Toray Ind Inc 新規ポリアミド微粒子およびそれを含む化粧品
JP2007219183A (ja) * 2006-02-17 2007-08-30 Ube Ind Ltd 光散乱性材料
US10072377B2 (en) 2011-07-27 2018-09-11 Toray Industries, Inc. Prepreg and fiber-reinforced composite material
US20140026916A1 (en) 2012-07-25 2014-01-30 College Of William And Mary Method for Reducing Marine Pollution Using Polyhydroxyalkanoate Microbeads
JP5812374B2 (ja) 2012-09-26 2015-11-11 積水化成品工業株式会社 多孔質樹脂粒子、多孔質樹脂粒子の製造方法、およびその用途
WO2019131755A1 (ja) 2017-12-26 2019-07-04 日本コーンスターチ株式会社 化粧料組成物、化粧品、及び化粧料組成物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056085A (ja) * 2005-08-23 2007-03-08 Toray Ind Inc ポリカプロアミド樹脂微粒子およびそれを含む化粧品
JP2009114241A (ja) * 2007-11-02 2009-05-28 Sakuranomiya Kagaku Kk シリカ微粒子を被覆したエチレン−酢酸ビニル共重合体ケン化物微粒子からなる複合微粒子
WO2012105140A1 (ja) * 2011-01-31 2012-08-09 東レ株式会社 ポリ乳酸系樹脂微粒子の製造方法、ポリ乳酸系樹脂微粒子およびそれを用いてなる化粧品
JP2013049825A (ja) * 2011-07-29 2013-03-14 Sekisui Plastics Co Ltd 異形樹脂粒子、その製造方法、およびその用途
JP2013133473A (ja) * 2011-12-26 2013-07-08 Toray Ind Inc ポリ乳酸系樹脂微粒子の製造方法
WO2015098654A1 (ja) * 2013-12-25 2015-07-02 東レ株式会社 ポリフェニレンサルファイド微粒子

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512365A (ja) * 2017-03-30 2020-04-23 バイオ−オン エス.ピー.エイBio−On S.P.A. 生分解性ポリエステルと油相を含む化粧品組成物
US11254782B2 (en) 2017-04-21 2022-02-22 Lg Hausys, Ltd. Biomaterial-based UV coating composition
JP2020516726A (ja) * 2017-04-21 2020-06-11 エルジー・ハウシス・リミテッド バイオ物質をベースとしたuvコーティング組成物
JP7260482B2 (ja) 2017-04-21 2023-04-18 エルエックス・ハウシス・リミテッド バイオ物質をベースとしたuvコーティング組成物
FR3076744A1 (fr) * 2018-01-18 2019-07-19 Laboratoires Clarins Procede de fabrication de particules polymeres thermoplastiques biodegradables, et utilisations de ces particules
EP3513779A1 (fr) * 2018-01-18 2019-07-24 Laboratoires Clarins Composition cosmétique comprenant des particules polymères thermoplastiques biodégradables, utilisation cosmétique de ces particules et procédé de traitement cosmétique
FR3076731A1 (fr) * 2018-01-18 2019-07-19 Laboratoires Clarins Composition cosmetique comprenant des particules polymeres thermoplastiques biodegradables, utilisation cosmetique de ces particules et procede de traitement cosmetique
CN113574097A (zh) * 2019-03-15 2021-10-29 积水化成品工业株式会社 生物降解性树脂颗粒、含有该颗粒的生物降解性树脂颗粒群及其用途
EP3940020A4 (en) * 2019-03-15 2022-12-07 Sekisui Kasei Co., Ltd. BIODEGRADABLE RESIN PARTICLES, GROUP OF BIODEGRADABLE RESIN PARTICLES INCLUDING THESE, AND RELATED APPLICATION
JPWO2020262509A1 (ja) * 2019-06-28 2021-11-25 積水化成品工業株式会社 生分解性樹脂粒子及びそれを含有する外用剤
JP7125558B2 (ja) 2019-06-28 2022-08-24 積水化成品工業株式会社 生分解性樹脂粒子及びそれを含有する外用剤
WO2020262509A1 (ja) * 2019-06-28 2020-12-30 積水化成品工業株式会社 生分解性樹脂粒子及びそれを含有する外用剤
JP7443605B2 (ja) 2022-07-14 2024-03-05 松本油脂製薬株式会社 ポリマー粒子及びその用途

Also Published As

Publication number Publication date
JP2021014592A (ja) 2021-02-12
JP6542155B2 (ja) 2019-07-10
JP7277425B2 (ja) 2023-05-19
JP6794499B2 (ja) 2020-12-02
JP2019147967A (ja) 2019-09-05

Similar Documents

Publication Publication Date Title
JP6794499B2 (ja) 熱可塑性樹脂からなる略球状樹脂粒子及びその用途
WO2018016080A1 (ja) 熱可塑性樹脂からなる略球状樹脂粒子、その製造方法及びその用途
JP6903009B2 (ja) 多孔質樹脂微粒子及びその製造方法
JP5785261B2 (ja) 樹脂粒子集合体、その製造方法、およびその用途
Palkovits et al. Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites
BR112014007130A2 (pt) partículas de polímero e método para produção
JP6543920B2 (ja) ポリマー微粒子
JP2016222897A5 (ja)
WO2011121821A1 (ja) 表面に凸部を有する樹脂粒子及びその製造方法、それを用いた塗布用組成物、塗布物及び外用剤
JP2018095794A (ja) 樹脂粒子群及びその製造方法
JPH09208927A (ja) 紫外線遮蔽性粉体、紫外線遮蔽性樹脂組成物、および紫外線遮蔽性樹脂成形体
TWI619747B (zh) 由熱塑性樹脂所構成之大致呈球狀之樹脂粒子、其製造方法及其用途
WO2018180738A1 (ja) 球状ポリエステル系樹脂粒子及びその製造方法
JP2015193780A (ja) 合成樹脂粒子集合体
TW202408449A (zh) 可降解微珠及其製備方法與應用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190612

R150 Certificate of patent or registration of utility model

Ref document number: 6542155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150