WO2020262269A1 - 電動機の制御装置 - Google Patents

電動機の制御装置 Download PDF

Info

Publication number
WO2020262269A1
WO2020262269A1 PCT/JP2020/024275 JP2020024275W WO2020262269A1 WO 2020262269 A1 WO2020262269 A1 WO 2020262269A1 JP 2020024275 W JP2020024275 W JP 2020024275W WO 2020262269 A1 WO2020262269 A1 WO 2020262269A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
phase
section
value
modulated wave
Prior art date
Application number
PCT/JP2020/024275
Other languages
English (en)
French (fr)
Inventor
山根和貴
山田伸明
名和政道
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019205216A external-priority patent/JP7283356B2/ja
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to CN202080045485.XA priority Critical patent/CN113994587B/zh
Priority to US17/621,903 priority patent/US11736054B2/en
Priority to DE112020003026.1T priority patent/DE112020003026T5/de
Priority to KR1020217041797A priority patent/KR102649191B1/ko
Publication of WO2020262269A1 publication Critical patent/WO2020262269A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Definitions

  • the present invention relates to a control device for an electric motor.
  • Patent Document 1 is a related technique.
  • the drive signal corresponding to the target torque and the target rotation speed is obtained by referring to the map showing the correspondence relationship between the torque and the rotation speed of the electric motor and the drive signal for driving the switching element.
  • a device that drives the electric motor by the obtained drive signal is a related technique.
  • JP-A-2018-64313 Japanese Unexamined Patent Publication No. 2013-215041
  • An object of one aspect of the present invention is to suppress a calculation load while suppressing fluctuations in the torque of the electric motor due to a change in the output of the electric motor in the control device of the electric motor.
  • the electric motor control device includes an inverter circuit and a control circuit.
  • the inverter circuit When the first modulated wave is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the inverter circuit repeatedly turns on and off at a duty ratio according to the first modulated wave, and the first modulated wave becomes When the minimum or maximum value of the carrier wave, the first switching element which is always on or off, and when the second modulated wave is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the second When the second modulated wave is the minimum or maximum value of the carrier wave, the second switching element that is always on or off and the third modulated wave are repeatedly turned on and off at a duty ratio according to the modulated wave.
  • a third switching element that is always on or off is provided, and a first to third AC voltage having different phases is applied to the three phases of the electric machine by turning the first to third switching elements on and off. To drive the electric motor.
  • the control circuit outputs a first modulated wave corresponding to the output of the electric motor in the first section in which the peak of the first AC voltage exists in the control cycle of the electric motor consisting of the first to third sections.
  • the minimum or maximum value of the carrier wave is output as the second and third modulated waves
  • the second modulated wave corresponding to the output of the electric motor is output in the second section where the peak of the second AC voltage exists.
  • the minimum or maximum value of the carrier wave is output as the first and third modulated waves
  • the third modulated wave corresponding to the output of the electric motor is output.
  • the minimum or maximum value of the carrier wave is output as the first and second modulated waves.
  • the switching element in the control cycle of the electric motor, can be turned on and off at a duty ratio corresponding to the first to third modulated waves, so that the on time of the switching element is gradually changed according to the output of the electric motor. be able to. Therefore, even if the output of the motor becomes high and the transition from one-phase modulation control to square wave control can be performed, the on-time of the switching element can be seamlessly changed, so that the distortion of the current flowing through the motor can be suppressed and the torque can be suppressed. Fluctuations can be suppressed. Further, since it is only necessary to switch the phase for switching the switching element for each of the first to third sections and complicated calculation is not required, the calculation load of the control device can be suppressed.
  • control device of the electric motor includes an electric angle detection unit that detects the electric angle of the rotor of the electric motor, and the control circuit has a voltage command value according to the output of the electric motor and an electric angle detected by the electric angle detection unit.
  • the target electric angle calculation unit that calculates the target electric angle by the above, and when the target electric angle is in the first section, the modulation factor obtained by using the input voltage and the voltage command value of the inverter circuit is first modulated.
  • the input voltage of the inverter circuit and the voltage command value are used to obtain the wave and the minimum or maximum value of the carrier as the second and third modulated waves.
  • the input voltage of the inverter circuit is used. It is configured to include a modulation wave generator in which the modulation factor obtained by using the voltage command value is the third modulation wave and the minimum or maximum value of the carrier is the first and second modulation waves. May be good.
  • control device of the electric motor includes an electric angle detection unit that detects the electric angle of the rotor of the electric motor, and the control circuit has a voltage command value according to the output of the electric motor and an electric angle detected by the electric angle detection unit.
  • the control circuit has a voltage command value according to the output of the electric motor and an electric angle detected by the electric angle detection unit.
  • the modulation factor is the first modulation wave
  • the minimum or maximum value of the carrier is the second and third modulation waves
  • the absolute value of the second voltage command value is the absolute value of the first and third voltage command values.
  • the modulation factor obtained by using the input voltage of the inverter circuit and the voltage command value is set as the second modulation wave
  • the minimum or maximum value of the carrier is set as the first and third modulation waves.
  • the modulation factor obtained by using the input voltage of the inverter circuit and the voltage command value is set to the third. It may be configured to include a modulation wave generation unit which uses the minimum value or the maximum value of the carrier as the first and second modulation waves as well as the modulation wave.
  • control circuit may switch from the first section to the second section, switch from the second section to the third section, or from the third section to the first section. If there is a switching timing to, the switching timing may be configured to match the start timing of the next calculation cycle.
  • the switching element can be turned on when the switching element does not need to be turned on, or the switching element can be turned off when the switching element needs to be turned on. It is possible to further suppress the distortion generated in the current flowing through the electric motor, and further suppress the fluctuation of the torque.
  • control circuit has a switching timing from the first section to the second section, a switching timing from the second section to the third section, or a switching timing from the third section to the first section.
  • the switching timing of the respective values of the first to third modulated waves may be staggered so that the switching timings of the respective values of the first to third modulated waves do not overlap each other.
  • the control circuit may switch from the first section to the second section, switch from the second section to the third section, or from the third section to the first section. If there is a switching timing to, the switching time from the start timing of the next calculation cycle to the switching timing is obtained, and the frequency that is the reciprocal of the switching time is set from the start timing of the next calculation cycle until the switching time elapses. It may be configured to be set to the frequency of the carrier wave in the period of.
  • the error between the duty ratio of the drive signal and the desired duty ratio can be reduced, so that low-order harmonics can be suppressed from being applied to the current flowing through the electric motor, and torque ripple and noise vibration increase. Can be suppressed.
  • the control device of the electric motor in the control device of the electric motor, it is possible to suppress the calculation load while suppressing the fluctuation of the torque of the electric motor due to the change of the output of the electric motor.
  • FIG. 1 is a diagram showing an example of a control device for an electric motor according to an embodiment.
  • the control device 1 shown in FIG. 1 is a control device for driving an electric motor M mounted on a vehicle such as an electric forklift or a plug-in hybrid vehicle, and includes an inverter circuit 2 and a control circuit 3. It is assumed that the electric motor M includes an electric angle detection unit Sp (resolver or the like) that detects the electric angle ⁇ of the rotor and sends the detected electric angle ⁇ to the control circuit 3.
  • an electric angle detection unit Sp resolveer or the like
  • the inverter circuit 2 drives the electric motor M by the DC power supplied from the DC power supply P, and includes a voltage sensor Sv, a capacitor C, and switching elements SW1 to SW6 (IGBT (Insulated Gate Bipolar Transistor), etc.).
  • the current sensors Si1 and Si2 are provided. That is, one end of the capacitor C is connected to the positive electrode terminal of the DC power supply P and each collector terminal of the switching elements SW1, SW3, SW5, and the other end of the capacitor C is the negative electrode terminal of the DC power supply P and the switching elements SW2, SW4, SW6. It is connected to each emitter terminal of.
  • connection point between the emitter terminal of the switching element SW1 and the collector terminal of the switching element SW2 is connected to the U-phase input terminal of the motor M via the current sensor Si1.
  • the connection point between the emitter terminal of the switching element SW3 and the collector terminal of the switching element SW4 is connected to the V-phase input terminal of the motor M via the current sensor Si2.
  • the connection point between the emitter terminal of the switching element SW5 and the collector terminal of the switching element SW6 is connected to the input terminal of the W phase of the motor M.
  • the voltage sensor Sv detects the input voltage Vin output from the DC power supply P and input to the inverter circuit 2, and sends the detected input voltage Vin to the control circuit 3.
  • the capacitor C smoothes the input voltage Vin.
  • the switching element SW1 (second switching element) is turned on when the drive signal S1 is at a high level and is turned off when the drive signal S1 is at a low level.
  • the switching element SW1 is U-phase when the U-phase modulated wave Vu * (second modulated wave) corresponding to the output of the electric motor M is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave.
  • the duty ratio of the drive signal S1 becomes 100 [%] when the U-phase modulated wave Vu * is repeatedly turned on and off based on the drive signal S1 having a duty ratio corresponding to the modulated wave Vu *.
  • the duty ratio of the drive signal S1 becomes 0 [%] and is always off.
  • the U-phase modulated wave Vu * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the U-phase modulated wave Vu * approaches the maximum value of the carrier wave as the output of the electric motor M increases.
  • the duty ratio of the drive signal S1 increases and the U-phase modulated wave Vu * approaches the minimum value of the carrier wave, the duty ratio of the drive signal S1 decreases.
  • the switching element SW1 is repeatedly turned on and off at a duty ratio according to the output of the motor M.
  • the carrier wave is a triangular wave, a sawtooth wave (sawtooth wave), an inverse sawtooth wave, or the like.
  • the switching element SW2 (second switching element) is turned on when the drive signal S2 is at a high level and is turned off when the drive signal S2 is at a low level. Specifically, when the U-phase modulated wave Vu * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the switching element SW2 sets the drive signal S2 having a duty ratio according to the U-phase modulated wave Vu *. When the U-phase modulated wave Vu * is the maximum value of the carrier wave, the duty ratio of the drive signal S2 becomes 0 [%], the duty ratio is always turned off, and the U-phase modulated wave Vu * is the carrier wave. When it is the minimum value, the duty ratio of the drive signal S2 becomes 100 [%] and is always on.
  • the U-phase modulated wave Vu * When the U-phase modulated wave Vu * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the U-phase modulated wave Vu * approaches the maximum value of the carrier wave as the output of the electric motor M increases. As the duty ratio of the drive signal S2 decreases and the U-phase modulated wave Vu * approaches the minimum value of the carrier wave, the duty ratio of the drive signal S2 increases. That is, when the U-phase modulated wave Vu * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the switching element SW2 is repeatedly turned on and off at a duty ratio according to the output of the motor M.
  • the switching element SW3 (first switching element) is turned on when the drive signal S3 is at a high level and is turned off when the drive signal S3 is at a low level.
  • the switching element SW3 has a V-phase when the V-phase modulated wave Vv * (first modulated wave) corresponding to the output of the electric motor M is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave.
  • Vv * is the maximum value of the carrier wave by repeatedly turning on and off based on the drive signal S3 having a duty ratio according to the modulated wave Vv *
  • the duty ratio of the drive signal S3 becomes 100 [%].
  • the duty ratio of the drive signal S3 becomes 0 [%] and is always off.
  • the V-phase modulated wave Vv * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, as the output of the electric motor M increases, the V-phase modulated wave Vv * approaches the maximum value of the carrier wave.
  • the duty ratio of the drive signal S3 decreases. That is, when the V-phase modulated wave Vv * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the switching element SW3 is repeatedly turned on and off at a duty ratio according to the output of the motor M.
  • the switching element SW4 (first switching element) is turned on when the drive signal S4 is at a high level and is turned off when the drive signal S4 is at a low level. Specifically, when the V-phase modulated wave Vv * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the switching element SW4 sets the drive signal S4 having a duty ratio according to the V-phase modulated wave Vv *. When the V-phase modulated wave Vv * is the maximum value of the carrier wave, the duty ratio of the drive signal S4 becomes 0 [%], the duty ratio is always turned off, and the V-phase modulated wave Vv * is the carrier wave. When it is the minimum value, the duty ratio of the drive signal S4 becomes 100 [%] and is always on.
  • the V-phase modulated wave Vv * When the V-phase modulated wave Vv * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, as the output of the electric motor M increases, the V-phase modulated wave Vv * approaches the maximum value of the carrier wave. As the duty ratio of the drive signal S4 decreases and the V-phase modulated wave Vv * approaches the minimum value of the carrier wave, the duty ratio of the drive signal S4 increases. That is, when the V-phase modulated wave Vv * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the switching element SW4 is repeatedly turned on and off at a duty ratio according to the output of the motor M.
  • the switching element SW5 (third switching element) is turned on when the drive signal S5 is at a high level and is turned off when the drive signal S5 is at a low level.
  • the switching element SW5 has a W phase when the W phase modulated wave Vw * (third modulated wave) corresponding to the output of the electric motor M is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave. It is repeatedly turned on and off based on the drive signal S5 having a duty ratio according to the modulated wave Vw *, and when the W-phase modulated wave Vw * is the maximum value of the carrier wave, the duty ratio of the drive signal S5 becomes 100 [%].
  • the duty ratio of the drive signal S5 becomes 0 [%] and is always off.
  • the W-phase modulated wave Vw * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, as the output of the electric motor M increases, the W-phase modulated wave Vw * approaches the maximum value of the carrier wave.
  • the duty ratio of the drive signal S5 decreases. That is, when the W-phase modulated wave Vw * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the switching element SW5 is repeatedly turned on and off at a duty ratio according to the output of the motor M.
  • the switching element SW6 (third switching element) turns on when the drive signal S6 is at a high level and turns off when the drive signal S6 is at a low level. Specifically, when the W-phase modulated wave Vw * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the switching element SW6 sets the drive signal S6 having a duty ratio according to the W-phase modulated wave Vw *. When the W-phase modulated wave Vw * is the maximum value of the carrier wave, the duty ratio of the drive signal S6 becomes 0 [%], the duty ratio is always turned off, and the W-phase modulated wave Vw * is the carrier wave. When it is the minimum value, the duty ratio of the drive signal S6 becomes 100 [%] and is always on.
  • the W-phase modulated wave Vw * When the W-phase modulated wave Vw * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, as the output of the electric motor M increases, the W-phase modulated wave Vw * approaches the maximum value of the carrier wave. As the duty ratio of the drive signal S6 decreases and the W-phase modulated wave Vw * approaches the minimum value of the carrier wave, the duty ratio of the drive signal S6 increases. That is, when the W-phase modulated wave Vw * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the switching element SW6 is repeatedly turned on and off at a duty ratio according to the output of the motor M.
  • the drive signals S1 to S6 are not particularly distinguished, it is simply referred to as the drive signal S.
  • the DC input voltage Vin output from the DC power supply P is different from each other by 120 degrees in phase from the first AC voltage Vv, the second AC voltage Vu, and It is converted to a third AC voltage Vw. Then, the first AC voltage Vv is applied to the V-phase input terminal of the motor M, the second AC voltage Vu is applied to the U-phase input terminal of the motor M, and the third AC voltage Vw is the motor M. When applied to the W-phase input terminal, the rotor of the motor M rotates.
  • the current sensor Si1 is composed of a Hall element, a shunt resistor, and the like, detects the U-phase current Iu flowing in the U-phase of the motor M, and outputs it to the control circuit 3.
  • the current sensor Si2 is composed of a Hall element, a shunt resistor, and the like, and detects the V-phase current Iv flowing in the V-phase of the electric motor M and outputs it to the control circuit 3.
  • the control circuit 3 includes a drive circuit 4, a calculation unit 5, and a storage unit 6.
  • the storage unit 6 is composed of a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), or the like, and will be described later with a section and a U-phase modulated wave Vu *, a V-phase modulated wave Vv *, and a W-phase modulated wave Vw.
  • Information D1 indicating the correspondence with * and information D2 indicating the correspondence between the branching condition with the U-phase modulated wave Vu *, V-phase modulated wave Vv *, and W-phase modulated wave Vw * are stored. To do.
  • the drive circuit 4 is composed of an IC (Integrated Circuit) or the like, and compares the U-phase modulated wave Vu *, the V-phase modulated wave Vv *, and the W-phase modulated wave Vw * output from the arithmetic unit 5 with the carrier wave.
  • the drive signals S1 to S6 according to the comparison result are output to the respective gate terminals of the switching elements SW1 to SW6.
  • the duty ratio increases as the U-phase modulated wave Vu * approaches the maximum value of the carrier wave.
  • the drive signal S1 is output, and the duty ratio becomes smaller as the U-phase modulated wave Vu * approaches the minimum value of the carrier wave.
  • the drive circuit 4 outputs a drive signal S1 having a duty ratio of 100 [%], and the U-phase modulated wave Vu * is the minimum value of the carrier wave. In this case, the drive signal S1 having a duty ratio of 0 [%] is output.
  • the drive circuit 4 when the U-phase modulated wave Vu * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the duty ratio becomes smaller as the U-phase modulated wave Vu * approaches the maximum value of the carrier wave.
  • the drive signal S2 is output, and the duty ratio increases as the U-phase modulated wave Vu * approaches the minimum value of the carrier wave.
  • the drive circuit 4 when the U-phase modulated wave Vu * is the maximum value of the carrier wave, the drive circuit 4 outputs a drive signal S2 having a duty ratio of 0 [%], and the U-phase modulated wave Vu * is the minimum value of the carrier wave. In this case, the drive signal S2 having a duty ratio of 100 [%] is output.
  • the drive circuit 4 when the V-phase modulated wave Vv * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the duty ratio increases as the V-phase modulated wave Vv * approaches the maximum value of the carrier wave.
  • the drive signal S3 is output, and the duty ratio becomes smaller as the V-phase modulated wave Vv * approaches the minimum value of the carrier wave.
  • the drive circuit 4 when the V-phase modulated wave Vv * is the maximum value of the carrier wave, the drive circuit 4 outputs a drive signal S3 having a duty ratio of 100 [%], and the V-phase modulated wave Vv * is the minimum value of the carrier wave. In this case, the drive signal S3 having a duty ratio of 0 [%] is output.
  • the drive circuit 4 when the V-phase modulated wave Vv * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the duty ratio becomes smaller as the V-phase modulated wave Vv * approaches the maximum value of the carrier wave.
  • the drive signal S4 is output, and the duty ratio increases as the V-phase modulated wave Vv * approaches the minimum value of the carrier wave.
  • the drive circuit 4 when the V-phase modulated wave Vv * is the maximum value of the carrier wave, the drive circuit 4 outputs a drive signal S4 having a duty ratio of 0 [%], and the V-phase modulated wave Vv * is the minimum value of the carrier wave. In this case, the drive signal S4 having a duty ratio of 100 [%] is output.
  • the drive circuit 4 when the W-phase modulated wave Vw * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the duty ratio increases as the W-phase modulated wave Vw * approaches the maximum value of the carrier wave.
  • the drive signal S5 is output, and the duty ratio becomes smaller as the W-phase modulated wave Vw * approaches the minimum value of the carrier wave.
  • the drive circuit 4 when the W-phase modulated wave Vw * is the maximum value of the carrier wave, the drive circuit 4 outputs a drive signal S5 having a duty ratio of 100 [%], and the W-phase modulated wave Vw * is the minimum value of the carrier wave. In this case, the drive signal S5 having a duty ratio of 0 [%] is output.
  • the drive circuit 4 when the W-phase modulated wave Vw * is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, the duty ratio becomes smaller as the W-phase modulated wave Vw * approaches the maximum value of the carrier wave.
  • the drive signal S6 is output, and the duty ratio increases as the W-phase modulated wave Vw * approaches the minimum value of the carrier wave.
  • the drive circuit 4 when the W-phase modulated wave Vw * is the maximum value of the carrier wave, the drive circuit 4 outputs a drive signal S6 having a duty ratio of 0 [%], and the W-phase modulated wave Vw * is the minimum value of the carrier wave. In this case, the drive signal S6 having a duty ratio of 100 [%] is output.
  • the drive circuit 4 shall perform one-phase modulation control or square wave control in the control cycle (0 to 360 [deg]) of the electric motor M.
  • the one-phase modulation control is a control in which the switching element of one of the three phases is repeatedly turned on and off, and the switching element of the remaining two phases is constantly turned on or off.
  • the phases in which the switching element SW is repeatedly turned on and off are in order (for example, V phase and U phase) at every 60 degrees of the control cycle of the motor M. , W phase).
  • the rectangular wave control is a control that constantly turns on or off each of the three-phase switching elements.
  • the calculation unit 5 is composed of a microcomputer or the like, and includes a speed calculation unit 7, a subtraction unit 8, a torque control unit 9, a torque / current command value conversion unit 10, a coordinate conversion unit 11, and a subtraction unit 12. It includes a subtraction unit 13, a current control unit 14, and a dq / uvw conversion unit 15.
  • the microcomputer executes the program stored in the storage unit 6, the speed calculation unit 7, the subtraction unit 8, the torque control unit 9, the torque / current command value conversion unit 10, the coordinate conversion unit 11, and the subtraction unit 12, the subtraction unit 13, the current control unit 14, and the dq / uvw conversion unit 15 are realized.
  • the speed calculation unit 7 calculates the rotation speed ⁇ of the rotor of the electric motor M by using the electric angle ⁇ detected by the electric angle detection unit Sp. For example, the speed calculation unit 6 obtains the rotation speed ⁇ by dividing the electric angle ⁇ by the operation clock of the calculation unit 5.
  • the subtraction unit 8 calculates the difference ⁇ between the rotation speed command value ⁇ * input from the outside and the rotation speed ⁇ output from the speed calculation unit 7.
  • the torque control unit 9 obtains the torque command value T * using the difference ⁇ output from the subtraction unit 8.
  • the torque control unit 9 refers to the information stored in the storage unit 6 in which the rotation speed of the rotor of the electric motor M and the torque of the electric motor M are associated with each other, and the rotation corresponding to the difference ⁇ .
  • the torque corresponding to the speed is obtained as the torque command value T *.
  • the torque / current command value conversion unit 10 converts the torque command value T * output from the torque control unit 9 into the d-axis current command value Id * and the q-axis current command value Iq *.
  • the torque / current command value conversion unit 10 stores information in the storage unit 6 in which the torque of the electric motor M and the d-axis current command value Id * and the q-axis current command value Iq * are associated with each other.
  • the d-axis current command value Id * and the q-axis current command value Iq * corresponding to the torque corresponding to the torque command value T * are obtained with reference to.
  • the coordinate conversion unit 11 obtains the W-phase current Iw flowing in the W-phase of the electric motor M by using the U-phase current Iu detected by the current sensor Si1 and the V-phase current Iv detected by the current sensor Si2. Further, the coordinate conversion unit 11 uses the electric angle ⁇ detected by the electric angle detecting unit Sp to generate the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw with the d-axis current Id (weakened field). (Current component for generating) and q-axis current Iq (current component for generating torque) are converted.
  • the current detected by the current sensors Si1 and Si2 is not limited to the combination of the U-phase current Iu and the V-phase current Iv, but is limited to the combination of the V-phase current Iv and the W-phase current Iw, or the U-phase current Iu and W.
  • a combination of phase currents Iw may be used.
  • the coordinate conversion unit 11 obtains the U-phase current Iu using the V-phase current Iv and the W-phase current Iw.
  • the coordinate conversion unit 11 obtains the V-phase current Iv using the U-phase current Iu and the W-phase current Iw.
  • the inverter circuit 2 is further provided with a current sensor Si3 for detecting the current flowing in the W phase of the electric motor M in addition to the current sensors Si1 and Si2, the coordinate conversion unit 11 is detected by the electric angle detection unit Sp. Even if the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw detected by the current sensors Si1 to Si3 are converted into the d-axis current Id and the q-axis current Iq by using the electric angle ⁇ . Good.
  • the subtraction unit 12 calculates the difference ⁇ Id between the d-axis current command value Id * output from the torque / current command value conversion unit 10 and the d-axis current Id output from the coordinate conversion unit 11.
  • the subtraction unit 13 calculates the difference ⁇ Iq between the q-axis current command value Iq * output from the torque / current command value conversion unit 10 and the q-axis current Iq output from the coordinate conversion unit 11.
  • the current control unit 14 controls the d-axis voltage command value Vd * and the q-axis voltage command value Vq by PI (Proportional Integral) control using the difference ⁇ Id output from the subtraction unit 12 and the difference ⁇ Iq output from the subtraction unit 13. * Calculate.
  • the current control unit 14 calculates the d-axis voltage command value Vd * using the following formula 1 and calculates the q-axis voltage command value Vq * using the following formula 2.
  • Kp is a constant of the proportional term of PI control
  • Ki is a constant of the integration term of PI control
  • Lq is the q-axis inductance of the coil constituting the motor M
  • Ld is the d-axis inductance of the coil constituting the motor M.
  • Vd * Kp x difference ⁇ Id + ⁇ (Ki x difference ⁇ Id) - ⁇ LqIq ... Equation 1
  • Vq * Kp x difference ⁇ Iq + ⁇ (Ki x difference ⁇ Iq) + ⁇ LdId + ⁇ Ke ... Equation 2
  • the dq / uvw conversion unit 15 uses the input voltage Vin detected by the voltage sensor Sv and the electric angle ⁇ detected by the electric angle detection unit Sp to use the d-axis voltage command value Vd * and the q-axis voltage command value Vq *. Is converted into a U-phase modulated wave Vu *, a V-phase modulated wave Vv *, and a W-phase modulated wave Vw *.
  • the results calculated by the calculation unit 5 (U-phase modulation wave Vu *, V-phase modulation wave Vv *, and W-phase modulation wave Vw *) are obtained by the inverter circuit 2 in the next calculation cycle T of the calculation unit 5. It shall be reflected in the operation.
  • FIG. 2A shows the second AC voltage Vu applied to the U phase of the motor M, the first AC voltage Vv applied to the V phase of the motor M, and the W phase of the motor M. It is a figure which shows an example of the 3rd AC voltage Vw.
  • FIG. 2B is a diagram showing an example of a V-phase modulated wave Vv *.
  • FIG. 2C is a diagram showing an example of the U-phase modulated wave Vu *.
  • FIG. 2D is a diagram showing an example of a W-phase modulated wave Vw *. In the two-dimensional coordinates shown in FIGS.
  • the horizontal axis indicates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * with respect to the electric angle ⁇ of the rotor of the electric motor M. It is assumed that the target electric angle ⁇ v obtained by adding the phase angle ⁇ corresponding to is indicated by, and the vertical axis indicates the voltage.
  • the solid line shown in FIG. 2A shows the AC voltage Vu
  • the broken line shown in FIG. 2A shows the AC voltage Vv
  • the alternate long and short dash line shown in FIG. 2A shows the AC voltage Vw.
  • the broken line shown in FIG. 2B indicates the V-phase modulated wave Vv *
  • FIG. 2C indicates the U-phase modulated wave Vu *
  • the alternate long and short dash line shown in FIG. 2D indicates the W-phase modulated wave Vw *.
  • the range of the target electric angle ⁇ v of 0 to 360 [deg] is defined as the control cycle of the motor M.
  • FIG. 3A is a diagram showing an example of a comparison result between the V-phase modulated wave Vv * and the carrier wave.
  • FIG. 3B is a diagram showing an example of the drive signal S3 obtained from the comparison result shown in FIG. 3A.
  • FIG. 3C is a diagram showing an example of the drive signal S4 obtained from the comparison result shown in FIG. 3A.
  • the horizontal axis indicates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * with respect to the electric angle ⁇ of the rotor of the electric motor M. It is assumed that the target electric angle ⁇ v obtained by adding the phase angle ⁇ corresponding to is indicated by, and the vertical axis indicates the voltage.
  • FIG. 4A is a diagram showing an example of a comparison result between the U-phase modulated wave Vu * and the carrier wave.
  • FIG. 4B is a diagram showing an example of the drive signal S1 obtained from the comparison result shown in FIG. 4A.
  • FIG. 4C is a diagram showing an example of the drive signal S2 obtained from the comparison result shown in FIG. 4A.
  • the horizontal axis indicates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * with respect to the electric angle ⁇ of the rotor of the electric motor M. It is assumed that the target electric angle ⁇ v obtained by adding the phase angle ⁇ corresponding to is indicated by, and the vertical axis indicates the voltage.
  • FIG. 5A is a diagram showing an example of a comparison result between the W-phase modulated wave Vw * and the carrier wave.
  • FIG. 5B is a diagram showing an example of the drive signal S5 obtained from the comparison result shown in FIG. 5A.
  • FIG. 5C is a diagram showing an example of the drive signal S6 obtained from the comparison result shown in FIG. 5A.
  • the horizontal axis indicates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * with respect to the electric angle ⁇ of the rotor of the electric motor M. It is assumed that the target electric angle ⁇ v obtained by adding the phase angle ⁇ corresponding to is indicated by, and the vertical axis indicates the voltage.
  • the dq / uvw conversion unit 15 performs the dq / uvw conversion unit 15 in the first section (0 to 60 [deg]) of the control cycle of the motor M in which the peak on the positive side of the first AC voltage Vv shown in FIG. 2A exists.
  • the modulation factor Mref' carrier maximum value (+1) or less and carrier wave
  • a V-phase modulated wave Vv * having a modulation factor (Mref') equal to or higher than the minimum value (-1) of is generated.
  • the modulation rate Mref' is assumed to be obtained for each calculation cycle T of the calculation unit 5, and -1 ⁇ modulation rate Mref' ⁇ + 1. Further, the control cycle of the electric motor M> the calculation cycle T of the calculation unit 5. Further, the dq / uvw conversion unit 15 generates a U-phase modulated wave Vu * in the first section, which is the same value as the minimum value of the carrier wave, as shown in FIG. 2C. Further, the dq / uvw conversion unit 15 generates a W-phase modulated wave Vw * in the first section, which is the same value as the minimum value of the carrier wave, as shown in FIG. 2D.
  • the drive circuit 4 compares the V-phase modulated wave Vv *, which is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, with the carrier wave, as shown in FIG. 3A.
  • the drive signal S3 in which the high level and the low level are repeated is output to the gate terminal of the switching element SW3, and as shown in FIG. 3C, the low level and the high level are output.
  • the drive signal S4 whose level is repeated is output to the gate terminal of the switching element SW4.
  • the drive circuit 4 compares the U-phase modulated wave Vu *, which is the minimum value of the carrier wave, with the carrier wave, and as shown in FIG. 4B, As shown, the low-level drive signal S1 is output to the gate terminal of the switching element SW1, and as shown in FIG. 4C, the high-level drive signal S2 is output to the gate terminal of the switching element SW2. Further, in the first section, as shown in FIG. 5A, the drive circuit 4 compares the W-phase modulated wave Vw *, which is the minimum value of the carrier wave, with the carrier wave, and as shown in FIG. 5B, As shown, the low-level drive signal S5 is output to the gate terminal of the switching element SW5, and as shown in FIG.
  • the high-level drive signal SW6 is output to the gate terminal of the switching element S6.
  • the switching elements SW3 and SW4 are repeatedly turned on and off, the switching elements SW1 and SW5 are always turned off, and the switching elements SW2 and SW6 are always turned on. That is, in the first section, when the modulation factor Mref'is smaller than the maximum value of the carrier wave and larger than the minimum value, the electric motor M is driven by the one-phase modulation control.
  • the dq / uvw conversion unit 15 has a second section (60 to 120 [deg]] of the control cycle of the electric motor M in which a peak on the negative side of the second AC voltage Vu shown in FIG. 2A exists. ), As shown in FIG. 2C, a U-phase modulated wave having a modulation factor Mref'(modulation rate Mref'that is equal to or less than the maximum value of the carrier wave and greater than or equal to the minimum value of the carrier wave) according to the output of the motor M. Generate Vu *.
  • the dq / uvw conversion unit 15 generates a V-phase modulated wave Vv * in the second section, which is the same value as the maximum value of the carrier wave, as shown in FIG. 2 (b). Further, the dq / uvw conversion unit 15 generates a W-phase modulated wave Vw * in the second section, which is the same value as the maximum value of the carrier wave, as shown in FIG. 2D. Then, in the second section, the drive circuit 4 compares the U-phase modulated wave Vu *, which is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, with the carrier wave, as shown in FIG. 4A. As a result, as shown in FIG.
  • the drive signal S1 in which the high level and the low level are repeated is output to the gate terminal of the switching element SW1, and as shown in FIG. 4C, the low level and the high level are output.
  • the drive signal S2 whose level is repeated is output to the gate terminal of the switching element SW2.
  • the drive circuit 4 compares the V-phase modulated wave Vv *, which is the maximum value of the carrier wave, with the carrier wave, and as shown in FIG. 3B, As shown, the high-level drive signal S3 is output to the gate terminal of the switching element SW3, and as shown in FIG. 3C, the low-level drive signal S4 is output to the gate terminal of the switching element SW4. Further, in the second section, as shown in FIG.
  • the drive circuit 4 compares the W-phase modulated wave Vw *, which is the maximum value of the carrier wave, with the carrier wave, and as shown in FIG. 5B, As shown, the high-level drive signal S5 is output to the gate terminal of the switching element SW5, and as shown in FIG. 5C, the low-level drive signal SW6 is output to the gate terminal of the switching element S6.
  • the switching elements SW1 and SW2 are repeatedly turned on and off, the switching elements SW3 and SW5 are constantly turned on, and the switching elements SW4 and SW6 are constantly turned off. That is, in the second section, when the modulation factor Mref'is smaller than the maximum value of the carrier wave and larger than the minimum value, the electric motor M is driven by the one-phase modulation control.
  • the dq / uvw conversion unit 15 has a third section (120 to 180 [deg]) of the control cycle of the electric motor M in which a peak on the positive side of the third AC voltage Vw shown in FIG. 2A exists. ), As shown in FIG. 2D, a W-phase modulated wave having a modulation factor Mref'(modulation rate Mref'that is equal to or less than the maximum value of the carrier wave and greater than or equal to the minimum value of the carrier wave) according to the output of the motor M. Generate Vw *.
  • the dq / uvw conversion unit 15 generates a V-phase modulated wave Vv * in the third section, which is the same value as the minimum value of the carrier wave, as shown in FIG. 2 (b). Further, the dq / uvw conversion unit 15 generates a U-phase modulated wave Vu * in the third section, which is the same value as the minimum value of the carrier wave, as shown in FIG. 2C. Then, in the third section, the drive circuit 4 compares the W-phase modulated wave Vw *, which is smaller than the maximum value of the carrier wave and larger than the minimum value of the carrier wave, with the carrier wave, as shown in FIG. 5A. As a result, as shown in FIG.
  • the drive signal S5 in which the high level and the low level are repeated is output to the gate terminal of the switching element SW5, and as shown in FIG. 5C, the low level and the high level are output.
  • the drive signal S6 whose level is repeated is output to the gate terminal of the switching element SW6.
  • the drive circuit 4 compares the V-phase modulated wave Vv *, which is the minimum value of the carrier wave, with the carrier wave, and as shown in FIG. 3B, As shown, the low-level drive signal S3 is output to the gate terminal of the switching element SW3, and as shown in FIG. 3C, the high-level drive signal S4 is output to the gate terminal of the switching element SW4.
  • the drive circuit 4 compares the U-phase modulated wave Vu *, which is the minimum value of the carrier wave, with the carrier wave, and as shown in FIG. 4B, As shown, the low-level drive signal S1 is output to the gate terminal of the switching element SW1, and as shown in FIG. 4C, the high-level drive signal S2 is output to the gate terminal of the switching element SW2.
  • the switching elements SW5 and SW6 are repeatedly turned on and off, the switching elements SW1 and SW3 are always turned off, and the switching elements SW2 and SW4 are always turned on. That is, in the third section, when the modulation factor Mref'is smaller than the maximum value of the carrier wave and larger than the minimum value, the electric motor M is driven by the one-phase modulation control.
  • the dq / uvw conversion unit 15 is used.
  • the electric motor M is driven by one-phase modulation control.
  • the dq / uvw conversion unit 15 is used for the remaining half cycle of the control cycle of the motor M (first section (180 to 240 [deg]), second section (240 to 300 [deg]), and third. Even in the interval (300 to 360 [deg])), when the modulation factor Mref'is smaller than the maximum value of the carrier wave and larger than the minimum value, the electric motor M is driven by one-phase modulation control.
  • FIG. 6A is a diagram showing an example of a second AC voltage Vu, a first AC voltage Vv, and a third AC voltage Vw.
  • FIG. 6B is a diagram showing an example of a V-phase modulated wave Vv *.
  • FIG. 6C is a diagram showing an example of the U-phase modulated wave Vu *.
  • FIG. 6D is a diagram showing an example of the W-phase modulated wave Vw *.
  • the horizontal axis indicates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * with respect to the electric angle ⁇ of the rotor of the electric motor M.
  • the target electric angle ⁇ v obtained by adding the phase angle ⁇ corresponding to is indicated by, and the vertical axis indicates the voltage.
  • the solid line shown in FIG. 6A shows the AC voltage Vu
  • the broken line shown in FIG. 6A shows the AC voltage Vv
  • the alternate long and short dash line shown in FIG. 6A shows the AC voltage Vw.
  • the broken line shown in (b) indicates the V-phase modulated wave Vv *
  • the solid line shown in FIG. 6 (c) indicates the U-phase modulated wave Vu *
  • the alternate long and short dash line shown in FIG. 6 (d) indicates the W-phase modulated wave Vw *.
  • the range of the target electric angle ⁇ v of 0 to 360 [deg] is defined as the control cycle of the motor M.
  • FIG. 7A is a diagram showing an example of a comparison result between the V-phase modulated wave Vv * and the carrier wave.
  • FIG. 7B is a diagram showing an example of the drive signal S3 obtained from the comparison result shown in FIG. 7A.
  • FIG. 7C is a diagram showing an example of the drive signal S4 obtained from the comparison result shown in FIG. 7A.
  • the horizontal axis indicates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * with respect to the electric angle ⁇ of the rotor of the electric motor M. It is assumed that the target electric angle ⁇ v obtained by adding the phase angle ⁇ corresponding to is indicated by, and the vertical axis indicates the voltage.
  • FIG. 8A is a diagram showing an example of a comparison result between the U-phase modulated wave Vu * and the carrier wave.
  • FIG. 8B is a diagram showing an example of the drive signal S1 obtained from the comparison result shown in FIG. 8A.
  • FIG. 8C is a diagram showing an example of the drive signal S2 obtained from the comparison result shown in FIG. 8A.
  • the horizontal axis indicates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * with respect to the electric angle ⁇ of the rotor of the electric motor M. It is assumed that the target electric angle ⁇ v obtained by adding the phase angle ⁇ corresponding to is indicated by, and the vertical axis indicates the voltage.
  • FIG. 9A is a diagram showing an example of a comparison result between the W-phase modulated wave Vw * and the carrier wave.
  • FIG. 9B is a diagram showing an example of the drive signal S5 obtained from the comparison result shown in FIG. 9A.
  • FIG. 9C is a diagram showing an example of the drive signal S6 obtained from the comparison result shown in FIG. 9A.
  • the horizontal axis indicates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * with respect to the electric angle ⁇ of the rotor of the electric motor M. It is assumed that the target electric angle ⁇ v obtained by adding the phase angle ⁇ corresponding to is indicated by, and the vertical axis indicates the voltage.
  • the dq / uvw conversion unit 15 performs the dq / uvw conversion unit 15 in the first section (0 to 60 [deg]) of the control cycle of the motor M in which the peak on the positive side of the first AC voltage Vv shown in FIG. 6A exists.
  • a V-phase modulated wave Vv * having a modulation factor Mref'(maximum value (+1) of the carrier wave) corresponding to the output of the electric motor M is generated.
  • the dq / uvw conversion unit 15 generates a U-phase modulated wave Vu * in the first section, which is the same value as the minimum value (-1) of the carrier wave, as shown in FIG. 6 (c).
  • the dq / uvw conversion unit 15 generates a W-phase modulated wave Vw * in the first section, which is the same value as the minimum value of the carrier wave, as shown in FIG. 6D.
  • the drive circuit 4 compares the V-phase modulated wave Vv *, which is the maximum value of the carrier wave, with the carrier wave, and as shown in FIG. 7B, As shown, the high-level drive signal S3 is output to the gate terminal of the switching element SW3, and as shown in FIG. 7C, the low-level drive signal S4 is output to the gate terminal of the switching element SW4. Further, in the first section, as shown in FIG.
  • the drive circuit 4 compares the U-phase modulated wave Vu *, which is the minimum value of the carrier wave, with the carrier wave, and as shown in FIG. 8B, As shown, the low-level drive signal S1 is output to the gate terminal of the switching element SW1, and as shown in FIG. 8C, the high-level drive signal SW2 is output to the gate terminal of the switching element S2. Further, in the first section, as shown in FIG. 9A, the drive circuit 4 compares the W-phase modulated wave Vw *, which is the minimum value of the carrier wave, with the carrier wave, and as shown in FIG. 9B, As shown, the low-level drive signal S5 is output to the gate terminal of the switching element SW5, and as shown in FIG.
  • the high-level drive signal SW6 is output to the gate terminal of the switching element S6.
  • the switching elements SW2, SW3, and SW6 are always on, and the switching elements SW1, SW4, and SW5 are always off. That is, in the first section, when the modulation factor Mref'is the maximum value of the carrier wave, the electric motor M is driven by the rectangular wave control.
  • the dq / uvw conversion unit 15 has a second section (60 to 120 [deg]] of the control cycle of the electric motor M in which a peak on the negative side of the second AC voltage Vu shown in FIG. 6A exists. ), As shown in FIG. 6C, a U-phase modulated wave Vu * having a modulation factor Mref'(minimum value of the carrier wave) corresponding to the output of the electric motor M is generated. Further, the dq / uvw conversion unit 15 generates a V-phase modulated wave Vv * in the second section, which is the same value as the maximum value of the carrier wave, as shown in FIG. 6B.
  • the dq / uvw conversion unit 15 generates a W-phase modulated wave Vw * in the second section, which is the same value as the maximum value of the carrier wave, as shown in FIG. 6D.
  • the drive circuit 4 compares the U-phase modulated wave Vu *, which is the minimum value of the carrier wave, with the carrier wave, and as shown in FIG. 8B, As shown, the low-level drive signal S1 is output to the gate terminal of the switching element SW1, and as shown in FIG. 8C, the high-level drive signal S2 is output to the gate terminal of the switching element SW2. Further, in the second section, as shown in FIG.
  • the drive circuit 4 compares the V-phase modulated wave Vv *, which is the maximum value of the carrier wave, with the carrier wave, so that FIG. 7 (b) shows.
  • the high-level drive signal S3 is output to the gate terminal of the switching element SW3, and as shown in FIG. 7C, the low-level drive signal SW4 is output to the gate terminal of the switching element S4.
  • the drive circuit 4 compares the W-phase modulated wave Vw *, which is the maximum value of the carrier wave, with the carrier wave, and as shown in FIG. 9B, As shown, the high-level drive signal S5 is output to the gate terminal of the switching element SW5, and as shown in FIG.
  • the low-level drive signal SW6 is output to the gate terminal of the switching element S6.
  • the switching elements SW2, SW3, and SW5 are always on, and the switching elements SW1, SW4, and SW6 are always off. That is, in the second section, when the modulation factor Mref'is the minimum value of the carrier wave, the electric motor M is driven by the rectangular wave control.
  • the dq / uvw conversion unit 15 has a third section (120 to 180 [deg]) of the control cycle of the electric motor M in which a peak on the positive side of the third AC voltage Vw shown in FIG. 6A exists. ), As shown in FIG. 6D, a W-phase modulated wave Vw * having a modulation factor Mref'(maximum value of the carrier wave) corresponding to the output of the electric motor M is generated. Further, the dq / uvw conversion unit 15 generates a V-phase modulated wave Vv * in the third section, which is the same value as the minimum value of the carrier wave, as shown in FIG. 6B.
  • the dq / uvw conversion unit 15 generates a U-phase modulated wave Vu * in the third section, which is the same value as the minimum value of the carrier wave, as shown in FIG. 6C.
  • the drive circuit 4 compares the W-phase modulated wave Vw *, which is the maximum value of the carrier wave, with the carrier wave, and as shown in FIG. 9B, As shown, the high-level drive signal S5 is output to the gate terminal of the switching element SW5, and as shown in FIG. 9C, the low-level drive signal S6 is output to the gate terminal of the switching element SW6.
  • the third section as shown in FIG.
  • the drive circuit 4 compares the V-phase modulated wave Vv *, which is the minimum value of the carrier wave, with the carrier wave, and as shown in FIG. 7B, As shown, the low-level drive signal S3 is output to the gate terminal of the switching element SW3, and as shown in FIG. 7C, the high-level drive signal SW4 is output to the gate terminal of the switching element S4. Further, in the third section, as shown in FIG. 8A, the drive circuit 4 compares the UW phase modulated wave Vu *, which is the minimum value of the carrier wave, with the carrier wave, and as shown in FIG. 8B, As shown, the low-level drive signal S1 is output to the gate terminal of the switching element SW1, and as shown in FIG.
  • the high-level drive signal SW2 is output to the gate terminal of the switching element S2.
  • the switching elements SW2, SW4, and SW5 are always on, and the switching elements SW1, SW3, and SW6 are always off. That is, in the third section, when the modulation factor Mref'is the maximum value of the carrier wave, the electric motor M is driven by the rectangular wave control.
  • the modulation factor Mref' is the maximum value of the carrier wave in the half cycle (0 to 180 [deg]) of the control cycle of the electric motor M, or the modulation factor Mref'is When it is the minimum value of the carrier wave, the electric motor M is driven by the rectangular wave control.
  • the dq / uvw conversion unit 15 is used for the remaining half cycle of the control cycle of the motor M (first section (180 to 240 [deg]), second section (240 to 300 [deg]), and third.
  • the electric motor M is driven by the square wave control. ..
  • the control device 1 of the electric motor M of the embodiment V-phase modulation according to the output of the electric motor M in the first section of the control cycle of the electric motor M in which the peak of the first AC voltage Vv exists.
  • the wave Vv * is output and the minimum or maximum value of the carrier is output as the U-phase modulated wave Vu * and the W-phase modulated wave Vw *, and the peak of the second AC voltage Vu * exists.
  • the U-phase modulated wave Vu * corresponding to the output of the electric motor M is output, and the minimum or maximum value of the carrier is output as the V-phase modulated wave Vv * and the W-phase modulated wave Vw *, and the peak of the third AC voltage Vw.
  • the W-phase modulated wave Vw * corresponding to the output of the electric motor M is output, and the minimum or maximum value of the carrier is output as the V-phase modulated wave Vv * and the U-phase modulated wave Vu *. ..
  • the V-phase modulated wave Vv *, the U-phase modulated wave Vu *, and the W-phase modulated wave Vw * corresponding to the output of the motor M become the carrier waves. If it is smaller than the maximum value and larger than the minimum value of the carrier wave, the switching element of one phase of the three-phase switching elements can be repeatedly turned on and off, that is, one-phase modulation control can be performed.
  • the switching element can be turned on and off at a duty ratio corresponding to the V-phase modulated wave Vv *, the U-phase modulated wave Vu *, and the W-phase modulated wave Vw *.
  • the on-time of the switching element can be gradually changed according to the output of.
  • the on-time of the switching element can be seamlessly changed, so that the distortion of the current flowing through the motor M can be suppressed. , Torque fluctuation can be suppressed. Further, since it is only necessary to switch the phase for switching the switching element for each of the first to third sections and complicated calculation is not required, the calculation load of the control device 1 can be suppressed.
  • the switching frequency of the switching elements SW1 to SW6 can be made higher than that of the control device of the electric motor that performs three-phase modulation control or two-phase modulation control.
  • the switching frequency can be shifted outside the audible range, and noise can be reduced.
  • FIG. 10A is a diagram showing an example of the dq / uvw conversion unit 15.
  • the dq / uvw conversion unit 15 shown in FIG. 10A includes a phase angle calculation unit 151, an addition unit 152, a modulation rate calculation unit 153, a modulation rate expansion unit 154, and a modulation wave generation unit 155.
  • the phase angle calculation unit 151 calculates the phase angle ⁇ corresponding to the d-axis voltage command value Vd * and the q-axis voltage command value Vq * output from the current control unit 14. For example, the phase angle calculation unit 151 sets the calculation result of the following equation 3 as the phase angle ⁇ .
  • the addition unit 152 sets the addition result of the phase angle ⁇ output from the phase angle calculation unit 151 and the electric angle ⁇ output from the electric angle detection unit Sp as the target electric angle ⁇ v. It is assumed that the target electric angle calculation unit is composed of the phase angle calculation unit 151 and the addition unit 152. That is, the target electric angle calculation unit calculates the target electric angle ⁇ v from the d-axis voltage command value Vd * and the q-axis voltage command value Vq * according to the output of the motor M and the electric angle ⁇ detected by the electric angle detection unit Sp. To do.
  • the modulation factor calculation unit 153 uses the input voltage Vin detected by the voltage sensor Sv, the d-axis voltage command value Vd * and the q-axis voltage command value Vq * output from the current control unit 14, and the modulation rate Muref. To calculate.
  • the modulation factor calculation unit 153 uses the calculation result of the following equation 4 as the modulation factor Mref. It should be noted that 0 ⁇ Mref ⁇ 1.
  • the modulation rate expansion unit 154 obtains the modulation rate Mref'by expanding the modulation rate Mref output from the modulation rate calculation unit 153.
  • the modulation wave generation unit 155 uses the target electric angle ⁇ v output from the addition unit 152 and the modulation factor Mrf'output from the modulation rate expansion unit 154 to use the U-phase modulation wave Vu * and the V-phase modulation wave Vv. * And W-phase modulated wave Vw * are generated.
  • the modulated wave generation unit 155 refers to the information D1 stored in the storage unit 6, and refers to the U-phase modulated wave Vu * and the V-phase modulated wave Vv corresponding to the target electric angle ⁇ v output from the adding unit 152. * And W-phase modulated wave Vw * are obtained.
  • FIG. 10B is a diagram showing an example of information D1.
  • the first section “0 to 60 [deg]", the U-phase modulation wave Vu * "-1 (minimum value of the carrier wave)", and V-phase modulation
  • the wave Vv * "Mref'” and the W-phase modulated wave Vw * "-1” are associated with each other.
  • the second section “60 to 120 [deg]", the U-phase modulated wave Vu * "Mref'", and the V-phase modulated wave Vv * "+1 (maximum value of carrier wave)”
  • W-phase modulated wave Vw * "+1” is associated with each other.
  • the third section "120 to 180 [deg]", the U-phase modulated wave Vu * "-1", the V-phase modulated wave Vv * "-1", and the W-phase modulated wave "Mref'” which is Vw * is associated with each other.
  • the first section “180 to 240 [deg]”, the U-phase modulated wave Vu * "+1", the V-phase modulated wave Vv * "Mref'", and the W-phase modulated wave Vw. "+1” which is * is associated with each other.
  • the second section “240 to 300 [deg] the U-phase modulated wave Vu * "Mref'", the V-phase modulated wave Vv * "-1", and the W-phase modulated wave.
  • the modulated wave generation unit 155 sets “-1” as the U-phase modulated wave Vu *.
  • "Mref'” is output as the V-phase modulated wave Vv *
  • "-1" is output as the W-phase modulated wave Vw *.
  • the switching element SW3 is always on, the switching element SW4 is always off, the switching element SW1 is always off, and the switching element SW2 is always on in the first section.
  • the switching element SW5 is always off, and the switching element SW6 is always on.
  • the modulated wave generation unit 155 sets “Mref ′” as the U-phase modulated wave Vu *.
  • “+1” is output as the V-phase modulated wave Vv *
  • “+1” is output as the W-phase modulated wave Vw *.
  • the switching element SW1 When Mr. Ref'is the minimum value of the carrier wave, the switching element SW1 is always turned off, the switching element SW2 is always turned on, the switching element SW3 is always turned on, and the switching element SW4 is always turned off in the second section. , The switching element SW5 is always on, and the switching element SW6 is always off.
  • the modulated wave generation unit 155 sets “-1” as the U-phase modulated wave Vu *.
  • "-1" is output as the V-phase modulated wave Vv *
  • "Mref'” is output as the W-phase modulated wave Vw *.
  • the switching element SW5 is always on, the switching element SW6 is always off, the switching element SW3 is always off, and the switching element SW4 is always on in the third section.
  • the switching element SW1 is always off, and the switching element SW2 is always on.
  • the modulation factor Mref'corresponding to the output of the electric motor M is output as a V-phase modulation wave Vv * and the minimum of the carrier.
  • the value or maximum value is output as U-phase modulated wave Vu * and W-phase modulated wave Vw *
  • the modulation factor Mrf'corresponding to the output of the electric motor M is output as U-phase modulated wave Vu *.
  • the minimum or maximum value of the carrier is output as the V-phase modulation wave Vv * and the W-phase modulation wave Vw *, and in the third section, the modulation factor Mref'corresponding to the output of the electric motor M is the W-phase modulation wave Vw *.
  • the minimum value or the maximum value of the carrier can be output as V-phase modulated wave Vv * and U-phase modulated wave Vu *.
  • FIG. 11A is a diagram showing another example of the dq / uvw conversion unit 15.
  • the dq / uvw conversion unit 15 shown in FIG. 11A includes a two-phase three-phase conversion unit 156 and a modulated wave generation unit 157.
  • the two-phase three-phase conversion unit 156 uses the electric angle ⁇ output from the electric angle detection unit Sp, and uses the d-axis voltage corresponding to the output of the electric motor M output from the current control unit 14.
  • the command value Vd * and the q-axis voltage command value Vq * are the U-phase voltage command value Vu ** (second voltage command value) corresponding to the second AC voltage Vu, and the V corresponding to the first AC voltage Vv. It is converted into a phase voltage command value Vv ** (first voltage command value) and a W phase voltage command value Vw ** (third voltage command value) corresponding to the third AC voltage Vw.
  • the two-phase three-phase conversion unit 156 uses the conversion matrix C shown in the following equation 6 to convert the d-axis voltage command value Vd * and the q-axis voltage command value Vq * into the U-phase voltage command values Vu ** and V. Converts to the phase voltage command value Vv ** and the W phase voltage command value Vw **.
  • the modulated wave generation unit 157 includes an input voltage Vin detected by the voltage sensor Sv, a d-axis voltage command value Vd * and a q-axis voltage command value Vq * output from the current control unit 14, and a two-phase three-phase conversion unit. Using the U-phase voltage command value Vu **, V-phase voltage command value Vv **, and W-phase voltage command value Vw ** output from 156, the U-phase voltage command value Vu * and V-phase voltage command value Vv * , And the W-phase modulated wave Vw * is calculated.
  • the modulated wave generation unit 157 obtains the phase angle ⁇ by calculating the above equation 3, and sets the addition result of the phase angle ⁇ and the electric angle ⁇ output from the electric angle detection unit Sp as the target electric angle ⁇ v.
  • the modulation factor Mref is obtained by calculating the above equation 4
  • the modulation factor Mref' is obtained by calculating the above equation 5.
  • the modulated wave generation unit 157 refers to the information D2 stored in the storage unit 6, and the U-phase voltage command value Vu ** and the V-phase voltage command value Vv output from the two-phase three-phase conversion unit 156.
  • the U-phase modulated wave Vu *, the V-phase modulated wave Vv *, and the W-phase modulated wave Vw * corresponding to the branching conditions obtained by the ** and the W-phase voltage command value Vw ** are obtained.
  • FIG. 11B is a diagram showing an example of information D2.
  • the information D2 shown in FIG. 11B "when the absolute value of the V-phase voltage command value Vv ** is larger than the absolute value of the U-phase voltage command value Vu ** and the absolute value of the W-phase voltage command value Vw **.
  • the branch condition is "when the V-phase voltage command value Vv ** is zero or more", the U-phase modulated wave Vu * is "-1 (minimum value of the carrier)", and the V-phase modulated wave Vv *.
  • “Mref'" and "-1" which is a W-phase modulated wave Vw * are associated with each other.
  • the modulated wave generator 157 is in the case where the absolute value of the V-phase voltage command value Vv ** is larger than the absolute value of the U-phase voltage command value Vu ** and the absolute value of the W-phase voltage command value Vw **.
  • the V-phase voltage command value Vv ** is zero or more, that is, when the target electric angle ⁇ v is in the first section (0 to 60 [deg])
  • the U-phase modulated wave Vu * is set to "-". 1 ”is output,“ Muref ′ ”is output as a V-phase modulated wave Vv *, and“ -1 ”is output as a W-phase modulated wave Vw *.
  • Mr Mr.
  • the switching elements SW3 and SW4 are repeatedly turned on and off in the first section, and the switching element SW1 is constantly turned off for switching.
  • the element SW2 is always on, the switching element SW5 is always off, and the switching element SW6 is always on.
  • Mr. Ref'is the maximum value of the carrier wave the switching element SW3 is always on, the switching element SW4 is always off, the switching element SW1 is always off, and the switching element SW2 is always on in the first section.
  • the switching element SW5 is always off, and the switching element SW6 is always on.
  • the modulation wave generation unit 157 is in the case where the absolute value of the U-phase voltage command value Vu ** is larger than the absolute value of the V-phase voltage command value Vv ** and the absolute value of the W-phase voltage command value Vw **.
  • the U-phase voltage command value Vu ** is zero or more, that is, when the target electric angle ⁇ v is in the second section (60 to 120 [deg])
  • “Mref” is set as the U-phase modulated wave Vu *. ’” Is output
  • “+1” is output as the V-phase modulated wave Vv *
  • “+1” is output as the W-phase modulated wave Vw *.
  • the switching elements SW1 and SW2 are repeatedly turned on and off in the second section, and the switching element SW3 is always turned on for switching.
  • the element SW4 is always off, the switching element SW5 is always on, and the switching element SW6 is always off.
  • Mr. Ref'is the minimum value of the carrier wave the switching element SW1 is always turned off, the switching element SW2 is always turned on, the switching element SW3 is always turned on, and the switching element SW4 is always turned off in the second section.
  • the switching element SW5 is always on, and the switching element SW6 is always off.
  • the modulation wave generation unit 157 is in the case where the absolute value of the W-phase voltage command value Vw ** is larger than the absolute value of the V-phase voltage command value Vv ** and the U-phase voltage command value Vu **.
  • the W-phase voltage command value Vw ** is zero or more, that is, when the target electric angle ⁇ v is in the third section (120 to 180 [deg])
  • the U-phase modulated wave Vu * is set to "-". 1 ”is output,“ -1 ”is output as the V-phase modulated wave Vv *, and“ Mrf ′ ”is output as the W-phase modulated wave Vw *.
  • Mr Mr.
  • the switching elements SW5 and SW6 are repeatedly turned on and off, and the switching element SW3 is constantly turned off for switching in the third section.
  • the element SW4 is always on, the switching element SW1 is always off, and the switching element SW2 is always on.
  • Mr. Ref'is the maximum value of the carrier wave the switching element SW5 is always on, the switching element SW6 is always off, the switching element SW3 is always off, and the switching element SW4 is always on in the third section.
  • the switching element SW1 is always off, and the switching element SW2 is always on.
  • the modulation factor Mref'corresponding to the output of the electric motor M is output as a V-phase modulation wave Vv * and the minimum of the carrier.
  • the value or maximum value is output as U-phase modulated wave Vu * and W-phase modulated wave Vw *
  • the modulation factor Mrf'corresponding to the output of the electric motor M is output as U-phase modulated wave Vu *.
  • the minimum or maximum value of the carrier is output as the V-phase modulation wave Vv * and the W-phase modulation wave Vw *, and in the third section, the modulation factor Mref'corresponding to the output of the electric motor M is the W-phase modulation wave Vw *.
  • the minimum value or the maximum value of the carrier can be output as V-phase modulated wave Vv * and U-phase modulated wave Vu *.
  • FIG. 12 is a flowchart showing an example of the operation of the dq / uvw conversion unit 15 in the first modification.
  • the dq / uvw conversion unit 15 obtains the calculation cycle T of the calculation unit 5 (step S1). For example, the dq / uvw conversion unit 15 sets the difference between the electric angle ⁇ acquired this time and the electric angle ⁇ acquired last time as the calculation cycle T.
  • the dq / uvw conversion unit 15 estimates the next calculation cycle T of the calculation unit 5 (step S2). For example, the dq / uvw conversion unit 15 sets the calculation timing after the calculation cycle T from the current calculation timing of the calculation unit 5 as the start timing of the next calculation cycle T of the calculation unit 5, and after the calculation cycle T from the start timing.
  • the calculation timing of is defined as the end timing of the next calculation cycle T of the calculation unit 5, and the range from the start timing to the end timing is defined as the next calculation cycle T of the calculation unit 5.
  • the U-phase modulated wave Vu *, V-phase modulated wave Vv *, and W-phase modulated wave Vw * obtained at the current calculation timing are reflected in the operation of the inverter circuit 2 in the next calculation period T. And.
  • the dq / uvw conversion unit 15 switches the switching timings of the first to third sections (0 [deg], 60 [deg], 120 [deg], 180 [.
  • the switching time ct is set (step S4).
  • the dq / uvw conversion unit 15 sets the difference between the switching timing of the first to third sections and the start timing of the next calculation cycle T as the switching time tk.
  • step S5 the dq / uvw conversion unit 15 sets the switching time ct to be larger than the calculation cycle when the switching timing of the first to third sections does not exist (step S3: No). Set to a value (step S5).
  • the dq / uvw conversion unit 15 uses the input voltage Vin and the electric angle ⁇ to convert the d-axis voltage command value Vd * and the q-axis voltage command value Vq * into the U-phase modulation wave Vu * and the V-phase modulation wave Vv. * And W-phase modulated wave Vw * are converted, and when the start timing of the next calculation cycle T comes, U-phase modulated wave Vu *, V-phase modulated wave Vv *, and W-phase modulated wave Vw after the switching time tk elapses. Each value of * is switched (step S6).
  • FIG. 13 is a diagram for explaining the setting of the switching time tk.
  • the horizontal axis of the two-dimensional coordinates shown in FIG. 13 is the target electricity obtained by adding the phase angle ⁇ corresponding to the d-axis voltage command value Vd * and the q-axis voltage command value Vq * to the electric angle ⁇ of the rotor of the motor M.
  • the angle ⁇ v is shown, and the vertical axis shows the voltage.
  • the solid line shown in FIG. 13 indicates the U-phase modulated wave Vu *
  • the broken line shown in FIG. 13 indicates the V-phase modulated wave Vv *
  • the alternate long and short dash line shown in FIG. 13 indicates the W-phase modulated wave Vw *.
  • the calculation cycle T of the calculation unit 5 is set to 18 [deg].
  • the dq / uvw conversion unit 15 determines that the target electric angle ⁇ v falls within the first section (0 to 60 [deg]), or the absolute value of the V-phase voltage command value Vv ** is the U-phase.
  • the next calculation cycle T In 54 [deg] to 72 [deg]
  • 60 [deg] -54 [deg] 6 [deg]
  • the time corresponding to is defined as the switching time tk.
  • the dq / uvw conversion unit 15 reaches the start timing (54 [deg]) of the next calculation cycle T, and after the switching time ct (time corresponding to 6 [deg]) elapses, the U-phase modulated wave Vu *, The values of the V-phase modulated wave Vv * and the W-phase modulated wave Vw * are switched. That is, when the dq / uvw conversion unit 15 reaches 60 [deg], the value of the V-phase modulated wave Vv * is switched from the modulation factor Mref'to the maximum value of the carrier wave, and the value of the W-phase modulated wave Vw * is changed to the value of the carrier wave.
  • the value of the U-phase modulated wave Vu * is switched from the minimum value of the carrier wave to the modulation factor Mref'. If there is no switching timing between the first section and the second section in the next calculation cycle T of the calculation unit 5, the modulated wave in the middle of the calculation cycle is not changed until the next calculation cycle is reached. Continuously output.
  • the dq / uvw conversion unit 15 in the modification 1 has the switching timing from the first section to the second section and the switching timing from the second section to the third section in the next calculation cycle T. Or, if there is a switching timing from the third section to the first section, the start timing of the next calculation cycle T is adjusted to the switching timing.
  • the dq / uvw conversion unit 15 in the first modification has the switching timing from the first section to the second section, the switching timing from the second section to the third section, in the next calculation cycle T.
  • the switching timing is shifted from the start timing of the calculation cycle of the calculation unit 5 after the switching time tk has elapsed.
  • U-phase modulation is performed at the switching timing from the first section to the second section, the switching timing from the second section to the third section, or the switching timing from the third section to the first section. Since the values of wave Vu *, V-phase modulated wave Vv *, and W-phase modulated wave Vw * can be switched, the switching element can be turned on or the switching element can be turned on when it is not necessary to turn on the switching element. It is possible to prevent the switching element from being turned off when it is necessary to make the motor M, further suppress the distortion generated in the current flowing through the electric motor M, and further suppress the fluctuation of the torque.
  • FIG. 14 is a flowchart showing an example of the operation of the dq / uvw conversion unit 15 in the modification 2. Note that steps S1, S2, S3, and S5 shown in FIG. 14 are the same as steps S1, S2, S3, and S5 shown in FIG. 12, and the description thereof will be omitted.
  • the flowchart shown in FIG. 14 differs from the flowchart shown in FIG. 12 in the case where the switching timing of the first to third sections exists in the next calculation cycle T of the calculation unit 5 (step S3: Yes).
  • the switching times ct1 to ct3 are set based on the modulated waves corresponding to the first to third priorities (step S4'), and when the start timing of the next calculation cycle T comes, U after the switching times ct1 to ct3 elapse. This is a point at which the values of the phase-modulated wave Vu *, the V-phase modulated wave Vv *, and the W-phase modulated wave Vw * are switched (step S6').
  • the modulated wave corresponding to the first priority is a modulated wave that switches from the modulation factor Mref'to the minimum value or the maximum value of the carrier wave at the switching timing of the first to third sections.
  • the modulated wave corresponding to the second priority is a modulated wave that switches from the minimum value of the carrier wave to the maximum value or a modulated wave that switches from the maximum value of the carrier wave to the minimum value at the switching timing of the first to third sections.
  • the modulated wave corresponding to the third priority is a modulated wave that switches from the minimum value or the maximum value of the carrier wave to the modulation factor Mref'at the switching timing of the first to third sections.
  • the dq / uvw conversion unit 15 has a modulated wave corresponding to the first priority in the switching timing when the switching timings of the first to third sections exist.
  • the values of the U-phase modulated wave Vu *, the V-phase modulated wave Vv *, and the W-phase modulated wave Vw * are set in the order of the modulated wave corresponding to the second priority and the modulated wave corresponding to the third priority. Switch.
  • the dq / uvw conversion unit 15 modulates the value of the V-phase modulated wave Vv * at the switching timing.
  • the value of the W-phase modulated wave Vw * is switched from the minimum value to the maximum value of the carrier wave or from the maximum value of the carrier wave to the minimum value, and then the U-phase modulated wave.
  • the value of Vu * is switched from the minimum value or the maximum value of the carrier wave to the modulation factor Mref'.
  • the dq / uvw conversion unit 15 modulates the value of the U-phase modulated wave Vu * at the switching timing when there is a switching timing from the second section to the third section in the next calculation cycle T.
  • the value of the V-phase modulated wave Vv * is switched from the minimum value to the maximum value of the carrier wave or from the maximum value of the carrier wave to the minimum value, and then the W-phase modulated wave.
  • the value of Vw * is switched from the minimum or maximum value of the carrier wave to the modulation factor.
  • the dq / uvw conversion unit 15 modulates the value of the W-phase modulated wave Vw * at the switching timing when there is a switching timing from the third section to the first section in the next calculation cycle T.
  • the value of the U-phase modulated wave Vu * is switched from the minimum value of the carrier wave to the maximum value or the maximum value of the carrier wave to the minimum value, and then the V-phase modulated wave Vv.
  • the value of * is switched from the minimum or maximum value of the carrier wave to the modulation factor.
  • FIGS. 15 (a) to 15 (c) are diagrams for explaining the setting of the switching times ct1 to tk3.
  • the horizontal axes of the two-dimensional coordinates shown in FIGS. 15 (a) to 15 (c) correspond to the d-axis voltage command value Vd * and the q-axis voltage command value Vq * with respect to the electric angle ⁇ of the rotor of the electric motor M.
  • the target electric angle ⁇ v obtained by adding the phase angle ⁇ is shown, and the vertical axis shows the voltage.
  • the solid line shown in FIGS. 15 (a) to 15 (c) indicates the U-phase modulated wave Vu *
  • the broken line shown in FIGS. 15 (a) to 15 (c) indicates the V-phase modulated wave Vv *.
  • the alternate long and short dash line shown in FIGS. 15 (a) to 15 (c) indicates the W-phase modulated wave Vw *.
  • the calculation cycle T of the calculation unit 5 is set to 18 [deg].
  • the dq / uvw conversion unit 15 determines that the target electric angle ⁇ v falls within the first section (0 to 60 [deg]), or the absolute value of the V-phase voltage command value Vv ** is the U-phase.
  • the next calculation cycle T In 54 [deg] to 72 [deg]
  • the switching times tk1 to tk3 are set.
  • the short time is defined as the switching time ct1
  • the time ⁇ t longer than the switching time ct2 is defined as the switching time ct3.
  • ⁇ t is U-phase modulated wave Vu *, V-phase modulated so that the timing of switching the values of the U-phase modulated wave Vu *, V-phase modulated wave Vv *, and W-phase modulated wave Vw * does not match each other.
  • the time (electrical angle) for shifting the timing of switching the respective values of the wave Vv * and the W-phase modulated wave Vw *, and the time twice ⁇ t is repeated by the switching element at twice the time ⁇ t. Even if it is not turned on or off, it is set to the minimum time that can tolerate the distortion of the current flowing through the electric motor M.
  • a long time may be set as the switching time ct2, and a time ⁇ t longer than the switching time ct2 may be set as the switching time ct3.
  • the short time may be set as the switching time ct2, and the time ⁇ t shorter than the switching time ct2 may be set as the switching time ct1.
  • the dq / uvw conversion unit 15 changes the value of the V-phase modulation wave Vv * from the modulation factor Mref'to the maximum of the carrier wave after the switching time ct1 elapses. Switch to a value, switch the value of the W-phase modulated wave Vw * from the minimum value of the carrier wave to the maximum value after the switching time ct2 elapses, and modulate the value of the U-phase modulated wave Vu * from the minimum value of the carrier wave after the switching time ct3 elapses. Switch to rate Mref'.
  • the dq / uvw conversion unit 15 in the second modification is the switching timing from the first section to the second section, the switching timing from the second section to the third section, or from the third section.
  • U-phase modulated wave Vu so that the switching timings of the U-phase modulated wave Vu *, V-phase modulated wave Vv *, and W-phase modulated wave Vw * do not overlap each other at the switching timing to the first section.
  • the switching timings of the values of *, the V-phase modulated wave Vv *, and the W-phase modulated wave Vw * are shifted.
  • FIG. 16 is a diagram showing an example of the V-phase modulated wave Vv *, the carrier wave, and the drive signal S3 in the modified example 1 or the modified example 2. It should be noted that one cycle of the carrier wave is 9 [deg].
  • next calculation cycle T when the switching timing of the first to third sections exists and the switching time ct or the switching time ct1 is shorter than one cycle of the carrier wave, the next calculation is performed. Since the V-phase modulated wave Vv * switches from the modulated wave Mref'to the maximum value of the carrier wave in the middle of the period from the start timing of the period T to the elapse of one cycle of the carrier wave, the duty ratio of the drive signal S3 becomes the modulated wave Mref'. It will not match the corresponding duty ratio. That is, in the next calculation cycle T, when the switching timing of the first to third sections exists, the error between the duty ratio of the drive signal S and the desired duty ratio may become relatively large. If the error between the duty ratio of the drive signal S and the desired duty ratio becomes relatively large, low-order harmonics (beats) may be added to the current flowing through the electric motor M, and torque ripple and noise vibration may increase.
  • the switching time ct elapses from the start timing of the next calculation cycle T.
  • the frequency f of the carrier wave is switched to a predetermined frequency so that the error between the duty ratio of the drive signal S and the desired duty ratio becomes relatively small in the period until the above.
  • FIG. 17 is a diagram showing an example of the control device 1 of the electric motor M in the modified example 3.
  • the same components as those shown in FIG. 1 are designated by the same reference numerals.
  • the control device 1 of the electric motor M shown in FIG. 17 differs from the control device 1 of the electric motor M shown in FIG. 1 in that instead of the dq / uvw conversion unit 15 and the drive circuit 4, the dq / uvw conversion unit 15'and the drive The point is that the circuit 4'is provided.
  • the dq / uvw conversion unit 15 uses the input voltage Vin detected by the voltage sensor Sv and the electric angle ⁇ detected by the electric angle detection unit Sp, and uses the d-axis voltage command value Vd * and the q-axis voltage command value Vq. * Is converted into a U-phase modulated wave Vu *, a V-phase modulated wave Vv *, and a W-phase modulated wave Vw *, and the frequency f of the carrier wave is set to a predetermined frequency.
  • the results calculated by the calculation unit 5 (U-phase modulation wave Vu *, V-phase modulation wave Vv *, W-phase modulation wave Vw *, and frequency f) are obtained by the inverter in the next calculation cycle T of the calculation unit 5. It shall be reflected in the operation of the circuit 2.
  • the drive circuit 4' is composed of an IC or the like, and is converted into dq / uvw with U-phase modulated wave Vu *, V-phase modulated wave Vv *, and W-phase modulated wave Vw * output from the dq / uvw conversion unit 15'.
  • the carrier wave of the frequency f output from the unit 15' is compared, and the drive signals S1 to S6 corresponding to the comparison result are output to the respective gate terminals of the switching elements SW1 to SW6.
  • FIG. 18A is a diagram showing an example of the dq / uvw conversion unit 15'. The same components as those shown in FIG. 10A are designated by the same reference numerals.
  • the dq / uvw conversion unit 15'shown in FIG. 18A includes a phase angle calculation unit 151, an addition unit 152, a modulation rate calculation unit 153, a modulation rate expansion unit 154, and a modulation wave generation unit 155'. It is provided with a speed calculation unit 158.
  • the speed calculation unit 158 calculates the rotation speed ⁇ of the rotor of the electric motor M by using the electric angle ⁇ detected by the electric angle detection unit Sp. For example, the speed calculation unit 158 obtains the rotation speed ⁇ by differentiating the electric angle ⁇ with respect to time.
  • the modulation wave generation unit 155' uses a target electric angle ⁇ v output from the addition unit 152, a modulation rate Muref' output from the modulation rate expansion unit 154, and a rotation speed ⁇ calculated by the speed calculation unit 158. Therefore, the U-phase modulated wave Vu *, the V-phase modulated wave Vv *, and the W-phase modulated wave Vw * are generated, and the frequency f of the carrier wave is set to a predetermined frequency.
  • the modulated wave generation unit 155' refers to the information D1 stored in the storage unit 6, and refers to the U-phase modulated wave Vu * and the V-phase modulated wave corresponding to the target electric angle ⁇ v output from the adding unit 152.
  • the modulated wave generation unit 155 sets the frequency f of the carrier wave to the default frequency fd, the frequency fc which is the reciprocal of the switching time ct, or the frequency fc1 which is the reciprocal of the switching time tk1.
  • the default frequency fd is, for example, a frequency corresponding to the calculation cycle and the rotation speed ⁇ of the calculation unit 5.
  • FIG. 18B is a diagram showing another example of the dq / uvw conversion unit 15'.
  • the same reference numerals are given to the configurations shown in FIG. 11A and the same configurations as those shown in FIG. 18A.
  • the dq / uvw conversion unit 15'shown in FIG. 18B includes a two-phase three-phase conversion unit 156, a modulation wave generation unit 157', and a speed calculation unit 158.
  • the modulated wave generation unit 157' has two-phase and three-phase conversion with the input voltage Vin detected by the voltage sensor Sv, the d-axis voltage command value Vd * and the q-axis voltage command value Vq * output from the current control unit 14.
  • the U-phase voltage command value Vu **, V-phase voltage command value Vv **, and W-phase voltage command value Vw ** output from unit 156 the U-phase voltage command value Vu * and V-phase voltage command value Vv * And W-phase modulated wave Vw * are generated, and the frequency f of the carrier is set to a predetermined frequency.
  • the modulated wave generation unit 157' obtains the phase angle ⁇ by calculating the above equation 3, and adds the phase angle ⁇ and the electric angle ⁇ output from the electric angle detection unit Sp to the target electric angle ⁇ v. Then, the modulation factor Mref is obtained by calculating the above equation 4, and the modulation factor Mref'is obtained by calculating the above equation 5. Further, the modulated wave generation unit 157'refers to the information D2 stored in the storage unit 6, and the U-phase voltage command value Vu ** and the V-phase voltage command value output from the two-phase three-phase conversion unit 156.
  • the U-phase modulated wave Vu *, the V-phase modulated wave Vv *, and the W-phase modulated wave Vw * corresponding to the branching conditions obtained by the Vv ** and the W-phase voltage command value Vw ** are obtained. Further, the modulated wave generation unit 157'sets the frequency f of the carrier wave to the frequency fd, the frequency fc, or the frequency fc1.
  • FIG. 19 is a flowchart showing an example of the operation of the dq / uvw conversion unit 15'. Note that steps S1 to S5 shown in FIG. 19 are the same as steps S1 to S5 shown in FIG.
  • the dq / uvw conversion unit 15 obtains the calculation cycle T of the calculation unit 5 (step S1), estimates the next calculation cycle T of the calculation unit 5 (step S2), and then the next calculation cycle of the calculation unit 5. In T, it is determined whether or not there is a switching timing of the first to third sections (step S3).
  • step S3 when the switching timing of the first to third sections exists in the next calculation cycle T of the calculation unit 5, the dq / uvw conversion unit 15'is based on the switching timing (step S3: Yes).
  • step S4 When the switching time ct is set (step S4) and the switching time ct is the minimum time t_min or more (step S7: Yes), the frequency f of the carrier wave is set to the frequency fc (step S8), and the process proceeds to step 10.
  • the minimum time t_min is the minimum value of one cycle of the carrier wave when the switching elements SW1 to SW6 can be switched from off to on or from on to off.
  • step S3 when the switching timing of the first to third sections does not exist (step S3: No) in the next calculation cycle T of the calculation unit 5, the dq / uvw conversion unit 15'sets the switching time ct to the next calculation. A value larger than the period T is set (step S5), the frequency f of the carrier wave is set to the frequency fd (step S9), and the process proceeds to step S10.
  • step S7 when the switching time tc is shorter than the minimum time t_min (step S7: No), the dq / uvw conversion unit 15'sets the frequency f of the carrier wave to the frequency fd (step S9), and proceeds to step S10.
  • step S10 the dq / uvw conversion unit 15'sets the d-axis voltage command value Vd * and the q-axis voltage command value Vq * using the input voltage Vin and the electric angle ⁇ , and sets the U-phase modulated wave Vu *. , V-phase modulated wave Vv *, and W-phase modulated wave Vw *, and when the start timing of the next calculation cycle T comes, U-phase modulated wave Vu *, V-phase modulated wave Vv *, and W-phase modulated wave Vw * Is output to the drive circuit 4'and the frequency f is output to the drive circuit 4'.
  • step S10 when the switching time tk elapses from the start timing of the next calculation cycle T, the dq / uvw conversion unit 15'is a U-phase modulated wave Vu *, a V-phase modulated wave Vv *, and a W-phase modulated wave.
  • Vw * is defined as the maximum value of the carrier wave from the modulation rate Mref', the minimum value of the carrier wave to the modulation rate Mref', the minimum value of the carrier wave to the maximum value of the carrier wave, the maximum value of the carrier wave to the minimum value of the carrier wave, and the modulation factor Mref'to the carrier wave.
  • the minimum value of the carrier wave or the maximum value of the carrier wave is switched to the modulation factor Mref', and the frequency f is switched to the frequency fd.
  • FIG. 20 is a flowchart showing another example of the operation of the dq / uvw conversion unit 15'.
  • step S1 to step S4'and step S5 shown in FIG. 20 are the same as steps S1 to S4'and step S5 shown in FIG.
  • steps S9 and S10 shown in FIG. 20 are the same as steps S9 and S10 shown in FIG.
  • the dq / uvw conversion unit 15 obtains the calculation cycle T of the calculation unit 5 (step S1), estimates the next calculation cycle T of the calculation unit 5 (step S2), and then the next calculation cycle of the calculation unit 5. In T, it is determined whether or not there is a switching timing of the first to third sections (step S3).
  • the dq / uvw conversion unit 15' is based on the switching timing when the switching timing of the first to third sections exists in the next calculation cycle T of the calculation unit 5 (step S3: Yes).
  • the switching time ct1 to tk3 is set (step S4') and the switching time ct1 is equal to or longer than the minimum time t_min (step S11: Yes)
  • the frequency f is set to the frequency fc1 (step S12) and the process proceeds to step S10. ..
  • step S3 when the switching timing of the first to third sections does not exist (step S3: No) in the next calculation cycle T of the calculation unit 5, the dq / uvw conversion unit 15'sets the switching time ct to the next calculation. A value larger than the period T is set (step S5), the frequency f is set to the frequency fd (step S9), and the process proceeds to step S10.
  • step S11 when the switching time tc1 is shorter than the minimum time t_min (step S11: No), the dq / uvw conversion unit 15'sets the frequency f to the frequency fd (step S9) and proceeds to step S10.
  • step S10 the dq / uvw conversion unit 15'sets the d-axis voltage command value Vd * and the q-axis voltage command value Vq * using the input voltage Vin and the electric angle ⁇ , and sets the U-phase modulated wave Vu *. , V-phase modulated wave Vv *, and W-phase modulated wave Vw *, and when the start timing of the next calculation cycle T comes, U-phase modulated wave Vu *, V-phase modulated wave Vv *, and W-phase modulated wave Vw * Is output to the drive circuit 4'and the frequency f is output to the drive circuit 4'.
  • step S10 when the switching time tk elapses from the start timing of the next calculation cycle T, the dq / uvw conversion unit 15'is a U-phase modulated wave Vu *, a V-phase modulated wave Vv *, and a W-phase modulated wave.
  • Vw * is defined as the maximum value of the carrier wave from the modulation rate Mref', the minimum value of the carrier wave to the modulation rate Mref', the minimum value of the carrier wave to the maximum value of the carrier wave, the maximum value of the carrier wave to the minimum value of the carrier wave, and the modulation factor Mref'to the carrier wave.
  • the minimum value of the carrier wave or the maximum value of the carrier wave is switched to the modulation factor Mref', and the frequency f is switched to the frequency fd.
  • the frequency f of the carrier wave is not switched in the next calculation cycle T while being set to the frequency fd.
  • the switching time tk or the switching time ct1 has elapsed from the start timing of the next calculation cycle T.
  • the U-phase modulated wave Vu *, the V-phase modulated wave Vv *, and the W-phase modulated wave Vw * are from the modulation factor Mref'to the maximum value of the carrier wave, from the minimum value of the carrier wave to the modulation factor Mref', and from the minimum value of the carrier wave to the carrier wave.
  • the frequency f of the carrier wave is set to the frequency fc or the frequency fc1, and the frequency f of the carrier wave becomes the frequency fd in the period from the timing when the switching timing time ct or the switching time ct1 elapses to the end timing of the next calculation cycle T.
  • FIG. 21 is a diagram showing an example of the V-phase modulated wave Vv *, the carrier wave, and the drive signal S3 in the modified example 3.
  • Each calculation cycle of the calculation unit 5 is set to 18 [deg], and one cycle of the carrier wave when the frequency f is set to the frequency fd is set to 9 [deg].
  • the dq / uvw conversion unit 15 determines that the target electric angle ⁇ v falls within the first section (0 to 60 [deg]), or the absolute value of the V-phase voltage command value Vv ** is U.
  • the calculation unit 5 determines.
  • the dq / uvw conversion unit 15 sets the frequency f of the carrier wave to the frequency fc or the frequency fc1 when it determines that the switching time ct or the switching time ct1 is equal to or greater than the minimum time t_min.
  • the dq / uvw conversion unit 15' arrives at the start timing (54 [deg]) of the next calculation cycle T of the calculation unit 5, the dq / uvw conversion unit 15'sets the modulation factor Mref' as the V-phase modulation wave Vv * to the drive circuit 4'.
  • the frequency fc or the frequency fc1 is output to the drive circuit 4'as the frequency f.
  • the dq / uvw conversion unit 15 sets the V-phase modulation wave Vv * output to the drive circuit 4'from the modulation factor Mref'to the maximum value of the carrier wave.
  • the frequency f output to the drive circuit 4' is switched from the frequency fc or the frequency fc1 to the frequency fd.
  • the dq / uvw conversion unit 15 sets the maximum value of the carrier wave to the drive circuit 4'as a V-phase modulated wave Vv * until the end timing (72 [deg]) of the next calculation cycle T of the calculation unit 5 is reached.
  • the frequency fd is output to the drive circuit 4'as the frequency f.
  • the frequency f of the carrier wave in the period until the switching time ct1 elapses is switched from the default frequency fd to the frequency fc which is the reciprocal of the switching time ct or the frequency fc1 which is the reciprocal of the switching time tk1.
  • one cycle of the carrier wave can be matched with the switching time tk or the switching time ct1.
  • the duty ratio of the drive signal S3 can be made to match the duty ratio according to the modulation rate Mref'in the period from the start timing of the next calculation cycle T until the switching time ct or the switching time ct1 elapses.
  • the frequency f of the carrier wave is changed to the switching time tk.
  • the frequency fc which is the inverse of the frequency fc, or the frequency fc1, which is the inverse of the switching time ct1
  • the error between the duty ratio of the drive signal S and the desired duty ratio can be reduced, so that the current flowing through the electric motor M can be changed. It is possible to suppress the riding of low-order harmonics, and it is possible to suppress the increase in torque ripple and noise vibration.
  • Control device 2 Inverter circuit 3
  • Control circuit 4 Drive circuit 4'Drive circuit 5
  • Calculation unit 6 Storage unit 7
  • Speed calculation unit 8 Subtraction unit 9
  • Torque control unit 10 Torque / current command value conversion unit 11
  • Coordinate conversion unit 12 Subtraction unit 13
  • Subtraction Part 14 Current control unit 15 dq / uvw conversion unit 15'dq / uvw conversion unit 151
  • Phase angle calculation unit 152 Addition unit 153 Modulation rate calculation unit 154
  • Extended modulation rate calculation unit 155 Modulation wave generation unit 155'Modulation wave generation unit 156 2
  • Modulation wave generation unit 157'Modulation wave generation unit 158 Speed calculation unit

Abstract

第1~第3の区間からなる電動機(M)の制御周期のうち、第1の交流電圧(Vv)のピークが存在する第1の区間において、電動機(M)の出力に応じたV相変調波(Vv*)を出力するとともに三角波の最小値または最大値をU相変調波(Vu*)及びW相変調波(Vw*)として出力し、第2の交流電圧(Vu)のピークが存在する第2の区間において、電動機(M)の出力に応じたU相変調波(Vu*)を出力するとともに三角波の最小値または最大値をV相変調波(Vv*)及びW相変調波(Vw*)として出力し、第3の交流電圧(Vw)のピークが存在する第3の区間において、電動機(M)の出力に応じたW相変調波(Vw*)を出力するとともに三角波の最小値または最大値をV相変調波(Vv*)及びU相変調波(Vu*)として出力する。

Description

電動機の制御装置
 本発明は、電動機の制御装置に関する。
 電動機の制御装置として、電動機の出力が高くなるにつれて、3相変調制御や弱め界磁制御(2相変調制御や3次高調波重畳制御など)から矩形波制御に遷移するものがある。関連する技術として、特許文献1がある。
 しかしながら、上記制御装置では、3相変調制御や弱め界磁制御から矩形波制御に遷移する際、電動機を駆動するインバータ回路のスイッチング素子のオン時間が急に長くなるため、電動機に流れる電流が歪み電動機のトルクが急変して電動機に接続される負荷にショックを与えてしまうおそれがある。
 そこで、電動機の他の制御装置として、電動機のトルクや回転速度とスイッチング素子を駆動する駆動信号との対応関係を示すマップを参照して、目標トルクや目標回転速度に対応する駆動信号を求め、その求めた駆動信号により電動機を駆動させるものがある。関連する技術として、特許文献2がある。
特開2018-64313号公報 特開2013-215041号公報
 しかしながら、上記他の制御装置では、電動機の出力が高くなってもトルクが急変しないようにマップの値を補間する必要があるため、演算負荷が増大するおそれがある。
 本発明の一側面に係る目的は、電動機の制御装置において、電動機の出力の変化に伴う電動機のトルクの変動を抑えつつ、演算負荷を抑えることである。
 本発明に係る一つの形態である電動機の制御装置は、インバータ回路と、制御回路とを備える。
 インバータ回路は、第1の変調波が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、第1の変調波に応じたデューティ比で繰り返しオン、オフし、第1の変調波が搬送波の最小値または最大値である場合、常時オンまたは常時オフする第1のスイッチング素子と、第2の変調波が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、第2の変調波に応じたデューティ比で繰り返しオン、オフし、第2の変調波が搬送波の最小値または最大値である場合、常時オンまたは常時オフする第2のスイッチング素子と、第3の変調波が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、第3の変調波に応じたデューティ比で繰り返しオン、オフし、第3の変調波が搬送波の最小値または最大値である場合、常時オンまたは常時オフする第3のスイッチング素子とを備え、第1~第3のスイッチング素子がオン、オフすることで電動機の3相に互いに位相が異なる第1~第3の交流電圧を印加させて電動機を駆動させる。
 制御回路は、第1~第3の区間からなる電動機の制御周期のうち、第1の交流電圧のピークが存在する第1の区間において、電動機の出力に応じた第1の変調波を出力するとともに搬送波の最小値または最大値を第2及び第3の変調波として出力し、第2の交流電圧のピークが存在する第2の区間において、電動機の出力に応じた第2の変調波を出力するとともに搬送波の最小値または最大値を第1及び第3の変調波として出力し、第3の交流電圧のピークが存在する第3の区間において、電動機の出力に応じた第3の変調波を出力するとともに搬送波の最小値または最大値を第1及び第2の変調波として出力する。
 これにより、電動機の制御周期(第1~第3の区間)において、電動機の出力に応じた第1~第3の変調波が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、3相のスイッチング素子のうちの1相のスイッチング素子を繰り返しオン、オフさせること、すなわち、1相変調制御を行うことができる。また、電動機の制御周期において、電動機の出力に応じた第1~第3の変調波が搬送波の最小値または最大値である場合、3相のスイッチング素子をそれぞれ常時オンまたは常時オフさせること、すなわち、矩形波制御を行うことができる。また、電動機の制御周期において、第1~第3の変調波に応じたデューティ比でスイッチング素子をオン、オフさせることができるため、電動機の出力に応じてスイッチング素子のオン時間を徐々に変化させることができる。そのため、電動機の出力が高くなり1相変調制御から矩形波制御に遷移しても、スイッチング素子のオン時間をシームレスに変化させることができるため、電動機に流れる電流の歪みを抑えることができ、トルクの変動を抑えることができる。また、第1~第3の区間毎に、スイッチング素子をスイッチングさせる相を切り替えるだけでよく、複雑な演算を必要としないため、制御装置の演算負荷を抑えることができる。
 また、電動機の制御装置は、電動機の回転子の電気角を検出する電気角検出部を備え、制御回路は、電動機の出力に応じた電圧指令値と電気角検出部により検出される電気角とにより目標電気角を算出する目標電気角算出部と、目標電気角が第1の区間に入っているとき、インバータ回路の入力電圧と電圧指令値とを用いて求められる変調率を第1の変調波とするとともに搬送波の最小値または最大値を第2及び第3の変調波とし、目標電気角が第2の区間に入っているとき、インバータ回路の入力電圧と電圧指令値とを用いて求められる変調率を第2の変調波とするとともに搬送波の最小値または最大値を第1及び第3の変調波とし、目標電気角が第3の区間に入っているとき、インバータ回路の入力電圧と電圧指令値とを用いて求められる変調率を第3の変調波とするとともに搬送波の最小値または最大値を第1及び第2の変調波とする変調波生成部とを備えるように構成してもよい。
 また、電動機の制御装置は、電動機の回転子の電気角を検出する電気角検出部を備え、制御回路は、電動機の出力に応じた電圧指令値と電気角検出部により検出される電気角とにより、第1の交流電圧に対応する第1の電圧指令値、第2の交流電圧に対応する第2の電圧指令値、及び第3の交流電圧に対応する第3の電圧指令値を算出する電圧指令値算出部と、第1の電圧指令値の絶対値が第2及び第3の電圧指令値の絶対値に比べて大きいとき、インバータ回路の入力電圧と電圧指令値とを用いて求められる変調率を第1の変調波とするとともに搬送波の最小値または最大値を第2及び第3の変調波とし、第2の電圧指令値の絶対値が第1及び第3の電圧指令値の絶対値に比べて大きいとき、インバータ回路の入力電圧と電圧指令値とを用いて求められる変調率を第2の変調波とするとともに搬送波の最小値または最大値を第1及び第3の変調波とし、第3の電圧指令値の絶対値が第1及び第2の電圧指令値の絶対値に比べて大きいとき、インバータ回路の入力電圧と電圧指令値とを用いて求められる変調率を第3の変調波とするとともに搬送波の最小値または最大値を第1及び第2の変調波とする変調波生成部とを備えるように構成してもよい。
 また、制御回路は、次の演算周期において、第1の区間から第2の区間への切り替わりタイミング、第2の区間から第3の区間への切り替わりタイミング、または第3の区間から第1の区間への切り替わりタイミングが存在する場合、その切り替わりタイミングに次の演算周期の開始タイミングを合わせるように構成してもよい。
 これにより、1の区間から第2の区間への切り替わりタイミング、第2の区間から第3の区間への切り替わりタイミング、または第3の区間から第1の区間への切り替わりタイミングにおいて、第1~第3の変調波のそれぞれの値を切り替えることができるため、スイッチング素子をオンさせる必要がないときにスイッチング素子をオンさせたり、スイッチング素子をオンさせる必要があるときにスイッチング素子をオフさせたりすることを防止することができ、電動機に流れる電流に生じる歪みをさらに抑えることができ、トルクの変動をさらに抑えることができる。
 また、制御回路は、第1の区間から第2の区間への切り替わりタイミング、第2の区間から第3の区間への切り替わりタイミング、または第3の区間から第1の区間への切り替わりタイミングにおいて、第1~第3の変調波のそれぞれの値の切り替わりタイミングが互いに重ならないように、第1~第3の変調波のそれぞれの値の切り替わりタイミングをずらすように構成してもよい。
 これにより、互いに異なるスイッチング素子が同時にオンすることを回避することができるため、逆極性パルス(サージ電圧)が生じることを抑えることができ、電磁ノイズを抑えることができる。そのため、電動機に流れる電流に生じる歪みをさらに抑えることができ、トルクの変動をさらに抑えることができる。
 また、制御回路は、次の演算周期において、第1の区間から第2の区間への切り替わりタイミング、第2の区間から第3の区間への切り替わりタイミング、または第3の区間から第1の区間への切り替わりタイミングが存在する場合、次の演算周期の開始タイミングから切り替わりタイミングまでの切り替わり時間を求め、その切り替わり時間の逆数である周波数を、次の演算周期の開始タイミングから切り替わり時間が経過するまでの期間における搬送波の周波数に設定するように構成してもよい。
 これにより、駆動信号のデューティ比と所望のデューティ比との誤差を小さくすることができるため、電動機に流れる電流に低次の高調波が乗ることを抑制することができ、トルクリプルや騒音振動が増加することを抑制することができる。
 本発明によれば、電動機の制御装置において、電動機の出力の変化に伴う電動機のトルクの変動を抑えつつ、演算負荷を抑えることができる。
実施形態の電動機の制御装置の一例を示す図である。 1相変調制御において各相に印加される交流電圧と各相に対応する変調波の一例を示す図である。 1相変調制御においてV相変調波と搬送波との比較と駆動信号の一例を示す図である。 1相変調制御においてU相変調波と搬送波との比較と駆動信号の一例を示す図である。 1相変調制御においてW相変調波と搬送波との比較と駆動信号の一例を示す図である。 矩形波制御において各相に印加される交流電圧と各相に対応する変調波の一例を示す図である。 矩形波制御においてV相変調波と搬送波との比較と駆動信号の一例を示す図である。 矩形波制御においてU相変調波と搬送波との比較と駆動信号の一例を示す図である。 矩形波制御においてW相変調波と搬送波との比較と駆動信号の一例を示す図である。 dq/uvw変換部の一例を示す図である。 dq/uvw変換部の他の例を示す図である。 変形例1におけるdq/uvw変換部の動作の一例を示すフローチャートである。 切り替わり時間の設定を説明するための図である。 変形例2におけるdq/uvw変換部の動作の一例を示すフローチャートである。 切り替わり時間の設定を説明するための図である。 変形例1におけるV相変調波、搬送波、及び駆動信号の一例を示す図である。 変形例3における電動機の制御装置の一例を示す図である。 変形例3におけるdq/uvw変換部の一例を示す図である。 変形例3におけるdq/uvw変換部の動作の一例を示すフローチャートである。 変形例3におけるdq/uvw変換部の動作の他の例を示すフローチャートである。 変形例3におけるV相変調波、搬送波、及び駆動信号の一例を示す図である。
 以下図面に基づいて実施形態について詳細を説明する。
 図1は、実施形態の電動機の制御装置の一例を示す図である。
 図1に示す制御装置1は、例えば、電動フォークリフトやプラグインハイブリッド車などの車両に搭載される電動機Mを駆動するための制御装置であって、インバータ回路2と、制御回路3とを備える。なお、電動機Mは、回転子の電気角θを検出し、その検出した電気角θを制御回路3に送る電気角検出部Sp(レゾルバなど)を備えているものとする。
 インバータ回路2は、直流電源Pから供給される直流電力により電動機Mを駆動するものであって、電圧センサSvと、コンデンサCと、スイッチング素子SW1~SW6(IGBT(Insulated Gate Bipolar Transistor)など)と、電流センサSi1、Si2とを備える。すなわち、コンデンサCの一方端が直流電源Pの正極端子及びスイッチング素子SW1、SW3、SW5の各コレクタ端子に接続され、コンデンサCの他方端が直流電源Pの負極端子及びスイッチング素子SW2、SW4、SW6の各エミッタ端子に接続されている。スイッチング素子SW1のエミッタ端子とスイッチング素子SW2のコレクタ端子との接続点は電流センサSi1を介して電動機MのU相の入力端子に接続されている。スイッチング素子SW3のエミッタ端子とスイッチング素子SW4のコレクタ端子との接続点は電流センサSi2を介して電動機MのV相の入力端子に接続されている。スイッチング素子SW5のエミッタ端子とスイッチング素子SW6のコレクタ端子との接続点は電動機MのW相の入力端子に接続されている。
 電圧センサSvは、直流電源Pから出力されインバータ回路2に入力される入力電圧Vinを検出し、その検出した入力電圧Vinを制御回路3に送る。
 コンデンサCは、入力電圧Vinを平滑する。
 スイッチング素子SW1(第2のスイッチング素子)は、駆動信号S1がハイレベルであるときオンし、駆動信号S1がローレベルであるときオフする。具体的には、スイッチング素子SW1は、電動機Mの出力に応じたU相変調波Vu*(第2の変調波)が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、U相変調波Vu*に応じたデューティ比の駆動信号S1に基づいて繰り返しオン、オフし、U相変調波Vu*が搬送波の最大値である場合、駆動信号S1のデューティ比が100[%]になり、常時オンし、U相変調波Vu*が搬送波の最小値である場合、駆動信号S1のデューティ比が0[%]になり、常時オフする。なお、U相変調波Vu*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力が高くなるにつれて、U相変調波Vu*が搬送波の最大値に近づくと、駆動信号S1のデューティ比が大きくなり、U相変調波Vu*が搬送波の最小値に近づくと、駆動信号S1のデューティ比が小さくなるものとする。すなわち、U相変調波Vu*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力に応じたデューティ比でスイッチング素子SW1が繰り返しオン、オフする。なお、搬送波は、三角波、ノコギリ波(鋸歯状波)、逆ノコギリ波などとする。
 スイッチング素子SW2(第2のスイッチング素子)は、駆動信号S2がハイレベルであるときオンし、駆動信号S2がローレベルであるときオフする。具体的には、スイッチング素子SW2は、U相変調波Vu*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、U相変調波Vu*に応じたデューティ比の駆動信号S2に基づいて繰り返しオン、オフし、U相変調波Vu*が搬送波の最大値である場合、駆動信号S2のデューティ比が0[%]になり、常時オフし、U相変調波Vu*が搬送波の最小値である場合、駆動信号S2のデューティ比が100[%]になり、常時オンする。なお、U相変調波Vu*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力が高くなるにつれて、U相変調波Vu*が搬送波の最大値に近づくと、駆動信号S2のデューティ比が小さくなり、U相変調波Vu*が搬送波の最小値に近づくと、駆動信号S2のデューティ比が大きくなるものとする。すなわち、U相変調波Vu*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力に応じたデューティ比でスイッチング素子SW2が繰り返しオン、オフする。
 スイッチング素子SW3(第1のスイッチング素子)は、駆動信号S3がハイレベルであるときオンし、駆動信号S3がローレベルであるときオフする。具体的には、スイッチング素子SW3は、電動機Mの出力に応じたV相変調波Vv*(第1の変調波)が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、V相変調波Vv*に応じたデューティ比の駆動信号S3に基づいて繰り返しオン、オフし、V相変調波Vv*が搬送波の最大値である場合、駆動信号S3のデューティ比が100[%]になり、常時オンし、V相変調波Vv*が搬送波の最小値である場合、駆動信号S3のデューティ比が0[%]になり、常時オフする。なお、V相変調波Vv*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力が高くなるにつれて、V相変調波Vv*が搬送波の最大値に近づくと、駆動信号S3のデューティ比が大きくなり、V相変調波Vv*が搬送波の最小値に近づくと、駆動信号S3のデューティ比が小さくなるものとする。すなわち、V相変調波Vv*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力に応じたデューティ比でスイッチング素子SW3が繰り返しオン、オフする。
 スイッチング素子SW4(第1のスイッチング素子)は、駆動信号S4がハイレベルであるときオンし、駆動信号S4がローレベルであるときオフする。具体的には、スイッチング素子SW4は、V相変調波Vv*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、V相変調波Vv*に応じたデューティ比の駆動信号S4に基づいて繰り返しオン、オフし、V相変調波Vv*が搬送波の最大値である場合、駆動信号S4のデューティ比が0[%]になり、常時オフし、V相変調波Vv*が搬送波の最小値である場合、駆動信号S4のデューティ比が100[%]になり、常時オンする。なお、V相変調波Vv*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力が高くなるにつれて、V相変調波Vv*が搬送波の最大値に近づくと、駆動信号S4のデューティ比が小さくなり、V相変調波Vv*が搬送波の最小値に近づくと、駆動信号S4のデューティ比が大きくなるものとする。すなわち、V相変調波Vv*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力に応じたデューティ比でスイッチング素子SW4が繰り返しオン、オフする。
 スイッチング素子SW5(第3のスイッチング素子)は、駆動信号S5がハイレベルであるときオンし、駆動信号S5がローレベルであるときオフする。具体的には、スイッチング素子SW5は、電動機Mの出力に応じたW相変調波Vw*(第3の変調波)が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、W相変調波Vw*に応じたデューティ比の駆動信号S5に基づいて繰り返しオン、オフし、W相変調波Vw*が搬送波の最大値である場合、駆動信号S5のデューティ比が100[%]になり、常時オンし、W相変調波Vw*が搬送波の最小値である場合、駆動信号S5のデューティ比が0[%]になり、常時オフする。なお、W相変調波Vw*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力が高くなるにつれて、W相変調波Vw*が搬送波の最大値に近づくと、駆動信号S5のデューティ比が大きくなり、W相変調波Vw*が搬送波の最小値に近づくと、駆動信号S5のデューティ比が小さくなるものとする。すなわち、W相変調波Vw*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力に応じたデューティ比でスイッチング素子SW5が繰り返しオン、オフする。
 スイッチング素子SW6(第3のスイッチング素子)は、駆動信号S6がハイレベルであるときオンし、駆動信号S6がローレベルであるときオフする。具体的には、スイッチング素子SW6は、W相変調波Vw*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、W相変調波Vw*に応じたデューティ比の駆動信号S6に基づいて繰り返しオン、オフし、W相変調波Vw*が搬送波の最大値である場合、駆動信号S6のデューティ比が0[%]になり、常時オフし、W相変調波Vw*が搬送波の最小値である場合、駆動信号S6のデューティ比が100[%]になり、常時オンする。なお、W相変調波Vw*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力が高くなるにつれて、W相変調波Vw*が搬送波の最大値に近づくと、駆動信号S6のデューティ比が小さくなり、W相変調波Vw*が搬送波の最小値に近づくと、駆動信号S6のデューティ比が大きくなるものとする。すなわち、W相変調波Vw*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、電動機Mの出力に応じたデューティ比でスイッチング素子SW6が繰り返しオン、オフする。なお、駆動信号S1~S6を特に区別しない場合、単に、駆動信号Sとする。
 スイッチング素子Sw1~SW6がそれぞれオン、オフすることで、直流電源Pから出力される直流の入力電圧Vinが、互いに位相が120度ずつ異なる第1の交流電圧Vv、第2の交流電圧Vu、及び第3の交流電圧Vwに変換される。そして、第1の交流電圧Vvが電動機MのV相の入力端子に印加され、第2の交流電圧Vuが電動機MのU相の入力端子に印加され、第3の交流電圧Vwが電動機MのW相の入力端子に印加されることで、電動機Mの回転子が回転する。
 電流センサSi1は、ホール素子やシャント抵抗などにより構成され、電動機MのU相に流れるU相電流Iuを検出して制御回路3に出力する。また、電流センサSi2は、ホール素子やシャント抵抗などにより構成され、電動機MのV相に流れるV相電流Ivを検出して制御回路3に出力する。
 制御回路3は、ドライブ回路4と、演算部5と、記憶部6とを備える。なお、記憶部6は、RAM(Random Access Memory)またはROM(Read Only Memory)などにより構成され、後述する、区間とU相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*との対応関係を示す情報D1や分岐条件とU相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*との対応関係を示す情報D2などを記憶しているものとする。
 ドライブ回路4は、IC(Integrated Circuit)などにより構成され、演算部5から出力されるU相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*と搬送波とを比較し、その比較結果に応じた駆動信号S1~S6をスイッチング素子SW1~SW6のそれぞれのゲート端子に出力する。
 例えば、ドライブ回路4は、U相変調波Vu*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、U相変調波Vu*が搬送波の最大値に近づくにつれて、デューティ比が大きくなる駆動信号S1を出力し、U相変調波Vu*が搬送波の最小値に近づくにつれて、デューティ比が小さくなる駆動信号S1を出力する。また、ドライブ回路4は、U相変調波Vu*が搬送波の最大値である場合、デューティ比が100[%]の駆動信号S1を出力し、U相変調波Vu*が搬送波の最小値である場合、デューティ比が0[%]の駆動信号S1を出力する。
 また、ドライブ回路4は、U相変調波Vu*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、U相変調波Vu*が搬送波の最大値に近づくにつれて、デューティ比が小さくなる駆動信号S2を出力し、U相変調波Vu*が搬送波の最小値に近づくにつれて、デューティ比が大きくなる駆動信号S2を出力する。また、ドライブ回路4は、U相変調波Vu*が搬送波の最大値である場合、デューティ比が0[%]の駆動信号S2を出力し、U相変調波Vu*が搬送波の最小値である場合、デューティ比が100[%]の駆動信号S2を出力する。
 また、ドライブ回路4は、V相変調波Vv*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、V相変調波Vv*が搬送波の最大値に近づくにつれて、デューティ比が大きくなる駆動信号S3を出力し、V相変調波Vv*が搬送波の最小値に近づくにつれて、デューティ比が小さくなる駆動信号S3を出力する。また、ドライブ回路4は、V相変調波Vv*が搬送波の最大値である場合、デューティ比が100[%]の駆動信号S3を出力し、V相変調波Vv*が搬送波の最小値である場合、デューティ比が0[%]の駆動信号S3を出力する。
 また、ドライブ回路4は、V相変調波Vv*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、V相変調波Vv*が搬送波の最大値に近づくにつれて、デューティ比が小さくなる駆動信号S4を出力し、V相変調波Vv*が搬送波の最小値に近づくにつれて、デューティ比が大きくなる駆動信号S4を出力する。また、ドライブ回路4は、V相変調波Vv*が搬送波の最大値である場合、デューティ比が0[%]の駆動信号S4を出力し、V相変調波Vv*が搬送波の最小値である場合、デューティ比が100[%]の駆動信号S4を出力する。
 また、ドライブ回路4は、W相変調波Vw*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、W相変調波Vw*が搬送波の最大値に近づくにつれて、デューティ比が大きくなる駆動信号S5を出力し、W相変調波Vw*が搬送波の最小値に近づくにつれて、デューティ比が小さくなる駆動信号S5を出力する。また、ドライブ回路4は、W相変調波Vw*が搬送波の最大値である場合、デューティ比が100[%]の駆動信号S5を出力し、W相変調波Vw*が搬送波の最小値である場合、デューティ比が0[%]の駆動信号S5を出力する。
 また、ドライブ回路4は、W相変調波Vw*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、W相変調波Vw*が搬送波の最大値に近づくにつれて、デューティ比が小さくなる駆動信号S6を出力し、W相変調波Vw*が搬送波の最小値に近づくにつれて、デューティ比が大きくなる駆動信号S6を出力する。また、ドライブ回路4は、W相変調波Vw*が搬送波の最大値である場合、デューティ比が0[%]の駆動信号S6を出力し、W相変調波Vw*が搬送波の最小値である場合、デューティ比が100[%]の駆動信号S6を出力する。
 なお、ドライブ回路4は、電動機Mの制御周期(0~360[deg])において、1相変調制御または矩形波制御を行うものとする。1相変調制御とは、3相のうちの1相のスイッチング素子を繰り返しオン、オフさせるとともに残りの2相のスイッチング素子を常時オンまたは常時オフさせる制御とする。また、ドライブ回路4は、1相変調制御を行っているとき、電動機Mの制御周期のうちの60度毎に、スイッチング素子SWを繰り返しオン、オフさせる相を順番(例えば、V相、U相、W相の順)に切り替えるものとする。また、矩形波制御とは、3相のそれぞれのスイッチング素子を常時オンまたは常時オフさせる制御とする。
 演算部5は、マイクロコンピュータなどにより構成され、速度演算部7と、減算部8と、トルク制御部9と、トルク/電流指令値変換部10と、座標変換部11と、減算部12と、減算部13と、電流制御部14と、dq/uvw変換部15とを備える。例えば、マイクロコンピュータが記憶部6に記憶されているプログラムを実行することにより、速度演算部7、減算部8、トルク制御部9、トルク/電流指令値変換部10、座標変換部11、減算部12、減算部13、電流制御部14、及びdq/uvw変換部15が実現される。
 速度演算部7は、電気角検出部Spにより検出される電気角θを用いて、電動機Mの回転子の回転速度ωを演算する。例えば、速度演算部6は、電気角θを演算部5の動作クロックで除算することにより回転速度ωを求める。
 減算部8は、外部から入力される回転速度指令値ω*と速度演算部7から出力される回転速度ωとの差Δωを算出する。
 トルク制御部9は、減算部8から出力される差Δωを用いて、トルク指令値T*を求める。例えば、トルク制御部9は、記憶部6に記憶されている、電動機Mの回転子の回転速度と電動機Mのトルクとが互いに対応付けられている情報を参照して、差Δωに相当する回転速度に対応するトルクを、トルク指令値T*として求める。
 トルク/電流指令値変換部10は、トルク制御部9から出力されるトルク指令値T*を、d軸電流指令値Id*及びq軸電流指令値Iq*に変換する。例えば、トルク/電流指令値変換部10は、記憶部6に記憶されている、電動機Mのトルクとd軸電流指令値Id*及びq軸電流指令値Iq*とが互いに対応付けられている情報を参照して、トルク指令値T*に相当するトルクに対応するd軸電流指令値Id*及びq軸電流指令値Iq*を求める。
 座標変換部11は、電流センサSi1により検出されるU相電流Iu及び電流センサSi2により検出されるV相電流Ivを用いて、電動機MのW相に流れるW相電流Iwを求める。また、座標変換部11は、電気角検出部Spにより検出される電気角θを用いて、U相電流Iu、V相電流Iv、及びW相電流Iwをd軸電流Id(弱め界磁を発生させるための電流成分)及びq軸電流Iq(トルクを発生させるための電流成分)に変換する。
 なお、電流センサSi1、Si2により検出される電流は、U相電流Iu及びV相電流Ivの組み合わせに限定されず、V相電流Iv及びW相電流Iwの組み合わせ、または、U相電流Iu及びW相電流Iwの組み合わせでもよい。電流センサSi1、Si2によりV相電流Iv及びW相電流Iwが検出される場合、座標変換部11は、V相電流Iv及びW相電流Iwを用いて、U相電流Iuを求める。また、電流センサSi1、Si2によりU相電流Iu及びW相電流Iwが検出される場合、座標変換部11は、U相電流Iu及びW相電流Iwを用いて、V相電流Ivを求める。
 また、インバータ回路2において、電流センサSi1、Si2の他に、電動機MのW相に流れる電流を検出する電流センサSi3をさらに備える場合、座標変換部11は、電気角検出部Spにより検出される電気角θを用いて、電流センサSi1~Si3により検出されるU相電流Iu、V相電流Iv、及びW相電流Iwをd軸電流Id及びq軸電流Iqに変換するように構成してもよい。
 減算部12は、トルク/電流指令値変換部10から出力されるd軸電流指令値Id*と、座標変換部11から出力されるd軸電流Idとの差ΔIdを算出する。
 減算部13は、トルク/電流指令値変換部10から出力されるq軸電流指令値Iq*と、座標変換部11から出力されるq軸電流Iqとの差ΔIqを算出する。
 電流制御部14は、減算部12から出力される差ΔId及び減算部13から出力される差ΔIqを用いたPI(Proportional Integral)制御により、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を算出する。例えば、電流制御部14は、下記式1を用いてd軸電圧指令値Vd*を算出するとともに、下記式2を用いてq軸電圧指令値Vq*を算出する。なお、KpはPI制御の比例項の定数とし、KiはPI制御の積分項の定数とし、Lqは電動機Mを構成するコイルのq軸インダクタンスとし、Ldは電動機Mを構成するコイルのd軸インダクタンスとし、ωは電動機Mの回転子の回転速度とし、Keは誘起電圧定数とする。
 d軸電圧指令値Vd*=Kp×差ΔId+∫(Ki×差ΔId)-ωLqIq・・・式1
 q軸電圧指令値Vq*=Kp×差ΔIq+∫(Ki×差ΔIq)+ωLdId+ωKe・・・式2
 dq/uvw変換部15は、電圧センサSvにより検出される入力電圧Vin及び電気角検出部Spにより検出される電気角θを用いて、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*に変換する。なお、演算部5により演算された結果(U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*)は、演算部5の次の演算周期Tにおいて、インバータ回路2の動作に反映されるものとする。
 ここで、図2(a)は、電動機MのU相に印加される第2の交流電圧Vu、電動機MのV相に印加される第1の交流電圧Vv、及び電動機MのW相に印加される第3の交流電圧Vwの一例を示す図である。また、図2(b)は、V相変調波Vv*の一例を示す図である。また、図2(c)は、U相変調波Vu*の一例を示す図である。また、図2(d)は、W相変調波Vw*の一例を示す図である。なお、図2(a)~図2(d)にそれぞれ示す2次元座標において、横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示しているものとする。また、図2(a)に示す実線は交流電圧Vuを示し、図2(a)に示す破線は交流電圧Vvを示し、図2(a)に示す一点鎖線は交流電圧Vwを示し、図2(b)に示す破線はV相変調波Vv*を示し、図2(c)に示す実線はU相変調波Vu*を示し、図2(d)に示す一点鎖線はW相変調波Vw*を示しているものとする。なお、0~360[deg]の目標電気角θvの範囲を電動機Mの制御周期とする。
 また、図3(a)は、V相変調波Vv*と搬送波との比較結果の一例を示す図である。図3(b)は、図3(a)に示す比較結果により得られる駆動信号S3の一例を示す図である。図3(c)は、図3(a)に示す比較結果により得られる駆動信号S4の一例を示す図である。なお、図3(a)~図3(c)にそれぞれ示す2次元座標において、横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示しているものとする。
 また、図4(a)は、U相変調波Vu*と搬送波との比較結果の一例を示す図である。図4(b)は、図4(a)に示す比較結果により得られる駆動信号S1の一例を示す図である。図4(c)は、図4(a)に示す比較結果により得られる駆動信号S2の一例を示す図である。なお、図4(a)~図4(c)にそれぞれ示す2次元座標において、横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示しているものとする。
 また、図5(a)は、W相変調波Vw*と搬送波との比較結果の一例を示す図である。図5(b)は、図5(a)に示す比較結果により得られる駆動信号S5の一例を示す図である。図5(c)は、図5(a)に示す比較結果により得られる駆動信号S6の一例を示す図である。なお、図5(a)~図5(c)にそれぞれ示す2次元座標において、横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示しているものとする。
 dq/uvw変換部15は、電動機Mの制御周期のうち、図2(a)に示す第1の交流電圧Vvの正側のピークが存在する第1の区間(0~60[deg])において、図2(b)に示すように、電動機Mの出力(回転速度ωやd軸電流Id、q軸電流Iq)に応じた変調率Mref´(搬送波の最大値(+1)以下、かつ、搬送波の最小値(-1)以上の変調率Mref´)であるV相変調波Vv*を生成する。なお、変調率Mref´は、演算部5の演算周期T毎に求められるものとし、-1≦変調率Mref´≦+1とする。また、電動機Mの制御周期>演算部5の演算周期Tとする。また、dq/uvw変換部15は、第1の区間において、図2(c)に示すように、搬送波の最小値と同じ値であるU相変調波Vu*を生成する。また、dq/uvw変換部15は、第1の区間において、図2(d)に示すように、搬送波の最小値と同じ値であるW相変調波Vw*を生成する。そして、ドライブ回路4は、第1の区間において、図3(a)に示すように、搬送波の最大値より小さく、かつ、搬送波の最小値より大きいV相変調波Vv*と搬送波とを比較することで、図3(b)に示すように、ハイレベルとローレベルが繰り返される駆動信号S3をスイッチング素子SW3のゲート端子に出力するとともに、図3(c)に示すように、ローレベルとハイレベルが繰り返される駆動信号S4をスイッチング素子SW4のゲート端子に出力する。また、ドライブ回路4は、第1の区間において、図4(a)に示すように、搬送波の最小値であるU相変調波Vu*と搬送波とを比較することで、図4(b)に示すように、ローレベルの駆動信号S1をスイッチング素子SW1のゲート端子に出力するとともに、図4(c)に示すように、ハイレベルの駆動信号S2をスイッチング素子SW2のゲート端子に出力する。また、ドライブ回路4は、第1の区間において、図5(a)に示すように、搬送波の最小値であるW相変調波Vw*と搬送波とを比較することで、図5(b)に示すように、ローレベルの駆動信号S5をスイッチング素子SW5のゲート端子に出力するとともに、図5(c)に示すように、ハイレベルの駆動信号SW6をスイッチング素子S6のゲート端子に出力する。これにより、第1の区間において、スイッチング素子SW3、SW4が繰り返しオン、オフし、スイッチング素子SW1、SW5が常時オフし、スイッチング素子SW2、SW6が常時オンする。すなわち、第1の区間において、変調率Mref´が搬送波の最大値より小さく、かつ、最小値より大きい場合、電動機Mが1相変調制御により駆動される。
 また、dq/uvw変換部15は、電動機Mの制御周期のうち、図2(a)に示す第2の交流電圧Vuの負側のピークが存在する第2の区間(60~120[deg])において、図2(c)に示すように、電動機Mの出力に応じた変調率Mref´(搬送波の最大値以下、かつ、搬送波の最小値以上の変調率Mref´)であるU相変調波Vu*を生成する。また、dq/uvw変換部15は、第2の区間において、図2(b)に示すように、搬送波の最大値と同じ値であるV相変調波Vv*を生成する。また、dq/uvw変換部15は、第2の区間において、図2(d)に示すように、搬送波の最大値と同じ値であるW相変調波Vw*を生成する。そして、ドライブ回路4は、第2の区間において、図4(a)に示すように、搬送波の最大値より小さく、かつ、搬送波の最小値より大きいU相変調波Vu*と搬送波とを比較することで、図4(b)に示すように、ハイレベルとローレベルが繰り返される駆動信号S1をスイッチング素子SW1のゲート端子に出力するとともに、図4(c)に示すように、ローレベルとハイレベルが繰り返される駆動信号S2をスイッチング素子SW2のゲート端子に出力する。また、ドライブ回路4は、第2の区間において、図3(a)に示すように、搬送波の最大値であるV相変調波Vv*と搬送波とを比較することで、図3(b)に示すように、ハイレベルの駆動信号S3をスイッチング素子SW3のゲート端子に出力するとともに、図3(c)に示すように、ローレベルの駆動信号S4をスイッチング素子SW4のゲート端子に出力する。また、ドライブ回路4は、第2の区間において、図5(a)に示すように、搬送波の最大値であるW相変調波Vw*と搬送波とを比較することで、図5(b)に示すように、ハイレベルの駆動信号S5をスイッチング素子SW5のゲート端子に出力するとともに、図5(c)に示すように、ローレベルの駆動信号SW6をスイッチング素子S6のゲート端子に出力する。これにより、第2の区間において、スイッチング素子SW1、SW2が繰り返しオン、オフし、スイッチング素子SW3、SW5が常時オンし、スイッチング素子SW4、SW6が常時オフする。すなわち、第2の区間において、変調率Mref´が搬送波の最大値より小さく、かつ、最小値より大きい場合、電動機Mが1相変調制御により駆動される。
 また、dq/uvw変換部15は、電動機Mの制御周期のうち、図2(a)に示す第3の交流電圧Vwの正側のピークが存在する第3の区間(120~180[deg])において、図2(d)に示すように、電動機Mの出力に応じた変調率Mref´(搬送波の最大値以下、かつ、搬送波の最小値以上の変調率Mref´)であるW相変調波Vw*を生成する。また、dq/uvw変換部15は、第3の区間において、図2(b)に示すように、搬送波の最小値と同じ値であるV相変調波Vv*を生成する。また、dq/uvw変換部15は、第3の区間において、図2(c)に示すように、搬送波の最小値と同じ値であるU相変調波Vu*を生成する。そして、ドライブ回路4は、第3の区間において、図5(a)に示すように、搬送波の最大値より小さく、かつ、搬送波の最小値より大きいW相変調波Vw*と搬送波とを比較することで、図5(b)に示すように、ハイレベルとローレベルが繰り返される駆動信号S5をスイッチング素子SW5のゲート端子に出力するとともに、図5(c)に示すように、ローレベルとハイレベルが繰り返される駆動信号S6をスイッチング素子SW6のゲート端子に出力する。また、ドライブ回路4は、第3の区間において、図3(a)に示すように、搬送波の最小値であるV相変調波Vv*と搬送波とを比較することで、図3(b)に示すように、ローレベルの駆動信号S3をスイッチング素子SW3のゲート端子に出力するとともに、図3(c)に示すように、ハイレベルの駆動信号S4をスイッチング素子SW4のゲート端子に出力する。また、ドライブ回路4は、第3の区間において、図4(a)に示すように、搬送波の最小値であるU相変調波Vu*と搬送波とを比較することで、図4(b)に示すように、ローレベルの駆動信号S1をスイッチング素子SW1のゲート端子に出力するとともに、図4(c)に示すように、ハイレベルの駆動信号S2をスイッチング素子SW2のゲート端子に出力する。これにより、第3の区間において、スイッチング素子SW5、SW6が繰り返しオン、オフし、スイッチング素子SW1、SW3が常時オフし、スイッチング素子SW2、SW4が常時オンする。すなわち、第3の区間において、変調率Mref´が搬送波の最大値より小さく、かつ、最小値より大きい場合、電動機Mが1相変調制御により駆動される。
 このように、dq/uvw変換部15は、電動機Mの制御周期の半周期(0~180[deg])において、変調率Mref´が搬送波の最大値より小さく、かつ、最小値より大きい場合、電動機Mが1相変調制御により駆動される。なお、dq/uvw変換部15は、電動機Mの制御周期の残りの半周期(第1の区間(180~240[deg])、第2の区間(240~300[deg])、第3の区間(300~360[deg]))においても、変調率Mref´が搬送波の最大値より小さく、かつ、最小値より大きい場合、電動機Mを1相変調制御により駆動する。
 また、図6(a)は、第2の交流電圧Vu、第1の交流電圧Vv、及び第3の交流電圧Vwの一例を示す図である。また、図6(b)は、V相変調波Vv*の一例を示す図である。また、図6(c)は、U相変調波Vu*の一例を示す図である。また、図6(d)は、W相変調波Vw*の一例を示す図である。なお、図6(a)~図6(d)にそれぞれ示す2次元座標において、横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示しているものとする。また、図6(a)に示す実線は交流電圧Vuを示し、図6(a)に示す破線は交流電圧Vvを示し、図6(a)に示す一点鎖線は交流電圧Vwを示し、図6(b)に示す破線はV相変調波Vv*を示し、図6(c)に示す実線はU相変調波Vu*を示し、図6(d)に示す一点鎖線はW相変調波Vw*を示しているものとする。なお、0~360[deg]の目標電気角θvの範囲を電動機Mの制御周期とする。
 また、図7(a)は、V相変調波Vv*と搬送波との比較結果の一例を示す図である。図7(b)は、図7(a)に示す比較結果により得られる駆動信号S3の一例を示す図である。図7(c)は、図7(a)に示す比較結果により得られる駆動信号S4の一例を示す図である。なお、図7(a)~図7(c)にそれぞれ示す2次元座標において、横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示しているものとする。
 また、図8(a)は、U相変調波Vu*と搬送波との比較結果の一例を示す図である。図8(b)は、図8(a)に示す比較結果により得られる駆動信号S1の一例を示す図である。図8(c)は、図8(a)に示す比較結果により得られる駆動信号S2の一例を示す図である。なお、図8(a)~図8(c)にそれぞれ示す2次元座標において、横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示しているものとする。
 また、図9(a)は、W相変調波Vw*と搬送波との比較結果の一例を示す図である。図9(b)は、図9(a)に示す比較結果により得られる駆動信号S5の一例を示す図である。図9(c)は、図9(a)に示す比較結果により得られる駆動信号S6の一例を示す図である。なお、図9(a)~図9(c)にそれぞれ示す2次元座標において、横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示しているものとする。
 dq/uvw変換部15は、電動機Mの制御周期のうち、図6(a)に示す第1の交流電圧Vvの正側のピークが存在する第1の区間(0~60[deg])において、図6(b)に示すように、電動機Mの出力に応じた変調率Mref´(搬送波の最大値(+1))であるV相変調波Vv*を生成する。また、dq/uvw変換部15は、第1の区間において、図6(c)に示すように、搬送波の最小値(-1)と同じ値であるU相変調波Vu*を生成する。また、dq/uvw変換部15は、第1の区間において、図6(d)に示すように、搬送波の最小値と同じ値であるW相変調波Vw*を生成する。そして、ドライブ回路4は、第1の区間において、図7(a)に示すように、搬送波の最大値であるV相変調波Vv*と搬送波とを比較することで、図7(b)に示すように、ハイレベルの駆動信号S3をスイッチング素子SW3のゲート端子に出力するとともに、図7(c)に示すように、ローレベルの駆動信号S4をスイッチング素子SW4のゲート端子に出力する。また、ドライブ回路4は、第1の区間において、図8(a)に示すように、搬送波の最小値であるU相変調波Vu*と搬送波とを比較することで、図8(b)に示すように、ローレベルの駆動信号S1をスイッチング素子SW1のゲート端子に出力するとともに、図8(c)に示すように、ハイレベルの駆動信号SW2をスイッチング素子S2のゲート端子に出力する。また、ドライブ回路4は、第1の区間において、図9(a)に示すように、搬送波の最小値であるW相変調波Vw*と搬送波とを比較することで、図9(b)に示すように、ローレベルの駆動信号S5をスイッチング素子SW5のゲート端子に出力するとともに、図9(c)に示すように、ハイレベルの駆動信号SW6をスイッチング素子S6のゲート端子に出力する。これにより、第1の区間において、スイッチング素子SW2、SW3、SW6が常時オンし、スイッチング素子SW1、SW4、SW5が常時オフする。すなわち、第1の区間において、変調率Mref´が搬送波の最大値である場合、電動機Mが矩形波制御により駆動される。
 また、dq/uvw変換部15は、電動機Mの制御周期のうち、図6(a)に示す第2の交流電圧Vuの負側のピークが存在する第2の区間(60~120[deg])において、図6(c)に示すように、電動機Mの出力に応じた変調率Mref´(搬送波の最小値)であるU相変調波Vu*を生成する。また、dq/uvw変換部15は、第2の区間において、図6(b)に示すように、搬送波の最大値と同じ値であるV相変調波Vv*を生成する。また、dq/uvw変換部15は、第2の区間において、図6(d)に示すように、搬送波の最大値と同じ値であるW相変調波Vw*を生成する。そして、ドライブ回路4は、第2の区間において、図8(a)に示すように、搬送波の最小値であるU相変調波Vu*と搬送波とを比較することで、図8(b)に示すように、ローレベルの駆動信号S1をスイッチング素子SW1のゲート端子に出力するとともに、図8(c)に示すように、ハイレベルの駆動信号S2をスイッチング素子SW2のゲート端子に出力する。また、ドライブ回路4は、第2の区間において、図7(a)に示すように、搬送波の最大値であるV相変調波Vv*と搬送波とを比較することで、図7(b)に示すように、ハイレベルの駆動信号S3をスイッチング素子SW3のゲート端子に出力するとともに、図7(c)に示すように、ローレベルの駆動信号SW4をスイッチング素子S4のゲート端子に出力する。また、ドライブ回路4は、第2の区間において、図9(a)に示すように、搬送波の最大値であるW相変調波Vw*と搬送波とを比較することで、図9(b)に示すように、ハイレベルの駆動信号S5をスイッチング素子SW5のゲート端子に出力するとともに、図9(c)に示すように、ローレベルの駆動信号SW6をスイッチング素子S6のゲート端子に出力する。これにより、第2の区間において、スイッチング素子SW2、SW3、SW5が常時オンし、スイッチング素子SW1、SW4、SW6が常時オフする。すなわち、第2の区間において、変調率Mref´が搬送波の最小値である場合、電動機Mが矩形波制御により駆動される。
 また、dq/uvw変換部15は、電動機Mの制御周期のうち、図6(a)に示す第3の交流電圧Vwの正側のピークが存在する第3の区間(120~180[deg])において、図6(d)に示すように、電動機Mの出力に応じた変調率Mref´(搬送波の最大値)であるW相変調波Vw*を生成する。また、dq/uvw変換部15は、第3の区間において、図6(b)に示すように、搬送波の最小値と同じ値であるV相変調波Vv*を生成する。また、dq/uvw変換部15は、第3の区間において、図6(c)に示すように、搬送波の最小値と同じ値であるU相変調波Vu*を生成する。そして、ドライブ回路4は、第3の区間において、図9(a)に示すように、搬送波の最大値であるW相変調波Vw*と搬送波とを比較することで、図9(b)に示すように、ハイレベルの駆動信号S5をスイッチング素子SW5のゲート端子に出力するとともに、図9(c)に示すように、ローレベルの駆動信号S6をスイッチング素子SW6のゲート端子に出力する。また、ドライブ回路4は、第3の区間において、図7(a)に示すように、搬送波の最小値であるV相変調波Vv*と搬送波とを比較することで、図7(b)に示すように、ローレベルの駆動信号S3をスイッチング素子SW3のゲート端子に出力するとともに、図7(c)に示すように、ハイレベルの駆動信号SW4をスイッチング素子S4のゲート端子に出力する。また、ドライブ回路4は、第3の区間において、図8(a)に示すように、搬送波の最小値であるUW相変調波Vu*と搬送波とを比較することで、図8(b)に示すように、ローレベルの駆動信号S1をスイッチング素子SW1のゲート端子に出力するとともに、図8(c)に示すように、ハイレベルの駆動信号SW2をスイッチング素子S2のゲート端子に出力する。これにより、第3の区間において、スイッチング素子SW2、SW4、SW5が常時オンし、スイッチング素子SW1、SW3、SW6が常時オフする。すなわち、第3の区間において、変調率Mref´が搬送波の最大値である場合、電動機Mが矩形波制御により駆動される。
 このように、dq/uvw変換部15は、電動機Mの制御周期の半周期(0~180[deg])において、変調率Mref´が搬送波の最大値である場合、または、変調率Mref´が搬送波の最小値である場合、電動機Mが矩形波制御により駆動される。なお、dq/uvw変換部15は、電動機Mの制御周期の残りの半周期(第1の区間(180~240[deg])、第2の区間(240~300[deg])、第3の区間(300~360[deg]))においても、変調率Mref´が搬送波の最大値である場合、または、変調率Mref´が搬送波の最小値である場合、電動機Mを矩形波制御により駆動する。
 このように、実施形態の電動機Mの制御装置1は、電動機Mの制御周期のうち、第1の交流電圧Vvのピークが存在する第1の区間において、電動機Mの出力に応じたV相変調波Vv*を出力するとともに搬送波の最小値または最大値をU相変調波Vu*及びW相変調波Vw*として出力し、第2の交流電圧Vu*のピークが存在する第2の区間において、電動機Mの出力に応じたU相変調波Vu*を出力するとともに搬送波の最小値または最大値をV相変調波Vv*及びW相変調波Vw*として出力し、第3の交流電圧Vwのピークが存在する第3の区間において、電動機Mの出力に応じたW相変調波Vw*を出力するとともに搬送波の最小値または最大値をV相変調波Vv*及びU相変調波Vu*として出力する。
 これにより、電動機Mの制御周期(第1~第3の区間)において、電動機Mの出力に応じたV相変調波Vv*、U相変調波Vu*、及びW相変調波Vw*が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、3相のスイッチング素子のうちの1相のスイッチング素子を繰り返しオン、オフさせること、すなわち、1相変調制御を行うことができる。また、電動機Mの制御周期において、電動機Mの出力に応じたV相変調波Vv*、U相変調波Vu*、及びW相変調波Vw*が搬送波の最小値または最大値である場合、3相のスイッチング素子をそれぞれ常時オンまたは常時オフさせること、すなわち、矩形波制御を行うことができる。また、電動機Mの制御周期において、V相変調波Vv*、U相変調波Vu*、及びW相変調波Vw*に応じたデューティ比でスイッチング素子をオン、オフさせることができるため、電動機Mの出力に応じてスイッチング素子のオン時間を徐々に変化させることができる。そのため、電動機Mの出力が高くなり1相変調制御から矩形波制御に遷移しても、スイッチング素子のオン時間をシームレスに変化させることができるため、電動機Mに流れる電流の歪みを抑えることができ、トルクの変動を抑えることができる。また、第1~第3の区間毎に、スイッチング素子をスイッチングさせる相を切り替えるだけでよく、複雑な演算を必要としないため、制御装置1の演算負荷を抑えることができる。
 また、実施形態の電動機Mの制御装置1によれば、3相変調制御や2相変調制御を行う電動機の制御装置に比べて、スイッチング素子SW1~SW6のスイッチング周波数を高くすることができるため、スイッチング周波数を可聴域外にシフトすることができ、騒音低減を図ることができる。
 図10(a)は、dq/uvw変換部15の一例を示す図である。
 図10(a)に示すdq/uvw変換部15は、位相角計算部151と、加算部152と、変調率計算部153と、変調率拡張部154と、変調波生成部155とを備える。
 位相角計算部151は、電流制御部14から出力されるd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを計算する。例えば、位相角計算部151は、下記式3の計算結果を、位相角δとする。
Figure JPOXMLDOC01-appb-M000001
 加算部152は、位相角計算部151から出力される位相角δと、電気角検出部Spから出力される電気角θとの加算結果を、目標電気角θvとする。なお、位相角計算部151と加算部152とにより目標電気角算出部が構成されるものとする。つまり、目標電気角算出部は電動機Mの出力に応じたd軸電圧指令値Vd*、q軸電圧指令値Vq*と電気角検出部Spにより検出される電気角θにより目標電気角θvを算出する。
 変調率計算部153は、電圧センサSvにより検出される入力電圧Vinと、電流制御部14から出力されるd軸電圧指令値Vd*及びq軸電圧指令値Vq*とを用いて、変調率Mrefを計算する。例えば、変調率計算部153は、下記式4の計算結果を、変調率Mrefとする。なお、0≦Mref≦1とする。
Figure JPOXMLDOC01-appb-M000002
 変調率拡張部154は、変調率計算部153から出力される変調率Mrefを拡張することにより変調率Mref´を求める。例えば、変調率拡張部154は、下記式5の計算結果を、変調率Mref´とする。なお、-1≦Mref´≦+1とする。Mref´=2×Mref-1 ・・・式5
 変調波生成部155は、加算部152から出力される目標電気角θvと、変調率拡張部154から出力される変調率Mref´とを用いて、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を生成する。例えば、変調波生成部155は、記憶部6に記憶されている情報D1を参照して、加算部152から出力される目標電気角θvに対応するU相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を求める。
 図10(b)は、情報D1の一例を示す図である。
 図10(b)に示す情報D1では、第1の区間である「0~60[deg]」と、U相変調波Vu*である「-1(搬送波の最小値)」と、V相変調波Vv*である「Mref´」と、W相変調波Vw*である「-1」とが互いに対応付けられている。また、第2の区間である「60~120[deg]」と、U相変調波Vu*である「Mref´」と、V相変調波Vv*である「+1(搬送波の最大値)」と、W相変調波Vw*である「+1」とが互いに対応付けられている。また、第3の区間である「120~180[deg]」と、U相変調波Vu*である「-1」と、V相変調波Vv*である「-1」と、W相変調波Vw*である「Mref´」とが互いに対応付けられている。また、第1の区間である「180~240[deg]」と、U相変調波Vu*である「+1」と、V相変調波Vv*である「Mref´」と、W相変調波Vw*である「+1」とが互いに対応付けられている。また、第2の区間である「240~300[deg]」と、U相変調波Vu*である「Mref´」と、V相変調波Vv*である「-1」と、W相変調波Vw*である「-1」とが互いに対応付けられている。また、第3の区間である「300~360[deg]」と、U相変調波Vu*である「+1」と、V相変調波Vv*である「+1」と、W相変調波Vw*である「Mref´」とが互いに対応付けられている。
 例えば、変調波生成部155は、目標電気角θv(54[deg])が第1の区間(0~60[deg])に入っている場合、U相変調波Vu*として「-1」を出力するとともに、V相変調波Vv*として「Mref´」を出力するとともに、W相変調波Vw*として「-1」を出力する。これにより、Mref´が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、第1の区間において、スイッチング素子SW3、SW4が繰り返しオン、オフし、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンし、スイッチング素子SW5が常時オフし、スイッチング素子SW6が常時オンする。また、Mref´が搬送波の最大値である場合、第1の区間において、スイッチング素子SW3が常時オンし、スイッチング素子SW4が常時オフし、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンし、スイッチング素子SW5が常時オフし、スイッチング素子SW6が常時オンする。
 また、変調波生成部155は、目標電気角θv(108[deg])が第2の区間(60~120[deg])に入っている場合、U相変調波Vu*として「Mref´」を出力するとともに、V相変調波Vv*として「+1」を出力するとともに、W相変調波Vw*として「+1」を出力する。これにより、Mref´が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、第2の区間において、スイッチング素子SW1、SW2が繰り返しオン、オフし、スイッチング素子SW3が常時オンし、スイッチング素子SW4が常時オフし、スイッチング素子SW5が常時オンし、スイッチング素子SW6が常時オフする。また、Mref´が搬送波の最小値である場合、第2の区間において、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンし、スイッチング素子SW3が常時オンし、スイッチング素子SW4が常時オフし、スイッチング素子SW5が常時オンし、スイッチング素子SW6が常時オフする。
 また、変調波生成部155は、目標電気角θv(162[deg])が第3の区間(120~180[deg])に入っている場合、U相変調波Vu*として「-1」を出力するとともに、V相変調波Vv*として「-1」を出力するとともに、W相変調波Vw*として「Mref´」を出力する。これにより、Mref´が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、第3の区間において、スイッチング素子SW5、SW6が繰り返しオン、オフし、スイッチング素子SW3が常時オフし、スイッチング素子SW4が常時オンし、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンする。また、Mref´が搬送波の最大値である場合、第3の区間において、スイッチング素子SW5が常時オンし、スイッチング素子SW6が常時オフし、スイッチング素子SW3が常時オフし、スイッチング素子SW4が常時オンし、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンする。
 すなわち、図10(a)に示すdq/uvw変換部15によれば、第1の区間において、電動機Mの出力に応じた変調率Mref´をV相変調波Vv*として出力するとともに搬送波の最小値または最大値をU相変調波Vu*及びW相変調波Vw*として出力し、第2の区間において、電動機Mの出力に応じた変調率Mref´をU相変調波Vu*として出力するとともに搬送波の最小値または最大値をV相変調波Vv*及びW相変調波Vw*として出力し、第3の区間において、電動機Mの出力に応じた変調率Mref´をW相変調波Vw*として出力するとともに搬送波の最小値または最大値をV相変調波Vv*及びU相変調波Vu*として出力することができる。
 図11(a)は、dq/uvw変換部15の他の例を示す図である。
 図11(a)に示すdq/uvw変換部15は、2相3相変換部156と、変調波生成部157とを備える。
 2相3相変換部156(電圧指令値算出部)は、電気角検出部Spから出力される電気角θを用いて、電流制御部14から出力される電動機Mの出力に応じたd軸電圧指令値Vd*及びq軸電圧指令値Vq*を、第2の交流電圧Vuに対応するU相電圧指令値Vu**(第2の電圧指令値)、第1の交流電圧Vvに対応するV相電圧指令値Vv**(第1の電圧指令値)、及び第3の交流電圧Vwに対応するW相電圧指令値Vw**(第3の電圧指令値)に変換する。例えば、2相3相変換部156は、下記式6に示す変換行列Cを用いて、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を、U相電圧指令値Vu**、V相電圧指令値Vv**、及びW相電圧指令値Vw**に変換する。
Figure JPOXMLDOC01-appb-M000003
 変調波生成部157は、電圧センサSvにより検出される入力電圧Vinと、電流制御部14から出力されるd軸電圧指令値Vd*及びq軸電圧指令値Vq*と、2相3相変換部156から出力されるU相電圧指令値Vu**、V相電圧指令値Vv**、及びW相電圧指令値Vw**とを用いて、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を演算する。例えば、変調波生成部157は、上記式3を計算することにより位相角δを求め、その位相角δと電気角検出部Spから出力される電気角θとの加算結果を目標電気角θvとし、上記式4を計算することにより変調率Mrefを求め、上記式5を計算することにより変調率Mref´を求める。また、変調波生成部157は、記憶部6に記憶されている情報D2を参照して、2相3相変換部156から出力されるU相電圧指令値Vu**、V相電圧指令値Vv**、及びW相電圧指令値Vw**により求められる分岐条件に対応するU相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を求める。
 図11(b)は、情報D2の一例を示す図である。
 図11(b)に示す情報D2では、「V相電圧指令値Vv**の絶対値がU相電圧指令値Vu**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、V相電圧指令値Vv**がゼロ以上である場合」という分岐条件と、U相変調波Vu*である「-1(搬送波の最小値)」と、V相変調波Vv*である「Mref´」と、W相変調波Vw*である「-1」とが互いに対応付けられている。また、「U相電圧指令値Vu**の絶対値がV相電圧指令値Vv**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、U相電圧指令値Vu**がゼロ以上である場合」という分岐条件と、U相変調波Vu*である「Mref´」と、V相変調波Vv*である「+1(搬送波の最大値)」と、W相変調波Vw*である「+1」とが互いに対応付けられている。また、「W相電圧指令値Vw**の絶対値がV相電圧指令値Vv**の絶対値及びU相電圧指令値Vu**の絶対値より大きい場合で、かつ、W相電圧指令値Vw**がゼロ以上である場合」という分岐条件と、U相変調波Vu*である「-1」と、V相変調波Vv*である「-1」と、W相変調波Vw*である「Mref´」とが互いに対応付けられている。また、「V相電圧指令値Vv**の絶対値がU相電圧指令値Vu**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、V相電圧指令値Vv**がゼロより小さい場合」という分岐条件と、U相変調波Vu*である「+1」と、V相変調波Vv*である「Mref´」と、W相変調波Vw*である「+1」とが互いに対応付けられている。また、「U相電圧指令値Vu**の絶対値がV相電圧指令値Vv**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、U相電圧指令値Vu**がゼロより小さい場合」という分岐条件と、U相変調波Vu*である「Mref´」と、V相変調波Vv*である「-1」と、W相変調波Vw*である「-1」とが互いに対応付けられている。また、「W相電圧指令値Vw**の絶対値がV相電圧指令値Vv**の絶対値及びU相電圧指令値Vu**の絶対値より大きい場合で、かつ、W相電圧指令値Vw**がゼロより小さい場合」という分岐条件と、U相変調波Vu*である「+1」と、V相変調波Vv*である「+1」と、W相変調波Vw*である「Mref´」とが互いに対応付けられている。
 例えば、変調波生成部157は、V相電圧指令値Vv**の絶対値がU相電圧指令値Vu**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、V相電圧指令値Vv**がゼロ以上である場合、すなわち、目標電気角θvが第1の区間(0~60[deg])に入っている場合、U相変調波Vu*として「-1」を出力するとともに、V相変調波Vv*として「Mref´」を出力するとともに、W相変調波Vw*として「-1」を出力する。これにより、Mref´が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、第1の区間において、スイッチング素子SW3、SW4が繰り返しオン、オフし、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンし、スイッチング素子SW5が常時オフし、スイッチング素子SW6が常時オンする。また、Mref´が搬送波の最大値である場合、第1の区間において、スイッチング素子SW3が常時オンし、スイッチング素子SW4が常時オフし、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンし、スイッチング素子SW5が常時オフし、スイッチング素子SW6が常時オンする。
 また、変調波生成部157は、U相電圧指令値Vu**の絶対値がV相電圧指令値Vv**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、U相電圧指令値Vu**がゼロ以上である場合、すなわち、目標電気角θvが第2の区間(60~120[deg])に入っている場合、U相変調波Vu*として「Mref´」を出力するとともに、V相変調波Vv*として「+1」を出力するとともに、W相変調波Vw*として「+1」を出力する。これにより、Mref´が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、第2の区間において、スイッチング素子SW1、SW2が繰り返しオン、オフし、スイッチング素子SW3が常時オンし、スイッチング素子SW4が常時オフし、スイッチング素子SW5が常時オンし、スイッチング素子SW6が常時オフする。また、Mref´が搬送波の最小値である場合、第2の区間において、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンし、スイッチング素子SW3が常時オンし、スイッチング素子SW4が常時オフし、スイッチング素子SW5が常時オンし、スイッチング素子SW6が常時オフする。
 また、変調波生成部157は、W相電圧指令値Vw**の絶対値がV相電圧指令値Vv**の絶対値及びU相電圧指令値Vu**の絶対値より大きい場合で、かつ、W相電圧指令値Vw**がゼロ以上である場合、すなわち、目標電気角θvが第3の区間(120~180[deg])に入っている場合、U相変調波Vu*として「-1」を出力するとともに、V相変調波Vv*として「-1」を出力するとともに、W相変調波Vw*として「Mref´」を出力する。これにより、Mref´が搬送波の最大値より小さく、かつ、搬送波の最小値より大きい場合、第3の区間において、スイッチング素子SW5、SW6が繰り返しオン、オフし、スイッチング素子SW3が常時オフし、スイッチング素子SW4が常時オンし、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンする。また、Mref´が搬送波の最大値である場合、第3の区間において、スイッチング素子SW5が常時オンし、スイッチング素子SW6が常時オフし、スイッチング素子SW3が常時オフし、スイッチング素子SW4が常時オンし、スイッチング素子SW1が常時オフし、スイッチング素子SW2が常時オンする。
 すなわち、図11(a)に示すdq/uvw変換部15によれば、第1の区間において、電動機Mの出力に応じた変調率Mref´をV相変調波Vv*として出力するとともに搬送波の最小値または最大値をU相変調波Vu*及びW相変調波Vw*として出力し、第2の区間において、電動機Mの出力に応じた変調率Mref´をU相変調波Vu*として出力するとともに搬送波の最小値または最大値をV相変調波Vv*及びW相変調波Vw*として出力し、第3の区間において、電動機Mの出力に応じた変調率Mref´をW相変調波Vw*として出力するとともに搬送波の最小値または最大値をV相変調波Vv*及びU相変調波Vu*として出力することができる。
 また、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
<変形例1>
 図12は、変形例1におけるdq/uvw変換部15の動作の一例を示すフローチャートである。
 まず、dq/uvw変換部15は、演算部5の演算周期Tを求める(ステップS1)。例えば、dq/uvw変換部15は、今回取得された電気角θと前回取得された電気角θとの差を、演算周期Tとする。
 次に、dq/uvw変換部15は、演算部5の次の演算周期Tを推定する(ステップS2)。例えば、dq/uvw変換部15は、演算部5の現在の演算タイミングから演算周期T後の演算タイミングを、演算部5の次の演算周期Tの開始タイミングとし、その開始タイミングから演算周期T後の演算タイミングを、演算部5の次の演算周期Tの終了タイミングとし、その開始タイミングから終了タイミングまでの範囲を、演算部5の次の演算周期Tとする。なお、現在の演算タイミングで求められたU相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*は、次の演算周期Tにおいて、インバータ回路2の動作に反映されるものとする。
 次に、dq/uvw変換部15は、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミング(0[deg]、60[deg]、120[deg]、180[deg]、240[deg]、300[deg])が存在する場合(ステップS3:Yes)、切り替わり時間tcを設定する(ステップS4)。例えば、dq/uvw変換部15は、第1~第3の区間の切り替わりタイミングと、次の演算周期Tの開始タイミングとの差を、切り替わり時間tcとする。
 一方、dq/uvw変換部15は、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在しない場合(ステップS3:No)、切り替わり時間tcを演算周期より大きい値に設定する(ステップS5)。
 そして、dq/uvw変換部15は、入力電圧Vin及び電気角θを用いて、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*に変換し、次の演算周期Tの開始タイミングになると、切り替わり時間tc経過後に、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*のそれぞれの値を切り替える(ステップS6)。
 図13は、切り替わり時間tcの設定を説明するための図である。なお、図13に示す2次元座標の横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示している。また、図13に示す実線はU相変調波Vu*を示し、図13に示す破線はV相変調波Vv*を示し、図13に示す一点鎖線はW相変調波Vw*を示している。また、演算部5の演算周期Tを18[deg]とする。
 例えば、演算部5の現在の演算タイミングにおける目標電気角θvを36[deg]とする場合を想定する。または、V相電圧指令値Vv**の絶対値がU相電圧指令値Vu**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、V相電圧指令値Vv**がゼロ以上である場合を想定する。
 dq/uvw変換部15は、36[deg]+18[deg]=54[deg]を、演算部5の次の演算周期Tの開始タイミングとし、54[deg]+18[deg]=72[deg]を、演算部5の次の演算周期Tの終了タイミングとし、54[deg]~72[deg]を、演算部5の次の演算周期Tとする。
 次に、dq/uvw変換部15は、目標電気角θvが第1の区間(0~60[deg])に入ると判断し、または、V相電圧指令値Vv**の絶対値がU相電圧指令値Vu**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、V相電圧指令値Vv**がゼロ以上であると判断し、次の演算周期T(54[deg]~72[deg])において、第1の区間から第2の区間の切り替わりタイミングとして60[deg]が存在すると判断すると、60[deg]-54[deg]=6[deg]に相当する時間を、切り替わり時間tcとする。
 そして、dq/uvw変換部15は、次の演算周期Tの開始タイミング(54[deg])になると、切り替わり時間tc(6[deg]に相当する時間)経過後に、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*のそれぞれの値を切り替える。すなわち、dq/uvw変換部15は、60[deg]になると、V相変調波Vv*の値を変調率Mref´から搬送波の最大値に切り替えるとともに、W相変調波Vw*の値を搬送波の最小値から最大値に切り替えるとともに、U相変調波Vu*の値を搬送波の最小値から変調率Mref´に切り替える。なお、演算部5の次の演算周期Tにおいて、第1の区間から第2の区間の切り替わりタイミングが存在しない場合、演算周期途中の変調波の変更は行わず、その次の演算周期になるまで継続して出力する。
 このように、変形例1におけるdq/uvw変換部15は、次の演算周期Tにおいて、第1の区間から第2の区間への切り替わりタイミング、第2の区間から第3の区間への切り替わりタイミング、または第3の区間から第1の区間への切り替わりタイミングが存在する場合、その切り替わりタイミングに次の演算周期Tの開始タイミングを合わせる。言い換えると、変形例1におけるdq/uvw変換部15は、次の演算周期Tにおいて、第1の区間から第2の区間への切り替わりタイミング、第2の区間から第3の区間への切り替わりタイミング、または第3の区間から第1の区間への切り替わりタイミングが存在する場合、その切り替わりタイミングを、演算部5の演算周期の開始タイミングから切り替わり時間tc経過後にずらしている。
 これにより、第1の区間から第2の区間への切り替わりタイミング、第2の区間から第3の区間への切り替わりタイミング、または第3の区間から第1の区間への切り替わりタイミングにおいて、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*のそれぞれの値を切り替えることができるため、スイッチング素子をオンさせる必要がないときにスイッチング素子をオンさせたり、スイッチング素子をオンさせる必要があるときにスイッチング素子をオフさせたりすることを防止することができ、電動機Mに流れる電流に生じる歪みをさらに抑えることができ、トルクの変動をさらに抑えることができる。
<変形例2>
 図14は、変形例2におけるdq/uvw変換部15の動作の一例を示すフローチャートである。なお、図14に示すステップS1、S2、S3、S5は、図12に示すステップS1、S2、S3、S5と同様とし、その説明を省略する。
 図14に示すフローチャートにおいて、図12に示すフローチャートと異なる点は、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合(ステップS3:Yes)、第1~第3の優先順位に対応する変調波を基に、切り替わり時間tc1~tc3を設定し(ステップS4´)、次の演算周期Tの開始タイミングになると、切り替わり時間tc1~tc3経過後に、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*のそれぞれの値を切り替える(ステップS6´)点である。なお、第1の優先順位に対応する変調波は、第1~第3の区間の切り替わりタイミングにおいて、変調率Mref´から搬送波の最小値または最大値に切り替わる変調波とする。また、第2の優先順位に対応する変調波は、第1~第3の区間の切り替わりタイミングにおいて、搬送波の最小値から最大値に切り替わる変調波または搬送波の最大値から最小値に切り替わる変調波とする。また、第3の優先順位に対応する変調波は、第1~第3の区間の切り替わりタイミングにおいて、搬送波の最小値または最大値から変調率Mref´に切り替わる変調波とする。
 dq/uvw変換部15は、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合、その切り替わりタイミングにおいて、第1の優先順位に対応する変調波、第2の優先順位に対応する変調波、第3の優先順位に対応する変調波の順に、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*のそれぞれの値を切り替える。
 すなわち、dq/uvw変換部15は、次の演算周期Tにおいて、第1の区間から第2の区間への切り替わりタイミングが存在する場合、その切り替わりタイミングにおいて、V相変調波Vv*の値を変調率Mref´から搬送波の最小値または最大値に切り替えた後、W相変調波Vw*の値を搬送波の最小値から最大値にまたは搬送波の最大値から最小値に切り替えた後、U相変調波Vu*の値を搬送波の最小値または最大値から変調率Mref´に切り替える。
 また、dq/uvw変換部15は、次の演算周期Tにおいて、第2の区間から第3の区間への切り替わりタイミングが存在する場合、その切り替わりタイミングにおいて、U相変調波Vu*の値を変調率Mref´から搬送波の最小値または最大値に切り替えた後、V相変調波Vv*の値を搬送波の最小値から最大値にまたは搬送波の最大値から最小値に切り替えた後、W相変調波Vw*の値を搬送波の最小値または最大値から変調率に切り替える。
 また、dq/uvw変換部15は、次の演算周期Tにおいて、第3の区間から第1の区間への切り替わりタイミングが存在する場合、その切り替わりタイミングにおいて、W相変調波Vw*の値を変調率Mref´から搬送波の最小値または最大値に切り替えた後、U相変調波Vu*の値を搬送波の最小値から最大値または搬送波の最大値から最小値に切り替えた後、V相変調波Vv*の値を搬送波の最小値または最大値から変調率に切り替える。
 図15(a)~図15(c)は、切り替わり時間tc1~tc3の設定を説明するための図である。なお、図15(a)~図15(c)に示す2次元座標の横軸は、電動機Mの回転子の電気角θにd軸電圧指令値Vd*及びq軸電圧指令値Vq*に対応する位相角δを加算した目標電気角θvを示し、縦軸は、電圧を示している。また、図15(a)~(c)に示す実線はU相変調波Vu*を示し、図15(a)~図15(c)に示す破線はV相変調波Vv*を示し、図15(a)~図15(c)に示す一点鎖線はW相変調波Vw*を示している。また、演算部5の演算周期Tを18[deg]とする。
 例えば、演算部5の現在の演算タイミングにおける目標電気角θvを36[deg]とする場合を想定する。または、V相電圧指令値Vv**の絶対値がU相電圧指令値Vu**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、V相電圧指令値Vv**がゼロ以上である場合を想定する。
 dq/uvw変換部15は、36[deg]+18[deg]=54[deg]を、演算部5の次の演算周期Tの開始タイミングとし、54[deg]+18[deg]=72[deg]を、演算部5の次の演算周期Tの終了タイミングとし、54[deg]~72[deg]を、演算部5の次の演算周期Tとする。
 次に、dq/uvw変換部15は、目標電気角θvが第1の区間(0~60[deg])に入ると判断し、または、V相電圧指令値Vv**の絶対値がU相電圧指令値Vu**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、V相電圧指令値Vv**がゼロ以上であると判断し、次の演算周期T(54[deg]~72[deg])において、第1の区間から第2の区間の切り替わりタイミングとして60[deg]が存在すると判断すると、切り替わり時間tc1~tc3を設定する。
 例えば、図15(a)に示すように、dq/uvw変換部15は、60[deg]-54[deg]=6[deg]に相当する時間を、切り替わり時間tc2とし、切り替わり時間tc2よりΔt短い時間を、切り替わり時間tc1とし、切り替わり時間tc2よりΔt長い時間を、切り替わり時間tc3とする。なお、Δtは、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*のそれぞれの値を切り替えるタイミングが互いに一致しないように、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*のそれぞれの値を切り替えるタイミングをずらすための時間(電気角)であって、Δtの2倍の時間は、Δtの2倍の時間においてスイッチング素子が繰り返しオン、オフしていなくても、電動機Mに流れる電流の歪みを許容することが可能な最小時間とする。
 または、図15(b)に示すように、dq/uvw変換部15は、60[deg]-54[deg]=6[deg]に相当する時間を、切り替わり時間tc1とし、切り替わり時間tc1よりΔt長い時間を、切り替わり時間tc2とし、切り替わり時間tc2よりΔt長い時間を、切り替わり時間tc3としてもよい。
 または、図15(c)に示すように、dq/uvw変換部15は、60[deg]-54[deg]=6[deg]に相当する時間を、切り替わり時間tc3とし、切り替わり時間tc3よりΔt短い時間を、切り替わり時間tc2とし、切り替わり時間tc2よりΔt短い時間を、切り替わり時間tc1としてもよい。
 そして、dq/uvw変換部15は、次の演算周期Tの開始タイミング(54[deg])になると、切り替わり時間tc1経過後に、V相変調波Vv*の値を変調率Mref´から搬送波の最大値に切り替え、切り替わり時間tc2経過後に、W相変調波Vw*の値を搬送波の最小値から最大値に切り替え、切り替わり時間tc3経過後に、U相変調波Vu*の値を搬送波の最小値から変調率Mref´に切り替える。
 このように、変形例2におけるdq/uvw変換部15は、第1の区間から第2の区間への切り替わりタイミング、第2の区間から第3の区間への切り替わりタイミング、または第3の区間から第1の区間への切り替わりタイミングにおいて、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*のそれぞれの値の切り替わりタイミングが互いに重ならないように、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*のそれぞれの値の切り替わりタイミングをずらしている。
 これにより、第1の区間から第2の区間への切り替わりタイミング、第2の区間から第3の区間への切り替わりタイミング、または第3の区間から第1の区間への切り替わりタイミングにおいて、互いに異なるスイッチング素子が同時にオンすることを回避することができるため、逆極性パルスが生じることを抑えることができ、電磁ノイズを抑えることができる。そのため、電動機に流れる電流に生じる歪みをさらに抑えることができ、トルクの変動をさらに抑えることができる。
<変形例3>
 ところで、変形例1や変形例2のように、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在し、その切り替わりタイミングを、演算部5の演算周期の開始タイミングから切り替わり時間tcまたは切り替わり時間tc1経過後にずらす場合、駆動信号Sのデューティ比と所望のデューティ比との誤差が比較的大きくなるおそれがある。
 図16は、変形例1または変形例2におけるV相変調波Vv*、搬送波、及び駆動信号S3の一例を示す図である。なお、搬送波の1周期を9[deg]とする。
 図16において、dq/uvw変換部15は、次の演算周期Tの開始タイミング(54[deg])になると、切り替わり時間tcまたは切り替わり時間tc1(6[deg]に相当する時間)経過後に、V相変調波Vv*の値を変調率Mref´から搬送波の最大値に切り替えている。
 このように、次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合で、かつ、切り替わり時間tcまたは切り替わり時間tc1が搬送波の1周期よりも短くなる場合、次の演算周期Tの開始タイミングから搬送波の1周期分経過するまでの途中において、V相変調波Vv*が変調波Mref´から搬送波の最大値に切り替わるため、駆動信号S3のデューティ比が変調波Mref´に応じたデューティ比と一致しなくなってしまう。すなわち、次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合、駆動信号Sのデューティ比と所望なデューティ比との誤差が比較的大きくなるおそれがある。そして、駆動信号Sのデューティ比と所望なデューティ比との誤差が比較的大きくなると、電動機Mに流れる電流に低次の高調波(ビート)が乗り、トルクリプルや騒音振動が増加するおそれがある。
 そこで、変形例3における電動機Mの制御装置1では、次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合、次の演算周期Tの開始タイミングから切り替わり時間tcが経過するまでの期間において、駆動信号Sのデューティ比と所望なデューティ比との誤差が比較的小さくなるように、搬送波の周波数fを所定周波数に切り替える。
 図17は、変形例3における電動機Mの制御装置1の一例を示す図である。なお、図1に示す構成と同じ構成には同じ符号を付している。
 図17に示す電動機Mの制御装置1において、図1に示す電動機Mの制御装置1と異なる点は、dq/uvw変換部15及びドライブ回路4の代わりに、dq/uvw変換部15´及びドライブ回路4´を備えている点である。
 dq/uvw変換部15´は、電圧センサSvにより検出される入力電圧Vin及び電気角検出部Spにより検出される電気角θを用いて、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*に変換するとともに、搬送波の周波数fを所定周波数に設定する。なお、演算部5により演算された結果(U相変調波Vu*、V相変調波Vv*、W相変調波Vw*、及び周波数f)は、演算部5の次の演算周期Tにおいて、インバータ回路2の動作に反映されるものとする。
 ドライブ回路4´は、ICなどにより構成され、dq/uvw変換部15´から出力されるU相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*と、dq/uvw変換部15´から出力される周波数fの搬送波とを比較し、その比較結果に応じた駆動信号S1~S6をスイッチング素子SW1~SW6のそれぞれのゲート端子に出力する。
 図18(a)は、dq/uvw変換部15´の一例を示す図である。なお、図10(a)に示す構成と同じ構成には同じ符号を付している。
 図18(a)に示すdq/uvw変換部15´は、位相角計算部151と、加算部152と、変調率計算部153と、変調率拡張部154と、変調波生成部155´と、速度演算部158とを備える。
 速度演算部158は、電気角検出部Spにより検出される電気角θを用いて、電動機Mの回転子の回転速度ωを演算する。例えば、速度演算部158は、電気角θを時間で微分することにより回転速度ωを求める。
 変調波生成部155´は、加算部152から出力される目標電気角θvと、変調率拡張部154から出力される変調率Mref´と、速度演算部158により演算される回転速度ωとを用いて、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を生成するとともに搬送波の周波数fを所定周波数に設定する。例えば、変調波生成部155´は、記憶部6に記憶されている情報D1を参照して、加算部152から出力される目標電気角θvに対応するU相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を求める。また、変調波生成部155´は、搬送波の周波数fを、デフォルトの周波数fd、または、切り替わり時間tcの逆数である周波数fc、または、切り替わり時間tc1の逆数である周波数fc1に設定する。なお、デフォルトの周波数fdは、例えば、演算部5の演算周期や回転速度ωに応じた周波数とする。
 図18(b)は、dq/uvw変換部15´の他の例を示す図である。なお、図11(a)に示す構成や図18(a)に示す構成と同じ構成には同じ符号を付している。
 図18(b)に示すdq/uvw変換部15´は、2相3相変換部156と、変調波生成部157´と、速度演算部158とを備える。
 変調波生成部157´は、電圧センサSvにより検出される入力電圧Vinと、電流制御部14から出力されるd軸電圧指令値Vd*及びq軸電圧指令値Vq*と、2相3相変換部156から出力されるU相電圧指令値Vu**、V相電圧指令値Vv**、及びW相電圧指令値Vw**とを用いて、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を生成するとともに搬送波の周波数fを所定周波数に設定する。例えば、変調波生成部157´は、上記式3を計算することにより位相角δを求め、その位相角δと電気角検出部Spから出力される電気角θとの加算結果を目標電気角θvとし、上記式4を計算することにより変調率Mrefを求め、上記式5を計算することにより変調率Mref´を求める。また、変調波生成部157´は、記憶部6に記憶されている情報D2を参照して、2相3相変換部156から出力されるU相電圧指令値Vu**、V相電圧指令値Vv**、及びW相電圧指令値Vw**により求められる分岐条件に対応するU相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を求める。また、変調波生成部157´は、搬送波の周波数fを、周波数fd、周波数fc、または、周波数fc1に設定する。
 図19は、dq/uvw変換部15´の動作の一例を示すフローチャートである。なお、図19に示すステップS1~ステップS5は、図12に示すステップS1~ステップS5と同様である。
 まず、dq/uvw変換部15´は、演算部5の演算周期Tを求め(ステップS1)、演算部5の次の演算周期Tを推定し(ステップS2)、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在するか否かを判断する(ステップS3)。
 次に、dq/uvw変換部15´は、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合(ステップS3:Yes)、その切り替わりタイミングに基づいて切り替わり時間tcを設定し(ステップS4)、切り替わり時間tcが最小時間t_min以上である場合(ステップS7:Yes)、搬送波の周波数fを周波数fcに設定し(ステップS8)、ステップ10に移行する。最小時間t_minは、スイッチング素子SW1~SW6をオフからオンまたはオンからオフに切り替えることが可能な場合の搬送波の1周期の最小値とする。
 一方、dq/uvw変換部15´は、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在しない場合(ステップS3:No)、切り替わり時間tcを次の演算周期Tより大きい値に設定し(ステップS5)、搬送波の周波数fを周波数fdに設定し(ステップS9)、ステップS10に移行する。
 また、dq/uvw変換部15´は、切り替わり時間tcが最小時間t_minより短い場合(ステップS7:No)、搬送波の周波数fを周波数fdに設定し(ステップS9)、ステップS10に移行する。
 次に、dq/uvw変換部15´は、ステップS10において、入力電圧Vin及び電気角θを用いて、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*に変換し、次の演算周期Tの開始タイミングになると、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*をドライブ回路4´に出力するとともに、周波数fをドライブ回路4´に出力する。
 また、dq/uvw変換部15´は、ステップS10において、次の演算周期Tの開始タイミングから切り替わり時間tcが経過すると、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を、変調率Mref´から搬送波の最大値、搬送波の最小値から変調率Mref´、搬送波の最小値から搬送波の最大値、搬送波の最大値から搬送波の最小値、変調率Mref´から搬送波の最小値、または搬送波の最大値から変調率Mref´に切り替えるとともに、周波数fを周波数fdに切り替える。
 図20は、dq/uvw変換部15´の動作の他の例を示すフローチャートである。なお、図20に示すステップS1~ステップS4´、ステップS5は、図14に示すステップS1~ステップS4´、ステップS5と同様である。また、図20に示すステップS9及びステップS10は、図19に示すステップS9及びステップS10と同様である。
 まず、dq/uvw変換部15´は、演算部5の演算周期Tを求め(ステップS1)、演算部5の次の演算周期Tを推定し(ステップS2)、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在するか否かを判断する(ステップS3)。
 次に、dq/uvw変換部15´は、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合(ステップS3:Yes)、その切り替わりタイミングに基づいて切り替わり時間tc1~tc3を設定し(ステップS4´)、切り替わり時間tc1が最小時間t_min以上である場合(ステップS11:Yes)、周波数fを周波数fc1に設定し(ステップS12)、ステップS10に移行する。
 一方、dq/uvw変換部15´は、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在しない場合(ステップS3:No)、切り替わり時間tcを次の演算周期Tより大きい値に設定し(ステップS5)、周波数fを周波数fdに設定し(ステップS9)、ステップS10に移行する。
 また、dq/uvw変換部15´は、切り替わり時間tc1が最小時間t_minより短い場合(ステップS11:No)、周波数fを周波数fdに設定し(ステップS9)、ステップS10に移行する。
 次に、dq/uvw変換部15´は、ステップS10において、入力電圧Vin及び電気角θを用いて、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*に変換し、次の演算周期Tの開始タイミングになると、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*をドライブ回路4´に出力するとともに、周波数fをドライブ回路4´に出力する。
 また、dq/uvw変換部15´は、ステップS10において、次の演算周期Tの開始タイミングから切り替わり時間tcが経過すると、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*を、変調率Mref´から搬送波の最大値、搬送波の最小値から変調率Mref´、搬送波の最小値から搬送波の最大値、搬送波の最大値から搬送波の最小値、変調率Mref´から搬送波の最小値、または搬送波の最大値から変調率Mref´に切り替えるとともに、周波数fを周波数fdに切り替える。
 これにより、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在しない場合、次の演算周期Tにおいて、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*が同じ値のまま切り替わらない。
 また、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在しない場合、次の演算周期Tにおいて、搬送波の周波数fが周波数fdに設定されたまま切り替わらない。
 一方、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合、次の演算周期Tの開始タイミングから切り替わり時間tcまたは切り替わり時間tc1が経過したタイミングにおいて、U相変調波Vu*、V相変調波Vv*、及びW相変調波Vw*が、変調率Mref´から搬送波の最大値、搬送波の最小値から変調率Mref´、搬送波の最小値から搬送波の最大値、搬送波の最大値から搬送波の最小値、変調率Mref´から搬送波の最小値、または搬送波の最大値から変調率Mref´に切り替わる。
 また、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合、次の演算周期Tの開始タイミングから切り替わり時間tcまたは切り替わり時間tc1が経過するまでの期間において、搬送波の周波数fが周波数fcまたは周波数fc1に設定され、切り替わりタイミング時間tcまたは切り替わり時間tc1が経過したタイミングから次の演算周期Tの終了タイミングまでの期間において、搬送波の周波数fが周波数fdに設定される。
 図21は、変形例3におけるV相変調波Vv*、搬送波、及び駆動信号S3の一例を示す図である。なお、演算部5の各演算周期を18[deg]とし、周波数fが周波数fdに設定されているときの搬送波の1周期を9[deg]とする。
 まず、dq/uvw変換部15´は、36[deg]+18[deg]=54[deg]を、演算部5の次の演算周期Tの開始タイミングとし、54[deg]+18[deg]=72[deg]を、演算部5の次の演算周期Tの終了タイミングとし、54~72[deg]を、演算部5の次の演算周期Tとする。
 次に、dq/uvw変換部15´は、目標電気角θvが第1の区間(0~60[deg])に入ると判断し、または、V相電圧指令値Vv**の絶対値がU相電圧指令値Vu**の絶対値及びW相電圧指令値Vw**の絶対値より大きい場合で、かつ、V相電圧指令値Vv**がゼロ以上であると判断し、演算部5の次の演算周期T(54[deg]~72[deg])において、第1の区間から第2の区間の切り替わりタイミングとして60[deg]が存在すると判断すると、60[deg]-54[deg]=6[deg]に相当する時間を、切り替わり時間tcまたは切り替わり時間tc1とする。
 次に、dq/uvw変換部15´は、切り替わり時間tcまたは切り替わり時間tc1が最小時間t_min以上であると判断すると、搬送波の周波数fを周波数fcまたは周波数fc1に設定する。
 次に、dq/uvw変換部15´は、演算部5の次の演算周期Tの開始タイミング(54[deg])になると、V相変調波Vv*として変調率Mref´をドライブ回路4´に出力するとともに、周波数fとして周波数fcまたは周波数fc1をドライブ回路4´に出力する。
 次に、dq/uvw変換部15´は、切り替わり時間tcが経過すると(60[deg])、ドライブ回路4´に出力しているV相変調波Vv*を変調率Mref´から搬送波の最大値に切り替えるとともに、ドライブ回路4´に出力している周波数fを周波数fcまたは周波数fc1から周波数fdに切り替える。
 そして、dq/uvw変換部15´は、演算部5の次の演算周期Tの終了タイミング(72[deg])になるまで、V相変調波Vv*として搬送波の最大値をドライブ回路4´に出力するとともに、周波数fとして周波数fdをドライブ回路4´に出力する。
 すなわち、dq/uvw変換部15´は、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合、次の演算周期Tの開始タイミングから切り替わり時間tcまたは切り替わり時間tc1が経過するまでの期間における搬送波の周波数fを、デフォルトの周波数fdから、切り替わり時間tcの逆数である周波数fcまたは切り替わり時間tc1の逆数である周波数fc1に切り替えている。
 これにより、次の演算周期Tの開始タイミングから切り替わり時間tcまたは切り替わり時間tc1が経過するまでの期間において、搬送波の1周期を切り替わり時間tcまたは切り替わり時間tc1と一致させることができるため、切り替わり時間tcまたは切り替わり時間tc1の経過途中において、V相変調波Vv*が変調率Mref´から搬送波の最大値に切り替わらないようにすることができる。そのため、次の演算周期Tの開始タイミングから切り替わり時間tcまたは切り替わり時間tc1が経過するまでの期間において、駆動信号S3のデューティ比を変調率Mref´に応じたデューティ比と一致させることができる。
 このように、変形例3における電動機Mの制御装置1では、演算部5の次の演算周期Tにおいて、第1~第3の区間の切り替わりタイミングが存在する場合、搬送波の周波数fを切り替わり時間tcの逆数である周波数fcまたは切り替わり時間tc1の逆数である周波数fc1に設定することにより、駆動信号Sのデューティ比と所望のデューティ比との誤差を小さくすることができるため、電動機Mに流れる電流に低次の高調波が乗ることを抑制することができ、トルクリプルや騒音振動が増加することを抑制することができる。
 1  制御装置
 2  インバータ回路
 3  制御回路
 4  ドライブ回路
 4´  ドライブ回路
 5  演算部
 6  記憶部
 7  速度演算部
 8  減算部
 9  トルク制御部
 10  トルク/電流指令値変換部
 11  座標変換部
 12  減算部
 13  減算部
 14  電流制御部
 15  dq/uvw変換部
 15´  dq/uvw変換部
 151  位相角計算部
 152  加算部
 153  変調率計算部
 154  拡張変調率計算部
 155  変調波生成部
 155´  変調波生成部
 156  2相3相変換部
 157  変調波生成部
 157´  変調波生成部
 158  速度演算部

Claims (6)

  1.  第1の変調波が搬送波の最大値より小さく、かつ、前記搬送波の最小値より大きい場合、前記第1の変調波に応じたデューティ比で繰り返しオン、オフし、前記第1の変調波が前記搬送波の最小値または最大値である場合、常時オンまたは常時オフする第1のスイッチング素子と、第2の変調波が前記搬送波の最大値より小さく、かつ、前記搬送波の最小値より大きい場合、前記第2の変調波に応じたデューティ比で繰り返しオン、オフし、前記第2の変調波が前記搬送波の最小値または最大値である場合、常時オンまたは常時オフする第2のスイッチング素子と、第3の変調波が前記搬送波の最大値より小さく、かつ、前記搬送波の最小値より大きい場合、前記第3の変調波に応じたデューティ比で繰り返しオン、オフし、前記第3の変調波が前記搬送波の最小値または最大値である場合、常時オンまたは常時オフする第3のスイッチング素子とを備え、前記第1~第3のスイッチング素子がオン、オフすることで電動機の3相に互いに位相が異なる第1~第3の交流電圧を印加させて前記電動機を駆動させるインバータ回路と、
     第1~第3の区間からなる前記電動機の制御周期のうち、前記第1の交流電圧のピークが存在する前記第1の区間において、前記電動機の出力に応じた前記第1の変調波を出力するとともに前記搬送波の最小値または最大値を前記第2及び第3の変調波として出力し、前記第2の交流電圧のピークが存在する第2の区間において、前記電動機の出力に応じた前記第2の変調波を出力するとともに前記搬送波の最小値または最大値を前記第1及び第3の変調波として出力し、前記第3の交流電圧のピークが存在する第3の区間において、前記電動機の出力に応じた前記第3の変調波を出力するとともに前記搬送波の最小値または最大値を前記第1及び第2の変調波として出力する制御回路とを備える
     ことを特徴とする電動機の制御装置。
  2.  請求項1に記載の電動機の制御装置であって、
     前記電動機の回転子の電気角を検出する電気角検出部を備え、
     前記制御回路は、
      前記電動機の出力に応じた電圧指令値と前記電気角検出部により検出される電気角とにより目標電気角を算出する目標電気角算出部と、
      前記目標電気角が前記第1の区間に入っているとき、前記インバータ回路の入力電圧と前記電圧指令値とを用いて求められる変調率を前記第1の変調波とするとともに前記搬送波の最小値または最大値を前記第2及び第3の変調波とし、前記目標電気角が前記第2の区間に入っているとき、前記インバータ回路の入力電圧と前記電圧指令値とを用いて求められる変調率を前記第2の変調波とするとともに前記搬送波の最小値または最大値を前記第1及び第3の変調波とし、前記目標電気角が前記第3の区間に入っているとき、前記インバータ回路の入力電圧と前記電圧指令値とを用いて求められる変調率を前記第3の変調波とするとともに前記搬送波の最小値または最大値を前記第1及び第2の変調波とする変調波生成部とを備える
     ことを特徴とする電動機の制御装置。
  3.  請求項1に記載の電動機の制御装置であって、
     前記電動機の回転子の電気角を検出する電気角検出部を備え、
     前記制御回路は、
      前記電動機の出力に応じた電圧指令値と前記電気角検出部により検出される電気角とにより、前記第1の交流電圧に対応する第1の電圧指令値、前記第2の交流電圧に対応する第2の電圧指令値、及び前記第3の交流電圧に対応する第3の電圧指令値を算出する電圧指令値算出部と、
      前記第1の電圧指令値の絶対値が前記第2及び第3の電圧指令値の絶対値に比べて大きいとき、前記インバータ回路の入力電圧と前記電動機の出力に応じた電圧指令値とを用いて求められる変調率を前記第1の変調波とするとともに前記搬送波の最小値または最大値を前記第2及び第3の変調波とし、前記第2の電圧指令値の絶対値が前記第1及び第3の電圧指令値の絶対値に比べて大きいとき、前記インバータ回路の入力電圧と前記電動機の出力に応じた電圧指令値とを用いて求められる変調率を前記第2の変調波とするとともに前記搬送波の最小値または最大値を前記第1及び第3の変調波とし、前記第3の電圧指令値の絶対値が前記第1及び第2の電圧指令値の絶対値に比べて大きいとき、前記インバータ回路の入力電圧と前記電動機の出力に応じた電圧指令値とを用いて求められる変調率を前記第3の変調波とするとともに前記搬送波の最小値または最大値を前記第1及び第2の変調波とする変調波生成部とを備える
     ことを特徴とする電動機の制御装置。
  4.  請求項1~3の何れか1項に記載の電動機の制御装置であって、
     前記制御回路は、次の演算周期において、前記第1の区間から前記第2の区間への切り替わりタイミング、前記第2の区間から前記第3の区間への切り替わりタイミング、または前記第3の区間から前記第1の区間への切り替わりタイミングが存在する場合、その切り替わりタイミングに前記次の演算周期の開始タイミングを合わせる
     ことを特徴とする電動機の制御装置。
  5.  請求項4に記載の電動機の制御装置であって、
     前記制御回路は、前記第1の区間から前記第2の区間への切り替わりタイミング、前記第2の区間から前記第3の区間への切り替わりタイミング、または前記第3の区間から前記第1の区間への切り替わりタイミングにおいて、前記第1~第3の変調波のそれぞれの値の切り替わりタイミングが互いに重ならないように、前記第1~第3の変調波のそれぞれの値の切り替わりタイミングをずらす
     ことを特徴とする電動機の制御装置。
  6.  請求項4または請求項5に記載の電動機の制御装置であって、
     前記制御回路は、次の演算周期において、前記第1の区間から前記第2の区間への切り替わりタイミング、前記第2の区間から前記第3の区間への切り替わりタイミング、または前記第3の区間から前記第1の区間への切り替わりタイミングが存在する場合、前記次の演算周期の開始タイミングから切り替わりタイミングまでの切り替わり時間を求め、その切り替わり時間の逆数である周波数を、前記次の演算周期の開始タイミングから前記切り替わり時間が経過するまでの期間における搬送波の周波数に設定する
     ことを特徴とする電動機の制御装置。
PCT/JP2020/024275 2019-06-26 2020-06-22 電動機の制御装置 WO2020262269A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080045485.XA CN113994587B (zh) 2019-06-26 2020-06-22 电动机的控制装置
US17/621,903 US11736054B2 (en) 2019-06-26 2020-06-22 Control device for electric motor
DE112020003026.1T DE112020003026T5 (de) 2019-06-26 2020-06-22 Steuerungsvorrichtung für einen Elektromotor
KR1020217041797A KR102649191B1 (ko) 2019-06-26 2020-06-22 전동기의 제어 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019119125 2019-06-26
JP2019-119125 2019-06-26
JP2019-205216 2019-11-13
JP2019205216A JP7283356B2 (ja) 2019-06-26 2019-11-13 電動機の制御装置

Publications (1)

Publication Number Publication Date
WO2020262269A1 true WO2020262269A1 (ja) 2020-12-30

Family

ID=74060961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024275 WO2020262269A1 (ja) 2019-06-26 2020-06-22 電動機の制御装置

Country Status (5)

Country Link
US (1) US11736054B2 (ja)
KR (1) KR102649191B1 (ja)
CN (1) CN113994587B (ja)
DE (1) DE112020003026T5 (ja)
WO (1) WO2020262269A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209386A (ja) * 1999-12-27 2002-07-26 Denso Corp 電力変換装置及び多相負荷の駆動制御方法
WO2010150786A1 (ja) * 2009-06-22 2010-12-29 アイシン・エィ・ダブリュ株式会社 電動機駆動装置の制御装置
JP2016032373A (ja) * 2014-07-29 2016-03-07 株式会社日立製作所 3レベル三相インバータの駆動制御装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3489259B2 (ja) * 1995-04-26 2004-01-19 株式会社明電舎 永久磁石形電動機制御方法及び制御装置
JP3311283B2 (ja) * 1997-10-17 2002-08-05 株式会社東芝 ブラシレスモータの駆動装置
JP2000023490A (ja) * 1998-07-01 2000-01-21 Hitachi Ltd 電動車の制御装置及び制御方法
US6324085B2 (en) * 1999-12-27 2001-11-27 Denso Corporation Power converter apparatus and related method
JP3939481B2 (ja) * 2000-01-05 2007-07-04 本田技研工業株式会社 交流モータの制御装置
TW584688B (en) * 2001-06-06 2004-04-21 Toshiba Corp Washing machine
US7049778B2 (en) * 2004-02-09 2006-05-23 Nippon Yusoki Co., Ltd. Inverter control apparatus and inverter control method
JP2006000731A (ja) * 2004-06-16 2006-01-05 Hitachi Koki Co Ltd モータ制御装置および該制御装置を用いた遠心機
JP4345015B2 (ja) * 2005-02-16 2009-10-14 株式会社デンソー インバータ制御方式
JP4424421B2 (ja) * 2008-01-17 2010-03-03 トヨタ自動車株式会社 電動車両の制御装置およびそれを備えた電動車両、ならびに電動車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP5325561B2 (ja) * 2008-12-22 2013-10-23 株式会社日立製作所 三相交流モータの制御装置、及びその制御方法
JP2012023885A (ja) 2010-07-15 2012-02-02 Toyota Motor Corp 交流電動機の制御装置および制御方法
JP5477659B2 (ja) * 2010-12-17 2014-04-23 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP5968010B2 (ja) 2012-04-02 2016-08-10 三菱電機株式会社 電力変換器制御装置
JP2013236420A (ja) * 2012-05-07 2013-11-21 Sumitomo Heavy Ind Ltd コンバータのコントローラ、それを用いた電力変換装置
JP6024245B2 (ja) * 2012-07-05 2016-11-09 株式会社豊田自動織機 インバータ制御装置
JP6207861B2 (ja) 2013-04-05 2017-10-04 株式会社日立製作所 インバータ装置、またはこれを制御するインバータ制御装置
JP5599538B1 (ja) * 2013-04-23 2014-10-01 三菱電機株式会社 電力変換装置
JP6065790B2 (ja) * 2013-09-11 2017-01-25 トヨタ自動車株式会社 電動機制御装置
JPWO2017122490A1 (ja) * 2016-01-12 2018-08-30 日立オートモティブシステムズ株式会社 モータ制御システム
JP6419361B2 (ja) * 2016-01-28 2018-11-07 三菱電機株式会社 電力変換装置及び回転電機駆動装置
JP6754661B2 (ja) 2016-10-11 2020-09-16 日立オートモティブシステムズ株式会社 交流電動機の制御装置および制御方法、並びに交流電動機駆動システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209386A (ja) * 1999-12-27 2002-07-26 Denso Corp 電力変換装置及び多相負荷の駆動制御方法
WO2010150786A1 (ja) * 2009-06-22 2010-12-29 アイシン・エィ・ダブリュ株式会社 電動機駆動装置の制御装置
JP2016032373A (ja) * 2014-07-29 2016-03-07 株式会社日立製作所 3レベル三相インバータの駆動制御装置

Also Published As

Publication number Publication date
KR102649191B1 (ko) 2024-03-18
US11736054B2 (en) 2023-08-22
CN113994587A (zh) 2022-01-28
KR20220010751A (ko) 2022-01-26
CN113994587B (zh) 2023-09-01
US20220263448A1 (en) 2022-08-18
DE112020003026T5 (de) 2022-03-10

Similar Documents

Publication Publication Date Title
US8278865B2 (en) Control device
JP4604820B2 (ja) モータ駆動システムの制御装置
JP6555186B2 (ja) 交流電動機の制御装置
US8232753B2 (en) Control device for electric motor drive apparatus
JP4635703B2 (ja) モータ駆動システムの制御装置
US8044620B2 (en) Driving apparatus for multi-phase AC synchronous motor
JP2007159368A (ja) モータ駆動システムの制御装置
US11267503B2 (en) Motor control device
JP6390489B2 (ja) インバータの制御装置
JP5369630B2 (ja) 交流電動機の制御装置
US9716452B2 (en) Rotation angle calculation device
CN113422564A (zh) 交流旋转机控制装置
JP5511700B2 (ja) インバータ装置、ファン駆動装置、圧縮機駆動装置および空気調和機
JP6742393B2 (ja) 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置
WO2020262269A1 (ja) 電動機の制御装置
JP6910418B2 (ja) 交流回転電機の制御装置
JP7283356B2 (ja) 電動機の制御装置
JP7211242B2 (ja) 変調方式切替装置
JP7213448B2 (ja) 電動機の制御装置
JP2021164377A (ja) 電動機の制御装置
JP2005269722A (ja) 電動機駆動制御装置
JP2020089203A (ja) モータ駆動装置
JP2020088891A (ja) インバータ装置
JP7363611B2 (ja) 交流電動機の制御装置
JP7294982B2 (ja) 電動機制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217041797

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20832775

Country of ref document: EP

Kind code of ref document: A1