WO2021023026A1 - 主被动双模式可切换车辆悬架系统及其切换方法 - Google Patents

主被动双模式可切换车辆悬架系统及其切换方法 Download PDF

Info

Publication number
WO2021023026A1
WO2021023026A1 PCT/CN2020/104512 CN2020104512W WO2021023026A1 WO 2021023026 A1 WO2021023026 A1 WO 2021023026A1 CN 2020104512 W CN2020104512 W CN 2020104512W WO 2021023026 A1 WO2021023026 A1 WO 2021023026A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
oil
suspension
passive
servo valve
Prior art date
Application number
PCT/CN2020/104512
Other languages
English (en)
French (fr)
Inventor
赵丁选
巩明德
刘爽
张祝新
孙志国
倪涛
闫朝阳
郭庆贺
Original Assignee
燕山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 燕山大学 filed Critical 燕山大学
Priority to KR1020227002711A priority Critical patent/KR102548286B1/ko
Priority to JP2021576675A priority patent/JP7177555B2/ja
Priority to EP20850828.3A priority patent/EP4005835B1/en
Priority to CA3145723A priority patent/CA3145723C/en
Priority to AU2020327056A priority patent/AU2020327056A1/en
Publication of WO2021023026A1 publication Critical patent/WO2021023026A1/zh
Priority to US17/497,912 priority patent/US11618294B2/en
Priority to US17/541,406 priority patent/US11926063B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/04Spring characteristics, e.g. mechanical springs and mechanical adjusting means fluid spring characteristics
    • B60G17/056Regulating distributors or valves for hydropneumatic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/017Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their use when the vehicle is stationary, e.g. during loading, engine start-up or switch-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/15Fluid spring
    • B60G2202/154Fluid spring with an accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/413Hydraulic actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/416Fluid actuator using a pump, e.g. in the line connecting the lower chamber to the upper chamber of the actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/62Adjustable continuously, e.g. during driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/512Pressure in suspension unit in spring
    • B60G2400/5122Fluid spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • B60G2400/5182Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/02Supply or exhaust flow rates; Pump operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/11Damping valves
    • B60G2500/114Damping valves pressure regulating valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • B60G2500/206Variable pressure accumulators for hydropneumatic suspensions
    • B60G2500/2062Variable pressure accumulators for hydropneumatic suspensions by varying the air-pressure of the accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/182Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/20Manual control or setting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/68Filtering means, e.g. fluid filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/74Analog systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control

Definitions

  • the invention belongs to the technical field of vehicle suspension, and in particular relates to a suspension system with a switchable active suspension and a passive suspension and a switching method thereof.
  • the suspension system is an important part of the vehicle. Its function is to transmit the force and moment between the wheels and the frame, buffer the impact force transmitted from the uneven road to the body, and attenuate the resulting vibration to ensure the smooth driving of the car Sex and handling stability. Active suspension has better damping performance than passive suspension, but its reliability is slightly worse than passive suspension. If the vehicle is only equipped with active suspension, once it fails, the driving safety and maneuverability of the vehicle will be reduced. It is difficult to guarantee. Therefore, integrating the active suspension and the passive suspension into one vehicle body and being able to switch at any time can improve the ride comfort while ensuring the driving safety and maneuverability of the vehicle.
  • the active suspension system and the passive suspension system integrated in a vehicle body are switched to each other, a strong vibration problem will occur due to the unequal pressure of the two systems, and there is a greater safety hazard; the active suspension system is effective Work requires an accumulator as an auxiliary power source, and the effective work of a passive suspension system requires an accumulator as an elastic element.
  • the accumulator for active suspension and the accumulator for passive suspension are two independent Each component performs its duties. The volume and mass of the accumulator are larger than other hydraulic components. If its quantity is large, it will not only place higher requirements on the limited car body layout space, but also increase the weight of the car body. , Is not conducive to the lightweight of the vehicle.
  • the purpose of the present invention is to propose an active and passive dual-mode switchable vehicle suspension system and a switching method thereof that can realize smooth switching of working modes and the energy accumulator can be multiplexed in two working modes.
  • the present invention proposes an active and passive dual-mode switchable vehicle suspension system, which includes a filter, a hydraulic pump, a one-way valve, a power take-off, a servo valve, a suspension cylinder, an overflow valve, an accumulator, and a Directional valve, first pressure sensor, second pressure sensor, controller, fuel tank and displacement sensor;
  • the oil inlet of the filter is connected to the oil tank through an oil pipe, the oil outlet of the filter is connected to the oil inlet of the hydraulic pump through an oil pipe; the oil outlet of the hydraulic pump is connected to the one-way through an oil pipe
  • the oil inlet of the valve is connected; the oil outlet of the one-way valve is connected with the oil inlet of the servo valve through an oil pipe; the oil return port of the servo valve is connected with the oil tank through an oil pipe.
  • the drive shaft of the hydraulic pump is connected to the power take-off through a mechanical structure; the power take-off is connected to the power output shaft of the vehicle engine, and the power take-off is used to obtain power from the vehicle engine and transmit the power to the hydraulic Pump.
  • the servo valve is a three-position four-way electro-hydraulic servo valve, including three states of left, middle and right; the first working oil port of the servo valve is connected with the rodless cavity of the suspension cylinder, and the servo The second working oil port of the valve is connected with the rod cavity of the suspension cylinder; when the servo valve is in the neutral position, the oil inlet and the oil return port of the servo valve are connected with the first working oil of the servo valve All passages between the oil port and the second working oil port are blocked; when the servo valve is in the left position, the passage between the oil inlet of the servo valve and the first working oil port of the servo valve is guided Is open, the passage between the oil return port of the servo valve and the second working oil port of the servo valve is connected; when the servo valve is in the right position, the oil inlet of the servo valve and the servo valve The passage between the second working oil port is connected, and the passage between the
  • the suspension cylinder is hinged with the vehicle body, and a displacement sensor is arranged on the suspension cylinder to monitor the displacement of the piston rod relative to the hydraulic cylinder barrel.
  • the oil inlet of the overflow valve is connected to the oil outlet of the one-way valve through an oil pipe, the oil outlet of the overflow valve is connected to the oil tank through an oil pipe, and the opening pressure of the overflow valve is determined by the
  • the controller gives a control signal to the control end of the overflow valve for adjustment.
  • the proportional relief valve can be used as a safety valve for an active suspension system or as a safety valve for a passive suspension system.
  • the reversing valve is arranged in parallel with the servo valve, the oil inlet of the reversing valve is connected to the oil tank through an oil pipe, and the oil return port of the reversing valve is connected to the oil inlet of the overflow valve through an oil pipe
  • the first working oil port of the reversing valve is connected to the rod cavity of the suspension cylinder through an oil pipe, and the second working oil port of the reversing valve is connected to the rodless cavity of the suspension cylinder through an oil pipe.
  • the accumulator is arranged in the oil path between the oil return port of the reversing valve and the oil inlet of the overflow valve.
  • the accumulator can be used as an auxiliary power source for an active suspension system or as an auxiliary power source.
  • the elastic element of the passive suspension system is used.
  • the oil path between the accumulator and the oil return port of the reversing valve is provided with a first pressure sensor for detecting the oil pressure in the accumulator; the rodless cavity of the suspension cylinder and the The oil path between the first working oil ports of the servo valve is provided with a second pressure sensor for detecting the oil pressure in the rodless cavity of the suspension cylinder.
  • control end of the power take-off, the control end of the servo valve, the control end of the overflow valve and the control end of the reversing valve are all connected to the controller, and their signals are all given by the controller .
  • the servo valve is a three-position four-way electro-hydraulic servo valve, including three states: left position, middle position and right position; when the servo valve is in the neutral position, the oil inlet and return port of the servo valve are All passages between the first working oil port and the second working oil port of the servo valve are blocked; when the servo valve is in the left position, the oil inlet of the servo valve and the first working oil port of the servo valve The passage between the working oil ports is connected, and the passage between the oil return port of the servo valve and the second working oil port of the servo valve is connected. At this time, the oil can be supplied through the servo valve.
  • the first working oil port of the servo valve enters the rodless cavity of the suspension cylinder.
  • the oil in the rod cavity of the suspension cylinder can pass through the second working oil port of the servo valve and The oil return port of the servo valve flows back to the oil tank; when the servo valve is in the right position, the passage between the oil inlet of the servo valve and the second working oil port of the servo valve is connected, The passage between the oil return port of the servo valve and the first working oil port of the servo valve is connected.
  • the oil can pass through the oil inlet of the servo valve and the second oil port of the servo valve.
  • the working oil port enters the rod cavity of the suspension cylinder, and meanwhile, the oil in the rodless cavity of the suspension cylinder can flow back to the oil tank through the first working oil port of the servo valve and its oil return port.
  • the relief valve is a proportional relief valve.
  • the reversing valve is a two-position four-way electromagnetic reversing valve, including two states of cut-off and conduction.
  • the reversing valve When the reversing valve is in the cut-off state, between the oil inlet of the reversing valve and the oil return port of the reversing valve and the first working oil port and the second working oil port of the reversing valve All passages of the reversing valve are blocked; when the reversing valve is in the conducting state, the passage between the oil inlet of the reversing valve and the first working oil port of the reversing valve and the reversing valve The passage between the oil return port of the reversing valve and the second working oil port of the reversing valve is conducted; the oil in the rodless cavity of the suspension cylinder can pass through the second working oil port of the reversing valve and The oil return port of the reversing valve flows to the accumulator, and the oil in the oil tank can flow to the oil inlet of the revers
  • the present invention proposes a switching method for the active and passive dual mode switchable vehicle suspension system:
  • the switching valve When the suspension system is an active suspension mode, the switching valve is in an off state, the relief valve opening pressure in this case is an active suspension system the maximum safe working pressure p a, and that the power take
  • the power output shaft of the vehicle engine is connected and the power is output from it to the hydraulic pump to drive the hydraulic pump to work.
  • the controller outputs corresponding control signals to the control of the servo valve according to driving road conditions and vehicle body conditions
  • the accumulator is used as an auxiliary power source of the active suspension system
  • the overflow valve is used as a safety valve of the active suspension system.
  • the reversing valve When the suspension system is in the passive suspension mode, the reversing valve is in a conducting state, and the opening pressure of the relief valve at this time is the maximum pressure p s for the safe operation of the passive suspension system.
  • the power take-off and the The power output shaft of the vehicle engine is disconnected, the hydraulic pump stops working, and the servo valve is in the neutral state.
  • the accumulator is used as the elastic element of the passive suspension system, and the overflow valve is used as the safety of the passive suspension system.
  • Valve use It includes the following steps:
  • the controller When the vehicle is parked from an active suspension to a passive suspension, the controller outputs a corresponding displacement command to the control end of the servo valve according to the feedback signal of the displacement sensor, and the servo valve regulates the piston of the suspension cylinder The rod moves to the middle position of its full stroke, then the controller stops outputting signals to the servo valve, the servo valve returns to the neutral state, the oil is locked in the suspension cylinder, and the controller Stop outputting a signal to the power take-off, the power take-off is disconnected from the power output shaft of the vehicle engine, and the hydraulic pump stops running.
  • the first pressure sensor detects that the pressure in the accumulator is p 1 , and transmit the pressure value signal to the controller
  • the second pressure sensor detects that the pressure in the rodless cavity of the suspension cylinder is p 2 , and transmits the pressure value signal to the controller, so
  • the controller compares the pressure values p 1 and p 2 and makes corresponding adjustments, specifically:
  • the oil path between the accumulators is connected, the oil path between the rod cavity of the suspension cylinder and the oil tank is connected, and the controller outputs a control signal to the relief valve control terminal to regulate it
  • the opening pressure is p s ; since p 1 and p 2 are equal, there is no pressure difference when the reversing valve is turned on, the active suspension can be smoothly switched to the passive suspension; at this time, the accumulator serves as the elastic element of the passive suspension
  • the overflow valve is used as a safety valve of a passive suspension system, and when the vehicle starts driving, it is driving in the passive suspension mode;
  • the controller If p 1 > p 2 , the controller outputs a control signal to the control end of the overflow valve, adjusts the opening pressure of the overflow valve to p 2 , and the oil flows from the accumulator through when the spill flowing back to the tank when the pressure in the first pressure sensor monitors the accumulator is reduced to p 2, the controller again outputs a control signal to the spill control terminal, Adjust its opening pressure to p s , and then the controller outputs a control signal to the control end of the reversing valve to switch from the off state to the on state.
  • the active suspension can Smoothly switch to the passive suspension
  • the accumulator is used as the elastic element of the passive suspension
  • the overflow valve is used as the safety valve of the passive suspension system.
  • the vehicle is driving in the passive suspension mode.
  • the controller If p 2 > p 1 , the controller outputs a control signal to the power take-off, and the power take-off is reconnected to the vehicle engine output shaft and obtains power from it and outputs it to the hydraulic
  • the hydraulic pump works, the oil flows into the accumulator through the one-way valve, the oil pressure in the accumulator rises, when the pressure monitored by the first pressure sensor rises to p 2 , The controller stops outputting a control signal to the power take-off, the power take-off is disconnected from the output shaft of the vehicle engine, the hydraulic pump stops running, and then the controller outputs a control signal to the power take-off
  • the overflow valve is used as a safety valve of the passive suspension system. At this time, the vehicle is running in the passive
  • the passive suspension has been smoothly switched to the active suspension state, and the vehicle starts to drive.
  • the controller will output corresponding control signals to the control end of the servo valve according to the driving road conditions and vehicle body conditions to regulate its operation.
  • the energy device is used as an auxiliary power element of the active suspension, the overflow valve is used as a safety valve of the active suspension system, and the vehicle is running in the active suspension mode.
  • the present invention has the following beneficial effects:
  • the active and passive dual-mode switchable vehicle suspension system of the present invention adjusts the oil pressure in the rodless cavity of the suspension cylinder and the oil pressure in the accumulator to be equal in advance when the mode is switched, thereby realizing the smooth switching of the active and passive suspension system. Eliminates the vibration of the vehicle body when the existing active and passive suspension systems are switched; in the active and passive dual-mode switchable vehicle suspension system of the present invention, the accumulator can be used as an auxiliary power source in the active suspension mode, or as an auxiliary power source.
  • the overflow valve Used as an elastic element in passive suspension mode, the overflow valve can be used as a safety valve in active suspension mode or as a safety valve in passive suspension mode, effectively reducing the number of accumulators and overflow valves used, so It can greatly save the layout space of the vehicle body.
  • the suspension system of the present invention can leave more installation space for other instruments and equipment on the vehicle body, and can effectively reduce The total mass of the vehicle body is conducive to the lightweight of the vehicle chassis.
  • Figure 1 is a schematic diagram of the active and passive dual-mode switchable vehicle suspension system of the present invention.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed can be a fixed connection or a detachable connection , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • an active and passive dual-mode switchable vehicle suspension system disclosed in the embodiment of the present invention includes a filter 1, a hydraulic pump 2, a one-way valve 3, a power take-off 4, a servo valve 6, and a suspension cylinder 7.
  • the oil inlet of the filter 1 is connected to the oil tank 15 through the oil pipe, the oil outlet of the filter 1 is connected to the oil inlet of the hydraulic pump 2 through the oil pipe, and the oil outlet of the hydraulic pump 2 is connected to the oil inlet of the check valve 3 through the oil pipe.
  • the oil outlet of the one-way valve 3 is connected to the oil inlet P 1 of the servo valve through the oil pipe, and the oil return port T 1 of the servo valve is connected to the oil tank 15 through the oil pipe.
  • the drive shaft of the hydraulic pump 2 is connected to the power take-off 4 through a mechanical structure, and the power take-off 4 is connected to the power output shaft of the vehicle engine 5.
  • the power take-off 4 is used to obtain power from the vehicle engine 5 and transmit the power to the hydraulic pump 2.
  • the first working oil port A 1 of the servo valve is connected to the rodless cavity of the suspension cylinder 7, and the second working oil port B 1 of the servo valve is connected to the rod-containing cavity of the suspension cylinder 7.
  • the suspension cylinder 7 is hinged with the vehicle body 8, and a displacement sensor 16 is arranged on the suspension cylinder 7 to monitor the displacement of the piston rod relative to the hydraulic cylinder barrel.
  • the oil inlet of the overflow valve 9 is connected to the oil outlet of the one-way valve 3 through an oil pipe, and the oil outlet of the overflow valve 9 is connected to the oil tank 15 through an oil pipe.
  • the reversing valve 11 is arranged in parallel with the servo valve 6, the reversing valve oil inlet P 2 is connected to the oil tank 15 through the oil pipe, and the reversing valve oil return port T 2 is connected to the oil inlet of the overflow valve 9 through the oil pipe;
  • the first working oil port A 2 is connected to the rod cavity of the suspension cylinder 7 through an oil pipe, and the second working oil port B 2 of the reversing valve is connected to the rodless cavity of the suspension cylinder 7 through an oil pipe.
  • the accumulator 10 is arranged in the oil path between the oil return port T 2 of the reversing valve and the oil inlet of the overflow valve 9.
  • the accumulator 10 can be used as an auxiliary power source for an active suspension system or as a passive The elastic element of the suspension system is used.
  • the oil path between the accumulator 10 and the oil return port T 2 of the reversing valve is provided with a first pressure sensor 12 for detecting the oil pressure in the accumulator 10; the rodless cavity of the suspension cylinder 7 and the first servo valve the oil path between the work port a 1 is provided with a second pressure sensor 13 for detecting the suspension cylinders 7 rodless chamber oil pressure.
  • control end of the power take-off 4, the control end of the servo valve 6, the control end of the overflow valve 9 and the control end of the reversing valve 11 are all connected to the controller 14, and their signals are all given by the controller 14.
  • Servo valve 6 is a three-position four-way electro-hydraulic servo valve, including three states: left position, middle position and right position; when the servo valve 6 is in the neutral position, the servo valve inlet port P 1 and oil return port T 1 and the servo valve All passages between the first working oil port A 1 and the second working oil port B 1 are blocked; when the servo valve 6 is in the left position, the servo valve inlet P 1 and its first working oil port A 1 The passage between the servo valve is connected, and the passage between the servo valve oil return port T 1 and its second working oil port B 1 is connected.
  • the oil can pass through the servo valve oil inlet P 1 and its first working oil port A 1 Enter the rodless cavity of the suspension cylinder 7.
  • the oil in the rod cavity of the suspension cylinder 7 can flow back to the tank 15 through the second working oil port B 1 of the servo valve and its oil return port T 1 ; when the servo valve 6 When in the right position, the passage between the servo valve oil inlet P 1 and its second working oil port B 1 is connected, and the passage between the servo valve oil return port T 1 and its first working oil port A 1 is connected
  • the oil can enter the rod cavity of the suspension cylinder 7 through the servo valve oil inlet P 1 and its second working oil port B 1 , at the same time, the oil in the rodless cavity of the suspension cylinder 7 can pass through the servo valve.
  • a working oil port A 1 and its oil return port T 1 flow back to the oil tank 15.
  • the relief valve 9 is a proportional relief valve.
  • the opening pressure of the relief valve 9 can be adjusted by the controller 14 sending a control signal to the control end of the relief valve 9.
  • the relief valve 9 can be used as a safety valve for an active suspension system or as a safety valve for a passive suspension system Valve use.
  • the reversing valve 11 is a two-position four-way electromagnetic reversing valve, including two states of cut-off and conduction.
  • the reversing valve 11 When the reversing valve 11 is in the cut-off state, all passages between the reversing valve oil inlet P 2 and its oil return port T 2 and the reversing valve first working oil port A 2 and second working oil port B 2 are Is cut off; when the reversing valve 11 is in the conducting state, the passage between the reversing valve oil inlet P 2 and its first working oil port A 2 and the reversing valve oil return port T 2 and its second working oil The passages between ports B 2 are all conducted; the oil in the rodless cavity of the suspension cylinder 7 can flow to the accumulator 10 through the second working oil port B 2 of the reversing valve and the oil return port T 2 of the reversing valve , The oil in the oil tank 15 can flow into the rod cavity of the suspension cylinder 7 through the reversing valve oil inlet P 2
  • the working components when the system is working in the active suspension mode, the working components include filter 1, hydraulic pump 2, one-way valve 3, power take-off 4, servo valve 6, Suspension cylinder 7, relief valve 9, accumulator 10, controller 14, fuel tank 15 and displacement sensor 16.
  • the working components When the system is working in passive suspension mode, the working components include suspension cylinder 7, relief valve 9, and energy storage The device 10, the reversing valve 11 and the oil tank 15.
  • the power take-off 4 receives the signal and is continuously connected with the power output shaft of the vehicle engine 5 to drive the hydraulic pump 2 to operate; the control end of the servo valve 6 obtains the control signal of the controller 14 and continues to work; the overflow valve 9 continued to maintain its opening pressure p a (p a maximum pressure is active suspension system safety work); this time valve 11 may not signal, continued to remain in the off state.
  • the power take-off 4 In the passive suspension mode, the power take-off 4 must not signal and continue to be disconnected from the power output shaft of the vehicle engine 5; the servo valve 6 must not signal and continue to maintain the neutral state; the overflow valve 9 continuously maintains its opening pressure at p s ; The reversing valve 11 receives a signal and continues to be kept in a conducting state.
  • the switching method of the active and passive dual mode switchable vehicle suspension system of the present invention is as follows:
  • valve 11 When the suspension system is an active suspension mode, valve 11 is in the OFF state, the relief valve opening pressure is 9 in this case the active suspension system the maximum safe working pressure p a, power take-off of the vehicle engine 4 5
  • the power output shaft is connected and the power is output from it to the hydraulic pump 2 to drive the hydraulic pump 2 to work.
  • the controller 14 outputs corresponding control signals to the control end of the servo valve 6 according to the driving road conditions and vehicle body conditions to regulate its work.
  • the accumulator 10 is used as an auxiliary power source of the active suspension system, and the overflow valve 9 is used as a safety valve of the active suspension system.
  • the reversing valve 11 When the suspension system is in the passive suspension mode, the reversing valve 11 is in the conducting state, and the opening pressure of the relief valve 9 at this time is the maximum pressure p s for the safe operation of the passive suspension system.
  • the power take-off 4 and the vehicle engine 5 The power output shaft is disconnected, the hydraulic pump 2 stops working, and the servo valve 6 is in the neutral state.
  • the accumulator 10 is used as the elastic element of the passive suspension system, and the overflow valve 9 is used as the safety valve of the passive suspension system. .
  • the controller 14 When the vehicle is parked from the active suspension to the passive suspension, the controller 14 outputs the corresponding displacement command to the control end of the servo valve 6 according to the feedback signal of the displacement sensor, and the servo valve 6 regulates the movement of the piston rod of the suspension cylinder 7 To the middle position of its full stroke, then the controller 14 stops outputting the signal to the servo valve 6, the servo valve 6 returns to the neutral position, the oil is locked in the suspension cylinder 7, and the controller 14 stops outputting the signal to the power take-off 4 , The power take-off 4 is disconnected from the power output shaft of the vehicle engine 5, and the hydraulic pump 2 stops running.
  • the first pressure sensor 12 detects that the pressure in the accumulator is p 1 and transmits the pressure value signal to the controller 14.
  • the second pressure sensor 13 detects that the pressure in the rodless cavity of the suspension cylinder 7 is p 2 , and transmits the pressure value signal to the controller 14.
  • the controller 14 compares the pressure values p 1 and p 2 and makes The corresponding regulation, specifically:
  • the oil path between the device 10 is connected, the oil path between the rod cavity of the suspension cylinder 7 and the oil tank 15 is connected, and the controller 14 outputs a control signal to the control end of the relief valve 9 to regulate its opening pressure to p s ; Since p 1 and p 2 are equal, and there is no pressure difference when the reversing valve 11 is turned on, the active suspension can be smoothly switched to the passive suspension; at this time, the accumulator 10 is used as an elastic element of the passive suspension, and the overflow valve 9Used as a safety valve of the passive suspension system. At this time, when the vehicle starts driving, it is driving in the passive suspension mode;
  • the controller 14 If p 1 > p 2 , the controller 14 outputs a control signal to the control end of the overflow valve 9 to adjust the opening pressure of the overflow valve 9 to p 2 , and the oil flows from the accumulator 10 through the overflow valve 9 Flowing back to the fuel tank 15, when the first pressure sensor 12 monitors that the pressure of the accumulator 10 decreases to p 2 , the controller 14 again outputs a control signal to the control end of the overflow valve 9, adjusting its opening pressure to p s , and then The controller 14 outputs a control signal to the control end of the reversing valve 11 to switch from the cut-off state to the on state.
  • the active suspension can be smoothly switched to the passive suspension, and the accumulator 10 Used as an elastic element of the passive suspension, the overflow valve 9 is used as a safety valve of the passive suspension system. At this time, the vehicle is running in the passive suspension mode.
  • the controller 14 After moving to the middle position of its full stroke, the controller 14 stops outputting control signals to the control end of the servo valve 6, and the servo valve 6 returns to the neutral state. So far, the passive suspension has been smoothly switched to the active suspension state, and the vehicle starts.
  • the controller 14 When driving, the controller 14 will output corresponding control signals to the control end of the servo valve 6 according to the driving road conditions and vehicle body conditions to regulate its work.
  • the accumulator 10 is used as an auxiliary power element of the active suspension, and the overflow valve 9 is used as When the safety valve of the active suspension system is used, the vehicle is driving in the active suspension mode.

Abstract

一种主被动双模式可切换车辆悬架系统,该系统包括过滤器(1)、液压泵(2)、单向阀(3)、取力器(4)、伺服阀(6)、悬挂缸(7)、溢流阀(9)、蓄能器(10)、换向阀(11)、第一压力传感器(12)、第二压力传感器(13)、控制器(14)、油箱(15)和位移传感器(16)。还涉及到一种主被动双模式可切换车辆悬架系统的切换方法。在模式切换时,事先调节悬挂缸无杆腔内油液压力和蓄能器内油液压力至相等,实现主被动悬挂模式的平稳切换,消除了现有主被动悬挂系统切换时车体的振颤,且蓄能器和溢流阀可在主被动悬架模式下共用,有效减少了蓄能器和溢流阀的使用数量,可大幅度节省车体的布置空间,有效减轻车身总质量,利于车辆底盘的轻量化。

Description

主被动双模式可切换车辆悬架系统及其切换方法 技术领域
本发明属于车辆悬架技术领域,尤其涉及一种主动悬架和被动悬架可切换的悬架系统及其切换方法。
背景技术
悬架系统是车辆的重要组成部分,其作用是传递车轮和车架之间的力和力矩,缓冲由不平路面传递给车身的冲击力,并衰减由此引起的振动,以保证汽车的行驶平顺性和操纵稳定性。主动悬架相比被动悬架具备更好的减振性能,但其可靠性相比被动悬架稍差,若车辆仅装配主动悬架,一旦其发生故障,车辆的行驶安全性和机动性则很难保证。因此,将主动悬架和被动悬架集成于一个车体并可随时切换则能在提高乘坐舒适性的同时保证车辆的行驶安全性和机动性。
现有技术中,集成于一个车体的主动悬架系统和被动悬架系统相互切换时因两系统压力不等会发生强烈的振颤问题,存在较大的安全隐患;主动悬架系统的有效工作需要蓄能器作为辅助动力源,被动悬架系统的有效工作需要蓄能器作为弹性元件,而现有技术中,主动悬架用蓄能器和被动悬架用蓄能器为独立的两个元件,各司其职,蓄能器的体积和质量相比其他液压元件较大,若其数量较多则不仅对有限的车体布置空间提出较高的要求,而且会额外增加车体重量,不利于车辆的轻量化。
发明内容
针对上述技术问题,本发明的目的在于提出一种能够实现工作模式切换平稳,并且蓄能器可以在两种工作模式下复用的主被动双模式可切换车辆悬架系统及其切换方法。
首先,本发明提出了一种主被动双模式可切换车辆悬架系统,其包括过滤器,液压泵,单向阀,取力器,伺服阀,悬挂缸,溢流阀,蓄能器,换向阀,第一压力传感器,第二压力传感器,控制器,油箱和位移传感器;
所述过滤器的进油口通过油管与油箱相连,所述过滤器的出油口通过油管与所述液压泵的进油口相连;所述液压泵的出油口通过油管与所述单向阀的进油口相连;所述单向阀的出油口通过油管与所述伺服阀的进油口相连;所述伺服阀的回油口通过油管与所述油箱相连。
所述液压泵的驱动轴与所述取力器通过机械结构连接;所述取力器与车辆发动机的动力 输出轴连接,所述取力器用于从车辆发动机处获取动力并将动力传输至液压泵。
所述伺服阀为三位四通电液伺服阀,包括左位、中位和右位三种状态;所述伺服阀的第一工作油口与所述悬挂缸的无杆腔相连,所述伺服阀的第二工作油口与所述悬挂缸的有杆腔相连;当所述伺服阀处于中位时,所述伺服阀的进油口和回油口与所述伺服阀的第一工作油口和第二工作油口之间的所有通路均被截止;当所述伺服阀处于左位时,所述伺服阀的进油口和所述伺服阀的第一工作油口之间的通路导通,伺服阀的回油口和所述伺服阀的第二工作油口之间的通路导通;当所述伺服阀处于右位时,所述伺服阀的进油口和所述伺服阀的第二工作油口之间的通路导通,所述伺服阀的回油口和所述伺服阀的第一工作油口之间的通路导通;
所述悬挂缸与车体铰接,所述悬挂缸上设有位移传感器,用以监测活塞杆相对液压缸筒的位移量。
所述溢流阀的进油口通过油管与所述单向阀的出油口相连,所述溢流阀的出油口通过油管与油箱相连,所述溢流阀开启压力的大小由所述控制器给出控制信号至所述溢流阀的控制端进行调节。所述比例溢流阀既可作为主动悬架系统的安全阀使用也可做被动悬架系统的安全阀使用。
所述换向阀与所述伺服阀并联设置,所述换向阀的进油口通过油管与油箱相连,所述换向阀的回油口通过油管与所述溢流阀的进油口相连;所述换向阀的第一工作油口通过油管与所述悬挂缸的有杆腔相连,所述换向阀的第二工作油口通过油管与悬挂缸的无杆腔相连。
所述蓄能器设置在换向阀的回油口和所述溢流阀进油口之间油路中,所述蓄能器既能作为主动悬架系统的辅助动力源使用,也可作为被动悬架系统的弹性元件使用。
所述蓄能器和所述换向阀的回油口之间的油路上设有第一压力传感器,用于检测所述蓄能器内油液压力;所述悬挂缸的无杆腔和所述伺服阀的第一工作油口之间的油路上设有第二压力传感器,用于检测所述悬挂缸无杆腔内油液压力。
所述取力器的控制端、所述伺服阀的控制端、所述溢流阀的控制端和所述换向阀的控制端均与控制器连接,其信号均由所述控制器给出。
所述伺服阀为三位四通电液伺服阀,包括左位、中位和右位三种状态;当所述伺服阀处于中位时,所述伺服阀的进油口和回油口与所述伺服阀的第一工作油口和第二工作油口之间的所有通路均被截止;当所述伺服阀处于左位时,所述伺服阀的进油口和所述伺服阀的第一工作油口之间的通路导通,所述伺服阀的的回油口和所述伺服阀的第二工作油口之间的通路导通,此时油液可经所述伺服阀的进油口和所述伺服阀的第一工作油口进入所述悬挂缸的无杆腔内,同时,所述悬挂缸有杆腔内的油液可经所述伺服阀的第二工作油口和所述伺服阀的 回油口流回所述油箱;当所述伺服阀处于右位时,所述伺服阀的的进油口和所述伺服阀的第二工作油口之间的通路导通,所述伺服阀的的回油口和所述伺服阀的第一工作油口之间的通路导通,此时油液可经所述伺服阀的的进油口和所述伺服阀的第二工作油口进入所述悬挂缸的有杆腔内,同时,所述悬挂缸无杆腔内的油液可经所述伺服阀的第一工作油口和其回油口流回油箱。
优选的,所述溢流阀为比例溢流阀。
优选的,所述换向阀为二位四通电磁换向阀,包括做截止和导通两种状态。当所述换向阀处于截止状态时,所述换向阀的进油口和所述换向阀的回油口与所述换向阀的第一工作油口和第二工作油口之间的所有通路均被截止;当所述换向阀处于导通状态时,所述换向阀的进油口和所述换向阀的第一工作油口之间的通路以及所述换向阀的回油口和所述换向阀的第二工作油口之间的通路均被导通;所述悬挂缸无杆腔内的油液可经所述换向阀的第二工作油口和所述换向阀的回油口流至所述蓄能器中,所述油箱中的油液可经所述换向阀的进油口和所述换向阀的第一工作油口流至所述悬挂缸的有杆腔中,反之,所述蓄能器中的油液也可经所述换向阀的回油口和所述换向阀的第二工作油口流至所述悬挂缸的无杆腔中,所述悬挂缸有杆腔中的油液也可经所述换向阀的第一工作油口和所述换向阀的进油口流回油箱。
其次,本发明提出了一种主被动双模式可切换车辆悬架系统的切换方法:
当悬架系统为主动悬架模式时,所述换向阀处于截止状态,所述溢流阀此时的开启压力为主动悬架系统安全工作的最大压力p a,所述取力器与所述车辆发动机的动力输出轴连接并从其处取得动力输出至所述液压泵,带动所述液压泵工作,所述控制器根据行驶路况及车体状况输出相应控制信号至所述伺服阀的控制端,调控其工作,此时所述蓄能器作为主动悬架系统的辅助动力源使用,所述溢流阀作为主动悬架系统的安全阀使用。
当悬架系统为被动悬架模式时,所述换向阀处于导通状态,溢流阀此时的开启压力为被动悬架系统安全工作的最大压力p s,所述取力器与所述车辆发动机的动力输出轴断开,液压泵停止工作,伺服阀处于中位状态,此时所述蓄能器作为被动悬架系统的弹性元件使用,所述溢流阀作为被动悬架系统的安全阀使用。其包括如下步骤:
S1.当车辆驻车由主动悬架切换至被动悬架时,所述控制器根据位移传感器的反馈信号输出相应的位移指令至所述伺服阀的控制端,所述伺服阀调控悬挂缸的活塞杆运动至其满行程的中间位置,然后所述控制器停止输出信号给所述伺服阀,所述伺服阀回至中位状态,油液被锁止在所述悬挂缸中,所述控制器停止输出信号给所述取力器,所述取力器与车辆发动机的动力输出轴断开,所述液压泵停止运转,此时所述第一压力传感器检测到所述蓄能器内压力为p 1,并将该压力值信号传送至所述控制器,所述第二压力传感器检测到悬挂缸无杆腔 内的压力为p 2,并将该压力值信号传送至所述控制器,所述控制器对压力值p 1和p 2进行比较,并作出相应的调控,具体为:
(1)若p 1=p 2,则所述控制器输出控制信号至所述换向阀控制端,调控换向阀由截止状态切换至导通状态,所述悬挂缸的无杆腔和所述蓄能器之间的油路导通,所述悬挂缸的有杆腔和所述油箱之间的油路导通,所述控制器输出控制信号至所述溢流阀控制端,调控其开启压力为p s;由于p 1和p 2相等,换向阀导通时无压力差,则主动悬架可平稳切换至被动悬架;此时所述蓄能器作为被动悬架的弹性元件使用,所述溢流阀作为被动悬架系统的安全阀使用,此时车辆开动行驶即为被动悬架模式下行驶;
(2)若p 1>p 2,则所述控制器输出控制信号至所述溢流阀的控制端,调节所述溢流阀的开启压力为p 2,油液从所述蓄能器经所述溢流阀流回所述油箱,当所述第一压力传感器监测所述蓄能器的压力减小至p 2时,所述控制器再次输出控制信号至所述溢流阀控制端,调节其开启压力至p s,接着所述控制器输出控制信号至所述换向阀的控制端,使其由截止状态切换至导通状态,此时p 1=p 2,则主动悬架可平稳切换至被动悬架,所述蓄能器作为被动悬架的弹性元件使用,所述溢流阀作为被动悬架系统的安全阀使用,此时车辆开动行驶即为被动悬架模式下行驶。
(3)若p 2>p 1,则所述控制器输出控制信号至所述取力器,所述取力器重新与所述车辆发动机输出轴连接并从其处取得动力输出至所述液压泵,所述液压泵工作,油液经所述单向阀流入所述蓄能器,所述蓄能器内油液压力升高,当所述第一压力传感器监测压力升高至p 2时,所述控制器停止输出控制信号至所述取力器,所述取力器与所述车辆发动机输出轴断开连接,所述液压泵停止运转,接着所述控制器输出控制信号至所述换向阀的控制端,使其由截止状态切换至导通状态,此时p 1=p 2,主动悬架可平稳切换至被动悬架,所述蓄能器作为被动悬架的弹性元件使用,所述溢流阀作为被动悬架系统的安全阀使用,此时车辆开动行驶即为被动悬架模式下行驶。
S2.当车辆驻车由被动悬架切换至主动悬架时,首先所述控制器停止输出信号给所述换向阀,所述换向阀由导通状态切换为截止状态,油液被锁止在悬挂缸中,接着所述控制器输出控制信号至所述溢流阀,调控其开启压力至p a,然后控制器输出控制信号至所述取力器,所述取力器与所述车辆发动机的输出轴连接并从其处取得动力输出至所述液压泵,所述液压泵工作,所述控制器根据所述位移传感器的反馈信号输出相应的位移指令至所述伺服阀的控制端,所述伺服阀调控悬挂缸的活塞杆运动至其满行程的中间位置后,所述控制器即停止输出控制信号给所述伺服阀的控制端,所述伺服阀回至中位状态,至此被动悬架已平稳切换至主动悬架状态,车辆开动行驶,所述控制器将根据行驶路况及车体状况输出相应控制信号至 所述伺服阀的控制端,调控其工作,此时所述蓄能器作为主动悬架的辅助动力元件使用,所述溢流阀作为主动悬架系统的安全阀使用,车辆开动行驶即为主动悬架模式下行驶。
与现有技术相比,本发明具有以下有益效果:
本发明的主被动双模式可切换车辆悬架系统在模式切换时,事先调节悬挂缸无杆腔内油液压力和蓄能器内油液压力至相等,实现了主被动悬挂系统的平稳切换,消除了现有主被动悬挂系统切换时车体的振颤;本发明的主被动双模式可切换车辆悬架系统中,蓄能器既可在主动悬架模式下用做辅助动力源,也可在被动悬架模式下用做弹性元件,溢流阀既可做主动悬架模式的安全阀也可做被动悬架模式的安全阀,有效减少了蓄能器和溢流阀的使用数量,因此可大幅度节省车体的布置空间,尤其对需装载多种仪器设备的应急救援车辆来讲,本发明悬架系统可为车体上其他仪器设备留出较多的安装空间,并可有效减轻车身总质量,利于车辆底盘的轻量化。
附图说明
图1为本发明主被动双模式可切换车辆悬架系统的示意图。
图中:1-过滤器,2-液压泵,3-单向阀,4-取力器,5-车辆发动机,6-伺服阀,7-悬挂缸,8-车体,9-溢流阀,10-蓄能器,11-换向阀,12-第一压力传感器,13-第二压力传感器,14-控制器,15-油箱,16-位移传感器,P 1-伺服阀进油口,T 1-伺服阀回油口,A 1-伺服阀第一工作油口,B 1-伺服阀第二工作油口,P 2-换向阀进油口,T 2-换向阀回油口,A 2-换向阀第一工作油口,B 2-换向阀第二工作油口。
具体实施方式
下面结合附图对本发明的具体实施方式作详细的说明,而非对本发明的保护范围限制。需要理解的是在本发明的描述中,术语“前”、“后”、“左”、“中”、“右”、“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。术语“第一”、“第二”等仅用于简化文字描述以区别于类似的对象,而不能理解为特定的次序间的先后关系。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个 元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
如图1所示,本发明实施例公开的一种主被动双模式可切换车辆悬架系统,包括过滤器1,液压泵2,单向阀3,取力器4,伺服阀6,悬挂缸7,溢流阀9,蓄能器10,换向阀11,第一压力传感器12,第二压力传感器13,控制器14,油箱15和位移传感器16。
过滤器1的进油口通过油管与油箱15相连,过滤器1的出油口通过油管与液压泵2的进油口相连,液压泵2的出油口通过油管与单向阀3的进油口相连,单向阀3的出油口通过油管与伺服阀进油口P 1相连,伺服阀回油口T 1通过油管与油箱15相连。
液压泵2的驱动轴与取力器4通过机械结构连接,取力器4与车辆发动机5的动力输出轴连接,取力器4用于从车辆发动机5处获取动力并将动力传输至液压泵2。
伺服阀第一工作油口A 1与悬挂缸7的无杆腔相连,伺服阀第二工作油口B 1与悬挂缸7的有杆腔相连。
悬挂缸7与车体8铰接,悬挂缸7上设有位移传感器16,用以监测活塞杆相对液压缸筒的位移量。
溢流阀9的进油口通过油管与单向阀3的出油口相连,溢流阀9的出油口通过油管与油箱15相连。
换向阀11与伺服阀6并联设置,换向阀进油口P 2通过油管与油箱15相连,换向阀回油口T 2通过油管与溢流阀9的进油口相连;换向阀第一工作油口A 2通过油管与悬挂缸7的有杆腔相连,换向阀第二工作油口B 2通过油管与悬挂缸7的无杆腔相连。
蓄能器10设置在换向阀回油口T 2和溢流阀9的进油口之间油路中,蓄能器10既能作为主动悬架系统的辅助动力源使用,也可作为被动悬架系统的弹性元件使用。
蓄能器10和换向阀回油口T 2之间的油路上设有第一压力传感器12,用于检测蓄能器10内油液压力;悬挂缸7的无杆腔和伺服阀第一工作油口A 1之间的油路上设有第二压力传感器13,用于检测悬挂缸7无杆腔内油液压力。
取力器4的控制端、伺服阀6的控制端、溢流阀9的控制端和换向阀11的控制端均与控制器14连接,其信号均由控制器14给出。
伺服阀6为三位四通电液伺服阀,包括左位、中位和右位三种状态;当伺服阀6处于中位时,伺服阀进油口P 1和回油口T 1与伺服阀第一工作油口A 1和第二工作油口B 1之间的所有通路均被截止;当伺服阀6处于左位时,伺服阀进油口P 1和其第一工作油口A 1之间的通路导通,伺服阀回油口T 1和其第二工作油口B 1之间的通路导通,此时油液可经伺服阀进油口P 1和其第一工作油口A 1进入悬挂缸7的无杆腔内,同时,悬挂缸7有杆腔内的油液可经伺服 阀第二工作油口B 1和其回油口T 1流回油箱15;当伺服阀6处于右位时,伺服阀进油口P 1和其第二工作油口B 1之间的通路导通,伺服阀回油口T 1和其第一工作油口A 1之间的通路导通,此时油液可经伺服阀进油口P 1和其第二工作油口B 1进入悬挂缸7的有杆腔内,同时,悬挂缸7无杆腔内的油液可经伺服阀第一工作油口A 1和其回油口T 1流回油箱15。
溢流阀9为比例溢流阀。溢流阀9开启压力的大小可由控制器14发送控制信号至溢流阀9的控制端进行调节,溢流阀9既可作为主动悬架系统的安全阀使用也可做被动悬架系统的安全阀使用。
换向阀11为二位四通电磁换向阀,包括做截止和导通两种状态。当换向阀11处于截止状态时,换向阀进油口P 2和其回油口T 2与换向阀第一工作油口A 2和第二工作油口B 2之间的所有通路均被截止;当换向阀11处于导通状态时,换向阀进油口P 2和其第一工作油口A 2之间的通路以及换向阀回油口T 2和其第二工作油口B 2之间的通路均被导通;悬挂缸7无杆腔内的油液可经换向阀第二工作油口B 2和换向阀回油口T 2流至蓄能器10中,油箱15中的油液可经换向阀进油口P 2和换向阀第一工作油口A 2流至悬挂缸7的有杆腔中,反之,蓄能器10中的油液也可经换向阀回油口T 2和换向阀第二工作油口B 2流至悬挂缸7的无杆腔中,悬挂缸7有杆腔中的油液也可经换向阀第一工作油口A 2和换向阀进油口P 2流回油箱15。
本发明的主被动双模式可切换车辆悬架系统中,在系统工作于主动悬架模式时,工作部件包括过滤器1,液压泵2,单向阀3,取力器4,伺服阀6,悬挂缸7,溢流阀9,蓄能器10,控制器14,油箱15和位移传感器16;在系统工作于被动动悬架模式时,工作部件包括悬挂缸7,溢流阀9,蓄能器10,换向阀11和油箱15。
主动悬架模式下,取力器4得信号,持续与车辆发动机5的动力输出轴连接,带动液压泵2运转;伺服阀6控制端获得控制器14的控制信号,持续工作;溢流阀9持续保持其开启压力为p a(p a是主动悬架系统安全工作的最大压力);此时换向阀11不得信号,持续保持在截止状态。
被动悬架模式下,取力器4不得信号,持续与车辆发动机5的动力输出轴断开;伺服阀6不得信号,持续保持中位状态;溢流阀9持续保持其开启压力为p s;换向阀11得信号,持续保持在导通状态。
本发明的主被动双模式可切换车辆悬架系统切换方法如下:
当悬架系统为主动悬架模式时,换向阀11处于截止状态,溢流阀9此时的开启压力为主动悬架系统安全工作的最大压力p a,取力器4与车辆发动机5的动力输出轴连接并从其处取得动力输出至液压泵2,带动液压泵2工作,控制器14根据行驶路况及车体状况输出相应控制信号至伺服阀6的控制端,调控其工作,此时蓄能器10作为主动悬架系统的辅助动力源使 用,溢流阀9作为主动悬架系统的安全阀使用。
当悬架系统为被动悬架模式时,换向阀11处于导通状态,溢流阀9此时的开启压力为被动悬架系统安全工作的最大压力p s,取力器4与车辆发动机5的动力输出轴断开,液压泵2停止工作,伺服阀6处于中位状态,此时蓄能器10作为被动悬架系统的弹性元件使用,溢流阀9作为被动悬架系统的安全阀使用。
S1.当车辆驻车由主动悬架切换至被动悬架时,控制器14根据位移传感器的反馈信号输出相应的位移指令至伺服阀6的控制端,伺服阀6调控悬挂缸7的活塞杆运动至其满行程的中间位置,然后控制器14停止输出信号给伺服阀6,伺服阀6回至中位,油液被锁止在悬挂缸7中,控制器14停止输出信号给取力器4,取力器4与车辆发动机5的动力输出轴断开,液压泵2停止运转,此时第一压力传感器12检测到蓄能器内压力为p 1,并将该压力值信号传送至控制器14,第二压力传感器13检测到悬挂缸7无杆腔内的压力为p 2,并将该压力值信号传送至控制器14,控制器14对压力值p 1和p 2进行比较,并作出相应的调控,具体为:
(1)若p 1=p 2,则控制器14输出控制信号至换向阀11的控制端,调控换向阀11由截止状态切换至导通状态,悬挂缸7的无杆腔和蓄能器10之间的油路导通,悬挂缸7的有杆腔和油箱15之间的油路导通,控制器14输出控制信号至溢流阀9的控制端,调控其开启压力为p s;由于p 1和p 2相等,换向阀11导通时无压力差,则主动悬架可平稳切换至被动悬架;此时蓄能器10作为被动悬架的弹性元件使用,溢流阀9作为被动悬架系统的安全阀使用,此时车辆开动行驶即为被动悬架模式下行驶;
(2)若p 1>p 2,则控制器14输出控制信号至溢流阀9的控制端,调节溢流阀9的开启压力为p 2,油液从蓄能器10经溢流阀9流回油箱15,当第一压力传感器12监测蓄能器10的压力减小至p 2时,控制器14再次输出控制信号至溢流阀9的控制端,调节其开启压力至p s,接着控制器14输出控制信号至换向阀11的控制端,使其由截止状态切换至导通状态,此时p 1=p 2,则主动悬架可平稳切换至被动悬架,蓄能器10作为被动悬架的弹性元件使用,溢流阀9作为被动悬架系统的安全阀使用,此时车辆开动行驶即为被动悬架模式下行驶。
(3)若p 2>p 1,则控制器14输出控制信号至取力器4,取力器4重新与车辆发动机5输出轴连接并从其处取得动力输出至液压泵2,液压泵2工作,油液经单向阀3流入蓄能器10,蓄能器10内油液压力升高,当第一压力传感器12监测压力升高至p 2时,控制器14停止输出控制信号至取力器4,取力器4与车辆发动机5输出轴断开连接,液压泵2停止运转,接着控制器14输出控制信号至换向阀11的控制端,使其由截止状态切换至导通状态,此时p 1=p 2,主动悬架可平稳切换至被动悬架,蓄能器10作为被动悬架的弹性元件使用,溢流阀9作为被动悬架系统的安全阀使用,此时车辆开动行驶即为被动悬架模式下行驶。
S2.当车辆驻车由被动悬架切换至主动悬架时,首先控制器14停止输出信号给换向阀11,换向阀11由导通状态切换为截止状态,油液被锁止在悬挂缸7中,接着控制器14输出控制信号至溢流阀9,调控其开启压力至p a,然后控制器14输出控制信号至取力器4,取力器4与车辆发动机5的输出轴连接并从其处取得动力输出至液压泵2,液压泵2工作,控制器14根据位移传感器16的反馈信号输出相应的位移指令至伺服阀6的控制端,伺服阀6调控悬挂缸7的活塞杆运动至其满行程的中间位置后,控制器14即停止输出控制信号给伺服阀6的控制端,伺服阀6回至中位状态,至此被动悬架已平稳切换至主动悬架状态,车辆开动行驶,控制器14将根据行驶路况及车体状况输出相应控制信号至伺服阀6的控制端,调控其工作,此时蓄能器10作为主动悬架的辅助动力元件使用,溢流阀9作为主动悬架系统的安全阀使用,车辆开动行驶即为主动悬架模式下行驶。
最后应说明的是:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;因此,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围中。

Claims (4)

  1. 一种主被动双模式可切换车辆悬架系统,其特征在于:其包括过滤器、液压泵、单向阀、取力器、伺服阀、悬挂缸、溢流阀、蓄能器、换向阀、第一压力传感器、第二压力传感器、控制器、油箱和位移传感器;
    所述过滤器的进油口通过油管与油箱相连,所述过滤器的出油口通过油管与所述液压泵的进油口相连,所述液压泵的出油口通过油管与所述单向阀的进油口相连,所述单向阀的出油口通过油管与所述伺服阀的进油口相连,所述伺服阀的回油口通过油管与所述油箱相连;
    所述液压泵的驱动轴与所述取力器连接,所述取力器与车辆发动机的动力输出轴连接;
    所述伺服阀为三位四通电液伺服阀,包括左位、中位和右位三种状态;所述伺服阀的第一工作油口与所述悬挂缸的无杆腔相连,所述伺服阀的第二工作油口与所述悬挂缸的有杆腔相连;当所述伺服阀处于中位时,所述伺服阀的进油口和回油口与所述伺服阀的第一工作油口和第二工作油口之间的所有通路均被截止;当所述伺服阀处于左位时,所述伺服阀的进油口和所述伺服阀的第一工作油口之间的通路导通,所述伺服阀的回油口和所述伺服阀的第二工作油口之间的通路导通;当所述伺服阀处于右位时,所述伺服阀的进油口和所述伺服阀的第二工作油口之间的通路导通,所述伺服阀的回油口和所述伺服阀的第一工作油口之间的通路导通;
    所述悬挂缸与车体铰接,所述悬挂缸上设有所述位移传感器;
    所述溢流阀的进油口通过油管与所述单向阀的出油口相连,所述溢流阀的出油口通过油管与所述油箱相连;所述溢流阀开启压力的大小由所述控制器给出控制信号至所述溢流阀的控制端进行调节;
    所述换向阀与所述伺服阀并联设置,所述换向阀的进油口通过油管与所述油箱相连,所述换向阀的回油口通过油管与所述溢流阀的进油口相连;所述换向阀的第一工作油口通过油管与所述悬挂缸的有杆腔相连,所述换向阀的第二工作油口通过油管与所述悬挂缸的无杆腔相连;
    所述蓄能器设置在所述换向阀的回油口和所述溢流阀的进油口之间油路中;
    所述蓄能器和所述换向阀的回油口之间的油路上设有第一压力传感器,所述悬挂缸的无杆腔和所述伺服阀的第一工作油口之间的油路上设有第二压力传感器;
    所述控制器的控制信号输出端分别与所述取力器的控制端、所述伺服阀的控制端、所述溢流阀的控制端和所述换向阀的控制端连接。
  2. 根据权利要求1所述的主被动双模式可切换车辆悬架系统,其特征在于:所述溢流阀为比例溢流阀。
  3. 根据权利要求1所述的主被动双模式可切换车辆悬架系统,其特征在于:所述换向阀 为二位四通电磁换向阀,包括截止和导通两种状态;当所述换向阀处于截止状态时,所述换向阀的进油口和回油口与所述换向阀的第一工作油口和第二工作油口之间的所有通路均被截止;当所述换向阀处于导通状态时,所述换向阀的进油口和所述换向阀的第一工作油口之间的通路以及所述换向阀的回油口和所述换向阀的第二工作油口之间的通路均被导通。
  4. 一种利用权利要求1至3中任一项所述的主被动双模式可切换车辆悬架系统的切换方法,其特征在于:其包括如下步骤:
    当车辆驻车,由主动悬架切换至被动悬架时,所述控制器根据所述位移传感器的反馈信号输出相应的位移指令至所述伺服阀的控制端,所述伺服阀调控所述悬挂缸的活塞杆运动至其满行程的中间位置,然后所述控制器停止输出信号给所述伺服阀,所述伺服阀回至中位状态,油液被锁止在所述悬挂缸中,所述控制器停止输出信号给所述取力器,所述取力器与所述车辆发动机的动力输出轴断开,所述液压泵停止运转,此时所述第一压力传感器检测到所述蓄能器内压力值为p 1,并将所述蓄能器内压力值p 1信号传送至所述控制器,所述第二压力传感器检测到悬挂缸无杆腔内的压力值为p 2,并将所述悬挂缸无杆腔内的压力值p 2信号传送至所述控制器,所述控制器对压力值p 1和p 2进行比较,并作出相应的调控,具体为:
    若p 1=p 2,则所述控制器输出控制信号至所述换向阀控制端,调控换向阀由截止状态切换至导通状态,所述悬挂缸的无杆腔和所述蓄能器之间的油路导通,所述悬挂缸的有杆腔和所述油箱之间的油路导通,所述控制器输出控制信号至所述溢流阀控制端,调控其开启压力为被动悬架系统安全工作的最大压力p s;由于p 1和p 2相等,换向阀导通时无压力差,则主动悬架能平稳切换至被动悬架;此时所述蓄能器作为被动悬架的弹性元件使用,所述溢流阀作为被动悬架系统的安全阀使用,此时车辆开动行驶即为被动悬架模式下行驶;
    若p 1>p 2,则所述控制器输出控制信号至所述溢流阀的控制端,调节所述溢流阀的开启压力为p 2,油液从所述蓄能器经所述溢流阀流回所述油箱,当所述第一压力传感器监测所述蓄能器的压力减小至p 2时,所述控制器再次输出控制信号至所述溢流阀控制端,调节其开启压力至被动悬架系统安全工作的最大压力p s,接着所述控制器输出控制信号至所述换向阀的控制端,使其由截止状态切换至导通状态,此时p 1=p 2,则主动悬架可平稳切换至被动悬架,所述蓄能器作为被动悬架的弹性元件使用,所述溢流阀作为被动悬架系统的安全阀使用,此时车辆开动行驶即为被动悬架模式下行驶;
    若p 2>p 1,则所述控制器输出控制信号至所述取力器,所述取力器重新与所述车辆发动机输出轴连接并从其处取得动力输出至所述液压泵,所述液压泵工作,油液经所述单向阀流入所述蓄能器,所述蓄能器内油液压力升高,当所述第一压力传感器监测压力升高至p 2时,所述控制器停止输出控制信号至所述取力器,所述取力器与所述车辆发动机输出轴断开连接, 所述液压泵停止运转,接着所述控制器输出控制信号至所述换向阀的控制端,使其由截止状态切换至导通状态,此时p 1=p 2,主动悬架能平稳切换至被动悬架,所述蓄能器作为被动悬架的弹性元件使用,所述溢流阀作为被动悬架系统的安全阀使用,此时车辆开动行驶即为被动悬架模式下行驶;以及
    当车辆驻车,由被动悬架切换至主动悬架时,首先所述控制器停止输出信号给所述换向阀,所述换向阀由导通状态切换为截止状态,油液被锁止在悬挂缸中,接着所述控制器输出控制信号至所述溢流阀,调控其开启压力至p a,然后控制器输出控制信号至所述取力器,所述取力器与所述车辆发动机的输出轴连接并从其处取得动力输出至所述液压泵,所述液压泵工作,所述控制器根据所述位移传感器的反馈信号输出相应的位移指令至所述伺服阀的控制端,所述伺服阀调控悬挂缸的活塞杆运动至其满行程的中间位置后,所述控制器即停止输出控制信号给所述伺服阀的控制端,所述伺服阀回至中位状态,至此被动悬架已平稳切换至主动悬架状态,车辆开动行驶,所述控制器将根据行驶路况及车体状况输出相应控制信号至所述伺服阀的控制端,调控其工作,此时所述蓄能器作为主动悬架的辅助动力元件使用,所述溢流阀作为主动悬架系统的安全阀使用,车辆开动行驶即为主动悬架模式下行驶。
PCT/CN2020/104512 2019-08-07 2020-07-24 主被动双模式可切换车辆悬架系统及其切换方法 WO2021023026A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020227002711A KR102548286B1 (ko) 2019-08-07 2020-07-24 능동 및 수동 이중 모드의 전환 가능 차량 서스펜션 시스템 및 이의 전환 방법
JP2021576675A JP7177555B2 (ja) 2019-08-07 2020-07-24 アクティブパッシブデュアルモード切換可能車両サスペンションシステム及びその切換方法
EP20850828.3A EP4005835B1 (en) 2019-08-07 2020-07-24 Active-passive dual mode switchable vehicle suspension system and switching method therefor
CA3145723A CA3145723C (en) 2019-08-07 2020-07-24 Active-passive dual mode switchable vehicle suspension system and switching method therefor
AU2020327056A AU2020327056A1 (en) 2019-08-07 2020-07-24 Active-passive dual mode switchable vehicle suspension system and switching method therefor
US17/497,912 US11618294B2 (en) 2019-08-07 2021-10-09 Active-passive dual mode switchable vehicle suspension system and switching method therefor
US17/541,406 US11926063B2 (en) 2020-07-24 2021-12-03 Fractional order sliding mode synchronous control method for teleoperation system based on event trigger mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910725158.8A CN110497760B (zh) 2019-08-07 2019-08-07 主被动双模式可切换车辆悬架系统及其切换方法
CN201910725158.8 2019-08-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/497,912 Continuation US11618294B2 (en) 2019-08-07 2021-10-09 Active-passive dual mode switchable vehicle suspension system and switching method therefor
US17/541,406 Continuation US11926063B2 (en) 2020-07-24 2021-12-03 Fractional order sliding mode synchronous control method for teleoperation system based on event trigger mechanism

Publications (1)

Publication Number Publication Date
WO2021023026A1 true WO2021023026A1 (zh) 2021-02-11

Family

ID=68586861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104512 WO2021023026A1 (zh) 2019-08-07 2020-07-24 主被动双模式可切换车辆悬架系统及其切换方法

Country Status (8)

Country Link
US (1) US11618294B2 (zh)
EP (1) EP4005835B1 (zh)
JP (1) JP7177555B2 (zh)
KR (1) KR102548286B1 (zh)
CN (1) CN110497760B (zh)
AU (1) AU2020327056A1 (zh)
CA (1) CA3145723C (zh)
WO (1) WO2021023026A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456695B2 (ja) 2021-04-02 2024-03-27 燕山大学 油圧アクティブサスペンションの流量制御システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110497760B (zh) * 2019-08-07 2020-09-18 燕山大学 主被动双模式可切换车辆悬架系统及其切换方法
CN110847279B (zh) * 2019-11-28 2021-12-03 王玲芝 一种装载机缓冲装置
CN110847278B (zh) * 2019-11-28 2021-12-07 王玲芝 一种装载机减振装置
CN110836202A (zh) * 2019-12-05 2020-02-25 浙江大学 液压源负载自适应系统及其自适应控制方法
CN112918500A (zh) * 2019-12-05 2021-06-08 中车唐山机车车辆有限公司 支撑模式控制系统及控制方法、轨道车辆、终端
CN111852965B (zh) * 2020-06-17 2022-08-09 中国北方车辆研究所 一种基于摇臂悬架的压力-位移综合控制系统及控制方法
US11938772B2 (en) 2021-10-12 2024-03-26 DRiV Automotive Inc. System for grading filling of a hydraulic suspension system
US11865887B2 (en) 2021-10-12 2024-01-09 DRiV Automotive Inc. Suspension system with incremental roll and pitch stiffness control
US11919355B2 (en) 2021-10-12 2024-03-05 DRiV Automotive Inc. Valve diagnostic systems and methods
US11865889B2 (en) * 2021-10-12 2024-01-09 DRiV Automotive Inc. Suspension system with comfort valves between cross-over hydraulic circuits
US11912092B2 (en) 2021-10-12 2024-02-27 DRiV Automotive Inc. Suspension leak check systems and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188390A (en) * 1991-12-16 1993-02-23 Ford Motor Company Suspension system having active and passive modes
US5195772A (en) * 1991-06-18 1993-03-23 Ford Motor Company Valve configuration for converting an active suspension system into a passive suspension system
CN101844498A (zh) * 2010-05-28 2010-09-29 江苏大学 无外界动力源的半主动/主动复合控制悬架及控制方法
CN102059929A (zh) * 2010-12-20 2011-05-18 三一汽车起重机械有限公司 油气悬挂系统及具有该系统的轮式车辆
CN104999881A (zh) * 2015-07-07 2015-10-28 湖南大学 一种双模式可切换的主动控制悬架
CN206344652U (zh) * 2016-12-01 2017-07-21 上海汽车集团股份有限公司 一种可实现主动与半主动切换控制的油气悬架系统
CN109050192A (zh) * 2018-07-19 2018-12-21 燕山大学 油气悬挂与主动悬挂切换控制回路及悬挂油缸
CN110497760A (zh) * 2019-08-07 2019-11-26 燕山大学 主被动双模式可切换车辆悬架系统及其切换方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289419A (ja) * 1986-06-06 1987-12-16 Kayaba Ind Co Ltd ハイドロニユ−マチツクサスペンシヨン機構
JPH0263913A (ja) * 1988-08-31 1990-03-05 Kayaba Ind Co Ltd アクティブサスペンションの油圧制御装置
JP3179079B2 (ja) * 1989-06-22 2001-06-25 富士重工業株式会社 車両用アクテイブサスペンションの制御方法
JP3714699B2 (ja) * 1995-03-31 2005-11-09 カヤバ工業株式会社 減衰力可変ダンパ
AUPP521598A0 (en) * 1998-08-13 1998-09-03 Birrana Engineering Pty Ltd Improved hydraulic adaptive vehicle suspension system
DE10106706A1 (de) * 2001-02-14 2002-09-26 Hydac Technology Gmbh Federungssystem, insbesondere für eine Arbeitsmaschine
CN101405154B (zh) * 2006-03-22 2011-05-25 丰田自动车株式会社 车辆悬架系统
JP5211373B2 (ja) * 2007-05-15 2013-06-12 株式会社 神崎高級工機製作所 作業運搬車のデュアルクラッチ式変速装置
WO2010005896A1 (en) * 2008-07-08 2010-01-14 Parker-Hannifin Corporation High pressure intensifier system
US20110018219A1 (en) * 2009-07-27 2011-01-27 International Truck Intellectual Property Company, Llc Hydraulic, rigid rear axle suspension system for vehicles
US20130060423A1 (en) * 2010-05-14 2013-03-07 Lord Corporation Land vehicles and systems with controllable suspension systems
DE102013215360B4 (de) * 2012-09-10 2015-09-10 Ford Global Technologies, Llc Höhenverstellvorrichtung für Fahrzeuge mit Luftfeder und Schwingungsdämpfer
US8820064B2 (en) * 2012-10-25 2014-09-02 Tenneco Automotive Operating Company Inc. Recuperating passive and active suspension
DE102013003513A1 (de) * 2013-03-04 2014-09-04 Wabco Gmbh Verdichteranordnung zum Betreiben einer Druckluftversorgungsanlage, Druckluftversorgungsanlage und Druckluftversorgungssystem sowie Fahrzeug mit einer solchen Druckluftversorgungsanlage
US9322416B2 (en) * 2013-03-11 2016-04-26 Hydraforce, Inc. Multi-functional proportional control valve for hydraulic suspension system for vehicle
JP6466300B2 (ja) * 2015-09-25 2019-02-06 日立オートモティブシステムズ株式会社 エアサスペンションシステム
JP6484152B2 (ja) * 2015-09-30 2019-03-13 Kyb株式会社 サスペンション装置
CN105799443B (zh) * 2016-03-24 2018-01-23 中国北方车辆研究所 单组单作用缸定量泵车姿调节系统
US10358010B2 (en) * 2017-06-05 2019-07-23 Tenneco Automotive Operating Company Inc. Interlinked active suspension
EP3753763B1 (en) * 2019-06-20 2022-10-19 The Dynamic Engineering Solution Pty Ltd Vehicle suspension system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195772A (en) * 1991-06-18 1993-03-23 Ford Motor Company Valve configuration for converting an active suspension system into a passive suspension system
US5188390A (en) * 1991-12-16 1993-02-23 Ford Motor Company Suspension system having active and passive modes
CN101844498A (zh) * 2010-05-28 2010-09-29 江苏大学 无外界动力源的半主动/主动复合控制悬架及控制方法
CN102059929A (zh) * 2010-12-20 2011-05-18 三一汽车起重机械有限公司 油气悬挂系统及具有该系统的轮式车辆
CN104999881A (zh) * 2015-07-07 2015-10-28 湖南大学 一种双模式可切换的主动控制悬架
CN206344652U (zh) * 2016-12-01 2017-07-21 上海汽车集团股份有限公司 一种可实现主动与半主动切换控制的油气悬架系统
CN109050192A (zh) * 2018-07-19 2018-12-21 燕山大学 油气悬挂与主动悬挂切换控制回路及悬挂油缸
CN110497760A (zh) * 2019-08-07 2019-11-26 燕山大学 主被动双模式可切换车辆悬架系统及其切换方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456695B2 (ja) 2021-04-02 2024-03-27 燕山大学 油圧アクティブサスペンションの流量制御システム

Also Published As

Publication number Publication date
CN110497760B (zh) 2020-09-18
EP4005835A1 (en) 2022-06-01
AU2020327056A1 (en) 2022-02-17
CN110497760A (zh) 2019-11-26
JP2022537834A (ja) 2022-08-30
KR102548286B1 (ko) 2023-06-26
US20220097471A1 (en) 2022-03-31
US11618294B2 (en) 2023-04-04
EP4005835A4 (en) 2022-09-28
CA3145723A1 (en) 2021-02-11
KR20220047758A (ko) 2022-04-19
EP4005835B1 (en) 2023-06-07
CA3145723C (en) 2023-08-08
JP7177555B2 (ja) 2022-11-24
EP4005835C0 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2021023026A1 (zh) 主被动双模式可切换车辆悬架系统及其切换方法
WO2020006932A1 (zh) 一种高空作业车的工作斗调平系统
CA2694250C (en) Fluid pressure drive unit and snow removal unit
CA2878141C (en) Actuator
US11859689B2 (en) Active control type anti-yaw damper, damping system and vehicle
US4617797A (en) Multi-function valve
HU224904B1 (en) Vehicle suspension control system
US20180073524A1 (en) Hydraulic actuator control system
EP2890573B1 (en) Hydraulic suspension system
US4696162A (en) Multi-function valve
CN214007638U (zh) 一种机械式液压泵的功率控制器及液压系统
CN113212093A (zh) 可实现恒压控制和负载敏感控制的液压系统及控制方法
US4915186A (en) Hydraulic steering systems dampening devices
CN210240418U (zh) 可变悬挂的平衡油缸控制阀组、系统及工程机械
CN110630579B (zh) 一种抢险救援车用控制阀
CN210558952U (zh) 工程车辆液控装置和工程车辆
CN214533760U (zh) 一种液压马达控制器及工程车辆
CN220487970U (zh) 一种液控浮动的负载敏感液压系统及电动臂车
TR2022001436T2 (tr) Akti̇f-pasi̇f çi̇ft mod geçi̇şli̇ araç süspansi̇yon si̇stemi̇ ve i̇lgi̇li̇ geçi̇ş yöntemi̇
DE102010048891A1 (de) Antriebssystem einer mobilen Arbeitsmaschine, insbesondere eines Flurförderzeugs
TH2201000671A (th) ระบบกันสะเทือนของยานพาหนะที่สามารถสลับโหมดแอคทีฟ-แพสซีฟคู่กันและวิธีการสลับสำหรับระบบนั้น
CN117246950A (zh) 一种叉车电比例控制液压系统
CN110630579A (zh) 一种抢险救援车用控制阀
CN116044832A (zh) 吊臂防后倾系统、履带式起重机以及控制方法
JPH1086620A (ja) アウトリガ付車輛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021576675

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3145723

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020327056

Country of ref document: AU

Date of ref document: 20200724

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020850828

Country of ref document: EP

Effective date: 20220225