WO2020211375A1 - 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用 - Google Patents

一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用 Download PDF

Info

Publication number
WO2020211375A1
WO2020211375A1 PCT/CN2019/119516 CN2019119516W WO2020211375A1 WO 2020211375 A1 WO2020211375 A1 WO 2020211375A1 CN 2019119516 W CN2019119516 W CN 2019119516W WO 2020211375 A1 WO2020211375 A1 WO 2020211375A1
Authority
WO
WIPO (PCT)
Prior art keywords
llzo
solid electrolyte
doped
composite solid
sheet
Prior art date
Application number
PCT/CN2019/119516
Other languages
English (en)
French (fr)
Inventor
慈立杰
程俊
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/604,736 priority Critical patent/US20220263121A1/en
Publication of WO2020211375A1 publication Critical patent/WO2020211375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of solid electrolyte preparation, in particular to an Al flake doped LLZO composite solid electrolyte, and a preparation method and application thereof.
  • Solid electrolytes include inorganic solid electrolytes and polymer solid electrolytes.
  • Inorganic solid electrolytes include LAGP, LATP, LLZO, LPS, LiPON, etc.
  • polymer solid electrolytes include PEO, PVDF, PPC, PVP, etc.
  • Various electrolytes have their own advantages and disadvantages. Among them, polymer-based composite solid electrolytes receive the most attention.
  • PEO-based solid electrolytes are one of the most studied composite solid electrolytes.
  • inorganic powder is incorporated into the main PEO polymer matrix to influence the recrystallization kinetics of the PEO polymer chain to promote local amorphous regions, thereby increasing the ionic conductivity of the lithium salt-polymer system.
  • the addition of powder can also improve electrochemical stability and enhance mechanical strength.
  • Zhao et al. prepared LAGP-doped PEO composite solid electrolyte and studied the performance of PEO composite solid electrolyte doped with different LAGP content (see: A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries .Solid State Ionics 2016, 295, 65-71). Research shows that this method can effectively combine inorganic fillers and PEO polymer electrolytes to form composite solid electrolytes. However, the inventor believes that the solid electrolyte prepared by this method in which LAGP is distributed in the form of particles in PEO cannot provide a more continuous lithium ion conduction channel.
  • Cida Patent Document 201610511980.0 discloses a polymer composite solid electrolyte and its preparation method and application; it dried polyethylene oxide, inorganic solid electrolyte and lithium bistrifluoromethanesulfonimide at 50°C and 120°C, respectively, and then Polyethylene oxide and lithium bis(trifluoromethanesulfonimide) were dissolved in acetonitrile respectively, and then the inorganic solid electrolyte was dispersed in the above solution to obtain a homogeneous mixture. Pour the prepared mixture into a polytetrafluoroethylene mold to volatilize the acetonitrile solvent in a vacuum, and vacuum dry at 50°C to obtain a solid electrolyte.
  • the method obtains a particulate LLZO-doped PEO-based composite solid electrolyte, which has insufficient inhibitory effect on lithium dendrites and cannot provide a more continuous network for lithium ion conduction.
  • the present invention aims to provide an Al flake doped LLZO solid electrolyte and a preparation method and application thereof.
  • the composite solid electrolyte prepared by the invention has good flexibility, and because the sheet-shaped LLZO provides a fast conduction channel for lithium ions, it has higher ion conductivity than the granular doped composite solid electrolyte.
  • the first objective of the present invention is to provide an Al-doped sheet LLZO composite solid electrolyte.
  • the second objective of the present invention is to provide a method for preparing the Al-doped sheet LLZO composite solid electrolyte.
  • the third objective of the present invention is to provide an all-solid-state battery containing the Al-doped sheet-shaped LLZO composite solid-state electrolyte.
  • the fourth objective of the present invention is to provide the Al-doped sheet-shaped LLZO composite solid electrolyte, a preparation method thereof, and application of an all-solid battery.
  • the present invention discloses a sheet-shaped Al-doped LLZO composite solid electrolyte, which is composed of an Al-doped LLZO solid electrolyte and a polymer substrate, wherein the Al element is doped in the sheet-shaped structured LLZO solid electrolyte, The LLZO solid electrolyte is dispersed in a polymer substrate.
  • the polymer substrate includes any one of polyvinylidene fluoride (PVDF), PEO, and the like.
  • the stoichiometric ratio of Al is 0.2-0.35.
  • the content of the LLZO solid electrolyte is 10-50% of the total mass of the composite solid electrolyte.
  • the present invention discloses a preparation method of the Al-doped sheet LLZO composite solid electrolyte, including the following steps:
  • step (2) Add citric acid to the mixed solution A in step (1), stir evenly, then add ethylene glycol, continue to stir evenly, add graphene oxide and stir to obtain a mixed solution B;
  • step (3) Place the mixed liquid B in step (2) on a heating stirrer, heat and stir until the liquid completely evaporates to obtain flake LLZO precursor powder;
  • step (3) (4) calcining the flake-shaped LLZO precursor powder in step (3) to obtain Al-doped flake-shaped LLZO for use;
  • step (5) After the solvent in the mixed solution C in step (5) evaporates, the obtained product is dried, and then dried in a protective atmosphere to obtain an Al-doped sheet-shaped LLZO composite solid electrolyte.
  • the Li + , La 3+ , Zr 4+ and Al 3+ are water-soluble inorganic salts of corresponding ions, for example, lithium nitrate, lanthanum nitrate, zirconyl nitrate, Aluminum nitrate and so on.
  • the aluminum nitrate can also be replaced by zirconium acetylacetonate.
  • the ratio of the lithium nitrate, lanthanum nitrate, zirconyl nitrate, and aluminum nitrate is: 4.5-6g: 11-13.5g: 4.5-6g: 1-1.8g, and the amount of water added is such that the nitrate It is sufficient to dissolve, ethanol and water can be added in equal volumes.
  • step (2) the molar ratio of the citric acid to the total metal cations is (1-3):1, preferably 2:1.
  • citric acid is used as a complexing agent to complex the metal ions of LLZO raw materials.
  • step (2) the molar ratio of ethylene glycol to citric acid is 1:(1-2), preferably 1:1.
  • ethylene glycol can undergo an esterification reaction with citric acid to further improve the dispersibility of metal ions.
  • step (2) the stirring time for adding graphene oxide is 8-14 h.
  • Graphene oxide has more carboxyl hydroxyl groups that can attract positively charged metal ions, so that LLZO can be formed on the surface of graphene oxide and distributed uniformly.
  • step (4) the calcination conditions are: heat preservation at 700-800°C for 2-8 hours. At this temperature, cubic LLZO can be obtained.
  • the polymer electrolyte includes: any one of polyvinylidene fluoride (PVDF), PEO, etc., and the polymer electrolyte has an Al-doped sheet-like LLZO Carrier and conduction of lithium ions.
  • PVDF polyvinylidene fluoride
  • PEO polyethylene glycol
  • the polymer electrolyte has an Al-doped sheet-like LLZO Carrier and conduction of lithium ions.
  • the lithium salt includes: LiTFSI or LiC 10 4 and the like.
  • step (5) the molar ratio of lithium in the polymer electrolyte and the lithium salt is 6-10:1.
  • the organic solvent includes any one of tetrahydrofuran, acetonitrile, N,N-dimethylformamide (DMF) and the like.
  • step (6) the drying temperature is 50-70°C, and the time is 10-12h.
  • the main purpose of drying is to remove residual solvents and avoid residual solvents that will affect the electrolyte conductivity.
  • the protective atmosphere includes argon gas, etc.
  • the main function of the protective atmosphere is to prevent the lithium salt from absorbing water and the lithium sheet to react with air.
  • the present invention discloses an all-solid-state battery, including a negative electrode, an electrolyte membrane, a positive electrode, a gasket, a spring, and a battery case; the gasket, the negative electrode, the electrolyte membrane, the positive electrode, the gasket and the spring are stacked in sequence.
  • the layer structure is enclosed inside the battery case, and the electrolyte membrane is the Al-doped sheet-shaped LLZO composite solid electrolyte proposed in the present invention.
  • the present invention discloses the Al-doped sheet-shaped LLZO composite solid electrolyte and its preparation method as well as the application of all solid-state batteries in energy storage materials, automobiles and other products.
  • the present invention has achieved the following beneficial effects: the Al-doped sheet LLZO solid electrolyte prepared by the present invention not only has high electrical conductivity, but also has a good inhibitory effect on lithium dendrites, because the prepared The composite solid electrolyte has good flexibility, and because the Al-doped LLZO can stabilize the cubic phase, the cubic LLZO can provide more lithium ion rapid conduction channels, making it have higher ion conductivity than the granular doped composite solid electrolyte
  • the doping of flake LLZO into the polymer electrolyte can improve the mechanical properties of the electrolyte and inhibit the growth of lithium dendrites.
  • the flake LLZO can provide a continuous ceramic plane to improve the lithium dendrites. Growth is inhibited.
  • FIG. 1 is a schematic diagram of the structure of the Al-doped sheet LLZO composite solid electrolyte prepared in Example 1 of the present invention.
  • Fig. 2 is an SEM image of Al-doped sheet LLZO prepared in Example 1 of the present invention.
  • Fig. 3 is an XRD pattern of Al-doped sheet LLZO prepared in Example 1 of the present invention.
  • Example 4 is an SEM image of the Al-doped sheet LLZO composite solid electrolyte prepared in Example 1 of the present invention.
  • Example 5 is an XRD pattern of the Al-doped sheet-shaped LLZO composite solid electrolyte prepared in Example 1 of the present invention.
  • Figure 6 is the electrochemical impedance spectra of the Al-doped sheet LLZO composite solid electrolyte prepared in Examples 1-3 of the present invention.
  • FIG. 7 is a schematic diagram of the structure of an all-solid-state battery in Example 4 of the present invention.
  • Fig. 8 is a cycle-specific capacity diagram of an all-solid-state battery assembled in Example 4 of the present invention.
  • Example 9 is a time-voltage diagram of a symmetric battery assembled with a composite solid electrolyte prepared in Example 1 of the present invention.
  • the present invention proposes an Al-doped sheet LLZO composite solid electrolyte and its preparation method and application. The present invention will now be further described with reference to the drawings and specific embodiments.
  • a preparation method of Al-doped sheet LLZO composite solid electrolyte includes the following steps:
  • a preparation method of Al-doped sheet LLZO composite solid electrolyte includes the following steps:
  • a preparation method of Al-doped sheet LLZO composite solid electrolyte includes the following steps:
  • a preparation method of Al-doped granular LLZO composite solid electrolyte includes the following steps:
  • Figure 1 is a schematic diagram of the structure of the Al-doped sheet-shaped LLZO composite solid electrolyte prepared in Example 1, in which the Al-doped sheet-shaped LLZO solid electrolyte is dispersed in the polymer substrate PEO; the structure is also shown in Figure 2 It can be confirmed by SEM, and it can be clearly seen from Fig. 2 that the sheet-like LLZO solid electrolyte.
  • 3 is the XRD of the aluminum-doped sheet-shaped LLZO solid electrolyte prepared in Example 1, indicating that the prepared sample is cubic LLZO.
  • Figure 4 is an SEM image of the Al-doped sheet-like LLZO composite solid electrolyte prepared in Example 1.
  • FIG. 5 is an XRD pattern of the Al-doped sheet LLZO composite solid electrolyte prepared in Examples 1-3, indicating that the sheet LLZO has been doped into PEO and effectively reduces the crystallinity of PEO.
  • Figure 6 shows the electrochemical impedance spectra of the Al-doped sheet-like LLZO composite solid electrolyte prepared in Examples 1-3 and the particle-shaped LLZO composite solid-state electrolyte prepared in Comparative Example 1. It can be seen that: The composite solid electrolyte obtained by doping has higher conductivity.

Abstract

本发明涉及固态电解质制备技术领域,尤其涉及一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用。所述复合固态电解质由Al离子、LLZO固态电解质和聚合物基底组成,其中,所述Al掺杂在片状结构的LLZO固态电解质中,所述LLZO固态电解质分散在聚合物基底中。本发明制备的复合固态电解质具有良好的柔性,且由于片状LLZO为锂离子提供了快速传导通道,使得较颗粒状掺杂复合固态电解质有更高的离子电导率;另外,本发明提出的制备方法简单,适于大规模生产,而且制备过程中不使用任何有毒溶剂,对环境友好。

Description

一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用 技术领域
本发明涉及固态电解质制备技术领域,具体的,涉及一种Al片状掺杂LLZO复合固态电解质及其制备方法和应用。
背景技术
本发明背景技术中,公开的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
由于具有高能量密度,锂金属电池被认为是最具有前景的下一代二次电池之一,然而传统的使用有机电解液的锂金属电池存在很多问题,比如电解质泄漏,以及锂枝晶的生长导致的起火甚至是爆炸。用固态电解质来替代传统的有机电解液能有效防止这些安全问题的发生。固态电解质包括无机固态电解质和聚合物固态电解质,无机固态电解质有LAGP、LATP、LLZO、LPS、LiPON等,聚合物固态电解质有PEO、PVDF、PPC、PVP等。各种电解质各有优缺点,其中聚合物基的复合固态电解质最受关注,而在聚合物基的复合固态电解质中,PEO基固态电解质是被研究最多的复合固态电解质之一。在基于PEO的复合材料中,将无机粉末掺入主体PEO聚合物基质中来影响PEO聚合物链的重结晶动力学以促进局部非晶区域,从而增加锂盐-聚合物体系的离子电导率。粉末的添加还可以改善电化学稳定性,增强机械强度。
Zhao等人制备了LAGP掺杂PEO复合固态电解质并研究了掺杂不同LAGP含量的PEO复合固态电解质的性能(参见:A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium  batteries.Solid State Ionics 2016,295,65-71)。研究表明,该方法可以有效地将无机填料和PEO聚合物电解质复合到一起形成复合固态电解质。然而,本发明人认为:该方法制备的固态电解质,LAGP以颗粒状分布在PEO中不能提供一个较连续的锂离子传导通道。
Chen等人制备了LLZTO掺杂PEO复合固态电解质(参见:PEO/garnet composite electrolytes for solid-state lithium batteries:From“ceramic-in-polymer”to“polymer-in-ceramic”.Nano Energy 2018,46,176-184);其将LLZTO与PEO混合研磨之后真空加热12h,然后在热压机中加热压片得到固态电解质,得到的固态电解质较纯PEO有比较大的提升。然而,本发明人认为:该固态电解质中LLZTO同样也是以颗粒形式存在,无法提供较连续的锂离子传导通道。
中国专利文献201610511980.0公开了一种聚合物复合固态电解质及其制备方法和应用;其将聚氧化乙烯、无机固态电解质和双三氟甲烷磺酰亚胺锂分别在50℃和120℃下干燥,然后分别将聚氧化乙烯和双三氟甲烷磺酰亚胺锂溶于乙腈,再将无机固态电解质分散到上述溶液中得到均一混合液。将制得的混合液倒入聚四氟乙烯模具中真空挥发乙腈溶剂,50℃下真空干燥得到固态电解质。然而,本发明人认为:该方法得到的是颗粒状LLZO掺杂的PEO基复合固态电解质,其对锂枝晶的抑制作用不够明显,而且无法给锂离子传导提供一个较连续的网络。
发明内容
针对上述复合固态电解质对锂枝晶抑制以及在提高复合固态电解质电导率方面仍然存在不足,本发明旨在提供一种Al片状掺杂LLZO固态电解质及其制备方法和应用。本发明制备的复合固态电解质具有良好的柔性,且由于片状 LLZO为锂离子提供了快速传导通道,使得较颗粒状掺杂复合固态电解质有更高的离子电导率。
本发明的第一目的,是提供一种Al掺杂片状LLZO复合固态电解质。
本发明的第二目的,是提供所述Al掺杂片状LLZO复合固态电解质的制备方法。
本发明的第三目的,是提供包含所述Al掺杂片状LLZO复合固态电解质的全固态电池。
本发明的第四目的,是提供所述Al掺杂片状LLZO复合固态电解质及其制备方法以及全固态电池的应用。
为实现上述发明目的,本发明公开了下述技术方案:
首先,本发明公开一种片状Al掺杂LLZO复合固态电解质,其由Al掺杂的LLZO固态电解质和聚合物基底组成,其中,所述Al元素掺杂在片状结构的LLZO固态电解质中,所述LLZO固态电解质分散在聚合物基底中。
作为进一步的技术方案,所述聚合物基底包括:聚偏二氟乙烯(PVDF)、PEO等中的任意一种。
作为进一步的技术方案,所述Al的化学计量比为0.2-0.35。
作为进一步的技术方案,所述片状Al掺杂LLZO复合固态电解质中,LLZO固态电解质的含量为复合固态电解质总质量的10-50%。
其次,本发明公开所述Al掺杂片状LLZO复合固态电解质的制备方法,包括以下步骤:
(1)在乙醇和去离子水的混合溶液中加入金属阳离子Li +、La 3+、Zr 4+和Al 3+,得混合液A;
(2)向步骤(1)中的混合液A中加入柠檬酸,搅拌均匀,然后加入乙二 醇,继续搅拌均匀后加入氧化石墨烯并搅拌,得混合液B;
(3)将步骤(2)中的混合液B置于加热搅拌器上,加热搅拌至液体完全蒸发,得到片状LLZO前驱体粉末;
(4)将步骤(3)中的片状LLZO前驱体粉末进行煅烧,得到Al掺杂的片状的LLZO,备用;
(5)在保护气氛中将聚合物电解质和锂盐有机溶剂中进行溶解,然后继续加入步骤(4)的Al掺杂的片状LLZO,得到混合液C;
(6)待步骤(5)中混合液C中的溶剂挥发后,将得到的产物进行烘干,然后在保护气氛下晾干,得到Al掺杂的片状LLZO复合固态电解质。
作为进一步的技术方案,步骤(1)中,所述Li +、La 3+、Zr 4+和Al 3+分别为对应离子的水溶性无机盐,例如,硝酸锂、硝酸镧、硝酸氧锆、硝酸铝等。所述硝酸铝也可以用乙酰丙酮锆代替。
作为进一步的技术方案,所述硝酸锂、硝酸镧、硝酸氧锆、硝酸铝的比例为:4.5-6g:11-13.5g:4.5-6g:1-1.8g,水的加入量使上述硝酸盐能够充分溶解即可,乙醇和水可以按等体积加入。
作为进一步的技术方案,步骤(2)中,所述柠檬酸和总的金属阳离子的摩尔比为(1-3):1,优选为2:1。其中柠檬酸作为络合剂络合制备LLZO原料的金属离子。
作为进一步的技术方案,步骤(2)中,所述乙二醇与柠檬酸摩尔比为1:(1-2),优选为1:1。其中乙二醇可以与柠檬酸发生酯化反应进一步提高金属离子分散性。
作为进一步的技术方案,步骤(2)中,所述加入氧化石墨烯的搅拌时间为8-14h。氧化石墨烯具有较多羧基羟基能吸引带正电的金属离子,使LLZO 能在氧化石墨烯表面形成,分布均匀。
作为进一步的技术方案,步骤(4)中,所述煅烧条件为:在700-800℃保温2-8h。在这个温度下可以得到立方相LLZO。
作为进一步的技术方案,步骤(5)中,所述聚合物电解质包括:聚偏二氟乙烯(PVDF)、PEO等中的任意一种,聚合物电解质具有作为承载Al掺杂的片状LLZO的载体以及传导锂离子的作用。
作为进一步的技术方案,步骤(5)中,所述锂盐包括:LiTFSI或LiC lO 4等。
作为进一步的技术方案,步骤(5)中,所述聚合物电解质和锂盐中锂的摩尔比为6-10:1。
作为进一步的技术方案,步骤(5)中,所述有机溶剂包括四氢呋喃、乙腈,N,N-二甲基甲酰胺(DMF)等中的任意一种。
作为进一步的技术方案,步骤(6)中,所述烘干的温度为50-70℃,时间为10-12h。烘干的主要目的是去除残余溶剂,避免残留的溶剂会影响电解质电导率。
作为进一步的技术方案,所述保护气氛包括氩气等,保护气氛的主要作用是,防止锂盐吸水以及锂片与空气接触反应。
再次,本发明公开一种全固态电池,包括负极、电解质膜、正极、垫片、弹簧和电池壳;所述垫片、负极、电解质膜、正极、垫片和弹簧依次叠层设计,上述叠层结构被包封在电池壳内部,所述电解质膜为本发明提出的Al掺杂的片状LLZO复合固态电解质。
最后,本发明公开所述Al掺杂片状LLZO复合固态电解质及其制备方法以及全固态电池在储能材料、汽车等产品中的应用。
与现有技术相比,本发明取得了以下有益效果:本发明制备的Al掺杂的片状LLZO固态电解质不仅电导率高,而且对锂枝晶具有良好的抑制作用,这是因为所制备的复合固态电解质具有良好的柔性,且由于Al掺杂后的LLZO能够稳定立方相,立方相LLZO可以提供较多锂离子快速传导通道,使得较颗粒状掺杂复合固态电解质有更高的离子电导率,而片状LLZO掺杂到聚合物电解质中一方面可以提高电解质的力学性能,可以对锂枝晶的生长起到抑制作用,另外片状LLZO可以提供一个连续的陶瓷平面,对锂枝晶的生长起到抑制作用。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备的Al掺杂片状LLZO复合固态电解质的结构示意图。
图2为本发明实施例1制备的Al掺杂片状LLZO的SEM图。
图3为本发明实施例1制备的Al掺杂片状LLZO的XRD图谱。
图4为本发明实施例1制备的Al掺杂片状LLZO复合固态电解质的SEM图。
图5为本发明实施例1制备的Al掺杂片状LLZO复合固态电解质的XRD图谱。
图6为本发明实施例1-3制备的Al掺杂片状LLZO复合固态电解质的电化学阻抗谱。
图7为本发明实施例4全固态电池的结构示意图。
图8为本发明实施例4组装的全固态电池的循环-比容量图。
图9为本发明实施例1制备的复合固态电解质组装的对称电池的时间-电压图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所述,现有的一些复合固态电解质对锂枝晶抑制以及在提高复合固态电解质电导率方面仍然存在不足。因此,本发明提出了一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用,现结合附图和具体实施方式对本发明进一步进行说明。
实施例1
一种Al掺杂片状LLZO复合固态电解质的制备方法,包括以下步骤:
(1)取5.30915g硝酸锂,12.9903g硝酸镧,4.85583g硝酸氧锆,1.12539g硝酸铝加入到20ml去离子水,20ml乙醇混合溶液中搅拌均匀,得到溶液A;
(2)向所述溶液A中加入柠檬酸(柠檬酸和总的金属阳离子的摩尔比为2:1),搅拌均匀得到溶液B,继续向该溶液B中加入乙二醇(乙二醇与柠檬酸摩尔比为1:1),搅拌均匀得到溶液C;
(3)向所述溶液C中加入40ml(质量浓度2mg/ml)氧化石墨烯溶液,搅拌12h,得到溶液D;
(4)将上述溶液D在加热搅拌器上100℃条件下搅拌蒸发溶剂得到前驱体 粉末,将所得前驱体粉末放入马弗炉中700℃保温5h得到铝掺杂的片状LLZO;
(5)将聚合物基底(PEO)和锂盐(LiTFSI)按EO:Li=8:1的摩尔比加入到四氢呋喃溶液中,并在手套箱里搅拌均匀;然后将0.22g上述制备的铝掺杂的片状LLZO加入含2g PEO和LiTFSI的混合溶液中,搅拌得到均一分散的液体,将该液体倒入聚四氟乙烯模具中,待溶剂挥发之后将所得膜放入真空烘箱中50℃保温12h。将烘过之后的膜放回手套箱晾干12h,得到铝掺杂的片状LLZO复合固态电解质膜,即得。
实施例2
一种Al掺杂片状LLZO复合固态电解质的制备方法,包括以下步骤:
(1)取5.98461g硝酸锂,13.49184g硝酸镧,4.50073g硝酸氧锆,1.17986g硝酸铝加入到30ml去离子水,30ml乙醇混合溶液中搅拌均匀,得到溶液A;
(2)向所述溶液A中加入柠檬酸(柠檬酸和总的金属阳离子的摩尔比为3:1),搅拌均匀得到溶液B,继续向该溶液B中加入乙二醇(乙二醇与柠檬酸摩尔比为2:1),搅拌均匀得到溶液C;
(3)向所述溶液C中加入40ml(质量浓度2mg/ml)氧化石墨烯溶液,搅拌14h,得到溶液D;
(4)将上述溶液D在加热搅拌器上100℃条件下搅拌蒸发溶剂得到前驱体粉末,将所得前驱体粉末放入马弗炉中800℃保温2h得到铝掺杂的片状LLZO;
(5)将聚合物基底(PEO)和锂盐(LiTFSI)按EO:Li=10:1的摩尔比加入到DMF溶液中,并在手套箱里搅拌均匀;然后将0.3g上述制备的铝掺杂的片状LLZO加入含3g PEO和LiTFSI的混合溶液中,搅拌得到均一分散的液体,将该液体倒入聚四氟乙烯模具中,待溶剂挥发之后将所得膜放入真空烘箱中50℃保温12h。将烘过之后的膜放回手套箱晾干12h,得到铝掺杂的片状LLZO 复合固态电解质膜,即得。
实施例3
一种Al掺杂片状LLZO复合固态电解质的制备方法,包括以下步骤:
(1)取4.5011g硝酸锂,10.99362g硝酸镧,6.00892g乙酰丙酮锆,1.00365g硝酸铝加入到25ml去离子水,25ml乙醇混合溶液中搅拌均匀,得到溶液A;
(2)向所述溶液A中加入柠檬酸(柠檬酸和总的金属阳离子的摩尔比为1:1),搅拌均匀得到溶液B,继续向该溶液B中加入乙二醇(乙二醇与柠檬酸摩尔比为1.5:1),搅拌均匀得到溶液C;
(3)向所述溶液C中加入40ml(质量浓度2mg/ml)氧化石墨烯溶液,搅拌8h,得到溶液D;
(4)将上述溶液D在加热搅拌器上100℃条件下搅拌蒸发溶剂得到前驱体粉末,将所得前驱体粉末放入马弗炉中600℃保温8h得到铝掺杂的片状LLZO;
(5)将聚合物基底(聚偏二氟乙烯)和锂盐(LiTFSI)按PVDF:Li=6:1的摩尔比加入到乙腈溶液中,并在手套箱里搅拌均匀;然后将0.35g上述制备的铝掺杂的片状LLZO加入含2g PVDF和LiTFSI的混合溶液中,搅拌得到均一分散的液体,将该液体倒入聚四氟乙烯模具中,待溶剂挥发之后将所得膜放入真空烘箱中70℃保温10h。将烘过之后的膜放回手套箱晾干12h,得到铝掺杂的片状LLZO复合固态电解质膜,即得。
对比例1
一种Al掺杂颗粒状LLZO复合固态电解质的制备方法,包括以下步骤:
(1)取4.5011g硝酸锂,10.99362g硝酸镧,6.00892g乙酰丙酮锆,1.00365g硝酸铝加入到25ml去离子水,25ml乙醇混合溶液中搅拌均匀,得到 溶液A;
(2)向所述溶液A中加入柠檬酸(柠檬酸和总的金属阳离子的摩尔比为1:1),搅拌均匀得到溶液B,继续向该溶液B中加入乙二醇(乙二醇与柠檬酸摩尔比为1.5:1),搅拌均匀得到溶液C;
(3)将上述溶液D在加热搅拌器上100℃条件下搅拌蒸发溶剂得到前驱体粉末,将所得前驱体粉末放入马弗炉中600℃保温8h得到铝掺杂的片状LLZO;
(4)将聚合物基底(聚偏二氟乙烯)和锂盐(LiTFSI)按PVDF:Li=6:1的摩尔比加入到乙腈溶液中,并在手套箱里搅拌均匀;然后将0.35g上述制备的铝掺杂的片状LLZO加入含2g PVDF和LiTFSI的混合溶液中,搅拌得到均一分散的液体,将该液体倒入聚四氟乙烯模具中,待溶剂挥发之后将所得膜放入真空烘箱中70℃保温10h。将烘过之后的膜放回手套箱晾干12h,得到铝掺杂的片状LLZO复合固态电解质膜,即得。
性能测试:
(1)图1为实施例1制备的Al掺杂片状LLZO复合固态电解质的结构示意图,其中,掺杂Al的片状LLZO固态电解质分散在聚合物基底PEO中;该结构也从图2的SEM中可以得到证实,从图2中可以明显地看出片状LLZO固态电解质。图3是实施例1制备得到的铝掺杂的片状LLZO固态电解质的XRD,表明所制备的样品是立方晶型LLZO。图4是实施例1制备的Al掺杂片状LLZO复合固态电解质的SEM图,从图中可以看出片状LLZO已经掺杂进PEO中。图5是实施例1-3制备得到的Al掺杂片状LLZO复合固态电解质的XRD图,表明片状LLZO已经被掺杂到了PEO中并且有效降低了PEO的结晶度。图6是实施例1-3制备得到的Al掺杂片状LLZO复合固态电解质和对比例1制备的颗粒形态的LLZO复合固态电解质电化学阻抗谱,可以看出:片状LLZO掺杂比颗粒LLZO 掺杂得到的复合固态电解质电导率更高。
(2)将实施例1制备的Al掺杂片状LLZO复合固态电解质(即电解质膜)按照图7所示组装成全固态电池,测试其性能,如图8所示,是该全固态电池的循环图,可以看出:此全固态电池在60℃和45℃下均具有高的循环稳定性以及高的比容量。图9为该固态电池和对比例1的颗粒LLZO掺杂复合固态电解质对称电池时间-电压图,可以看出,片状LLZO掺杂复合固态电解质相对于颗粒状LLZO掺杂得到的复合固态电解质有更好的对锂稳定性以及对锂枝晶的生长的抑制作用。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均包含在本发明的保护范围之内。

Claims (10)

  1. 一种Al掺杂片状LLZO复合固态电解质,其特征在于,所述复合固态电解质由Al离子、LLZO固态电解质和聚合物基底组成,其中,所述Al掺杂在片状结构的LLZO固态电解质中,所述LLZO固态电解质分散在聚合物基底中。
  2. 如权利要求1所述的Al掺杂片状LLZO复合固态电解质,其特征在于,所述聚合物基底包括:聚偏二氟乙烯、PEO中的任意一种。
  3. 如权利要求1所述的Al掺杂片状LLZO复合固态电解质,其特征在于,所述Al的化学计量比为0.2-0.35。
  4. 如权利要求1所述的Al掺杂片状LLZO复合固态电解质,其特征在于,所述LLZO固态电解质的含量为复合固态电解质总质量的10-50%。
  5. 如权利要求1-4任一项所述的Al掺杂片状LLZO复合固态电解质的制备方法,其特征在于,包括以下步骤:
    (1)在乙醇和去离子水的混合溶液中加入金属阳离子Li +、La 3+、Zr 4+和Al 3+,得混合液A;
    (2)向步骤(1)中的混合液A中加入柠檬酸,搅拌均匀,然后加入乙二醇,继续搅拌均匀后加入氧化石墨烯并搅拌,得混合液B;
    (3)将步骤(2)中的混合液B置于加热搅拌器上,加热搅拌至液体完全蒸发,得到片状LLZO前驱体粉末;
    (4)将步骤(3)中的片状LLZO前驱体粉末进行煅烧,得到Al掺杂的片状的LLZO,备用;
    (5)在保护气氛中将聚合物电解质和锂盐有机溶剂中进行溶解,然后继续加入步骤(4)的Al掺杂的片状LLZO,得到混合液C;
    (6)待步骤(5)中混合液C中的溶剂挥发后,将得到的产物进行烘干,然后在保护气氛下晾干,得到Al掺杂的片状LLZO复合固态电解质。
  6. 如权利要求5所述的制备方法,其特征在于,步骤(1)中,所述Li +、La 3+、Zr 4+和Al 3+分别为对应离子的水溶性无机盐,例如,硝酸锂、硝酸镧、硝酸氧锆、硝酸铝;优选地,用乙酰丙酮代替所述锆硝酸铝。
  7. 如权利要求5所述的制备方法,其特征在于,步骤(2)中,所述柠檬酸和总的金属阳离子的摩尔比为(1-3):1,优选为2:1;
    优选地,步骤(2)中,所述乙二醇与柠檬酸摩尔比为1:(1-2),更优选为1:1;
    优选地,步骤(2)中,所述加入氧化石墨烯的搅拌时间为8-14h;
    优选地,步骤(4)中,所述煅烧条件为:在700-800℃保温2-8h。
  8. 如权利要求5所述的制备方法,其特征在于,步骤(5)中,所述聚合物电解质包括:聚偏二氟乙烯、PEO中的任意一种;
    优选地,步骤(5)中,所述锂盐包括:LiTFSI或LiClO 4
    优选地,步骤(5)中,所述聚合物电解质和锂盐中锂的摩尔比为6-10:1;
    优选地,步骤(5)中,所述有机溶剂包括四氢呋喃、乙腈,DMF中的任意一种;
    优选地,步骤(6)中,所述烘干的温度为50-70℃,时间为10-12h;
    优选地,所述保护气氛为氩气。
  9. 一种全固态电池,其特征在于,包括负极、电解质膜、正极、垫片、弹簧和电池壳;所述垫片、负极、电解质膜、正极、垫片和弹簧依次叠层设计,上述叠层结构被包封在电池壳内部,所述电解质膜为如权利要求1-4任一项所述的Al掺杂的片状LLZO复合固态电解质和/或如权利要求5-8任一项所述的方法制备的Al掺杂的片状LLZO复合固态电解质。
  10. 如权利要求1-4任一项所述的Al掺杂的片状LLZO复合固态电解质和 /或如权利要求5-8任一项所述的方法及其制备的Al掺杂的片状LLZO复合固态电解质在储能材料、汽车中的应用。
PCT/CN2019/119516 2019-04-16 2019-11-19 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用 WO2020211375A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/604,736 US20220263121A1 (en) 2019-04-16 2019-11-19 Al-doped sheet llzo composite solid-state electrolyte and preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910304485.6 2019-04-16
CN201910304485.6A CN109980272B (zh) 2019-04-16 2019-04-16 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020211375A1 true WO2020211375A1 (zh) 2020-10-22

Family

ID=67084824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119516 WO2020211375A1 (zh) 2019-04-16 2019-11-19 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用

Country Status (3)

Country Link
US (1) US20220263121A1 (zh)
CN (1) CN109980272B (zh)
WO (1) WO2020211375A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2605021A (en) * 2021-03-17 2022-09-21 Thermal Ceramics Uk Ltd Ionically conductive inorganic platelets and the production thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980272B (zh) * 2019-04-16 2021-04-20 山东大学 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用
SG11202112895TA (en) * 2019-06-14 2021-12-30 Agency Science Tech & Res Sheet-based framework for high-performance hybrid quasi-solid battery
CN110518280B (zh) * 2019-08-30 2021-05-18 山东大学 一种珊瑚状lalzo的制备方法及其在全固态电池中的应用
CN113224374A (zh) * 2020-01-21 2021-08-06 天津国安盟固利新材料科技股份有限公司 一种复合型电解质膜及其制备方法
CN111910283A (zh) * 2020-08-14 2020-11-10 浙江理工大学 氧化物型陶瓷复合纳米纤维固态电解质及其静电纺丝制备方法
CN112670480A (zh) * 2020-12-24 2021-04-16 湖南艾华集团股份有限公司 一种具有高能量密度的锂离子电池负极及其制备方法
CN113336547B (zh) * 2021-04-22 2022-05-31 海南大学 一种氧化物型固体电解质薄膜及其制备方法
CN113488644B (zh) * 2021-06-25 2022-05-13 万向一二三股份公司 一种高镍三元材料的制备方法及其在固态锂离子电池正极片中的应用
CN114388881A (zh) * 2022-01-19 2022-04-22 溧阳天目先导电池材料科技有限公司 表面改性混合离子导体固态电解质材料及制备方法和应用
CN115224358B (zh) * 2022-06-27 2023-05-23 哈尔滨工业大学 一种聚合物基固态电解质、锂离子电池及其制备方法
CN115775689B (zh) * 2022-11-02 2023-11-24 深圳江浩电子有限公司 固态高分子电解质、制备方法及固液混合电容器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058166A (zh) * 2015-04-02 2016-10-26 松下知识产权经营株式会社 电池和电池用正极材料
CN106654362A (zh) * 2016-12-07 2017-05-10 珠海光宇电池有限公司 复合固态电解质膜、制备方法及锂离子电池
CN107394255A (zh) * 2017-07-13 2017-11-24 清华大学 复合电解质膜及其制备方法以及含该膜的全固态锂电池
WO2018056082A1 (ja) * 2016-09-21 2018-03-29 株式会社村田製作所 固体電解質及び全固体電池
CN109052473A (zh) * 2018-08-10 2018-12-21 淮安新能源材料技术研究院 一种钽铝共掺杂的锆酸镧锂固态电解质的工业化制备方法
CN109980272A (zh) * 2019-04-16 2019-07-05 山东大学 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916821A (zh) * 2013-10-07 2020-11-10 昆腾斯科普公司 用于锂二次电池的石榴石材料和制造和使用石榴石材料的方法
KR101526703B1 (ko) * 2013-11-12 2015-06-05 현대자동차주식회사 Al 치환된 가넷의 합성 방법
JP6840946B2 (ja) * 2016-07-13 2021-03-10 昭和電工マテリアルズ株式会社 固体電解質、全固体電池、およびそれらの製造方法
CN107039634A (zh) * 2017-05-04 2017-08-11 北京科技大学 锂离子电池复合正极及柔性锂电池、固态锂电池制备方法
CN107681195B (zh) * 2017-09-06 2020-06-19 重庆大学 纳米石榴石型固体电解质材料的制备方法
JP6833648B2 (ja) * 2017-09-20 2021-02-24 株式会社東芝 二次電池、電池パック及び車両
CN108417889B (zh) * 2018-02-02 2020-08-28 中国科学院宁波材料技术与工程研究所 一种锂镧锆氧基氧化物粉体的制备方法
CN109167094B (zh) * 2018-08-28 2021-04-13 长沙矿冶研究院有限责任公司 一种基于纤维状快离子导体的有机/无机复合固态电解质膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058166A (zh) * 2015-04-02 2016-10-26 松下知识产权经营株式会社 电池和电池用正极材料
WO2018056082A1 (ja) * 2016-09-21 2018-03-29 株式会社村田製作所 固体電解質及び全固体電池
CN106654362A (zh) * 2016-12-07 2017-05-10 珠海光宇电池有限公司 复合固态电解质膜、制备方法及锂离子电池
CN107394255A (zh) * 2017-07-13 2017-11-24 清华大学 复合电解质膜及其制备方法以及含该膜的全固态锂电池
CN109052473A (zh) * 2018-08-10 2018-12-21 淮安新能源材料技术研究院 一种钽铝共掺杂的锆酸镧锂固态电解质的工业化制备方法
CN109980272A (zh) * 2019-04-16 2019-07-05 山东大学 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO, XUEYAN: "Synthesis and Ionic conducting properties of doped Li7 La3 Zr2 O12 solid-state electrolyte", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY II, no. 04, 15 April 2015 (2015-04-15), DOI: 20200219101422Y *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2605021A (en) * 2021-03-17 2022-09-21 Thermal Ceramics Uk Ltd Ionically conductive inorganic platelets and the production thereof
GB2605021B (en) * 2021-03-17 2023-05-03 Thermal Ceramics Uk Ltd Ionically conductive inorganic platelets and the production thereof

Also Published As

Publication number Publication date
CN109980272A (zh) 2019-07-05
CN109980272B (zh) 2021-04-20
US20220263121A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2020211375A1 (zh) 一种Al掺杂片状LLZO复合固态电解质及其制备方法和应用
Tang et al. Synthesis and electrochemical performance of lithium-rich cathode material Li [Li0. 2Ni0. 15Mn0. 55Co0. 1-xAlx] O2
CN107403913B (zh) 一种表面修饰的镍钴铝酸锂正极材料及其制备方法
WO2020258996A1 (zh) 一种低产气高容量的三元正极材料
Fu et al. Synthesis of carbon coated nanoporous microcomposite and its rate capability for lithium ion battery
CN112397762A (zh) 一种固态电池
CN103441258B (zh) 一种碳包覆多孔钛酸锂粉体的制备方法
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
CN103151528A (zh) 一种掺铝氧化锌包覆锂离子电池正极材料的制备方法
CN112117435B (zh) 全固态锂电池正极片及其制备方法以及全固态锂电池
CN105552369B (zh) 利用模板法制备三维多孔铌酸钛氧化物的方法及其在锂离子电池中的应用
CN112216863A (zh) 一种卤化固态电解质材料、柔性固态电解质膜和锂电池及其制备方法
WO2022121636A1 (zh) 一种固态电池正极材料的包覆方法及正极材料、固态电池
CN113651304A (zh) 有机碳包覆磷酸铁锂正极材料及其制备方法
CN103474646A (zh) 一种网状多孔富锂锰基锂离子电池正极材料及其制备方法
CN110112410B (zh) 一种改性锂离子电池正极材料及其制备方法
WO2019104948A1 (zh) 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池
CN1326232A (zh) 一种锂离子电池锂锰氧化物正极材料的制备方法
CN113644274A (zh) 一种o2型锂离子电池正极材料及其制备方法与应用
CN109461917B (zh) 一种锆酸镧原位包覆高镍三元正极材料的制备方法
CN109860543B (zh) 一种制备锂电池用铬掺杂镍钴铝酸锂梯度正极材料的方法
CN108336398B (zh) 一种无机/有机聚合物复合固态电解质薄膜及其制备方法
CN108461741B (zh) 一种LiAlO2/C修饰三元复合材料及其制备方法和应用
CN114597370B (zh) 一种空气稳定、高电压和长循环寿命钠离子电池正极材料及制备方法
CN116247193A (zh) 一种p2/o3复合型层状氧化物复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED02.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19925093

Country of ref document: EP

Kind code of ref document: A1