WO2020233502A1 - 大麻二酚类化合物的制备方法 - Google Patents

大麻二酚类化合物的制备方法 Download PDF

Info

Publication number
WO2020233502A1
WO2020233502A1 PCT/CN2020/090417 CN2020090417W WO2020233502A1 WO 2020233502 A1 WO2020233502 A1 WO 2020233502A1 CN 2020090417 W CN2020090417 W CN 2020090417W WO 2020233502 A1 WO2020233502 A1 WO 2020233502A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
substituted
compound
unsubstituted
formula
Prior art date
Application number
PCT/CN2020/090417
Other languages
English (en)
French (fr)
Inventor
沈敬山
公绪栋
朱富强
蒋翔锐
张岩
孙长亮
Original Assignee
上海特化医药科技有限公司
山东福长药业有限公司
中国科学院上海药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海特化医药科技有限公司, 山东福长药业有限公司, 中国科学院上海药物研究所 filed Critical 上海特化医药科技有限公司
Priority to JP2021568975A priority Critical patent/JP7426412B2/ja
Priority to US17/611,348 priority patent/US20220204431A1/en
Priority to EP20809416.9A priority patent/EP3971158A4/en
Publication of WO2020233502A1 publication Critical patent/WO2020233502A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
    • C07C37/52Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms by splitting polyaromatic compounds, e.g. polyphenolalkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/23Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by condensation involving hydroxy groups of phenols or alcohols or the ether or mineral ester group derived therefrom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/353Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the present invention belongs to the field of chemical synthesis, and more specifically, relates to a method for chemically synthesizing cannabidiol (Cannabidiol) and the like.
  • cannabidiol compound drug developed by GW Pharmaceuticals was approved for marketing in Canada for the treatment of spasms caused by multiple sclerosis.
  • cannabidiol was approved by the U.S. Food and Drug Administration (FDA) for the treatment of Lennox-Gastaut syndrome (Lennox-Gastaut syndrome) and Dravet syndrome (Dravet syndrome) caused epilepsy, suitable for age 2 Patients aged and over.
  • FDA U.S. Food and Drug Administration
  • a compound drug (Cannabidiol/Tetrahydrocannabivarin) composed of cannabidiol is currently in the phase II clinical trial and is expected to be used for the treatment of schizophrenia.
  • Cannabidiol (Cannabidiol) synthesis method has been publicly reported. The first to appear was the alkylation reaction route catalyzed by 3,5-dihydroxypentabenzene and trans-menthyl-2,8-dien-1-alcohol acid, but this route had poor selectivity and produced many impurities. Difficult purification, low yield and other shortcomings.
  • the existing synthesis methods have certain shortcomings, such as poor reaction zone selectivity, cumbersome steps, and difficult product separation and purification processes. Therefore, it is necessary to develop a preparation method with high reaction selectivity, simple operation and suitable for industrial production.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art, and provide a method for preparing cannabidiol and its analogs that is mild in reaction conditions, simple in process, and suitable for industrialization.
  • the object of the present invention is to provide a method for preparing cannabidiol and its analogues by combining resorcinol or its derivatives with menthyl-2,8-dien-1-ol in the presence of a catalyst. It can be realized by the reaction of its derivatives.
  • the method has the advantages of high chemical reaction selectivity, simple operation, high product purity, etc., and is suitable for development as a large-scale production process.
  • the present invention provides a method for preparing a compound of formula I, the method being one of the following methods:
  • R 1 and R 4 are each independently hydrogen, methyl, ethyl, cyclopropylmethyl, methoxymethyl, 2-methoxyethyl, acetyl, propionyl, benzoyl, Phenylacetyl, phenylpropionyl, methanesulfonyl, trifluoromethanesulfonyl or p-toluenesulfonyl,
  • R 2 is hydrogen, carboxyl, -COOR 5 or -CONR c R d ; wherein R 5 is C 1 -C 20 linear or branched alkyl, C 3 -C 20 cyclic alkyl, benzyl, or C 6 -C 20 aryl; preferably, R 5 is methyl or ethyl; wherein R c and R d are each independently hydrogen, substituted or unsubstituted C 1 -C 20 linear or branched alkyl, substituted or Unsubstituted C 3 -C 20 cyclic alkyl, substituted or unsubstituted benzyl, or substituted or unsubstituted C 6 -C 20 aryl; the substituents are hydroxyl, amino, mercapto, organophosphorus or halogen, C 1 -C 10 alkyl, C 3 -C 10 cyclic alkyl, or C 1 -C 10 alkoxy; preferably, R c and Rd are each
  • R 2 is hydrogen, -COOH, -COOCH 3 , -COOC 2 H 5 or -(CH 2 CH 2 ) 2 NCH 3 ,
  • R 3 is a substituted or unsubstituted C 1 -C 20 linear or branched alkyl group, a substituted or unsubstituted C 3 -C 20 cyclic alkyl group, a substituted or unsubstituted C 3 -C 20 alkenyl group, a substituted Or unsubstituted C 3 -C 20 alkynyl, substituted or unsubstituted C 3 -C 20 acyl, substituted or unsubstituted C 6 -C 20 aryl, or substituted or unsubstituted containing selected from oxygen, nitrogen, A C 2 -C 20 heteroaryl group of one or more atoms in sulfur and phosphorus, wherein the substituent is selected from one or more of the following: halogen; hydroxyl; C 1 -C 20 alkyl; -OC 1- C 20 alkyl; -NR a R b , wherein R a and R b are each independently selected from hydrogen and C 1
  • the compound of formula II or VI and the compound of formula III can be reacted in the presence of a catalyst M.
  • the catalyst M may be selected from Lewis acid, One or more of protic acid, acid anhydride, silicon ester, and silane.
  • the Lewis acid may be selected from: boron trihalide, more preferably, boron trichloride, boron trifluoride; aluminum trihalide, more preferably aluminum trichloride, aluminum tribromide; transition metal salts, especially It is a transition metal halide or its triflate, more preferably, titanium tetrachloride, zinc chloride, zinc bromide, zinc triflate; the fourth, fifth, and sixth main groups in the periodic table Elemental halide, more preferably, tin tetrachloride, phosphorus oxychloride, thionyl chloride, sulfone dichloride; the protic acid can be selected from perchloric acid, hydrohalic acid, sulfuric acid, hydrogen sulfate, phosphoric acid , Hydrogen phosphate, pyrophosphoric acid, R 6 COOH and R 7 SO 3 H; wherein R 6 and R 7 may each independently be substituted or unsubstituted C 1 -C 30
  • R 1 and R 4 are each independently hydrogen
  • the catalyst M may be one or more selected from acid anhydrides, silicon esters, and silanes.
  • the acid anhydride may be one or more selected from trifluoromethanesulfonic anhydride, trifluoroacetic anhydride, methanesulfonic anhydride, ethanesulfonic anhydride, benzene methanesulfonic anhydride, and p-toluenesulfonic anhydride; It can be one or two selected from trimethylsilyl trifluoromethanesulfonate and triethylsilyl trifluoromethanesulfonate; the silane can be selected from trimethylsilyl iodide, triethyl iodide One or more of silane, bromotrimethylsilane, and chlorotrimethylsilane.
  • the catalyst M may more preferably be one or more selected from methanesulfonic anhydride, trifluoromethanesulfonic anhydride, trimethylsilyl trifluoromethanesulfonate, and trimethylsilyl iodide.
  • the molar ratio of the catalyst M to the compound of formula II or VI is 0.01:1 to 1:1, preferably 0.03:1 to 0.5:1, more preferably 0.05:1 to 0.5: 1.
  • the compound of formula II or VI and the compound of formula III can be reacted in a solvent.
  • the solvent may be one selected from the group consisting of alkanes, aromatic hydrocarbons, halogenated hydrocarbons, esters, ethers, and polar aprotic solvents or a mixture of two or more thereof.
  • the alkane may be a C 5 -C 20 linear or branched or cyclic alkane, including but not limited to n-pentane, n-hexane, n-heptane, cyclohexane and the like.
  • the aromatic hydrocarbon may be a substituted benzene compound, including but not limited to toluene, xylene, chlorobenzene and the like.
  • the halogenated hydrocarbon includes but is not limited to methylene chloride, 1,2-dichloroethane, chloroform, and the like.
  • the ester solvent includes but is not limited to methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate and the like.
  • the ether solvent includes but is not limited to tetrahydrofuran, dioxane, 2-methyltetrahydrofuran, diethyl ether, ethylene glycol dimethyl ether, cyclopentyl methyl ether, methyl tert-butyl ether.
  • the polar aprotic solvent includes, but is not limited to, acetonitrile, acetone, N,N-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, dimethylsulfoxide.
  • the solvent is one or a mixture of two or more selected from n-heptane, n-hexane, toluene, xylene, chlorobenzene, dichloromethane, ethyl acetate, and tetrahydrofuran.
  • the molar ratio of the compound of formula II or VI to the compound of formula III is 1:5 to 5:1; more preferably, the molar ratio of the compound of formula II or VI to the compound of formula III is 0.5: 1 to 2:1; still more preferably, the molar ratio of the compound of formula II or VI to the compound of formula III is 0.8:1 to 1.5:1.
  • the molar ratio of the catalyst to the compound of formula II or VI is 0.01:1 to 1:1; more preferably, the molar ratio of the catalyst to the compound of formula II or VI is 0.03: 1 to 0.5:1; still more preferably, the molar ratio of the catalyst to the compound of formula II or VI is 0.05:1 to 0.5:1.
  • the reaction is carried out at a temperature of -30°C to 50°C, and more preferably, the reaction is carried out at a temperature of -20 to 40°C.
  • the reaction time of the reaction is usually 1 hour to 24 hours.
  • the method of the present invention may also include the step of purifying the compound of formula I.
  • the step of purifying the compound of formula I can be carried out in a layered manner.
  • the steps of purifying the compound of formula I include two routes:
  • reaction solvent is a polar aprotic solvent selected from the group consisting of acetonitrile, acetone, N,N-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone and dimethylsulfoxide, in formula II or VI
  • a polar aprotic solvent selected from the group consisting of acetonitrile, acetone, N,N-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone and dimethylsulfoxide, in formula II or VI
  • reaction solvent is a solvent other than a polar aprotic solvent selected from one or a mixture of two or more of alkanes, aromatic hydrocarbons, halogenated hydrocarbons, esters, and ethers
  • saturated sodium bicarbonate is added to quench the reaction, water is added, the liquids are separated, and the dry solvent is concentrated to obtain a crude product of formula I.
  • the crude product is added with an aqueous solution of inorganic alkali, and then a solvent selected from hydrocarbons and ethers is added.
  • One or two or more of the mixed solvents are layered.
  • the solvent used for stratification is a mixture of one or more mixed solvents selected from hydrocarbon solvents and ether solvents and inorganic alkali aqueous solutions.
  • the hydrocarbon solvent includes an alkane solvent and an unsaturated aromatic hydrocarbon solvent;
  • the alkane solvent may be a C 5 -C 20 linear or branched or cyclic alkane;
  • the unsaturated aromatic hydrocarbon solvent may be Toluene, chlorobenzene, xylene, nitrobenzene.
  • the ether solvent may be tetrahydrofuran, methyl tert-butyl ether, diethyl ether, cyclopentyl methyl ether, isopropyl ether, anisole, ethylene glycol dimethyl ether, tetrahydropyran, diethyl ether Oxygen six ring.
  • the inorganic base in the inorganic base aqueous solution can be one or a mixture of two or more selected from sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate and lithium carbonate, Preferably, it is one selected from sodium hydroxide and potassium hydroxide or a mixture thereof; the mass fraction of the inorganic alkali aqueous solution is 1%-30%, preferably 10%.
  • the acid used may be selected from organic acids or inorganic acids.
  • the organic acid used can be selected from formic acid, acetic acid, propionic acid, oxalic acid, maleic acid, citric acid, tartaric acid, methanesulfonic acid, and benzenesulfonic acid.
  • the inorganic acid used can be selected from hydrochloric acid, sulfuric acid, and phosphoric acid.
  • the organic solvent may be selected from 2-methyltetrahydrofuran, diethyl ether, ethylene glycol dimethyl ether, C 5 -C 20 linear or branched or cyclic alkanes, benzene, toluene, xylene , Dichloromethane, 1,2-dichloroethane, chloroform, cyclopentyl methyl ether, methyl tert-butyl ether or a mixture of two or more thereof, preferably selected from dichloromethane, tetrahydrofuran, One or a mixture of two or more of toluene, xylene, chlorobenzene, n-heptane, and n-hexane.
  • the present invention also relates to a method for preparing a compound of formula V, including:
  • R 2 is a carboxyl group, an alkoxycarbonyl group (-COOR 5 ) or an aminocarbonyl group (-CONR c R d );
  • R 5 is C 1 -C 20 linear or branched alkyl, C 3 -C 20 cyclic alkyl, benzyl, or C 6 -C 20 aryl; preferably, R 5 is methyl or ethyl ;as well as
  • R c and R d are each independently hydrogen, substituted or unsubstituted C 1 -C 20 linear or branched alkyl, substituted or unsubstituted C 3 -C 20 cyclic alkyl, substituted or unsubstituted Benzyl, or substituted or unsubstituted C 6 -C 20 aryl; substituents are hydroxyl, amino, mercapto, organophosphorus or halogen, C 1 -C 10 alkyl, C 3 -C 10 cyclic alkyl, Or C 1 -C 10 alkoxy; preferably, R c and R d are each independently hydrogen, methyl, ethyl or hydroxyethyl;
  • R 2 is hydrogen, -COOH, -COOCH 3 , -COOC 2 H 5 or -(CH 2 CH 2 ) 2 NCH 3 ;
  • R 3 is a substituted or unsubstituted C 1 -C 20 linear or branched alkyl group, a substituted or unsubstituted C 3 -C 20 cyclic alkyl group, a substituted or unsubstituted C 3 -C 20 alkenyl group, a substituted Or unsubstituted C 3 -C 20 alkynyl, substituted or unsubstituted C 3 -C 20 acyl, substituted or unsubstituted C 6 -C 20 aryl, or substituted or unsubstituted containing selected from oxygen, nitrogen, A C 2 -C 20 heteroaryl group of one or more atoms in sulfur and phosphorus, wherein the substituent is selected from one or more of the following: halogen, hydroxyl, C 1 -C 20 alkyl, -OC 1- C 20 alkyl, -NR a R b (wherein R a and R b are each independently selected from hydrogen and C 1 -
  • reaction of removing R 2 from the compound of formula I to produce the compound of formula V is carried out in one or a mixture of two selected from alkali, alkali metal or alkaline earth metal salt;
  • the base is one or two or more selected from alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal alkoxides and nitrogen-containing organic bases
  • the mixture is more preferably selected from sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, sodium methoxide, potassium methoxide, lithium ethoxide, sodium ethoxide, magnesium methoxide, magnesium ethoxide, n-propanol
  • the alkali metal or alkaline earth metal salt is one or a mixture of two or more selected from alkali metal or alkaline earth metal halide, alkali metal or alkaline earth metal carboxylate, alkali metal or alkaline earth metal sulfonate , More preferably selected from lithium chloride, lithium bromide, lithium iodide, lithium acetate, lithium trifluoroacetate, lithium benzoate, lithium trifluoromethanesulfonate, lithium methanesulfonate, lithium besylate; sodium chloride, Sodium bromide, sodium iodide, sodium acetate, sodium trifluoroacetate, sodium benzoate, sodium trifluoromethanesulfonate, sodium methanesulfonate, sodium benzene methanesulfonate; potassium chloride, potassium bromide, potassium iodide, potassium acetate, Potassium trifluoroacetate, potassium benzoate, potassium trifluoroacetate,
  • a solvent is used for the reaction.
  • the solvent is selected from methanol, ethanol, isopropanol, ethylene glycol, tetrahydrofuran, dioxane, 2-methyltetrahydrofuran, diethyl ether, ethylene glycol dimethyl Ether, cyclopentyl methyl ether, methyl tert-butyl ether, dimethyl sulfoxide, N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, N,N -One or a mixture of two or more of diethylformamide, N,N-diethylacetamide and water.
  • the molar ratio of the alkali metal or alkaline earth metal salt to the compound represented by formula I is 20:1 to 1:4, preferably 15:1 to 1:2, more preferably 10 :1 ⁇ 1:1; the molar ratio of the base to the compound represented by formula I is 10:1 ⁇ 1:4, preferably 8:1 ⁇ 1:3, more preferably 5:1 ⁇ 1:1 .
  • the method for preparing the compound of formula V may further include a step of purifying the compound of formula V.
  • the step of purifying the compound of formula V includes adding a solvent to the crude product of the compound of formula V for stratification.
  • the solvent used for stratification is selected from alkane solvents, ether solvents, and unsaturated aromatic hydrocarbon solvents.
  • the alkane solvent can be a C 5 -C 20 linear or branched or cyclic alkane.
  • the unsaturated aromatic hydrocarbon solvent can be selected from toluene, chlorobenzene, and xylene; the ether solvent is tetrahydrofuran, methyl tert-butyl ether, diethyl ether, cyclopentyl methyl ether, isopropyl ether and anisole, One or a mixture of two or more of ethylene glycol dimethyl ether, tetrahydropyran, and dioxane.
  • the inorganic base in the inorganic base aqueous solution may be one or a mixture of two or more selected from sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate and lithium carbonate; More preferably, it is one selected from sodium hydroxide and potassium hydroxide or a mixture thereof; the mass fraction of the aqueous inorganic alkali solution is 1%-30%, preferably 10%.
  • the acid used is one of an organic acid or an inorganic acid.
  • the organic acid used can be selected from formic acid, acetic acid, propionic acid, oxalic acid, maleic acid, citric acid, tartaric acid, methanesulfonic acid, benzenesulfonic acid.
  • the inorganic acid used may be selected from hydrochloric acid, sulfuric acid, and phosphoric acid.
  • the organic solvent may be selected from 2-methyltetrahydrofuran, diethyl ether, ethylene glycol dimethyl ether, C 5 -C 20 linear or branched or cyclic alkanes, benzene, toluene, xylene , Dichloromethane, 1,2-dichloroethane, chloroform, cyclopentyl methyl ether, methyl tert-butyl ether or a mixture of two or more thereof, preferably selected from dichloromethane, tetrahydrofuran, One or a mixture of two or more of toluene, xylene, chlorobenzene, n-heptane, and n-hexane.
  • the present invention provides the crystal form A of cannabidiol, and the DSC spectrum data of the crystal form A are as follows:
  • the X-ray powder diffraction data of the crystal form A are as follows: at 2 ⁇ are 5.097° ⁇ 0.2°, 9.40° ⁇ 0.2°, 9.71° ⁇ 0.2°, 10.22° ⁇ 0.2°, 11.79° ⁇ 0.2°, 12.503° ⁇ 0.2° ⁇ 13.147° ⁇ 0.2°13.787° ⁇ 0.2° ⁇ 15.086° ⁇ 0.2° ⁇ 17.05° ⁇ 0.2° ⁇ 17.40° ⁇ 0.2° ⁇ 17.98° ⁇ 0.2° ⁇ 19.00° ⁇ 0.2° ⁇ 19.83° ⁇ 0.2° ⁇ There are X-ray diffraction peaks at 20.891° ⁇ 0.2°, 21.685° ⁇ 0.2°, 22.17° ⁇ 0.2°, 22.60° ⁇ 0.2°, 24.416° ⁇ 0.2°, 29.091° ⁇ 0.2°, 31.133° ⁇ 0.2°.
  • the present invention provides a method for preparing cannabidiol crystal form A, the preparation method comprising: dissolving cannabidiol in 0.2-10 times the weight of an alkane solvent, and cooling to -50°C to 10°C , Heat preservation, stirring or standing, and then filtering or centrifuging the suspension to separate the cannabidiol crystal form A.
  • the preparation method is carried out in the presence of crystal form A seed crystals.
  • the alkane is one or a mixture of two or more C 4 -C 20 linear or branched or cyclic alkanes; preferably selected from n-heptane, petroleum ether, cyclopentane, and cycloheptane One or a mixture of two or more of them.
  • the cannabidiol is prepared by the aforementioned method of the present invention.
  • the present invention also provides a method for preparing a single crystal of cannabidiol crystal form A, the preparation method comprising: dissolving cannabidiol in 0.2-10 times the weight of an alkane solvent, and cooling to -30 °C ⁇ -10°C, keep standing for 24-48h, and then filter or centrifuge the suspension to separate cannabidiol crystal form A single crystal.
  • the preparation method is carried out in the presence of crystal form A seed crystals.
  • the alkane is one or a mixture of two or more C 4 -C 20 linear or branched or cyclic alkanes; preferably one selected from n-heptane, petroleum ether, and n-octane Or a mixture of two or more.
  • the cannabidiol is prepared by the aforementioned method of the present invention.
  • the method disclosed in the present invention is superior to the existing methods.
  • the method disclosed by the invention has the advantages of high chemical reaction selectivity, simple operation and high product purity.
  • Figure 1 is an X-ray powder diffraction pattern of cannabidiol crystal form A
  • Figure 2 is a single crystal diagram of cannabidiol crystal form A
  • Figure 3 is a liquid chromatogram of cannabidiol
  • Figure 4 is a differential scanning calorimetry analysis diagram of cannabidiol crystal form A.
  • the invention discloses a preparation and purification method for cannabidiol and its analogues.
  • the present invention discloses methods for preparing cannabidiol and its analogs.
  • the following examples are only used to illustrate the embodiments of the present invention. It should be understood that the embodiments of the present invention are not limited to the specific details in the following examples, because in view of the disclosure of the present invention, other variations are known and obvious to those of ordinary skill in the art.
  • Instrument model Bruker D8 advance, target: Cu K ⁇ (40kV, 40mA), distance from sample to detector: 30cm, scan type: locked coupled, step width 0.02°, scan range: 3°-40° (2 ⁇ value), scan Step: 0.1s.
  • X-2 (1.0g, 3.76mmol) was dissolved in chlorobenzene, slowly dripped into trifluoromethanesulfonic anhydride (1.0g, 0.08eq) chlorobenzene solution at -10°C to 0°C, -10°C to 0°C, XIII (681mg, 1.1eq) was added dropwise, and TLC showed that the reaction was basically over.
  • the diffraction angle 2 ⁇ of Form A is 5.097° ⁇ 0.2°, 9.40° ⁇ 0.2°, 9.71° ⁇ 0.2°, 10.22° ⁇ 0.2°, 11.79° ⁇ 0.2°, 12.503° ⁇ 0.2°, 13.147° ⁇ 0.2° ⁇ 13.787° ⁇ 0.2° ⁇ 15.086° ⁇ 0.2° ⁇ 17.05° ⁇ 0.2° ⁇ 17.40° ⁇ 0.2° ⁇ 17.98° ⁇ 0.2° ⁇ 19.00° ⁇ 0.2° ⁇ 19.83° ⁇ 0.2° ⁇ 20.891° ⁇ 0.2 °, 21.685° ⁇ 0.2°, 22.17° ⁇ 0.2°, 22.60° ⁇ 0.2°, 24.416° ⁇ 0.2°, 29.091° ⁇ 0.2°, 31.133° ⁇ 0.2°, there are X-ray diffraction peaks.
  • the space group of the single crystal of form A is the monoclinic system, and the axis length
  • Figure 4 shows the differential scanning calorimetry analysis of cannabidiol crystal form A.
  • the methyl chloride was separated into layers, and the organic phase was concentrated to dryness to obtain 700 mg, with a total yield of 43.7%.
  • OLV (1.0g, 5.6mmol) was dissolved in dichloromethane/toluene, added anhydrous magnesium sulfate, slowly dripped in toluene solution of boron trifluoride ether (0.15g, 0.1eq) at -10°C to 0°C,- From 10°C to 0°C, XIII (1.02g, 1.1eq) was added dropwise, TLC showed that the reaction was basically over.
  • X-1 (1.0g, 4.2mmol) was dissolved in tetrahydrofuran, and slowly dropped into trifluoroacetyl trifluoromethanesulfonate (0.11g, 0.1eq) tetrahydrofuran solution at -10°C to 0°C, -10°C to 0°C At °C, XII (0.702g, 1.1eq) was added dropwise, TLC showed that the reaction was almost complete.
  • the isopropyl acetate was separated into layers and concentrated to obtain compound XI-1, 1.38 g.
  • X-1 (1.0g, 4.2mmol) was dissolved in n-heptane and slowly dropped into the toluene solution of trimethylsilyl trifluoromethanesulfonate (0.1g, 0.1eq) at -10°C to 0°C,- XII (702mg, 1.1eq) was added dropwise at 10°C to 0°C, TLC showed that the reaction was almost over.
  • X-1 (1.0g, 4.2mmol) was dissolved in methyl tert-butyl ether, sodium sulfate was added, and trimethylsilyl iodide (0.84g, 0.1eq) was slowly dropped at -10°C to 0°C.
  • XII (702 mg, 1.1 eq) was added dropwise from -10°C to 0°C, and TLC showed that the reaction was basically over.
  • X-1 (1.0g, 4.2mmol) was dissolved in 1,2-dichloroethane, and slowly dropped into toluenesulfonic anhydride (1.36g, 0.1eq) 1,2-dichloro at -10°C to 0°C Ethane solution, -10°C to 0°C, XII (702mg, 1.1eq) was added dropwise, TLC showed that the reaction was basically over.
  • X-2 (1.0g, 3.76mmol) was dissolved in chlorobenzene, slowly dripped into trifluoromethanesulfonic anhydride (1.0g, 0.08eq) chlorobenzene solution at -10°C to 0°C, -10°C to 0°C, XII (0.629g, 1.1eq) was added dropwise, TLC showed that the reaction was almost complete.
  • the reaction was quenched by adding saturated sodium bicarbonate, water was added to separate the liquids, the organic phase was concentrated to a small volume, cyclohexane, methanol, and 10% KOH aqueous solution were added for liquid separation, the upper layer was adjusted to pH 6-7 with saturated tartaric acid aqueous solution, and concentrated To dryness, filter and concentrate to obtain 1.36 g of light brown oil, add the above brown oil to n-heptane, stir at -20°C for 12 hours, a large amount of solid precipitates, filter and dry to obtain 900 mg of light white solid, purity 90%. The above solid was dissolved in n-heptane and stirred at -20°C for 12 hours. A large amount of solid precipitated out, filtered and dried to obtain 700 mg, with a total yield of 39.7%.
  • X-8 (1g, 4.8mmol) was dissolved in toluene, and trifluoromethanesulfonic anhydride (88mg, 0.1eq) was slowly dropped at -10°C to 0°C, and XII (803mg, 1.1eq), TLC showed that the reaction was basically over.
  • X-2 (1.0g, 3.76mmol) was dissolved in chlorobenzene, slowly dripped into trifluoromethanesulfonic anhydride (1.0g, 0.08eq) chlorobenzene solution at -10°C to 0°C, -10°C to 0°C, XVII (681 mg, 1.1 eq) was added dropwise, TLC showed that the reaction was basically over.
  • the methyl chloride was separated into layers, and the organic phase was concentrated to dryness to obtain 800 mg, with a total yield of 49.9%.
  • OLV (1.0g, 5.6mmol) was dissolved in dichloromethane/toluene, added anhydrous magnesium sulfate, slowly dripped in toluene solution of boron trifluoride ether (0.15g, 0.1eq) at -10°C to 0°C,- From 10°C to 0°C, XVII (1.02g, 1.1eq) was added dropwise, TLC showed that the reaction was almost complete.
  • X-1 (1.0g, 4.2mmol) was dissolved in tetrahydrofuran, and slowly dropped into trifluoroacetyl trifluoromethanesulfonate (0.11g, 0.1eq) tetrahydrofuran solution at -10°C to 0°C, -10°C to 0°C At °C, XIVI (1.42g, 1.1eq) was added dropwise, TLC showed that the reaction was almost complete.
  • the isopropyl acetate was separated into layers and concentrated to obtain compound XI-1, 1.28 g.
  • X-1 (1.0g, 4.2mmol) was dissolved in n-heptane and slowly dropped into the toluene solution of trimethylsilyl trifluoromethanesulfonate (0.1g, 0.1eq) at -10°C to 0°C,- XVII (702mg, 1.1eq) was added dropwise at 10°C to 0°C, TLC showed that the reaction was almost complete.
  • X-1 (1.0g, 4.2mmol) was dissolved in methyl tert-butyl ether, sodium sulfate was added, and trimethylsilyl iodide (0.84g, 0.1eq) was slowly dropped at -10°C to 0°C.
  • XIIVI (900mg, 1.1eq) was added dropwise from -10°C to 0°C, TLC showed that the reaction was basically over.
  • X-1 (1.0g, 4.2mmol) was dissolved in 1,2-dichloroethane, and slowly dropped into toluenesulfonic anhydride (1.36g, 0.1eq) 1,2-dichloro at -10°C to 0°C Ethane solution, -10°C to 0°C, XIIVII (1.24mg, 1.1eq) was added dropwise, TLC showed that the reaction was basically over.
  • X-2 (1.0g, 3.76mmol) was dissolved in chlorobenzene, slowly dripped into trifluoromethanesulfonic anhydride (1.0g, 0.08eq) chlorobenzene solution at -10°C to 0°C, -10°C to 0°C, XVVII (1.42g, 1.1eq) was added dropwise, TLC showed that the reaction was almost complete.
  • the light brown oil was dissolved in cycloheptane, stirred at -20°C for 12 hours, a large amount of solids separated out, filtered and dried to obtain 680 mg of cannabidiol crystal form A, the two-step yield was 53.3%, and the HPLC purity was 99.5%.

Abstract

本发明公开了大麻二酚及其类似物的制备方法,该方法通过使间二苯酚衍生物与薄荷基-2,8-二烯-1-醇或其衍生物反应来实现。本发明方法具有化学反应选择性高、操作简便等优点。

Description

大麻二酚类化合物的制备方法 技术领域
本发明属于化学合成领域,且更具体而言,涉及化学合成大麻二酚(Cannabidiol)及类似物的方法。
背景技术
2005年4月,GW Pharmaceuticals研发的大麻二酚复方药物
Figure PCTCN2020090417-appb-000001
(Cannabidiol/Dronabinol)在加拿大获得批准上市,用于治疗由多发性硬化症引起的痉挛。2018年6月,大麻二酚获美国食品药品监督管理局(FDA)批准用于治疗Lennox-Gastaut综合征(Lennox-Gastaut syndrome)和Dravet综合征(Dravet syndrome)引起的癫痫,适用于年龄为2岁及以上的患者。另外,由大麻二酚组成的复方药物(Cannabidiol/Tetrahydrocannabivarin)目前处于临床Ⅱ期试验阶段,有望用于精神分裂症治疗。
大麻二酚(Cannabidiol)的合成方法已有公开报道。最早出现的是3,5-二羟基戊苯和反式-薄荷基-2,8-二烯-1-醇酸催化的烷基化反应路线,但该路线存在选择性差,生成的杂质多,纯化困难,收率低等缺点。
Figure PCTCN2020090417-appb-000002
专利(US2017008869)报道了3,5-二羟基戊苯(Olivetol)先卤代,再与反式-薄荷基-2,8-二烯-1-醇反应,最后脱除卤素的路线,其中卤代反应会产生异构体,最后脱卤反应会导致产生杂质。
Figure PCTCN2020090417-appb-000003
此外,专利(US5227537,EP2314580)等也公开报道了大麻二酚的合成方法,其中使用了精馏、柱层析等纯化方法。
已有合成方法均存在一定的不足之处,如反应区域选择性差、步骤繁琐、产物分离纯化过程难度较大等。因此很有必要开发出反应选择性高、操作简便、适于工业化生产的制备方法。
发明内容
技术问题
本发明所要解决的技术问题是克服已有技术的不足,提供一种反应条件温和,工艺简便,且适合工业化的制备大麻二酚及其类似物的方法。
因此,本发明的目的是提供一种大麻二酚及其类似物的制备方法,该方法通过在催化剂存在下使间二苯酚或其衍生物与薄荷基-2,8-二烯-1-醇或其衍生物反应来实现,该方法具有化学反应选择性高、操作简便、产品纯度高等优点,适于开发为大规模生产工艺。
技术方案
根据一个方面,本发明提供了一种制备式I化合物的方法,所述方法为下列方法之一:
Figure PCTCN2020090417-appb-000004
方法一:
使式II化合物与式III化合物在催化剂M存在下反应生成式I化合物,
Figure PCTCN2020090417-appb-000005
方法二:
使式VI化合物与式III化合物在催化剂M存在下反应生成式I化合物,
Figure PCTCN2020090417-appb-000006
在上式I、II、III和VI中,
R 1和R 4各自独立地为氢、羧酸酰基(-(O=)CR 1a)、磺酰基(-SO 2R 1b)、取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基;其中,R 1a和R 1b各自独立地为氢、取代或未取代的C 1-C 20 直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基,优选地,R 1a和R 1b各自独立地为氢、甲基、乙基、丙基、苯基、苯甲基、苯乙基或苯丙基,其中,取代基为羟基,氨基,巯基,有机磷基或卤素,C 1-C 10烷基,C 3-C 10环状烷基,或C 1-C 10烷氧基,
进一步优选地,R 1和R 4各自独立地为氢、甲基、乙基、环丙甲基、甲氧基甲基、2-甲氧基乙基、乙酰基、丙酰基、苯甲酰基、苯乙酰基、苯丙酰基、甲磺酰基、三氟甲磺酰基或对甲苯磺酰基,
R 2为氢、羧基、-COOR 5或-CONR cR d;其中R 5为C 1-C 20直链或支链烷基、C 3-C 20环状烷基、苄基、或C 6-C 20芳基;优选地,R 5为甲基或乙基;其中R c和R d各自独立地为氢、取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基;取代基为羟基,氨基,巯基,有机磷基或卤素,C 1-C 10烷基,C 3-C 10环状烷基,或C 1-C 10烷氧基;优选地,R c和R d各自独立地为氢、甲基、乙基或羟基乙基;
进一步优选地,R 2为氢、-COOH、-COOCH 3、-COOC 2H 5或-(CH 2CH 2) 2NCH 3
R 3为取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的C 3-C 20烯烃基、取代或未取代的C 3-C 20炔烃基、取代或未取代的C 3-C 20酰基、取代或未取代的C 6-C 20芳基、或取代或未取代的含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂芳基,其中,取代基选自以下中的一个或多个:卤素;羟基;C 1-C 20烷基;-O-C 1-C 20烷基;-NR aR b,其中R a和R b各自独立地选自氢和C 1-C 4烷基;-SO-C 1-C 20烷基;-SO 2-C 1-C 20烷基;C 3-C 20烯烃基;C 3-C 20炔烃基;C 1-C 20酰基;C 6-C 20芳基;含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂芳基;C 3-C 20环烷基;或含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂环;优选地,R 3为-C 5H 11
本发明方法中,式II或VI化合物与式III化合物可以在催化剂M存在下反应。
在一个实施方式中,R 1和R 4各自独立地为羧酸酰基-(O=)CR 1a、磺酰基-SO 2R 1b、取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基,所述催化剂M可为选自路易斯酸、质子酸、酸酐、硅酯、硅烷中的一种或多种。优选地,所述路易斯酸可选自:三卤化硼,更优选地,三氯化硼,三氟化硼;三卤化铝,更优选三氯化铝,三溴化铝;过渡金属盐,特别是过渡金属卤化物或其三氟甲磺酸盐,更优选地,四氯化钛,氯化锌,溴化锌,三氟甲磺酸锌;元素周期表中第四、五、六主族元素卤化物,更优选地,四氯化锡,三氯氧磷,二氯亚砜,二氯化砜;所述质子酸可选自高氯酸、氢卤酸、硫酸、硫酸氢盐、磷酸、磷酸氢盐、焦磷酸、R 6COOH和R 7SO 3H;其中R 6和R 7可各自独立地为取代或未取代的C 1-C 30直链或支链烷基、取代或未取代的C 3-C 30环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 30芳基,其中取代基为选自羧基、磷酸基、磺酸基、亚磷酸基和卤素中的一个或多个;所述酸酐可为选自三氟甲磺酸酐、三氟乙酸酐、甲磺酸酐、乙磺酸酐、苯甲磺酸酐、对甲苯磺酸酐、三氟乙酰三氟甲磺酸酯中的一种或多种;所述硅酯可为选 自三氟甲磺酸三甲基硅酯、三氟甲磺酸三乙基硅酯中的一种或两种;所述硅烷可为选自三甲基碘硅烷、三乙基碘硅烷、三甲基溴硅烷、三甲基氯硅烷中的一种或多种。
在一个实施方式中,R 1和R 4各自独立地为氢,所述催化剂M可为选自酸酐、硅酯、硅烷中的一种或多种。优选地,所述酸酐可为选自三氟甲磺酸酐、三氟乙酸酐、甲磺酸酐、乙磺酸酐、苯甲磺酸酐、对甲苯磺酸酐中的一种或多种;所述硅酯可为选自三氟甲磺酸三甲基硅酯、三氟甲磺酸三乙基硅酯中的一种或两种;所述硅烷可为选自三甲基碘硅烷、三乙基碘硅烷、三甲基溴硅烷、三甲基氯硅烷中的一种或多种。所述催化剂M更优选可为选自甲磺酸酐、三氟甲磺酸酐、三氟甲磺酸三甲基硅酯、三甲基碘硅烷中的一种或多种。
本发明方法中,优选地,所述催化剂M与式II或VI化合物的投料摩尔比为0.01:1~1:1,优选为0.03:1~0.5:1,更优选为0.05:1~0.5:1。
在本发明的一个实施方式中,式II或VI化合物与式III化合物可以在溶剂中反应。所述溶剂可以为选自烷烃、芳烃、卤代烃、酯类、醚类、极性非质子溶剂的一种或其两种以上的混合物。
优选地,所述烷烃可为C 5-C 20的直链或支链或环状烷烃,包括但不限于正戊烷、正己烷、正庚烷、环己烷等。
优选地,所述芳烃可为取代的苯化合物,包括但不限于甲苯、二甲苯、氯苯等。
优选地,所述卤代烃包括但不限于二氯甲烷、1,2-二氯乙烷、氯仿等。
优选地,所述酯类溶剂包括但不限于乙酸甲酯、乙酸乙酯、乙酸异丙酯、乙酸丁酯等。
优选地,所述醚类溶剂包括但不限于四氢呋喃、二氧六环、2-甲基四氢呋喃、乙醚、乙二醇二甲醚、环戊基甲醚、甲基叔丁基醚。
优选地,所述极性非质子溶剂包括但不限于乙腈、丙酮、N,N-二甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮、二甲基亚砜。
更优选地,所述溶剂为选自正庚烷、正己烷、甲苯、二甲苯、氯苯、二氯甲烷、乙酸乙酯、四氢呋喃中一种或其两种以上的混合物。
本发明方法中,优选地,式II或VI化合物与式III化合物的投料摩尔比为1:5~5:1;更优选地,式II或VI化合物与式III化合物的投料摩尔比为0.5:1~2:1;还更优选地,式II或VI化合物与式III化合物的投料摩尔比为0.8:1~1.5:1。
本发明方法中,优选地,所述催化剂与式II或VI化合物的投料摩尔比为0.01:1~1:1;更优选地,所述催化剂与式II或VI化合物的投料摩尔比为0.03:1~0.5:1;还更优选地,所述催化剂与式II或VI化合物的投料摩尔比为0.05:1~0.5:1。
本发明方法中,优选地,所述反应在温度为-30℃至50℃下进行,更优选地,所述反应在温度为-20至40℃下进行。
本发明方法中,优选地,所述反应的反应时间通常为1小时~24小时。
本发明方法还可以包括纯化式I化合物的步骤。纯化式I化合物的步骤可以通过分层的方式进行。
所述纯化式I化合物的步骤包括两条路线:
路线(a):
当反应溶剂为选自乙腈、丙酮、N,N-二甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮和二甲基亚砜的极性非质子溶剂时,在式II或VI化合物与式III化合物的反应结束后,加入饱和碳酸氢钠淬灭反应,加入无机碱水溶液,再加入选自烃类溶剂、醚类溶剂中的一种或其两种以上的混合溶剂进行分层;
路线(b):
当反应溶剂为选自烷烃、芳烃、卤代烃、酯类、醚类中一种或其两种以上的混合物的除极性非质子溶剂外的其他溶剂时,在式II或VI化合物与式III化合物的反应结束后,加入饱和碳酸氢钠淬灭反应,加入水,分液,浓缩干溶剂,得到式I化合物粗品,粗品中加入无机碱水溶液,再加入选自烃类溶剂、醚类溶剂中的一种或其两种以上的混合溶剂进行分层。
上述分层纯化步骤中,用于分层的溶剂为选自烃类溶剂、醚类溶剂中一种或其两种以上的混合溶剂和无机碱水溶液组成的混合物。
其中,优选地,所述烃类溶剂包括烷烃溶剂和不饱和芳香烃溶剂;所述烷烃溶剂可为C 5-C 20直链或支链或环状烷烃;所述不饱和芳香烃溶剂可为甲苯、氯苯、二甲苯、硝基苯。
其中,优选地,所述醚类溶剂可为四氢呋喃、甲基叔丁基醚、乙醚、环戊基甲醚、异丙醚、苯甲醚、乙二醇二甲醚、四氢吡喃、二氧六环。
其中,优选地,所述无机碱水溶液中的无机碱可为选自氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾和碳酸锂中的一种或其两种以上的混合物,优选为选自氢氧化钠和氢氧化钾中的一种或其混合物;所述无机碱水溶液的质量分数为1%-30%,优选10%。
上述纯化步骤中,优选地,所述纯化式I化合物的步骤还包括:分层后水相用酸调节pH=6-7,水相中加入有机溶剂萃取,合并水相浓缩至干,得到I化合物。
其中,优选地,所用的酸可以选自有机酸或无机酸。其中,所用有机酸可以选自甲酸、乙酸、丙酸、草酸、马来酸、枸橼酸、酒石酸、甲磺酸、苯磺酸。其中,所用无机酸可以选自盐酸、硫酸、磷酸。
其中,优选地,所述有机溶剂可为选自2-甲基四氢呋喃、乙醚、乙二醇二甲醚、C 5-C 20的直链或支链或环状烷烃、苯、甲苯、二甲苯、二氯甲烷、1,2-二氯乙烷、氯仿、环戊基甲醚、甲基叔丁基醚中的一种或其两种以上的混合物,优选为选自二氯甲烷、四氢呋喃、甲苯、二甲苯、氯苯、正庚烷、正己烷中的一种或其两种以上的混合物。
本发明还涉及制备式V化合物的方法,包括:
采用本发明的制备式I化合物的方法得到式I化合物,
使式I化合物脱去R 2生成式V化合物,
Figure PCTCN2020090417-appb-000007
其中,R 2为羧基、烷氧羰基(-COOR 5)或胺基羰基(-CONR cR d);
其中R 5为C 1-C 20直链或支链烷基、C 3-C 20环状烷基、苄基、或C 6-C 20芳基;优选地,R 5为甲基或乙基;以及
其中R c和R d各自独立地为氢、取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基;取代基为羟基,氨基,巯基,有机磷基或卤素,C 1-C 10烷基,C 3-C 10环状烷基,或C 1-C 10烷氧基;优选地,R c和R d各自独立地为氢、甲基、乙基或羟基乙基;
优选地,R 2为氢、-COOH、-COOCH 3、-COOC 2H 5或-(CH 2CH 2) 2NCH 3
R 3为取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的C 3-C 20烯烃基、取代或未取代的C 3-C 20炔烃基、取代或未取代的C 3-C 20酰基、取代或未取代的C 6-C 20芳基、或取代或未取代的含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂芳基,其中,取代基选自以下中的一个或多个:卤素、羟基、C 1-C 20烷基、-O-C 1-C 20烷基、-NR aR b(其中R a和R b各自独立地选自氢和C 1-C 4烷基)、-SO-C 1-C 20烷基、-SO 2-C 1-C 20烷基、C 3-C 20烯烃基、C 3-C 20炔烃基、C 1-C 20酰基、C 6-C 20芳基、含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂芳基、C 3-C 20环烷基或含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂环;优选地,R 3为-C 5H 11
上述制备式V化合物的方法中,
使式I所示的化合物脱去R 2生成式V所示的化合物的反应在选自碱、碱金属或碱土金属盐中的一种或其两者的混合物中进行;
其中,优选地,所述碱为选自碱金属或碱土金属氢氧化物、碱金属或碱土金属碳酸盐、碱金属或碱土金属醇盐和含氮有机碱中的一种或其两种以上的混合物,更优选为选自氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾、碳酸锂、甲醇钠、甲醇钾、乙醇锂、乙醇钠、甲醇镁、乙醇镁、正丙醇镁、甲醇钙、乙醇钙、叔丁醇钠、叔丁醇锂、叔丁醇镁、异丁醇镁、叔戊醇镁、N-甲基吗啉、N,N-二异丙基乙基胺、三乙胺、三丙胺、三正丙胺、三异丙胺、三丁胺、吡啶、嘧啶、喹啉、N-甲基哌啶、N-甲基哌嗪、咪唑、二甲氨基吡啶、N-甲基吗啉、二甲基苯胺、1,8-二氮杂二环[5.4.0]十一碳-7-烯(DBU)、1,5-二氮杂二环[4.3.0]壬-5-烯(DBN)、1,4-二氮杂 二环[2.2.2]辛烷(DABCO)中的一种或其两种以上的混合物;优选地,所述碱选自氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾、碳酸锂、乙醇镁、正丙醇镁、叔丁醇镁或异丁醇镁;更优选地,所述的碱为氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾、碳酸锂乙醇镁、叔丁醇镁;
其中,优选地,碱金属或碱土金属盐为选自碱金属或碱土金属卤化物、碱金属或碱土金属羧酸盐、碱金属或碱土金属磺酸盐中的一种或其两种以上的混合物,更优选为选自氯化锂、溴化锂、碘化锂、乙酸锂、三氟乙酸锂、苯甲酸锂、三氟甲磺酸锂、甲磺酸锂、苯甲磺酸锂;氯化钠、溴化钠、碘化钠、乙酸钠、三氟乙酸钠、苯甲酸钠、三氟甲磺酸钠、甲磺酸钠、苯甲磺酸钠;氯化钾、溴化钾、碘化钾、乙酸钾、三氟乙酸钾、苯甲酸钾、三氟甲磺酸钾、甲磺酸钾、苯甲磺酸钾;氯化镁、溴化镁、碘化镁、乙酸镁、三氟乙酸镁、苯甲酸镁、三氟甲磺酸镁、甲磺酸镁、苯甲磺酸镁,氯化钙、溴化钙、乙酸钙、三氟乙酸钙、苯甲酸钙;优选地,所述碱金属或碱土金属盐为溴化锂、氯化锂、氯化钠、氯化钾、溴化镁、氯化镁;更优选地,所述的碱金属或碱土金属盐为氯化镁、氯化锂。
其中,使用溶剂进行所述反应,优选地,所述溶剂为选自甲醇、乙醇、异丙醇、乙二醇、四氢呋喃、二氧六环、2-甲基四氢呋喃、乙醚、乙二醇二甲醚、环戊基甲醚、甲基叔丁基醚、二甲基亚砜、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二乙基甲酰胺、N,N-二乙基乙酰胺和水中的一种或其两种以上的混合物。
本发明方法中,优选地,所述碱金属或碱土金属盐与式I所示的化合物的投料摩尔比为20:1~1:4,优选为15:1~1:2,更优选为10:1~1:1;所述碱与式I所示的化合物的投料摩尔比为10:1~1:4,优选为8:1~1:3,更优选为5:1~1:1。
优选地,制备式V化合物的方法可以进一步包括纯化式V化合物的步骤。其中,所述纯化式V化合物的步骤包括向式V化合物的粗产物中加入溶剂进行分层,优选地,用于分层的溶剂为由选自烷烃溶剂、醚类溶剂、不饱和芳香烃溶剂中的一种或两种以上的混合溶剂和无机碱水溶液组成的混合物。其中,优选地,所述烷烃溶剂可为C 5-C 20直链或支链或环状烷烃。所述不饱和芳香烃溶剂可为选自甲苯、氯苯、二甲苯;所述醚类溶剂为四氢呋喃、甲基叔丁基醚、乙醚、环戊基甲醚、异丙醚和苯甲醚、乙二醇二甲醚、四氢吡喃、二氧六环中的一种或其两种以上的混合物。
其中,优选地,所述无机碱水溶液中的无机碱可为选自氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾和碳酸锂中的一种或其两种以上的混合物;更优选为选自氢氧化钠和氢氧化钾中的一种或其混合物;所述无机碱水溶液的质量分数为1%-30%,优选10%。
优选地,分层完毕后,将有机相用酸调节pH=6-7,分层有机相浓缩干,得到油状式V化合物;
优选地,所述纯化式V化合物的步骤进一步包括以下步骤:分层完毕后,将有机相用酸调节pH=6-7,分层后,有机相浓缩干,得到油状式V化合物。
其中,优选地,所用的酸为有机酸或无机酸中的一种。其中,更优选地,所用有机酸可以选自甲酸、乙酸、丙酸、草酸、马来酸、枸橼酸、酒石酸、甲磺酸、苯磺酸。其中,还更优选地,所用无机酸可以选自盐酸、硫酸、磷酸。
其中,优选地,所述有机溶剂可为选自2-甲基四氢呋喃、乙醚、乙二醇二甲醚、C 5-C 20的直链或支链或环状烷烃、苯、甲苯、二甲苯、二氯甲烷、1,2-二氯乙烷、氯仿、环戊基甲醚、甲基叔丁基醚中的一种或其两种以上的混合物,优选为选自二氯甲烷、四氢呋喃、甲苯、二甲苯、氯苯、正庚烷、正己烷中的一种或其两种以上的混合物。
根据另一个方面,本发明提供了大麻二酚的晶型A,所述晶型A的DSC谱图数据如下:
初始值(Onset)=65.46±1℃,峰值(Peak)=68.66±1℃。
所述晶型A的X-射线粉末衍射数据如下:在2θ为5.097°±0.2°、9.40°±0.2°、9.71°±0.2°、10.22°±0.2°、11.79°±0.2°、12.503°±0.2°、13.147°±0.2°13.787°±0.2°、15.086°±0.2°、17.05°±0.2°、17.40°±0.2°、17.98°±0.2°、19.00°±0.2°、19.83°±0.2°、20.891°±0.2°、21.685°±0.2°、22.17°±0.2°和22.60°±0.2°、24.416°±0.2°、29.091°±0.2°、31.133°±0.2°处有X-射线衍射峰。
根据另一个方面,本发明提供了一种制备大麻二酚晶型A的方法,所述制备方法包括:将大麻二酚溶于0.2-10倍重量的烷烃溶剂,冷却至-50℃~10℃,保温搅拌或静置,然后过滤或离心混悬液,分离得到大麻二酚晶型A。优选地,所述制备方法在晶型A晶种的存在下进行。
所述烷烃为选自C 4-C 20直链或支链或环状烷烃中的一种或其两种以上的混合物;优选为选自正庚烷、石油醚、环戊烷、环庚烷中的一种或其两种以上的混合物。
上述制备大麻二酚晶型A的方法中,优选地,所述大麻二酚是通过本发明的前述方法制备的。
根据又一个方面,本发明还提供了一种制备大麻二酚晶型A的单晶的方法,所述制备方法包括:将大麻二酚溶于0.2-10倍重量的烷烃溶剂,冷却至-30℃~-10℃,保温静置24-48h,然后过滤或离心混悬液,分离得到大麻二酚晶型A的单晶。优选地,所述制备方法在晶型A晶种的存在下进行。
所述烷烃为选自C 4-C 20直链或支链或环状烷烃中的一种或其两种以上的混合物;优选为选自正庚烷、石油醚,正辛烷中的一种或其两种以上的混合物。所述大麻二酚晶型A的单晶的空间群为单斜晶系,轴长
Figure PCTCN2020090417-appb-000008
晶面夹角α=90°,β=95.49°,γ=90°,显示与天然来源的化学结构完全一致(Acta Cryst.(1977).B33,3211-3214)。
上述大麻二酚晶型A的单晶的制备方法中,优选地,所述大麻二酚是通过本发明的前述方法制备的。
有益效果
本发明公开的方法优于已有多种方法。本发明公开的方法具有化学反应选择性高、操作简便、产品纯度高等优点。
附图说明
图1为大麻二酚晶型A的X-射线粉末衍射图;
图2为大麻二酚晶型A的单晶图;
图3为大麻二酚液相色谱图;以及
图4为大麻二酚晶型A的差示扫描量热分析图。
具体实施方式
本发明公开了用于大麻二酚及其类似物的制备和纯化方法。举例来说,本发明公开了用于制备大麻二酚及其类似物的方法。下列实施例仅用于示例性说明本发明的实施方案。应了解本发明的实施方案不受限于下列实施例中的特定细节,因为鉴于本发明的公开内容,其他变化对本领域普通技术人员是已知和显而易见的。
X-射线粉末衍射图谱测定条件如下:
仪器型号:Bruker D8 advance,靶:Cu Kα(40kV,40mA),样品到检测器距离:30cm,扫描类型:locked coupled,步宽0.02°,扫描范围:3°-40°(2θ值),扫描步径:0.1s。
实施例1
Figure PCTCN2020090417-appb-000009
X-2(1.0g,3.76mmol)溶于氯苯中,-10℃至0℃下,缓慢滴入三氟甲磺酸酐(1.0g,0.08eq)氯苯溶液,-10℃至0℃,滴加XIII(681mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入环己烷、氯苯、甲醇和10%的LiOH水溶液分液,下层用马来酸调节pH=6-7,过滤,环己烷分层,浓缩得化合物XI-2,1.36g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.35(m,7H),1.43-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.16(m,1H),2.70(t,2H),3.00-3.06(m,1H),3.89-3.92(m,1H),4.32(q,2H),4.42(d,1H),4.60(d,1H),5.09(s,1H),6.20(s,1H),9.92(s,1H),11.80(s,1H).LR-MS(ESI)m/z:385(M-H) -
将上述XI-2溶于甲醇中,加入10%的LiOH水溶液,加热回流。TLC显示XI-2完全反应,加入石油醚分液,石油醚相用饱和酒石酸水溶液调节pH=6-7,浓缩干石油醚,得0.9g淡棕色油状物。将上述淡棕色油状物溶于正庚烷中,-10℃至0℃搅拌4h,大量固体析出,过滤得700mg白色固体大麻二酚晶型A,两步收率54.2%,HPLC纯度99.5%。图3显示了本方法制备的大麻二酚液相色谱图。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
对大麻二酚晶型A进行X-射线粉末衍射图谱测定,结果见图1。
根据图1,晶型A在衍射角2θ为5.097°±0.2°、9.40°±0.2°、9.71°±0.2°、10.22°±0.2°、11.79°±0.2°、12.503°±0.2°、13.147°±0.2°、13.787°±0.2°、15.086°±0.2°、17.05°±0.2°、17.40°±0.2°、17.98°±0.2°、19.00°±0.2°、19.83°±0.2°、20.891°±0.2°、21.685°±0.2°、22.17°±0.2°和22.60°±0.2°、24.416°±0.2°、29.091°±0.2°、31.133°±0.2°处有X-射线衍射峰。
将上述白色固体1g加热溶于正庚烷中,-30℃至-20℃保温36h,大量晶体生成,过滤得500mg晶型A的单晶。图2显示了大麻二酚晶型A的单晶图。
晶型A的单晶的空间群为单斜晶系,轴长
Figure PCTCN2020090417-appb-000010
晶面夹角α=90°,β=95.49°,γ=90°。
图4显示了大麻二酚晶型A的差示扫描量热分析图。
实施例2
Figure PCTCN2020090417-appb-000011
X-5(1.0g,5.6mmol)溶于二氯甲烷/甲苯中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入三氟甲磺酸酐(0.15g,0.1eq)甲苯溶液,-10℃至0℃,滴加XIII(938mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入环己烷,甲醇,10%的KOH水溶液分液,下层用饱和酒石酸水溶液调节pH=5-6,二氯甲烷分层,有机相浓缩至干得700mg,总收率43.7%。
1H NMR(CDCl 3,400MHz):0.90(3H,m),1.20-1.33(4H,m),1.55(2H,m),1.72(3H s),1.80(3H,s),2.01-2.39(5H,m),2.92(2H,t),4.10(1H,m),4.40(1H,s),4.55(1H,s),5.57(1H,s),6.26(1H,s),6.66(2H,s),11.85(1H,s).LR-MS(ESI)m/z:357(M-H) -
实施例3
Figure PCTCN2020090417-appb-000012
X-5(1.0g,5.6mmol)溶于氯仿中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入甲磺酸(85mg,0.2eq)甲苯溶液,-10℃至0℃,滴加XIII(938mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入石油醚,甲醇,10%的KOH水溶液分液,下层用饱和酒石酸水溶液调节pH=5-6,正庚烷分层,有机相浓缩至干得600mg,总收率37.4%。
测定此化合物的NMR波谱,与实施例2的产物相同。
实施例4
Figure PCTCN2020090417-appb-000013
OLV(1.0g,5.6mmol)溶于二氯甲烷/甲苯中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入三氟化硼乙醚(0.15g,0.1eq)甲苯溶液,-10℃至0℃,滴加XIII(1.02g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入正庚烷,甲醇,10%的KOH水溶液分液,上层用饱和酒石酸水溶液调节pH=6-7,浓缩至干,过滤浓缩得800mg淡棕色油状物,将上述油状物加入石油醚,-20℃搅拌12h,大量固体析出,过滤,烘干得500mg,总收率28.4%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例5
Figure PCTCN2020090417-appb-000014
X-1(1g,4.2mmol)溶于二氯甲烷中,-10℃至0℃下,加入三氟甲磺酸酐(0.1g,0.08eq)二氯甲烷溶液,-10℃至0℃,滴加XII(702mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入正庚烷,甲苯,乙腈和10%的KOH水溶液搅拌分层,加入马来酸调节pH=6-7,二氯甲烷分层,浓缩得化合物XI-1,1.3g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于甲醇中,加入10%的KOH水溶液,加热回流。TLC显示XI-1完全反应,加入甲基叔丁基醚分液,用饱和酒石酸水溶液调节甲基叔丁基醚相pH=6-7,浓缩甲基叔丁基醚,得0.9g淡棕色油状物。将上述淡棕色油状物溶于环庚烷,-20℃搅拌12h,大量固体析出,过滤,烘干得680mg,大麻二酚晶型A,两步收率53.4%,HPLC纯度99.5%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
对大麻二酚晶型A进行X-射线粉末衍射图谱测定,结果与实施例1中的相同。
将上述白色固体1g加热溶于正庚烷中,-30℃至-40℃保温48h,大量晶体生成,过滤得500mg晶型A的单晶。该晶型A的单晶的解析结果与实施例1中的相同。
实施例6
Figure PCTCN2020090417-appb-000015
X-1(1.0g,4.2mmol)溶于二氯甲烷中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入甲磺酸酐(0.21g,0.3eq)的二氯甲烷溶液,-10℃至0℃,滴加XII(0.72g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入环己烷,甲基叔丁基醚,N,N-二甲基甲酰胺和10%的LiOH水溶液分液,下层用富马酸调节pH=6-7,乙酸乙酯分层,浓缩得化合物XI-1,1.12g。
将上述XI-1溶于N,N-二甲基乙酰胺中,加入无水氯化镁(800mg,2eq)和N,N-二异丙基乙胺(1.08g,2eq),加热至128℃反应过夜。降至室温,加入乙醚分液,乙醚相用饱和酒石酸水溶液调节pH=6-7,浓缩干乙醚,得0.85g淡棕色油状物。将上述淡棕 色油状物加入环己烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,580mg,两步收率45.2%。
测定此化合物的NMR波谱,与实施例5的产物相同。
实施例7
Figure PCTCN2020090417-appb-000016
X-1(1.0g,4.2mmol)溶于四氢呋喃中,-10℃至0℃下,缓慢滴入三氟乙酰三氟甲磺酸酯(0.11g,0.1eq)四氢呋喃溶液,-10℃至0℃,滴加XII(0.702g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入正己烷,环戊基甲醚,甲醇和10%的KOH水溶液分液,下层用酒石酸调节pH=6-7,醋酸异丙酯分层,浓缩得化合物XI-1,1.38g。
将上述XI-1溶于四氢呋喃中,加入10%的NaOH水溶液,加热回流。TLC显示XI-1完全反应,加入甲苯分液,甲苯相用饱和酒石酸水溶液调节pH=6-7,浓缩干甲苯,得0.81g淡棕色油状物。将上述淡棕色油状物加入正己烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,550mg,两步收率42.6%。
测定此化合物的NMR波谱,与实施例5的产物相同。
实施例8
Figure PCTCN2020090417-appb-000017
X-1(1.0g,4.2mmol)溶于正庚烷中,-10℃至0℃下,缓慢滴入三氟甲基磺酸三甲基硅酯(0.1g,0.1eq)甲苯溶液,-10℃至0℃滴加XII(702mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加水分液,有机相浓缩至小体积,加入二甲苯,正庚烷,二甲基亚砜和10%的LiOH水溶液分液,下层相用柠檬酸调节pH=6-7,氯仿分层,浓缩得化合物XI-1,1.44g。
将上述XI-1溶于乙二醇中,加入氯化锂(356mg,2eq)和N,N-二异丙基乙胺(1.08g,2eq),加热至128℃反应过夜。降至室温,加入异丙醚分液,异丙醚相用饱和酒石酸水溶液调节pH=6-7,浓缩干异丙醚,得0.9g淡棕色油状物。将上述淡棕色油状物加入环己烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,700mg,两步收率54.2%。
测定此化合物的NMR波谱,与实施例5的产物相同。
实施例9
Figure PCTCN2020090417-appb-000018
X-1(1.0g,4.2mmol)溶于甲基叔丁基醚中,加入硫酸钠,-10℃至0℃下,缓慢滴入三甲基碘硅烷(0.84g,0.1eq)甲基叔丁基醚溶液,-10℃至0℃滴加XII(702mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,分液,有机相浓缩至小体积,加入环己烷,N,N-甲基乙酰胺和10%的NaOH水溶液分液,下层用马来酸调节pH=6-7,环己烷分层,浓缩得化合物XI-1,1.29g。
将上述XI-1溶于乙腈中,加入10%的LiOH水溶液,加热回流。TLC显示XI-1完全反应,加入正己烷分液,正己烷相用饱和酒石酸水溶液调节pH=6-7,浓缩干正己烷,得0.9g淡棕色油状物。将上述淡棕色油状物加入正己烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,600mg,两步收率46.4%。
测定此化合物的NMR波谱,与实施例5的产物相同。
实施例10
Figure PCTCN2020090417-appb-000019
X-1(1.0g,4.2mmol)溶于1,2-二氯乙烷中,-10℃至0℃下,缓慢滴入対甲苯磺酸酐(1.36g,0.1eq)1,2-二氯乙烷溶液,-10℃至0℃,滴加XII(702mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,分液,有机相浓缩至小体积,加入石油醚,甲醇和10%的KOH水溶液分液,下层相马来酸调节pH=6-7,过滤,正辛烷分层,浓缩得油状物化合物XI-1,1.36g。
将上述XI-1溶于甲苯中,加入10%的LiOH水溶液,加热回流。TLC显示XI-1完全反应,加入正辛烷分液,正辛烷相用饱和酒石酸水溶液调节pH=6-7,浓缩干正辛烷,得0.9g淡棕色油状物。将上述淡棕色油状物加入正辛烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,610mg,两步收率47.1%。
测定此化合物的NMR波谱,与实施例5的产物相同。
实施例11
Figure PCTCN2020090417-appb-000020
X-2(1.0g,3.76mmol)溶于氯苯中,-10℃至0℃下,缓慢滴入三氟甲磺酸酐(1.0g,0.08eq)氯苯溶液,-10℃至0℃,滴加XII(0.629g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入正庚烷、二甲苯、甲醇和10%的LiOH水溶液分液,下层用马来酸调节pH=6-7,过滤,正庚烷分层,浓缩得化合物XI-2,1.36g。
将上述XI-2溶于二甲基亚砜中,加入叔丁醇镁(1.28g,2eq)加热回流。TLC显示XI-1完全反应,加入石油醚分液,石油醚相用饱和酒石酸水溶液调节pH=6-7,浓缩干石油醚,得0.9g淡棕色油状物。将上述淡棕色油状物溶于正庚烷中,-10℃至0℃搅拌4h,大量固体析出,过滤得850mg白色固体,将上述固体加入环戊烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,700mg,两步收率54.2%。
测定此化合物的NMR波谱,与实施例1的产物相同。
实施例12
Figure PCTCN2020090417-appb-000021
OLV(1.0g,5.6mmol)溶于二氯甲烷/甲苯中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入三氟甲磺酸酐(0.15g,0.1eq)甲苯溶液,-10℃至0℃,滴加XII(938mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入环己烷,甲醇,10%的KOH水溶液分液,上层用饱和酒石酸水溶液调节pH=6-7,浓缩至干,过滤浓缩得1.36g淡棕色油状物,将上述棕色油油状物加入正庚烷,-20℃搅拌12h,大量固体析出,过滤,烘干得900mg,淡白色固体,纯度90%。将上述固体溶于正庚烷,-20℃搅拌12h,大量固体析出,过滤,烘干得700mg,总收率39.7%。
测定此化合物的NMR波谱,与实施例4的产物相同。
实施例13
Figure PCTCN2020090417-appb-000022
X-1(1g,4.2mmol)溶于二氯甲烷/甲苯中,-10℃至0℃下,缓慢滴入三氟化 硼乙醚(60mg,0.1eq),-10℃至0℃,滴加XIII(769mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入正庚烷,二甲苯,乙腈和10%的KOH水溶液分液,下层用马来酸调节pH=6-7,正庚烷分层,浓缩得化合物XI-1,1.5g。
将上述XI-1溶于甲醇中,加入10%的KOH水溶液,加热回流。TLC显示XI-1完全反应,降至室温,加入环戊基甲醚分液,用饱和酒石酸水溶液调节环戊基甲醚相pH=6-7,浓缩环戊基甲醚,得1.1g淡棕色油状物。将上述淡棕色油状物溶于正己烷中,-10℃至0℃搅拌4h,大量固体析出,过滤,烘干得850mg,大麻二酚晶型A,两步收率66.5%。
测定此化合物的NMR波谱,与实施例5的产物相同。
实施例14
Figure PCTCN2020090417-appb-000023
X-8(1g,4.8mmol)溶于二氯甲烷/甲苯中,-10℃至0℃下,缓慢滴入三氟化硼乙醚(65mg,0.1eq),-10℃至0℃,滴加XIII(820mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入正庚烷,二甲苯,乙腈和10%的KOH水溶液分液,下层用马来酸调节pH=6-7,正庚烷分层,浓缩得化合物XI-8,1.6g。
将上述XI-1溶于甲醇中,加入10%的KOH水溶液,加热回流。TLC显示XI-8完全反应,降至室温,加入环戊基甲醚分液,用饱和酒石酸水溶液调节环戊基甲醚相pH=6-7,浓缩环戊基甲醚,得V-8,950mg,两步收率72.5%。
1H NMR(DMSO,400MHz):1.60(s,3H),1.61(s,3H),1.62-1.71(m,2H),1.91-2.03(m,1H),2.08-2.15(m,1H),3.05(dr,1H),3.84-3.88(m,1H),4.41(d,1H),4.53(d,1H),5.09(s,1H),5.12(d,1H),5.49(d,1H),6.29(s,br,2H),6.43-6.50(m,1H),8.94(s,br,2H).LR-MS(ESI)m/z:269(M-H) -
实施例15
Figure PCTCN2020090417-appb-000024
X-8(1g,4.8mmol)溶于甲苯中,-10℃至0℃下,缓慢滴入三氟甲磺酸酐(88mg,0.1eq),-10℃至0℃,滴加XII(803mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入正己烷,二甲苯,乙腈和10%的KOH水溶液分液,下层用马来酸调节pH=6-7,正己烷分层,浓缩得化合物XI-8,1.5g。
将上述XI-1溶于甲醇中,加入10%的KOH水溶液,加热回流。TLC显示XI-8完全反应,降至室温,加入环戊基甲醚分液,用饱和酒石酸水溶液调节环戊基甲醚相pH=6-7,浓缩环戊基甲醚,得V-8,850mg,两步收率64.9%。
1H NMR(DMSO,400MHz):1.60(s,3H),1.61(s,3H),1.62-1.71(m,2H),1.91-2.03(m,1H),2.08-2.15(m,1H),3.05(dr,1H),3.84-3.88(m,1H),4.41(d,1H),4.53(d,1H),5.09(s,1H),5.12(d,1H),5.49(d,1H),6.29(s,br,2H),6.43-6.50(m,1H),8.94(s,br,2H).LR-MS(ESI)m/z:269(M-H) -
实施例16
Figure PCTCN2020090417-appb-000025
OLV-1(1.0g,7.4mmol)溶于二氯甲烷中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入三氟化硼乙醚(0.2g,0.1eq)甲苯溶液,-10℃至0℃,滴加XIII(1.35g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入正庚烷,甲醇,10%的KOH水溶液分液,上层用饱和酒石酸水溶液调节pH=6-7,浓缩至干,过滤浓缩得V-8,800mg,,收率40.2%。
测定此化合物的NMR波谱,与实施例14的产物相同。
实施例17
Figure PCTCN2020090417-appb-000026
X-9(1g,3.9mmol)溶于二氯甲烷中,-10℃至0℃下,缓慢滴入三氟化硼乙醚(55mg,0.1eq),-10℃至0℃,滴加XIII(260mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入环己烷,甲苯,甲醇和10%的KOH水溶液分液,下层用马来酸调节pH=6-7,环己烷分层,浓缩得化合物XI-9,800mg。
将上述XI-1溶于乙醇中,加入10%的NaOH水溶液,加热回流。TLC显示XI-9完全反应,降至室温,加入环戊基甲醚分液,用饱和酒石酸水溶液调节环戊基甲醚相pH=6-7,浓缩环戊基甲醚,得V-9,600mg,两步收率62.5%。
1H NMR(DMSO,400MHz):1.60(s,3H),1.64(s,3H),1.64-1.74(m,2H),1.93-2.02(m,1H),2.09-2.18(m,1H),3.11(dr,1H),3.91-3.94(m,1H),4.46(d,1H),4.56(d,1H),5.14(s,1H),6.48(s,br,2H),7.28-7.33(m,1H),7.40-7.48(m,4H),9.07(s,br,2H).LR-MS(ESI)m/z:319(M-H) -
实施例18
Figure PCTCN2020090417-appb-000027
X-9(1g,3.9mmol)溶于二氯甲烷中,-10℃至0℃下,缓慢滴入甲磺酸酐(100mg,0.2eq),-10℃至0℃,滴加XII(246mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入环己烷,甲苯,甲醇和10%的KOH水溶液分液,下层用马来酸调节pH=6-7,环己烷分层,浓缩得化合物XI-9,800mg。
将上述XI-1溶于乙醇中,加入10%的NaOH水溶液,加热回流。TLC显示XI-9完全反应,降至室温,加入环戊基甲醚分液,用饱和酒石酸水溶液调节环戊基甲醚相pH=6-7,浓缩环戊基甲醚,得V-9,700mg,两步收率72.9%。
1H NMR(DMSO,400MHz):1.60(s,3H),1.64(s,3H),1.64-1.74(m,2H),1.93-2.02(m,1H),2.09-2.18(m,1H),3.11(dr,1H),3.91-3.94(m,1H),4.46(d,1H),4.56(d,1H),5.14(s,1H),6.48(s,br,2H),7.28-7.33(m,1H),7.40-7.48(m,4H),9.07(s,br,2H).LR-MS(ESI)m/z:319(M-H) -
实施例19
Figure PCTCN2020090417-appb-000028
OLV-2(1.0g,5.4mmol)溶于乙醚中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入三氟化硼乙醚(0.12g,0.1eq)乙醚溶液,-10℃至0℃,滴加XIII(990g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入正庚烷,甲醇,10%的KOH水溶液分液,上层用饱和酒石酸水溶液调节pH=6-7,浓缩至干,过滤浓缩得V-9,800mg,,收率46.5%。
1H NMR(DMSO,400MHz):1.60(s,3H),1.64(s,3H),1.64-1.74(m,2H),1.93-2.02(m,1H),2.09-2.18(m,1H),3.11(dr,1H),3.91-3.94(m,1H),4.46(d,1H),4.56(d,1H),5.14(s,1H),6.48(s,br,2H),7.28-7.33(m,1H),7.40-7.48(m,4H),9.07(s,br,2H).LR-MS(ESI)m/z:319(M-H) -
实施例20
Figure PCTCN2020090417-appb-000029
X-2(1.0g,3.76mmol)溶于氯苯中,-10℃至0℃下,缓慢滴入三氟甲磺酸酐(1.0g,0.08eq)氯苯溶液,-10℃至0℃,滴加XVII(681mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入环己烷、氯苯、甲醇和10%的LiOH水溶液分液,下层用马来酸调节pH=6-7,过滤,环己烷分层,浓缩得化合物XI-2,1.46g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.35(m,7H),1.43-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.16(m,1H),2.70(t,2H),3.00-3.06(m,1H),3.89-3.92(m,1H),4.32(q,2H),4.42(d,1H),4.60(d,1H),5.09(s,1H),6.20(s,1H),9.92(s,1H),11.80(s,1H).LR-MS(ESI)m/z:385(M-H) -
将上述XI-2溶于甲醇中,加入10%的LiOH水溶液,加热回流。TLC显示XI-2完全反应,加入石油醚分液,石油醚相用饱和酒石酸水溶液调节pH=6-7,浓缩干石油醚,得1.02g淡棕色油状物。将上述淡棕色油状物溶于正庚烷中,-10℃至0℃搅拌4h,大量固体析出,过滤得800mg白色固体大麻二酚晶型A,两步收率64.5%,HPLC纯度99.5%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例21
Figure PCTCN2020090417-appb-000030
X-5(1.0g,5.6mmol)溶于二氯甲烷/甲苯中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入三氟甲磺酸酐(0.15g,0.1eq)甲苯溶液,-10℃至0℃,滴加XVIII(895mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入环己烷,甲醇,10%的KOH水溶液分液,下层用饱和酒石酸水溶液调节pH=5-6,二氯甲烷分层,有机相浓缩至干得800mg,总收率49.9%。
1H NMR(CDCl 3,400MHz):0.90(3H,m),1.20-1.33(4H,m),1.55(2H,m),1.72(3H s),1.80(3H,s),2.01-2.39(5H,m),2.92(2H,t),4.10(1H,m),4.40(1H,s),4.55(1H,s),5.57(1H,s),6.26(1H,s),6.66(2H,s),11.85(1H,s).LR-MS(ESI)m/z:357(M-H) -
实施例22
Figure PCTCN2020090417-appb-000031
X-5(1.0g,5.6mmol)溶于氯仿中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入甲磺酸(85mg,0.2eq)甲苯溶液,-10℃至0℃,滴加XVII(938mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入石油醚,甲醇,10%的KOH水溶液分液,下层用饱和酒石酸水溶液调节pH=5-6,正庚烷分层,有机相浓缩至干得700mg,总收率43.6%。
1H NMR(CDCl 3,400MHz):0.90(3H,m),1.20-1.33(4H,m),1.55(2H,m),1.72(3H s),1.80(3H,s),2.01-2.39(5H,m),2.92(2H,t),4.10(1H,m),4.40(1H,s),4.55(1H,s),5.57(1H,s),6.26(1H,s),6.66(2H,s),11.85(1H,s).LR-MS(ESI)m/z:357(M-H) -
实施例23
Figure PCTCN2020090417-appb-000032
OLV(1.0g,5.6mmol)溶于二氯甲烷/甲苯中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入三氟化硼乙醚(0.15g,0.1eq)甲苯溶液,-10℃至0℃,滴加XVII(1.02g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入正庚烷,甲醇,10%的KOH水溶液分液,上层用饱和酒石酸水溶液调节pH=6-7,浓缩至干,过滤浓缩得800mg淡棕色油状物,将上述油状物加入石油醚,-20℃搅拌12h,大量固体析出,过滤,烘干得600mg,总收率34.8%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例24
Figure PCTCN2020090417-appb-000033
X-1(1g,4.2mmol)溶于二氯甲烷中,-10℃至0℃下,加入三氟甲磺酸酐(0.1g,0.08eq)二氯甲烷溶液,-10℃至0℃,滴加XIV(802mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入正庚烷,甲苯,乙腈和10%的KOH水溶液搅拌分层,加入马来酸调节pH=6-7,二氯甲烷分层,浓缩得化合物XI-1,1.4g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于N,N-二甲基乙酰胺中,加入无水氯化镁(800mg,2eq)和N,N-二异丙基乙胺(1.08g,2eq),加热至128℃反应过夜。降至室温,加入甲基叔丁基醚分液,用饱和酒石酸水溶液调节甲基叔丁基醚相pH=6-7,浓缩甲基叔丁基醚,得1.1g淡棕色油状物。将上述淡棕色油状物溶于环庚烷,-20℃搅拌12h,大量固体析出,过滤,烘干得780mg,大麻二酚晶型A,两步收率61.2%,HPLC纯度99.5%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
对大麻二酚晶型A进行X-射线粉末衍射图谱测定,结果与实施例1中的相同。
将上述白色固体1g加热溶于正庚烷中,-30℃至-40℃保温48h,大量晶体生成,过滤得500mg晶型A的单晶。该晶型A的单晶的解析结果与实施例1中的相同。
实施例25
Figure PCTCN2020090417-appb-000034
X-1(1.0g,4.2mmol)溶于二氯甲烷中,加入无水硫酸镁,-10℃至0℃下,缓慢滴入甲磺酸酐(0.21g,0.3eq)的二氯甲烷溶液,-10℃至0℃,滴加XIIV(1.24g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入环己烷,甲基叔丁基醚,N,N-二甲基甲酰胺和10%的LiOH水溶液分液,下层用富马酸调节pH=6-7,乙酸乙酯分层,浓缩得化合物XI-1,1.12g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于乙醇中,加入10%的NaOH水溶液,加热回流。TLC显示XI-1完全反应,加入乙醚分液,乙醚相用饱和酒石酸水溶液调节pH=6-7,浓缩干乙醚,得0.85g淡棕色油状物。将上述淡棕色油状物加入环己烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,680mg,两步收率53.0%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例26
Figure PCTCN2020090417-appb-000035
X-1(1.0g,4.2mmol)溶于四氢呋喃中,-10℃至0℃下,缓慢滴入三氟乙酰三氟甲磺酸酯(0.11g,0.1eq)四氢呋喃溶液,-10℃至0℃,滴加XIVI(1.42g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入正己烷,环戊基甲醚,甲醇和10%的KOH水溶液分液,下层用酒石酸调节pH=6-7,醋酸异丙酯分层,浓缩得化合物XI-1,1.28g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于N,N-二甲基乙酰胺中,加入无水氯化镁(800mg,2eq)和N,N-二异丙基乙胺(1.08g,2eq),加热至128℃反应过夜。降至室温,加入甲苯分液,甲苯相用饱和酒石酸水溶液调节pH=6-7,浓缩干甲苯,得0.81g淡棕色油状物。将上述淡棕色油状物加入正己烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,650mg,两步收率50.4%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例27
Figure PCTCN2020090417-appb-000036
X-1(1.0g,4.2mmol)溶于正庚烷中,-10℃至0℃下,缓慢滴入三氟甲基磺酸三甲基硅酯(0.1g,0.1eq)甲苯溶液,-10℃至0℃滴加XVII(702mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加水分液,有机相浓缩至小体积,加入二甲苯,正庚烷,二甲基亚砜和10%的LiOH水溶液分液,下层相用柠檬酸调节pH=6-7,氯仿分层,浓缩得化合物XI-1,1.44g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于乙二醇中,加入10%的LiOH水溶液,加热回流。TLC显示XI-1完全反应,加入异丙醚分液,异丙醚相用饱和酒石酸水溶液调节pH=6-7,浓缩干异丙醚,得0.9g淡棕色油状物。将上述淡棕色油状物加入环己烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,750mg,两步收率58.1%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例28
Figure PCTCN2020090417-appb-000037
X-1(1.0g,4.2mmol)溶于甲基叔丁基醚中,加入硫酸钠,-10℃至0℃下,缓慢滴入三甲基碘硅烷(0.84g,0.1eq)甲基叔丁基醚溶液,-10℃至0℃滴加XIIVI(900mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,分液,有机相浓缩至小体积,加入环己烷,N,N-甲基乙酰胺和10%的NaOH水溶液分液,下层用马来酸调节pH=6-7,环己烷分层,浓缩得化合物XI-1,1.39g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于乙腈中,加入10%的LiOH水溶液,加热回流。TLC显示XI-1完全反应,加入正己烷分液,正己烷相用饱和酒石酸水溶液调节pH=6-7,浓缩干正己烷,得0.9g淡棕色油状物。将上述淡棕色油状物加入正己烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,750mg,两步收率58.0%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例29
Figure PCTCN2020090417-appb-000038
X-1(1.0g,4.2mmol)溶于1,2-二氯乙烷中,-10℃至0℃下,缓慢滴入対甲苯磺酸酐(1.36g,0.1eq)1,2-二氯乙烷溶液,-10℃至0℃,滴加XIIVII(1.24mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,分液,有机相浓缩至小体积,加入石油醚,甲醇和10%的KOH水溶液分液,下层相马来酸调节pH=6-7,过滤,正辛烷分层,浓缩得油状物化合物XI-1,1.32g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于甲苯中,加入10%的LiOH水溶液,加热回流。TLC显示XI-1完全反应,加入正辛烷分液,正辛烷相用饱和酒石酸水溶液调节pH=6-7,浓缩干正辛烷,得0.9g淡棕色油状物。将上述淡棕色油状物加入正辛烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,680mg,两步收率52.7%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例30
Figure PCTCN2020090417-appb-000039
X-2(1.0g,3.76mmol)溶于氯苯中,-10℃至0℃下,缓慢滴入三氟甲磺酸酐(1.0g,0.08eq)氯苯溶液,-10℃至0℃,滴加XVVII(1.42g,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水,分液,有机相浓缩至小体积,加入正庚烷、二甲苯、甲醇和10%的LiOH水溶液分液,下层用马来酸调节pH=6-7,过滤,正庚烷分层,浓缩得化合物XI-2,1.36g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.35(m,7H),1.43-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.16(m,1H),2.70(t,2H), 3.00-3.06(m,1H),3.89-3.92(m,1H),4.32(q,2H),4.42(d,1H),4.60(d,1H),5.09(s,1H),6.20(s,1H),9.92(s,1H),11.80(s,1H).LR-MS(ESI)m/z:385(M-H) -
将上述XI-2溶于甲醇中,加入10%的LiOH水溶液,加热回流。TLC显示XI-1完全反应,加入石油醚分液,石油醚相用饱和酒石酸水溶液调节pH=6-7,浓缩干石油醚,得0.9g淡棕色油状物。将上述淡棕色油状物溶于正庚烷中,-10℃至0℃搅拌4h,大量固体析出,过滤得850mg白色固体,将上述固体加入环戊烷,-20℃搅拌12h,大量固体析出,过滤,烘干得大麻二酚晶型A,850mg,两步收率65.8%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例31
Figure PCTCN2020090417-appb-000040
X-1(1g,4.2mmol)溶于二氯甲烷中,-10℃至0℃下,加入三氟甲磺酸酐(0.1g,0.08eq)二氯甲烷溶液,-10℃至0℃,滴加XII(702mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入正庚烷,甲苯,乙腈和10%的KOH水溶液搅拌分层,加入马来酸调节pH=6-7,二氯甲烷分层,浓缩得化合物XI-1,1.3g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于二甲基亚砜中,加入叔丁醇镁(1.4g,2eq),加热120-130℃。TLC显示XI-1完全反应,加入甲基叔丁基醚分液,用饱和酒石酸水溶液调节甲基叔丁基醚相pH=6-7,浓缩甲基叔丁基醚,得0.9g淡棕色油状物。将上述淡棕色油状物溶于环庚烷,-20℃搅拌12h,大量固体析出,过滤,烘干得680mg,大麻二酚晶型A,两步收率53.4%,HPLC纯度99.5%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例32
Figure PCTCN2020090417-appb-000041
X-1(1g,4.2mmol)溶于二氯甲烷中,-10℃至0℃下,加入三氟甲磺酸酐(0.1g,0.08eq)二氯甲烷溶液,-10℃至0℃,滴加XII(702mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入正庚烷,甲苯,乙腈和10%的KOH水溶液搅拌分层,加入马来酸调节pH=6-7,二氯甲烷分层,浓缩得化合物XI-1,1.3g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于二甲基亚砜中,加入异丙醇镁(1.2g,2eq),加热120-130℃。TLC显示XI-1完全反应,加入甲基叔丁基醚分液,用饱和酒石酸水溶液调节甲基叔丁基醚相pH=6-7,浓缩甲基叔丁基醚,得0.9g淡棕色油状物。将上述淡棕色油状物溶于环庚烷,-20℃搅拌12h,大量固体析出,过滤,烘干得680mg,大麻二酚晶型A,两步收率53.4%,HPLC纯度99.5%。
1H NMR(DMSO,400MHz):0.87(t,3H),1.20-1.33(m,4H),1.44-1.51(m,2H),1.59(s,3H),1.60(s,3H),1.63-1.70(m,2H),1.89-1.94(m,1H),2.07-2.13(m,1H),2.30(t,2H),3.04(dr,1H),3.82-3.85(m,1H),4.41(d,1H),4.50(d,1H),5.09(s,1H),6.02(s,br,2H),8.60(s,br,2H).LR-MS(ESI)m/z:313(M-H) -
实施例33
Figure PCTCN2020090417-appb-000042
X-1(1g,4.2mmol)溶于二氯甲烷中,-10℃至0℃下,加入三氟甲磺酸酐(0.1g,0.08eq)二氯甲烷溶液,-10℃至0℃,滴加XII(702mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入正庚烷,甲苯, 乙腈和10%的KOH水溶液搅拌分层,加入马来酸调节pH=6-7,二氯甲烷分层,浓缩得化合物XI-1,1.3g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于N,N-二甲基乙酰胺中,加入无水氯化镁(800mg,2eq)和叔丁醇钠(860mg,2eq),加热至128℃反应过夜。降至室温,加入甲基叔丁基醚分液,用饱和酒石酸水溶液调节甲基叔丁基醚相pH=6-7,浓缩甲基叔丁基醚,得1.1g淡棕色油状物。将上述淡棕色油状物溶于环庚烷,-20℃搅拌12h,大量固体析出,过滤,烘干得740mg,大麻二酚晶型A,两步收率58.1%,HPLC纯度99.5%。
实施例34
Figure PCTCN2020090417-appb-000043
X-1(1g,4.2mmol)溶于二氯甲烷中,-10℃至0℃下,加入三氟甲磺酸酐(0.1g,0.08eq)二氯甲烷溶液,-10℃至0℃,滴加XII(702mg,1.1eq),TLC显示反应基本结束。加入饱和碳酸氢钠淬灭反应,加入水分液,有机相浓缩至小体积,加入正庚烷,甲苯,乙腈和10%的KOH水溶液搅拌分层,加入马来酸调节pH=6-7,二氯甲烷分层,浓缩得化合物XI-1,1.3g。
1H NMR(DMSO,400MHz):0.87(t,3H),1.24-1.33(m,4H),1.41-1.48(m,2H),1.59(s,3H),1.61(s,3H),1.64-1.72(m,2H),1.92-1.96(m,1H),2.09-2.13(m,1H),2.68(t,2H),3.00-3.06(m,1H),3.84(s,3H),3.89-3.92(m,1H),4.44(d,2H),5.09(s,1H),6.21(s,1H),9.90(s,1H),11.56(s,1H).LR-MS(ESI)m/z:371(M-H) -
将上述XI-1溶于二甲基亚砜中,加入无水氯化镁(800mg,2eq)和氢氧化钠(336mg,2eq),加热至128℃反应过夜。降至室温,加入甲基叔丁基醚分液,用饱和酒石酸水溶液调节甲基叔丁基醚相pH=6-7,浓缩甲基叔丁基醚,得1.1g淡棕色油状物。将上述淡棕色油状物溶于环庚烷,-20℃搅拌12h,大量固体析出,过滤,烘干得680mg,大麻二酚晶型A,两步收率53.3%,HPLC纯度99.5%。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (16)

  1. 一种制备式I化合物的方法,所述方法为下列方法之一:
    Figure PCTCN2020090417-appb-100001
    使式II化合物与式III化合物在催化剂M存在下反应生成式I化合物,
    Figure PCTCN2020090417-appb-100002
    使式VI化合物与式III化合物在催化剂M存在下反应生成式I化合物,
    Figure PCTCN2020090417-appb-100003
    在式I、II、III和VI中,
    R 1和R 4各自独立地为氢、-(O=)CR 1a、-SO 2R 1b、取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基;其中,R 1a和R 1b各自独立地为氢、取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基,优选地,R 1a和R 1b各自独立地为氢、甲基、乙基、丙基、苯基、苯甲基、苯乙基或苯丙基,其中,取代基为羟基,氨基,巯基,有机磷基或卤素,C 1-C 10烷基,C 3-C 10环状烷基,或C 1-C 10烷氧基,
    进一步优选地,R 1和R 4各自独立地为氢、甲基、乙基、环丙甲基、甲氧基甲基、2-甲氧基乙基、乙酰基、丙酰基、苯甲酰基、苯乙酰基、苯丙酰基、甲磺酰基、三氟甲磺酰基或对甲苯磺酰基,
    R 2为氢、羧基、-COOR 5或-CONRcRd;其中R 5为C 1-C 20直链或支链烷基、C 3-C 20环状烷基、苄基、或C 6-C 20芳基;优选地,R 5为甲基或乙基;其中R c和R d各自独立地 为氢、取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基;取代基为羟基,氨基,巯基,有机磷基或卤素,C 1-C 10烷基,C 3-C 10环状烷基,或C 1-C 10烷氧基;优选地,R c和R d各自独立地为氢、甲基、乙基或羟基乙基;
    进一步优选地,R 2为氢、-COOH、-COOCH 3、-COOC 2H 5或-(CH 2CH 2) 2NCH 3
    R 3为取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的C 3-C 20烯烃基、取代或未取代的C 3-C 20炔烃基、取代或未取代的C 3-C 20酰基、取代或未取代的C 6-C 20芳基、或取代或未取代的含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂芳基,其中,取代基选自以下中的一个或多个:卤素;羟基;C 1-C 20烷基;-O-C 1-C 20烷基;-NR aR b,其中R a和R b各自独立地选自氢和C 1-C 4烷基;-SO-C 1-C 20烷基;-SO 2-C 1-C 20烷基;C 3-C 20烯烃基;C 3-C 20炔烃基;C 1-C 20酰基;C 6-C 20芳基;含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂芳基;C 3-C 20环烷基;或含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂环;优选地,R 3为-C 5H 11
  2. 根据权利要求1所述的方法,其中,
    R 1和R 4各自独立地为-(O=)CR 1a、-SO 2R 1b、取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基,
    所述催化剂M为选自路易斯酸、质子酸、酸酐、硅酯、硅烷中的一种或多种;
    优选地,
    所述路易斯酸选自:三卤化硼,更优选地,三氯化硼,三氟化硼;三卤化铝,更优选三氯化铝,三溴化铝;过渡金属盐,特别是过渡金属卤化物或其三氟甲磺酸盐,更优选地,四氯化钛,氯化锌,溴化锌,三氟甲磺酸锌;元素周期表中第四、五、六主族元素卤化物,更优选地,四氯化锡,三氯氧磷,二氯亚砜,二氯化砜;
    所述质子酸选自高氯酸、氢卤酸、硫酸、硫酸氢盐、磷酸、磷酸氢盐、焦磷酸、R 6COOH和R 7SO 3H;其中R 6和R 7各自独立地为取代或未取代的C 1-C 30直链或支链烷基、取代或未取代的C 3-C 30环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 30芳基,其中取代基为选自羧基、磷酸基、磺酸基、亚磷酸基和卤素中的一个或多个;
    所述酸酐为选自三氟甲磺酸酐、三氟乙酸酐、甲磺酸酐、乙磺酸酐、苯甲磺酸酐、对甲苯磺酸酐、三氟乙酰三氟甲磺酸酯中的一种或多种;
    所述硅酯为选自三氟甲磺酸三甲基硅酯、三氟甲磺酸三乙基硅酯中的一种或两种;
    所述硅烷为选自三甲基碘硅烷、三乙基碘硅烷、三甲基溴硅烷、三甲基氯硅烷中的一种或多种。
  3. 根据权利要求1所述的方法,其中,R 1和R 4各自独立地为氢,所述催化剂M为选自酸酐、硅酯、硅烷中的一种或多种;
    优选地,
    所述酸酐为选自三氟甲磺酸酐、三氟乙酸酐、甲磺酸酐、乙磺酸酐、苯甲磺酸酐、对甲苯磺酸酐中的一种或多种;
    所述硅酯为三氟甲磺酸三甲基硅酯;
    所述硅烷为选自三甲基碘硅烷、三乙基碘硅烷、三甲基溴硅烷、三甲基氯硅烷中的一种或多种;
    更优选为选自甲磺酸酐、三氟甲磺酸酐、三氟甲磺酸三甲基硅酯、三甲基碘硅烷中的一种或多种。
  4. 根据权利要求1所述的方法,其中,所述催化剂M与式II或VI化合物的投料摩尔比为0.01:1~1:1,优选为0.03:1~0.5:1,更优选为0.05:1~0.5:1。
  5. 根据权利要求1所述的方法,其中,式II或VI化合物与式III化合物在溶剂中反应,所述溶剂为选自烷烃、芳烃、卤代烃、酯类、醚类、极性非质子溶剂的一种或其两种以上的混合物,
    优选地,
    所述烷烃为C 5-C 20的直链或支链或环状烷烃;
    所述芳烃为取代的苯化合物;
    所述卤代烃选自二氯甲烷、1,2-二氯乙烷、氯仿;
    所述酯类选自乙酸甲酯、乙酸乙酯、乙酸异丙酯和乙酸丁酯;
    所述醚类选自四氢呋喃、二氧六环、2-甲基四氢呋喃、乙醚、乙二醇二甲醚、环戊基甲醚和甲基叔丁基醚;
    所述极性非质子溶剂选自乙腈、丙酮、N,N-二甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮和二甲基亚砜,
    进一步优选地,所述溶剂为选自正庚烷、正己烷、甲苯、二甲苯、氯苯、二氯甲烷、乙酸乙酯、四氢呋喃中一种或其两种以上的混合物。
  6. 根据权利要求1所述的方法,其中,式II或VI化合物与式III化合物的投料摩尔比为1:5~5:1,优选为0.5:1~2:1,更优选为0.8:1~1.5:1。
  7. 根据权利要求1所述的方法,其中,
    所述反应在温度为-30℃至50℃,优选-20℃至40℃下进行;和/或
    所述反应的反应时间为1小时~24小时。
  8. 根据权利要求1所述的方法,进一步包括通过分层的方式进行的纯化式I化合物的步骤,优选地,所述纯化式I化合物的步骤包括两条路线:
    路线(a):
    当反应溶剂为选自乙腈、丙酮、N,N-二甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮和二甲基亚砜的极性非质子溶剂时,在式II或VI化合物与式III化合物的反应结束后,加入饱和碳酸氢钠淬灭反应,加入无机碱水溶液,再加入选自烃类溶剂、醚类溶剂中的一种或其两种以上的混合溶剂进行分层;
    路线(b):
    当反应溶剂为选自烷烃、芳烃、卤代烃、酯类、醚类中一种或其两种以上的混合物的除极性非质子溶剂外的其他溶剂时,在式II或VI化合物与式III化合物的反应结束后,加入饱和碳酸氢钠淬灭反应,加入水,分液,浓缩干溶剂,得到式I化合物粗品,粗品中加入无机碱水溶液,再加入选自烃类溶剂、醚类溶剂中的一种或其两种以上的混合溶剂进行分层。
  9. 根据权利要求8所述的方法,用于分层的溶剂为由选自烃类溶剂、醚类溶剂中一种或其两种以上的混合溶剂和无机碱水溶液组成的混合物;
    所述烃类溶剂包括选自C 5-C 20直链或支链或环状烷烃的烷烃溶剂和选自甲苯、氯苯、二甲苯、硝基苯的不饱和芳香烃溶剂;
    所述醚类溶剂选自四氢呋喃、甲基叔丁基醚、乙醚、环戊基甲醚、异丙醚、苯甲醚、乙二醇二甲醚、四氢吡喃、二氧六环;
    所述无机碱水溶液中的无机碱为选自氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾和碳酸锂中的一种或其两种以上的混合物,所述无机碱水溶液的质量分数为1%-30%;
    优选地,所述纯化式I化合物的步骤还包括:分层后水相用酸调节pH=6-7,水相中加入有机溶剂萃取,合并水相浓缩至干,得到式I所示化合物,
    其中,优选地,所用的酸可为有机酸或无机酸中的一种,其中,所用有机酸选自甲酸、乙酸、丙酸、草酸、马来酸、枸橼酸、酒石酸、甲磺酸、苯磺酸,其中,所用无机酸选自盐酸、硫酸、磷酸;
    其中,优选地,所述有机溶剂为选自2-甲基四氢呋喃、乙醚、乙二醇二甲醚、C 5-C 20的直链或支链或环状烷烃、苯、甲苯、二甲苯、二氯甲烷、1,2-二氯乙烷、氯仿、环戊基甲醚、甲基叔丁基醚中的一种或其两种以上的混合物,优选为选自二氯甲烷、四氢呋喃、甲苯、二甲苯、氯苯、正庚烷、正己烷中的一种或其两种以上的混合物。
  10. 一种制备式V化合物的方法,包括:
    使用权利要求1-9中任一项所述的方法制备式I化合物,
    使式I化合物脱去R2生成式V化合物,
    Figure PCTCN2020090417-appb-100004
    其中,R 2为羧基、-COOR 5或-CONR cR d;其中R 5为C 1-C 20直链或支链烷基、C 3-C 20环状烷基、苄基、或C 6-C 20芳基;优选地,R 5为甲基或乙基;以及其中R c和R d各自独立地为氢、取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的苄基、或取代或未取代的C 6-C 20芳基;取代基为羟基,氨基,巯基,有机磷基或卤素,C 1-C 10烷基,C 3-C 10环状烷基,或C 1-C 10烷氧基;优选地,R c和R d各自独立地为氢、甲基、乙基或羟基乙基;
    进一步优选地,R 2为氢、-COOH、-COOCH 3、-COOC 2H 5或-(CH 2CH 2) 2NCH 3
    R 3为取代或未取代的C 1-C 20直链或支链烷基、取代或未取代的C 3-C 20环状烷基、取代或未取代的C 3-C 20烯烃基、取代或未取代的C 3-C 20炔烃基、取代或未取代的C 3-C 20酰基、取代或未取代的C 6-C 20芳基、或取代或未取代的含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂芳基,其中,取代基选自以下中的一个或多个:卤素;羟基;C 1-C 20烷基;-O-C 1-C 20烷基;-NR aR b,其中R a和R b各自独立地选自氢和C 1-C 4烷基;-SO-C 1-C 20烷基;-SO 2-C 1-C 20烷基;C 3-C 20烯烃基;C 3-C 20炔烃基;C 1-C 20酰基;C 6-C 20芳基;含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂芳基;C 3-C 20环烷基或含有选自氧、氮、硫和磷中的一个或多个原子的C 2-C 20杂环;优选地,R 3为-C 5H 11
  11. 根据权利要求10所述的方法,其中,使式I所示的化合物脱去R 2生成式V所示的化合物的反应在选自碱、碱金属或碱土金属盐中的一种或其两者的混合物中进行;
    其中,优选地,所述碱为选自碱金属或碱土金属氢氧化物、碱金属或碱土金属碳酸盐、碱金属或碱土金属醇盐和含氮有机碱中的一种或其两种以上的混合物,更优选为选自氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾、碳酸锂、甲醇钠、甲醇钾、乙醇锂、乙醇钠、甲醇镁、乙醇镁、正丙醇镁、甲醇钙、乙醇钙、叔丁醇钠、叔丁醇锂、叔丁醇镁、异丁醇镁、叔戊醇镁、N-甲基吗啉、N,N-二异丙基乙基胺、三乙胺、三丙胺、三正丙胺、三异丙胺、三丁胺、吡啶、嘧啶、喹啉、N-甲基哌啶、N-甲基哌嗪、咪唑、二甲氨基吡啶、N-甲基吗啉、二甲基苯胺、1,8-二氮杂二环[5.4.0]十一碳-7-烯(DBU)、1,5-二氮杂二环[4.3.0]壬-5-烯(DBN)、1,4-二氮杂二环[2.2.2]辛烷(DABCO)中的一种或其两种以上的混合物;优选地,所述碱选自氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾、碳酸锂、乙醇镁、正丙醇镁、叔丁醇镁或异丁醇镁;更优选地,所述的碱为氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾、碳酸锂、乙醇镁、叔丁醇镁;
    其中,优选地,所述的碱金属或碱土金属盐为选自碱金属或碱土金属卤化物、碱金属或碱土金属羧酸盐、碱金属或碱土金属磺酸盐中的一种或其两种以上的混合物,更优选为选自氯化锂、溴化锂、碘化锂、乙酸锂、三氟乙酸锂、苯甲酸锂、三氟甲磺酸锂、甲磺酸锂、苯甲磺酸锂;氯化钠、溴化钠、碘化钠、乙酸钠、三氟乙酸钠、苯甲酸钠、三氟甲磺酸钠、甲磺酸钠、苯甲磺酸钠;氯化钾、溴化钾、碘化钾、乙酸钾、三氟乙酸钾、苯甲酸钾、三氟甲磺酸钾、甲磺酸钾、苯甲磺酸钾;氯化镁、溴化镁、碘化镁、乙酸镁、三氟乙酸镁、苯甲酸镁、三氟甲磺酸镁、甲磺酸镁、苯甲磺酸镁,氯化钙、溴化钙、乙酸钙、三氟乙酸钙、苯甲酸钙;优选地,所述碱金属或碱土金属盐为溴化锂、氯化锂、氯化钠、氯化钾、溴化镁、氯化镁;更优选地,所述的碱金属或碱土金属盐为氯化镁、氯化锂;
    其中,使用溶剂进行所述反应,优选地,所述溶剂为选自甲醇、乙醇、异丙醇、乙二醇、四氢呋喃、二氧六环、2-甲基四氢呋喃、乙醚、乙二醇二甲醚、环戊基甲醚、甲基叔丁基醚、二甲基亚砜、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二乙基甲酰胺、N,N-二乙基乙酰胺和水中的一种或其两种以上的混合物。
  12. 根据权利要求11所述的方法,其中,所述碱金属或碱土金属盐与式I所示的化合物的投料摩尔比为20:1~1:4,优选为15:1~1:2,更优选为10:1~1:1;所述碱与式I所示的化合物的投料摩尔比为10:1~1:4;优选为8:1~1:3,更优选为5:1~1:1。
  13. 根据权利要求10所述的方法,进一步包括纯化式V化合物的步骤,其中,所述纯化式V化合物的步骤包括向式V化合物的粗产物中加入溶剂进行分层,优选地,用于分层的溶剂为由选自烷烃溶剂、醚类溶剂、不饱和芳香烃溶剂中的一种或两种以上的混合溶剂和无机碱水溶液组成的混合物,
    进一步优选地,
    所述烷烃溶剂为C 5-C 20直链或支链或环状烷烃;
    所述醚类溶剂为选自四氢呋喃、甲基叔丁基醚、乙醚、环戊基甲醚、异丙醚和苯甲醚、乙二醇二甲醚、四氢吡喃、二氧六环中的一种或其两种以上的混合物;
    所述不饱和芳香烃溶剂选自甲苯、氯苯、二甲苯;
    所述无机碱水溶液中的无机碱为选自氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾和碳酸锂中的一种或其两种以上的混合物,所述无机碱水溶液的质量分数为1%-30%;
    优选地,所述纯化式V化合物的步骤进一步包括以下步骤:分层完毕后,将有机相用酸调节pH=6-7,分层后,有机相浓缩干,得到油状式V化合物;
    其中,优选地,所用的酸为有机酸或无机酸中的一种,其中,更优选地,所用有机酸选自甲酸、乙酸、丙酸、草酸、马来酸、枸橼酸、酒石酸、甲磺酸、苯磺酸;其中,还更优选地,所用无机酸选自盐酸、硫酸、磷酸。
  14. 一种大麻二酚晶型A,其中,
    所述晶型A的DSC谱图数据如下:初始值=65.46±1℃,峰值=68.66±1℃;
    所述晶型A的X-射线粉末衍射数据如下:在2θ为5.097°±0.2°、9.40°±0.2°、9.71°±0.2°、10.22°±0.2°、11.79°±0.2°、12.503°±0.2°、13.147°±0.2°、13.787°±0.2°、15.086°±0.2°、17.05°±0.2°、17.40°±0.2°、17.98°±0.2°、19.00°±0.2°、19.83°±0.2°、20.891°±0.2°、21.685°±0.2°、22.17°±0.2°和22.60°±0.2°、24.416°±0.2°、29.091°±0.2°、31.133°±0.2°处有X-射线衍射峰。
  15. 一种制备大麻二酚晶型A的方法,所述方法包括:将大麻二酚溶于0.2-10倍重量的烷烃溶剂,冷却至-50℃~10℃,保温搅拌或静置,然后过滤或离心混悬液,分离得到大麻二酚晶型A,优选地,所述烷烃溶剂为选自C 4-C 20直链或支链或环状烷烃中的一种或其两种以上的混合物。
  16. 根据权利要求14所述的方法,其中,所述大麻二酚是通过权利要求10-13中任一项所述的方法制备的。
PCT/CN2020/090417 2019-05-17 2020-05-15 大麻二酚类化合物的制备方法 WO2020233502A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021568975A JP7426412B2 (ja) 2019-05-17 2020-05-15 カンナビジオール系化合物の製造方法
US17/611,348 US20220204431A1 (en) 2019-05-17 2020-05-15 Method for preparing cannabidiol compound
EP20809416.9A EP3971158A4 (en) 2019-05-17 2020-05-15 METHOD OF MAKING A CANNABIDIOL COMPOUND

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910410760.2 2019-05-17
CN201910410760 2019-05-17
CN201911185126.X 2019-11-27
CN201911185126.XA CN111943813B (zh) 2019-05-17 2019-11-27 大麻二酚类化合物的制备方法

Publications (1)

Publication Number Publication Date
WO2020233502A1 true WO2020233502A1 (zh) 2020-11-26

Family

ID=73336484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090417 WO2020233502A1 (zh) 2019-05-17 2020-05-15 大麻二酚类化合物的制备方法

Country Status (5)

Country Link
US (1) US20220204431A1 (zh)
EP (1) EP3971158A4 (zh)
JP (1) JP7426412B2 (zh)
CN (1) CN111943813B (zh)
WO (1) WO2020233502A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603568A (zh) * 2021-07-19 2021-11-05 厦门朝阳生物工程有限公司 一种大麻二酚的制备方法
WO2022213120A1 (en) * 2021-04-02 2022-10-06 Lygos, Inc. Cannabinoids from substituted resorcinol carboxylic acids

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811980B (zh) * 2020-12-01 2022-03-25 山东金城金奥医药科技有限公司 一种绿色光氧化连续制备大麻二酚中间体的方法
CN115504862A (zh) * 2021-06-07 2022-12-23 南通新世元生物科技有限公司 一种大麻萜酚的制备方法
WO2024028516A1 (en) 2022-08-05 2024-02-08 Salud & Semillas, S.L. CANNABINOID SYNTHESIS STARTING OUT FROM OLIVETOL AND TERPENE IN DICHLOROMETHANE WITH FeCl3 * 6H2O AS CATALYST

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025516A (en) * 1975-06-23 1977-05-24 The John C. Sheehan Institute For Research, Inc. Process for the preparation of (-)-6a,10a-trans-6a,7,8,10a-tetrahydrodibenzo[b,d]-pyrans
US5227537A (en) 1991-01-09 1993-07-13 Heinrich Mack Nachf. Method for the production of 6,12-dihydro-6-hydroxy-cannabidiol and the use thereof for the production of trans-delta-9-tetrahydrocannabinol
WO2001003690A1 (en) * 1999-07-12 2001-01-18 Virginia Commonwealth University Novel vasodilator cannabinoid analogs
CN1771217A (zh) * 2003-04-10 2006-05-10 马林克罗特公司 橄榄酚-环糊精络合物以及制备△9-四氢化大麻酚的区域选择性方法
CN101198324A (zh) * 2005-06-16 2008-06-11 欧洲凯尔特公司 用于改进剂型的大麻素活性药物成分
CN101316832A (zh) * 2005-09-29 2008-12-03 Amr科技公司 δ-9-四氢大麻酚的生成方法
CN101815697A (zh) * 2007-07-30 2010-08-25 奥特兰兹公司 大麻二酚前药、包括大麻二酚前药的组合物及其使用方法
US20100298579A1 (en) * 2009-04-29 2010-11-25 Thc Pharm Gmbh Process for preparing synthetic cannabinoids
WO2011006099A1 (en) * 2009-07-10 2011-01-13 Northeastern University Angiogenic resorcinol derivatives
CN105517989A (zh) * 2013-09-03 2016-04-20 西姆莱斯有限公司 大麻素类化合物的混合物及其制备和用途
WO2016138383A1 (en) * 2015-02-27 2016-09-01 The Feinstein Institute For Medical Research Treatment method, compounds, and method of increasing trpv2 activity
US20170008869A1 (en) 2015-07-10 2017-01-12 Noramco, Inc. Process for the production of cannabidiol and delta-9-tetrahydrocannabinol
CN106456573A (zh) * 2014-01-13 2017-02-22 康纳生物技术有限公司 治疗肝性脑病的新型功能化1,3‑苯二酚及其用法
CN106810426A (zh) * 2016-12-29 2017-06-09 暨明医药科技(苏州)有限公司 一种大麻二酚的合成方法
CN107405327A (zh) * 2015-02-26 2017-11-28 西姆莱斯有限公司 大麻素化合物的混合物、其制备和应用
US20170349518A1 (en) * 2016-06-01 2017-12-07 Daniel Dickman Crystalline Form of Cannabidiol
US20170349517A1 (en) * 2016-06-01 2017-12-07 Daniel Dickman Crystalline Cannabidivarin
CN108024973A (zh) * 2015-07-16 2018-05-11 耶路撒冷希伯来大学伊森姆研究发展有限公司 氟化的cbd化合物、其组合物以及用途
CN109153661A (zh) * 2016-05-13 2019-01-04 西姆莱斯有限公司 用于纯化大麻素化合物的方法
WO2019033168A1 (en) * 2017-08-16 2019-02-21 The University Of Sydney SYNTHESIS OF PHYTOCANNABINOIDS COMPRISING A DECARBOXYLATION STAGE
WO2019046806A1 (en) * 2017-09-01 2019-03-07 Botaniteck Llc SYNTHETIC CANNABIDIOL COMPOSITIONS AND METHODS OF MAKING THE SAME
WO2019079677A1 (en) * 2017-10-20 2019-04-25 Corbus Pharmaceuticals, Inc. METHODS AND COMPOSITIONS RELATING TO 5- (1,1-DIMETHYLHEPTYL) -ORRESORCINOL ULTRAPUR
CN109734591A (zh) * 2018-12-26 2019-05-10 江苏暨明医药科技有限公司 一种大麻二酚中间体及其制备方法与及应用
CN110283048A (zh) * 2019-06-28 2019-09-27 云南翰谷生物科技有限公司 大麻二酚晶体的制备方法
CN110304994A (zh) * 2019-07-01 2019-10-08 吴平 一种从工业大麻中提取高纯度大麻二酚的方法
EP3653596A1 (en) * 2018-11-14 2020-05-20 Indena S.p.A. Continuous flow synthesis of cannabidiol
WO2020104796A1 (en) * 2018-11-21 2020-05-28 GW Research Limited Cannabidiol-type cannabinoid compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI369203B (en) * 2004-11-22 2012-08-01 Euro Celtique Sa Methods for purifying trans-(-)-△9-tetrahydrocannabinol and trans-(+)-△9-tetrahydrocannabinol
AU2018317935A1 (en) * 2017-08-16 2020-03-05 The University Of Sydney Synthesis of phytocannabinoids including a demethylation step

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025516A (en) * 1975-06-23 1977-05-24 The John C. Sheehan Institute For Research, Inc. Process for the preparation of (-)-6a,10a-trans-6a,7,8,10a-tetrahydrodibenzo[b,d]-pyrans
US5227537A (en) 1991-01-09 1993-07-13 Heinrich Mack Nachf. Method for the production of 6,12-dihydro-6-hydroxy-cannabidiol and the use thereof for the production of trans-delta-9-tetrahydrocannabinol
WO2001003690A1 (en) * 1999-07-12 2001-01-18 Virginia Commonwealth University Novel vasodilator cannabinoid analogs
CN1771217A (zh) * 2003-04-10 2006-05-10 马林克罗特公司 橄榄酚-环糊精络合物以及制备△9-四氢化大麻酚的区域选择性方法
CN101198324A (zh) * 2005-06-16 2008-06-11 欧洲凯尔特公司 用于改进剂型的大麻素活性药物成分
CN101316832A (zh) * 2005-09-29 2008-12-03 Amr科技公司 δ-9-四氢大麻酚的生成方法
CN101815697A (zh) * 2007-07-30 2010-08-25 奥特兰兹公司 大麻二酚前药、包括大麻二酚前药的组合物及其使用方法
US20100298579A1 (en) * 2009-04-29 2010-11-25 Thc Pharm Gmbh Process for preparing synthetic cannabinoids
EP2314580A1 (de) 2009-04-30 2011-04-27 The Health Concept GmbH Verfahren zur Herstellung von synthetischen Cannabinoiden
WO2011006099A1 (en) * 2009-07-10 2011-01-13 Northeastern University Angiogenic resorcinol derivatives
CN105517989A (zh) * 2013-09-03 2016-04-20 西姆莱斯有限公司 大麻素类化合物的混合物及其制备和用途
CN106456573A (zh) * 2014-01-13 2017-02-22 康纳生物技术有限公司 治疗肝性脑病的新型功能化1,3‑苯二酚及其用法
CN107405327A (zh) * 2015-02-26 2017-11-28 西姆莱斯有限公司 大麻素化合物的混合物、其制备和应用
WO2016138383A1 (en) * 2015-02-27 2016-09-01 The Feinstein Institute For Medical Research Treatment method, compounds, and method of increasing trpv2 activity
US20170008869A1 (en) 2015-07-10 2017-01-12 Noramco, Inc. Process for the production of cannabidiol and delta-9-tetrahydrocannabinol
CN108024973A (zh) * 2015-07-16 2018-05-11 耶路撒冷希伯来大学伊森姆研究发展有限公司 氟化的cbd化合物、其组合物以及用途
CN109153661A (zh) * 2016-05-13 2019-01-04 西姆莱斯有限公司 用于纯化大麻素化合物的方法
US20170349518A1 (en) * 2016-06-01 2017-12-07 Daniel Dickman Crystalline Form of Cannabidiol
US20170349517A1 (en) * 2016-06-01 2017-12-07 Daniel Dickman Crystalline Cannabidivarin
CN106810426A (zh) * 2016-12-29 2017-06-09 暨明医药科技(苏州)有限公司 一种大麻二酚的合成方法
WO2019033168A1 (en) * 2017-08-16 2019-02-21 The University Of Sydney SYNTHESIS OF PHYTOCANNABINOIDS COMPRISING A DECARBOXYLATION STAGE
WO2019046806A1 (en) * 2017-09-01 2019-03-07 Botaniteck Llc SYNTHETIC CANNABIDIOL COMPOSITIONS AND METHODS OF MAKING THE SAME
WO2019079677A1 (en) * 2017-10-20 2019-04-25 Corbus Pharmaceuticals, Inc. METHODS AND COMPOSITIONS RELATING TO 5- (1,1-DIMETHYLHEPTYL) -ORRESORCINOL ULTRAPUR
EP3653596A1 (en) * 2018-11-14 2020-05-20 Indena S.p.A. Continuous flow synthesis of cannabidiol
WO2020104796A1 (en) * 2018-11-21 2020-05-28 GW Research Limited Cannabidiol-type cannabinoid compound
CN109734591A (zh) * 2018-12-26 2019-05-10 江苏暨明医药科技有限公司 一种大麻二酚中间体及其制备方法与及应用
CN110283048A (zh) * 2019-06-28 2019-09-27 云南翰谷生物科技有限公司 大麻二酚晶体的制备方法
CN110304994A (zh) * 2019-07-01 2019-10-08 吴平 一种从工业大麻中提取高纯度大麻二酚的方法

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
ANDREI V MALKOV , PAVEL KOČOVSKÝ: "Tetrahydrocannabinol revisited synthetic: approaches utilizing molybdenum catalysts", COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, vol. 66, no. 8, 31 December 2001 (2001-12-31), pages 1257 - 1268, XP055754954, ISSN: 0010-0765, DOI: 10.1135/cccc20011257 *
DEMETRIS P. PAPAHATJIS , SPYROS P. NIKAS , THANOS ANDREOU , ALEXANDROS MAKRIYANNIS: "Novel 1', 1'-chain substituted Δ8-tetrahydrocannabinols", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 12, no. 24, 31 December 2002 (2002-12-31), pages 3583 - 3586, XP055754946, ISSN: 0960-894X, DOI: 10.1016/S0960-894X(02)00785-0 *
DEMETRIS P. PAPAHATJIS, VICTORIA R. NAHMIAS, SPYROS P. NIKAS, THANOS ANDREOU, SHAKIRU O. ALAPAFUJA, ANDREW TSOTINIS, JIANXIN GUO, : "C1'-Cycloalkyl Side Chain Pharmacophore in Tetrahydrocannabinols", JOURNAL OF MEDICINAL CHEMISTRY, vol. 50, no. 17, 2 August 2007 (2007-08-02), pages 4048 - 4060, XP055754935, ISSN: 0022-2623, DOI: 10.1021/jm070121a *
HENRI HOELLINGER , NGUYEN‐HOANG NAM , JEAN‐FRANÇOIS DECAUCHEREUX , LOUIS PICHAT: "Synthesis of deuterated and tritiated Δ8- and Δ9-tetrahydrocannabinol", JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, vol. 13, no. 3, 31 December 1977 (1977-12-31), pages 401 - 415, XP055755022, ISSN: 0362-4803, DOI: 10.1002/jlcr.2580130316 *
LESLIE CROMBIE , W.MARY L. CROMBIE: "Cannabinoid bis-homologs: Miniaturised synthesis and GLC study", PHYTOCHEMISTRY, vol. 14, no. 1, 31 December 1975 (1975-12-31), pages 213 - 220, XP008059515, ISSN: 0031-9422, DOI: 10.1016/0031-9422(75)85042-4 *
LESLIE CROMBIE , W.MARY L.CROMBIE: "Cannabinoid acids and esters: miniaturized synthesis and chromatographic study", PHYTOCHEMISTRY, vol. 16, no. 9, 1 January 1977 (1977-01-01), pages 1413 - 1420, XP055754982, ISSN: 0031-9422, DOI: 10.1016/S0031-9422(00)88794-4 *
LESLIE W. CROMBIE, W. MARY L. CROMBIE , DAVID F. FIRTH: "Synthesis of bibenzyl cannabinoids. Hybrids of two biogenetic series found in Cannabis sativa", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS I, no. 5, 1 January 1988 (1988-01-01), pages 1263 - 1270, XP055754968, ISSN: 0300-922X, DOI: 10.1039/P19880001263 *
LUMIR O HANUS; TCHILIBON SUSANNA; PONDE DATTA E; BREUER AVIVA; FRIDE ESTER; MECHOULAM RAPHAEL: "Enantiomeric cannabidiol derivatives: synthesis and binding to cannabinoid receptors", ORGANIC & BIOMOLECULAR CHEMISTRY, vol. 3, no. 6, 16 February 2005 (2005-02-16), pages 1116 - 1123, XP055585857, ISSN: 1477-0520, DOI: 10.1039/b416943c *
M.A.MARSINI ET AL.: "Product class 2: polyhydric phenol, and corresponding phenolates-synthesis with retention of the functional group", SCIENCE OF SYNTHESIS, vol. 31a, 31 December 2007 (2007-12-31), Stuttgart , pages 441 - 467, XP009524360, ISBN: 978-3-13-118831-1, DOI: 10.1055/sos-SD-031-00321 *
PAPAHATJIS DEMETRIS P; NAHMIAS VICTORIA R; ANDREOU THANOS; FAN PUSHENG; MAKRIYANNIS ALEXANDROS: "Structural modifications of the cannabinoid side chain towards C3-aryl and 1', 1'-cycloalkyl-1'-cyano cannabinoids", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 16, no. 6, 4 January 2006 (2006-01-04), pages 1616 - 1620, XP028755059, ISSN: 0960-894X, DOI: 10.1016/j.bmcl.2005.12.026 *
RAJ K RAZDAN; HALDEAN C DALZELL; RICHARD HANDRICK G: "Hashish. A Simple one-step synthesis of (-)-Δ1-tetrahydrocannabinol (THC) from p-mentha-2, 8-dien-1-ol and olivetol", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 96, no. 18, 4 September 1974 (1974-09-04), pages 5860 - 5865, XP055585864, ISSN: 0002-7863, DOI: 10.1021/ja00825a026 *
See also references of EP3971158A4
SEUNG-HWA BAEK, M. SREBNIK, R. MECHOULAM: "Boron trifluoride etherate on alumina-a modified Lewis acid reagent. An improved synthesis of cannabidiol", TETRAHEDRON LETTERS, vol. 26, no. 8, 1 January 1985 (1985-01-01), pages 1083 - 1086, XP001095309, ISSN: 0040-4039, DOI: :10.1016/S0040-4039(00)98518-6 *
STEPHEN J. BYARD ,STEVEN A. CARR , JOSE F. DEFARIA , CRIST N. FILER , JOHN M. HERBERT ,TATIANA JARAMILLO FORCADA: "The preparation of [pentane-5, 5, 5-3H3]-abnormal-cannabidiol", JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, vol. 54, no. 4, 28 November 2010 (2010-11-28), pages 180 - 184, XP055754977, ISSN: 0362-4803, DOI: 10.1002/jlcr.1840 *
WILLIAM A KINNEY; MARK E MCDONNELL; HUA MARLON ZHONG; CHAOMIN LIU; LANYI YANG; WEI LING; TAO QIAN; YU CHEN; ZHIJIE CAI; DEAN PETKA: "Discovery of KLS-13019, a Cannabidiol-Derived Neuroprotective Agent, with Improved Potency, Safety, and Permeability", ACS MEDICINAL CHEMISTRY LETTERS, vol. 7, no. 4, 10 February 2016 (2016-02-10), pages 424 - 428, XP055531564, ISSN: 1948-5875, DOI: 10.1021/acsmedchemlett.6b00009 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213120A1 (en) * 2021-04-02 2022-10-06 Lygos, Inc. Cannabinoids from substituted resorcinol carboxylic acids
CN113603568A (zh) * 2021-07-19 2021-11-05 厦门朝阳生物工程有限公司 一种大麻二酚的制备方法

Also Published As

Publication number Publication date
US20220204431A1 (en) 2022-06-30
JP7426412B2 (ja) 2024-02-01
CN111943813A (zh) 2020-11-17
EP3971158A1 (en) 2022-03-23
CN111943813B (zh) 2023-04-14
JP2022533405A (ja) 2022-07-22
EP3971158A4 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2020233502A1 (zh) 大麻二酚类化合物的制备方法
ES2784881T3 (es) Proceso para la producción de cannabidiol y delta-9-tetrahidrocannabinol
TWI778457B (zh) 製備mcl1抑制劑的方法及中間體
RU2644160C2 (ru) Химический способ
ES2608860T3 (es) Proceso e intermedios para preparar inhibidores de la integrasa
JP5173421B2 (ja) チオトロピウム塩の新規な製造方法
ES2818902T3 (es) Novedosa forma cristalina de la sal 1-(5-(2,4-difluorofenil)-1-((3-fluorofenil)sulfonil)-4-metoxi-1H-pirrol-3-il)-N-metilmetanamina
WO2017045581A1 (zh) 氨基磷酸酯化合物及其制备方法和晶体
EP1384707A1 (en) 4-Nitroxybutylester of naproxene
WO2022134262A1 (zh) 二吡咯甲烯-1-酮类化合物及其制备方法
CN109496215B (zh) 一种福沙匹坦磷酸酯中间体及其制备方法
WO2020125581A1 (zh) 一种类酰胺类衍生物及其中间体的制备方法
KR100496248B1 (ko) 술폰아미드유도체의 제조방법 및 그의 결정
KR100900177B1 (ko) 트리테르펜 유도체의 제조 방법
JP4028098B2 (ja) カルバペネム抗生物質中間体の製造方法
CN111848419B (zh) (e)-4-羟基-3-甲基-2-丁烯基胺及玉米素的合成方法
CN111253405B (zh) 一种比阿培南中间体的制备方法
CN110105361B (zh) 一种Evodiakine及其衍生物的制备方法
ES2881899T3 (es) Procedimiento de preparación de un inhibidor de fosfodiesterasa 4
JP4903956B2 (ja) 7−オキサビシクロ[2.2.1]ヘプト−5−エン−2−カルボン酸誘導体の製造方法
CA1069502A (en) D-6-alkyl-8-cyanomethylergolines, their salts and methods of producing them
WO2019086008A1 (zh) 一种苯并三氮唑衍生物的晶型及其制备方法和用途
JPS6152156B2 (zh)
JP2024500821A (ja) グルホシネートの調製方法
EA045876B1 (ru) Способ получения бензоазепинового соединения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021568975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020809416

Country of ref document: EP