WO2020253441A1 - 一种主动控制抗蛇行减振器及减振系统、车辆 - Google Patents

一种主动控制抗蛇行减振器及减振系统、车辆 Download PDF

Info

Publication number
WO2020253441A1
WO2020253441A1 PCT/CN2020/090834 CN2020090834W WO2020253441A1 WO 2020253441 A1 WO2020253441 A1 WO 2020253441A1 CN 2020090834 W CN2020090834 W CN 2020090834W WO 2020253441 A1 WO2020253441 A1 WO 2020253441A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
shock absorber
branch
active control
valve
Prior art date
Application number
PCT/CN2020/090834
Other languages
English (en)
French (fr)
Inventor
王旭
孔海朋
曹晓宁
张振先
梁海啸
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to EP20827428.2A priority Critical patent/EP3988814A4/en
Priority to AU2020297373A priority patent/AU2020297373B2/en
Priority to JP2021568945A priority patent/JP7383730B2/ja
Priority to US17/602,811 priority patent/US11859689B2/en
Priority to CA3137609A priority patent/CA3137609A1/en
Publication of WO2020253441A1 publication Critical patent/WO2020253441A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/056Regulating distributors or valves for hydropneumatic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G99/00Subject matter not provided for in other groups of this subclass
    • B60G99/002Suspension details of the suspension of the vehicle body on the vehicle chassis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • B61F5/245Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes by active damping, i.e. with means to vary the damping characteristics in accordance with track or vehicle induced reactions, especially in high speed mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/463Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall characterised by electrical connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/465Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall using servo control, the servo pressure being created by the flow of damping fluid, e.g. controlling pressure in a chamber downstream of a pilot passage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/154Fluid spring with an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/08Sensor arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/22Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/20Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with the piston-rod extending through both ends of the cylinder, e.g. constant-volume dampers

Definitions

  • the invention relates to the technical field of shock absorbers, in particular to an active control anti-snaking shock absorber, a vibration reduction system, and a vehicle.
  • the anti-snaking shock absorber is an important part of the suspension system. Its main function is to generate a slewing damping force between the bogie frame and the car body and consume the vibration energy between the two, thereby suppressing the snake vibration.
  • the anti-snaking shock absorber is a key component that affects the stability of train operation. When the train runs in different conditions, the parameter requirements of the shock absorber are also different. According to the principle of damping, the traditional anti-snaking shock absorber is a passive anti-snaking shock absorber. The characteristic curve of the traditional passive shock absorber is fixed, and its performance parameters cannot be adjusted in real time according to the train demand.
  • the traditional passive shock absorbers are fixed and unadjustable due to their performance parameters, which cannot keep the train suspension system in the best matching state according to the train operation requirements.
  • the demand for the parameters of the shock absorber is becoming more and more diverse, and it is difficult for the traditional passive shock absorber to be compatible with the needs of different lines.
  • the parameter requirements of anti-snaking shock absorbers are not the same.
  • the cone of new wheels is smaller, and the anti-snaking shock absorber mainly exhibits stiffness characteristics; as the operating mileage increases, the wheel taper becomes larger, and more anti-snaking shock absorbers are required to show damping characteristics.
  • traditional passive shock absorbers have fixed and non-adjustable performance parameters, and it is also difficult to achieve the purpose of extending the repair cycle and reducing operating costs.
  • the embodiment of the present invention provides an active control anti-snaking shock absorber and a vibration damping system, and a vehicle to solve the problem that the traditional anti-snaking shock absorber in the prior art cannot adjust its performance parameters and causes the vehicle to run in a curve.
  • Various defects are possible.
  • an active control anti-snaking shock absorber which includes a hydraulic cylinder and a piston.
  • the inside of the hydraulic cylinder is divided into two cylinders.
  • Body further comprising an oil storage tank and a reversing valve, the two cylinders are respectively connected to the oil storage tank through two main oil passages to form a main circuit; the reversing valve is installed in the two main oil passages Between it and the oil storage tank, it can change the flow direction of the main circuit when the shock absorber is in the active mode, and can adjust the displacement of the piston in the hydraulic cylinder.
  • the two cylinders communicate with the reversing valve through two main oil passages respectively, and the reversing valve communicates with the oil storage tank through two driving oil passages, respectively.
  • the valve has at least two switchable working positions.
  • the reversing valve includes a first working position and a second working position.
  • the first working position and the second working position are each provided with two diversion ports, and the two guides
  • the flow port is used to connect the two main oil passages; the positions of the two diversion ports of the first working position and the two diversion ports of the second working position are opposite.
  • the shock absorber further includes a driving mechanism, and the driving mechanism is connected in series with any of the driving oil circuits.
  • the driving mechanism includes a driving motor and a driving pump, and the driving pump is connected in series with the driving oil circuit and connected with the driving motor.
  • the shock absorber further includes an energy storage branch, one end of the energy storage branch communicates with the drive oil circuit and is located between the reversing valve and the drive mechanism.
  • the other end of the energy storage branch is in communication with the oil storage tank, and a pressure sensor, an accumulator and a pressure relief valve are connected in series on the energy storage branch.
  • At least one pressure relief branch is connected between the two main oil circuits, each of the pressure relief branches is connected in parallel, and each pressure relief branch is connected in series with a pressure relief valve. .
  • the shock absorber further includes at least two parallel branches, both ends of each branch are connected to the two main oil circuits, and each branch includes a series connected
  • the one-way throttle valve and the adjustable solenoid valve are used to adjust the damping coefficient of the shock absorber when the shock absorber is in the semi-active mode.
  • the branch includes a first branch and a second branch, one end of the first branch and one end of the second branch are connected in parallel to the first node, and the first branch The other end of the second branch and the other end of the second branch are connected in parallel to the second node, and the first node and the second node are respectively connected to the two main oil circuits; the first branch is connected to the The flow direction of the second branch is opposite.
  • the first fulcrum and the second fulcrum are respectively communicated with the oil storage tank through the oil storage path, and each of the oil storage paths is connected in series with a throttle valve.
  • a pressure relief oil circuit is also connected between the first fulcrum and the oil storage tank, and the pressure relief oil circuit is connected in parallel with each of the oil storage circuits, and the pressure relief oil circuit is installed in series There is a pressure relief valve.
  • the emergency oil circuit further includes an emergency oil circuit. Both ends of the emergency oil circuit are respectively connected to the two main oil circuits.
  • the emergency oil circuit includes an emergency throttle valve connected in series and a non-adjustable electromagnetic switch. The solenoid switch valve is used to control the emergency oil circuit to start when the shock absorber is in the passive mode.
  • the present invention provides a damping system including a controller and at least one active control anti-snaking damper as described above mounted on a bogie, and a signal input terminal and a signal output terminal of the controller Respectively connected with each of the shock absorbers.
  • the system further includes a data acquisition mechanism, the data acquisition mechanism includes a pressure sensor and a displacement sensor, the two cylinders of the hydraulic cylinder are respectively provided with the pressure sensor, and the displacement sensor is installed in On the piston, the pressure sensor and the displacement sensor are respectively connected to the signal input end of the controller.
  • the present invention provides a vehicle including the above-mentioned vibration reduction system.
  • the piston of the active control anti-snaking damper provided by the present invention reciprocates in the hydraulic cylinder
  • the inside of the hydraulic cylinder is divided into two cylinders, and the two cylinders respectively pass through two main oil passages and the reservoir.
  • the oil tank is connected to form a main circuit between the hydraulic cylinder and the oil storage tank; the reversing valve is installed between the two main oil circuits and the oil storage tank to change the flow direction of the main circuit when the shock absorber is in active mode. And can adjust the displacement of the piston in the hydraulic cylinder.
  • the piston displacement is changed by the oil pressure difference between the two cylinders in the hydraulic cylinder, thereby solving the problems caused by the inability to adjust the performance parameters of the traditional anti-snaking shock absorber in the prior art.
  • This kind of defect especially when the vehicle is running in a curve, the bogie is in a radial position relative to the car body, thereby increasing the curve passing speed of the train, reducing wheel/rail wear, and prolonging the service life of the vehicle.
  • the damping system of the present invention includes a controller and at least one of the above-mentioned active control anti-snaking shock absorbers installed on the bogie, and the signal input terminal and the signal output terminal of the controller are respectively connected to the respective shock absorbers.
  • the controller uses the controller to calculate the current required performance parameters of the shock absorber according to the actual state of the vehicle, and then the controller transmits the control signal with the current performance parameters to the shock absorber, so as to ensure that the shock absorber can meet the vehicle operating requirements
  • real-time adjustment of various performance parameters so that the train suspension system is always in the best matching state, and can be compatible with different geographical environments, vehicle operation requirements without line requirements, and can effectively extend the vehicle repair cycle and improve the service life of the vehicle. Reduce operating costs.
  • Fig. 1 is a schematic diagram of the control structure of a vibration reduction system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the oil circuit structure of the active control anti-snaking damper according to the embodiment of the present invention
  • Fig. 3 is a schematic diagram of a branch circuit state in which the anti-snaking shock absorber is actively controlled in an active mode according to an embodiment of the present invention (1);
  • Fig. 4 is a schematic diagram of a branch state in which the anti-snaking shock absorber is actively controlled in an active mode according to an embodiment of the present invention (2);
  • FIG. 5 is a schematic diagram (1) of the branch state of the active control anti-snaking shock absorber in the semi-active mode according to the embodiment of the present invention
  • Fig. 6 is a schematic diagram of a branch state of the active control anti-snaking damper in a semi-active mode according to an embodiment of the present invention (2);
  • FIG. 7 is a schematic diagram of a branch circuit state in which the anti-snaking damper is actively controlled in a passive mode according to an embodiment of the present invention.
  • PA the first cylinder
  • PB the second cylinder
  • N1 the first node
  • N2 the second node
  • B1 the first branch; PV1, the first adjustable solenoid valve; CV1, the first one-way throttle valve;
  • B2 the second branch; PV2, the second adjustable solenoid valve; CV2, the second one-way throttle valve;
  • PA1 accumulator
  • PV3 reversing valve
  • S1 first working position
  • S2 second working position
  • FP10 oil inlet
  • BP10 oil outlet
  • RP10 oil tank port
  • the indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the pointed device or element must have a specific orientation or a specific orientation.
  • the structure and operation cannot therefore be understood as a limitation of the present invention.
  • the terms “first”, “second”, “third”, etc. are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • This embodiment provides an active control anti-snaking shock absorber 100, a vibration reduction system, and a vehicle.
  • the oil circuit control structure of the active control anti-snaking shock absorber 100 is shown in FIGS. 2 to 6.
  • the vibration reduction system includes the active control anti-snaking shock absorber 100, and the control structure of the vibration reduction system is shown in FIG. 1.
  • the vehicle includes the vibration reduction system.
  • the active control anti-snaking shock absorber 100 includes a hydraulic cylinder 1 and a piston 2.
  • the hydraulic cylinder 1 shown in Fig. 1 is in a flat state.
  • the piston 2 reciprocates left and right in the hydraulic cylinder 1.
  • the left cylinder of the piston 2 shown in Fig. 1 is the first cylinder PA
  • the right cylinder of the piston 2 is the second cylinder PB.
  • the cylinder volumes on the left and right sides of the piston 2 are equal, and when the piston 2 reciprocates in the hydraulic cylinder 1, the oil in the two sets of branches flows through the same oil path, so that the When the damping force of the vibrator is adjusted, the system is more stable.
  • the hydraulic cylinder 1 is respectively connected with an oil inlet FP10 and an oil outlet BP10, so that the oil inlet FP10 is used to deliver oil and replenish oil to the inside of the shock absorber from the outside, and the oil outlet BP10 is used to lead the excess oil out Shock absorber to ensure the balance of the oil system inside the shock absorber.
  • the active control anti-snaking shock absorber 100 also includes a reversing valve and an oil storage tank.
  • the two cylinder blocks PA and PB of the hydraulic cylinder 1 are respectively connected with the oil storage tank through two main oil passages, thereby forming a main circuit between the hydraulic cylinder 1 and the oil storage tank.
  • the piston 2 can be driven to reciprocate in the hydraulic cylinder 1.
  • a reversing valve is installed between the two main oil circuits and the oil storage tank.
  • the reversing valve is used to change the flow direction of the above-mentioned main circuit when the shock absorber is working normally and in the active mode, thereby utilizing the main
  • the change in the flow direction of the loop drives the piston 2 to reciprocate; the directional valve can also adjust the displacement of the piston in the hydraulic cylinder in real time as required, so as to realize real-time adjustment of various performance parameters according to the operation requirements of the vehicle, so that the train suspension system is always in Best match status.
  • the active control anti-snaking damper 100 of this embodiment has an active mode, which can be activated when the vehicle is moving in a curve.
  • the anti-snaking damper 100 is actively controlled to automatically enter the active mode, so that the displacement of the piston 2 can be accurately adjusted by the main circuit, so that the bogie is in a radial position relative to the car body, thereby improving the train Curve passing speed reduces wheel/rail wear and prolongs the service life of the vehicle.
  • the two cylinders PA and PB are respectively connected to the reversing valve PV3 through two main oil passages;
  • the valve PV3 communicates with the oil storage tank through two drive oil passages respectively.
  • the reversing valve PV3 has at least two switchable working positions S1 and S2, so that the switching between each working position can realize the synchronous reversal of the oil in each main oil circuit.
  • Synchronous reversal of the two main oil circuits means: when the directional valve PV3 is in one working position, the oil flow direction in the two main oil circuits is set to positive, then when the directional valve PV3 is switched to the next working position , The oil flow direction in the two main oil passages instantly becomes reversed.
  • the reversing valve PV3 includes a first working position S1 and a second working position S2.
  • the first working position S1 and the second working position S2 are respectively provided with two diversion ports for connecting the two main oil passages respectively.
  • the positions of the two diversion ports of the first working position S1 and the two diversion ports of the second working position S2 are opposite.
  • Such a setting can make the reversing valve PV3 switch the working position, originally and one of the main oil circuit
  • the connected diversion port can be immediately switched to be connected to another main oil circuit, and the other diversion port is changed in the same way, so that the diversion port originally used as the liquid inlet can be immediately switched to the liquid outlet to drive two The flow direction of the main oil circuit changes simultaneously.
  • the reversing valve PV3 is a three-position four-way solenoid valve.
  • the solenoid valve also includes a closed position.
  • the reversing valve PV3 makes two main oils If the main circuit is disconnected from the two driving oil circuits, the active control anti-snaking shock absorber 100 automatically switches to other modes.
  • the active control anti-snaking shock absorber 100 further includes a driving mechanism, which is connected in series with any driving oil circuit to provide driving force for the oil flow in the main circuit.
  • the driving mechanism includes a driving motor and a driving pump.
  • the driving pump is connected in series with the driving oil circuit and connected with the driving motor.
  • the drive motor drives the drive pump to apply pumping force to the drive oil circuit, so that the drive oil circuit where the drive mechanism is located always delivers oil to the directional valve PV3, and drives the oil in the main circuit according to the state of the directional valve PV3
  • the flow direction changes, which drives the piston 2 to reciprocate.
  • the drive pump on the right drive oil circuit produces a driving effect, pumping the oil in the oil storage tank into the reversing valve In PV3, after passing through a flow channel inside the first working position S1 of the reversing valve PV3, it flows into the main oil path on the right, and then enters the second cylinder PB of the hydraulic cylinder 1, and then drives the piston 2 to move to the left; 2
  • the oil in the first cylinder PA is pumped into the left main oil path, and then enters another flow path inside the first working position S1 of the directional valve PV3, and then the oil reverts automatically
  • the valve PV3 flows into the left drive oil circuit and finally returns to the oil storage tank.
  • the two flow passages in the first working position S1 of the reversing valve PV3 are arranged in parallel.
  • the internal structure and reversing mode of the reversing valve PV3 are given above. It should be understood that other structures can also be selected, as long as it can perform a reversing effect in the main oil circuit so as to drive the piston 2 in The reciprocating movement in the hydraulic cylinder 1 is sufficient.
  • the shock absorber further includes an energy storage branch.
  • One end of the energy storage branch is connected to the drive oil circuit and is located between the reversing valve PV3 and the drive mechanism, and the other end of the energy storage branch is communicated with the oil storage tank, so that the energy storage branch is connected in parallel to both ends of the drive mechanism.
  • An accumulator PA1 is connected in series on the energy storage branch, so that the accumulator PA1 is connected in parallel at both ends of the driving mechanism, so that when the directional valve PV3 is in the closed position (that is, the directional valve PV3 is not working), the driving mechanism and
  • the circuit formed between the accumulator PV1 is the pre-accumulation in the accumulator PA1, so that when the power of the driving pump cannot meet the dynamic requirements of the vehicle curve operation, it can be used as supplementary power to input the pre-accumulation into the driving oil circuit
  • the oil so as to supplement the kinetic energy of the oil flow in the main circuit.
  • a pressure sensor P13 in series with the energy storage branch.
  • the pressure sensor P13 can perform necessary pressure monitoring on the accumulator PA1.
  • the controller 3 can pre-set a pressure peak value F0 for the accumulator PA1.
  • the drive mechanism starts to run and drives the oil to flow into the drive oil circuit In the energy storage branch, it flows to the accumulator PA1 until the hydraulic pressure accumulated in the accumulator PA1 reaches or exceeds the peak pressure F0.
  • a pressure relief valve PRV4 is also connected in series on the accumulator branch.
  • the pressure relief valve PRV4 can limit the maximum pressure value on the accumulator branch and the accumulator PA1.
  • the shock absorber 100 in this embodiment further includes at least two parallel branches.
  • the two ends of each branch are respectively connected with the two cylinders of the hydraulic cylinder 1.
  • Each branch is equipped with an adjustable solenoid valve PV.
  • the adjustable solenoid valve PV is used to adjust the damping force of the oil passing through the branch when the shock absorber 100 is in normal operation and in the semi-active mode, thereby adjusting the damping
  • the damping coefficient of the shock absorber can then be adjusted in real time for the performance parameters of the shock absorber in normal operation to achieve the purpose of semi-active control of the shock absorber.
  • the piston 2 reciprocates in the hydraulic cylinder 1, so that an oil pressure difference is generated between the two cylinders in the hydraulic cylinder 1.
  • the oil fluid flows and switches among the branches according to the change of the oil pressure difference.
  • the adjustable solenoid valves PV1 and PV2 on the corresponding branches through which the oil flows are used to adjust the oil damping force, so as to ensure that the shock absorber 100 has a controllable damping force and a damping coefficient in the semi-active mode.
  • two parallel branches are provided on the shock absorber 100.
  • the inlet of one branch is in communication with the first cylinder PA, and the outlet is in communication with the second cylinder PB; the inlet of the other branch is in communication with the second cylinder PB, and the outlet is in communication with the first cylinder PA.
  • the oil flows in the two parallel branches in opposite directions.
  • each branch described in this embodiment includes one-way throttle valves CV1, CV2 and adjustable solenoid valves PV1, PV2 connected in series.
  • the one-way throttle valve CV1, CV2 and the adjustable solenoid valve PV1, PV2 are connected in series on the same branch, which can block the oil flowing in the reverse direction in time, and affect the flow in the branch.
  • the adjustable solenoid valves PV1 and PV2 are solenoid proportional valves, so that the damping force of the oil flowing through the branch can be adjusted more accurately.
  • three or more parallel branches can also be arranged in the shock absorber, as long as all the branches are connected in parallel, and all the branches are divided into two groups.
  • the oil in the two groups of branches The flow direction is opposite to realize the semi-active control of the shock absorber.
  • all branches include a first branch B1 and a second branch B2.
  • One end of the first branch B1 and one end of the second branch B2 are connected in parallel to the first node N1
  • the other end of the branch B1 and the other end of the second branch B2 are connected in parallel with the second node N2
  • the first node N1 and the second node N2 are respectively connected with the two cylinders of the hydraulic cylinder 1.
  • the flow directions of the first branch B1 and the second branch B2 are opposite.
  • the first branch B1 includes a first one-way throttle valve CV1 and a first adjustable solenoid valve PV1 connected in series.
  • the first one-way throttle valve CV1 restricts the oil flow direction of the first branch B1 to: after the oil flows out of the first cylinder PA, it flows through the first branch B1 and then flows back to the second cylinder PB.
  • the second branch B2 includes a second one-way throttle valve CV2 and a second adjustable solenoid valve PV2.
  • the second one-way throttle valve CV2 restricts the oil flow of the second branch B2 to the following: after the oil flows out of the second cylinder PB, it flows through the second branch B2 and then flows back to the first cylinder PA.
  • the first adjustable solenoid valve PV1 accurately adjusts the damping force of the oil in the first branch B1, and then the system damping coefficient of the shock absorber can be adjusted, so as to perform real-time and real-time performance parameters of the shock absorber. Reliable adjustment.
  • the second adjustable solenoid valve PV2 accurately adjusts the damping force of the oil in the second branch B2, which can adjust the system damping coefficient of the shock absorber, so as to perform real-time and real-time performance parameters of the shock absorber. Reliable adjustment.
  • the shock absorber of this embodiment further includes an emergency oil circuit B3. Both ends of the emergency oil circuit B3 are respectively connected with two cylinders. As shown in Fig. 5, preferably one end of the emergency oil circuit B3 is connected to the first node N1, and the other end is connected to the second node N2, so as to ensure that the emergency oil circuit B3 is connected in parallel with all other branches.
  • the emergency oil circuit B3 is equipped with a non-adjustable solenoid switch valve SV.
  • the solenoid switch valve SV is used when the shock absorber is passive In the mode, the emergency oil circuit B3 is controlled to start, so that the shock absorber can start the emergency oil circuit B3 in the event of a fault or power failure, thereby switching to the passive mode.
  • the emergency oil circuit B3 includes an emergency throttle valve TV1 and an electromagnetic switch valve SV connected in series.
  • all branches except emergency oil circuit B3 are interrupted by the one-way throttle valve and adjustable solenoid valve PV of each branch circuit, blocking the oil along the corresponding branch circuit
  • the solenoid switch valve SV in the emergency oil circuit B3 can be opened manually, or automatically jump to the start state after power failure, to ensure that the oil flowing out of the hydraulic cylinder 1 can flow through the emergency oil circuit B3 Then, it returns to the hydraulic cylinder 1 to ensure that the emergency oil circuit B3 and the hydraulic cylinder 1 form an oil emergency control circuit.
  • the emergency throttle valve TV1 of the emergency oil circuit B3 is a non-adjustable orifice, and the electromagnetic switch valve SV is not adjustable for the oil flow and damping force in the emergency oil circuit B3. Therefore, when the oil flows through the emergency oil circuit B3 and all other branches are blocked, the shock absorber is in passive mode.
  • shock absorber of this embodiment is provided with a small damping mode in addition to the above-mentioned semi-active mode and passive mode.
  • the shock absorber When the train is running in a straight line, as shown in Figure 5 and Figure 6, the shock absorber is in the semi-active mode.
  • the solenoid switch valve SV of the emergency oil circuit B3 is in a charged normally closed state, and the branches are adjustable The solenoid valves PV1 and PV2 are both in a charged state.
  • the system damping force of the shock absorber is generated by the adjustable solenoid valve PV of the hydraulic oil flowing through each branch, and the damping coefficient is controlled by the corresponding adjustable solenoid valve PV The voltage is determined.
  • the control voltage of the first adjustable solenoid valve PV1 in the first branch B1 is equal to the control voltage of the second adjustable solenoid valve PV2 in the second branch B2.
  • the shock absorber When the train is running in a curve, as shown in Figure 3 and Figure 4, the shock absorber is in the active mode. At this time, the solenoid switch valve SV of the emergency oil circuit B3 and the adjustable solenoid valves PV1 and PV2 of all branches are off. In electrical state, the drive motor and drive pump are started to start the main circuit and act as the driving source for the reciprocating movement of the piston 2. The working position is constantly switched through the reversing valve PV3 so that the oil flow direction of the main circuit is repeatedly changed at a preset frequency , Thereby driving the piston 2 to reciprocate in the hydraulic cylinder 1. At this time, the shock absorber is in a displacement control state, and the displacement of the piston 2 can be adjusted in real time through the reversing valve PV3 as required.
  • the shock absorber When the shock absorber is in passive mode, as shown in Figure 7, the shock absorber is in a fault or power-off state, and the adjustable solenoid valve PV and the one-way throttle valve of each branch stop working, thereby reducing the power of each branch.
  • the circulation state is completely blocked, and the oil is not circulating in the branch.
  • the non-adjustable solenoid switch valve SV of the emergency oil circuit B3 is activated, so that the oil flows through the emergency oil circuit B3 to form a control loop.
  • the damping force of the shock absorber is produced by the hydraulic oil flowing through the non-adjustable emergency throttle valve TV1.
  • the solenoid switch valve SV of emergency oil circuit B3 is opened, and the adjustable solenoid valves PV of all branches are opened with electricity, then all branches are not in the blocking state.
  • the damping coefficient of the adjustable solenoid valve PV on the corresponding branch is at the minimum.
  • the oil can flow from all branches including the emergency oil circuit B3. Flow through and generate damping force.
  • the damping force generated by the shock absorber is very small, and the shock absorber is regarded as a small damping mode, which is suitable for use in small damping conditions such as entry and exit transition curves.
  • the easement curve refers to a curve in which the curvature is continuously changed between a straight line and a circular curve or a circular curve and a circular curve in a plane linear shape.
  • Easement curve is one of the linear elements of the road plane. It is a curve with continuous curvature set between a straight line and a circular curve or between two circular curves with the same turning with a large difference in radius.
  • the first node N1 and the second node N2 are preferred Each is connected to the two cylinders of the hydraulic cylinder 1 through a main oil circuit, at least one pressure relief branch is connected between the two main oil circuits, and each pressure relief branch is connected in parallel. A pressure relief valve is connected in series on the pressure relief branch.
  • two pressure relief branches are connected in parallel between the two main oil circuits, and the two pressure relief branches can each have a pressure relief valve PRV1 and a pressure relief valve PRV2, a pressure relief valve PRV1 and a pressure relief valve PRV2 in series.
  • the maximum damping force of the shock absorber is separately and cooperatively limited. It can cooperate with the adjustable solenoid valve PV in each branch to realize the safe and accurate adjustment of the unloading force, unloading speed and damping coefficient of the shock absorber. adjust.
  • the two main oil passages are respectively connected to the oil storage tank through the oil storage passage.
  • the first fulcrum N1 and the second fulcrum N2 are respectively communicated with the oil storage tank through an oil storage path.
  • Throttle valves are connected in series on the two oil storage circuits, namely the third throttle valve CV3 and the fourth throttle valve CV4.
  • the third throttle valve CV3 and the fourth throttle valve CV4 are preferably spring-loaded check valves.
  • the third throttle valve CV3 and/or the fourth throttle valve CV4 can be used to make the piston 2 move directly to suck oil from the oil storage tank. In the cylinder, it can compensate for possible leakage problems and prevent cavitation in the hydraulic pressure.
  • a pressure relief oil circuit is also connected between the first fulcrum N1 and the oil storage tank.
  • the pressure relief oil circuit is connected in parallel with each oil storage circuit, and a pressure relief valve PRV3 is installed in series on the pressure relief oil circuit.
  • the pressure relief valve PRV3 can limit the maximum pressure inside the oil storage tank.
  • the pressure relief valve PRV3 is preset with a maximum safety pressure value P0. Once the pressure inside the oil storage tank is greater than the safety pressure value P0, the pressure relief valve PRV3 opens immediately, and the oil in the main oil circuit of the shock absorber flows directly back into the oil storage tank.
  • An oil tank port RP10 is provided on the oil storage tank to increase or decrease the amount of oil in the oil storage tank and control the oil height and oil pressure as required.
  • the damping system proposed in this embodiment includes a controller 3 and at least one active control anti-snaking damper 100 as described above installed on a bogie.
  • the signal input terminal and signal output terminal of the controller 3 are respectively connected to each shock absorber 100, and the controller 3 is used to calculate the current required shock absorber performance parameters according to the actual state of the vehicle operation, and the performance parameters include but are not limited to Damping force, damping coefficient and piston displacement.
  • the controller 3 transmits the control signal with the current performance parameters to the shock absorber, so as to ensure that the shock absorber can adjust various performance parameters in real time according to vehicle operation requirements.
  • the system also includes a data collection mechanism.
  • the data acquisition mechanism is installed on the shock absorber and connected to the signal input terminal of the controller 3.
  • the data acquisition mechanism is used to transmit the real-time working parameters of the shock absorber to the controller 3, so that the controller 3 can according to the real-time working parameters
  • the performance parameters required by the shock absorber are calculated, and the control signal containing the preset performance parameter values is fed back to the shock absorber 100.
  • the controller 3 is provided with at least two data interfaces.
  • the controller 3 in this embodiment mainly includes a first interface C1, a second interface C2, and a third interface C3.
  • the first interface C1 is a signal output terminal
  • the second interface C2 is a signal input terminal
  • the third interface C3 is a power supply and external device access terminal.
  • the first interface C1 is connected to the adjustable solenoid valves PV1, PV2 of each branch on the shock absorber, and is used to adjust the control voltage of the adjustable solenoid valves PV1, PV2 and other parameters in real time according to the calculation result of the controller 3 to realize the reduction Adjustment of the performance parameters of the vibrator 100.
  • the data collection mechanism of this embodiment includes pressure sensors P11, P12, P13 and displacement sensor PP1.
  • the two cylinders of the hydraulic cylinder 1 are respectively provided with pressure sensors PP1.
  • the pressure sensors P11, P12, P13 and the displacement sensor PP1 are respectively connected to the second interface C2 as a signal input terminal on the controller 3.
  • the pressure sensors P11 and P12 are respectively installed on the first cylinder PA and the second cylinder PB, and are used to sense the oil pressure values inside the two cylinders on both sides of the piston 2 in the hydraulic cylinder 1 in real time.
  • the pressure sensor P13 is connected in series on the energy storage branch to sense the pressure value of the accumulator PA1.
  • the displacement sensor PP1 is installed on the piston 2 or the piston rod, so as to sense the displacement of the piston 2 or the piston rod in the shock absorber 100 relative to the entire hydraulic cylinder 1 in real time.
  • the data collection mechanism of this embodiment also includes an acceleration sensor.
  • the acceleration sensor is connected to the second interface C2 as a signal input terminal on the controller 3.
  • the acceleration sensor is installed on the vehicle and is used to provide the controller 3 with vehicle running acceleration data as reference data when the controller 3 calculates the required parameters of the shock absorber.
  • the controller 3 of this embodiment is also provided with an external interface, and the external interface is connected to an external vehicle control system.
  • a disconnection relay 4 is installed between the controller 3 and the vehicle general control system.
  • the disconnection relay 4 is linked with the on-board instability monitoring system. Once the bogie instability monitoring system gives an alarm, the disconnection relay 4 can work and cut off the semi-active anti-snaking
  • the power supply of the shock absorber can cut off the power of the shock absorber system as a whole, and the shock absorber is forcibly switched to passive mode. At this time, the shock absorber has the same performance as the traditional passive shock absorber, which is sufficient to ensure that the vehicle continues to operate normally.
  • the piston 2 of the active control anti-snaking damper 100 provided in this embodiment reciprocates in the hydraulic cylinder 1
  • the inside of the hydraulic cylinder 1 is divided into two cylinders PA and PB, two Cylinder blocks PA and PB are respectively connected with the oil storage tank through two main oil circuits to form a main circuit between the hydraulic cylinder 1 and the oil storage tank; the reversing valve PA3 is installed between the two main oil circuits and the oil storage tank. Therefore, when the shock absorber 100 is in the active mode, the flow direction of the main circuit can be changed, and the displacement of the piston 2 in the hydraulic cylinder 1 can be adjusted.
  • the piston displacement is changed by the oil pressure difference between the two cylinder blocks PA and PB in the hydraulic cylinder 1, thereby solving the performance parameters of the traditional anti-snaking shock absorber 100 in the prior art.
  • the bogie is in a radial position relative to the car body, thereby increasing the speed of the train curve passing, reducing wheel/rail wear, and extending the service life of the vehicle.
  • the vibration reduction system described in this embodiment includes a controller 3 and at least one of the above-mentioned active control anti-snaking shock absorbers 100 installed on a bogie.
  • the signal input terminal and the signal output terminal of the controller 3 are respectively connected to each shock absorber.
  • 100 is connected, the controller 3 is used to calculate the current required shock absorber performance parameters according to the actual state of the vehicle operation, and then the controller 3 transmits the control signal with the current performance parameters to the shock absorber 100 to ensure that the shock absorber 100
  • Various performance parameters can be adjusted in real time according to vehicle operation requirements, so that the train suspension system is always in the best matching state, and is compatible with vehicle operation requirements in different geographical environments and without line requirements. It can also effectively extend the vehicle repair cycle and improve The service life of the vehicle reduces operating costs.

Abstract

一种主动控制抗蛇行减振器(100),主动控制抗蛇行减振器(100)的活塞(2)在液压缸(1)内作往复运动时,将液压缸(1)的内部划分为两个缸体(PA,PB),两个缸体(PA,PB)分别通过两条主油路与储油箱连通,以在液压缸(1)与储油箱之间构成一主回路;换向阀(PV3)安装在两条主油路与储油箱之间,用于在主动控制抗蛇行减振器(100)处于主动模式时能改变主回路的流向,并能调节活塞(2)在液压缸(1)内的位移。

Description

一种主动控制抗蛇行减振器及减振系统、车辆
相关申请的交叉引用
本申请要求于2019年6月20日提交的申请号为2019105365118,发明名称为“一种主动控制抗蛇行减振器及减振系统、车辆”的中国专利申请的优先权,其通过引用方式全部并入本公开。
技术领域
本发明涉及减振器技术领域,尤其涉及一种主动控制抗蛇行减振器及减振系统、车辆。
背景技术
抗蛇行减振器是悬挂系统重要的组成部分,其主要作用是在转向架构架和车体之间产生回转阻尼力,消耗两者之间的振动能量,从而起到抑制蛇行振动的作用。
抗蛇行减振器是影响列车运行稳定性的关键部件,列车在不同状态下运行时,对减振器的参数需求也不同。根据减振原理可知,传统的抗蛇行减振器为被动抗蛇行减振器。传统的被动减振器的特性曲线是固定的,其性能参数不能根据列车需求实时进行调整。
故而传统的被动减振器由于其性能参数固定不可调,无法根据列车运行需求而使得列车悬挂系统始终处于最佳匹配状态;并且,由于目前列车跨线、跨国、跨地区运行的情况越来越多,对减振器的参数需求也越来越多样化,传统的被动减振器很难兼容不同线路的需求。
目前,车辆在整个镟修周期内,对抗蛇行减振器的参数需求也不尽相同。新车轮锥度较小,抗蛇行减振器主要表现为刚度特性;随着运营里程增加,车轮锥度变大,更多地需要抗蛇行减振器表现为阻尼特性。而传统的被动减振器因其性能参数固定不可调,同样很难实现延长镟修周期、降低运营成本的目的。特别是车辆在曲线运行时,轮轨间冲角变大,增大了轮轨横向力,影响列车运行安全性,从而限制了运行速度;同时,过大的冲角会使得轮轨磨耗非常严重,增大了运营维护成本。
发明内容
(一)要解决的技术问题
本发明实施例提供了一种主动控制抗蛇行减振器及减振系统、车辆,用以解决现有技术中传统的抗蛇行减振器因性能参数不能调整而导致车辆作曲线运行时面临的各种缺陷。
(二)技术方案
为了解决上述技术问题,本发明提供了一种主动控制抗蛇行减振器,包括液压缸和活塞,所述活塞在液压缸内作往复运动时,将所述液压缸的内部划分为两个缸体,还包括储油箱和换向阀,两个所述缸体分别通过两条主油路与所述储油箱连通,以构成主回路;所述换向阀安装在两条所述主油路与所述储油箱之间,用于在减振器处于主动模式时能改变所述主回路的流向,并能调节所述活塞在所述液压缸内的位移。
在部分实施例中,两个所述缸体分别通过两条主油路与所述换向阀连通,所述换向阀分别通过两条驱动油路与所述储油箱连通,所述换向阀具有至少两个可切换的工作位。
在部分实施例中,所述换向阀包括第一工作位和第二工作位,所述第一工作位和所述第二工作位上各自设有两个导流口,两个所述导流口用于连接两条所述主油路;所述第一工作位的两个所述导流口与所述第二工作位的两个所述导流口的位置相反。
在部分实施例中,该减振器还包括驱动机构,所述驱动机构串联在任一所述驱动油路上。
在部分实施例中,所述驱动机构包括驱动电机和驱动泵,所述驱动泵串联在所述驱动油路上,并与所述驱动电机连接。
在部分实施例中,该减振器还包括蓄能支路,所述蓄能支路的一端连通在所述驱动油路上,并位于所述换向阀和所述驱动机构之间,所述蓄能支路的另一端与所述储油箱连通,所述蓄能支路上串联有压力传感器、蓄能器和泄压阀。
在部分实施例中,两条所述主油路之间连通有至少一条泄压支路,各条所述泄压支路之间并联,每条所述泄压支路上分别串联有泄压阀。
在部分实施例中,该减振器还包括至少两条并联支路,每条所述支路 的两端分别连通在两条所述主油路上,每条所述支路分别包括串联连通的单向节流阀和可调电磁阀,所述可调电磁阀用于在减振器处于半主动模式时调节该减振器的阻尼系数。
在部分实施例中,所述支路包括第一支路和第二支路,所述第一支路的一端和所述第二支路的一端并联在第一节点,所述第一支路的另一端和所述第二支路的另一端并联在第二节点,所述第一节点和所述第二节点分别连通在两条所述主油路上;所述第一支路与所述第二支路的流向相反。
在部分实施例中,所述第一支点和所述第二支点分别通过所述储油路与所述储油箱连通,每条所述储油路上分别串联有节流阀。
在部分实施例中,所述第一支点和所述储油箱之间还连通有泄压油路,所述泄压油路与各条所述储油路并联,所述泄压油路上串联安装有泄压阀。
在部分实施例中,还包括应急油路,所述应急油路的两端分别连通在两条所述主油路上,所述应急油路包括串联连通的应急节流阀以及不可调的电磁开关阀,所述电磁开关阀用于在减振器处于被动模式时控制所述应急油路启动。
第二方面,本发明提供了一种减振系统,包括控制器以及安装在转向架上的至少一个如上所述的主动控制抗蛇行减振器,所述控制器的信号输入端和信号输出端分别与各个所述减振器连接。
在部分实施例中,该系统还包括数据采集机构,所述数据采集机构包括压力传感器和位移传感器,所述液压缸的两个缸体内分别设有所述压力传感器,所述位移传感器安装在所述活塞上,所述压力传感器和所述位移传感器分别与所述控制器的信号输入端连接。
第三方面,本发明提供了一种车辆,包括如上所述的减振系统。
(三)有益效果
本发明的上述技术方案具有以下有益效果:
一方面,本发明提供的主动控制抗蛇行减振器的活塞在液压缸内作往复运动时,将液压缸的内部划分为两个缸体,两个缸体分别通过两条主油路与储油箱连通,以在液压缸与储油箱之间构成一主回路;换向阀安装在两条主油路与储油箱之间,用于在减振器处于主动模式时能改变主回路的流向,并能调节活塞在液压缸内的位移。该减振器切换到主动模式时,通 过液压缸内两缸体之间的油压差改变活塞位移量,从而解决现有技术中传统的抗蛇行减振器因性能参数不能调整而导致的各种缺陷,特别是在车辆作曲线运行时令转向架相对于车体处于径向位置,从而提高列车曲线通过速度,降低轮轨磨耗,延长车辆使用寿命。
另一方面,本发明所述的减振系统包括控制器以及安装在转向架上的至少一个上述的主动控制抗蛇行减振器,控制器的信号输入端和信号输出端分别与各个减振器连接,根据车辆运行的实际状态利用控制器计算当前所需的减振器性能参数,然后控制器将带有当前性能参数的控制信号传送给减振器,从而保证减振器能根据车辆运行需求而实时调整各项性能参数,以使得列车悬挂系统始终处于最佳匹配状态,并能兼容不同地域环境、不用线路要求的车辆运行需求,还能有效延长车辆镟修周期,提高车辆的使用寿命,降低运营成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的减振系统的控制结构示意图;
图2为本发明实施例的主动控制抗蛇行减振器的油路结构示意图;
图3为本发明实施例的主动控制抗蛇行减振器处于主动模式的支路状态示意图(一);
图4为本发明实施例的主动控制抗蛇行减振器处于主动模式的支路状态示意图(二);
图5为本发明实施例的主动控制抗蛇行减振器处于半主动模式的支路状态示意图(一);
图6为本发明实施例的主动控制抗蛇行减振器处于半主动模式的支路状态示意图(二);
图7为本发明实施例的主动控制抗蛇行减振器处于被动模式的支路状态示意图。
其中,100、主动控制抗蛇行减振器;
1、液压缸;2、活塞;3、控制器;4、断路继电器;
PA、第一缸体;PB、第二缸体;
C1、第一接口;C2、第二接口;C3、第三接口;
N1、第一节点;N2、第二节点;
B1、第一支路;PV1、第一可调电磁阀;CV1、第一单向节流阀;
B2、第二支路;PV2、第二可调电磁阀;CV2、第二单向节流阀;
B3、应急油路;SV、电磁开关阀;TV1、应急节流阀;
PA1、蓄能器;PV3、换向阀;S1、第一工作位;S2、第二工作位;
CV3、第三节流阀;CV4、第四节流阀;CV5、第五节流阀;
PRV1、PRV2、PRV3、PRV4、泄压阀;
PP1、位移传感器;P11、P12、P13、压力传感器;
FP10、进油口;BP10、出油口;RP10、油箱口。
具体实施方式
下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例用于说明本发明,但不能用来限制本发明的范围。
在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
本实施例提供了一种主动控制抗蛇行减振器100、一种减振系统、以及一种车辆。其中,主动控制抗蛇行减振器100的油路控制结构如图2~图6所示。减振系统包括该主动控制抗蛇行减振器100,减振系统的控制结构如图1所示。该车辆包括该减振系统。
如图1所示,本实施例提供的主动控制抗蛇行减振器100包括液压缸1和活塞2,活塞2在液压缸1内作往复运动时,将液压缸1的内部划分为两个缸体。图1所示的液压缸1为平置状态,如图1所示,活塞2在液压缸1内作左右往复运动,以图1中所示的活塞2左侧缸体为第一缸体PA, 活塞2右侧缸体为第二缸体PB。
本实施例所述的活塞2左右两侧的缸体容积相等,且活塞2在液压缸1内作往复运动时,两组支路内的油液流过的油路相同,以使得在对减振器的阻尼力调节时保证系统更加稳定。优选液压缸1上分别连通有进油口FP10和出油口BP10,从而利用进油口FP10自外部向该减振器内部进行输油和补油,并利用出油口BP10将多余油液引出减振器,以保证减振器内部的油液系统平衡。
如图2所示,该主动控制抗蛇行减振器100还包括换向阀和储油箱。液压缸1的两个缸体PA、PB分别通过两条主油路与储油箱连通,从而在液压缸1与储油箱之间构成一主回路。当储油箱内的油液通过任一主油路泵入液压缸1内时,能够驱动活塞2在液压缸1内作往复运动。
本实施例中,在两条主油路与储油箱之间安装有换向阀,换向阀用于在减振器正常工作并处于主动模式时能改变上述的主回路的流向,从而利用主回路的流向变化驱动活塞2作往复运动;换向阀还能根据需要实时调节活塞在液压缸内的位移量,从而实现根据车辆运行需求而实时调整各项性能参数,以使得列车悬挂系统始终处于最佳匹配状态。
本实施例的主动控制抗蛇行减振器100设有主动模式,该主动模式可在车辆作曲线运动时启动。在车辆作曲线运行时主动控制抗蛇行减振器100自动进入主动模式,从而可以利用主回路对活塞2的位移量进行精确调节,从而令转向架相对于车体处于径向位置,进而提高列车曲线通过速度,降低轮轨磨耗,延长车辆使用寿命。
本实施例中,为了对主回路的油液流向进行准确的换向调节,一方面将两个缸体PA、PB分别通过两条主油路与换向阀PV3连通;另一方面将换向阀PV3分别通过两条驱动油路与储油箱连通。换向阀PV3具有至少两个可切换的工作位S1、S2,从而利用各个工作位之间的切换,实现每条主油路内的油液同步换向。两条主油路的同步换向是指:换向阀PV3处于一个工作位时,两条主油路内的油液流向设为正向,则当换向阀PV3切换至下一工作位时,两条主油路内的油液流向瞬时变为反向。
本实施例中,换向阀PV3包括第一工作位S1和第二工作位S2。第一工作位S1和第二工作位S2上各自设有用于分别连接两条主油路的两个导 流口。其中,第一工作位S1的两个导流口与第二工作位S2的两个导流口的位置相反,这样的设置可以使得换向阀PV3切换工作位时,原本与其中一个主油路连接的导流口能立刻切换到与另一个主油路连接,而另一个导流口作同样变化,从而使得原本作为进液口的导流口能立刻切换成出液口,以驱动两条主油路的流向同时同步改变。优选换向阀PV3为三位四通电磁阀,该电磁阀除了两个工作位以外,还包括一关闭位,当换向阀PV3切换至关闭位时,该换向阀PV3使得两条主油路和两条驱动油路之间断开,主回路不工作,则该主动控制抗蛇行减振器100自动切换至其他模式。
本实施例中,该主动控制抗蛇行减振器100还包括驱动机构,驱动机构串联在任一驱动油路上,从而为主回路内的油液流动提供驱动力。驱动机构包括驱动电机和驱动泵,驱动泵串联在驱动油路上,并与驱动电机连接。驱动电机带动驱动泵向驱动油路内施加泵送力,从而使得驱动机构所在的驱动油路始终向换向阀PV3内输送油液,并根据换向阀PV3的状态驱动主回路内的油液流向发生变化,进而驱动活塞2作往复运动。
在一个优选实施例中,如图3所示,当换向阀PV3处于第一工作位S1时,右侧驱动油路上的驱动泵产生驱动作用,将储油箱内的油液泵入换向阀PV3内,经过换向阀PV3的第一工作位S1内部的一条流道以后流入右侧主油路内,接着进入液压缸1的第二缸体PB中,进而驱动活塞2向左移动;活塞2向左移动时第一缸体PA内的油液被泵送入左侧主油路内,然后进入换向阀PV3的第一工作位S1内部的另一条流道中,接着油液自换向阀PV3流入左侧驱动油路内,并最终回到储油箱内。换向阀PV3的第一工作位S1内的两条流道平行设置。
如图4所示,当换向阀PV3处于第二工作位S2时,仍然由右侧驱动油路上的驱动泵产生驱动作用,并将储油箱内的油液泵入换向阀PV3内,经过换向阀PV3的第二工作位S2内部的一条流道以后流入左侧主油路内,接着进入液压缸1的第一缸体PA中,进而驱动活塞2向右移动;活塞2向右移动时第二缸体PB内的油液被泵送入右侧主油路内,然后进入换向阀PV3的第二工作位S2内部的另一条流道中,接着油液自换向阀PV3流入左侧驱动油路内,并最终回到储油箱内。换向阀PV3的第二工作位S2内的两条流道交叉设置但这两条流道之间并不连通。
上述给出了换向阀PV3的一种内部结构设置及换向方式,应当理解的是,还可以选用其它结构,只要满足能够在主油路内起到换向作用,从而能够驱动活塞2在液压缸1内作往复运动即可。
本实施例中,该减振器还包括蓄能支路。蓄能支路的一端连通在驱动油路上并位于换向阀PV3和驱动机构之间,蓄能支路的另一端与储油箱连通,以使得蓄能支路并联在驱动机构的两端。蓄能支路上串联有蓄能器PA1,以使蓄能器PA1并联在驱动机构的两端,从而可以在换向阀PV3处于关闭位(即换向阀PV3不工作)时,利用驱动机构与蓄能器PV1之间形成的回路,为蓄能器PA1内预先蓄能,从而在驱动泵的动力不能满足车辆曲线运行所需的动态要求时,可以作为补充动力向驱动油路内输入预先蓄积的油液,从而对主回路内的油液流动补充动能。
本实施例中,为了合理使用蓄能器PA1向主回路内补充动力,优选在蓄能支路上串联压力传感器P13,压力传感器P13能对蓄能器PA1实施必要的压力监测。利用控制器3能为蓄能器PA1预先设定一压力峰值F0,当蓄能器PA1的实时压力值低于设定的压力峰值F0时,驱动机构启动运行并驱动油液自驱动油路流入蓄能支路中,从而流向蓄能器PA1,直到蓄能器PA1内蓄积的液压达到或超过压力峰值F0即可。
为了合理控制蓄能器PA1内的液压值,防止压力过高而产生危险,优选蓄能支路上还串联有泄压阀PRV4。泄压阀PRV4能限制蓄能支路上和蓄能器PA1的最大压力值。
为了满足车辆正常的直线行驶时可以根据运行要求实时调节各性能参数,如图2所示,本实施例所述的减振器100还包括至少两条并联支路。每条支路的两端分别与液压缸1的两个缸体连通。各条支路上分别装有可调电磁阀PV,可调电磁阀PV用于在减振器100正常运行并处于半主动模式时,调节通过该支路的油液阻尼力,从而调节该减振器的阻尼系数,进而对正常工作时的减振器的各向性能参数进行实时调节,达到对减振器采取半主动控制的目的。
该主动控制抗蛇行减振器100在正常工作时并处于半主动模式时,由于活塞2在液压缸1内作往复运动,使得液压缸1内的两个缸体之间产生油压差。油液根据该油压差的变化在各条支路之间流动切换。利用油液流 经的相应支路上的可调电磁阀PV1、PV2对油液阻尼力进行调节,从而保证减振器100在半主动模式下具有可控的阻尼力和阻尼系数。
为了便于油路控制,在减振器100上设置两条并联支路。其中一条支路的入口与第一缸体PA连通,出口与第二缸体PB连通;另一条支路的入口与第二缸体PB连通,出口与第一缸体PA连通。换言之,两条并联支路内的油液流向相反。
为了合理控制各支路的流向,本实施例所述的每条支路分别包括串联连通的单向节流阀CV1、CV2和可调电磁阀PV1、PV2。根据各支路的预设流向,将单向节流阀CV1、CV2和可调电磁阀PV1、PV2对应的串联在同一支路上,可以及时阻挡反向流经的油液,对支路内的油液流向进行合理限制。优选可调电磁阀PV1、PV2为电磁比例阀,从而能更精确的调节流经该支路的油液阻尼力。
可理解的是,也可以在该减振器中设置三条或三条以上的并联支路,只要将所有的支路并联,并将所有的支路分为两组,两组支路内的油液流向相反即可实现对减振器的半主动控制。
本实施例中,如图2所示,所有支路包括第一支路B1和第二支路B2,第一支路B1的一端和第二支路B2的一端并联在第一节点N1,第一支路B1的另一端和第二支路B2的另一端并联在第二节点N2,第一节点N1和第二节点N2分别与液压缸1的两个缸体连通。
本实施例中,第一支路B1与第二支路B2的流向相反。具体为:第一支路B1包括串联的第一单向节流阀CV1和第一可调电磁阀PV1。第一单向节流阀CV1将第一支路B1的油液流向限制为:油液自第一缸体PA流出后,流经第一支路B1后回流至第二缸体PB内。第二支路B2包括第二单向节流阀CV2和第二可调电磁阀PV2。第二单向节流阀CV2将第二支路B2的油液流向限制为:油液自第二缸体PB流出后,流经第二支路B2后回流至第一缸体PA内。
在减振器处于半主动模式时,如图5所示,当液压缸1的第一缸体PA内的油压大于第二缸体PB内的油压时,油液自第一缸体PA内流出后,通过左侧主油路流经第一节点N1后进入第一支路B1内,自第一支路B1内流出的油液流经第二节点N2后回流至右侧主油路内,并最终回流至第 二缸体PB内,以使得第一支路B1与液压缸1之间形成一油液控制回路;第二支路B2内的第二节流阀将油液封闭在第一节点N1与第二节流阀之间,以使油液无法流过第二支路B2形成控制回路。此时,第一可调电磁阀PV1对第一支路B1内的油液的阻尼力进行精确调节,即可调节减振器的系统阻尼系数,从而对减振器的性能参数进行实时的、可靠的调节。
同理,如图6所示,在减振器处于半主动模式时,当液压缸1的第二缸体PB内的油压大于第一缸体PA内的油压时,油液自第二缸体PB内流出后,流经第二节点N2后进入第二支路B2内,自第二支路B2内流出的油液流经第一节点N1后回流至第一缸体PA内,以使得第二支路B2与液压缸1之间形成另一油液控制回路;而第一支路B1内的第一节流阀将油液封闭在第二节点N2与第一节流阀之间,以使油液无法流过第一支路B1形成控制回路。此时,第二可调电磁阀PV2对第二支路B2内的油液的阻尼力进行精确调节,即可调节减振器的系统阻尼系数,从而对减振器的性能参数进行实时的、可靠的调节。
为了保证减振器在故障或断电时能正常运行,本实施例的减振器还包括应急油路B3。应急油路B3的两端分别与两个缸体连通。如图5所示,优选应急油路B3的一端连接在第一节点N1上,另一端连接在第二节点N2上,以保证应急油路B3与其余所有支路之间并联。为了保证应急油路B3在断电状态下可正常为液压缸1提供油液闭环回路,该应急油路B3上装有不可调的电磁开关阀SV,电磁开关阀SV用于在减振器处于被动模式时控制应急油路B3启动,以使得故障或断电时减振器能启动应急油路B3,从而切换至被动模式。
本实施例中,如图7所示,应急油路B3包括串联连通的应急节流阀TV1和电磁开关阀SV。由于在被动模式下,除应急油路B3外的其余所有支路因各支路上的单向节流阀和可调电磁阀PV断电而导致支路中断,阻断了油液沿相应支路内的回路流通状态,而应急油路B3中的电磁开关阀SV可手动开启,或断电后自动跳转至启动状态,以保证液压缸1内流出的油液能经由应急油路B3内流过,然后回流到液压缸1内,从而确保应急油路B3与液压缸1之间形成油液应急控制回路。
本实施例中,应急油路B3的应急节流阀TV1为不可调的限流孔,电 磁开关阀SV对该应急油路B3内的油液流量和阻尼力均不可调。故而油液流经该应急油路B3,且其余所有支路均被阻断时,该减振器处于被动模式。
可理解的是,本实施例的减振器除了设有上述的半主动模式和被动模式以外,还设有小阻尼模式。
当列车车辆作直线运行时,如图5和图6所示,减振器处于半主动模式,此时应急油路B3的电磁开关阀SV处于带电常闭状态,且各条支路的可调电磁阀PV1、PV2均处于带电状态,此时减振器的系统阻尼力由液压油流过各条支路的可调电磁阀PV产生,阻尼系数的大小由相应的可调电磁阀PV的控制电压决定。为了便于油路控制稳定,上述的第一支路B1中的第一可调电磁阀PV1的控制电压与第二支路B2中的第二可调电磁阀PV2的控制电压相等。
当列车车辆作曲线运行时,如图3和图4所示,减振器处于主动模式,此时应急油路B3的电磁开关阀SV和所有支路的可调电磁阀PV1、PV2均处于断电状态,驱动电机和驱动泵启动,以使主回路启动并作为活塞2往复运动的驱动源,通过换向阀PV3不断切换工作位从而使得主回路的油液流向按一预设频率反复变向,从而驱动活塞2在液压缸1内作往复运动。此时减振器处于位移控制状态,活塞2的位移量可根据需要通过换向阀PV3实时调节。
当减振器处于被动模式时,如图7所示,减振器处于故障或断电状态,各支路的可调电磁阀PV和单向节流阀停止工作,从而将各条支路的流通状态完全阻断,油液在支路内处于不流通状态。此时,应急油路B3的不可调的电磁开关阀SV启动,以使油液流经该应急油路B3形成控制回路。减振器的阻尼力由液压油流过不可调的应急节流阀TV1产生。
当减振器处于小阻尼模式时,应急油路B3的电磁开关阀SV开启,且所有支路的可调电磁阀PV均带电开启,则所有支路都不处于阻断状态。通过控制其余支路上的可调电磁阀PV的控制电压使得相应的支路上的可调电磁阀PV的阻尼系数处于最小值,此时油液可以从包括应急油路B3在内的所有支路内流过并产生阻尼力。此时减振器产生的阻尼力非常小,则减振器被认为是小阻尼模式,该模式适用于进出缓和曲线等小阻尼工况 中使用。缓和曲线指的是平面线形中,在直线与圆曲线或圆曲线与圆曲线之间设置的曲率连续变化的曲线。缓和曲线是道路平面线形要素之一,它是设置在直线与圆曲线之间或半径相差较大的两个转向相同的圆曲线之间的一种曲率连续变化的曲线。当车辆行驶遵循缓和曲线时,进缓和曲线和出缓和曲线时的工况属于小阻尼工况。
本实施例中,为了防止减振器油液压力过高,并且提高减振器在调整卸荷力、卸荷速度和阻尼系数等参数时的安全性,优选第一节点N1和第二节点N2各自通过一主油路与液压缸1的两个缸体连通,两条主油路之间连通有至少一条泄压支路,各条泄压支路之间并联。在泄压支路上串联有泄压阀。
本实施例中,两条主油路之间并联有两条泄压支路,两条泄压支路能够各自串联有泄压阀PRV1和泄压阀PRV2,泄压阀PRV1和泄压阀PRV2分别并协同限定了减振器的最大阻尼力,可以配合各支路内的可调电磁阀PV共同作用,实现对减振器的卸荷力、卸荷速度和阻尼系数等参数进行安全精确的调节。
本实施例的减振器中,两条主油路分别通过储油路与储油箱连通。具体的,第一支点N1和第二支点N2分别通过储油路与储油箱连通。两条储油路上分别串联有节流阀,即第三节流阀CV3和第四节流阀CV4。第三节流阀CV3和第四节流阀CV4优选均为弹簧加载止回阀。当液压缸1的任一缸体内的压力低于大气压力时,可以分别通过第三节流阀CV3和/或第四节流阀CV4使活塞2通过运动直接从储油箱内将油液吸入缸体中,从而可以弥补可能发生的泄漏问题,并且可以防止液压更内的气穴现象。
本实施例中,第一支点N1和储油箱之间还连通有泄压油路,泄压油路与各条储油路并联,泄压油路上串联安装有泄压阀PRV3。泄压阀PRV3能限制储油箱内部的最大压力。泄压阀PRV3预设有最大安全压力值P0,一旦储油箱内部的压力大于安全压力值P0后,泄压阀PRV3立即打开,减振器主油路内的油液直接流回储油箱中。储油箱上设置有油箱口RP10,以根据需要增减储油箱内的油量并控制油液高度和油液压力。
如图1所示,本实施例提出的减振系统包括控制器3以及安装在转向架上的至少一个如上所述的主动控制抗蛇行减振器100。其中,控制器3 的信号输入端和信号输出端分别与各个减振器100连接,根据车辆运行的实际状态利用控制器3计算当前所需的减振器性能参数,该性能参数包括但不限于阻尼力、阻尼系数和活塞位移量。控制器3将带有当前性能参数的控制信号传送给减振器,从而保证减振器能根据车辆运行需求而实时调整各项性能参数。
为了保证控制器3在计算时具有可靠的数据来源,并在控制器3与减振器之间形成良好稳定的信号控制回路。优选该系统还包括数据采集机构。数据采集机构安装在减振器上,并与控制器3的信号输入端连接,数据采集机构用于将减振器的实时工作参数传送至控制器3中,以使控制器3根据实时工作参数计算减振器所需的性能参数,并将包含预设性能参数值的控制信号反馈至减振器100中。
本实施例中,控制器3上设有至少两个数据接口。本实施例的控制器3主要包括第一接口C1、第二接口C2和第三接口C3。其中,第一接口C1为信号输出端,第二接口C2为信号输入端,第三接口C3为供电及外部设备接入端。第一接口C1与减振器上各支路的可调电磁阀PV1、PV2连接,用于根据控制器3的计算结果实时调节可调电磁阀PV1、PV2的控制电压等参数,以实现对减振器100的性能参数的调节。
本实施例的数据采集机构包括压力传感器P11、P12、P13和位移传感器PP1。液压缸1的两个缸体内分别设有压力传感器PP1。压力传感器P11、P12、P13和位移传感器PP1分别与控制器3上作为信号输入端的第二接口C2连接。压力传感器P11、P12分别对应安装在第一缸体PA和第二缸体PB上,用于实时感知液压缸1内活塞2两侧的两个缸体内部的油液压力值。压力传感器P13对应串联在蓄能支路上,用于感知蓄能器PA1的压力值。位移传感器PP1安装在活塞2或活塞杆上,以便于实时感知减振器100内的活塞2或活塞杆相对于液压缸1整体的位移量。
本实施例的数据采集机构还包括加速度传感器。加速度传感器与控制器3上作为信号输入端的第二接口C2连接。加速度传感器安装在车辆上,用于为控制器3提供车辆运行加速度数据,以作为控制器3在计算减振器所需参数时的参考数据。
本实施例的控制器3上还设有外接接口,外接接口与外部的车辆总控 制系统连接。在控制器3与车辆总控制系统之间安装有断路继电器4,断路继电器4与车载失稳监测系统联动,一旦转向架失稳监测系统报警,断路继电器4即可工作并切断半主动抗蛇行减振器的电源,以使减振系统整体断电,并将减振器强行切换为被动模式,此时的减振器与传统的被动减振器具有相同的性能,足以保证车辆继续正常运行。
综上所述,本实施例的提供的主动控制抗蛇行减振器100的活塞2在液压缸1内作往复运动时,将液压缸1的内部划分为两个缸体PA、PB,两个缸体PA、PB分别通过两条主油路与储油箱连通,以在液压缸1与储油箱之间构成一主回路;换向阀PA3安装在两条主油路与储油箱之间,用于在减振器100处于主动模式时能改变主回路的流向,并能调节活塞2在液压缸1内的位移。该减振器100切换到主动模式时,通过液压缸1内两缸体PA、PB之间的油压差改变活塞位移量,从而解决现有技术中传统的抗蛇行减振器100因性能参数不能调整而导致的各种缺陷,特别是在车辆作曲线运行时令转向架相对于车体处于径向位置,从而提高列车曲线通过速度,降低轮轨磨耗,延长车辆使用寿命。
本实施例所述的减振系统包括控制器3以及安装在转向架上的至少一个上述的主动控制抗蛇行减振器100,控制器3的信号输入端和信号输出端分别与各个减振器100连接,根据车辆运行的实际状态利用控制器3计算当前所需的减振器性能参数,然后控制器3将带有当前性能参数的控制信号传送给减振器100,从而保证减振器100能根据车辆运行需求而实时调整各项性能参数,以使得列车悬挂系统始终处于最佳匹配状态,并能兼容不同地域环境、不用线路要求的车辆运行需求,还能有效延长车辆镟修周期,提高车辆使用寿命,降低运营成本。
本发明的实施例是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显而易见的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (15)

  1. 一种主动控制抗蛇行减振器,包括液压缸和活塞,所述活塞在液压缸内作往复运动时,将所述液压缸的内部划分为两个缸体,其特征在于,还包括储油箱和换向阀,两个所述缸体分别通过两条主油路与所述储油箱连通,以构成主回路;所述换向阀安装在两条所述主油路与所述储油箱之间,用于在减振器处于主动模式时能改变所述主回路的流向,并能调节所述活塞在所述液压缸内的位移。
  2. 根据权利要求1所述的主动控制抗蛇行减振器,其特征在于,两个所述缸体分别通过两条主油路与所述换向阀连通,所述换向阀分别通过两条驱动油路与所述储油箱连通,所述换向阀具有至少两个可切换的工作位。
  3. 根据权利要求2所述的主动控制抗蛇行减振器,其特征在于,所述换向阀包括第一工作位和第二工作位,所述第一工作位和所述第二工作位上各自设有两个导流口,两个所述导流口用于连接两条所述主油路;所述第一工作位的两个所述导流口与所述第二工作位的两个所述导流口的位置相反。
  4. 根据权利要求2所述的主动控制抗蛇行减振器,其特征在于,该减振器还包括驱动机构,所述驱动机构串联在任一所述驱动油路上。
  5. 根据权利要求4所述的主动控制抗蛇行减振器,其特征在于,所述驱动机构包括驱动电机和驱动泵,所述驱动泵串联在所述驱动油路上,并与所述驱动电机连接。
  6. 根据权利要求4所述的主动控制抗蛇行减振器,其特征在于,该减振器还包括蓄能支路,所述蓄能支路的一端连通在所述驱动油路上,并位于所述换向阀和所述驱动机构之间,所述蓄能支路的另一端与所述储油箱连通,所述蓄能支路上串联有压力传感器、蓄能器和泄压阀。
  7. 根据权利要求1所述的主动控制抗蛇行减振器,其特征在于,两条所述主油路之间连通有至少一条泄压支路,各条所述泄压支路之间并联,每条所述泄压支路上分别串联有泄压阀。
  8. 根据权利要求1-7任一项所述的主动控制抗蛇行减振器,其特征在于,该减振器还包括至少两条并联支路,每条所述支路的两端分别连通在 两条所述主油路上,每条所述支路分别包括串联连通的单向节流阀和可调电磁阀,所述可调电磁阀用于在减振器处于半主动模式时调节该减振器的阻尼系数。
  9. 根据权利要求8所述的主动控制抗蛇行减振器,其特征在于,所述支路包括第一支路和第二支路,所述第一支路的一端和所述第二支路的一端并联在第一节点,所述第一支路的另一端和所述第二支路的另一端并联在第二节点,所述第一节点和所述第二节点分别连通在两条所述主油路上;所述第一支路与所述第二支路的流向相反。
  10. 根据权利要求9所述的主动控制抗蛇行减振器,其特征在于,所述第一支点和所述第二支点分别通过所述储油路与所述储油箱连通,每条所述储油路上分别串联有节流阀。
  11. 根据权利要求10所述的主动控制抗蛇行减振器,其特征在于,所述第一支点和所述储油箱之间还连通有泄压油路,所述泄压油路与各条所述储油路并联,所述泄压油路上串联安装有泄压阀。
  12. 根据权利要求7所述的主动控制抗蛇行减振器,其特征在于,还包括应急油路,所述应急油路的两端分别连通在两条所述主油路上,所述应急油路包括串联连通的应急节流阀以及不可调的电磁开关阀,所述电磁开关阀用于在减振器处于被动模式时控制所述应急油路启动。
  13. 一种减振系统,其特征在于,包括控制器以及安装在转向架上的至少一个如权利要求1-12任一项所述的主动控制抗蛇行减振器,所述控制器的信号输入端和信号输出端分别与各个所述减振器连接。
  14. 根据权利要求13所述的减振系统,其特征在于,该系统还包括数据采集机构,所述数据采集机构包括压力传感器和位移传感器,所述液压缸的两个缸体内分别设有所述压力传感器,所述位移传感器安装在所述活塞上,所述压力传感器和所述位移传感器分别与所述控制器的信号输入端连接。
  15. 一种车辆,其特征在于,包括如权利要求13或14所述的减振系统。
PCT/CN2020/090834 2019-06-20 2020-05-18 一种主动控制抗蛇行减振器及减振系统、车辆 WO2020253441A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20827428.2A EP3988814A4 (en) 2019-06-20 2020-05-18 ACTIVE CONTROL TYPE ANTI YAW DAMPER AND DAMPING SYSTEM, AND VEHICLE
AU2020297373A AU2020297373B2 (en) 2019-06-20 2020-05-18 Active control type anti-yaw damper and damping system, and vehicle
JP2021568945A JP7383730B2 (ja) 2019-06-20 2020-05-18 アクティブ制御アンチヨーダンパ制振システム、および車両
US17/602,811 US11859689B2 (en) 2019-06-20 2020-05-18 Active control type anti-yaw damper, damping system and vehicle
CA3137609A CA3137609A1 (en) 2019-06-20 2020-05-18 Active control type anti-yaw damper, damping system and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910536511.8A CN110360260B (zh) 2019-06-20 2019-06-20 一种主动控制抗蛇形减振器及减振系统、车辆
CN201910536511.8 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020253441A1 true WO2020253441A1 (zh) 2020-12-24

Family

ID=68216670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090834 WO2020253441A1 (zh) 2019-06-20 2020-05-18 一种主动控制抗蛇行减振器及减振系统、车辆

Country Status (7)

Country Link
US (1) US11859689B2 (zh)
EP (1) EP3988814A4 (zh)
JP (1) JP7383730B2 (zh)
CN (1) CN110360260B (zh)
AU (1) AU2020297373B2 (zh)
CA (1) CA3137609A1 (zh)
WO (1) WO2020253441A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360260B (zh) 2019-06-20 2021-08-31 中车青岛四方机车车辆股份有限公司 一种主动控制抗蛇形减振器及减振系统、车辆
CN110360263B (zh) * 2019-06-20 2021-08-27 中车青岛四方机车车辆股份有限公司 半主动抗蛇行减振器及减振系统、车辆
CN114278696A (zh) * 2021-12-27 2022-04-05 湖南联诚轨道装备有限公司 一种轨道车辆转向架转向减振器
CN114537460B (zh) * 2022-04-26 2022-07-22 石家庄铁道大学 一种应用于高速列车的智能减振协同系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264034A (ja) * 1999-03-19 2000-09-26 Kayaba Ind Co Ltd アクティブサスペンションの制御装置
CN102720795A (zh) * 2012-06-12 2012-10-10 江苏科技大学 一种用于两栖车的油气弹簧及其液压调节装置
CN106103145A (zh) * 2014-05-05 2016-11-09 宝马股份公司 用于车辆的主动减振器系统
CN107107698A (zh) * 2014-11-07 2017-08-29 Kyb株式会社 悬架装置
CN110360260A (zh) * 2019-06-20 2019-10-22 中车青岛四方机车车辆股份有限公司 一种主动控制抗蛇形减振器及减振系统、车辆

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE220674C (zh)
US3807678A (en) * 1972-09-19 1974-04-30 Lord Corp System for controlling the transmission of energy between spaced members
US4511022A (en) * 1982-01-20 1985-04-16 Lucas Industries Valve arrangement for regulating vehicle suspension damping pressures
DD220674A1 (de) * 1983-12-08 1985-04-03 Fortschritt Veb K Aktiver, elektrohydraulischer schwingungsdaempfer
JPH01266332A (ja) * 1988-04-15 1989-10-24 Kayaba Ind Co Ltd アクティブサスペンション用油圧シリンダ
JPH0225746U (zh) * 1988-08-05 1990-02-20
US5147018A (en) * 1989-03-02 1992-09-15 Kajima Corporation Cylinder lock device for use in structure
JP3418691B2 (ja) * 1992-04-13 2003-06-23 カヤバ工業株式会社 制振装置
JP2657786B2 (ja) * 1995-03-17 1997-09-24 川崎重工業株式会社 鉄道車両の揺れ防止装置
US5682980A (en) * 1996-02-06 1997-11-04 Monroe Auto Equipment Company Active suspension system
JP2001010324A (ja) * 1999-06-30 2001-01-16 Tokico Ltd サスペンション制御装置
EP1339554A2 (en) * 2000-12-07 2003-09-03 Visteon Global Technologies, Inc. Method of supplying suspension struts
DE10062999C5 (de) * 2000-12-16 2009-05-28 Thyssenkrupp Bilstein Suspension Gmbh Regelbarer Schwingungsdämpfer mit einer Dämpfungskraftsteuerung
US6755113B2 (en) * 2002-07-30 2004-06-29 Ha Wse Company Limited Accumulated semi-active hydraulic damper
CN100364792C (zh) * 2005-06-24 2008-01-30 浙江大学 车辆半主动悬挂用阻尼主动可调的液压减振器
JP4884827B2 (ja) * 2006-04-28 2012-02-29 日本車輌製造株式会社 振動抑制装置
ES2627440T3 (es) * 2007-12-06 2017-07-28 Railway Technical Research Institute Dispositivo de inclinación de la carrocería de un vehículo para un vehículo ferroviario
CN101532515B (zh) * 2009-04-23 2011-04-20 福建万新发电设备有限公司 高压蓄能液压工作装置
DE102009041110A1 (de) * 2009-09-15 2011-03-24 Bombardier Transportation Gmbh Aktuator mit Mehrfachwirkung
FR2958247B1 (fr) * 2010-03-31 2012-05-11 Soc Nat Des Chemins De Fer Francais Sncf Vehicule ferroviaire avec un bogie comprenant des elements carenes discrets agences pour ameliorer le comportement aerodynamique dudit bogie
JP5627096B2 (ja) * 2010-10-05 2014-11-19 日本車輌製造株式会社 鉄道車両の制振用ダンパ
CN102069813B (zh) * 2010-12-15 2012-06-06 青岛四方车辆研究所有限公司 开关式半主动悬挂系统
JP5789131B2 (ja) * 2011-05-31 2015-10-07 日立オートモティブシステムズ株式会社 緩衝器およびサスペンション装置
JP5552174B1 (ja) * 2013-02-15 2014-07-16 カヤバ工業株式会社 アクチュエータ
JP6243205B2 (ja) * 2013-11-25 2017-12-06 Kyb株式会社 サスペンション装置
CN203670582U (zh) * 2013-12-24 2014-06-25 常州容大结构减振设备有限公司 新型智能阻尼器
JP6363934B2 (ja) * 2014-10-17 2018-07-25 Kyb株式会社 シリンダ装置
JP6663196B2 (ja) * 2015-09-30 2020-03-11 Kyb株式会社 サスペンション装置
JP6663197B2 (ja) * 2015-09-30 2020-03-11 Kyb株式会社 サスペンション装置
US10434835B2 (en) * 2016-02-24 2019-10-08 Tenneco Automotive Operating Company Inc. Monotube active suspension system having different system layouts for controlling pump flow distribution
DE102016216546A1 (de) * 2016-09-01 2018-03-01 Zf Friedrichshafen Ag Schwingungsdämpfer sowie Kraftfahrzeug
CN206159354U (zh) * 2016-11-16 2017-05-10 华东交通大学 一种双线圈磁流变阀控双作用缸阻尼系统
JP6779147B2 (ja) * 2017-01-30 2020-11-04 Kyb株式会社 鉄道車両用制振装置
DE102017106802A1 (de) * 2017-03-29 2018-10-04 Thyssenkrupp Ag Hydraulischer Schwingungsdämpfer, insbesondere für ein Fahrzeugfahrwerk
CN107816505B (zh) * 2017-10-19 2019-05-28 燕山大学 一种主动控制液压伺服缓冲器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264034A (ja) * 1999-03-19 2000-09-26 Kayaba Ind Co Ltd アクティブサスペンションの制御装置
CN102720795A (zh) * 2012-06-12 2012-10-10 江苏科技大学 一种用于两栖车的油气弹簧及其液压调节装置
CN106103145A (zh) * 2014-05-05 2016-11-09 宝马股份公司 用于车辆的主动减振器系统
CN107107698A (zh) * 2014-11-07 2017-08-29 Kyb株式会社 悬架装置
CN110360260A (zh) * 2019-06-20 2019-10-22 中车青岛四方机车车辆股份有限公司 一种主动控制抗蛇形减振器及减振系统、车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3988814A4 *

Also Published As

Publication number Publication date
US20220154796A1 (en) 2022-05-19
CA3137609A1 (en) 2020-12-24
JP7383730B2 (ja) 2023-11-20
AU2020297373A1 (en) 2021-10-28
CN110360260B (zh) 2021-08-31
AU2020297373B2 (en) 2023-08-03
US11859689B2 (en) 2024-01-02
JP2022533687A (ja) 2022-07-25
EP3988814A4 (en) 2022-08-31
CN110360260A (zh) 2019-10-22
EP3988814A1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
WO2020253441A1 (zh) 一种主动控制抗蛇行减振器及减振系统、车辆
WO2020253443A1 (zh) 半主动抗蛇行减振器及减振系统、车辆
WO2021023026A1 (zh) 主被动双模式可切换车辆悬架系统及其切换方法
CN112046532B (zh) 主动倾摆装置及控制方法、转向架悬挂系统、轨道车辆
CN112009193B (zh) 一种抗侧倾可调油气悬架液压系统
CN102537176A (zh) 一种阀控式半主动减振器
JP2017094809A (ja) サスペンション装置
CN111577714B (zh) 一种液压系统及工程机械
CN210859382U (zh) 一种车辆行驶液压控制系统及车辆
RU2787736C1 (ru) Демпфер колебаний с активным управлением, демпфирующая система и транспортное средство
CN214146396U (zh) 一种阻尼可调半主动减振器
CN111038207B (zh) 油气悬挂模组、油气悬挂系统及车辆
RU2794318C1 (ru) Полуактивный демпфер колебаний, демпфирующая система и транспортное средство
CN210558952U (zh) 工程车辆液控装置和工程车辆
CN113700791A (zh) 一种减振系统及减振系统控制方法
CN216691981U (zh) 一种轨道车辆转向架转向减振器结构
CN219339130U (zh) 一种全主动悬架及包括该悬架的系统
CN220706294U (zh) 一种被动阻尼阀阀系装置
CN117698363A (zh) 全主动悬架系统及车辆
CN117189817A (zh) 一种阻尼阀单元和用于轨道车辆的减振系统及方法
CN115289176A (zh) 机车铰接器主动控制阻尼系统和机车铰接器阻尼控制方法
CN114278696A (zh) 一种轨道车辆转向架转向减振器
CN117167353A (zh) 一种滑移装载机双速闭式液压行走系统及方法
CN110998131A (zh) 气缸装置和铁路车辆用减震装置
JP2001018624A (ja) 車高調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3137609

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020297373

Country of ref document: AU

Date of ref document: 20200518

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021568945

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020827428

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020827428

Country of ref document: EP

Effective date: 20220120