WO2020242266A1 - 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지 - Google Patents

리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지 Download PDF

Info

Publication number
WO2020242266A1
WO2020242266A1 PCT/KR2020/007051 KR2020007051W WO2020242266A1 WO 2020242266 A1 WO2020242266 A1 WO 2020242266A1 KR 2020007051 W KR2020007051 W KR 2020007051W WO 2020242266 A1 WO2020242266 A1 WO 2020242266A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
material layer
electrode active
secondary battery
Prior art date
Application number
PCT/KR2020/007051
Other languages
English (en)
French (fr)
Inventor
이은정
김기환
김용찬
김인철
박상준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20814704.1A priority Critical patent/EP3955335A4/en
Priority to CN202080031804.1A priority patent/CN113748536A/zh
Priority to US17/609,630 priority patent/US20220216466A1/en
Publication of WO2020242266A1 publication Critical patent/WO2020242266A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium secondary battery and a lithium secondary battery having the same. More specifically, it relates to a positive electrode for a lithium secondary battery with greatly improved cycle characteristics and storage stability, and a lithium secondary battery having the same.
  • Lithium secondary batteries are batteries that can best meet these needs, and research on them is currently being actively conducted.
  • the lithium secondary battery developed in the early 1990s is a lithium salt in which an appropriate amount of lithium salt is dissolved in a negative electrode such as a carbon material capable of occluding and releasing lithium ions, a positive electrode made of lithium-containing oxide, and a mixed organic solvent. It consists of a non-aqueous electrolyte.
  • the anode is severely decomposed of the electrolyte on the surface due to the high oxidation potential, and there is a problem that the cell expands due to gas generation.
  • the structure becomes unstable during the process of insertion and desorption of lithium ions, and the metal is eluted from the electrode and deteriorated.
  • this phenomenon is more severe and rapid, so that the capacity remaining rate of the battery decreases sharply, and safety is threatened.
  • the atomic layer deposition method is a technology in which a precursor and a reactant are injected in time-division using a vapor phase chemical vapor deposition reaction to suppress a vapor phase reaction and accurately control the thickness of a thin film through a self-control reaction on the surface of a substrate.
  • Coating using the atomic layer deposition method can be largely divided into two types: a method of coating an active material at the particle stage and a method of coating an electrode end formed by coating and drying the active material slurry.
  • the coating layer formed on the surface of the particles acts as an insulating layer, thereby limiting the movement of electrons.
  • the method of coating the electrode has the advantage of minimizing an increase in cell resistance by not interfering with the movement of electrons because the coating is performed without disturbing the already formed conductive path.
  • a typical atomic layer deposition process is an atomic layer deposition process optimized for a flat plate
  • the deepest area of the active material layer of the electrode that is, the aggregate
  • the porosity is in most cases relatively large, and in this case, the depth of the active material layer is well formed by depositing the atomic layer to the inside of the electrode active material layer.
  • the active material layer of the electrode having such a low porosity has an atomic force to the area near the current collector in the thickness direction.
  • the layer deposition is formed only near the surface, and the effect thereof is limited.
  • a problem to be solved by the present invention is to provide a positive electrode for a lithium secondary battery having excellent storage stability and improved battery life even during long-term storage, and a lithium secondary battery having the same.
  • a positive electrode for a lithium secondary battery of the following embodiment is provided.
  • the first embodiment is a first embodiment.
  • a positive electrode active material layer including a plurality of positive electrode active materials positioned on at least one surface of the current collector and an atomic layer deposition (ALD) coating layer positioned within the surface and pores of the positive electrode active material and within the pores between the plurality of positive electrode active materials; and,
  • ALD atomic layer deposition
  • the thickness of the atomic layer deposition coating layer is 0.2 to 1 nm
  • the cathode active material layer is divided into 5 equal parts in the thickness direction and the portion of the cathode active material layer interviewing the current collector is referred to as the lowermost cathode active material layer, and the surface portion of the cathode active material layer most spaced apart from the current collector is referred to as the uppermost cathode active material layer.
  • the ratio of the content of the atomic layer deposition coating layer of the lowermost cathode active material layer to the content of the atomic layer deposition coating layer of the uppermost cathode active material layer is 40% by weight or more
  • It relates to a positive electrode for a lithium secondary battery having a porosity of 15 to 35%.
  • the porosity of the positive electrode may be 20 to 30%.
  • the atomic layer deposition coating layer may include metal or metalloid oxide, nitride, oxynitride, sulfide, fluoride, phosphate, or two or more of these.
  • the metal or metalloid may include Al, Zr, Si, Zn, Ti, Sn, Mn, Nb, W, Li, or two or more of them.
  • the atomic layer deposition coating layer is ZrO x , AlO x , SiO x , ZnO x , TiO x , SnO x , MnOx, NbO x , WO x , Lithium aluminum oxide, lithium zirconium oxide, lithium niobium oxide, lithium tungsten oxide, or two or more of these are included, wherein x is greater than 0 and may be 3 or less.
  • the thickness of the atomic layer deposition coating layer may be 0.2 to 1 nm.
  • the content of the atomic layer deposition coating layer of the lowermost cathode active material layer may be 40% to 120% by weight based on the content of the atomic layer deposition coating layer of the uppermost cathode active material layer.
  • the content of the atomic layer deposition coating layer may be 300 ppm to 6,000 ppm based on the weight of the positive electrode active material layer.
  • a lithium secondary battery of the following embodiment is provided.
  • An electrode assembly including an anode, a cathode, and a separator interposed between the anode and the cathode;
  • a battery container accommodating the electrode assembly;
  • the lithium secondary battery having a non-aqueous electrolyte injected into the battery container,
  • the positive electrode may be a positive electrode for a lithium secondary battery according to any one of the first to eighth embodiments.
  • the cathode for a lithium secondary battery according to an embodiment of the present invention is thinner than a conventional atomic layer deposition coating layer, and the atomic layer deposition coating layer is formed to the inside of the current collector direction of the cathode active material layer, so that the atomic layer deposition coating is a cathode active material layer.
  • a protective layer over the entire thickness deterioration of the anode can be suppressed and stability can be improved.
  • the lithium secondary battery equipped with such a positive electrode maintains capacity retention even if the cycle is repeated, and thus exhibits excellent life characteristics, and even when stored at high temperature in a fully charged state, the unstable structural state of the positive electrode active material due to lithium ion insertion is observed in the atomic layer deposition coating layer. Due to this stabilization, the increase in battery resistance is not large even after long-term storage, so that storage stability can be improved.
  • Example 1 is an electron micrograph of a cross section of an anode on which an atomic layer deposition coating layer is formed prepared according to Example 3 of the present invention.
  • Example 2 is a mapping image of aluminum elements measured through Energy Dispersive X-ray Spectroscopy of an anode cross section on which an atomic layer deposition coating layer is formed prepared according to Example 3 of the present invention.
  • FIG. 3 is a diagram illustrating a cross-sectional area of a positive electrode active material layer according to Experimental Example 2 of the present invention divided into five.
  • Example 5 is a graph of an increase in resistance according to a storage period for evaluating storage stability according to Experimental Example 4 of the present invention.
  • a positive electrode active material layer including a plurality of positive electrode active materials positioned on at least one surface of the current collector and an atomic layer deposition coating layer positioned within the surface and pores of the positive electrode active material and within the pores between the plurality of positive electrode active materials, and
  • the thickness of the atomic layer deposition coating layer is 0.2 to 1 nm
  • the cathode active material layer is divided into 5 equal parts in the thickness direction and the portion of the cathode active material layer interviewing the current collector is referred to as the lowermost cathode active material layer, and the surface portion of the cathode active material layer most spaced apart from the current collector is referred to as the uppermost cathode active material layer.
  • the ratio of the content of the atomic layer deposition coating layer of the lowermost cathode active material layer to the content of the atomic layer deposition coating layer of the uppermost cathode active material layer is 40% by weight or more
  • the current collector is not particularly limited as long as it has high conductivity without causing chemical changes to the lithium secondary battery.
  • Surface-treated carbon, nickel, titanium, silver, or the like may be used.
  • the current collector may increase the adhesion of the positive electrode active material by forming fine irregularities on its surface, and various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics are possible.
  • the thickness of the current collector may be 3 to 500 ⁇ m, specifically 5 to 50 ⁇ m.
  • the positive electrode active material layer may include a positive electrode active material, a binder polymer, and a conductive material.
  • the cathode active material may be a lithium-containing oxide, and a lithium-containing transition metal oxide may be used, and lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium cobalt-nickel oxide, lithium cobalt-manganese oxide, lithium manganese-nickel oxide , Lithium cobalt-nickel-manganese oxide, lithium cobalt-nickel-manganese-aluminum oxide, an oxide in which the oval element(s) is substituted or doped, or two or more of them, but is not limited thereto.
  • the elliptical element is Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti, Bi, or two of them It may include the above, but is not limited thereto.
  • binder polymer vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HEP), polyvinylidenefluoride, polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), It may be any one selected from the group consisting of sulfonated EPDM, styrene butyrene rubber (SBR), and fluorine rubber, or a mixture of two or more of them.
  • PVDF-co-HEP vinylidene fluoride-hexafluoropropylene copolymer
  • SBR styrene butyrene rubber
  • fluorine rubber or a mixture of two or more of them.
  • Conductive carbon is commonly used as the conductive material, and various conductive carbon materials such as graphite, carbon black, acetylene black, Catchen black, Super-P, and carbon nanotubes may be used.
  • the positive electrode active material layer 0.1 to 10 parts by weight or 1 to 5 parts by weight of a binder polymer, 0.5 to 10 parts by weight or 1 to 5 parts by weight of a conductive material may be included based on 100 parts by weight of the positive electrode active material.
  • the content of the binder polymer and the conductive material satisfies this range, the amount of the positive electrode active material is sufficiently secured so that there is no problem of reducing the capacity, it is easy to process the electrode, and the lifespan performance can be improved.
  • the positive electrode active material layer may be formed on one or both surfaces of the current collector, and the thickness of the positive electrode active material layer formed on one surface of the current collector is 20 to 200 ⁇ m, in detail 30 to 150 ⁇ m, more specifically 50 It may be to 150 ⁇ m.
  • the anode includes an atomic layer deposition (ALD) coating layer positioned in the pores and the surface of the cathode active material layer.
  • ALD atomic layer deposition
  • the thickness of the atomic layer deposition coating layer may be 0.2 to 1 nm, or 0.2 to 0.8 nm, or 0.24 to 0.8 nm, or 0.24 to 0.55 nm.
  • the function of the protective layer for the positive electrode active material layer can be sufficiently expressed without increasing the resistance of the battery.
  • the thickness of the atomic layer deposition coating layer satisfies the above range, when it is lower than 0.2 nm, it cannot have a sufficient function of a protective layer, and when it exceeds 1 nm, the resistance at the interface between the cathode active material layer and the electrolyte is It increases rapidly, and there may be a problem in that the resistance of the battery increases and the output characteristics decrease.
  • the atomic layer deposition coating layer is not formed up to the positive electrode active material layer adjacent to the current collector, the function of the protective layer is weakened, and in particular, when the number of charge/discharge increases or when stored for a long period of time, the ability to delay battery deterioration may be reduced.
  • the atomic layer deposition consists of injecting a precursor of the deposition material onto the surface of the positive electrode active material layer, injecting water vapor, and injecting an inert gas between each of these steps, and the number of cycles of this series of processes. According to the control of, the thickness of the atomic layer deposition coating layer may be adjusted.
  • the thickness of the atomic layer deposition coating layer refers to the thickness formed when atomic layer deposition is performed on a silicon wafer under the same conditions for atomic layer deposition on the anode active layer as defined above.
  • the thickness of the atomic layer deposition coating layer positioned on the surface of the positive electrode active material layer and in the pores is defined as the thickness formed when atomic layer deposition is performed on a silicon wafer under the same conditions for atomic layer deposition on the positive electrode active material layer.
  • the thickness of the atomic layer deposition coating layer may be measured by fitting a measured value from 380 nm to 780 nm using a Spectroscopic ellipsometer using a Modifed Cauchy model.
  • the atomic layer deposition coating layer is formed in the surface and pores of the positive electrode active material layer, and the pore size in the positive electrode active material layer has a small size ranging from several micrometers to several hundred nanometers, and tens of nanometers, and connection may not be smooth. have. Accordingly, it is very difficult to form a uniform atomic layer deposition coating layer for the entire cathode active material layer from the surface of the cathode active material layer to the current collector, so the thickness of the atomic layer deposition coating layer is generally formed the thickest in the uppermost cathode active material layer. , May be formed thinnest in the lowermost positive electrode active material layer in the current collector direction.
  • the ratio of the content of the atomic layer deposition coating layer of the lowermost positive electrode active material layer to the content of the atomic layer deposition coating layer of the uppermost positive electrode active material layer is, wherein the atomic layer deposition coating is uniformly formed in the thickness direction of the entire positive electrode active material layer. There is a meaning to indicate the degree.
  • the present inventors have found that the distribution of the atomic layer deposition coating layer greatly affects the performance of the battery, and accordingly, the content of the atomic layer deposition coating layer of the lowermost positive electrode active material layer compared to the content of the atomic layer deposition coating layer of the uppermost positive electrode active material layer I noticed the ratio of.
  • the portion of the positive electrode active material layer interviewed with the current collector by dividing the positive electrode active material layer into five portions in the thickness direction is referred to as the lowermost positive electrode active material layer, and the surface portion of the positive electrode active material layer most spaced apart from the current collector is the uppermost positive electrode active material.
  • the distribution uniformity of the atomic layer deposition coating layer is defined as the ratio (wt%) of the content of the atomic layer deposition coating layer of the lowermost cathode active material layer to the content of the atomic layer deposition coating layer of the uppermost cathode active material layer.
  • the first positive electrode active material is in the order of the direction from the surface portion of the positive electrode active material layer most spaced apart from the current collector to the portion of the positive electrode active material layer interviewed with the current collector.
  • Layer a second positive electrode active material layer, a third positive electrode active material layer, a fourth positive electrode active material layer, and a fifth positive electrode active material layer.
  • the first positive electrode active material layer may correspond to the uppermost positive electrode active material layer
  • the fifth positive electrode active material layer may correspond to the lowermost positive electrode active material layer.
  • Fig. 2 shows a cross-sectional electron microscope image of the positive electrode active material layer partitioned from the first positive electrode active material layer to the fifth positive electrode active material layer.
  • the cathode active material layer is divided into 5 equal parts in the thickness direction, and the content of the atomic layer deposition coating layer of the uppermost cathode active material layer (first active material layer) It is defined as the ratio (% by weight) of the content of the atomic layer deposition coating layer of the lowermost positive electrode active material layer (the fifth active material layer).
  • the reason for evaluating the distribution uniformity of the atomic layer deposition coating layer by dividing the positive electrode active material layer into 5 equal parts in the thickness direction is that there is no discrimination power to check the uniformity of distribution when dividing it into equal parts less than 5 equal parts.
  • the average particle diameter of the positive electrode active material particles included in the positive electrode active material layer is larger than the height of one section of the divided positive electrode active material layer, and the dispersion of the distribution of the atomic layer deposition coating layer is too large, This is because the reproducibility of distribution evaluation is remarkably poor.
  • the present inventors adjusted various parameters of the atomic layer deposition process to improve the distribution of the depth direction of the atomic layer deposition coating layer.
  • the atomic layer deposition process variables that can be adjusted for this are largely the heating temperature of the substrate, the injection amount and concentration of the precursor and the reaction gas, the exposure time of the precursor and the reaction gas to the substrate, the flow rate of the precursor, the reaction gas, the carrier gas and the purge gas, These include the injection time of the purge gas and the process pressure.
  • a substrate heating temperature of 120°C to 150°C is suitable.
  • the injection amount of the precursor and the reaction gas should be supplied in a sufficient amount compared to the specific surface area of the substrate.
  • the number of trimethylaluminum molecules required for a unit area per atomic layer deposition can be calculated from the density of aluminum oxide deposited and the thickness formed per atomic layer deposition.
  • a sufficient ratio means at least two times, preferably ten times or more.
  • the vapor pressure may be controlled by controlling the temperature of the container supplying the precursor and the reaction gas, and the injection time may be controlled.
  • the concentration of the precursor and the reaction gas should be kept not too low, which is determined by the ratio of the injection amount and the carrier gas controlled by temperature and injection time.
  • the exposure time of the precursor and the reaction gas is related to the reaction rate, and it is important to obtain a sufficient time for the precursor and the reaction gas to permeate into the deep pores of a substrate having a complex pore shape such as an anode. Usually, it takes more time for the gas to penetrate into the pores than the reaction rate. This exposure time can be shortened by raising the temperature of the substrate.
  • the flow rates of the precursor, reaction gas, carrier gas, and purge gas also have a great influence on the deposition distribution in the depth direction of the anode substrate.
  • the ratio of the content of the atomic layer deposition coating layer of the lowermost cathode active material layer to the content of the atomic layer deposition coating layer of the uppermost cathode active material layer is 40% by weight or more. According to an embodiment of the present invention, the ratio of the content of the atomic layer deposition coating layer of the lowermost cathode active material layer to the content of the atomic layer deposition coating layer of the uppermost cathode active material layer is 40% by weight to 120% by weight, or 49% by weight. % To 107% by weight, or 50 to 100% by weight.
  • the atomic layer deposition coating layer is collected from the surface of the cathode active material layer.
  • the atomic layer deposited coating functions as a protective layer over the entire thickness of the positive electrode active material layer as it is uniformly formed to the bottom surface in contact with the whole, so that the anode active material layer protection function of the atomic layer deposition coating layer is protected even after several hundred repetitive charge and discharge cycles. It can be maintained without deterioration, and when stored at a high temperature, it can stably maintain the capacity and exhibit an effect of suppressing increase in resistance.
  • the positive electrode active material layer is divided into 5 equal parts in the thickness direction, and the first positive electrode active material layer is in a direction from the surface portion of the positive electrode active material layer most spaced apart from the current collector to the positive electrode active material layer portion interviewed with the current collector.
  • the content of each of the atomic layer deposition coating layers in the second positive electrode active material layer, the third positive electrode active material layer, the fourth positive electrode active material layer, and the fifth positive electrode active material layer is the positive electrode active material layer having the atomic layer deposited coating layer formed on the current collector.
  • the content ratio of a specific element included in the atomic layer deposition coating layer, for example, aluminum (Al), to a specific element of the positive electrode active material layer, for example, nickel (Ni), is obtained through the value measured through the above method.
  • the degree to which the evaporation coating is uniformly formed in the entire thickness direction of the active material can be observed.
  • the content of the metal element in the atomic layer deposition coating layer may be 300 ppm to 6,000 ppm, or 300 ppm to 4,000 ppm, or 400 ppm to 2,000 ppm with respect to the total weight of the positive electrode active material layer on which the atomic layer deposition coating layer is formed.
  • the positive electrode active material layer refers to all of the layer components formed on the current collector including the positive electrode active material constituting the positive electrode, a conductive material, a binder polymer, an atomic vapor deposition coating layer, and the like.
  • the content of the atomic layer deposition coating layer satisfies this range, it is possible to minimize the increase in the resistance of the battery without losing the protective layer function of the positive electrode active material layer, and the content of the atomic layer deposition coating layer is too large to reduce the energy of the battery. It is possible to prevent the problem that the density decreases or the increase in resistance increases, resulting in a decrease in output characteristics.
  • the atomic layer deposition coating layer may include metal or metalloid oxide, nitride, oxynitride, sulfide, fluoride, phosphate, or two or more of these, wherein the metal or metalloid is Al, Zr, Si, Zn , Ti, Sn, Mn, Nb, W, Li, or two or more of these may be included.
  • the atomic layer deposition coating layer is ZrO x , AlO x , SiO x , ZnO x , TiO x , SnO x , MnOx, NbO x , WO x , Lithium aluminum oxide, lithium zirconium oxide, lithium niobium oxide, lithium tungsten oxide, or two or more of these may be included, wherein x may be greater than 0 and less than or equal to 3.
  • the porosity of the positive electrode (the porosity of the positive electrode active material layer including all of the positive electrode active material layer and the atomic layer deposition (ALD) coating layer located in the surface and pores of the positive electrode active material layer) is 15% to 35%, or one of the present invention. According to embodiments, it may be 20% to 30%.
  • the porosity of the cathode active material layer before the atomic layer deposition coating layer is formed may be 15% to 35%, or according to an embodiment of the present invention, 20% to 30%.
  • the porosity of the positive electrode can be obtained by the following method.
  • the density of the positive electrode (positive electrode active material layer) including voids is obtained by dividing the measured weight per unit area by the volume obtained by multiplying the measured thickness and the unit area.
  • the theoretical density is obtained by multiplying the distribution per unit area of the components constituting the anode (anode active material, conductive material, binder polymer, atomic layer deposition coating layer component, etc. in the case of atomic layer deposition) by each known true density value.
  • the porosity of the positive electrode may be measured based on the amount of the liquid injected by injecting a non-reactive liquid that is not absorbed by components constituting the positive electrode into the positive electrode.
  • a method of manufacturing a positive electrode according to an embodiment of the present invention is as follows.
  • the positive electrode active material layer composition is applied and dried on at least one surface of a current collector, and then rolled through a roll press. To form.
  • NMP N-methylpyrrolidone
  • an atomic layer deposition coating layer is formed in the surface and pores of the positive electrode active material layer to obtain a positive electrode active material layer.
  • the forming of the atomic layer deposition coating layer includes mounting the current collector (anode substrate) on which the cathode active material layer prepared above is formed in an atomic layer deposition (ALD) system, Injecting a precursor; Then, after purging for a while using an inert gas (eg, Ar, etc.), supplying water vapor to replace the bonding group of the metal precursor with an OH group; Then, purging again using an inert gas to remove impurities and unreacted components in the system to form an atomic layer deposition coating layer.
  • an inert gas eg, Ar, etc.
  • the methyl group of the metal precursor in the step of injecting water vapor (H 2 0) into the metal precursor, may be substituted with a hydroxy group.
  • a step of purging with an inert gas may be performed to remove remaining water vapor.
  • the metal precursors include tetramethylzirconium [Zr(CH 3 ) 4 ]), tetrakis(ethylmethylamido)zirconium[Zr[N(CH 3 )(CH 2 CH 3 )] 4 , (TEMAZ)]), zirconium tertiary-butoxide[Zr(t-OC 4 H 9 ) 4 , (ZTB)]), trimethylaluminium [Al(CH 3 ) 3 , (TMA) ], tetramethylsilicon [Si(CH 3 ) 4 ]), dimethylzinc [Zn(CH 3 ) 2 ]), diethylzinc [Zn(C 2 H 5 ) 2 , (DEZn) ]), tetramethyl titanium [Ti(CH 3 ) 4 ]), tetramethyltin [Sn(CH 3 ) 4 ]), bis(ethylcyclopentadienyl) manganese (bis(ethyl
  • He, N 2 , Ne, Ar, and Kr may be used as the inert gas, but is not limited thereto.
  • the atomic layer deposition coating layer is sufficiently provided from the surface portion of the positive electrode active material layer most spaced apart from the current collector to the portion of the positive electrode active material layer interviewing the current collector.
  • an atomic layer deposition coating process may be performed and a rolling process may be performed. Through this method, an atomic layer deposition coating layer can be formed up to a portion of the positive electrode active material layer that smoothly interviews the current collector while the pore size and porosity of the positive electrode active material layer are as large as possible.
  • the process pressure can be increased or pressurized above normal pressure, and incubation time is added so that the metal precursor and water vapor or inert gas in the pores sufficiently reach. can do.
  • the incubation time can be adjusted according to the porosity and thickness of the electrode.
  • the above-described positive electrode for a lithium secondary battery according to the present invention is manufactured as an electrode assembly comprising a negative electrode and a separator interposed between the positive electrode and the negative electrode, and then accommodated in a battery container, and then injected into the battery container to form a lithium secondary battery.
  • the negative electrode and the separator forming the electrode assembly together with the positive electrode according to the present invention, and the non-aqueous electrolyte may be all those conventionally used for manufacturing a lithium secondary battery.
  • the negative electrode according to the present invention may be prepared by mixing and stirring a binder polymer and a solvent in a negative electrode active material and, if necessary, a conductive material and a dispersant to prepare a slurry, and then coating it on a current collector and drying it.
  • a carbon material lithium metal, silicon, or tin, etc., in which lithium ions can be inserted and released, may be used, and metal oxides such as TiO 2 and SnO 2 having a potential for lithium of less than 2V may be used.
  • a carbon material may be used, and both low crystalline carbon and high crystalline carbon may be used as the carbon material.
  • Typical low crystalline carbons include soft carbon and hard carbon, and high crystalline carbons include natural graphite, artificial graphite, Kish graphite, pyrolytic carbon, and liquid crystal pitch. High-temperature firing of mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches, petroleum derived cokes, and tar pitch derived cokes Carbon is representative.
  • a binder polymer, a solvent, a conductive material, and the like of the negative electrode may be used in combination with the materials used for manufacturing the positive electrode.
  • the separator is a conventional porous polymer film used as a separator, for example, polyolefin such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer.
  • a porous polymer film made of a polymer-based polymer may be used alone or by stacking them, or a conventional porous nonwoven fabric, for example, a nonwoven fabric made of a high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used, but is limited thereto. It is not.
  • a porous substrate such as the porous polymer film and a porous nonwoven fabric alone as a separator
  • a porous substrate including inorganic particles and a binder polymer on at least one surface of the porous substrate It may be in the form of further comprising a coating layer.
  • the lithium salt that may be included as an electrolyte may be used, without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as the lithium salt, the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO
  • organic solvent contained in the electrolytic solution those commonly used in the electrolytic solution for lithium secondary batteries may be used without limitation, and typically propylene carbonate (PC), ethylene carbonate, EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), methylpropyl carbonate, dipropyl carbonate, dimethylsulperoxide, acetonitrile, dimethoxyethane, diethoxy Any one selected from the group consisting of ethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, and tetrahydrofuran, or a mixture of two or more thereof may be typically used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate dipropyl carbonate
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are highly viscous organic solvents and have high dielectric constants and thus dissociate lithium salts in the electrolyte well.
  • a low viscosity, low dielectric constant linear carbonate such as carbonate is mixed and used in an appropriate ratio, an electrolyte solution having a high electrical conductivity can be prepared, and thus it can be more preferably used.
  • the electrolytic solution stored according to the present invention may further include an additive such as an overcharge preventing agent included in a conventional electrolytic solution.
  • an additive such as an overcharge preventing agent included in a conventional electrolytic solution.
  • the battery container used in the present invention may be adopted that is commonly used in the art, and there is no limitation on the external shape according to the use of the battery, for example, a cylindrical shape using a can, a square shape, a pouch type, or a coin It can be (coin) type, etc.
  • LiNi 0.8 Mn 0.1 Co 0.1 O 2 as a cathode active material
  • carbon black as a conductive material
  • PVdF polyvinylidene fluoride
  • KF1300 binder polymer
  • NMP N-methyl-2-pyrrolidone
  • the ALD process was performed in the same manner as in Comparative Example 2, but the precursor and reaction gas, purge gas injection time, and the number of times of the ALD process were different.
  • the injection time of trimethylaluminum (Al(CH 3 ) 3 ) was set to 0.5 seconds, and then purged for 10 seconds using Ar, an inert gas, and water vapor was supplied for 1 second to replace the methyl group of the aluminum with OH groups. Then, by purging again for 20 seconds using Ar, which is an inert gas, impurities and unreacted components in the system were removed.
  • Ar which is an inert gas
  • the ALD process was performed in the same manner as in Comparative Example 2, but the precursor and reaction gas, the purge gas injection time, and the number of times of the ALD process were different.
  • the injection time of trimethylaluminum (Al(CH 3 ) 3 ) was set to 2 seconds, followed by purging for 50 seconds using Ar as an inert gas, and supplying water vapor for 2 seconds to replace the methyl group of the aluminum with OH group. Then, by purging again for 50 seconds using Ar, which is an inert gas, impurities and unreacted components in the system were removed.
  • Ar which is an inert gas
  • the ALD process was performed in the same manner as in Comparative Example 2, but the precursor and reaction gas, the purge gas injection time, and the number of times of the ALD process were different.
  • the injection time of trimethylaluminum (Al(CH 3 ) 3 ) was set to 2 seconds, followed by purging for 50 seconds using Ar as an inert gas, and supplying water vapor for 2 seconds to replace the methyl group of the aluminum with OH group. Then, by purging again for 50 seconds using Ar, which is an inert gas, impurities and unreacted components in the system were removed.
  • Ar which is an inert gas
  • FIGS. 1 and 2 The electron micrograph of the cross section of the anode on which the prepared atomic layer deposition coating layer is formed and the mapping images of aluminum elements measured through Energy Dispersive X-ray Spectroscopy are shown in FIGS. 1 and 2, respectively. Indicated.
  • FIG. 2 is a mapping image of aluminum elements measured through an Energy Dispersive X-ray Spectroscopy with respect to the lower part shown in FIG. 1.
  • Al was identified in the vertical left region corresponding to the portion of the aluminum current collector of FIG. 1, and portions of the same color are dispersed and displayed in the active material layer, and these portions represent the atomic layer deposition coating layer. .
  • the ALD process was performed in the same manner as in Comparative Example 2, but the precursor and reaction gas, the purge gas injection time, and the number of times of the ALD process were different.
  • the injection time of trimethylaluminum (Al(CH 3 ) 3 ) was set to 1 second, followed by purging for 50 seconds using Ar, which is an inert gas, and supplying water vapor for 1 second to replace the methyl group of the aluminum with OH group. Then, by purging again for 50 seconds using Ar, which is an inert gas, impurities and unreacted components in the system were removed.
  • Ar trimethylaluminum
  • the thickness of the atomic layer deposition coating layer located on the surface of the positive electrode active material layer and in the pores is defined as the thickness formed when atomic layer deposition is performed on a silicon wafer under the same conditions for atomic layer deposition on the positive electrode active material layer, and the thickness is Measurements of psi and delta from 380 nm to 780 nm using a spectroscopic ellipsometer can be measured by fitting using a Modified Cauchy model.
  • the ALD process was repeated 200 times under the atomic layer deposition conditions corresponding to each Comparative Example and Example.
  • the thickness measured using the apparatus and the coating thickness per cycle of atomic layer deposition calculated therefrom are shown in Table 1 below.
  • the positive electrode active material layer was divided into five portions in the thickness direction, and the portion of the positive electrode active material layer interviewed to the current collector in the five-half portion of the positive electrode active material layer was placed at the bottom of the positive electrode active material.
  • the amount of the atomic layer deposition coating layer of the lowermost positive electrode active material layer and the atomic layer deposition of the uppermost positive electrode active material layer was determined by using an energy dispersive X-ray Spectroscopy (Oxford EXTREME EDS system) under the conditions of an acceleration voltage of 15 kV and a working distance of 15 mm. It was measured using.
  • FIG. 3 shows a cross-sectional electron microscope image of the positive electrode active material layer partitioned from the first active material layer to the fifth active material layer.
  • the distribution uniformity of the atomic layer deposition coating layer was calculated as the ratio of the content of the atomic layer deposition coating layer of the lowermost cathode active material layer to the content of the atomic layer deposition coating layer of the uppermost positive electrode active material layer, and is shown in Table 2 below.
  • the porosity of the positive electrodes of Examples 1 to 3 and Comparative Examples 1 to 3 was measured by the following method, and is shown in Table 2 below.
  • the density of the positive electrode (positive electrode active material layer) including voids is obtained by dividing the measured weight per unit area by the volume obtained by multiplying the measured thickness and the unit area.
  • the theoretical density is obtained by multiplying the distribution per unit area of the components constituting the anode (anode active material, conductive material, binder polymer, atomic layer deposition coating layer component, etc. in the case of atomic layer deposition) by each known true density value.
  • a monocell was prepared using an organic electrolyte. After activating the monocell, charging and discharging was performed at 45° C., charging was performed at a current density of 0.3 C to a voltage of 4.25 V, and discharging was performed at a voltage of 2.5 V at the same current density. These charging and discharging were performed 200 times, and the capacity was measured every 100 cycles.
  • the results of the capacity cycle according to charge and discharge are shown in FIG. 4, and the capacity retention rate after 200 cycles of charge and discharge is shown in Table 2 below.
  • the anodes of Examples 1 to 3 which satisfy both the thickness range and distribution uniformity range of the ALD coating layer, have high capacity retention after 200 cycles as compared to Comparative Examples 1 to 3 and are excellent. It can be seen that it shows the life characteristics, and shows excellent characteristics in terms of storage stability where the increase in battery resistance is not large even after long-term storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

집전체; 및 상기 집전체의 적어도 일면 상에 위치하는 복수의 양극활물질과 상기 양극활물질의 표면 및 기공 내와 상기 복수의 양극활물질간의 공극 내에 위치하는 원자층 증착 코팅층을 구비하는 양극활물질층;을 포함하고, 상기 원자층 증착 코팅층의 두께가 0.2 내지 1 nm이고, 상기 양극활물질층을 두께 방향으로 5등분하여 상기 집전체에 면접하는 양극활물질층 부분을 최하단 양극활물질층이라고 하고, 상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분을 최상단 양극활물질층이라고 하는 경우, 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량에 대비하여 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율이 40 중량% 이상이고, 15% 내지 35%의 공극율을 갖는 리튬 이차전지용 양극, 및 이를 구비한 리튬 이차전지가 제시된다.

Description

리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
본 발명은 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지에 관한 것이다. 보다 상세하게는, 사이클 특성 및 저장 안정성 크게 개선된 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지에 관한 것이다.
본 출원은 2019년 5월 31일에 출원된 한국출원 제10-2019-0064862호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재 등의 음극, 리튬 함유 산화물 등으로 된 양극 및 혼합 유기용매에 리튬염이 적당량 용해된 비수 전해액으로 구성되어 있다.
이때 양극은 높은 산화 전위에 의해 표면에서 전해액 분해가 심하며, 이에 따른 가스 발생을 동반, 셀이 팽창하는 문제가 있다. 또한 리튬 이온이 삽입 및 탈리되는 과정에서 구조가 불안정해지고 전극에서 금속이 용출되어 퇴화되는 문제가 발생한다. 특히 고에너지 활물질에서는 이러한 현상이 더욱 심하고 급격히 발생하여 전지의 용량 잔존율이 급감하고 안전성에 위협이 되기도 한다.
리튬 이차 전지의 전극 안정성 및 안전성 개선을 위하여 기상 증착법이나 스퍼터링을 통해 표면 코팅을 하는 방법들이 제안되었으나 이러한 코팅법으로는 전극 내부까지 침투하여 기공 내 표면에 코팅층을 형성하기 어렵다.
원자층 증착법은 기상화학증착 반응을 이용하여 전구체와 반응체를 시분할로 주입함으로써 기상반응을 억제하고 기재의 표면에서 이루어지는 자기제어 반응을 통해 박막의 두께를 정확히 조절하여 형성하는 기술이다.
원자층 증착법을 이용한 코팅은 크게 활물질을 입자 단계에서 코팅하는 방법과 활물질 슬러리를 코팅 및 건조하여 형성된 전극단에 코팅을 하는 방법, 두 가지로 나눌 수 있다.
활물질 입자 자체에 원자층 증착을 하는 경우 입자 표면에 형성된 코팅층이 절연층으로 작용하여 전자의 이동을 제한하는 문제점이 발생할 수 있다. 반면 전극을 코팅하는 방법은 이미 형성된 도전 패스를 방해하지 않으면서 코팅이 이루어지므로 전자의 이동을 방해하지 않아 셀 저항 증가를 최소화할 수 있다는 장점이 있다.
하지만, 통상적인 원자층 증착 공정은 평판에 대하여 최적화된 원자층 증착 공정이므로, 전극의 활물질층에 이러한 통상의 원자층 증착 공정을 적용할 경우에 전극의 활물질층의 가장 깊은 영역, 즉 집접체와 대면하는 영역까지 활물질층 전체에 걸쳐서 원자층 증착층을 형성하기 어려운 문제점이 있다. 또한, 기존의 특허나 논문에서 원자층 증착을 적용한 전극의 경우에 공극율(기공도)가 상대적으로 큰 경우가 대부분이고, 이러한 경우에는 전극 활물질층의 내부까지 원자층 증착이 잘 이루어져 활물질층의 깊이 방향으로 원자층 증착층의 분포에 대해서 고찰이 이루어진 예가 없었다.
한편, 실제 전지에 적용하는 전극은 집전체 상에 활물질층이 코팅된 후에 높은 압력으로 압연되어 매우 낮은 공극율을 갖고 있으므로, 이러한 낮은 공극율을 갖는 전극의 활물질층에 두께 방향으로 집전체 근처 영역까지 원자층 증착을 형성하는 것에는 여전히 어려움이 있다. 또한 이렇게 통상의 원자층 증착 공정으로 제조된 전극은 표면 가까이에만 원자층 증착층이 형성되어 그 효과가 제한적이다.
따라서, 이차전지의 성능을 개선할 수 있는 양극 기술에 대한 필요성이 여전히 매우 높은 실정이다.
따라서 본 발명이 해결하고자 하는 과제는, 장기간 보관에도 저장 안정성이 우수하고, 전지 수명이 개선된 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예의 리튬 이차전지용 양극이 제공된다.
제1 구현예는,
집전체; 및
상기 집전체의 적어도 일면 상에 위치하는 복수의 양극활물질과 상기 양극활물질의 표면 및 기공 내와 상기 복수의 양극활물질간의 공극 내에 위치하는 원자층 증착(ALD) 코팅층을 구비하는 양극활물질층;을 포함하고,
상기 원자층 증착 코팅층의 두께가 0.2 내지 1 nm이고,
상기 양극활물질층을 두께 방향으로 5등분하여 상기 집전체에 면접하는 양극활물질층 부분을 최하단 양극활물질층이라고 하고, 상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분을 최상단 양극활물질층이라고 하는 경우, 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량에 대비하여 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율이 40 중량% 이상이고,
15 내지 35%의 공극율을 갖는 리튬 이차전지용 양극에 관한 것이다.
제2 구현예에 따르면,
상기 양극의 공극율이 20 내지 30%일 수 있다.
제3 구현예에 따르면, 제1 구현예에 있어서,
상기 원자층 증착 코팅층이 금속 또는 준금속의 산화물, 질화물, 산화질화물, 황화물, 불화물, 인산염, 또는 이들 중 2 이상을 포함할 수 있다.
제4 구현예에 따르면, 제3 구현예에 있어서,
상기 금속 또는 준금속이 Al, Zr, Si, Zn, Ti, Sn, Mn, Nb, W, Li, 또는 이들 중 2 이상을 포함할 수 있다.
제5 구현예에 따르면, 제3 구현예 또는 제4 구현예에 있어서,
상기 원자층 증착 코팅층이 ZrO x, AlO x, SiO x, ZnO x, TiO x, SnO x, MnOx, NbO x, WO x, 리튬알루미늄산화물, 리튬지르코늄산화물, 리튬니오븀산화물, 리튬텅스텐산화물 또는 이들 중 2 이상을 포함하고, 이때 x는 0 보다 크고, 3 이하일 수 있다.
제6 구현예에 따르면, 제1 구현예 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 원자층 증착 코팅층의 두께가 0.2 내지 1 nm일 수 있다.
제7 구현예에 따르면, 제1 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량이 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량에 대해서 40 중량% 내지 120 중량%일 수 있다.
제8 구현예에 따르면, 제1 구현예 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 원자층 증착 코팅층의 함량이 상기 양극활물질층 중량에 대해서 300 ppm 내지 6,000 ppm일 수 있다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예의 리튬 이차전지가 제공된다.
제9 구현예에 따르면,
양극, 음극 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 전극 조립체; 상기 전극 조립체를 수납하고 있는 전지 용기; 및 상기 전지 용기 내에 주입된 비수 전해액을 구비하는 리튬 이차전지에 있어서,
상기 양극은 제1 구현예 내지 제8 구현예 중 어느 한 구현예에 따른 리튬 이차전지용 양극일 수 있다.
본 발명의 일 구현예에 따른 리튬 이차전지용 양극은 종래의 원자층 증착 코팅층 보다 얇고, 또한 상기 원자층 증착 코팅층이 양극활물질층의 집전체 방향의 내부까지 형성되어 상기 원자층 증착 코팅이 양극활물질층 전체 두께에 걸쳐서 보호층의 기능을 함으로써, 양극의 퇴화 현상이 억제되어 안정성이 개선될 수 있다. 이러한 양극을 구비한 리튬 이차전지는 사이클이 반복되어도 용량 유지율이 유지되어 우수한 수명 특성을 나타내며, 완전히 충전된 상태로 고온 저장 시에도 리튬 이온 삽입에 의한 양극활물질의 불안정한 구조적 상태를 상기 원자층 증착 코팅층이 안정화함으로써 장기간 저장 후에도 전지 저항 증가가 크지 않아 저장안정성이 향상될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 실시예 3에 따라 제조한 원자층 증착 코팅층이 형성된 양극 단면의 전자현미경 사진이다.
도 2는 본 발명의 실시예 3에 따라 제조한 원자층 증착 코팅층이 형성된 양극 단면의 에너지 분산형 분광분석법(Energy Dispersive X-ray Spectroscopy)을 통하여 측정한 알루미늄 원소의 맵핑(mapping) 이미지이다.
도 3은 본 발명의 실험예 2에 따른 양극활물질층의 단면 영역을 5 등분한 도면이다.
도 4는 본 발명의 실험예 3에 따른 충방전 사이클 그래프이다.
도 5는 본 발명의 실험예 4에 따른 저장안정성 평가를 위한 저장 기간에 따른 저항 증가율 그래프이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 측면에 따른 리튬 이차전지용 양극은,
집전체; 및
상기 집전체의 적어도 일면 상에 위치하는 복수의 양극활물질과 상기 양극활물질의 표면 및 기공 내와 상기 복수의 양극활물질간의 공극 내에 위치하는 원자층 증착 코팅층을 구비하는 양극활물질층;을 포함하고,
상기 원자층 증착 코팅층의 두께가 0.2 내지 1 nm이고,
상기 양극활물질층을 두께 방향으로 5등분하여 상기 집전체에 면접하는 양극활물질층 부분을 최하단 양극활물질층이라고 하고, 상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분을 최상단 양극활물질층이라고 하는 경우, 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량에 대비하여 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율이 40 중량% 이상이고,
15% 내지 35%의 공극율을 갖는다.
상기 집전체는 리튬 이차전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 집전체는 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 집전체의 두께는 3 내지 500 ㎛, 상세하게는 5 내지 50㎛일 수 있다.
본 발명의 일 구현예에서, 상기 양극활물질층은 양극활물질, 바인더 고분자 및 도전재를 포함할 수 있다.
상기 양극활물질은 리튬 함유 산화물일 수 있으며, 리튬 함유 전이금속 산화물이 사용될 수 있으며, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 코발트-니켈 산화물, 리튬 코발트-망간 산화물, 리튬 망간-니켈 산화물, 리튬 코발트-니켈-망간 산화물, 리튬 코발트-니켈-망간-알루미늄 산화물, 이들에 타원소(들)가 치환 또는 도핑된 산화물, 또는 이들 중 2 이상을 포함할 수 있으나, 이에 한정되지 않는다.
여기서, 상기 타원소는 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti, Bi, 또는 이들 중 2 이상을 포함할 수 있으나, 이에 한정되지 않는다.
본 발명의 일 구현예에 따르면, 상기 리튬 함유 전이금속 산화물은, Li xCoO 2(0.5<x<1.3), Li xNiO 2(0.5<x<1.3), Li xMnO 2(0.5<x<1.3), Li xMn 2O 4(0.5<x<1.3), Li x(Ni aCo bMn c)O 2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), Li x(Ni aCo bMn cAl d)O 2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, 0<d<1, a+b+c+d=1), Li xNi 1-yCo yO 2(0.5<x<1.3, 0<y<1), Li xCo 1-yMn yO 2(0.5<x<1.3, 0≤y<1), Li xNi 1-yMn yO 2(0.5<x<1.3, O≤y<1), Li x(Ni aCo bMn c)O 4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), Li xMn 2-zNi zO 4(0.5<x<1.3, 0<z<2), Li xMn 2-zCo zO 4(0.5<x<1.3, 0<z<2), Li xCoPO 4(0.5<x<1.3), Li xFePO 4(0.5<x<1.3), 또는 이들 중 2 이상을 포함할 수 있으며, 상기 리튬 함유 전이금속 산화물은 붕소(B), 알루미늄(Al), 지르코늄(Zr) 등의 금속이나 금속산화물로 코팅 또는 도핑될 수도 있다. 또한, 상기 리튬 함유 전이금속 산화물 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
상기 바인더 고분자로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HEP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부티렌 고무(SBR) 및 불소 고무로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
상기 도전재로는 통상적으로 도전성 탄소가 사용이 되며, 예를 들면 흑연, 카본 블랙, 아세틸렌 블랙, 캐첸 블랙, 수퍼-P, 탄소 나노 튜브 등 다양한 도전성 탄소재가 사용될 수 있다.
상기 양극활물질층에서는, 상기 양극활물질 100 중량부 기준으로, 바인더 고분자 0.1 내지 10 중량부 또는 1 내지 5 중량부, 도전재 0.5 내지 10 중량부 또는 1 내지 5 중량부가 포함될 수 있다. 상기 바인더 고분자와 도전재의 함량이 이러한 범위를 만족하는 경우, 상기 양극활물질의 양이 충분히 확보되어 용량이 감소하는 문제가 생기지 않고, 전극 공정에 용이하며, 수명 성능이 개선될 수 있다.
상기 양극활물질층은 집전체의 한 면 또는 양 면에 형성될 수 있고, 상기 집전체 한 면에 형성된 양극활물질층의 두께는 20 내지 200㎛, 상세하게는 30 내지 150㎛, 더 상세하게는 50 내지 150㎛일 수 있다.
상기 양극은 양극활물질층의 표면 및 기공 내에 위치하는 원자층 증착(atomic layer deposition, ALD) 코팅층을 포함한다.
상기 원자층 증착 코팅층의 두께는 0.2 내지 1 nm이고, 또는 0.2 내지 0.8 nm, 또는 0.24 내지 0.8 nm, 또는 0.24 내지 0.55 nm일 수 있다. 상기 원자층 증착 코팅층의 두께가 이러한 범위를 만족하는 경우에, 전지의 저항이 거의 증가하지 않으면서도 양극활물질층에 대한 보호층의 기능을 충분히 발현할 수 있다. 구체적으로, 상기 원자층 증착 코팅층의 두께가 상기 범위를 만족하는 경우에, 0.2 nm보다 낮을 경우 충분한 보호층의 기능을 가질 수 없으며, 1 nm를 초과하는 경우 양극활물질층과 전해질 계면에서의 저항이 급격히 커져 전지의 저항 증가 및 출력 특성이 감소하는 문제가 발생할 수 있다. 또한 원자층 증착 코팅층이 집전체에 인접한 양극활물질층까지 형성되지 않을 경우, 보호층의 기능이 약해지고 특히 충방전 횟수가 증가하거나 장기 저장할 경우 전지 퇴화를 지연시키는 성능이 저감될 수 있다.
상기 원자층 증착은 양극활물질층의 표면 상에 증착 물질의 전구물질을 주입하는 단계, 수증기를 주입하는 단계, 이들 각각 단계 사이에 불활성 기체를 주입하는 단계로 이루어지고, 이러한 일련의 공정의 사이클 횟수의 제어에 따라, 원자층 증착 코팅층의 두께가 조절될 수 있다. 여기서 원자층 증착 코팅층의 두께란 앞서 정의한 바와 같이 양극활물층에 원자층 증착을 실시하는 동일한 조건으로 실리콘 웨이퍼에 원자층 증착을 실시했을 때 형성되는 두께를 의미한다.
상기 양극활물질층의 표면 및 기공 내에 위치하는 원자층 증착 코팅층의 두께는 양극활물층에 원자층 증착을 실시하는 동일한 조건으로 실리콘 웨이퍼에 원자층 증착을 실시했을 때 형성되는 두께로 정의된다. 상기 원자층 증착 코팅층의 두께는 엘립소미터(Spectroscopic ellipsometer) 장치를 이용하여 380 nm에서 780 nm까지의 측정 값을, Modifed Cauchy model을 이용하여 피팅하여 측정될 수 있다.
상기 원자층 증착 코팅층은 양극활물질층의 표면 및 기공 내에 형성되게 되는데 양극활물질층 내의 기공의 크기는 수 마이크로미터에서 수백 나노미터, 수십 나노미터에 이르기까지 작은 크기를 가지며 서로 연결이 원활하지 않을 수 있다. 이에 따라 양극활물질층의 표면에서부터 집전체에 이르기까지의 전체 양극활물질층에 대하여 균일한 원자층 증착 코팅층을 형성하기 매우 어려우며, 따라서 원자층 증착 코팅층의 두께는 대체로 최상단 양극활물질층에서 가장 두껍게 형성되며, 집전체 방향의 최하단 양극활물질층에서 가장 얇게 형성될 수 있다.
따라서, 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량 대비하여 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율은, 상기 원자층 증착 코팅이 양극활물질층 전체 두께 방향으로 균일하게 형성되어 있는 정도를 나타내는 의미가 있다.
본 발명자들은 이러한 원자층 증착 코팅층의 분포가 전지의 성능에 크게 영향을 미치는 것을 알게 되었으며, 이에 따라 최상단 양극활물질층의 원자층 증착 코팅층의 함량 대비하여 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율에 주목하게 되었다.
본 발명에서는 상기 양극활물질층을 두께 방향으로 5등분하여 상기 집전체에 면접하는 양극활물질층 부분을 최하단 양극활물질층이라고 하고, 상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분을 최상단 양극활물질층이라고 하는 경우, 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량 대비 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율(중량%)로 상기 원자층 증착 코팅층의 분포 균일성을 정의한다.
예를 들면, 상기 양극활물질층을 두께 방향으로 5등분해서, 상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분부터 상기 집전체에 면접하는 양극활물질층 부분까지의 방향 순서대로 제1 양극활물질층, 제2 양극활물질층, 제3 양극활물질층, 제4 양극활물질층, 및 제5 양극활물질층이라고 명명할 수 있다. 이때, 제1 양극활물질층이 최상단 양극활물질층에 해당되고, 제5 양극활물질층이 최하단 양극활물질층에 해당될 수 있다. 제1 양극활물질층으로부터 제5 양극활물질층으로 구획된 양극활물질층의 단면 전자현미경 사진을 도 2에 나타내었다.
본 발명자들은 원자층 증착 코팅층의 분포가 대체로 표면으로부터 집전체 방향으로 갈수록 점진적으로 변화하는 경향을 반복적으로 확인하였다. 그 결과, 본 발명에서는 원자층 증착 코팅층의 분포 균일성을 평가함에 있어서, 양극활물질층을 두께 방향으로 5등분하고, 상기 최상단 양극활물질층(제1 활물질층)의 원자층 증착 코팅층의 함량 대비 상기 최하단 양극활물질층(제5 활물질층)의 원자층 증착 코팅층의 함량의 비율(중량%)로 정의한다. 통상 이렇게 양극활물질층을 두께 방향으로 5등분하여 원자층 증착 코팅층의 분포 균일성을 평가하는 이유는, 5등분 보다 더 적게 등분하는 경우에 분포의 균일성을 확인하기에 변별력이 없고, 5등분 보다 더 많게 세분하여 등분하는 경우에는 등분된 양극활물질층의 일 구간의 높이에 비하여 상기 양극활물질층에 포함되는 양극활물질 입자의 평균입경이 더 크게 되어, 원자층 증착 코팅층의 분포의 편차가 너무 커서, 분포 평가의 재현성이 현저히 떨어지기 때문이다.
낮은 공극율을 갖는 전극의 활물질층에 두께 방향으로 집전체 근처 영역까지 원자층 증착을 형성하는 것은 통상의 원자층 증착 공정으로는 어려움이 있다. 이에 본 발명자들은 원자층 증착 공정의 다양한 변수를 조절하여 원자층 증착 코팅층의 깊이 방향 분포가 개선되도록 하였다. 이를 위하여 조절 가능한 원자층 증착 공정 변수로는 크게 기재의 가열 온도, 전구체 및 반응 가스의 주입량 및 농도, 전구체 및 반응 가스의 기재에 대한 노출 시간, 전구체, 반응 가스, 캐리어 가스 및 퍼지 가스의 유속, 퍼지 가스의 주입 시간, 공정 압력 등이 있다. 기재의 가열 온도는 높을수록 기재 내 공극으로의 원자층 증착이 원활하게 이루어질 수 있으나, 기재의 내열 온도를 감안하여 조절한다. 예를 들어 본 발명의 실시예에 따른 양극에서는 120℃ 내지 150℃의 기재 가열 온도가 적절하다. 전구체 및 반응가스의 주입량은 기재의 비표면적 대비 충분한 양이 공급되어야 한다. 예를 들어 산화알루미늄의 원자층 증착에 있어서 성막되는 산화알루미늄의 밀도 및 원자층 증착 1 회당 형성되는 두께로부터 원자층 증착 1 회당 단위 면적에 필요한 트리메틸알루미늄 분자 수를 계산할 수 있다. 이를 기재의 비표면적과 비교하여 기재의 비표면적 대비 충분한 비율의 주입량을 넣어주는 것이 필요하다. 여기서 충분한 비율이란 최소 2배, 바람직하게는 10배 이상을 의미한다. 또한 이러한 충분한 주입량을 얻기 위한 방법으로는 전구체 및 반응 가스를 공급하는 용기의 온도를 조절하여 증기압을 조절할 수 있으며, 주입 시간을 조절할 수 있다. 전구체 및 반응 가스의 농도는 너무 낮지 않게 유지되어야 하며 이는 온도 및 주입 시간으로 조절한 주입량과 캐리어 가스와의 비율에 의하여 결정된다. 전구체 및 반응 가스의 노출 시간은 반응 속도에 관계되며, 양극과 같이 복잡한 기공 형태를 가지는 기재의 깊숙한 공극 내부로 전구체 및 반응 가스가 투과해 들어가는데 충분한 시간을 얻기 위하여 중요하다. 통상 반응 속도 보다는 가스의 기공 내 침투에 더 많은 시간이 소요된다. 이러한 노출 시간은 기재의 온도를 상승시킴으로써 단축될 수 있다. 전구체, 반응가스, 캐리어 가스 및 퍼지 가스의 유속 또한 양극 기재의 깊이 방향 증착 분포에 큰 영향을 미친다. 공정 압력의 경우 높을수록 기재 기공 내부 증착에 유리하나, 너무 높게 유지할 경우 원자층 증착이 제대로 이루어지지 않고 기상 반응에 의한 파우더 형성의 우려가 있다.
본 발명에서 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량에 대비하여 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율이 40 중량% 이상이다. 본 발명의 일 실시예에 따르면, 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량에 대비하여 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율은 40 중량% 내지 120 중량%, 또는 49 중량% 내지 107 중량%, 또는 50 내지 100 중량%일 수 있다.
상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량에 대비하여 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율이 이러한 범위를 만족하는 경우에, 원자층 증착 코팅층이 양극활물질층의 표면부터 집전체에 접하는 바닥면까지 균일하게 형성되어 상기 원자층 증착 코팅이 양극활물질층 전체 두께에 걸쳐서 보호층의 기능을 함으로써, 수 백 회의 반복된 충방전 사이클에도 원자층 증착 코팅층의 양극활물질층 보호 기능이 저하되지 않고 유지될 수 있으며, 고온 저장시 안정적으로 용량을 유지하고 저항 증가 억제 효과를 나타낼 수 있다.
이때, 상기 양극활물질층을 두께 방향으로 5등분해서, 상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분부터, 상기 집전체에 면접하는 양극활물질층 부분까지의 방향 순서대로 제1 양극활물질층, 제2 양극활물질층, 제3 양극활물질층, 제4 양극활물질층, 및 제5 양극활물질층에서의 각각의 원자층 증착 코팅층의 함량은 상기 원자층 증착 코팅층이 형성된 양극활물질층을 집전체에 대하여 수직 방향으로 절단한 후 전자현미경의 에너지 분산형 분광분석법(Energy Dispersive X-ray Spectroscopy)을 통하여 원자층 증착 코팅층에 포함된 원소를 정량하여 측정될 수 있다. 또는 상기의 방법을 통하여 측정된 값을 통하여 양극활물질층의 특정 원소, 예를 들어 니켈(Ni) 대비 원자층 증착 코팅층에 포함된 특정 원소, 예를 들어 알루미늄(Al)의 함량비를 구하여 원자층 증착 코팅이 활물질 전체 두께 방향으로 균일하게 형성되어 있는 정도를 살펴볼 수 있다.
상기 원자층 증착 코팅층 중 금속 원소의 함량이 상기 원자층 증착 코팅층이 형성된 양극활물질층 전체 중량에 대해서 300 ppm 내지 6,000 ppm, 또는 300 ppm 내지 4,000 ppm, 또는 400 ppm 내지 2,000 ppm일 수 있다. 이때, 양극활물질층이라 함은 양극을 구성하는 양극활물질, 도전재, 바인더 고분자, 원자증 증착 코팅층 등을 포함한 집전체 상에 형성된 층 성분을 모두 의미한다.
상기 원자층 증착 코팅층의 함량이 이러한 범위를 만족하는 경우에, 양극활물질층의 보호층 기능을 상실하지 않으면서 전지의 저항 증가를 최소화할 수 있고, 상기 원자층 증착 코팅층의 함량 너무 커서 전지의 에너지 밀도가 낮아지거나 저항의 증가분이 커져 출력 특성의 저하가 생기는 문제를 방지할 수 있다.
상기 원자층 증착 코팅층은 금속 또는 준금속의 산화물, 질화물, 산화질화물, 황화물, 불화물, 인산염, 또는 이들 중 2 이상을 포함할 수 있고, 이때, 상기 금속 또는 준금속은 Al, Zr, Si, Zn, Ti, Sn, Mn, Nb, W, Li또는 이들 중 2 이상을 포함할 수 있다.
또한, 본 발명의 일 구현예에 따르면, 상기 원자층 증착 코팅층은 ZrO x, AlO x, SiO x, ZnO x, TiO x, SnO x, MnOx, NbO x, WO x, 리튬알루미늄산화물, 리튬지르코늄산화물, 리튬니오븀산화물, 리튬텅스텐산화물 또는 이들 중 2 이상을 포함할 수 있고, 이때 x는 0보다 크고, 3 이하할 수 있다.
상기 양극의 공극율 (양극활물질층 및 상기 양극활물질층의 표면 및 기공 내에 위치하는 원자층 증착(ALD) 코팅층을 모두 포함하는 양극활물질층의 공극율)은 15% 내지 35%이고, 또는 본 발명의 일 구현예에 따르면, 20% 내지 30%일 수 있다.
또한, 원자층 증착 코팅층을 형성하기 전의 양극활물질층의 공극율은 15% 내지 35%이고, 또는 본 발명의 일 구현예에 따르면, 20% 내지 30%일 수 있다. 상기 양극의 공극율은 이하의 방법으로 얻어질 수 있다.
(1) 양극에 대한 단위 면적 당 두께 및 중량을 측정한다.
(2) 측정한 단위 면적당 무게를 측정한 두께 및 단위 면적을 곱하여 얻어진 부피로 나누어 공극을 포함한 양극(양극활물질층)의 밀도를 구한다.
(3) 양극을 구성하는 성분 (양극활물질, 도전재, 바인더 고분자, 원자층 증착이 된 경우에는 원자층 증착 코팅층 성분 등)의 단위 면적당 분포량에 각각의 알려진 진밀도 값을 곱하여 이론적 밀도를 구한다.
(4) 하기 식으로 공극율을 산정한다.
공극율(%) = [((3)에서 구한 이론적 밀도)/((2)에서 구한 측정 밀도)-1] X 100
또한, 상기 양극의 공극율은 양극을 구성하는 성분에 흡수되지 않는 비반응성 액체를 양극에 주입하여 주입되는 액체의 함량을 기준으로 측정될 수도 있다.
본 발명의 일 실시예에 따른 양극의 제조 방법은 다음과 같다.
먼저, 양극활물질, 바인더 고분자, 도전재, 및 용매를 포함하는 양극활물질층용 조성물을 준비한 후에, 집전체의 적어도 일면 상에 상기 양극활물질층용 조성물을 도포 및 건조하고 롤 프레스를 통하여 압연하여 양극활물질층을 형성한다.
본 발명에 사용되는 용매로는 N-메틸피롤리돈(NMP) 등 당 분야에서 통상적으로 사용되는 용매가 제한 없이 사용될 수 있다.
이후, 상기 양극활물질층의 표면 및 기공 내에 원자층 증착 코팅층을 형성하여 양극활물질층을 얻는다.
본 발명의 일 구현예에 따르면, 상기 원자층 증착 코팅층을 형성하는 단계는, 앞서 준비된 양극활물질층이 형성된 집전체(양극 기재)를 원자층 증착(ALD) 시스템에 장착한 후, 상기 시스템에 금속 전구체를 주입하는 단계; 그 후, 불활성 기체(예를 들어 Ar 등)을 이용하여 동안 퍼징한 후, 수증기를 공급하여 상기 금속 전구체의 결합기를 OH기로 치환하는 단계; 그 다음, 다시 불활성 기체를 이용하여 퍼징하여, 상기 시스템 내의 불순물 및 미반응 성분들을 제거하여 원자층 증착 코팅층이 형성하는 단계;를 포함할 수 있다.
본 발명의 일 구현예에 따르면, 금속 전구체에 수증기(H 20)를 주입하는 단계에서 금속 전구체의 메틸기가 히드록시기로 치환이 될 수 있다. 상기 산화물의 선구물질의 메틸기가 모두 히드록시기로 치환되면 남아있는 수증기를 제거하기 위하여 불활성 기체로 퍼징하는 단계를 진행할 수 있다.
상기 금속 전구체로는 테트라메틸지르코늄(tetramethylzirconium [Zr(CH 3) 4]), 테트라키스에틸메틸아미도지르코늄(tetrakis(ethylmethylamido)zirconium[Zr[N(CH 3)(CH 2CH 3)] 4, (TEMAZ)]), 지르코늄 터셔리-부톡사이트(zirconium tertiary-butoxide[Zr(t-OC 4H 9) 4, (ZTB)]), 트리메틸알루미늄(trimethylaluminium [Al(CH 3) 3, (TMA)], 테트라메틸실리콘(tetramethylsilicon [Si(CH 3) 4]), 다이메틸징크(dimethylzinc [Zn(CH 3) 2]), 다이에틸징크(diethylzinc [Zn(C 2H 5) 2, (DEZn)]), 테트라메틸티타늄(tetramethyl titanium [Ti(CH 3) 4]), 테트라메틸틴(tetramethyltin [Sn(CH 3) 4]), 비스(에틸사이클로펜타다이엔일)망가니즈(bis(ethylcyclopentadienyl)manganese [Mn(CpEt) 2]), 또는 이들 중 2 이상을 사용할 수 있으나, 이에 한정되지 않는다.
상기 불활성 기체로는 He, N 2, Ne, Ar 및 Kr 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 양극활물질층의 표면 및 기공 내에 원자층 증착 코팅층을 형성함에 있어서, 상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분으로부터 상기 집전체에 면접하는 양극활물질층 부분까지 원자층 증착 코팅층이 충분히 형성되게 하기 위하여 양극의 제조 방법 중 양극 활물질용 조성물의 도포 및 건조 후에 원자층 증착 코팅 공정을 거친 후 압연 공정을 진행할 수 있다. 이러한 방법을 통하여 양극활물질층의 기공 사이즈 및 공극율이 최대한 큰 상태에서 원활히 집전체에 면접하는 양극활물질층 부분까지 원자층 증착 코팅층을 형성할 수 있다. 또는 압연 공정이 이미 진행된 양극에 원자층 증착 코팅을 진행하는 경우 공정압을 상승시키거나 상압 이상으로 가압하여 진행할 수 있으며, 기공 내 금속 전구체 및 수증기 또는 불활성 기체가 충분히 도달할 수 있도록 인큐베이션 시간을 추가할 수 있다. 인큐베이션 시간은 전극의 공극율 및 두께에 따라 조절 가능하다.
전술한 본 발명의 리튬 이차전지용 양극은, 음극 및 양극과 음극 사이에 개재된 세퍼레이터로 이루어진 전극 조립체로 제조되고 이를 전지 용기에 수납한 후, 전지 용기 내에 주입되어 리튬 이차전지로 제조된다. 본 발명에 따른 양극과 함께 전극 조립체를 이루는 음극 및 세퍼레이터, 및 비수 전해액은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
본 발명에 따른 음극은 상기 양극과 마찬가지로 음극 활물질에 바인더 고분자와 용매, 필요에 따라 도전재와 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 집전체에 도포하고 건조하여 제조될 수 있다.
음극활물질로는 통상적으로 리튬이온이 흡장 및 방출될 수 있는 탄소재, 리튬금속, 규소 또는 주석 등을 사용할 수 있으며, 리튬에 대한 전위가 2V 미만인 TiO 2, SnO 2와 같은 금속 산화물도 가능하다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 인조 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches), 석유계 코크스(petroleum derived cokes), 및 석탄계 코크스(tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
음극의 바인더 고분자, 용매 및 도전재 등은 전술한 양극 제조에 사용되었던 물질을 같이 사용할 수 있다.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명의 일 실시예에 따르면, 세퍼레이터로는 상기 다공성 고분자 필름, 다공성 부직포 등의 다공성 기재를 단독으로 사용하는 것 외에, 상기 다공성 기재의 적어도 일면 상에 무기물 입자, 바인더 고분자를 포함하는 다공성 코팅층을 더 구비하는 형태일 수도 있다.
본 발명에서 사용되는 전해액에 있어서, 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F -, Cl -, Br -, I -, NO 3 -, N(CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2PF 4 -, (CF 3) 3PF 3 -, (CF 3) 4PF 2 -, (CF 3) 5PF -, (CF 3) 6P -, CF 3SO 3 -, CF 3CF 2SO 3 -, (CF 3SO 2) 2N -, (FSO 2) 2N - , CF 3CF 2(CF 3) 2CO -, (CF 3SO 2) 2CH -, (SF 5) 3C -, (CF 3SO 2) 3C -, CF 3(CF 2) 7SO 3 -, CF 3CO 2 -, CH 3CO 2 -, SCN - 및 (CF 3CF 2SO 2) 2N -로 이루어진 군에서 선택된 어느 하나일 수 있다.
본 발명에서 사용되는 전해액에 있어서, 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있다. 특히, 상기 카보네이트계 유기용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
선택적으로, 본 발명에 따라 저장되는 전해액은 통상의 전해액에 포함되는 과충전 방지제 등과 같은 첨가제를 더 포함할 수 있다.
본 발명에서 사용되는 전지 용기는 당 분야에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 시험예 및 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
비교예 1
양극활물질로서 LiNi 0.8Mn 0.1Co 0.1O 2, 도전재로 카본블랙(제품명: Denka Black) 및 바인더 고분자로 폴리비닐리덴플루오라이드(PVdF)(제품명: KF1300)를 97.5:1:1.5의 중량비로 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여, 양극 슬러리를 준비하였다. 상기 양극 슬러리를 두께 12㎛의 알루미늄 집전체의 양면에 코팅하고, 135℃에서 3시간 동안 건조한 후 압연 공정을 거쳐, 두께 90㎛ 및 공극율 25%의 양극활물질층을 집전체의 양면에 각각 구비한 양극을 제조하였다. 제조한 양극은 별도의 원자층 증착(ALD) 공정을 거치지 않고 이용하였다.
비교예 2
비교예 1과 같이 제조한 양극 기재를 원자층 증착(ALD) 시스템(Lucida C200-PL, NCDTech)에 장착한 후, 상기 시스템에 금속 전구체로서 트리메틸알루미늄(Al(CH 3) 3)을 0.1초 주입하였다. 상기 전구체는 14℃로 유지된 스틸 재질의 컨테이너에 충진하여 사용하였으며, 별도의 운반 가스의 사용 없이, 기화된 전구체를 시스템 내부로 주입하였다. 이때, 시스템 내부 온도는 120℃로 유지하였다. 그 후, 불활성 기체인 Ar을 이용하여 5초 동안 퍼징한 후, 11℃로 유지된 스틸 재질의 컨테이너에 충진된 수증기를 0.2초 공급하여 상기 알루미늄의 메틸기를 OH기로 치환하였다. 그 다음, 다시 불활성 기체인 Ar을 이용한 10초 동안 퍼징하여, 상기 시스템 내의 불순물 및 미반응 성분들을 제거하였다. 이러한 ALD 공정을 2회 반복함으로써 양극 활물질층의 표면에 산화알루미늄 코팅층이 약 0.2nm의 두께로 형성된 양극을 제조하였다.
실시예 1
비교예 2와 동일하게 ALD 공정을 진행하되 전구체 및 반응 가스, 퍼지 가스 주입시간 및 ALD 공정 진행 횟수를 다르게 하였다. 트리메틸알루미늄(Al(CH 3) 3)의 주입 시간을 0.5초로 하였고, 그 후 불활성 기체인 Ar을 이용하여 10초 동안 퍼징하였으며, 수증기를 1초 공급하여 상기 알루미늄의 메틸기를 OH기로 치환하였다. 그 다음, 다시 불활성 기체인 Ar을 이용한 20초 동안 퍼징하여, 상기 시스템 내의 불순물 및 미반응 성분들을 제거하였다. 이러한 ALD 공정을 5회 반복함으로써, 양극 활물질층의 표면에 산화알루미늄 코팅층이 약 0.55nm의 두께로 형성된 양극을 제조하였다.
실시예 2
비교예 2와 동일하게 ALD 공정을 진행하되 전구체 및 반응 가스, 퍼지 가스 주입시간 및 ALD 공정 진행 횟수를 다르게 하였다. 트리메틸알루미늄(Al(CH 3) 3)의 주입 시간을 2초로 하였고, 그 후 불활성 기체인 Ar을 이용하여 50초 동안 퍼징하였으며, 수증기를 2초 공급하여 상기 알루미늄의 메틸기를 OH기로 치환하였다. 그 다음, 다시 불활성 기체인 Ar을 이용한 50초 동안 퍼징하여, 상기 시스템 내의 불순물 및 미반응 성분들을 제거하였다. 이러한 ALD 공정을 2회 반복함으로써, 양극 활물질층의 표면에 산화알루미늄 코팅층이 약 0.24nm의 두께로 형성된 양극을 제조하였다.
실시예 3
비교예 2와 동일하게 ALD 공정을 진행하되 전구체 및 반응 가스, 퍼지 가스 주입시간 및 ALD 공정 진행 횟수를 다르게 하였다. 트리메틸알루미늄(Al(CH 3) 3)의 주입 시간을 2초로 하였고, 그 후 불활성 기체인 Ar을 이용하여 50초 동안 퍼징하였으며, 수증기를 2초 공급하여 상기 알루미늄의 메틸기를 OH기로 치환하였다. 그 다음, 다시 불활성 기체인 Ar을 이용한 50초 동안 퍼징하여, 상기 시스템 내의 불순물 및 미반응 성분들을 제거하였다. 이러한 ALD 공정을 7회 반복함으로써, 양극 활물질층의 표면에 산화알루미늄 코팅층이 약 0.84nm의 두께로 형성된 양극을 제조하였다.
상기 제조된 원자층 증착 코팅층이 형성된 양극의 단면의 전자현미경 사진 및 에너지 분산형 분광분석법(Energy Dispersive X-ray Spectroscopy)을 통하여 측정한 알루미늄 원소의 맵핑(mapping) 이미지를 도 1 및 도 2에 각각 나타내었다.
도 1의 우측에 양극의 양극활물질층의 표면 (최상단 양극활물질층 부분)이 세로 방향으로 위치하고, 도 1의 좌측에 집전체가 세로 방향으로 위치하였다. 도 2는 도 1에 표시된 하단 부분에 대하여 에너지 분산형 분광분석법(Energy Dispersive X-ray Spectroscopy)을 통하여 측정한 알루미늄 원소의 맵핑(mapping) 이미지이다. 도 2를 참조하면, 도 1의 알루미늄 집전체에 대응되는 부분인 좌측 세로 방향 영역에서 Al이 확인되었고, 활물질층 내에 동일한 색깔의 부분들이 분산되어 표시되어 있으며, 이 부분들이 원자층 증착 코팅층을 나타낸다.
비교예 3
비교예 2와 동일하게 ALD 공정을 진행하되 전구체 및 반응 가스, 퍼지 가스 주입시간 및 ALD 공정 진행 횟수를 다르게 하였다. 트리메틸알루미늄(Al(CH 3) 3)의 주입 시간을 1초로 하였고, 그 후 불활성 기체인 Ar을 이용하여 50초 동안 퍼징하였으며, 수증기를 1초 공급하여 상기 알루미늄의 메틸기를 OH기로 치환하였다. 그 다음, 다시 불활성 기체인 Ar을 이용한 50초 동안 퍼징하여, 상기 시스템 내의 불순물 및 미반응 성분들을 제거하였다. 이러한 ALD 공정을 10회 반복함으로써, 양극 활물질층의 표면에 Al 2O 3 코팅층이 약 1.2nm의 두께로 형성된 양극을 제조하였다.
실험예 1: 원자층 증착 코팅층의 두께의 측정
양극활물질층의 표면 및 기공 내에 위치하는 원자층 증착 코팅층의 두께는 양극활물층에 원자층 증착을 실시하는 동일한 조건으로 실리콘 웨이퍼에 원자층 증착을 실시했을 때 형성되는 두께로 정의되고, 상기 두께는 엘립소미터(Spectroscopic ellipsometer) 장치를 이용하여 380 nm에서 780 nm까지의 psi, delta 측정 값을 Modified Cauchy model을 이용하여 피팅하여 측정될 수 있다.
비교예 및 실시예에 해당하는 원자층 증착 코팅 조건에 대하여 증착 속도(Growth per cycle)를 확인하기 위하여 각 비교예 및 실시예에 해당하는 원자층 증착 조건으로 ALD 공정을 200회 반복하여 엘립소미터 장치를 이용하여 측정한 두께 및 이로부터 계산한 원자층 증착 한 사이클 당 코팅 두께를 다음 표 1에 나타내었다.
공정 조건 엘립소미터 측정 두께(nm) 증착 속도(GPC) (nm/사이클)
TMA 주입 시간 (초) Ar 퍼징 시간 (초) 수증기 공급 시간 (초) Ar 퍼징 시간 (초) ALD 공정 사이클 회수 (회)
0.1 5 0.2 10 200 20.2 0.101
0.5 10 1 20 200 21.8 0.109
2 50 2 50 200 24.4 0.122
전술한 방법으로 실시예 1 내지 3 및 비교예 1 내지 3에서 제조된 양극에서 양극활물질층의 두께를 산정하여 그 결과를 표 2에 나타내었다.
실험예 2: 원자층 증착 코팅층의 분포 균일성
실시예 1 내지 3 및 비교예 1 내지 3에서 제조된 양극에서 양극활물질층을 두께 방향으로 5등분하고, 상기 5등분된 양극활물질층 부분에서 상기 집전체에 면접하는 양극활물질층 부분을 최하단 양극활물질층이라고 하고, 상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분을 최상단 양극활물질층이라고 하는 경우, 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량과, 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량을 전자현미경(FE-SEM, JEOL JSM-7200F) 장치를 이용하여 가속전압 15 kV, Working Distance 15 mm 조건에서 에너지분산형 분광분석법(Energy Dispersive X-ray Spectroscopy, Oxford EXTREME EDS system)을 이용하여 측정하였다.
상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분부터 상기 집전체에 면접하는 양극활물질층 부분까지의 방향 순서대로 제1 활물질층, 제2 활물질층, 제3 활물질층, 제4 활물질층, 및 제5 활물질층이라고 명명할 때, 제1 활물질층이 최상단 양극활물질층에 해당되고, 제5 활물질층이 최하단 양극활물질층에 해당될 수 있다. 제1 활물질층으로부터 제5 활물질층으로 구획된 양극활물질층의 단면 전자현미경 사진을 도 3에 나타내었다.
이후, 원자층 증착 코팅층의 분포 균일성을 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량 대비 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율로 계산하고, 이를 하기 표 2에 나타내었다.
실험예 3: 양극의 공극율(%) 측정
실시예 1 내지 3 및 비교예 1 내지 3의 양극의 공극율은 하기 방법으로 측정하였고, 이를 하기 표 2에 나타내었다.
(1) 양극에 대한 단위 면적 당 두께 및 중량을 측정한다.
(2) 측정한 단위 면적당 무게를 측정한 두께 및 단위 면적을 곱하여 얻어진 부피로 나누어 공극을 포함한 양극(양극활물질층)의 밀도를 구한다.
(3) 양극을 구성하는 성분 (양극활물질, 도전재, 바인더 고분자, 원자층 증착이 된 경우에는 원자층 증착 코팅층 성분 등)의 단위 면적당 분포량에 각각의 알려진 진밀도 값을 곱하여 이론적 밀도를 구한다.
(4) 하기 식으로 공극율을 산정한다.
공극율(%) = [((3)에서 구한 이론적 밀도)/((2)에서 구한 측정 밀도)-1] X 100
실험예 4: 충방전 시험 (용량 유지율)
충방전 시험을 위하여, 실시예 및 비교예에서 제조된 양극과, 그라파이트 및 도전재, 바인더로 구성된 음극을 사용하고, 상기 양극 및 음극 사이에 폴리프로필렌 분리막을 게재한 후, 에틸렌카보네이트/디메틸카보네이트/LiPF 6(Merck Battery Grade, EC/DMC(부피비)= 1/1, 1M LiPF 6) 유기전해액을 사용하여 모노셀을 제조하였다. 모노셀을 활성화한 후 충방전은 45℃ 조건에서, 충전은 4.25V의 전압까지 0.3C 레이트(rate)의 전류밀도로, 방전은 같은 전류밀도로 2.5V의 전압까지 수행하였다. 이러한 충방전을 200회 실시하고, 100 사이클 마다 용량을 측정하였다. 충방전에 따른 용량 사이클 결과를 도 4에 나타내었으며, 충방전 200 사이클 후 용량 유지율을 하기 표 2에 나타내었다.
실험예 5: 저장안정성 평가
저장안정성 평가를 위하여, 실험예 1과 같이 제작한 모노셀을 활성화한 후 4.25V, 100% 만충 상태에서 최초 저항(DCIR)을 측정하고, 이후 60℃에 저장하며 일주일마다 4주간 저항(DCIR, Direct Current Internal Resistance)을 측정하였다. 모노셀의 저장안정성을 최초 저항값 대비 4주차 저항값의 비율(%)로 평가하여 하기 표 2에 나타내었고, 1주차에서 4주차까지의 최초 저항값 대비 저항값의 증가율(%), 즉 60℃ 저장기간(주, week)에 따른 저항증가율 그래프를 하기 도 5에 나타내었다.
공정 조건 양극 양극활물질층의 공극율 전지 성능
TMA 주입 시간 (초) Ar 퍼징 시간 (초) 수증기 공급 시간 (초) Ar 퍼징 시간 (초) ALD 공정 사이클 회수 (회) 평판 기준 증착 두께 (nm) ALD 코팅층의 분포 균일성(%) (%) 200 사이클 충방전후 용량유지율(%) 저장안정성(최초 저항값 대비 4주차 저항값의 저항증가율(%))
비교예 1 - - - - - - - 25 74.4 207
비교예 2 0.1 5 0.2 10 2 0.2 6 25 77.1 154
실시예 1 0.5 10 1 20 5 0.55 49 25 85.7 136
실시예 2 2 50 2 50 2 0.24 81 25 86.8 122
실시예 3 2 50 2 50 7 0.84 107 25 84.1 128
비교예 3 1 50 1 50 10 1.2 99 25 78.3 169
표 2를 참조하면, 본 발명에 따라서, ALD 코팅층의 두께 범위와 분포 균일성 범위를 모두 만족하는 실시예 1 내지 3의 양극이 비교예 1 내지 3과 비교하여, 200 사이클 후 용량 유지율이 높아 우수한 수명 특성을 나타내며, 장기간 저장 후에도 전지 저항 증가가 크지 않은 저장 안정성 면에서 탁월한 특성을 나타내었음을 알 수 있다.

Claims (9)

  1. 집전체; 및
    상기 집전체의 적어도 일면 상에 위치하는 복수의 양극활물질과 상기 양극활물질의 표면 및 기공 내와 상기 복수의 양극활물질간의 공극 내에 위치하는 원자층 증착 코팅층을 구비하는 양극활물질층;을 포함하고,
    상기 원자층 증착 코팅층의 두께가 0.2 내지 1 nm이고,
    상기 양극활물질층을 두께 방향으로 5등분하여 상기 집전체에 면접하는 양극활물질층 부분을 최하단 양극활물질층이라고 하고, 상기 집전체로부터 가장 이격되어 있는 양극활물질층의 표면 부분을 최상단 양극활물질층이라고 하는 경우, 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량에 대비하여 상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량의 비율이 40 중량% 이상이고,
    15% 내지 35%의 공극율을 갖는 리튬 이차전지용 양극.
  2. 제1항에 있어서,
    상기 양극의 공극율이 20 내지 30%인 것을 특징으로 하는 리튬 이차전지용 양극.
  3. 제1항에 있어서,
    상기 원자층 증착 코팅층이 금속 또는 준금속의 산화물, 질화물, 산화질화물, 황화물, 불화물, 인산염, 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극.
  4. 제3항에 있어서,
    상기 금속 또는 준금속이 Al, Zr, Si, Zn, Ti, Sn, Mn, Nb, W, Li 또는 이들 중 2 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극.
  5. 제3항에 있어서,
    상기 원자층 증착 코팅층이 ZrO x, AlO x, SiO x, ZnOx, TiO x, SnO x, MnOx, NbO x, WO x, 리튬알루미늄산화물, 리튬지르코늄산화물, 리튬니오븀산화물, 리튬텅스텐산화물 또는 이들 중 2 이상을 포함하고, 이때 x는 0보다 크고, 3 이하인 것을 특징으로 하는 리튬 이차전지용 양극.
  6. 제1항에 있어서,
    상기 원자층 증착 코팅층의 두께가 0.2 내지 0.8 nm인 것을 특징으로 하는 리튬 이차전지용 양극.
  7. 제1항에 있어서,
    상기 최하단 양극활물질층의 원자층 증착 코팅층의 함량이 상기 최상단 양극활물질층의 원자층 증착 코팅층의 함량에 대해서 40 중량% 내지 120 중량%인 것을 특징으로 하는 리튬 이차전지용 양극.
  8. 제1항에 있어서,
    상기 원자층 증착 코팅층의 함량이 상기 양극활물질층 전체 중량에 대해서 300 ppm 내지 6,000 ppm인 것을 특징으로 하는 리튬 이차전지용 양극.
  9. 양극, 음극 및 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 전극 조립체; 상기 전극 조립체를 수납하고 있는 전지 용기; 및 상기 전지 용기 내에 주입된 비수 전해액을 구비하는 리튬 이차전지에 있어서,
    상기 양극은 제1항 내지 제8항 중 어느 한 항에 따른 리튬 이차전지용 양극인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2020/007051 2019-05-31 2020-05-29 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지 WO2020242266A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20814704.1A EP3955335A4 (en) 2019-05-31 2020-05-29 POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY WITH IT
CN202080031804.1A CN113748536A (zh) 2019-05-31 2020-05-29 锂二次电池用正极和包含其的锂二次电池
US17/609,630 US20220216466A1 (en) 2019-05-31 2020-05-29 Positive Electrode for Lithium Secondary Battery and Lithium Secondary Battery Having the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190064862 2019-05-31
KR10-2019-0064862 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020242266A1 true WO2020242266A1 (ko) 2020-12-03

Family

ID=73552631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007051 WO2020242266A1 (ko) 2019-05-31 2020-05-29 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지

Country Status (5)

Country Link
US (1) US20220216466A1 (ko)
EP (1) EP3955335A4 (ko)
KR (1) KR20200138083A (ko)
CN (1) CN113748536A (ko)
WO (1) WO2020242266A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117134A (zh) * 2023-09-08 2023-11-24 国钠能源科技(河北)有限公司 基于原子层沉积的钠离子电池正极材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090076277A (ko) * 2008-01-08 2009-07-13 주식회사 엘지화학 양극, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지
KR20130014245A (ko) * 2011-07-29 2013-02-07 주식회사 엘지화학 수명 특성이 개선된 이차 전지
KR20160126840A (ko) * 2015-04-23 2016-11-02 주식회사 엘지화학 하나 이상의 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
KR20170063141A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 표면 처리된 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20170118480A (ko) * 2016-04-15 2017-10-25 에스케이이노베이션 주식회사 이차 전지용 다공성 분리막 및 이의 제조방법
KR20190064862A (ko) 2017-12-01 2019-06-11 주식회사 코이노 서버와의 연계를 통해 기계학습의 효율성을 높이는 클라이언트 단말 및 이를 포함한 기계학습 시스템

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196901B2 (en) * 2010-06-14 2015-11-24 Lee Se-Hee Lithium battery electrodes with ultra-thin alumina coatings
US20140302392A1 (en) * 2013-04-09 2014-10-09 Envia Systems, Inc. Uniform stabilization nanocoatings for lithium rich complex metal oxides and atomic layer deposition for forming the coating
FR3011391B1 (fr) * 2013-09-27 2015-09-18 Commissariat Energie Atomique Procede de realisation d'une electrode pour batterie lithium-ion
KR20160005999A (ko) * 2014-07-08 2016-01-18 주식회사 엘지화학 고전압 리튬 이차전지용 표면 코팅된 양극 활물질 및 이를 포함하는 고전압 리튬 이차전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090076277A (ko) * 2008-01-08 2009-07-13 주식회사 엘지화학 양극, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지
KR20130014245A (ko) * 2011-07-29 2013-02-07 주식회사 엘지화학 수명 특성이 개선된 이차 전지
KR20160126840A (ko) * 2015-04-23 2016-11-02 주식회사 엘지화학 하나 이상의 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
KR20170063141A (ko) * 2015-11-30 2017-06-08 주식회사 엘지화학 표면 처리된 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20170118480A (ko) * 2016-04-15 2017-10-25 에스케이이노베이션 주식회사 이차 전지용 다공성 분리막 및 이의 제조방법
KR20190064862A (ko) 2017-12-01 2019-06-11 주식회사 코이노 서버와의 연계를 통해 기계학습의 효율성을 높이는 클라이언트 단말 및 이를 포함한 기계학습 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3955335A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117117134A (zh) * 2023-09-08 2023-11-24 国钠能源科技(河北)有限公司 基于原子层沉积的钠离子电池正极材料的制备方法
CN117117134B (zh) * 2023-09-08 2024-03-26 国钠能源科技(河北)有限公司 基于原子层沉积的钠离子电池正极材料的制备方法

Also Published As

Publication number Publication date
US20220216466A1 (en) 2022-07-07
EP3955335A4 (en) 2022-07-13
EP3955335A1 (en) 2022-02-16
CN113748536A (zh) 2021-12-03
KR20200138083A (ko) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018212481A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018038524A1 (ko) 리튬 금속 전지용 분리막 및 이를 포함하는 리튬 금속 전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021145647A1 (ko) 이차전지용 양극 활물질의 제조방법
KR20200071018A (ko) 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019245286A1 (ko) 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2021066574A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
KR20200010995A (ko) 표면 코팅층을 갖는 양극의 제조방법, 이로부터 제조된 양극 및 이를 포함하는 리튬 이차전지
WO2020242266A1 (ko) 리튬 이차전지용 양극 및 이를 구비한 리튬 이차전지
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2020122511A1 (ko) 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2020091234A1 (ko) 리튬 이차 전지용 음극, 이를 포함하는 리튬 이차 전지 및 이의 제조방법
WO2020226354A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 양극 및 이를 포함하는 리튬 이차전지
WO2019245284A1 (ko) 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2019093864A2 (ko) 리튬 코발트계 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 이차 전지
WO2022203434A1 (ko) 양극 활물질의 제조방법
WO2020180125A1 (ko) 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020814704

Country of ref document: EP

Effective date: 20211110

NENP Non-entry into the national phase

Ref country code: DE