WO2020232572A1 - P2/p3混合型过渡金属氧化物钠离子电池正极材料及其制备方法 - Google Patents

P2/p3混合型过渡金属氧化物钠离子电池正极材料及其制备方法 Download PDF

Info

Publication number
WO2020232572A1
WO2020232572A1 PCT/CN2019/087398 CN2019087398W WO2020232572A1 WO 2020232572 A1 WO2020232572 A1 WO 2020232572A1 CN 2019087398 W CN2019087398 W CN 2019087398W WO 2020232572 A1 WO2020232572 A1 WO 2020232572A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
sodium ion
metal oxide
cathode material
preparation
Prior art date
Application number
PCT/CN2019/087398
Other languages
English (en)
French (fr)
Inventor
侴术雷
颜子超
李用成
李东祥
李亚书
宫毅涛
Original Assignee
辽宁星空钠电电池有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辽宁星空钠电电池有限公司 filed Critical 辽宁星空钠电电池有限公司
Priority to PCT/CN2019/087398 priority Critical patent/WO2020232572A1/zh
Publication of WO2020232572A1 publication Critical patent/WO2020232572A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and more specifically, relates to a P2/P3 mixed transition metal oxide sodium ion battery cathode material and a preparation method thereof.
  • Lithium-ion batteries as a secondary energy storage device that my country strongly supports, have outstanding advantages in terms of practical applications and theoretical research. They are of strategic significance. However, the shortage and uneven distribution of lithium resources and the surge in demand Contradictions have become increasingly prominent.
  • Sodium-ion batteries and lithium-ion batteries have the same "rocking chair" working principle, and the earth's sodium resources are widely distributed, the reserves are huge, and it is easy to reduce costs. In terms of price, sodium is only twentieth the cost of lithium 1. Sodium ion batteries have absolute advantages in price and application prospects.
  • cathode materials for transition metal oxide sodium ion batteries its high discharge voltage, stable structure and dialysis working mechanism are considered to be a type of cathode material with great industrialization potential.
  • Yunming Li et al. prepared P2-Na 7/9 Cu 2/9 Fe 1/9 Mn 2/3 O 2 cathode material and applied it to sodium ion batteries, but its insufficient rate performance made it unable to meet the requirements of fast charging. Market needs.
  • Hwang et al. prepared O3-(Na[Ni 0.58 Co 0.06 Mn 0.36 ]O 2 ) cathode material and applied it to sodium ion batteries, but the material is prone to phase change in the air, and the raw materials used are relatively expensive The transition metals of nickel and cobalt are not suitable for low-cost sodium ion batteries.
  • the purpose of the present invention is to provide a P2/P3 mixed transition metal oxide sodium ion battery cathode material and a preparation method thereof.
  • the cathode material solves the current problems of the transition metal oxide sodium ion battery cathode material being sensitive to humid air and poor rate performance.
  • the structure of the material will not change after being immersed in water, and the preparation method is simple and easy to use in large-scale production.
  • the material has excellent cycle performance and rate performance, and high repeatability.
  • the first aspect of the present invention provides a P2/P3 mixed transition metal oxide sodium ion battery cathode material, the chemical composition of the cathode material is: Na a Li b Cu c Zn d Mn e O 2+ ⁇ , wherein , A is 0.67 to 0.8, b is 0.01 to 0.03, c is 0.2 to 0.3, d is 0.05 to 0.08, e is 0.6 to 0.7, and ⁇ is a value that satisfies the valence balance.
  • the general formula of the chemical composition of the cathode material is: Na 0.78 Li 0.02 Cu 0.27 Zn 0.06 Mn 0.65 O 2+ ⁇ .
  • Mn is in a mixed valence state of +2 and +3 in the oxide.
  • the oxygen content will balance the valence according to the valence state distribution of Mn.
  • the positive electrode material of the present invention is a completely oxidized oxide. Therefore, in practical applications, there is no need to specifically measure the oxygen content.
  • the cathode material of the present invention has a layered P3 phase coated layered P2 phase structure.
  • the thickness of the layered P3 coating layer of the positive electrode material is 3-10 nm.
  • the positive electrode material has a layered, large and small particle composite structure, the small particle size is 10 to 200 nm, and the large particle size is 1 to 10 ⁇ m.
  • the preparation method of the P2/P3 mixed transition metal oxide sodium ion battery positive electrode material of the present invention is a sol-gel combined high-temperature sintering method: first obtain the transition metal composite gel precursor by the sol-gel method, press the tablet and then under the air atmosphere The temperature is raised to 400-600°C to obtain the composite lithium sodium oxide precursor, and finally the tablets are pressed, the temperature is raised to 800-900°C, and the P2/P3 mixed transition metal oxide sodium ion battery cathode material is obtained after cooling. Specific steps are as follows:
  • the divalent soluble salt of transition metal copper, zinc, and manganese is one or more of nitrate, sulfate, and acetate of copper, zinc, and manganese.
  • the lithium and sodium salt are one or more of lithium and sodium nitrate, sulfate, and acetate.
  • the complexing agent is at least one of citric acid, citrate, maleic acid and maleate.
  • the composite gel precursor is a copper, zinc, manganese, lithium, and sodium complex containing a complexing agent.
  • the tableting refers to the use of a mold to press the powder material into a glossy disc through a hydraulic pump under a pressure of 10-20 mbar.
  • the present invention also expands its application in sodium ion batteries.
  • the present invention provides a novel sodium ion battery cathode material that is stable to water and oxygen.
  • the rapid charge and discharge performance of the material is extremely excellent, and it still has 73mAh under 10C (one minute charge and discharge) conditions.
  • g -1 reversible discharge specific capacity the structure of the material will not change after soaking in water, and the preparation method is simple, easy to use in large-scale production, the material has excellent cycle performance and rate performance, high repeatability, and good uniformity. It has a good driving force for the development of the sodium ion battery industry.
  • the cathode material induced by lithium doping of the present invention uses cheap metals such as zinc, copper, and manganese as raw materials, which greatly reduces costs while ensuring excellent performance.
  • the invention is economical and efficient, the provided positive electrode material can be exposed to the air for a long time and has excellent rate performance, and has a very broad application prospect in fast charge and fast discharge sodium ion batteries.
  • Fig. 1 is a schematic diagram of the structure of a P2/P3 mixed transition metal oxide sodium ion battery cathode material of the present invention.
  • FIG. 2 is a scanning electron microscope (SEM) photograph of the P2/P3 mixed transition metal oxide cathode material Na 0.78 Li 0.02 Cu 0.27 Zn 0.06 Mn 0.65 O 2+ ⁇ provided by an embodiment of the present invention.
  • TEM 3 is a transmission electron microscope (TEM) photograph of the P2/P3 mixed transition metal oxide cathode material Na 0.78 Li 0.02 Cu 0.27 Zn 0.06 Mn 0.65 O 2+ ⁇ phase interface provided by an embodiment of the present invention.
  • XRD 4 is an X-ray diffraction (XRD) pattern of the P2/P3 mixed transition metal oxide cathode material Na 0.78 Li 0.02 Cu 0.27 Zn 0.06 Mn 0.65 O 2+ ⁇ provided by an embodiment of the present invention.
  • Figure 5 is the X-ray diffraction of the P2/P3 mixed transition metal oxide cathode material Na 0.78 Li 0.02 Cu 0.27 Zn 0.06 Mn 0.65 O 2+ ⁇ provided by an embodiment of the present invention after being immersed in water and exposed to air for 1 month (XRD) map.
  • Figure 6 is a graph showing the charge and discharge performance of the P2/P3 mixed transition metal oxide cathode material Na 0.78 Li 0.02 Cu 0.27 Zn 0.06 Mn 0.65 O 2+ ⁇ in a sodium ion button battery at a rate of 1C according to an embodiment of the present invention .
  • Figure 7 is a graph showing the performance of the P2/P3 mixed transition metal oxide cathode material Na 0.78 Li 0.02 Cu 0.27 Zn 0.06 Mn 0.65 O 2+ ⁇ in a sodium ion button battery at a rate of 0.1-10C provided by an embodiment of the present invention .
  • Fig. 8 is a scanning electron microscope (SEM) photograph of the transition metal oxide cathode material Na 0.78 Cu 0.27 Zn 0.06 Mn 0.65 O 2 provided by the comparative example.
  • Figure 9 is a comparative example to provide a performance map of the transition metal oxide cathode material Na 0.78 Cu 0.27 Zn 0.06 Mn 0.65 O 2 in a sodium ion button cell at a rate of 0.1-5C.
  • This embodiment is used to illustrate the cathode material of sodium ion battery Na 0.78 Li 0.02 Cu 0.27 Zn 0.06 Mn 0.65 O 2+ ⁇ and its preparation method.
  • n(Na):n(Li):n(Cu):n(Zn):n(Mn) 0.78:0.02:0.27:0.06:0.65
  • copper acetate, zinc acetate, manganese acetate, nitric acid Lithium and sodium nitrate were mixed and dissolved in a deionized aqueous solution of citric acid in the stated stoichiometric ratio.
  • the above mixed solution was stirred to a gel state. Dry in a vacuum oven at 90°C for 10 hours to obtain a transition metal composite gel precursor.
  • the dried gel precursor is ground and tableted, and the temperature is raised to 500°C at a rate of 4°C/min in an air atmosphere, the temperature is maintained for 4 hours, and the temperature is lowered to obtain a composite lithium sodium oxide precursor.
  • the transition metal composite oxide was ground and pressed into tablets, heated to 900°C at a rate of 3°C/min in an oxygen atmosphere, kept at the temperature for 14 hours, and cooled naturally to obtain the P2/P3 mixed transition metal oxide sodium ion Battery cathode material.
  • the structure diagram of the cathode material of the sodium ion battery is shown in Figure 1, the scanning electron microscope (SEM) photograph is shown in Figure 2, the transmission electron microscope (TEM) photograph of the phase interface is shown in Figure 3, and the X-ray diffraction (XRD) spectrum is shown in Shown in Figure 4.
  • the sodium ion battery cathode material has a layered P3 phase coating layered P2 phase structure, and the thickness of the layered P3 phase coating layer is 3-10 nm.
  • the sodium ion battery cathode material has a composite structure of large and small particles, the small particle size is 10-100 nm, and the large particle size is 2-5 ⁇ m.
  • Fig. 5 is an X-ray diffraction (XRD) pattern of the positive electrode material of the battery in this embodiment after being immersed in water and exposed to air for 1 month. It can be seen that the material is very stable in water and air, and there is no phase change after soaking.
  • XRD X-ray diffraction
  • FIG. 6 is a graph showing the charge and discharge performance of the battery cathode material of this embodiment in a sodium ion button battery at a rate of 1C. In the voltage range of 2.5 to 4.1V, as shown in Figure 6, the capacity retention rate of the material after 200 cycles is above 80%.
  • the rate performance graph of the battery cathode material of this embodiment is shown in FIG. 7.
  • the battery cathode material has 93.7mAh g -1 and 89.5mAh at 0.10C, 0.50C, 1.0C, 2.0C, 5.0C and 10.0C, respectively.
  • This comparative example is used to illustrate the performance difference of Li-doped sodium ion battery cathode material compared with the undoped sample Na 0.78 Cu 0.27 Zn 0.06 Mn 0.67 O 2 .
  • the dried gel precursor is ground and pressed into a tablet, and the temperature is raised to 500°C at a rate of 4°C/min under an air atmosphere, the temperature is maintained for 4 hours, and the temperature is lowered to obtain a composite metal oxide precursor.
  • the transition metal composite oxide was ground and pressed into tablets, heated to 900°C at a rate of 3°C/min in an oxygen atmosphere, kept at the temperature for 14 hours, and cooled naturally to obtain the comparative example transition metal oxide sodium ion battery cathode material .
  • the scanning electron microscope (SEM) photograph of this comparative example is shown in FIG. 8.
  • the rate performance chart of the battery cathode material of this comparative example is shown in Figure 9.
  • the cathode material of this comparative example has 70.2mAh g -1 and 69.3 at 0.10C, 0.2C, 0.50C, 1.0C, 2.0C and 5.0C, respectively.
  • the discharge specific capacity of 70 mAh g -1 indicates that the comparative example has lower ion conductivity under high current than the examples, and also highlights the cathode material of the Li-doped sodium ion battery of the present invention Na 0.78 Li 0.02 Cu 0.27 Zn 0.06 The advantage of Mn 0.65 O 2+ ⁇ in high-rate fast charge and fast release.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于钠离子电池技术领域,涉及一种P2/P3混合型过渡金属氧化物钠离子电池正极材料及其制备方法。该正极材料的化学组成通式为:Na aLi bCu cZn dMn eO 2+β,其中,a为0.67~0.8,b为0.01~0.03,c为0.2~0.3,d为0.05~0.08,e为0.6~0.7,β为满足化合价平衡的数值。相比于传统的镍、钴过渡金属氧化物正极,本发明的由锌锂掺杂共诱导的正极材料采用廉价金属锌、铜、锰作为原料,在大幅降低成本的同时保证了优异的性能。本发明经济高效,所提供的正极材料能在空气中长期暴露且倍率性能优异,在快充快放钠离子电池中具有非常广阔的应用前景。

Description

P2/P3混合型过渡金属氧化物钠离子电池正极材料及其制备方法 技术领域
本发明属于钠离子电池技术领域,更具体地,涉及一种P2/P3混合型过渡金属氧化物钠离子电池正极材料及其制备方法。
背景技术
随着社会现代化进程的加速,人们以大面积使用传统化石能源为代价所带动的发展引起的环境与经济问题,以及当代可再生能源(太阳能、风能、潮汐能、地热能)的不可预测性、地域限制及产能不稳定等缺陷使得人们很快意识到新型能源储存装置对人类发展的重要性。
锂离子电池作为目前我国大力扶持开发的二次储能装置,其卓越的优势无论是在实际应用方面还是理论研究方面都具有战略性意义,但是锂资源的匮乏及分布不均与需求量激增的矛盾也日益凸显。
钠离子电池与锂离子电池有着相同的“摇椅式”的工作原理,而且地球上钠的资源分布广泛,储量极大,易于降低成本,就价格上来看,钠仅为锂成本的二十分之一,钠离子电池在价格上具有绝对优势及应用前景。
在过渡金属氧化物钠离子电池正极材料中,其较高的放电电压,稳定的结构以及透析的工作机理,被认为是一类极具产业化潜力的正极材料。
Yunming Li等人制备了P2-Na 7/9Cu 2/9Fe 1/9Mn 2/3O 2正极材料,并应用于钠离子电池中,但是其倍率性能的不足使其不能满足快充快放的市场需要。
Hwang等人制备了O3-(Na[Ni 0.58Co 0.06Mn 0.36]O 2)正极材料并应用于钠离子电池中,但是该材料在空气中极易发生相变,且所用的原材料均为较贵的镍、钴过渡金属,并不适用于低成本的钠离子电池。
因此,开发以适应快充快放需求为目标的对空气稳定的低成本过渡金 属氧化物正极材料是目前市场发展的主要方向。
发明内容
本发明的目的在于提供一种P2/P3混合型过渡金属氧化物钠离子电池正极材料及其制备方法。该正极材料解决了目前过渡金属氧化物钠离子电池正极材料对潮湿空气敏感及倍率性能差的问题,该材料在水中浸泡后结构不会发生变化,并且制备方法简单,易用于大规模生产,材料的循环性能及倍率性能优异,可重复性高。
本发明的第一方面提供一种P2/P3混合型过渡金属氧化物钠离子电池正极材料,该正极材料的化学组成通式为:Na aLi bCu cZn dMn eO 2+β,其中,a为0.67~0.8,b为0.01~0.03,c为0.2~0.3,d为0.05~0.08,e为0.6~0.7,β为满足化合价平衡的数值。
优选地,该正极材料的化学组成通式为:Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β
所述正极材料中,Mn在氧化物中呈+2和+3混合价态,在制备过程中,氧的含量会根据Mn的价态分布平衡化合价。本发明的所述正极材料是完全氧化的氧化物,因此,在实际应用中,无需特别测定氧的含量。
本发明的所述正极材料呈层状P3相包覆层状P2相结构。
较佳地,所述正极材料的层状P3包覆层的厚度为3~10nm。
较佳地,所述正极材料呈层状、大小粒子复合结构,小粒子粒径为10~200nm,大粒子粒径为1~10μm。
本发明P2/P3混合型过渡金属氧化物钠离子电池正极材料的制备方法为溶胶凝胶结合高温烧结法:先通过溶胶凝胶法得到过渡金属复合凝胶前驱体,压片然后在空气气氛下,升温至400~600℃得到复合锂钠的氧化物前驱体,最后再压片,升温至800~900℃,冷却后得到所述P2/P3混合型过渡金属氧化物钠离子电池正极材料。具体步骤如下:
(1)分别将过渡金属铜、锌、锰的二价可溶性盐及锂、钠可溶性盐按化学计量比混合溶于络合剂水溶液中,在油浴60~80℃,机械搅拌转速为500~800转/分钟的条件下,将上述混合溶液搅拌至凝胶状,在80~100℃真空烘箱中干燥6~12小时,得到过渡金属复合凝胶前驱体;
(2)将所述复合凝胶前驱体研磨压片,在空气气氛下,以2~5℃/分钟的速率升温至400~600℃,保持温度3~5小时,降温,得到复合锂钠的氧化物前驱体;
(3)将所述氧化物前驱体研磨压片,在氧气气氛下,以2~5℃/分钟的速率升温至800~1000℃,保持温度10~15小时,自然冷却,得到所述P2/P3混合型过渡金属氧化物钠离子电池正极材料。
较佳地,所述过渡金属铜、锌、锰的二价可溶性盐为铜、锌、锰的硝酸盐、硫酸盐、乙酸盐中的一种或多种。
较佳地,所述锂、钠盐为锂、钠的硝酸盐、硫酸盐、乙酸盐中的一种或多种。
较佳地,所述络合剂为柠檬酸、柠檬酸盐、马来酸和马来酸盐中的至少一种。
根据本发明,所述复合凝胶前驱体为含络合剂的铜、锌、锰、锂、钠络合物。
根据本发明,所述压片是指用模具在10~20mbar的压力下通过液压泵将粉体材料压成带光泽圆片。
本发明在提供该正极材料配方及生产工艺的同时,也对其在钠离子电池中的应用进行了扩展。
本发明的特点及优势在于:本发明提供了一种对水氧稳定的新型钠离子电池正极材料,该材料的快速充放电性能极其优异,在10C(一分钟充放电)的条件下仍具有73mAh g -1的可逆放电比容量,材料在水中浸泡后结构不会发生变化,并且制备方法简单,易用于大规模生产,材料的循环性 能及倍率性能优异,可重复性高,均一性好,对钠离子电池行业的发展有较好的推动力。
相比于传统的镍、钴过渡金属氧化物正极,本发明的由锂掺杂诱导的正极材料采用廉价金属锌、铜、锰作为原料,在大幅降低成本的同时保证了优异的性能。本发明经济高效,所提供的正极材料能在空气中长期暴露且倍率性能优异,在快充快放钠离子电池中具有非常广阔的应用前景。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。
图1为本发明一种P2/P3混合型过渡金属氧化物钠离子电池正极材料的结构示意图。
图2为本发明实施例提供的P2/P3混合型过渡金属氧化物正极材料Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β的扫描电镜(SEM)照片。
图3为本发明实施例提供的P2/P3混合型过渡金属氧化物正极材料Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β相界面的透射电镜(TEM)照片。
图4为本发明实施例提供的P2/P3混合型过渡金属氧化物正极材料Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β的X射线衍射(XRD)图谱。
图5为本发明实施例提供的P2/P3混合型过渡金属氧化物正极材料Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β在水中浸泡后,在空气中暴露1个月的X射线衍射(XRD)图谱。
图6为本发明实施例提供的P2/P3混合型过渡金属氧化物正极材料Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β在钠离子扣式电池中,1C倍率下的充放电性能图谱。
图7为本发明实施例提供的P2/P3混合型过渡金属氧化物正极材料 Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β在钠离子扣式电池中,0.1-10C倍率下的性能图谱。
图8为对比例提供的过渡金属氧化物正极材料Na 0.78Cu 0.27Zn 0.06Mn 0.65O 2的扫描电镜(SEM)照片。
图9为对比例提供过渡金属氧化物正极材料Na 0.78Cu 0.27Zn 0.06Mn 0.65O 2在钠离子扣式电池中,0.1-5C倍率下的性能图谱。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
实施例1
本实施例用于说明钠离子电池正极材料Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β及其制备方法。
按物质的量n(Na):n(Li):n(Cu):n(Zn):n(Mn)=0.78:0.02:0.27:0.06:0.65分别将乙酸铜、乙酸锌、乙酸锰、硝酸锂、硝酸钠按所述化学计量比混合溶于柠檬酸的去离子水溶液中,在油浴70℃,机械搅拌转速为650转/分钟的条件下,将上述混合溶液搅拌至凝胶状,在90℃真空烘箱中干燥10小时,得到过渡金属复合凝胶前驱体。
将上述干燥好的凝胶前驱体研磨压片,在空气气氛下,以4℃/分钟的速率升温至500℃,保持温度4小时,降温,得到复合锂钠的氧化物前驱体。
将上述过渡金属复合氧化物研磨压片,在氧气气氛下,以3℃/分钟的速率升温至900℃,保持温度14小时,自然冷却,得到所述P2/P3混合型过渡金属氧化物钠离子电池正极材料。
该钠离子电池正极材料的结构示意图如图1所示,扫描电镜(SEM)照片如图2所示,相界面的透射电镜(TEM)照片如图3所示,X射线衍 射(XRD)图谱如图4所示。该钠离子电池正极材料呈层状P3相包覆层状P2相结构,层状P3相包覆层的厚度为3~10nm。该钠离子电池正极材料呈大小粒子复合结构,小粒子粒径为10~100nm,大粒子粒径为2~5μm。
将上述正极材料Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β在110℃烘箱干燥12小时,称取8g该正极材料并与1g乙炔黑和1g偏聚二氟乙烯均匀混合并分散于N-甲基-2-吡咯烷酮中,将分散好的浆料涂于铝箔上,110℃真空干燥后,裁剪成极片并在高纯氩气手套箱中以金属钠为负极,以玻璃纤维为隔膜,以1M NaPF 6/EC+DME(1:1)为电解液制成测试用扣式电池。
图5为本实施例的电池正极材料在水中浸泡后,在空气中暴露1个月的X射线衍射(XRD)图谱。可见材料在水和空气中非常稳定,浸泡后也没有发生相变。
图6为本实施例的电池正极材料在钠离子扣式电池中,1C倍率下的充放电性能图谱。在2.5~4.1V电压范围内,如图6所示,材料在200次循环后,容量保持率在80%以上。
本实施例的电池正极材料的倍率性能图谱如图7所示,该电池正极材料在0.10C、0.50C、1.0C、2.0C、5.0C及10.0C下分别具有93.7mAh g -1、89.5mAh g -1、87.1mAh g -1、83.2mAh g -1、80.6mAh g -1,72.6mAh g -1的放电比容量,大倍率深度放电后,当倍率降到0.1C该电池正极材料仍然能够保持93mAh g -1的放电比容量,充分展现了该电池正极材料广阔的应用前景。
对比例1
本对比例用于说明Li掺杂钠离子电池正极材料相比未掺杂样品Na 0.78Cu 0.27Zn 0.06Mn 0.67O 2的性能差异。
按物质的量n(Na):n(Cu):n(Zn):n(Mn)=0.78:0.27:0.06:0.67分别将乙酸铜、乙酸锌、乙酸锰、硝酸钠按所述化学计量比混合溶于柠檬酸的去离子 水溶液中,在油浴70℃,机械搅拌转速为650转/分钟的条件下,将上述混合溶液搅拌至凝胶状,在90℃真空烘箱中干燥10小时,得到过渡金属复合凝胶前驱体。
将上述干燥好的凝胶前驱体研磨压片,在空气气氛下,以4℃/分钟的速率升温至500℃,保持温度4小时,降温,得到复合金属氧化物前驱体。
将上述过渡金属复合氧化物研磨压片,在氧气气氛下,以3℃/分钟的速率升温至900℃,保持温度14小时,自然冷却,得到所述对比例过渡金属氧化物钠离子电池正极材料。
该对比例的扫描电镜(SEM)照片如图8所示。
该对比例的电池正极材料的倍率性能图谱如图9所示,该对比例正极材料在0.10C、0.2C、0.50C、1.0C、2.0C及5.0C下分别具有70.2mAh g -1、69.3mAh g -1、65.5mAh g -1、50.6mAh g -1、35.6mAh g -1,11.1mAh g -1的放电比容量,大倍率深度放电后,当倍率降到0.1C该电池正极材料保持70mAh g -1的放电比容量,表明对比例相对于实施例在大电流下具有较低的离子传导能力,也凸显出本发明的Li掺杂钠离子电池正极材料Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β在大倍率快充快放上的优势。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

  1. 一种P2/P3混合型过渡金属氧化物钠离子电池正极材料,其特征在于,该正极材料的化学组成通式为:Na aLi bCu cZn dMn eO 2+β,其中,a为0.67~0.8,b为0.01~0.03,c为0.2~0.3,d为0.05~0.08,e为0.6~0.7,β为满足化合价平衡的数值。
  2. 根据权利要求1所述的P2/P3混合型过渡金属氧化物钠离子电池正极材料,其特征在于,该正极材料的化学组成通式为:Na 0.78Li 0.02Cu 0.27Zn 0.06Mn 0.65O 2+β
  3. 根据权利要求1或2所述的P2/P3混合型过渡金属氧化物钠离子电池正极材料,其特征在于,所述正极材料呈层状P3相包覆层状P2相结构,层状P3相包覆层的厚度为3~10nm。
  4. 根据权利要求1或2所述的P2/P3混合型过渡金属氧化物钠离子电池正极材料,其特征在于,所述正极材料呈大小粒子复合结构,小粒子粒径为10~200nm,大粒子粒径为1~10μm。
  5. 权利要求1-4中任意一项所述的P2/P3混合型过渡金属氧化物钠离子电池正极材料的制备方法,其特征在于,该制备方法为溶胶凝胶结合高温烧结法:先通过溶胶凝胶法得到过渡金属凝胶前驱体,压片,然后在空气气氛下,升温至400~600℃得到复合锂钠的氧化物前驱体,最后再压片,升温至800~900℃,冷却后得到所述P2/P3混合型过渡金属氧化物钠离子电池正极材料。
  6. 根据权利要求5所述的制备方法,其特征在于,所述制备方法包 括:
    (1)分别将过渡金属铜、锌、锰的二价可溶性盐及锂、钠可溶性盐按化学计量比混合溶于络合剂水溶液中,在油浴60~80℃,机械搅拌转速为500~800转/分钟的条件下,将上述混合溶液搅拌至凝胶状,在80~100℃真空烘箱中干燥6~12小时,得到过渡金属复合凝胶前驱体;
    (2)将所述复合凝胶前驱体研磨压片,在空气气氛下,以2~5℃/分钟的速率升温至400~600℃,保持温度3~5小时,降温,得到复合锂钠的氧化物前驱体;
    (3)将所述氧化物前驱体研磨压片,在氧气气氛下,以2~5℃/分钟的速率升温至800~1000℃,保持温度10~15小时,自然冷却,得到所述P2/P3混合型过渡金属氧化物钠离子电池正极材料。
  7. 根据权利要求5或6所述的制备方法,其特征在于,所述过渡金属铜、锌、锰的二价可溶性盐为铜、锌、锰的硝酸盐、硫酸盐、乙酸盐中的一种或多种;所述锂、钠可溶性盐为锂、钠的硝酸盐、硫酸盐、乙酸盐中的一种或多种。
  8. 根据权利要求5或6所述的制备方法,其特征在于,所述络合剂为柠檬酸、柠檬酸盐、马来酸和马来酸盐中的至少一种。
  9. 根据权利要求5或6所述的制备方法,其特征在于,所述复合凝胶前驱体为以柠檬酸为络合剂的铜、锌、锰、锂、钠络合物。
  10. 根据权利要求5或6所述的制备方法,其特征在于,所述压片是指用模具在10~20mbar的压力下通过液压泵将粉体材料压成带光泽圆片。
PCT/CN2019/087398 2019-05-17 2019-05-17 P2/p3混合型过渡金属氧化物钠离子电池正极材料及其制备方法 WO2020232572A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087398 WO2020232572A1 (zh) 2019-05-17 2019-05-17 P2/p3混合型过渡金属氧化物钠离子电池正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087398 WO2020232572A1 (zh) 2019-05-17 2019-05-17 P2/p3混合型过渡金属氧化物钠离子电池正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020232572A1 true WO2020232572A1 (zh) 2020-11-26

Family

ID=73459221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087398 WO2020232572A1 (zh) 2019-05-17 2019-05-17 P2/p3混合型过渡金属氧化物钠离子电池正极材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2020232572A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122383A (zh) * 2021-11-29 2022-03-01 复旦大学 含过渡金属空位的氧变价钠离子电池正极材料及其制备方法
CN114156444A (zh) * 2021-10-15 2022-03-08 西安交通大学 一种共生层状结构的钠离子电池正极材料及其制备方法和应用
CN114597363A (zh) * 2022-03-11 2022-06-07 北京理工大学 一种可控外延钠电正极材料及其制备方法和钠离子电池
CN114937774A (zh) * 2022-05-16 2022-08-23 中国科学技术大学 一种p2和p3混合相层状氧化物钠离子电池正极材料及其制备方法和应用
CN114956198A (zh) * 2021-02-24 2022-08-30 郭珺 一种p3相钠锰氧化物材料及其制备方法与应用
CN114956203A (zh) * 2022-04-29 2022-08-30 贵州振华新材料有限公司 钠离子电池用含锌正极材料及其制法和应用
CN115367804A (zh) * 2022-09-23 2022-11-22 东莞理工学院 一种空气稳定的锰基钠离子电池正极材料的制备方法
CN115663173A (zh) * 2022-11-10 2023-01-31 赣州立探新能源科技有限公司 一种富钠层状氧化物材料及其制备方法和应用
CN116014109A (zh) * 2023-02-15 2023-04-25 厦门大学 一种锰基层隧复合正极材料及其制备方法和应用
CN116143194A (zh) * 2023-02-24 2023-05-23 中南大学 一种三相共生层状氧化物电极材料及其制备方法和其在钠离子电池中的应用
CN116525813A (zh) * 2023-06-27 2023-08-01 宁波容百新能源科技股份有限公司 一种层状氧化物及其制备方法、钠离子电池正极极片
CN117756195A (zh) * 2024-02-22 2024-03-26 贵州振华新材料股份有限公司 一种预钠处理的铜锌基钠离子电池正极材料及其制备方法
WO2024083923A1 (en) 2022-10-18 2024-04-25 University Court Of The University Of St Andrews Battery materials
CN117756195B (zh) * 2024-02-22 2024-06-04 贵州振华新材料股份有限公司 一种预钠处理的铜锌基钠离子电池正极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730630A (zh) * 2013-12-25 2014-04-16 北京大学深圳研究生院 一种电池用复合电极及其制备方法
CN108023082A (zh) * 2017-12-04 2018-05-11 中南大学 一种具有多相复合层状结构的钠离子电池正极材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730630A (zh) * 2013-12-25 2014-04-16 北京大学深圳研究生院 一种电池用复合电极及其制备方法
CN108023082A (zh) * 2017-12-04 2018-05-11 中南大学 一种具有多相复合层状结构的钠离子电池正极材料的制备方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956198B (zh) * 2021-02-24 2024-02-27 郭珺 一种p3相钠锰氧化物材料及其制备方法与应用
CN114956198A (zh) * 2021-02-24 2022-08-30 郭珺 一种p3相钠锰氧化物材料及其制备方法与应用
CN114156444A (zh) * 2021-10-15 2022-03-08 西安交通大学 一种共生层状结构的钠离子电池正极材料及其制备方法和应用
CN114122383B (zh) * 2021-11-29 2023-11-24 复旦大学 含过渡金属空位的氧变价钠离子电池正极材料及其制备方法
CN114122383A (zh) * 2021-11-29 2022-03-01 复旦大学 含过渡金属空位的氧变价钠离子电池正极材料及其制备方法
CN114597363A (zh) * 2022-03-11 2022-06-07 北京理工大学 一种可控外延钠电正极材料及其制备方法和钠离子电池
CN114597363B (zh) * 2022-03-11 2023-12-01 北京理工大学 一种可控外延钠电正极材料及其制备方法和钠离子电池
CN114956203A (zh) * 2022-04-29 2022-08-30 贵州振华新材料有限公司 钠离子电池用含锌正极材料及其制法和应用
CN114956203B (zh) * 2022-04-29 2023-11-28 贵州振华新材料有限公司 钠离子电池用含锌正极材料及其制法和应用
CN114937774B (zh) * 2022-05-16 2024-02-23 中国科学技术大学 一种p2和p3混合相层状氧化物钠离子电池正极材料及其制备方法和应用
CN114937774A (zh) * 2022-05-16 2022-08-23 中国科学技术大学 一种p2和p3混合相层状氧化物钠离子电池正极材料及其制备方法和应用
CN115367804A (zh) * 2022-09-23 2022-11-22 东莞理工学院 一种空气稳定的锰基钠离子电池正极材料的制备方法
CN115367804B (zh) * 2022-09-23 2024-04-16 东莞理工学院 一种空气稳定的锰基钠离子电池正极材料的制备方法
WO2024083923A1 (en) 2022-10-18 2024-04-25 University Court Of The University Of St Andrews Battery materials
CN115663173A (zh) * 2022-11-10 2023-01-31 赣州立探新能源科技有限公司 一种富钠层状氧化物材料及其制备方法和应用
CN116014109A (zh) * 2023-02-15 2023-04-25 厦门大学 一种锰基层隧复合正极材料及其制备方法和应用
CN116143194A (zh) * 2023-02-24 2023-05-23 中南大学 一种三相共生层状氧化物电极材料及其制备方法和其在钠离子电池中的应用
CN116143194B (zh) * 2023-02-24 2024-05-07 中南大学 一种三相共生层状氧化物电极材料及其制备方法和其在钠离子电池中的应用
CN116525813A (zh) * 2023-06-27 2023-08-01 宁波容百新能源科技股份有限公司 一种层状氧化物及其制备方法、钠离子电池正极极片
CN116525813B (zh) * 2023-06-27 2023-10-27 宁波容百新能源科技股份有限公司 一种层状氧化物及其制备方法、钠离子电池正极极片
CN117756195A (zh) * 2024-02-22 2024-03-26 贵州振华新材料股份有限公司 一种预钠处理的铜锌基钠离子电池正极材料及其制备方法
CN117756195B (zh) * 2024-02-22 2024-06-04 贵州振华新材料股份有限公司 一种预钠处理的铜锌基钠离子电池正极材料及其制备方法

Similar Documents

Publication Publication Date Title
WO2020232572A1 (zh) P2/p3混合型过渡金属氧化物钠离子电池正极材料及其制备方法
CN112151804B (zh) 一种基于普鲁士蓝类似物的碳包覆过渡金属氧化物及其制备方法和应用
CN106229498B (zh) 一种适用于水系金属离子电池的负极材料及其制备方法
CN110474044A (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN111517374B (zh) 一种Fe7S8/C复合材料的制备方法
CN111115713B (zh) 一种LaMnO3包覆富锂锰基正极材料及其制备方法
CN112164796B (zh) 一种锂离子电池正极材料的预锂化添加剂及其制备方法和应用
CN112952047B (zh) 一种碳负载钒酸钾的制备方法及其在钾离子电池中的应用
CN113540466B (zh) 一种金属硼化物与硼酸盐复合包覆改性的镍钴锰三元材料前驱体及其制备方法
CN109473637B (zh) 一种长循环寿命锂负极的保护方法
CN108807920B (zh) Laso包覆八面体结构镍锰酸锂复合材料及制备方法
CN115621454A (zh) 一种正极材料及其制备方法和应用
CN111933942B (zh) 一种满足高倍率放电循环性能的钠离子电池Na2/3Mn1/2Fe1/4Co1/4O2正极材料的可控调控方法
CN115132981A (zh) 一种二元掺杂的铁基氟磷酸盐钠离子正极材料及其制备方法
WO2023160307A1 (zh) 正极补锂添加剂及其制备方法和应用
Lei et al. Preparation of Mn2SnO4 nanoparticles as the anode material for lithium secondary battery
CN110649263A (zh) 镍离子电池磷酸钒锂正极材料及溶胶凝胶制备方法与应用
CN111952585A (zh) 一种高压实密度的铷掺杂锂电池正极材料及其制备方法
CN117199365A (zh) 正极补锂材料及其制备方法、正极极片和二次电池
CN109817899B (zh) 一种杂元素掺杂碳纳米管封装金属硫化物复合负极材料的制备方法与应用
CN109461917B (zh) 一种锆酸镧原位包覆高镍三元正极材料的制备方法
CN116845191A (zh) 一种自补锂型三元材料、制备方法及应用
CN116722131A (zh) 一种低熵锑基二元超细纳米晶氧化物负极材料及制备方法
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
WO2023056636A1 (zh) 一种钴酸锂层状正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929485

Country of ref document: EP

Kind code of ref document: A1