WO2020259005A1 - 像素电路的补偿方法、装置、显示设备 - Google Patents

像素电路的补偿方法、装置、显示设备 Download PDF

Info

Publication number
WO2020259005A1
WO2020259005A1 PCT/CN2020/084645 CN2020084645W WO2020259005A1 WO 2020259005 A1 WO2020259005 A1 WO 2020259005A1 CN 2020084645 W CN2020084645 W CN 2020084645W WO 2020259005 A1 WO2020259005 A1 WO 2020259005A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving transistor
mobility
preset
coupled
compensation
Prior art date
Application number
PCT/CN2020/084645
Other languages
English (en)
French (fr)
Inventor
曹春
孟松
何敏
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/044,249 priority Critical patent/US11302254B2/en
Publication of WO2020259005A1 publication Critical patent/WO2020259005A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/046Dealing with screen burn-in prevention or compensation of the effects thereof

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a compensation method, device, and display device of a pixel circuit.
  • AMOLED Active matrix organic light emitting diode
  • a first aspect of the present disclosure provides a compensation method for a pixel circuit, the pixel circuit is applied to a display panel, and the compensation method includes:
  • the initial mobility compensation value corresponding to the drive transistor is adjusted to a target mobility compensation value, and the difference between the target mobility compensation value and the preset mobility compensation value The value is less than or equal to the threshold;
  • the mobility of the driving transistor is compensated according to a preset compensation manner.
  • the compensation method further includes: after compensating the mobility of the driving transistor according to a preset compensation manner, when the display panel is in an actual display state, compensating for the data signal received by the pixel circuit, The mobility of the driving transistor in the pixel circuit is compensated in real time.
  • the pixel circuit includes: an input transistor, a driving transistor, a sensing transistor, a first storage capacitor, a second storage capacitor, and an organic light emitting diode; wherein the gate of the input transistor is coupled to the first control signal line , The first electrode of the input transistor is coupled to the data signal line, the second electrode of the input transistor is coupled to the gate of the driving transistor, the first electrode of the driving transistor is coupled to the power signal line, the The second electrode of the driving transistor is coupled to the anode of the organic light emitting diode, the cathode of the organic light emitting diode is coupled to the ground signal line; the first end of the first storage capacitor is coupled to the gate of the driving transistor Connected, the second end of the first storage capacitor is coupled to the second electrode of the driving transistor, the first end of the second storage capacitor is coupled to the second electrode of the driving transistor, and the second The second end of the storage capacitor is coupled to the ground signal line, the gate of the sensing transistor is coupled to the second control signal line, and the first electrode
  • the second electrode of the sensing transistor is coupled to the sensing signal line; the compensation value based on the target mobility, when the display panel is in the non-display state, the compensation is performed according to a preset compensation method
  • the step of compensating the mobility of the driving transistor specifically includes:
  • the on-time of the sensing transistor is controlled according to the target mobility compensation value, thereby controlling the time for charging the second storage capacitor.
  • the on-time of the sensing transistor is reduced, and the resistance to the second storage capacitor is increased. Charging time; or,
  • the on-time of the sensing transistor is increased, and the time for charging the second storage capacitor is decreased.
  • the compensation method further includes the step of obtaining the initial mobility compensation value before placing the display panel in a preset display state, and this step specifically includes:
  • the initial mobility compensation value is obtained.
  • the preset display state is a display state that simulates an actual display state, so that the working condition when the display panel is in the preset display state is the same as the working condition when the display panel is in the actual display state Same; the preset mobility compensation value reflects the mobility compensation value that the drive transistor needs to compensate in the preset display state.
  • the non-display state includes a shutdown state; the shutdown state means that the display panel does not display a picture, but the pixel circuit in the display panel may be in a working state.
  • a second aspect of the present disclosure provides a compensation device for a pixel circuit, the pixel circuit is applied to a display panel, and the compensation device includes:
  • a sensing circuit configured to sense a preset mobility compensation value corresponding to a driving transistor in the pixel circuit when the display panel is in a preset display state
  • the compensation circuit is configured to adjust the initial mobility compensation value corresponding to the driving transistor to a target mobility compensation value according to the preset mobility compensation value, and the target mobility compensation value and the preset mobility compensation The difference between the values is less than the threshold;
  • the compensation circuit is further configured to compensate the mobility of the driving transistor according to a preset compensation method when the display panel is in a non-display state based on the target mobility compensation value.
  • the compensation circuit is also used for:
  • the data signal received by the pixel circuit is compensated for the migration of the driving transistor in the pixel circuit. Rate is compensated in real time.
  • the pixel circuit includes: an input transistor, a driving transistor, a sensing transistor, a first storage capacitor, a second storage capacitor, and an organic light emitting diode; wherein the gate of the input transistor is coupled to the first control signal line , The first electrode of the input transistor is coupled to the data signal line, the second electrode of the input transistor is coupled to the gate of the driving transistor, the first electrode of the driving transistor is coupled to the power signal line, the The second electrode of the driving transistor is coupled to the anode of the organic light emitting diode, the cathode of the organic light emitting diode is coupled to the ground signal line; the first end of the first storage capacitor is coupled to the gate of the driving transistor Connected, the second end of the first storage capacitor is coupled to the second electrode of the driving transistor, the first end of the second storage capacitor is coupled to the second electrode of the driving transistor, and the second The second end of the storage capacitor is coupled to the ground signal line, the gate of the sensing transistor is coupled to the second control signal line, and the first electrode
  • the compensation circuit is specifically used for:
  • the on-time of the sensing transistor is controlled according to the target mobility compensation value, thereby controlling the time for charging the second storage capacitor.
  • the sensing circuit is further configured to place the display panel in a non-display state before placing the display panel in a preset display state, and sense the pixel circuit to drive in the non-display state The initial threshold voltage corresponding to the transistor;
  • the compensation circuit is further configured to obtain an initial compensation test signal according to the initial threshold voltage, and write the initial compensation test signal to the gate of the driving transistor;
  • the sensing circuit is also used to sense the initial mobility corresponding to the driving transistor
  • the compensation circuit is further configured to obtain the initial mobility compensation value according to a preset standard mobility and the initial mobility.
  • the preset display state is a display state that simulates an actual display state, so that the working condition when the display panel is in the preset display state is the same as the working condition when the display panel is in the actual display state the same;
  • the preset mobility compensation value reflects the mobility compensation value that the drive transistor needs to compensate in the preset display state.
  • the non-display state includes a shutdown state; the shutdown state means that the display panel does not display a picture, but the pixel circuit in the display panel may be in a working state.
  • a third aspect of the present disclosure provides a display device including the compensation device for the pixel circuit.
  • a fourth aspect of the present disclosure provides a compensation device for a pixel circuit, the pixel circuit is applied to a display panel, the compensation device includes: a memory and an actuator, and the actuator is configured to execute the following stored in the memory instruction:
  • the initial mobility compensation value corresponding to the drive transistor is adjusted to a target mobility compensation value, and the difference between the target mobility compensation value and the preset mobility compensation value The value is less than or equal to the threshold;
  • the mobility of the driving transistor is compensated according to a preset compensation manner.
  • the executor is further configured to execute the following instructions stored in the memory:
  • the data signal received by the pixel circuit is compensated for the migration of the driving transistor in the pixel circuit. Rate is compensated in real time.
  • the pixel circuit includes: an input transistor, a driving transistor, a sensing transistor, a first storage capacitor, a second storage capacitor, and an organic light emitting diode; wherein the gate of the input transistor is coupled to the first control signal line , The first electrode of the input transistor is coupled to the data signal line, the second electrode of the input transistor is coupled to the gate of the driving transistor, the first electrode of the driving transistor is coupled to the power signal line, the The second electrode of the driving transistor is coupled to the anode of the organic light emitting diode, the cathode of the organic light emitting diode is coupled to the ground signal line; the first end of the first storage capacitor is coupled to the gate of the driving transistor Connected, the second end of the first storage capacitor is coupled to the second electrode of the driving transistor, the first end of the second storage capacitor is coupled to the second electrode of the driving transistor, and the second The second end of the storage capacitor is coupled to the ground signal line, the gate of the sensing transistor is coupled to the second control signal line, and the first electrode
  • the second electrode of the sensing transistor is coupled to the sensing signal line; the actuator is further configured to execute the following instructions stored in the memory: when the display panel is in the non-display state At this time, according to the target mobility compensation value, the on-time of the sensing transistor is controlled, thereby controlling the time for charging the second storage capacitor.
  • the executor is further configured to execute the following instructions stored in the memory:
  • the initial mobility compensation value is obtained.
  • FIG. 1 is a schematic flowchart of a compensation method for a pixel circuit provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of a pixel circuit provided by an embodiment of the disclosure.
  • T1-input transistor T1-input transistor, DTFT-drive transistor,
  • OLED-light emitting unit VSS-ground signal line
  • Sense-second control signal line SL-sensing signal line.
  • the AMOLED display panel includes a pixel circuit and a light-emitting unit corresponding to it one-to-one.
  • the pixel drive circuit includes a driving transistor, a storage capacitor and some transistors with switching functions. During operation, the various devices included in the pixel circuit cooperate with each other to generate a drive signal , The light-emitting unit is driven to emit light by the driving signal.
  • the driving signal is related to the threshold voltage and electron mobility of the driving transistor, and the AMOLED display panel is produced due to the limitation of the production process conditions
  • the characteristic parameters of the driving transistor in each pixel circuit included in the display panel are different, so when driving the display panel, even if the same data signal is input to each pixel circuit, the driving current generated by the driving transistor is also different, which leads to the light-emitting unit driven by the driving transistor
  • the luminous brightness is different, and the display brightness uniformity of the display panel is poor.
  • the drive current generated by the drive transistor is mainly related to the threshold voltage and mobility of the drive transistor
  • most of the solutions in the related art are to perform shutdown compensation for the threshold voltage and electron mobility of the drive transistors included in all pixel circuits. Operation, that is, detecting the threshold voltage of the driving transistor when the display panel is turned off, and obtaining the mobility of the driving transistor according to the threshold voltage, and further compensating the mobility of the driving transistor (generally, the electronic mobility compensation is after the threshold voltage compensation Proceed) to make the driving currents generated by the driving transistors in each pixel circuit of the display panel consistent when the same data signal is input, so as to reduce the brightness deviation between different light-emitting units.
  • the current compensation for mobility is usually to detect the threshold voltage of the driving transistor in the shutdown state and compensate according to the threshold voltage.
  • the driving transistor is driven for a long time. Both the threshold voltage and the electron mobility will change due to environmental factors such as temperature, which leads to inaccurate compensation of the threshold voltage and mobility of the driving transistor in the shutdown state, and there is still a brightness deviation among the light-emitting units.
  • the inventors of the present disclosure have discovered through research that the real-time brightness compensation of the display panel can be realized by compensating the data signal input to each pixel during the actual display of the display panel.
  • the characteristic parameters of the driving transistor in the pixel circuit drift greatly, resulting in a large difference between the mobility compensation value actually required and the mobility compensation value during the shutdown compensation operation.
  • Real-time brightness compensation is performed In the real-time compensation process, the brightness of the display panel will change greatly, which will cause the display brightness of the display panel to be unstable (brightness rise or brightness fall). Based on the existence of this problem, the present disclosure proposes a solution to this problem The method is as follows:
  • an embodiment of the present disclosure provides a compensation method for a pixel circuit, the pixel circuit is applied to a display panel, and the compensation method includes:
  • Step S101 when the display panel is in a preset display state, sensing the preset mobility compensation value corresponding to the driving transistor in the pixel circuit;
  • Step S102 adjusting the initial mobility compensation value corresponding to the driving transistor to the target mobility compensation value according to the preset mobility compensation value, and the difference between the target mobility compensation value and the preset mobility compensation value is less than the threshold;
  • step S103 based on the target mobility compensation value, when the display panel is in a non-display state, the mobility of the driving transistor is compensated according to a preset compensation method.
  • the above-mentioned preset display state may specifically be a display state that simulates the actual display state, that is, the working conditions (for example: working environment, working time, etc.) when the display panel is in the preset display state are in contact with the display panel.
  • the working conditions are the same when the actual status is displayed.
  • the preset mobility compensation value corresponding to the driving transistor in the pixel circuit included in the display panel is sensed, and the preset mobility compensation value reflects that the driving transistor needs to be in the current preset display state The compensated mobility compensation value.
  • the initial mobility compensation value corresponding to the driving transistor can be adjusted, and the initial mobility compensation value can be adjusted to the target mobility compensation value, and the target mobility compensation value is the same as the preset mobility compensation value.
  • the difference between the rate compensation values is less than the threshold.
  • the threshold can be set according to actual needs, and exemplarily, the threshold can be zero.
  • the display panel After the target mobility compensation value is obtained, the display panel is placed in a non-display state, and based on the target mobility compensation value, the mobility of the driving transistor is preset compensation according to a preset compensation method, so that the display panel is just in the actual display state At this time, the mobility of the driving transistor is closer to the preset standard mobility.
  • the aforementioned non-display state may include a shutdown state, which means that the display panel does not display images, but the pixel circuit in the display panel can be in a working state, that is, the pixel circuit can generate a driving signal, but the driving signal cannot drive the light-emitting element Glow.
  • the display panel is first placed in a preset display state with the same working conditions as the actual display state, so that the characteristic parameters of the driving transistor in the pixel circuit are the same as the pixel in the actual display state.
  • the characteristic parameters of the driving transistors in the circuit are the same or close to each other, and then the preset mobility compensation value corresponding to the driving transistor in the pixel circuit in the preset display state is sensed; then according to the preset mobility compensation value, the corresponding The initial mobility compensation value is adjusted to the target mobility compensation value whose difference from the preset mobility compensation value is less than the threshold, and then based on the target mobility compensation value, when the display panel is in the non-display state, according to the preset
  • the preset compensation method performs preset compensation for the mobility of the driving transistor; therefore, when the compensation method of the pixel driving circuit provided by the embodiment of the present disclosure is used for preset compensation, the mobility of the driving transistor is compensated according to the preset compensation method After that, the mobility corresponding to the driving transistor is close to or the same as the preset standard mobility required for actual display, so that when the display panel is in the actual display state, the mobility corresponding to the driving transistor is the same as that of the actual display when the display panel is turned on.
  • the required preset standard mobility is close to or the same, so as to avoid the large change in the brightness of the display panel when real-time brightness compensation is performed on the display panel, which causes the display brightness of the display panel to be unstable (brightness rises or brightness drops). .
  • the compensation method provided in the above embodiments further includes: after compensating the mobility of the driving transistor according to a preset compensation method, when the display panel is in an actual display state, compensating for the data signal received by the pixel circuit , Real-time compensation for the mobility of the driving transistor in the pixel circuit.
  • the temperature of the display panel will change with the extension of the display time, and the characteristic parameters of the driving transistor will continue to drift due to the influence of the panel temperature, which will affect the display panel
  • the mobility of the driving transistor is compensated according to the preset compensation method
  • the real-time brightness compensation of the driving transistor can be continued. In this way, even in the actual display state, the characteristic parameters of the driving transistor have a large drift, the characteristic parameters of the driving transistor can be compensated to ensure the uniformity of the display brightness of the display panel.
  • the display panel When the display panel is actually displaying, it writes a data signal to the gate of the driving transistor, and the driving transistor generates a corresponding driving current under the action of the data signal to drive the corresponding light-emitting unit to emit light; therefore, the display panel is in In the actual display state, the data signal received by the gate of the driving transistor in the pixel circuit can be compensated, and then the compensated data signal is written into the gate of the driving transistor, so as to realize the migration of the driving transistor in the pixel circuit. Real-time compensation is performed to ensure the uniformity of the display brightness of the display panel.
  • the pixel circuit may include: an input transistor T1, a driving transistor DTFT, a sensing transistor T2, a first storage capacitor C1, a second storage capacitor C2, and an organic light emitting diode OLED; wherein the gate of the input transistor T1 is coupled to the first control signal line Scan, the first pole of the input transistor T1 is coupled to the data signal line DL, and the second pole of the input transistor T1 is coupled to the gate of the driving transistor DTFT ,
  • the first pole of the driving transistor DTFT is coupled to the power signal line ELVDD, the second pole of the driving transistor DTFT is coupled to the anode of the organic light emitting diode OLED, and the cathode of the organic light emitting diode OLED is coupled to the ground signal line VSS;
  • the first terminal of the capacitor C1 is coupled to the gate of the driving transistor DTFT, the second terminal of the first storage capacitor C1 is coupled to the second terminal of the driving transistor DTFT
  • the second electrode is coupled, the second end of the second storage capacitor C2 is coupled to the ground signal line VSS, the gate of the sensing transistor T2 is coupled to the second control signal line Sense, and the first electrode of the sensing transistor T2 is coupled to the driving
  • the second electrode of the transistor DTFT is coupled, and the second electrode of the sensing transistor T2 is coupled to the sensing signal line SL.
  • the step of compensating the mobility of the driving transistor DTFT according to a preset compensation method specifically includes: When the state is displayed, the on-time of the sensing transistor T2 is controlled according to the target mobility compensation value, thereby controlling the charging time of the second storage capacitor C2.
  • the sensing transistor T2 disconnects the coupling between the first end of the second storage capacitor C2 and the sensing signal line SL.
  • the driving transistor DTFT can The second storage capacitor C2 is charged; when the sensing transistor T2 is in the on state, the sensing transistor T2 turns on the coupling between the first end of the second storage capacitor C2 and the sensing signal line SL. In the state, the driving transistor DTFT can stop charging the second storage capacitor C2.
  • the charging time of the second storage capacitor C2 can control the electron mobility of the driving transistor DTFT, thereby achieving compensation for the mobility of the driving transistor DTFT based on the target mobility compensation value.
  • the step of controlling the on-time of the sensing transistor T2 according to the target mobility compensation value so as to control the charging time of the second storage capacitor C2 specifically includes:
  • the on-time of the sensing transistor T2 is reduced, and the charging time for the second storage capacitor C2 is increased; or, when the initial migration
  • the rate compensation value is less than the target mobility compensation value, when the display panel is in a non-display state, the on-time of the sensing transistor is increased, and the charging time for the second storage capacitor C2 is decreased.
  • the on-time of the sensing transistor T2 can be reduced, and the charging time for the second storage capacitor C2 can be increased In order to increase the charging voltage of the second storage capacitor C2, thereby reducing the initial mobility compensation value corresponding to the driving transistor DTFT to the target mobility compensation value, the compensation for the driving transistor DTFT is realized.
  • the on-time of the sensing transistor T2 can be increased, and the charging time for the second storage capacitor C2 can be reduced to reduce the first 2.
  • the charging voltage of the storage capacitor C2 so that the initial mobility compensation value corresponding to the driving transistor DTFT is increased to the target mobility compensation value, and the compensation for the driving transistor DTFT is realized.
  • the compensation method provided in the above embodiments further includes: before the display panel is placed in a preset display state, the step of obtaining an initial mobility compensation value, which specifically includes:
  • the initial compensation test signal is obtained
  • the initial mobility compensation value is obtained.
  • the step of placing the display panel in the non-display state and sensing the initial threshold voltage corresponding to the driving transistor DTFT in the pixel circuit in the non-display state specifically includes: The first control signal input from the control signal line Scan controls the input transistor T1 to turn on, and the second control signal input from the second control signal line Sense controls the input transistor T2 to turn off.
  • the data signal line DL writes a test data signal, and the test data signal It is transmitted to the gate G of the driving transistor DTFT through the input transistor T1, and the voltage of the gate G of the driving transistor DTFT is changed to Vg, and the output electrode (ie source S) of the driving transistor DTFT has the initialization voltage V 0 ; when the driving transistor DTFT When the voltage difference Vgs between the gate and the source of the drive transistor DTFT is greater than the threshold voltage of the drive transistor DTFT, the drive transistor DTFT is turned on to generate a drive current I oled which charges the second storage capacitor C2, and as the charging time increases, the drive The source potential of the transistor DTFT continues to rise until the drive transistor DTFT is in the off state, the source potential of the drive transistor DTFT no longer rises, and the second storage capacitor C2 stops charging; at this time, it is input by the second control signal line Sense The second control signal controls the sensing transistor T2 to turn on, and the voltage Vs (ie, the sensing
  • the step of obtaining the initial compensation test signal according to the initial threshold voltage specifically includes: determining that the compensation test signal Vdata1 is:
  • Vdata1 GL+Vth; where GL is a fixed value, and Vth is the initial threshold voltage of the driving transistor.
  • Cox is the gate oxide capacitance
  • W/L is the width-to-length ratio of the channel region of the driving transistor DTFT
  • Vgs is the gate-source voltage of the driving transistor DTFT.
  • the driving current I oled generated is:
  • the second storage capacitor is charged by the driving current I oled .
  • the voltage Vs of the source of the driving transistor DTFT that is, the charging voltage of the second storage capacitor
  • the sensing signal line SL the sensing signal line SL
  • C′ is the capacitance of the second storage capacitor C2
  • the second storage capacitor C2 may be a parasitic capacitance
  • the initial compensation value K'of the mobility can be obtained according to the preset standard mobility K 0 , namely:
  • An embodiment of the present disclosure also provides a compensation device for a pixel circuit, which is used to implement the compensation method provided in the foregoing embodiment, and the compensation device includes:
  • a sensing circuit for sensing the preset mobility compensation value corresponding to the driving transistor in the pixel circuit when the display panel is in a preset display state
  • the compensation circuit is used to adjust the initial mobility compensation value corresponding to the driving transistor to the target mobility compensation value according to the preset mobility compensation value, and the difference between the target mobility compensation value and the preset mobility compensation value is less than the threshold ;
  • the compensation circuit is also used to compensate the mobility of the driving transistor according to a preset compensation method when the display panel is in a non-display state based on the target mobility compensation value.
  • the aforementioned preset display state may specifically be a display state that simulates an actual display state, that is, the working conditions when the display panel is in the preset display state are the same as the working conditions when the display panel is in the actual display state.
  • the sensing circuit senses the preset mobility compensation value corresponding to the driving transistor in the pixel circuit included in the display panel, and the preset mobility compensation value reflects the current preset display state of the driving transistor Next, the mobility compensation value that needs to be compensated.
  • the compensation circuit can adjust the initial mobility compensation value corresponding to the driving transistor, and adjust the initial mobility compensation value to the target mobility compensation value, and the target mobility compensation value is compared with the preset mobility compensation value. Let the difference between the mobility compensation values be smaller than the threshold value.
  • the threshold can be set according to actual needs, and exemplarily, the threshold can be zero.
  • the display panel After the target mobility compensation value is obtained, the display panel is placed in a non-display state, and the compensation circuit is also used to perform preset compensation for the mobility of the driving transistor based on the target mobility compensation value according to a preset compensation method, so that the display panel is In the actual display state, the mobility of the driving transistor after the preset compensation is closer to the preset standard mobility.
  • the display panel is first placed in a preset display state with the same working conditions as the actual display state, so that the characteristic parameters of the driving transistor in the pixel circuit are consistent with those of the pixel in the actual display state.
  • the characteristic parameters of the driving transistors in the circuit are the same or close, and then the sensing circuit senses the preset mobility compensation value corresponding to the driving transistor in the pixel circuit in the preset display state; then the compensation circuit according to the preset mobility compensation value, The initial mobility compensation value corresponding to the driving transistor is adjusted to the target mobility compensation value whose difference with the preset mobility compensation value is less than the threshold, and then the compensation circuit is based on the target mobility compensation value, and the display panel is in non-display
  • the mobility of the driving transistor is preset compensation according to the preset compensation method; therefore, when the compensation device of the pixel driving circuit provided by the embodiment of the present disclosure is used for preset compensation, the compensation is performed according to the preset compensation method.
  • the mobility corresponding to the driving transistor is close to or the same as the preset standard mobility required during actual display, so that when the display panel is in the actual display state, the driving transistor corresponds to the initial lighting of the display panel
  • the mobility of the display panel is close to or the same as the preset standard mobility required for actual display, thus avoiding large changes in the brightness of the display panel when real-time brightness compensation is performed on the display panel, resulting in unstable display brightness of the display panel (brightness Increase or decrease in brightness).
  • the compensation circuit provided in the above embodiments is also used for:
  • the data signal received by the pixel circuit is compensated to compensate the mobility of the driving transistor in the pixel circuit in real time.
  • the compensation circuit can continue to perform real-time real-time on the driving transistor when the display panel is placed in the actual display state. Brightness compensation. In this way, even in the actual display state, the characteristic parameters of the driving transistor drift greatly, and the characteristic parameters of the driving transistor can be compensated to ensure the display brightness uniformity of the display panel.
  • the display panel When the display panel is actually displaying, it writes a data signal to the gate of the driving transistor, and the driving transistor generates a corresponding driving current under the action of the data signal to drive the corresponding light-emitting unit to emit light; therefore, the display panel is in In the actual display state, the data signal received by the gate of the driving transistor in the pixel circuit can be compensated, and then the compensated data signal is written into the gate of the driving transistor, so as to realize the migration of the driving transistor in the pixel circuit. Real-time compensation is performed to ensure the uniformity of the display brightness of the display panel.
  • the pixel circuit may include: an input transistor T1, a driving transistor DTFT, a sensing transistor T2, a first storage capacitor C1, a second storage capacitor C2, and an organic light emitting diode OLED; wherein the gate of the input transistor T1 is coupled to the first control signal line Scan, the first pole of the input transistor T1 is coupled to the data signal line DL, and the second pole of the input transistor T1 is coupled to the gate of the driving transistor DTFT ,
  • the first pole of the driving transistor DTFT is coupled to the power signal line ELVDD, the second pole of the driving transistor DTFT is coupled to the anode of the organic light emitting diode OLED, and the cathode of the organic light emitting diode OLED is coupled to the ground signal line VSS;
  • the first terminal of the capacitor C1 is coupled to the gate of the driving transistor DTFT, the second terminal of the first storage capacitor C1 is coupled to the second terminal of the driving transistor DTFT
  • the second electrode is coupled, the second end of the second storage capacitor C2 is coupled to the ground signal line VSS, the gate of the sensing transistor T2 is coupled to the second control signal line Sense, and the first electrode of the sensing transistor T2 is coupled to the driving
  • the second electrode of the transistor DTFT is coupled, and the second electrode of the sensing transistor T2 is coupled to the sensing signal line SL.
  • the compensation circuit is specifically used for: when the display panel is in a non-display state, according to the target mobility compensation value, control the on-time of the sensing transistor, thereby controlling the charging time for the second storage capacitor C2.
  • the sensing transistor T2 when the sensing transistor T2 is in an off state, the sensing transistor T2 disconnects the coupling between the first end of the second storage capacitor C2 and the sensing signal line.
  • the driving transistor DTFT can The second storage capacitor C2 is charged; when the sensing transistor T2 is in the on state, the sensing transistor T2 turns on the coupling between the first end of the second storage capacitor C2 and the sensing signal line, in this state , The driving transistor DTFT can stop charging the second storage capacitor C2.
  • the charging time of the second storage capacitor C2 can control the electron mobility of the driving transistor DTFT, thereby achieving compensation for the mobility of the driving transistor DTFT based on the target mobility compensation value.
  • the compensation circuit when the initial mobility compensation value is greater than the target mobility compensation value, when the display panel is in the non-display state, the compensation circuit is used to reduce the on-time of the sensing transistor T2 and increase the resistance to the second storage capacitor. C2 charging time; or, when the initial mobility compensation value is less than the target mobility compensation value, when the display panel is in the non-display state, the compensation circuit is used to increase the conduction time of the sensing transistor T2 and reduce the second storage Charging time of capacitor C2.
  • the sensing circuit provided by the foregoing embodiments is also used to place the display panel in a non-display state before placing the display panel in a preset display state, and drive transistors in the sensing pixel circuit in the non-display state The corresponding initial threshold voltage;
  • the compensation circuit is also used to obtain an initial compensation test signal according to the initial threshold voltage, and write the initial compensation test signal to the gate of the driving transistor;
  • the sensing circuit is also used to sense the initial mobility corresponding to the driving transistor
  • the compensation circuit is also used to obtain the initial mobility compensation value according to the preset standard mobility and the initial mobility.
  • the above-mentioned sensing circuit places the display panel in the non-display state
  • the step of sensing the initial threshold voltage corresponding to the driving transistor in the pixel circuit in the non-display state specifically includes:
  • the first control signal input from the first control signal line Scan controls the input transistor T1 to turn on
  • the second control signal input from the second control signal line Sense controls the input transistor T2 to turn off.
  • the data signal line DL writes the test data signal, and the test The data signal is transmitted to the gate G of the driving transistor DTFT through the input transistor T1, and the voltage of the gate G of the driving transistor DTFT is changed to Vg, and the output electrode (ie source S) of the driving transistor DTFT has the initialization voltage V 0 ;
  • the driving transistor DTFT is turned on, generating a driving current I oled , and the driving current charges the second storage capacitor C2, and as the charging time increases ,
  • the source potential of the driving transistor DTFT continues to rise, until the driving transistor DTFT is in the off state, the source potential of the driving transistor DTFT no longer rises, and the second storage capacitor C2 stops charging; at this time, the second control signal line
  • the second control signal input by Sense controls the sensing transistor T2 to turn on, and the voltage Vs (ie, the sensing voltage) of the source of
  • the step of obtaining the initial compensation test signal by the compensation circuit according to the initial threshold voltage specifically includes: determining that the compensation test signal Vdata1 is:
  • Vdata1 GL+Vth; where GL is a fixed value, and Vth is the initial threshold voltage of the driving transistor.
  • Cox is the gate oxide capacitance
  • W/L is the width-to-length ratio of the channel region of the driving transistor DTFT
  • Vgs is the gate-source voltage of the driving transistor DTFT.
  • the generated driving current I oled is:
  • the second storage capacitor is charged by the driving current I oled .
  • the sensing circuit senses the voltage Vs of the source of the driving transistor DTFT (that is, the charging voltage of the second storage capacitor) through the sensing signal line SL, According to the charging time T and the current source voltage Vs, I oled is obtained as:
  • C′ is the capacitance of the second storage capacitor C2
  • the second storage capacitor C2 may be a parasitic capacitance
  • the compensation circuit can obtain the initial compensation value K'of the mobility according to the preset standard mobility K 0 , namely:
  • An embodiment of the present disclosure also provides a display device, which includes the compensation device for the pixel circuit provided in the foregoing embodiment.
  • the compensation method of the pixel drive circuit provided in the above embodiment is used for preset compensation, it can avoid that the brightness of the display panel changes greatly when the real-time brightness compensation is performed on the display panel, which causes the display brightness of the display panel to be unstable (brightness). Therefore, when the display device provided in the embodiments of the present disclosure includes the compensation device for the pixel circuit provided in the above-mentioned embodiments, the above-mentioned beneficial effects can also be achieved, which will not be repeated here.
  • the embodiments of the present disclosure also provide a compensation device for a pixel circuit, a compensation device for a pixel circuit, the pixel circuit is applied to a display panel, and the compensation device includes: a memory and an actuator, and the actuator is used to execute storage
  • the following instructions in the memory when the display panel is in a preset display state, sense the preset mobility compensation value corresponding to the driving transistor in the pixel circuit; according to the preset mobility compensation value, The initial mobility compensation value corresponding to the driving transistor is adjusted to a target mobility compensation value, and the difference between the target mobility compensation value and the preset mobility compensation value is less than or equal to a threshold; based on the target mobility
  • the rate compensation value is used to compensate the mobility of the driving transistor according to a preset compensation method when the display panel is in a non-display state.
  • the compensation device of the pixel circuit in the embodiment of the present disclosure can be used to implement the compensation method provided in the above-mentioned embodiment.
  • the specific working process of the compensation device of the pixel circuit in the embodiment of the present disclosure can be referred to in the foregoing method embodiment. The corresponding process will not be repeated here.
  • the display device may be any product or component with a display function such as a TV, a monitor, a digital photo frame, a mobile phone, a tablet computer, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

本公开公开一种像素电路的补偿方法、装置、显示设备。该像素电路的补偿方法包括:在显示面板处于预设显示状态时,感测像素电路中驱动晶体管对应的预设迁移率补偿值;根据预设迁移率补偿值,将驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,目标迁移率补偿值与预设迁移率补偿值之间的差值小于阈值;基于目标迁移率补偿值,在显示面板处于非显示状态时,按照预设的补偿方式对驱动晶体管的迁移率进行补偿。

Description

像素电路的补偿方法、装置、显示设备
相关申请的交叉引用
本申请主张在2019年6月24日在中国提交的中国专利申请号No.201910548785.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种像素电路的补偿方法、装置、显示设备。
背景技术
有源矩阵有机发光二极管(英文:Active-matrix organic light emitting diode,以下简称:AMOLED)显示面板以其响应速度快、发光效率高、亮度高、视角广等诸多优点,在很多领域均得到了广泛的应用。然而,AMOLED显示面板存在显示亮度不稳定的问题。
发明内容
本公开的第一方面提供一种像素电路的补偿方法,所述像素电路应用于显示面板,所述补偿方法包括:
在所述显示面板处于预设显示状态时,感测所述像素电路中驱动晶体管对应的预设迁移率补偿值;
根据所述预设迁移率补偿值,将所述驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,所述目标迁移率补偿值与所述预设迁移率补偿值之间的差值小于或等于阈值;
基于所述目标迁移率补偿值,在所述显示面板处于非显示状态时,按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿。
可选的,所述补偿方法还包括:在按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿之后,在所述显示面板处于实际显示状态时,通过补偿像素电路接收的数据信号,对所述像素电路中的驱动晶体管的迁移率进行实 时补偿。
可选的,所述像素电路包括:输入晶体管、驱动晶体管、感测晶体管、第一存储电容、第二存储电容和有机发光二极管;其中所述输入晶体管的栅极与第一控制信号线耦接,所述输入晶体管的第一极与数据信号线耦接,所述输入晶体管的第二极与驱动晶体管的栅极耦接,所述驱动晶体管的第一极与电源信号线耦接,所述驱动晶体管的第二极与所述有机发光二极管的阳极耦接,所述有机发光二极管的阴极与地信号线耦接;所述第一存储电容的第一端与所述驱动晶体管的栅极耦接,所述第一存储电容的第二端与所述驱动晶体管的第二极耦接,所述第二存储电容的第一端与所述驱动晶体管的第二极耦接,所述第二存储电容的第二端与所述地信号线耦接,所述感测晶体管的栅极与第二控制信号线耦接,所述感测晶体管的第一极与所述驱动晶体管的第二极耦接,所述感测晶体管的第二极与感测信号线耦接;所述基于所述目标迁移率补偿值,在所述显示面板处于非显示状态时,按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿的步骤具体包括:
在所述显示面板处于所述非显示状态时,根据所述目标迁移率补偿值,控制感测晶体管的导通时间,从而控制对第二存储电容的充电时间。
可选的,当所述初始迁移率补偿值大于所述目标迁移率补偿值时,在所述显示面板处于非显示状态时,减小感测晶体管的导通时间,增加对第二存储电容的充电时间;或,
当所述初始迁移率补偿值小于所述目标迁移率补偿值时,在所述显示面板处于非显示状态时,增加感测晶体管的导通时间,减小对第二存储电容的充电时间。
可选的,所述补偿方法还包括:在将所述显示面板处于预设显示状态之前,获取所述初始迁移率补偿值的步骤,该步骤具体包括:
将所述显示面板置于非显示状态,并在该非显示状态感测所述像素电路中驱动晶体管对应的初始阈值电压;
根据所述初始阈值电压,得到初始补偿测试信号;
将该初始补偿测试信号写入所述驱动晶体管的栅极,并感测得到所述驱动晶体管对应的初始迁移率;
根据预设标准迁移率和所述初始迁移率,得到所述初始迁移率补偿值。
可选的,所述预设显示状态为模拟实际显示状态的一种显示状态,使得所述显示面板处于所述预设显示状态时的工作条件与所述显示面板处于实际显示状态时的工作条件相同;所述预设迁移率补偿值反应所述驱动晶体管在所述预设显示状态下需要补偿的迁移率补偿值。
可选的,所述非显示状态包括关机状态;所述关机状态是指所述显示面板不显示画面,但所述显示面板中的像素电路可处于工作状态。
基于上述像素电路的补偿方法的技术方案,本公开的第二方面提供一种像素电路的补偿装置,所述像素电路应用于显示面板,所述补偿装置包括:
感测电路,用于在所述显示面板处于预设显示状态时,感测所述像素电路中驱动晶体管对应的预设迁移率补偿值;
补偿电路,用于根据所述预设迁移率补偿值,将所述驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,所述目标迁移率补偿值与所述预设迁移率补偿值之间的差值小于阈值;
所述补偿电路还用于基于所述目标迁移率补偿值,在所述显示面板处于非显示状态时,按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿。
可选的,所述补偿电路还用于:
在按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿之后,在所述显示面板处于实际显示状态时,通过补偿像素电路接收的数据信号,对所述像素电路中的驱动晶体管的迁移率进行实时补偿。
可选的,所述像素电路包括:输入晶体管、驱动晶体管、感测晶体管、第一存储电容、第二存储电容和有机发光二极管;其中所述输入晶体管的栅极与第一控制信号线耦接,所述输入晶体管的第一极与数据信号线耦接,所述输入晶体管的第二极与驱动晶体管的栅极耦接,所述驱动晶体管的第一极与电源信号线耦接,所述驱动晶体管的第二极与所述有机发光二极管的阳极耦接,所述有机发光二极管的阴极与地信号线耦接;所述第一存储电容的第一端与所述驱动晶体管的栅极耦接,所述第一存储电容的第二端与所述驱动晶体管的第二极耦接,所述第二存储电容的第一端与所述驱动晶体管的第二极耦接,所述第二存储电容的第二端与所述地信号线耦接,所述感测晶体管 的栅极与第二控制信号线耦接,所述感测晶体管的第一极与所述驱动晶体管的第二极耦接,所述感测晶体管的第二极与感测信号线耦接;
所述补偿电路具体用于:
在所述显示面板处于所述非显示状态时,根据所述目标迁移率补偿值,控制感测晶体管的导通时间,从而控制对第二存储电容的充电时间。
可选的,所述感测电路还用于在将所述显示面板处于预设显示状态之前,将所述显示面板置于非显示状态,并在该非显示状态感测所述像素电路中驱动晶体管对应的初始阈值电压;
所述补偿电路还用于根据所述初始阈值电压,得到初始补偿测试信号,并将该初始补偿测试信号写入所述驱动晶体管的栅极;
所述感测电路还用于感测得到所述驱动晶体管对应的初始迁移率;
所述补偿电路还用于根据预设标准迁移率和所述初始迁移率,得到所述初始迁移率补偿值。
可选的,所述预设显示状态为模拟实际显示状态的一种显示状态,使得所述显示面板处于所述预设显示状态时的工作条件与所述显示面板处于实际显示状态时的工作条件相同;
所述预设迁移率补偿值反应所述驱动晶体管在所述预设显示状态下需要补偿的迁移率补偿值。
可选的,所述非显示状态包括关机状态;所述关机状态是指所述显示面板不显示画面,但所述显示面板中的像素电路可处于工作状态。
基于上述像素电路的补偿装置的技术方案,本公开的第三方面提供一种显示设备,包括上述像素电路的补偿装置。
本公开的第四方面提供一种像素电路的补偿装置,所述像素电路应用于显示面板,所述补偿装置包括:存储器和执行器,所述执行器用于执行存储在所述存储器中的下述指令:
在所述显示面板处于预设显示状态时,感测所述像素电路中驱动晶体管对应的预设迁移率补偿值;
根据所述预设迁移率补偿值,将所述驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,所述目标迁移率补偿值与所述预设迁移率补偿 值之间的差值小于或等于阈值;
基于所述目标迁移率补偿值,在所述显示面板处于非显示状态时,按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿。
可选的,所述执行器进一步用于执行存储在所述存储器中的下述指令:
在按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿之后,在所述显示面板处于实际显示状态时,通过补偿像素电路接收的数据信号,对所述像素电路中的驱动晶体管的迁移率进行实时补偿。
可选的,所述像素电路包括:输入晶体管、驱动晶体管、感测晶体管、第一存储电容、第二存储电容和有机发光二极管;其中所述输入晶体管的栅极与第一控制信号线耦接,所述输入晶体管的第一极与数据信号线耦接,所述输入晶体管的第二极与驱动晶体管的栅极耦接,所述驱动晶体管的第一极与电源信号线耦接,所述驱动晶体管的第二极与所述有机发光二极管的阳极耦接,所述有机发光二极管的阴极与地信号线耦接;所述第一存储电容的第一端与所述驱动晶体管的栅极耦接,所述第一存储电容的第二端与所述驱动晶体管的第二极耦接,所述第二存储电容的第一端与所述驱动晶体管的第二极耦接,所述第二存储电容的第二端与所述地信号线耦接,所述感测晶体管的栅极与第二控制信号线耦接,所述感测晶体管的第一极与所述驱动晶体管的第二极耦接,所述感测晶体管的第二极与感测信号线耦接;所述执行器进一步用于执行存储在所述存储器中的下述指令:在所述显示面板处于所述非显示状态时,根据所述目标迁移率补偿值,控制感测晶体管的导通时间,从而控制对第二存储电容的充电时间。
可选的,所述执行器进一步用于执行存储在所述存储器中的下述指令:
在将所述显示面板处于预设显示状态之前,
将所述显示面板置于非显示状态,并在该非显示状态感测所述像素电路中驱动晶体管对应的初始阈值电压;
根据所述初始阈值电压,得到初始补偿测试信号;
将该初始补偿测试信号写入所述驱动晶体管的栅极,并感测得到所述驱动晶体管对应的初始迁移率;
根据预设标准迁移率和所述初始迁移率,得到所述初始迁移率补偿值。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例提供的像素电路的补偿方法流程示意图;
图2为本公开实施例提供的像素电路的结构示意图。
附图标记:
T1-输入晶体管,            DTFT-驱动晶体管,
T2-感测晶体管,            C1-第一存储电容,
C2-第二存储电容,          DL-数据信号线,
Scan-第一控制信号线,      ELVDD-电源信号线,
OLED-发光单元,            VSS-地信号线,
Sense-第二控制信号线,     SL-感测信号线。
具体实施方式
为了进一步说明本公开实施例提供的像素电路的补偿方法、装置、显示设备,下面结合说明书附图进行详细描述。
AMOLED显示面板包括像素电路和与其一一对应的发光单元,像素驱动电路中均包括驱动晶体管、存储电容和一些具有开关功能的晶体管,工作时,像素电路中包括的各器件相互配合,产生驱动信号,通过该驱动信号驱动发光单元发光。
由于所述驱动信号与驱动晶体管的阈值电压和电子迁移率相关,而AMOLED显示面板在制作时,由于受到制作工艺条件的限制,显示面板中包括的各像素电路中的驱动晶体管的特性参数(例如:阈值电压和电子迁移率)存在差异,这样在驱动显示面板显示时,即使向各像素电路中输入相同的数据信号,驱动晶体管产生的驱动电流也不同,进而导致由该驱动晶体管驱动的发光单元的发光亮度不同,显示面板的显示亮度均一性差。
针对上述问题,由于驱动晶体管产生的驱动电流主要与驱动晶体管的阈值电压及迁移率相关,相关技术中的解决方案大多为对全部像素电路中包括 的驱动晶体管进行阈值电压和电子迁移率的关机补偿操作,即在显示面板关机时检测驱动晶体管的阈值电压,并根据该阈值电压求得驱动晶体管的迁移率,进一步对驱动晶体管迁移率进行补偿(一般来说,电子迁移率补偿在阈值电压补偿之后进行),使得显示面板中各像素电路中驱动晶体管在相同数据信号输入时产生的驱动电流一致,以减小不同发光单元间的亮度偏差。但是,目前对迁移率的补偿通常是在关机状态下检测得到驱动晶体管的阈值电压并根据该阈值电压进行补偿,显示面板在实际显示工作时,驱动晶体管在长时间驱动的情况下,驱动晶体管的阈值电压和电子迁移率均会由于温度等环境因素发生变化,从而导致关机状态时对驱动晶体管阈值电压和迁移率的补偿不准确,各发光单元间依然存在亮度偏差。
基于上述问题的存在,本公开的发明人经研究发现,可在显示面板进行实际显示的过程中,通过对输入至各像素中的数据信号进行补偿,实现对显示面板的实时亮度补偿。但是当显示面板在实际显示时,像素电路中的驱动晶体管的特性参数漂移较大,导致实际需要的迁移率补偿值与关机补偿操作时的迁移率补偿值相差较大时,在进行实时亮度补偿时,会导致显示面板在实时补偿的过程中亮度变化较大,导致出现显示面板的显示亮度不稳定(亮度上升或者亮度下降)的现象,基于此问题的存在,本公开提出一种解决该问题的方法,具体如下:
如图1所示,本公开实施例提供了一种像素电路的补偿方法,该像素电路应用于显示面板,所述补偿方法包括:
步骤S101,在显示面板处于预设显示状态时,感测像素电路中驱动晶体管对应的预设迁移率补偿值;
步骤S102,根据预设迁移率补偿值,将驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,目标迁移率补偿值与预设迁移率补偿值之间的差值小于阈值;
步骤S103,基于目标迁移率补偿值,在显示面板处于非显示状态时,按照预设的补偿方式对驱动晶体管的迁移率进行补偿。
具体地,上述预设显示状态可具体为模拟实际显示状态的一种显示状态, 即:将显示面板处于预设显示状态时的工作条件(例如:工作环境、工作时间等),与显示面板处于实际显示状态时的工作条件相同。在将显示面板处于预设显示状态时,感测显示面板包括的像素电路中驱动晶体管对应的预设迁移率补偿值,该预设迁移率补偿值反应驱动晶体管在当前预设显示状态下,需要补偿的迁移率补偿值。
在得到所述预设迁移率补偿值后,可对驱动晶体管对应的初始迁移率补偿值进行调节,将初始迁移率补偿值调节为目标迁移率补偿值,该目标迁移率补偿值与预设迁移率补偿值之间的差值小于阈值。该阈值可根据实际需要设置,示例性的,该阈值可为0。
在得到目标迁移率补偿值之后,将显示面板处于非显示状态,基于目标迁移率补偿值,按照预设的补偿方式对驱动晶体管的迁移率进行预设补偿,使得显示面板在刚处于实际显示状态时,驱动晶体管的迁移率更接近预设标准迁移率。
值得注意,上述非显示状态可包括关机状态,该关机状态是指显示面板不显示画面,但显示面板中的像素电路可处于工作状态,即像素电路能够产生驱动信号,但驱动信号无法驱动发光元件发光。
本公开实施例提供的像素驱动电路的补偿方法中,先将显示面板处于与实际显示状态相同工作条件的预设显示状态,以使像素电路中的驱动晶体管的特性参数,与实际显示状态下像素电路中的驱动晶体管的特性参数相同或接近,然后感测像素电路中驱动晶体管在该预设显示状态下对应的预设迁移率补偿值;接着根据预设迁移率补偿值,将驱动晶体管对应的初始迁移率补偿值调节为与预设迁移率补偿值之间的差值小于阈值的目标迁移率补偿值,然后再基于目标迁移率补偿值,在显示面板处于非显示状态的情况下,按照预设的补偿方式对驱动晶体管的迁移率进行预设补偿;因此采用本公开实施例提供的像素驱动电路的补偿方法进行预设补偿时,在按照预设的补偿方式对驱动晶体管的迁移率进行补偿之后,驱动晶体管对应的迁移率与实际显示时需要的预设标准迁移率接近或相同,这样在显示面板处于实际显示状态时,在显示面板的点亮初期驱动晶体管对应的迁移率与实际显示时需要的预设标 准迁移率接近或相同,从而避免了在对显示面板进行实时亮度补偿时,显示面板的亮度变化较大,导致出现显示面板的显示亮度不稳定(亮度上升或者亮度下降)的问题。
在一些实施例中,上述实施例提供的补偿方法还包括:在按照预设的补偿方式对驱动晶体管的迁移率进行补偿之后,在显示面板处于实际显示状态时,通过补偿像素电路接收的数据信号,对像素电路中的驱动晶体管的迁移率进行实时补偿。
具体地,由于显示面板在处于实际显示状态时,随着显示时间的延长,显示面板的温度会发生变化,受到面板温度的影响,驱动晶体管的特性参数会继续产生漂移现象,从而对显示面板的显示亮度均一性产生影响,为了避免该问题,在按照预设的补偿方式对驱动晶体管的迁移率进行补偿之后,在将显示面板置于实际显示状态时,可继续对驱动晶体管进行实时亮度补偿,这样即使在实际显示状态下,驱动晶体管的特性参数漂移较大,也能够通过对驱动晶体管的特性参数进行补偿,保证显示面板的显示亮度均一性。
由于显示面板在实际显示时,是通过向驱动晶体管的栅极写入数据信号,驱动晶体管在数据信号的作用下,产生对应的驱动电流,从而驱动对应的发光单元发光;因此,在显示面板处于实际显示状态时,可通过对像素电路中驱动晶体管的栅极接收的数据信号进行补偿,然后再将补偿后的数据信号写入驱动晶体管的栅极,从而实现对像素电路中的驱动晶体管的迁移率进行实时补偿,保证显示面板显示亮度的均一性。
如图2所示,在一些实施例中,上述实施例提供的像素电路可包括:输入晶体管T1、驱动晶体管DTFT、感测晶体管T2、第一存储电容C1、第二存储电容C2和有机发光二极管OLED;其中输入晶体管T1的栅极与第一控制信号线Scan耦接,输入晶体管T1的第一极与数据信号线DL耦接,输入晶体管T1的第二极与驱动晶体管DTFT的栅极耦接,驱动晶体管DTFT的第一极与电源信号线ELVDD耦接,驱动晶体管DTFT的第二极与有机发光二极管OLED的阳极耦接,有机发光二极管OLED的阴极与地信号线VSS耦接;第一存储电容C1的第一端与驱动晶体管DTFT的栅极耦接,第一存储电容C1的第二端与驱 动晶体管DTFT的第二极耦接,第二存储电容C2的第一端与驱动晶体管DTFT的第二极耦接,第二存储电容C2的第二端与地信号线VSS耦接,感测晶体管T2的栅极与第二控制信号线Sense耦接,感测晶体管T2的第一极与驱动晶体管DTFT的第二极耦接,感测晶体管T2的第二极与感测信号线SL耦接。
基于上述像素电路的具体结构,上述基于目标迁移率补偿值,在显示面板处于非显示状态时,按照预设的补偿方式对驱动晶体管DTFT的迁移率进行补偿的步骤具体包括:在显示面板处于非显示状态时,根据所述目标迁移率补偿值,控制感测晶体管T2的导通时间,从而控制对第二存储电容C2的充电时间。
具体地,当感测晶体管T2处于截止状态时,感测晶体管T2断开第二存储电容C2的第一端与感测信号线SL之间的耦接,在这种状态下,驱动晶体管DTFT能够对第二存储电容C2进行充电;当感测晶体管T2处于导通状态时,感测晶体管T2导通第二存储电容C2的第一端与感测信号线SL之间的耦接,在这种状态下,驱动晶体管DTFT能够停止对第二存储电容C2进行充电。
在显示面板处于非显示状态下,对驱动晶体管DTFT的迁移率进行补偿时,随着对第二存储电容C2的充电时间的增加,第二存储电容C2上的电荷会增多,使得第二存储电容C2的充电电压增大,而迁移率补偿值与充电电压有着负相关的关系,即充电电压越大,迁移率补偿值越小,充电电压越小,迁移率补偿值越大;因此通过控制对第二存储电容C2的充电时间,能够控制驱动晶体管DTFT的电子迁移率,从而实现基于目标迁移率补偿值对驱动晶体管DTFT的迁移率进行补偿。
在一些实施例中,上述根据所述目标迁移率补偿值,控制感测晶体管T2的导通时间,从而控制对第二存储电容C2的充电时间的步骤具体包括:
当初始迁移率补偿值大于目标迁移率补偿值时,在显示面板处于非显示状态时,减小感测晶体管T2的导通时间,增加对第二存储电容C2的充电时间;或,当初始迁移率补偿值小于目标迁移率补偿值时,在显示面板处于非显示状态时,增加感测晶体管的导通时间,减小对第二存储电容C2的充电时间。
更详细地说,当初始迁移率补偿值大于目标迁移率补偿值时,可在显示面板处于非显示状态时,减小感测晶体管T2的导通时间,增加对第二存储电容C2的充电时间,以增大第二存储电容C2的充电电压,从而使驱动晶体管DTFT对应的初始迁移率补偿值减小为目标迁移率补偿值,实现对驱动晶体管DTFT的补偿。
当初始迁移率补偿值小于目标迁移率补偿值时,可在显示面板处于非显示状态时,增加感测晶体管T2的导通时间,减小对第二存储电容C2的充电时间,以减小第二存储电容C2的充电电压,从而使驱动晶体管DTFT对应的初始迁移率补偿值增加为目标迁移率补偿值,实现对驱动晶体管DTFT的补偿。
在一些实施例中,上述实施例提供的补偿方法还包括:在将显示面板处于预设显示状态之前,获取初始迁移率补偿值的步骤,该步骤具体包括:
将显示面板置于非显示状态,并在该非显示状态感测像素电路中驱动晶体管DTFT对应的初始阈值电压;
根据初始阈值电压,得到初始补偿测试信号;
将该初始补偿测试信号写入驱动晶体管DTFT的栅极,并感测得到驱动晶体管DTFT对应的初始迁移率;
根据预设标准迁移率和初始迁移率,得到初始迁移率补偿值。
具体地,当像素电路采用上述具体结构时,上述将显示面板置于非显示状态,并在该非显示状态感测像素电路中驱动晶体管DTFT对应的初始阈值电压的步骤具体包括:通过由第一控制信号线Scan输入的第一控制信号控制输入晶体管T1导通,通过由第二控制信号线Sense输入的第二控制信号控制输入晶体管T2截止,数据信号线DL写入测试数据信号,测试数据信号经输入晶体管T1传输至驱动晶体管DTFT的栅极G,将驱动晶体管DTFT的栅极G的电压变为Vg,驱动晶体管DTFT的输出电极(即源极S)具有初始化电压V 0;当驱动晶体管DTFT的栅极和源极的电压差Vgs大于驱动晶体管DTFT的阈值电压时,驱动晶体管DTFT导通,产生驱动电流I oled,驱动电流为第二存储电容C2充电,且随着充电时间的增加,驱动晶体管DTFT的源极电位不断升高,直至驱动晶体管DTFT处于截止状态,驱动晶体管DTFT的源极电位不再升高, 停止对第二存储电容C2充电;此时通过由第二控制信号线Sense输入的第二控制信号控制感测晶体管T2导通,通过感测信号线SL感测驱动晶体管DTFT的源极的电压Vs(即感测电压),则可得到驱动晶体管DTFT的初始阈值电压Vth=Vg-Vs。
上述根据初始阈值电压,得到初始补偿测试信号的步骤具体包括:确定所述补偿测试信号Vdata1为:
Vdata1=GL+Vth;其中,GL为固定值,Vth为驱动晶体管的初始阈值电压。
上述驱动晶体管DTFT的初始阈值电压Vth、初始迁移率K和驱动电流I oled满足如下公式:
Figure PCTCN2020084645-appb-000001
其中,Cox为栅氧化层电容,W/L为驱动晶体管DTFT沟道区的宽长比,Vgs为驱动晶体管DTFT的栅源电压。
将所述补偿测试信号Vdata1写入驱动晶体管DTFT的栅极时,产生的驱动电流I oled为:
Figure PCTCN2020084645-appb-000002
将Vdata1=GL+Vth代入公式(2)后可得:
Figure PCTCN2020084645-appb-000003
通过驱动电流I oled为第二存储电容进行充电,经过充电时间T后,通过感测信号线SL感测驱动晶体管DTFT的源极的电压Vs(即第二存储电容的充电电压),根据充电时间T和当前源极的电压Vs,得到I oled为:
Figure PCTCN2020084645-appb-000004
其中,C'为第二存储电容C2的容值,该第二存储电容C2可为寄生电容。
接着可再根据预设标准迁移率K 0得到迁移率的初始补偿值K',即:
Figure PCTCN2020084645-appb-000005
本公开实施例还提供了一种像素电路的补偿装置,用于实施上述实施例提供的补偿方法,所述补偿装置包括:
感测电路,用于在显示面板处于预设显示状态时,感测像素电路中驱动晶体管对应的预设迁移率补偿值;
补偿电路,用于根据预设迁移率补偿值,将驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,目标迁移率补偿值与预设迁移率补偿值之间的差值小于阈值;
补偿电路还用于基于目标迁移率补偿值,在显示面板处于非显示状态时,按照预设的补偿方式对驱动晶体管的迁移率进行补偿。
具体地,上述预设显示状态可具体为模拟实际显示状态的一种显示状态,即:将显示面板处于预设显示状态时的工作条件,与显示面板处于实际显示状态时的工作条件相同。在将显示面板处于预设显示状态时,感测电路感测显示面板包括的像素电路中驱动晶体管对应的预设迁移率补偿值,该预设迁移率补偿值反应驱动晶体管在当前预设显示状态下,需要补偿的迁移率补偿值。
在得到所述预设迁移率补偿值后,补偿电路可对驱动晶体管对应的初始迁移率补偿值进行调节,将初始迁移率补偿值调节为目标迁移率补偿值,该目标迁移率补偿值与预设迁移率补偿值之间的差值小于阈值。该阈值可根据实际需要设置,示例性的,该阈值可为0。
在得到目标迁移率补偿值之后,将显示面板处于非显示状态,补偿电路还用于基于目标迁移率补偿值,按照预设的补偿方式对驱动晶体管的迁移率进行预设补偿,使得显示面板在处于实际显示状态时,经过预设补偿后的驱动晶体管的迁移率更接近预设标准迁移率。
本公开实施例提供的像素驱动电路的补偿装置中,先将显示面板处于与实际显示状态相同工作条件的预设显示状态,以使像素电路中的驱动晶体管的特性参数,与实际显示状态下像素电路中的驱动晶体管的特性参数相同或接近,然后感测电路感测像素电路中驱动晶体管在该预设显示状态下对应的预设迁移率补偿值;接着补偿电路根据预设迁移率补偿值,将驱动晶体管对应的初始迁移率补偿值调节为与预设迁移率补偿值之间的差值小于阈值的目标迁移率补偿值,然后补偿电路再基于目标迁移率补偿值,在显示面板处于 非显示状态的情况下,按照预设的补偿方式对驱动晶体管的迁移率进行预设补偿;因此采用本公开实施例提供的像素驱动电路的补偿装置进行预设补偿时,在按照预设的补偿方式对驱动晶体管的迁移率进行补偿之后,驱动晶体管对应的迁移率与实际显示时需要的预设标准迁移率接近或相同,这样在显示面板处于实际显示状态时,在显示面板的点亮初期驱动晶体管对应的迁移率与实际显示时需要的预设标准迁移率接近或相同,从而避免了在对显示面板进行实时亮度补偿时,显示面板的亮度变化较大,导致出现显示面板的显示亮度不稳定(亮度上升或者亮度下降)的问题。
在一些实施例中,上述实施例提供的补偿电路还用于:
在按照预设的补偿方式对驱动晶体管的迁移率进行补偿之后,在显示面板处于实际显示状态时,通过补偿像素电路接收的数据信号,对像素电路中的驱动晶体管的迁移率进行实时补偿。
具体地,由于显示面板在处于实际显示状态时,随着显示时间的延长,显示面板的温度会发生变化,受到面板温度的影响,驱动晶体管的特性参数会继续产生漂移现象,从而对显示面板的显示亮度均一性产生影响,为了避免该问题,在按照预设的补偿方式对驱动晶体管的迁移率进行补偿之后,在将显示面板置于实际显示状态时,补偿电路还可继续对驱动晶体管进行实时亮度补偿,这样即使在实际显示状态下,驱动晶体管的特性参数漂移较大,也能够通过对驱动晶体管的特性参数进行补偿,保证显示面板的显示亮度均一性。
由于显示面板在实际显示时,是通过向驱动晶体管的栅极写入数据信号,驱动晶体管在数据信号的作用下,产生对应的驱动电流,从而驱动对应的发光单元发光;因此,在显示面板处于实际显示状态时,可通过对像素电路中驱动晶体管的栅极接收的数据信号进行补偿,然后再将补偿后的数据信号写入驱动晶体管的栅极,从而实现对像素电路中的驱动晶体管的迁移率进行实时补偿,保证显示面板显示亮度的均一性。
如图2所示,在一些实施例中,上述实施例提供的像素电路可包括:输入晶体管T1、驱动晶体管DTFT、感测晶体管T2、第一存储电容C1、第二存 储电容C2和有机发光二极管OLED;其中输入晶体管T1的栅极与第一控制信号线Scan耦接,输入晶体管T1的第一极与数据信号线DL耦接,输入晶体管T1的第二极与驱动晶体管DTFT的栅极耦接,驱动晶体管DTFT的第一极与电源信号线ELVDD耦接,驱动晶体管DTFT的第二极与有机发光二极管OLED的阳极耦接,有机发光二极管OLED的阴极与地信号线VSS耦接;第一存储电容C1的第一端与驱动晶体管DTFT的栅极耦接,第一存储电容C1的第二端与驱动晶体管DTFT的第二极耦接,第二存储电容C2的第一端与驱动晶体管DTFT的第二极耦接,第二存储电容C2的第二端与地信号线VSS耦接,感测晶体管T2的栅极与第二控制信号线Sense耦接,感测晶体管T2的第一极与驱动晶体管DTFT的第二极耦接,感测晶体管T2的第二极与感测信号线SL耦接。
补偿电路具体用于:在显示面板处于非显示状态时,根据所述目标迁移率补偿值,控制感测晶体管的导通时间,从而控制对第二存储电容C2的充电时间。
具体地,当感测晶体管T2处于截止状态时,感测晶体管T2断开第二存储电容C2的第一端与感测信号线之间的耦接,在这种状态下,驱动晶体管DTFT能够对第二存储电容C2进行充电;当感测晶体管T2处于导通状态时,感测晶体管T2导通第二存储电容C2的第一端与感测信号线之间的耦接,在这种状态下,驱动晶体管DTFT能够停止对第二存储电容C2进行充电。
在显示面板处于非显示状态下,对驱动晶体管DTFT的迁移率进行补偿时,随着对第二存储电容C2的充电时间的增加,第二存储电容C2上的电荷会增多,使得第二存储电容C2的充电电压增大,而迁移率补偿值与充电电压有着负相关的关系,即充电电压越大,迁移率补偿值越小,充电电压越小,迁移率补偿值越大;因此通过控制对第二存储电容C2的充电时间,能够控制驱动晶体管DTFT的电子迁移率,从而实现基于目标迁移率补偿值对驱动晶体管DTFT的迁移率进行补偿。
在一些实施例中,当初始迁移率补偿值大于目标迁移率补偿值时,在显示面板处于非显示状态时,补偿电路用于减小感测晶体管T2的导通时间,增加对第二存储电容C2的充电时间;或,当初始迁移率补偿值小于目标迁移率 补偿值时,在显示面板处于非显示状态时,补偿电路用于增加感测晶体管T2的导通时间,减小对第二存储电容C2的充电时间。
在一些实施例中,上述实施例提供的感测电路还用于在将显示面板处于预设显示状态之前,将显示面板置于非显示状态,并在该非显示状态感测像素电路中驱动晶体管对应的初始阈值电压;
补偿电路还用于根据初始阈值电压,得到初始补偿测试信号,并将该初始补偿测试信号写入驱动晶体管的栅极;
感测电路还用于感测得到驱动晶体管对应的初始迁移率;
补偿电路还用于根据预设标准迁移率和初始迁移率,得到初始迁移率补偿值。
具体地,当像素电路采用上述具体结构时,上述感测电路将显示面板置于非显示状态,并在该非显示状态感测像素电路中驱动晶体管对应的初始阈值电压的步骤具体包括:通过由第一控制信号线Scan输入的第一控制信号控制输入晶体管T1导通,通过由第二控制信号线Sense输入的第二控制信号控制输入晶体管T2截止,数据信号线DL写入测试数据信号,测试数据信号经输入晶体管T1传输至驱动晶体管DTFT的栅极G,将驱动晶体管DTFT的栅极G的电压变为Vg,驱动晶体管DTFT的输出电极(即源极S)具有初始化电压V 0;当驱动晶体管DTFT的栅极和源极的电压差Vgs大于驱动晶体管DTFT的阈值电压时,驱动晶体管DTFT导通,产生驱动电流I oled,驱动电流为第二存储电容C2充电,且随着充电时间的增加,驱动晶体管DTFT的源极电位不断升高,直至驱动晶体管DTFT处于截止状态,驱动晶体管DTFT的源极电位不再升高,停止对第二存储电容C2充电;此时通过由第二控制信号线Sense输入的第二控制信号控制感测晶体管T2导通,通过感测信号线SL感测驱动晶体管DTFT的源极的电压Vs(即感测电压),则可得到驱动晶体管DTFT的初始阈值电压Vth=Vg-Vs。
上述补偿电路根据初始阈值电压,得到初始补偿测试信号的步骤具体包括:确定所述补偿测试信号Vdata1为:
Vdata1=GL+Vth;其中,GL为固定值,Vth为驱动晶体管的初始阈值电 压。
上述驱动晶体管DTFT的初始阈值电压Vth、初始迁移率K和驱动电流I oled满足如下公式:
Figure PCTCN2020084645-appb-000006
其中,Cox为栅氧化层电容,W/L为驱动晶体管DTFT沟道区的宽长比,Vgs为驱动晶体管DTFT的栅源电压。
补偿电路将所述补偿测试信号Vdata1写入驱动晶体管DTFT的栅极时,产生的驱动电流I oled为:
Figure PCTCN2020084645-appb-000007
将Vdata1=GL+Vth代入上述公式后可得:
Figure PCTCN2020084645-appb-000008
通过驱动电流I oled为第二存储电容进行充电,经过充电时间T后,感测电路通过感测信号线SL感测驱动晶体管DTFT的源极的电压Vs(即第二存储电容的充电电压),根据充电时间T和当前源极的电压Vs,得到I oled为:
Figure PCTCN2020084645-appb-000009
其中,C'为第二存储电容C2的容值,该第二存储电容C2可为寄生电容。
接着补偿电路可再根据预设标准迁移率K 0得到迁移率的初始补偿值K',即:
Figure PCTCN2020084645-appb-000010
本公开实施例还提供了一种显示设备,包括上述实施例提供的像素电路的补偿装置。
由于采用上述实施例提供的像素驱动电路的补偿方法进行预设补偿时,能够避免在对显示面板进行实时亮度补偿时,显示面板的亮度变化较大,导致出现显示面板的显示亮度不稳定(亮度上升或者亮度下降)的问题;因此,本公开实施例提供的显示设备在包括上述实施例提供的像素电路的补偿装置时,同样能够实现上述有益效果,此处不再赘述。
本公开实施例还提供了一种像素电路的补偿装置,种像素电路的补偿装 置,所述像素电路应用于显示面板,所述补偿装置包括:存储器和执行器,所述执行器用于执行存储在所述存储器中的下述指令:在所述显示面板处于预设显示状态时,感测所述像素电路中驱动晶体管对应的预设迁移率补偿值;根据所述预设迁移率补偿值,将所述驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,所述目标迁移率补偿值与所述预设迁移率补偿值之间的差值小于或等于阈值;基于所述目标迁移率补偿值,在所述显示面板处于非显示状态时,按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿。本公开实施例的像素电路的补偿装置可用于实施上述实施例提供的补偿方法,为描述的方便和简洁,本公开实施例的像素电路的补偿装置的具体工作过程可以参考前述方法实施例中的对应过程,在此不再赘述。
需要说明的是,所述显示设备可以为:电视、显示器、数码相框、手机、平板电脑等任何具有显示功能的产品或部件。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护 范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种像素电路的补偿方法,所述像素电路应用于显示面板,其中,所述补偿方法包括:
    在所述显示面板处于预设显示状态时,感测所述像素电路中驱动晶体管对应的预设迁移率补偿值;
    根据所述预设迁移率补偿值,将所述驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,所述目标迁移率补偿值与所述预设迁移率补偿值之间的差值小于或等于阈值;
    基于所述目标迁移率补偿值,在所述显示面板处于非显示状态时,按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿。
  2. 根据权利要求1所述的像素电路的补偿方法,其中,所述补偿方法还包括:在按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿之后,在所述显示面板处于实际显示状态时,通过补偿像素电路接收的数据信号,对所述像素电路中的驱动晶体管的迁移率进行实时补偿。
  3. 根据权利要求1或2所述的像素电路的补偿方法,其中,所述像素电路包括:输入晶体管、驱动晶体管、感测晶体管、第一存储电容、第二存储电容和有机发光二极管;其中所述输入晶体管的栅极与第一控制信号线耦接,所述输入晶体管的第一极与数据信号线耦接,所述输入晶体管的第二极与驱动晶体管的栅极耦接,所述驱动晶体管的第一极与电源信号线耦接,所述驱动晶体管的第二极与所述有机发光二极管的阳极耦接,所述有机发光二极管的阴极与地信号线耦接;所述第一存储电容的第一端与所述驱动晶体管的栅极耦接,所述第一存储电容的第二端与所述驱动晶体管的第二极耦接,所述第二存储电容的第一端与所述驱动晶体管的第二极耦接,所述第二存储电容的第二端与所述地信号线耦接,所述感测晶体管的栅极与第二控制信号线耦接,所述感测晶体管的第一极与所述驱动晶体管的第二极耦接,所述感测晶体管的第二极与感测信号线耦接;所述基于所述目标迁移率补偿值,在所述显示面板处于非显示状态时,按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿的步骤具体包括:
    在所述显示面板处于所述非显示状态时,根据所述目标迁移率补偿值,控制感测晶体管的导通时间,从而控制对第二存储电容的充电时间。
  4. 根据权利要求3所述的像素电路的补偿方法,其中,
    当所述初始迁移率补偿值大于所述目标迁移率补偿值时,在所述显示面板处于非显示状态时,减小感测晶体管的导通时间,增加对第二存储电容的充电时间;或,
    当所述初始迁移率补偿值小于所述目标迁移率补偿值时,在所述显示面板处于非显示状态时,增加感测晶体管的导通时间,减小对第二存储电容的充电时间。
  5. 根据权利要求3所述的像素电路的补偿方法,其中,所述补偿方法还包括:在将所述显示面板处于预设显示状态之前,获取所述初始迁移率补偿值的步骤,该步骤具体包括:
    将所述显示面板置于非显示状态,并在该非显示状态感测所述像素电路中驱动晶体管对应的初始阈值电压;
    根据所述初始阈值电压,得到初始补偿测试信号;
    将该初始补偿测试信号写入所述驱动晶体管的栅极,并感测得到所述驱动晶体管对应的初始迁移率;
    根据预设标准迁移率和所述初始迁移率,得到所述初始迁移率补偿值。
  6. 根据权利要求1所述的像素电路的补偿方法,其中,所述预设显示状态为模拟实际显示状态的一种显示状态,使得所述显示面板处于所述预设显示状态时的工作条件与所述显示面板处于实际显示状态时的工作条件相同;
    所述预设迁移率补偿值反应所述驱动晶体管在所述预设显示状态下需要补偿的迁移率补偿值。
  7. 根据权利要求1所述的像素电路的补偿方法,其中,所述非显示状态包括关机状态;所述关机状态是指所述显示面板不显示画面,但所述显示面板中的像素电路可处于工作状态。
  8. 一种像素电路的补偿装置,所述像素电路应用于显示面板,所述补偿装置包括:
    感测电路,用于在所述显示面板处于预设显示状态时,感测所述像素电 路中驱动晶体管对应的预设迁移率补偿值;
    补偿电路,用于根据所述预设迁移率补偿值,将所述驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,所述目标迁移率补偿值与所述预设迁移率补偿值之间的差值小于或等于阈值;
    所述补偿电路还用于基于所述目标迁移率补偿值,在所述显示面板处于非显示状态时,按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿。
  9. 根据权利要求8所述的像素电路的补偿装置,其中,所述补偿电路还用于:
    在按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿之后,在所述显示面板处于实际显示状态时,通过补偿像素电路接收的数据信号,对所述像素电路中的驱动晶体管的迁移率进行实时补偿。
  10. 根据权利要求8或9所述的像素电路的补偿装置,其中,所述像素电路包括:输入晶体管、驱动晶体管、感测晶体管、第一存储电容、第二存储电容和有机发光二极管;其中所述输入晶体管的栅极与第一控制信号线耦接,所述输入晶体管的第一极与数据信号线耦接,所述输入晶体管的第二极与驱动晶体管的栅极耦接,所述驱动晶体管的第一极与电源信号线耦接,所述驱动晶体管的第二极与所述有机发光二极管的阳极耦接,所述有机发光二极管的阴极与地信号线耦接;所述第一存储电容的第一端与所述驱动晶体管的栅极耦接,所述第一存储电容的第二端与所述驱动晶体管的第二极耦接,所述第二存储电容的第一端与所述驱动晶体管的第二极耦接,所述第二存储电容的第二端与所述地信号线耦接,所述感测晶体管的栅极与第二控制信号线耦接,所述感测晶体管的第一极与所述驱动晶体管的第二极耦接,所述感测晶体管的第二极与感测信号线耦接;
    所述补偿电路具体用于:
    在所述显示面板处于所述非显示状态时,根据所述目标迁移率补偿值,控制感测晶体管的导通时间,从而控制对第二存储电容的充电时间。
  11. 根据权利要求10所述的像素电路的补偿装置,其中,所述感测电路还用于在将所述显示面板处于预设显示状态之前,将所述显示面板置于非显示状态,并在该非显示状态感测所述像素电路中驱动晶体管对应的初始阈值 电压;
    所述补偿电路还用于根据所述初始阈值电压,得到初始补偿测试信号,并将该初始补偿测试信号写入所述驱动晶体管的栅极;
    所述感测电路还用于感测得到所述驱动晶体管对应的初始迁移率;
    所述补偿电路还用于根据预设标准迁移率和所述初始迁移率,得到所述初始迁移率补偿值。
  12. 根据权利要求8所述的像素装置,其中,所述预设显示状态为模拟实际显示状态的一种显示状态,使得所述显示面板处于所述预设显示状态时的工作条件与所述显示面板处于实际显示状态时的工作条件相同;
    所述预设迁移率补偿值反应所述驱动晶体管在所述预设显示状态下需要补偿的迁移率补偿值。
  13. 根据权利要求8所述的像素装置,其中,所述非显示状态包括关机状态;所述关机状态是指所述显示面板不显示画面,但所述显示面板中的像素电路可处于工作状态。
  14. 一种显示设备,包括如权利要求8~13中任一项所述的像素电路的补偿装置。
  15. 一种像素电路的补偿装置,所述像素电路应用于显示面板,所述补偿装置包括:存储器和执行器,所述执行器用于执行存储在所述存储器中的下述指令:
    在所述显示面板处于预设显示状态时,感测所述像素电路中驱动晶体管对应的预设迁移率补偿值;
    根据所述预设迁移率补偿值,将所述驱动晶体管对应的初始迁移率补偿值调节为目标迁移率补偿值,所述目标迁移率补偿值与所述预设迁移率补偿值之间的差值小于或等于阈值;
    基于所述目标迁移率补偿值,在所述显示面板处于非显示状态时,按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿。
  16. 根据权利要求15所述的像素电路的补偿装置,其中,所述执行器进一步用于执行存储在所述存储器中的下述指令:
    在按照预设的补偿方式对所述驱动晶体管的迁移率进行补偿之后,在所 述显示面板处于实际显示状态时,通过补偿像素电路接收的数据信号,对所述像素电路中的驱动晶体管的迁移率进行实时补偿。
  17. 根据权利要求15或16所述的像素电路的补偿装置,其中,所述像素电路包括:输入晶体管、驱动晶体管、感测晶体管、第一存储电容、第二存储电容和有机发光二极管;其中所述输入晶体管的栅极与第一控制信号线耦接,所述输入晶体管的第一极与数据信号线耦接,所述输入晶体管的第二极与驱动晶体管的栅极耦接,所述驱动晶体管的第一极与电源信号线耦接,所述驱动晶体管的第二极与所述有机发光二极管的阳极耦接,所述有机发光二极管的阴极与地信号线耦接;所述第一存储电容的第一端与所述驱动晶体管的栅极耦接,所述第一存储电容的第二端与所述驱动晶体管的第二极耦接,所述第二存储电容的第一端与所述驱动晶体管的第二极耦接,所述第二存储电容的第二端与所述地信号线耦接,所述感测晶体管的栅极与第二控制信号线耦接,所述感测晶体管的第一极与所述驱动晶体管的第二极耦接,所述感测晶体管的第二极与感测信号线耦接;
    所述执行器进一步用于执行存储在所述存储器中的下述指令:在所述显示面板处于所述非显示状态时,根据所述目标迁移率补偿值,控制感测晶体管的导通时间,从而控制对第二存储电容的充电时间。
  18. 根据权利要求17所述的像素电路的补偿装置,其中,当所述初始迁移率补偿值大于所述目标迁移率补偿值时,在所述显示面板处于非显示状态时,减小感测晶体管的导通时间,增加对第二存储电容的充电时间;或,
    当所述初始迁移率补偿值小于所述目标迁移率补偿值时,在所述显示面板处于非显示状态时,增加感测晶体管的导通时间,减小对第二存储电容的充电时间。
  19. 根据权利要求17所述的像素电路的补偿装置,其中,所述执行器进一步用于执行存储在所述存储器中的下述指令:
    在将所述显示面板处于预设显示状态之前,
    将所述显示面板置于非显示状态,并在该非显示状态感测所述像素电路中驱动晶体管对应的初始阈值电压;
    根据所述初始阈值电压,得到初始补偿测试信号;
    将该初始补偿测试信号写入所述驱动晶体管的栅极,并感测得到所述驱动晶体管对应的初始迁移率;
    根据预设标准迁移率和所述初始迁移率,得到所述初始迁移率补偿值。
  20. 根据权利要求15所述的像素电路的补偿装置,其中,所述预设显示状态为模拟实际显示状态的一种显示状态,使得所述显示面板处于所述预设显示状态时的工作条件与所述显示面板处于实际显示状态时的工作条件相同;
    所述预设迁移率补偿值反应所述驱动晶体管在所述预设显示状态下需要补偿的迁移率补偿值。
  21. 根据权利要求15所述的像素电路的补偿装置,其中,所述非显示状态包括关机状态;所述关机状态是指所述显示面板不显示画面,但所述显示面板中的像素电路可处于工作状态。
PCT/CN2020/084645 2019-06-24 2020-04-14 像素电路的补偿方法、装置、显示设备 WO2020259005A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/044,249 US11302254B2 (en) 2019-06-24 2020-04-14 Pixel circuit compensation method and device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910548785.9 2019-06-24
CN201910548785.9A CN110264957B (zh) 2019-06-24 2019-06-24 一种像素电路的补偿方法、装置、显示设备

Publications (1)

Publication Number Publication Date
WO2020259005A1 true WO2020259005A1 (zh) 2020-12-30

Family

ID=67920785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084645 WO2020259005A1 (zh) 2019-06-24 2020-04-14 像素电路的补偿方法、装置、显示设备

Country Status (3)

Country Link
US (1) US11302254B2 (zh)
CN (1) CN110264957B (zh)
WO (1) WO2020259005A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110264957B (zh) 2019-06-24 2021-01-26 京东方科技集团股份有限公司 一种像素电路的补偿方法、装置、显示设备
CN110767132B (zh) * 2019-10-25 2021-02-02 深圳市华星光电半导体显示技术有限公司 Tft电性侦测校正方法、装置、系统及显示装置
CN111028775B (zh) * 2019-12-18 2021-01-15 深圳市华星光电半导体显示技术有限公司 像素驱动电路及其迁移率校正方法、显示装置
CN111627384B (zh) * 2020-05-14 2022-09-09 深圳市华星光电半导体显示技术有限公司 显示画面补偿方法、装置、电子设备及存储介质
KR20210153172A (ko) * 2020-06-09 2021-12-17 삼성디스플레이 주식회사 유기 발광 표시 장치, 및 유기 발광 표시 장치의 구동 방법
CN111583864B (zh) 2020-06-11 2021-09-03 京东方科技集团股份有限公司 显示驱动电路及其驱动方法、显示装置
CN111583872B (zh) * 2020-06-11 2021-03-12 京东方科技集团股份有限公司 像素补偿装置及像素补偿方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130037081A (ko) * 2011-10-05 2013-04-15 엘지디스플레이 주식회사 유기발광 다이오드 표시장치
CN103187021A (zh) * 2011-12-29 2013-07-03 乐金显示有限公司 发光显示装置及其驱动方法
KR20140082498A (ko) * 2012-12-24 2014-07-02 엘지디스플레이 주식회사 유기 발광 디스플레이 장치와 이의 구동 방법
CN109119026A (zh) * 2018-09-29 2019-01-01 京东方科技集团股份有限公司 一种像素电路数据信号补偿方法、装置及显示面板
CN109308877A (zh) * 2017-07-27 2019-02-05 乐金显示有限公司 电致发光显示装置及其驱动方法
CN109493805A (zh) * 2018-12-12 2019-03-19 合肥鑫晟光电科技有限公司 一种显示面板的补偿方法和装置
CN110264957A (zh) * 2019-06-24 2019-09-20 京东方科技集团股份有限公司 一种像素电路的补偿方法、装置、显示设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078582A (ja) * 2004-09-07 2006-03-23 Hitachi Displays Ltd 表示装置
JP4930501B2 (ja) * 2008-12-22 2012-05-16 ソニー株式会社 表示装置および電子機器
KR101661016B1 (ko) * 2013-12-03 2016-09-29 엘지디스플레이 주식회사 유기발광 표시장치와 그의 화질 보상방법
KR102233719B1 (ko) 2014-10-31 2021-03-30 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치 및 그 구동 방법
CN104778925B (zh) * 2015-05-08 2019-01-01 京东方科技集团股份有限公司 Oled像素电路、显示装置及控制方法
KR102406975B1 (ko) * 2015-05-29 2022-06-13 엘지디스플레이 주식회사 패널 결함 검출 방법 및 유기발광표시장치
KR102458503B1 (ko) 2015-11-03 2022-10-26 엘지디스플레이 주식회사 원격 보상 서비스 제공 방법, 원격 보상 서비스 시스템, 유기발광표시장치 및 원격 보상 서버
KR102460302B1 (ko) 2015-12-31 2022-10-27 엘지디스플레이 주식회사 유기발광소자 표시장치 및 이의 구동방법
KR20180025399A (ko) * 2016-08-30 2018-03-09 엘지디스플레이 주식회사 유기전계발광표시장치 및 이의 구동방법
KR102522478B1 (ko) * 2016-11-25 2023-04-17 엘지디스플레이 주식회사 유기발광표시장치 및 그의 구동방법
KR102617966B1 (ko) 2016-12-28 2023-12-28 엘지디스플레이 주식회사 전계 발광 표시 장치와 그 구동 방법
KR102640245B1 (ko) * 2016-12-30 2024-02-26 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치의 데이터 보상 방법
CN107093403B (zh) * 2017-06-30 2019-03-15 深圳市华星光电技术有限公司 用于oled显示面板的像素驱动电路的补偿方法
KR102388662B1 (ko) * 2017-11-24 2022-04-20 엘지디스플레이 주식회사 전계 발광 표시장치와 그 구동 방법
CN107767814B (zh) * 2017-11-27 2020-02-21 合肥鑫晟光电科技有限公司 像素电路、显示装置和双栅驱动晶体管
CN107886897B (zh) * 2017-11-29 2020-06-19 武汉天马微电子有限公司 一种像素电路及显示装置
CN107863067A (zh) * 2017-12-05 2018-03-30 京东方科技集团股份有限公司 显示装置、像素电路及其补偿方法和补偿装置
CN109119025B (zh) * 2018-09-28 2021-04-06 京东方科技集团股份有限公司 电压补偿方法及装置、显示面板
CN109727578A (zh) 2018-12-14 2019-05-07 合肥鑫晟光电科技有限公司 显示装置的补偿方法、装置和显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130037081A (ko) * 2011-10-05 2013-04-15 엘지디스플레이 주식회사 유기발광 다이오드 표시장치
CN103187021A (zh) * 2011-12-29 2013-07-03 乐金显示有限公司 发光显示装置及其驱动方法
KR20140082498A (ko) * 2012-12-24 2014-07-02 엘지디스플레이 주식회사 유기 발광 디스플레이 장치와 이의 구동 방법
CN109308877A (zh) * 2017-07-27 2019-02-05 乐金显示有限公司 电致发光显示装置及其驱动方法
CN109119026A (zh) * 2018-09-29 2019-01-01 京东方科技集团股份有限公司 一种像素电路数据信号补偿方法、装置及显示面板
CN109493805A (zh) * 2018-12-12 2019-03-19 合肥鑫晟光电科技有限公司 一种显示面板的补偿方法和装置
CN110264957A (zh) * 2019-06-24 2019-09-20 京东方科技集团股份有限公司 一种像素电路的补偿方法、装置、显示设备

Also Published As

Publication number Publication date
US20210272519A1 (en) 2021-09-02
CN110264957A (zh) 2019-09-20
CN110264957B (zh) 2021-01-26
US11302254B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2020259005A1 (zh) 像素电路的补偿方法、装置、显示设备
CN108470539B (zh) 一种像素电路及其驱动方法、显示面板和显示装置
US10769998B2 (en) Pixel circuit and driving method thereof, array substrate, and display panel
US9870082B2 (en) Pixel driver circuit, pixel driving method, pixel circuit and display device
JP5063433B2 (ja) 表示装置
US20210327347A1 (en) Pixel circuit and driving method thereof, and display panel
WO2015188520A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2020151657A1 (zh) 像素电路、像素驱动方法和显示装置
WO2019184266A1 (zh) Amoled像素驱动电路、驱动方法及终端
US20170263180A1 (en) Display panel, method for driving the same and display device
WO2016101504A1 (zh) 一种像素电路、有机电致发光显示面板及显示装置
US10657883B2 (en) Pixel driving circuit, driving method, array substrate and display apparatus
WO2017117932A1 (zh) 像素补偿电路及主动式有机发光二极管显示装置
KR101576405B1 (ko) 외부 보상 감지 회로와 그 감지 방법 및 디스플레이 디바이스
EP3220380A1 (en) Pixel circuit, organic electroluminescence display panel, and display device and driving method therefor
WO2018233599A1 (zh) 像素电路及其驱动方法、阵列基板和显示装置
WO2020181515A1 (zh) 像素电路及其驱动方法、显示装置
WO2016150232A1 (zh) 像素电路及其驱动方法、显示装置
WO2020192278A1 (zh) 像素电路及其驱动方法、显示基板、显示装置
WO2019109673A1 (zh) 像素电路及其驱动方法、显示面板和显示设备
WO2015188533A1 (zh) 像素驱动电路、驱动方法、阵列基板及显示装置
WO2014173026A1 (zh) 外部补偿感应电路及其感应方法、显示装置
WO2015180278A1 (zh) 像素电路及其驱动方法、显示装置
WO2020155902A1 (zh) 像素驱动电路、像素驱动方法和显示装置
JP2012242838A (ja) 画素ユニット回路及びoled表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832666

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20832666

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20832666

Country of ref document: EP

Kind code of ref document: A1