WO2022121636A1 - 一种固态电池正极材料的包覆方法及正极材料、固态电池 - Google Patents

一种固态电池正极材料的包覆方法及正极材料、固态电池 Download PDF

Info

Publication number
WO2022121636A1
WO2022121636A1 PCT/CN2021/131054 CN2021131054W WO2022121636A1 WO 2022121636 A1 WO2022121636 A1 WO 2022121636A1 CN 2021131054 W CN2021131054 W CN 2021131054W WO 2022121636 A1 WO2022121636 A1 WO 2022121636A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
coating
solid
lithium
Prior art date
Application number
PCT/CN2021/131054
Other languages
English (en)
French (fr)
Inventor
邓永红
王曼
刘中波
敖小虎
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2022121636A1 publication Critical patent/WO2022121636A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium batteries, and particularly relates to a method for coating a positive electrode material of a solid-state battery, a positive electrode material, and a solid-state battery.
  • LFP lithium iron phosphate
  • existing lithium-ion battery layered positive electrode materials such as lithium cobalt oxide ( LCO), lithium nickelate, lithium manganate, lithium nickel cobalt manganate (NCM), etc.
  • LCO lithium cobalt oxide
  • NCM lithium nickel cobalt manganate
  • the reaction energy of garnet-type oxide electrolytes, such as LLZTO, with fully lithiated layered cathode materials is zero, but during charging, LLZTO reacts with semi-lithiated cathode materials.
  • the organic electrolyte polyethylene oxide (PEO) also reacts with the layered cathode material, reducing the usable electrochemical window of the PEO electrolyte.
  • the present invention provides a coating method of the positive electrode material of the solid-state battery.
  • the invention provides a method for coating a solid-state battery positive electrode material, comprising the following operation steps:
  • the coating material precursor solution is atomized and then passed into the fluidized bed reactor, and the temperature of the fluidized bed reactor is controlled at 70-130° C., so that the coating material precursor solution is adsorbed depositing on the surface of the positive electrode material and simultaneously evaporating the solvent to obtain a positive electrode material coated with a coating material precursor;
  • the positive electrode material coated with the coating material precursor is calcined at high temperature to obtain a positive electrode material having a LATP coating layer or a LAGP coating layer.
  • the amount of the coating material is 0.5 to 5 wt % of the positive electrode material, and the thickness of the LATP coating layer or the LAGP coating layer is 5 nm to 50 nm.
  • the LATP coating layer is selected from Li 1+x Al x Ti 2-x (PO 4 ) 3 , Li 3 PO 4 , LiH 2 PO 4 , LiTi 2 (PO 4 ) 3 , LiPO 3 One or more, wherein 0 ⁇ x ⁇ 0.5;
  • the LAGP coating layer is selected from Li 1+x Al x Ge 2-x (PO 4 ) 3 , Li 3 PO 4 , LiH 2 PO 4 , LiPO 3 One or more of , where 0 ⁇ x ⁇ 0.5.
  • the positive electrode material is a layered structure positive electrode material or a high voltage positive electrode material; the layered structure positive electrode material is selected from lithium cobalt oxide, lithium manganate, lithium nickelate, nickel cobalt lithium manganate, nickel cobalt aluminum One or more kinds of lithium oxides; the high-voltage positive electrode material is a lithium-rich manganese-based positive electrode material or a spinel nickel lithium manganate positive electrode material.
  • the lithium source includes one or more of lithium nitrate, lithium chloride, and lithium sulfate;
  • the aluminum source includes one or more of aluminum nitrate and aluminum nitrate hydrate;
  • the titanium source Including one or more of titanium isopropoxide and titanium isobutoxide;
  • the germanium source includes tetrabutyl germanate;
  • the phosphorus source includes phosphoric acid, trimethyl phosphate, triethyl phosphate and tripropyl phosphate
  • the solvent is selected from one or more of methanol and ethanol.
  • the molar ratio of the lithium source, aluminum source, (titanium source or germanium source), and phosphorus source is (1+x):x:(2-x):3, where 0 ⁇ x ⁇ 0.5.
  • the calcination temperature is 550-900°C, and the calcination time is 2h-12h.
  • the present invention also provides a positive electrode material, and the positive electrode material is prepared according to the coating method of the solid-state battery positive electrode material.
  • the present invention also provides a solid-state battery, comprising a positive electrode sheet, a solid electrolyte and a negative electrode sheet stacked in sequence, and the positive electrode sheet includes a positive electrode material prepared by the method for coating the solid-state battery positive electrode material.
  • the solid electrolyte is selected from one or more of inorganic garnet-type oxide electrolytes, organic electrolytes, organic-inorganic composite electrolytes, and sulfide electrolytes.
  • the LATP coating layer or the LAGP coating layer is formed on the surface of the positive electrode material, and the room temperature conductivity of the LATP or LAGP coating layer reaches 10 -3 s/cm, which is suitable for high voltage positive electrodes.
  • the material is stable, and the chemical and thermodynamic stability is good.
  • the LATP coating layer or the LAGP coating layer can reduce the interface reaction between the solid electrolyte layer and the positive electrode material, and improve the lithium ion diffusion rate on the positive side of the battery.
  • the coating material precursor solution is atomized and contacted with the suspended positive electrode material, and the positive electrode material is in a flowing state during the entire coating process, which ensures that the coating material precursor solution is evenly wrapped on the surface of the positive electrode material, and ensures uniform thickness after calcination. cladding layer.
  • the temperature of the fluidized bed reactor is 70-130° C.
  • the coating material precursor solution is adsorbed and deposited on the surface of the positive electrode material, and the solvent is evaporated to dryness at the same time to obtain a positive electrode material coated by the coating material precursor, which simplifies The process of solvent evaporation is simple and reliable.
  • the preparation method is suitable for coating large quantities of positive electrode materials, and is beneficial to large-scale production.
  • the positive electrode material prepared according to the preparation method of the present invention has strong stability.
  • the solid-state battery prepared from the positive electrode material improves the interface compatibility between the positive electrode material and the solid electrolyte.
  • Fig. 1 is the scanning electron microscope picture of the positive electrode material of embodiment 1 of the present invention.
  • Fig. 2 is the scanning electron microscope picture of the positive electrode material of embodiment 2 of the present invention.
  • Example 3 is a TEM image of a positive electrode material of Example 1 of the present invention and a TEM image of a positive electrode material without LATP coating in Comparative Example 1, wherein the left side is Comparative Example 1, and the right side is Example 1;
  • Example 4 is a TEM image of a positive electrode material in Example 2 of the present invention and a TEM image of a positive electrode material without LATP coating in Comparative Example 1, wherein the left side is Comparative Example 1, and the right side is Example 2;
  • Fig. 5 is the X-ray diffractogram of the embodiment of the present invention 2LATP coating layer
  • Example 6 is a comparison diagram of the cycle performance of the solid-state battery of Example 2 of the present invention and the solid-state battery of Comparative Example 1, wherein a represents Comparative Example 1, and b represents Example 2.
  • the embodiment of the present invention provides a method for coating a positive electrode material of a solid-state battery, comprising the following operation steps:
  • the coating material precursor solution is atomized and then passed into the fluidized bed reactor, and the temperature of the fluidized bed reactor is controlled at 70-130° C., so that the coating material precursor solution is adsorbed depositing on the surface of the positive electrode material and simultaneously evaporating the solvent to obtain a positive electrode material coated with a coating material precursor;
  • the positive electrode material coated with the coating material precursor is calcined at high temperature to obtain a positive electrode material having a LATP coating layer or a LAGP coating layer.
  • the positive electrode material is powder
  • the particle size of the powder is 5-10 microns
  • the carrier gas is air.
  • the coating material precursor solution is uniformly passed into the fluidized bed reactor within 0.5h-2h, and the finally formed LATP coating layer or LAGP coating layer is more uniform.
  • the temperature of the fluidized bed reactor can be controlled and adjusted by the temperature control device and the speed of the carrier gas, and the inflow speed of the coating material precursor solution can be controlled by the peristaltic pump.
  • LATP or LAGP is a solid electrolyte based on NASICON (sodium superion conductor) structure, and the room temperature conductivity of the dense ceramic sheet reaches 10 -3 S/cm , It is stable to high-voltage cathode materials, and has good chemical and thermodynamic stability.
  • the LATP coating layer or the LAGP coating layer can effectively avoid the direct contact between the positive electrode material and the solid electrolyte, reduce the interface reaction between the solid electrolyte layer and the positive electrode material, and thus avoid the problem of interface incompatibility.
  • LATP and LAGP also feature high ionic conductivity, increasing the rate of lithium ion diffusion on the positive side of the battery.
  • the coating material precursor solution is atomized and contacted with the suspended positive electrode material, and the positive electrode material is in a flowing state during the entire coating process, ensuring that the coating material precursor solution is evenly wrapped on the surface of the positive electrode material.
  • the temperature of the fluidized bed reactor is 70-130° C.
  • the coating material precursor solution is adsorbed and deposited on the surface of the positive electrode material, and the solvent is evaporated to dryness at the same time to obtain a positive electrode material coated by the coating material precursor, which simplifies The process of solvent evaporation is simple and reliable.
  • the preparation method is suitable for coating large quantities of positive electrode materials, and is beneficial to large-scale production.
  • the amount of the coating material is 0.5 to 5 wt % of the positive electrode material, and the thickness of the LATP coating layer or the LAGP coating layer is 5 nm to 50 nm, so that the coating material can be used for the positive electrode material. Uniform encapsulation at the nanoscale.
  • the amount of the coating material is 0.5%-2% of the positive electrode material, and the thickness of the LATP coating layer or the LAGP coating layer is 5 nm-20 nm.
  • the LATP coating is selected from Li 1+x Al x Ti 2-x (PO 4 ) 3 , Li 3 PO 4 , LiH 2 PO 4 , LiTi 2 (PO 4 ) 3 , LiPO 3 One or more of , where 0 ⁇ x ⁇ 0.5.
  • the LAGP coating layer is selected from one or more of Li 1+x Al x Ge 2-x (PO 4 ) 3 , Li 3 PO 4 , LiH 2 PO 4 , and LiPO 3 , wherein 0 ⁇ x ⁇ 0.5 .
  • the positive electrode material is a layered structure positive electrode material or a high voltage positive electrode material.
  • the layered structure positive electrode material is selected from one or more of lithium cobaltate, lithium manganate, lithium nickelate, lithium nickel cobalt manganate, and lithium nickel cobalt aluminate.
  • the high-voltage positive electrode material is a lithium-rich manganese-based positive electrode material or a spinel nickel manganate lithium positive electrode material. The voltage and specific capacity of the final prepared solid-state battery are improved by using the layered structure cathode material and the high-voltage cathode material.
  • the lithium source includes one or more of lithium nitrate, lithium chloride, and lithium sulfate.
  • the aluminum source includes one or more of aluminum nitrate and aluminum nitrate hydrate.
  • the titanium source includes one or more of titanium isopropoxide and titanium isobutoxide.
  • the germanium source includes tetrabutyl germanate.
  • the phosphorus source includes one or more of phosphoric acid, trimethyl phosphate, triethyl phosphate and tripropyl phosphate.
  • the solvent is selected from one or more of methanol and ethanol.
  • the molar ratio of the lithium source, aluminum source, (titanium source or germanium source), and phosphorus source is (1+x):x:(2-x):3, wherein 0 ⁇ x ⁇ 0.5 .
  • the molar ratio of the lithium source: aluminum source: titanium source: phosphorus source is 1.3:0.3:1.7:3.
  • the molar ratio of the lithium source: aluminum source: germanium source: phosphorus source is 1.3:0.3:1.7:3.
  • the calcination temperature is 550-900° C.
  • the calcination time is 2h-12h.
  • the cathode material coated by the coating material precursor is calcined or heat-treated in a tube furnace.
  • An embodiment of the present invention further provides a positive electrode material, and the positive electrode material is prepared according to the coating method of the solid-state battery positive electrode material.
  • LATP or LAGP is a solid electrolyte based on NASICON (sodium superionic conductor) structure, the room temperature conductivity of the dense ceramic sheet reaches 10 -3 S/cm, which is stable to high-voltage cathode materials and has good chemical and thermodynamic stability. .
  • the LATP coating layer or the LAGP coating layer can effectively avoid the direct contact between the positive electrode material and the solid electrolyte, reduce the interface reaction between the solid electrolyte layer and the positive electrode material, and thus avoid the problem of interface incompatibility.
  • LATP and LAGP also feature high ionic conductivity, increasing the rate of lithium ion diffusion on the positive side of the battery.
  • An embodiment of the present invention also provides a solid-state battery, comprising a positive electrode sheet, a solid electrolyte, and a negative electrode sheet stacked in sequence, and the positive electrode sheet includes a positive electrode material prepared by the method for coating a solid-state battery positive electrode material.
  • the positive electrode sheet, the solid electrolyte and the negative electrode sheet are put into the stainless steel shell of the button battery in a stacked manner in order to assemble the solid-state battery.
  • the negative electrode sheet is a lithium sheet.
  • the solid electrolyte is selected from one or more of inorganic garnet-type oxide electrolytes, organic electrolytes, organic-inorganic composite electrolytes, and sulfide electrolytes.
  • the method for preparing a positive electrode sheet includes the following steps: preparing a slurry, obtaining a positive electrode material, a binder, a conductive agent, a lithium salt and a plasticizer, and combining the positive electrode material: binder: conductive agent: (lithium salt and plasticizer) according to the mass ratio of (7-9.5): (0.2-1): (0.2-1): (0.1-1) dissolved or dispersed in the solvent nitrogen methyl pyrrolidone (NMP), stirring for 6 -7h to obtain slurry; smear; vacuum heating and drying at 80-120°C for 10-14h to obtain a positive electrode sheet.
  • NMP nitrogen methyl pyrrolidone
  • the binder is selected from one of polyvinylidene fluoride (PVDF), polyacrylic acid (PAA), sodium carboxymethyl cellulose (CMC), and styrene-butadiene rubber (SBR). one or more.
  • the conductive agent is selected from one or more of conductive carbon black SP, acetylene black, Ketjen black, single-walled or multi-walled carbon nanotubes, and graphene.
  • the lithium salt is selected from lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluorophosphate (LiPF 6 ), lithium bis-oxalate borate (LiBOB), difluoro One or more of lithium oxalate borate (LiDFOB), lithium bis-difluorosulfonimide (LiFSI), and lithium bis-trifluoromethanesulfonimide (LiTFSI).
  • the plasticizer is selected from one or more of succinonitrile, ionic liquid, and PEG small molecules.
  • the amount of the coating material is 0.5 wt % of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in a molar ratio of 1.3:0.3:1.7:3.
  • the coating material precursor solution is prepared, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 °C,
  • the coating material precursor solution is transported by a peristaltic pump, atomized during the transportation process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is within 1h.
  • a positive electrode material that is, a 0.5% LATP-coated nickel-cobalt lithium manganate positive electrode material, the thickness of the LATP coating layer is about is 5nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 1 wt % of the positive electrode material.
  • the molar ratio of the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid is 1.3:0.3:1.7:3.
  • the nickel cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns was suspended in a fluidized bed reactor with dry compressed air, and the temperature was controlled at 100 °C, the coating material precursor solution is transported by a peristaltic pump, atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is
  • the fluidized bed reactor was passed into the fluidized bed reactor at a uniform speed within 1 h to obtain a dry coating material.
  • a positive electrode material was obtained, that is, a 1% LATP-coated nickel-cobalt lithium manganate positive electrode material, a LATP coating layer.
  • the thickness is about 10 nm.
  • Preparation of positive electrode sheet Dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain a positive electrode slurry, which is coated with 12h vacuum heating and drying at 100 °C to obtain a positive electrode sheet;
  • Preparation of solid-state battery The positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 2wt% of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate hydrate, titanium isobutoxide, and trimethyl phosphate are used in a ratio of 1.3:0.3:1.7:3.
  • the molar ratio is dissolved in methanol solvent to prepare a coating material precursor solution, and the nickel cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled At 100 °C, the coating material precursor solution is transported by a peristaltic pump, atomized during the transportation process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution The solution was passed into the fluidized bed reactor at a uniform speed within 1 hour to obtain a dry coating material. After heat treatment at 750 ° C for 4 hours, a positive electrode material was obtained, that is, a 2% LATP-coated nickel-cobalt lithium manganate positive electrode material, LATP-coated The thickness of the layers is approximately 20 nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 2.5wt% of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in a molar ratio of 1.3:0.3:1.7:3.
  • a coating material precursor solution is prepared in methanol solvent, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 °C, The coating material precursor solution is transported by a peristaltic pump, atomized during the transportation process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is within 1h.
  • a positive electrode material that is, a 2.5% LATP-coated nickel-cobalt lithium manganate positive electrode material, the thickness of the LATP coating layer is about is 25nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 3.5wt% of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in a molar ratio of 1.3:0.3:1.7:3.
  • the coating material precursor solution is prepared, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 °C,
  • the coating material precursor solution is transported by a peristaltic pump, atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is within 1h.
  • a positive electrode material is obtained, that is, a 3.5% LATP-coated nickel-cobalt lithium manganate cathode material.
  • the thickness of the LATP coating layer is about is 35nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 4wt% of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in methanol at a molar ratio of 1.3:0.3:1.7:3
  • the precursor solution of the coating material is prepared, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 ° C.
  • the peristaltic pump transports the coating material precursor solution, which is atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is uniform within 1h. Passing into the fluidized bed reactor to obtain a dry coating material, after heat treatment at 750 ° C for 4 hours, a positive electrode material, that is, a 4% LATP-coated nickel-cobalt lithium manganate positive electrode material, the thickness of the LATP coating layer is about 40nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the LLZTO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 4.5wt% of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in a molar ratio of 1.3:0.3:1.7:3.
  • the coating material precursor solution is prepared, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 °C,
  • the coating material precursor solution is transported by a peristaltic pump, atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is within 1h.
  • a positive electrode material that is, a 4.5% LATP-coated nickel-cobalt lithium manganate positive electrode material, the thickness of the LATP coating layer is about 45nm.
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 5wt% of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in methanol at a molar ratio of 1.3:0.3:1.7:3
  • the precursor solution of the coating material is prepared, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 ° C.
  • the peristaltic pump transports the coating material precursor solution, which is atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is uniform within 1h. Passing into the fluidized bed reactor to obtain a dry coating material, after heat treatment at 750 ° C for 4 hours, a positive electrode material, that is, a 5% LATP-coated nickel-cobalt lithium manganate positive electrode material, the thickness of the LATP coating layer is about 50nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 1 wt % of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in methanol at a molar ratio of 1.3:0.3:1.7:3
  • the precursor solution of the coating material is prepared, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 ° C.
  • the peristaltic pump transports the coating material precursor solution, which is atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution until the coating material precursor solution is within 1h. Passing into the fluidized bed reactor at a constant speed to obtain a dry coating material, after heat treatment at 600 ° C for 4 hours, a positive electrode material, that is, a 1% LATP-coated nickel-cobalt lithium manganate positive electrode material, the thickness of the LATP coating layer is about is 10nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 1 wt % of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in methanol at a molar ratio of 1.3:0.3:1.7:3
  • the precursor solution of the coating material is prepared, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 ° C.
  • the peristaltic pump transports the coating material precursor solution, which is atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is uniform within 1h. Passing into the fluidized bed reactor to obtain the dry coating material, after heat treatment at 850 °C for 4 hours, the positive electrode material is obtained, that is, the 1% LATP coated nickel cobalt lithium manganate positive electrode material, the thickness of the LATP coating layer is about 10nm.
  • Preparation of solid-state battery prepare the positive electrode sheet, dissolve or disperse the positive electrode material, conductive agent SP, binder PVDF, (plasticizer succinonitrile + lithium salt LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 Fully stirring for 8 hours to obtain positive electrode slurry, smear, vacuum heating and drying at 100°C for 12 hours to obtain positive electrode sheet;
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 1 wt % of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in methanol at a molar ratio of 1.3:0.3:1.7:3
  • the precursor solution of the coating material is prepared, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 ° C.
  • the peristaltic pump transports the coating material precursor solution, which is atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution until the coating material precursor solution is within 1h. Passing into the fluidized bed reactor at a uniform speed to obtain a dry coating material, after heat treatment at 750 ° C for 4 hours, a positive electrode material, that is, a 1% LATP-coated nickel-cobalt lithium manganate positive electrode material, the approximate thickness of the LATP coating layer is obtained. is 10nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 8:0.5:0.5:0.6 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the LLZTO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 1 wt % of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, tetrabutyl germanate, and phosphoric acid are dissolved in a molar ratio of 1.3:0.3:1.7:3.
  • the coating material precursor solution is prepared, and the nickel-cobalt lithium manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 °C,
  • the coating material precursor solution is transported by a peristaltic pump, atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is within 1h.
  • a positive electrode material that is, a 1% LAGP-coated nickel-cobalt lithium manganate positive electrode material, the thickness of the LAGP coating layer is 10nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the LLZTO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 1 wt % of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in methanol at a molar ratio of 1.3:0.3:1.7:3
  • the precursor solution of the coating material is prepared, and the lithium nickelate positive electrode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 ° C through a peristaltic pump.
  • the coating material precursor solution is transported, atomized during the transport process, and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution, and the coating material precursor solution is uniformly passed within 1h.
  • a fluidized bed reactor was used to obtain a dry coating material. After heat treatment at 750° C. for 4 hours, a positive electrode material was obtained, that is, a 1% LATP-coated lithium nickelate positive electrode material. The thickness of the LATP coating layer was about 10 nm.
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain Positive electrode slurry, smear, vacuum heating and drying at 100 °C for 12 h, to obtain positive electrode sheet;
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • the amount of the coating material is 1 wt % of the positive electrode material.
  • the coating materials lithium nitrate, aluminum nitrate, titanium isopropoxide, and phosphoric acid are dissolved in methanol at a molar ratio of 1.3:0.3:1.7:3
  • the solvent it is prepared into a coating material precursor solution, and the spinel lithium nickel manganate cathode material with a particle size distribution of 5-10 microns is suspended in a fluidized bed reactor with dry compressed air, and the temperature is controlled at 100 ° C , the coating material precursor solution is transported through a peristaltic pump, atomized during the transport process and then passed into the fluidized bed reactor, so that the surface of the positive electrode material adsorbs the coating material precursor solution until the coating material precursor solution is in the Passed into the fluidized bed reactor at a uniform speed within 1 hour to obtain a dry coating material, and after heat treatment at 750 ° C for 4 hours, a positive electrode material was obtained, that is,
  • Preparation of solid-state battery prepare a positive electrode sheet, dissolve or disperse the positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) in the solvent NMP in a ratio of 7:1:1:1 and stir well for 8 hours to obtain The positive electrode slurry was smeared and dried in vacuum at 100°C for 12 hours to obtain a positive electrode sheet; the positive electrode sheet, PEO electrolyte sheet, and lithium sheet were sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • Lithium nickelate positive electrode material, conductive carbon black SP, PVDF, (succinonitrile + LiTFSI) are dissolved or dispersed in solvent NMP in a ratio of 7:1:1:1 and fully stirred for 8 hours to obtain a positive electrode Slurry, smear, and vacuum heating and drying at 100°C overnight to obtain a positive electrode sheet.
  • the positive electrode sheet, the PEO electrolyte sheet, and the lithium sheet are sequentially placed into the stainless steel shell of the button battery in a stacked manner to assemble a solid-state battery.
  • Example 14 it can be seen that when the thickness of the coating layer is 5-25 nm, the capacity retention rate of the solid-state battery after 100 cycles is not less than 60%, and when the thickness of the coating layer is 10 nm, Example 11 The capacity retention rate of the solid-state battery reached 85.2% after 100 cycles, and the cycle performance of the solid-state battery was significantly improved compared to Comparative Examples 1-3.
  • Example 8 in Table 1 it can be seen that as the amount of coating material relative to the amount of positive electrode material increases, the thickness of the coating layer increases, but when the thickness of the coating layer exceeds 25 nm, the capacity of the battery increases.
  • Example 9 and Example 10 it can be seen that after changing the calcination temperature, the capacity retention rate of the battery remains above 70%.
  • Example 11 and Example 12 it can be known that the positive electrode material using the LATP coating layer or the LAGP coating layer is suitable for different types of electrolyte sheets in solid-state batteries.
  • the positive electrode material is other layered structure positive electrode material or high-voltage positive electrode material, and the positive electrode material of the LATP coating layer obtained according to the coating method in the embodiment is prepared.
  • the solid-state battery has a higher capacity retention rate than the solid-state batteries in Comparative Examples 1-3. It can be seen that the coating method of the positive electrode material provided by the present invention is suitable for the battery of the solid electrolyte system, and excellent battery cycle performance can be obtained.
  • Figure 1 is the coating layer formed when the mass percentage of the coating material and the positive electrode material is 0.5wt%
  • Figure 2 is the coating material The coating layer formed when the mass percentage of the positive electrode material is 1 wt %.
  • the surface roughness in Figure 1 is basically the same as that of the cathode material without the coating layer, indicating that the coating layer is thin and uniform when the coating is 0.5wt%, and the coating material is basically not enriched.
  • the surface particles of the cathode material increase significantly. It shows that with the increase of the quality of the cladding material, some areas have agglomeration.
  • Fig. 3 and Fig. 4 Please refer to Fig. 3 and Fig. 4.
  • the example on the left in Fig. 3 and Fig. 4 is the positive electrode material without the coating layer. It can be seen that the surface of the positive electrode material without the coating layer is smooth.
  • the example on the right side of Fig. 3 and Fig. 4 The black part is the positive electrode material, the transparent thin layer on the black surface in Figure 3 is the coating layer, and the gray cotton batt layer on the black surface in Figure 4 is the coating layer.
  • the material is partially aggregated, which is consistent with the Fig. 2 results.
  • the right side in Figure 3 is the test result of Example 1
  • the right side in Figure 4 is the test result of Example 2, that is, as the mass specific gravity of the coating material relative to the positive electrode material increases, the average thickness of the coating layer also increases with the increase, and the coating thickness is uniform.
  • FIG. 5 is the X-ray diffraction pattern of the LATP coating layer of Example 2.
  • the coating material precursor solution is heat-treated at 750°C, the coating material remains in the initial crystal structure, and no impurity phase is generated, indicating that the The fluidized bed coating can obtain a pure LATP phase with high lithium ion conductivity on the surface of the cathode material after the subsequent heat treatment process, which is beneficial to the lithium ion transport of the cathode material in the solid-state lithium battery.
  • FIG. 6 is a comparison diagram of the cycle performance of the solid-state battery of Example 2 of the present invention and the solid-state battery of Comparative Example 1, wherein a represents Comparative Example 1, and b represents Example 2.
  • the PEO solid-state battery was cycled at a temperature of 60°C and a voltage range of 3.0-4.2V. It can be seen from Figure 6 that the capacity of the solid-state battery of Comparative Example 1 decayed sharply after 100 cycles, while the capacity of the solid-state battery of Example 2 The retention rate is stable, it can be seen that the positive electrode material provided by the present invention is suitable for the battery of the solid electrolyte system, and can obtain excellent battery cycle performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

为克服现有固态电池正极材料与固态电解质之间的界面不兼容的问题,本发明提供了一种固态电池正极材料的包覆方法,包括以下操作步骤:将包覆材料锂源、铝源、(钛源或锗源)、磷源溶于溶剂中,搅拌均匀,得到包覆材料前驱体溶液;将正极材料用载气悬浮于流化床反应器中;将包覆材料前驱体溶液雾化后通入流化床反应器中,并控制流化床反应器的温度在70~130℃,使包覆材料前驱体溶液吸附沉积于正极材料表面并同时蒸干溶剂,得到包覆材料前驱体包覆的正极材料;将包覆材料前驱体包覆的正极材料进行高温煅烧,得到具有LATP包覆层或LAGP包覆层的正极材料。本发明还提供一种由所述制备方法制备的正极材料和固态电池,改善了正极材料与固态电解质的界面兼容性。

Description

一种固态电池正极材料的包覆方法及正极材料、固态电池 技术领域
本发明属于锂电池技术领域,具体涉及固态电池正极材料的包覆方法及正极材料、固态电池。
背景技术
传统锂离子电池面临着越来越多的安全性问题,易挥发易燃易爆的有机电解液是引起锂离子电池安全问题的主要因素。固态电池作为下一代的锂电池技术,在继承传统锂电池的优点基础上,具有安全性好和能量密度高等突出优势。正极材料的选择是影响固态锂电池能量密度的重要因素。
目前较多的固态锂电池体系多使用磷酸铁锂(LFP)正极,因为LFP正极与现有固态电解质具有较好的界面相容性,但现有锂离子电池层状正极材料如钴酸锂(LCO)、镍酸锂、锰酸锂、镍钴锰酸锂(NCM)等,存在与固态电解质匹配性差的问题。石榴石型氧化物电解质(如LLZTO)与全锂化层状正极材料的反应能为零,但在充电过程中,LLZTO会与半锂化正极之间发生反应。由于过渡金属的存在,有机电解质聚氧化乙烯(PEO)与层状正极材料之间也会发生反应,降低PEO电解质的可使用电化学窗口。这些均为层状正极材料在固态锂电池中应用的障碍,严重阻碍固态锂电池能量密度的提高。
因此,有必要提供一种能够解决与固态电解质之间的界面不兼容问题的正极材料和一种简单、低成本地制备该正极材料的方法。
发明内容
针对现有固态电池正极材料的制备方法得到的正极材料与固态电解质之间的界面不兼容的问题,本发明提供了一种固态电池正极材料的包覆方法。
本发明解决上述技术问题所采用的技术方案如下:
本发明提供了一种固态电池正极材料的包覆方法,包括以下操作步骤:
将包覆材料锂源、铝源、(钛源或锗源)、磷源溶于溶剂中,搅拌均匀,得到包覆材料前驱体溶液;
将正极材料用载气悬浮于流化床反应器中;
将所述包覆材料前驱体溶液雾化后通入所述流化床反应器中,并控制所述流化床反应器的温度在70~130℃,使所述包覆材料前驱体溶液吸附沉积于所述正极材料的表面并同时蒸干溶剂,得到包覆材料前驱体包覆的正极材料;
将所述包覆材料前驱体包覆的正极材料进行高温煅烧,得到具有LATP包覆层或LAGP包覆层的正极材料。
可选的,所述包覆材料的用量为所述正极材料的0.5~5wt%,所述LATP包覆层或LAGP包覆层的厚度为5nm~50nm。
可选的,所述LATP包覆层选自Li 1+xAl xTi 2-x(PO 4) 3、Li 3PO 4、LiH 2PO 4、LiTi 2(PO 4) 3、LiPO 3中的一种或多种,其中0≤x≤0.5;所述LAGP包覆层选自Li 1+xAl xGe 2-x(PO 4) 3、Li 3PO 4、LiH 2PO 4、LiPO 3中的一种或多种,其中0≤x≤0.5。
可选的,所述正极材料为层状结构正极材料或高电压正极材料;所述层状结构正极材料选自钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、镍钴铝酸锂的一种或多种;所述高电压正极材料为富锂锰基正极材料或尖晶石镍锰酸锂正极材料。
可选的,所述锂源包括硝酸锂、氯化锂、硫酸锂中的一种或多种;所述铝源包括硝酸铝和硝酸铝水合物中的一种或多种;所述钛源包括异丙醇钛和异丁醇钛中的一种或多种;所述锗源包括锗酸四丁酯;所述磷源包括磷酸、磷酸三甲酯、磷酸三乙酯和磷酸三丙酯中的一种或多种;所述溶剂选自甲醇、乙醇的一种或多种。
可选的,所述锂源、铝源、(钛源或锗源)、磷源的摩尔比为(1+x):x:(2-x):3,其中0≤x≤0.5。
可选的,所述煅烧的温度为550-900℃,所述煅烧时间为2h-12h。
另一方面,本发明还提供一种正极材料,所述正极材料根据所述固态电池正极材料的包覆方法制备得到。
另一方面,本发明还提供一种固态电池,包括依次堆叠设置的正极片、固态电解质和负极片,所述正极片包括所述的固态电池正极材料的包覆方法制备得到的正极材料。
可选的,所述固态电解质选自无机石榴石型氧化物电解质、有机电解质、有机无机复合电解质、硫化物电解质中的一种或多种。
根据本发明提供的固态电池正极材料的包覆方法,在正极材料表面形成LATP包覆层或LAGP包覆层,LATP或LAGP包覆层室温电导率达到10 -3s/cm, 对高电压正极材料稳定、化学及热力学稳定性良好,LATP包覆层或LAGP包覆层能够降低固态电解质层与正极材料之间的界面反应,提高电池正极侧的锂离子扩散速率。将包覆材料前驱体溶液雾化后与悬浮的正极材料接触,正极材料在整个包覆过程中处于流动状态,保证了包覆材料前驱体溶液在正极材料表面均匀包裹,保证煅烧后得到厚度均匀的包覆层。流化床反应器的温度在70~130℃,使所述包覆材料前驱体溶液吸附沉积于所述正极材料的表面并同时蒸干溶剂,得到包覆材料前驱体包覆的正极材料,简化了溶剂挥发的过程,简单可靠。该制备方法适合大批量正极材料包覆,利于规模化生产。根据本发明的制备方法所制备的正极材料,稳定性强。由所述正极材料制备的固态电池,改善了正极材料与固态电解质的界面兼容性。
附图说明
图1是本发明实施例1正极材料的扫描电镜图;
图2是本发明实施例2正极材料的扫描电镜图;
图3是本发明实施例1正极材料的透射电镜图和对比例1无LATP包覆层的正极材料的透射电镜图,其中左侧是对比例1,右侧是实施例1;
图4是本发明实施例2正极材料的透射电镜图和对比例1无LATP包覆层的正极材料的透射电镜图,其中左侧是对比例1,右侧是实施例2;
图5是本发明实施例2LATP包覆层的X射线衍射图;
图6是本发明实施例2固态电池与对比例1固态电池的循环性能对比图,其中a代表对比例1,b代表实施例2。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例和附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种固态电池正极材料的包覆方法,包括以下操作步骤:
将包覆材料锂源、铝源、(钛源或锗源)、磷源溶于溶剂中,搅拌均匀,得到包覆材料前驱体溶液;
将正极材料用载气悬浮于流化床反应器中;
将所述包覆材料前驱体溶液雾化后通入所述流化床反应器中,并控制所述流化床反应器的温度在70~130℃,使所述包覆材料前驱体溶液吸附沉积于所述正极材料的表面并同时蒸干溶剂,得到包覆材料前驱体包覆的正极材料;
将所述包覆材料前驱体包覆的正极材料进行高温煅烧,得到具有LATP包覆层或LAGP包覆层的正极材料。
具体地,所述正极材料为粉体,粉体粒径为5-10微米,所述载气为空气。
进一步地,包覆材料前驱体溶液在0.5h-2h内匀速通入所述流化床反应器中,最终形成的LATP包覆层或LAGP包覆层更加均匀。具体地,流化床反应器的温度可以通过温控装置和载气速度进行控制和调节,包覆材料前驱体溶液的通入速度可通过蠕动泵控制。
在本实施例中,正极材料表面形成LATP包覆层或LAGP包覆层,LATP或LAGP是基于NASICON(钠超离子导体)结构的固态电解质,致密陶瓷片室温电导率达到10 -3S/cm,对高电压正极材料稳定,化学及热力学稳定性良好。LATP包覆层或LAGP包覆层能够能有效避免正极材料与固态电解质的直接接触,降低固态电解质层与正极材料之间的界面反应,进而避免界面不兼容问题。LATP和LAGP还具有离子传导率高的特点,提高电池正极侧的锂离子扩散速率。将包覆材料前驱体溶液雾化后与悬浮的正极材料接触,正极材料在整个包覆过程中处于流动状态,保证了包覆材料前驱体溶液在正极材料表面均匀包裹。流化床反应器的温度在70~130℃,使所述包覆材料前驱体溶液吸附沉积于所述正极材料的表面并同时蒸干溶剂,得到包覆材料前驱体包覆的正极材料,简化了溶剂挥发的过程,简单可靠。该制备方法适合大批量正极材料包覆,利于规模化生产。
在一些实施例中,所述包覆材料的用量为所述正极材料的0.5~5wt%,所述LATP包覆层或LAGP包覆层的厚度为5nm~50nm,使得包覆材料对正极材料实现纳米级的均匀包裹。
进一步地,所述包覆材料的用量为所述正极材料的0.5%-2%,所述LATP包覆层或LAGP包覆层的厚度为5nm~20nm。
在一些实施例中,所述LATP包覆层选自Li 1+xAl xTi 2-x(PO 4) 3、Li 3PO 4、LiH 2PO 4、LiTi 2(PO 4) 3、LiPO 3中的一种或多种,其中0≤x≤0.5。所述LAGP包覆层选自Li 1+xAl xGe 2-x(PO 4) 3、Li 3PO 4、LiH 2PO 4、LiPO 3中的一种或多种,其中0≤x≤0.5。
在一些实施例中,所述正极材料为层状结构正极材料或高电压正极材料。所述层状结构正极材料选自钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、镍钴铝酸锂的一种或多种。所述高电压正极材料为富锂锰基正极材料或尖晶石镍锰酸锂正极材料。通过使用层状结构正极材料和高电压正极材料使得最终制备的固态电池电压和比容量提高。
在一些实施例中,所述锂源包括硝酸锂、氯化锂、硫酸锂中的一种或多种。所述铝源包括硝酸铝和硝酸铝水合物中的一种或多种。所述钛源包括异丙醇钛和异丁醇钛中的一种或多种。所述锗源包括锗酸四丁酯。所述磷源包括磷酸、磷酸三甲酯、磷酸三乙酯和磷酸三丙酯中的一种或多种。所述溶剂选自甲醇、乙醇的一种或多种。
在一些实施例中,所述锂源、铝源、(钛源或锗源)、磷源的摩尔比为(1+x):x:(2-x):3,其中0≤x≤0.5。
进一步地,在一些实施例中,所述锂源:铝源:钛源:磷源的摩尔比为1.3:0.3:1.7:3。
进一步地,在一些实施例中,所述锂源:铝源:锗源:磷源的摩尔比为1.3:0.3:1.7:3。
在一些实施例中,所述煅烧的温度为550-900℃,所述煅烧时间为2h-12h,具体地,包覆材料前驱体包覆的正极材料在管式炉中进行煅烧或热处理。
本发明一实施例还提供一种正极材料,所述正极材料根据所述的固态电池正极材料的包覆方法制备得到。
在本实施例中,LATP或LAGP是基于NASICON(钠超离子导体)结构的固态电解质,致密陶瓷片室温电导率达到10 -3S/cm,对高电压正极材料稳定,化学及热力学稳定性良好。LATP包覆层或LAGP包覆层能够能有效避免正极材料与固态电解质的直接接触,降低固态电解质层与正极材料之间的界面反应,进而避免界面不兼容问题。LATP和LAGP还具有离子传导率高的特点,提高电池正极侧的锂离子扩散速率。
本发明一实施例还提供一种固态电池,包括依次堆叠设置的正极片、固态电解质和负极片,所述正极片包括所述的固态电池正极材料的包覆方法制备得到的正极材料。具体地,依次将正极片、固态电解质和负极片以堆叠方式放入扣式电池不锈钢壳中,组装成固态电池。其中,负极片为锂片。
在一些实施例中,所述固态电解质选自无机石榴石型氧化物电解质、有机 电解质、有机无机复合电解质、硫化物电解质中的一种或多种。
在一些实施例中,正极片的制备方法包括以下步骤:制备浆料,获取正极材料、粘结剂、导电剂、锂盐和增塑剂,将正极材料:粘结剂:导电剂:(锂盐和增塑剂)按照质量比为(7-9.5):(0.2~1):(0.2~1):(0.1~1)溶于或者分散于溶剂氮甲基吡咯烷酮(NMP)中,搅拌6-7h,得到浆料;涂片;80-120℃真空加热烘干10-14h,得到正极片。
进一步地,在一些实施例中,所述粘结剂选自聚偏二氟乙烯(PVDF)、聚丙烯酸(PAA)、羧甲基纤维素钠(CMC)、丁苯橡胶(SBR)中的一种或多种。所述导电剂选自导电炭黑SP、乙炔黑、科琴黑、单壁或多壁碳纳米管、石墨烯中的一种或多种。所述锂盐选自高氯酸锂(LiClO 4)、四氟硼酸锂(LiBF 4)、六氟砷酸锂(LiAsF 6)、六氟磷酸锂(LiPF 6)、双草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiDFOB)、双二氟磺酰亚胺锂(LiFSI)、双三氟甲基磺酰亚胺锂(LiTFSI)中的一种或多种。所述增塑剂选自丁二睛、离子液体、PEG小分子中的一种或多种。
以下通过实施例对本发明进行进一步的说明。
实施例1
本实施例中,包覆材料的用量为正极材料的0.5wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即0.5%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度大约为5nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例2
本实施例中,包覆材料的用量为正极材料的1wt%,具体地,将包覆材料硝 酸锂、硝酸铝、异丙醇钛、磷酸的摩尔比以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即1%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度大约为10nm。
制备正极片:将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
固态电池的制备:依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例3
本实施例中,包覆材料的用量为正极材料的2wt%,具体地,将包覆材料硝酸锂、硝酸铝水合物、异丁醇钛、磷酸三甲酯以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即2%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度大约为20nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例4
本实施例中,包覆材料的用量为正极材料的2.5wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中, 配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即2.5%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度大约为25nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例5
本实施例中,包覆材料的用量为正极材料的3.5wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即3.5%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度大约为35nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例6
本实施例中,包覆材料的用量为正极材料的4wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材 料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即4%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度大约为40nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、LLZTO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例7
本实施例中,包覆材料的用量为正极材料的4.5wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即4.5%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度为大约45nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVD
F、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例8
本实施例中,包覆材料的用量为正极材料的5wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即5%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度为大约50nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例9
本实施例中,包覆材料的用量为正极材料的1wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,直到将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经600℃温度热处理4h后,得到正极材料,即1%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度大约为10nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例10
本实施例中,包覆材料的用量为正极材料的1wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经850℃温度热处理4h后,得到正极材料,即1%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的厚度大约为10nm。
固态电池的制备:制备正极片,将正极材料、导电剂SP、粘结剂PVDF、(增塑剂丁二腈+锂盐LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例11
本实施例中,包覆材料的用量为正极材料的1wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,直到将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即1%LATP包覆的镍钴锰酸锂正极材料,LATP包覆层的大约厚度为10nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例8:0.5:0.5:0.6溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、LLZTO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例12
本实施例中,包覆材料的用量为正极材料的1wt%,具体地,将包覆材料硝酸锂、硝酸铝、锗酸四丁酯、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍钴锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即1%LAGP包覆的镍钴锰酸锂正极材料,LAGP包覆层的厚度为10nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、LLZTO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例13
本实施例中,包覆材料的用量为正极材料的1wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的镍酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即1%LATP包覆的镍酸锂正极材料,LATP包覆层的厚度大约为10nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;
依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
实施例14
本实施例中,包覆材料的用量为正极材料的1wt%,具体地,将包覆材料硝酸锂、硝酸铝、异丙醇钛、磷酸以1.3:0.3:1.7:3的摩尔比溶于甲醇溶剂中,配制成包覆材料前驱体溶液,将粒径分布在5-10微米的尖晶石镍锰酸锂正极材料用干燥的压缩空气悬浮在流化床反应器中,温度控制在100℃,通过蠕动泵将包覆材料前驱体溶液输送,在输送过程中雾化然后通入流化床反应器中,使正极材料表面吸附包覆材料前驱体溶液,直到将包覆材料前驱体溶液在1h内匀速通入流化床反应器,得到干燥的包覆材料,经750℃温度热处理4h后,得到正极材料,即1%LATP包覆的尖晶石镍锰酸锂正极材料,LATP包覆层的厚度大约为10nm。
固态电池的制备:制备正极片,将正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干12h,得到正极片;依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
对比例1
固态电池的制备:将镍锰酸锂正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正 极浆料,涂片,100℃真空加热烘干过夜,即得到正极片。依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
对比例2
固态电池的制备:将镍酸锂正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干过夜,即得到正极片。依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
对比例3
固态电池的制备:将尖晶石镍锰酸锂正极材料、导电炭黑SP、PVDF、(丁二腈+LiTFSI)按比例7:1:1:1溶于或者分散于溶剂NMP中充分搅拌8小时,得到正极浆料,涂片,100℃真空加热烘干过夜,即得到正极片。依次将含正极片、PEO电解质片、锂片以堆叠方式放入扣式电池不锈钢壳,组装成固态电池。
性能测试
在60℃下测试各个固态电池循环100圈后的容量保持率,测试结果如表1所示。
表1
Figure PCTCN2021131054-appb-000001
根据实施例1-实施例14的测试数据,可知包覆层厚度在5-25nm时,固态 电池循环100圈后容量保持率不低于60%,并且包覆层厚度在10nm时,实施例11的固态电池循环100圈后容量保持率达到85.2%,相对于对比例1-3,固态电池的循环性能明显提高。根据表1中实施例1-实施例8的测试数据,可知随着包覆材料用量相对于正极材料的用量增加,包覆层厚度随之增加,但包覆层厚度超过25nm后,电池的容量保持率反而下降,即包覆层过厚不利于锂离子的传输,影响电池性能。根据实施例2、实施例9和实施例10的数据,可知改变煅烧的温度后,电池的容量保持率仍保持在70%以上。根据实施例2、实施例11和实施例12可知,采用LATP包覆层或LAGP包覆层的正极材料,适用于固态电池中不同类型的电解质片。根据实施例2、实施例13和实施例14可知,正极材料为其它层状结构正极材料或高电压正极材料,根据实施例中的包覆方法获得的LATP包覆层的正极材料所制得的固态电池,其容量保持率高于对比例1-3中的固态电池。可见,本发明提供的正极材料的包覆方法适合于固态电解质体系的电池中,可获得优异的电池循环性能。
以实施例1和实施例2为例,如图1和图2所示,其中图1为包覆材料与正极材料质量百分比为0.5wt%时所形成的包覆层,图2为包覆材料与正极材料质量百分比为1wt%时所形成的包覆层。图1中表面粗糙程度与没有包覆层的正极材料基本相当,表明0.5wt%包覆时包覆层薄且均匀,包覆材料基本无富集,图2中正极材料表面颗粒有明显增加,说明随着包覆材料质量的增加,部分区域出现了聚集。
请参阅图3和图4,图3和图4中左边示例为没有包覆层的正极材料,图中可以看出没有包覆层的正极材料表面光滑,图3和图4的右侧示例中黑色部分为正极材料,图3黑色表面的透明薄层为包覆层,图4中黑色表面的灰色棉絮层为包覆层,图4相对于图3中的包覆层厚度增加,且包覆材料部分聚集,这与图2结果相吻合。图3中右侧是实施例1的测试结果,图4中右侧是实施例2的测试结果,即随着包覆材料相对于正极材料的质量比重增加,包覆层的平均厚度也随着增加,且包覆层厚度均匀。
请参阅图5,图5是实施例2LATP包覆层的X射线衍射图,包覆材料前驱体溶液经过750℃温度热处理后,包覆材料保持在初始的晶体结构,没有杂相生成,表明由流化床包覆经后续热处理过程能够在正极材料表面得到锂离子传导率高的纯LATP相,利于固态锂电池中正极材料的锂离子传输。
图6是本发明实施例2固态电池与对比例1固态电池的循环性能对比图, 其中a代表对比例1,b代表实施例2。PEO固态电池在温度60℃,3.0-4.2V电压范围条件下循环,从图6中可以看出对比例1的固态电池在循环100圈之后,容量急剧衰减,而实施例2的固态电池中容量保持率稳定,可见,本发明提供的正极材料适合于固态电解质体系的电池中,可获得优异的电池循环性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种固态电池正极材料的包覆方法,其特征在于,包括以下步骤:
    将包覆材料锂源、铝源、(钛源或锗源)、磷源溶于溶剂中,搅拌均匀,得到包覆材料前驱体溶液;
    将正极材料用载气悬浮于流化床反应器中;
    将所述包覆材料前驱体溶液雾化后通入所述流化床反应器中,并控制所述流化床反应器的温度在70~130℃,使所述包覆材料前驱体溶液吸附沉积于所述正极材料的表面并同时蒸干溶剂,得到包覆材料前驱体包覆的正极材料;
    将所述包覆材料前驱体包覆的正极材料进行高温煅烧,得到具有LATP包覆层或LAGP包覆层的正极材料。
  2. 根据权利要求1所述的固态电池正极材料的包覆方法,其特征在于,
    所述包覆材料的用量为所述正极材料的0.5~5wt%,所述LATP包覆层或LAGP包覆层的厚度为5nm~50nm。
  3. 根据权利要求1所述的固态电池正极材料的包覆方法,其特征在于,所述LATP包覆层选自Li 1+xAl xTi 2-x(PO 4) 3、Li 3PO 4、LiH 2PO 4、LiTi 2(PO 4) 3、LiPO 3中的一种或多种,其中0≤x≤0.5;所述LAGP包覆层选自Li 1+xAl xGe 2-x(PO 4) 3、Li 3PO 4、LiH 2PO 4、LiPO 3中的一种或多种,其中0≤x≤0.5。
  4. 根据权利要求1所述的固态电池正极材料的包覆方法,其特征在于,所述正极材料为层状结构正极材料或高电压正极材料;
    优选地,所述层状结构正极材料选自钴酸锂、锰酸锂、镍酸锂、镍钴锰酸锂、镍钴铝酸锂中的一种或多种;所述高电压正极材料为富锂锰基正极材料或尖晶石镍锰酸锂正极材料。
  5. 根据权利要求1所述的固态电池正极材料的包覆方法,其特征在于,所述锂源包括硝酸锂、氯化锂、硫酸锂中的一种或多种;所述铝源包括硝酸铝和硝酸铝水合物中的一种或多种;所述钛源包括异丙醇钛和异丁醇钛中的一种或多种;所述锗源包括锗酸四丁酯;所述磷源包括磷酸、磷酸三甲酯、磷酸三乙 酯和磷酸三丙酯中的一种或多种;所述溶剂选自甲醇、乙醇的一种或多种。
  6. 根据权利要求1或5所述的固态电池正极材料的包覆方法,其特征在于,所述锂源、铝源、(钛源或锗源)、磷源的摩尔比为(1+x):x:(2-x):3,其中0≤x≤0.5。
  7. 根据权利要求1所述的固态电池正极材料的包覆方法,其特征在于,所述煅烧的温度为550-900℃,所述煅烧时间为2h-12h。
  8. 一种正极材料,其特征在于,所述正极材料根据权利要求1-7任意一项所述的固态电池正极材料的包覆方法制备得到。
  9. 一种固态电池,其特征在于,包括依次堆叠设置的正极片、固态电解质和负极片,所述正极片包括权利要求1-7任意一项所述的固态电池正极材料的包覆方法制备得到的正极材料。
  10. 根据权利要求9所述的固态电池,其特征在于,所述固态电解质选自无机石榴石型氧化物电解质、有机电解质、有机无机复合电解质、硫化物电解质中的一种或多种。
PCT/CN2021/131054 2020-12-09 2021-11-17 一种固态电池正极材料的包覆方法及正极材料、固态电池 WO2022121636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011430750.4 2020-12-09
CN202011430750.4A CN114613951A (zh) 2020-12-09 2020-12-09 一种固态电池正极材料的包覆方法及正极材料、固态电池

Publications (1)

Publication Number Publication Date
WO2022121636A1 true WO2022121636A1 (zh) 2022-06-16

Family

ID=81857161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131054 WO2022121636A1 (zh) 2020-12-09 2021-11-17 一种固态电池正极材料的包覆方法及正极材料、固态电池

Country Status (2)

Country Link
CN (1) CN114613951A (zh)
WO (1) WO2022121636A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241461A (zh) * 2022-09-20 2022-10-25 河北格力钛新能源有限公司 制备改性钛酸锂复合材料的方法及改性钛酸锂复合材料
CN116947123A (zh) * 2023-09-18 2023-10-27 四川新能源汽车创新中心有限公司 一种改性正极材料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432751A (zh) * 2022-10-25 2022-12-06 格林美股份有限公司 一种改性正极材料及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156032A (ja) * 2004-11-26 2006-06-15 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2007005267A (ja) * 2005-06-27 2007-01-11 Central Res Inst Of Electric Power Ind 常温溶融塩を用いたリチウムイオン二次電池およびその製造方法
US20130171526A1 (en) * 2011-12-28 2013-07-04 Nariaki Miki Producing method of composite active material, coating apparatus, composite active material and all solid state battery
CN104364942A (zh) * 2012-06-29 2015-02-18 丰田自动车株式会社 复合活性物质、固体电池以及复合活性物质的制造方法
CN111682187A (zh) * 2020-07-08 2020-09-18 清陶(昆山)能源发展有限公司 一种包覆型复合正极材料、其制备方法及用途
CN111755698A (zh) * 2020-07-06 2020-10-09 上海汽车集团股份有限公司 一种氧化物固态电解质包覆的正极材料及其制备方法
CN111900394A (zh) * 2020-07-03 2020-11-06 清陶(昆山)能源发展有限公司 一种锂离子电池正极材料的包覆结构及其制备方法和用途
CN112164776A (zh) * 2020-09-16 2021-01-01 合肥国轩高科动力能源有限公司 一种复合包覆的全固态电池正极材料及其制备方法和全固态电池
CN113471411A (zh) * 2020-03-31 2021-10-01 北京卫蓝新能源科技有限公司 一种复合包覆正极材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6329745B2 (ja) * 2013-10-02 2018-05-23 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
CN109585797B (zh) * 2017-09-29 2020-12-25 横店集团东磁股份有限公司 一种包覆改性电极材料及其制备方法
CN109768318A (zh) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 一种混合固液电解质锂蓄电池
CN109994722A (zh) * 2019-03-27 2019-07-09 华南理工大学 一种Li1+xAlxTi2-x(PO3)4包覆的钴酸锂材料及其制备方法与应用
CN111864188B (zh) * 2019-04-25 2021-12-07 比亚迪股份有限公司 一种锂电池正极材料及其制备方法、全固态锂电池
CN110620219A (zh) * 2019-08-22 2019-12-27 合肥国轩高科动力能源有限公司 一种锂离子正极材料表面包覆金属氧化物薄膜的方法
CN110880594A (zh) * 2019-11-13 2020-03-13 星恒电源股份有限公司 双包覆复合固态锰酸锂材料及其制备方法
CN111430688A (zh) * 2020-03-18 2020-07-17 蜂巢能源科技有限公司 固态电池及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156032A (ja) * 2004-11-26 2006-06-15 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2007005267A (ja) * 2005-06-27 2007-01-11 Central Res Inst Of Electric Power Ind 常温溶融塩を用いたリチウムイオン二次電池およびその製造方法
US20130171526A1 (en) * 2011-12-28 2013-07-04 Nariaki Miki Producing method of composite active material, coating apparatus, composite active material and all solid state battery
CN104364942A (zh) * 2012-06-29 2015-02-18 丰田自动车株式会社 复合活性物质、固体电池以及复合活性物质的制造方法
CN113471411A (zh) * 2020-03-31 2021-10-01 北京卫蓝新能源科技有限公司 一种复合包覆正极材料及其制备方法
CN111900394A (zh) * 2020-07-03 2020-11-06 清陶(昆山)能源发展有限公司 一种锂离子电池正极材料的包覆结构及其制备方法和用途
CN111755698A (zh) * 2020-07-06 2020-10-09 上海汽车集团股份有限公司 一种氧化物固态电解质包覆的正极材料及其制备方法
CN111682187A (zh) * 2020-07-08 2020-09-18 清陶(昆山)能源发展有限公司 一种包覆型复合正极材料、其制备方法及用途
CN112164776A (zh) * 2020-09-16 2021-01-01 合肥国轩高科动力能源有限公司 一种复合包覆的全固态电池正极材料及其制备方法和全固态电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241461A (zh) * 2022-09-20 2022-10-25 河北格力钛新能源有限公司 制备改性钛酸锂复合材料的方法及改性钛酸锂复合材料
CN115241461B (zh) * 2022-09-20 2023-02-03 河北格力钛新能源有限公司 制备改性钛酸锂复合材料的方法及改性钛酸锂复合材料
CN116947123A (zh) * 2023-09-18 2023-10-27 四川新能源汽车创新中心有限公司 一种改性正极材料及其制备方法和应用
CN116947123B (zh) * 2023-09-18 2023-11-21 四川新能源汽车创新中心有限公司 一种改性正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114613951A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
WO2022121636A1 (zh) 一种固态电池正极材料的包覆方法及正极材料、固态电池
WO2018209837A1 (zh) 改性正极活性材料及其制备方法及电化学储能装置
JP5741685B2 (ja) 電極活物質の製造方法
JP6036162B2 (ja) 複合活物質の製造方法、被覆装置、複合活物質および全固体電池
CN112467111B (zh) 一种导电碳基底负载石墨烯气凝胶复合电极及其制备方法
US20220263121A1 (en) Al-doped sheet llzo composite solid-state electrolyte and preparation method and application thereof
WO2020258996A1 (zh) 一种低产气高容量的三元正极材料
CN108172893B (zh) 一种锂离子电池
WO2022121281A1 (zh) 一种自填充包覆硅基复合材料、其制备方法及其应用
CN105226273B (zh) 一种磷酸锰铁锂及其制备方法及应用
CN108199011B (zh) 一种钛酸锂负极材料的制备方法
Zhang et al. A review on electrode materials of fast‐charging lithium‐ion batteries
CN115295795A (zh) 正极补锂添加剂及其制备方法和应用
WO2021227638A1 (zh) 用于全固态锂二次电池的正极活性材料、正极极片、全固态锂二次电池及装置
WO2023227035A1 (zh) 一种正极材料及其制备方法
US6972134B2 (en) Method of preparing positive active material for rechargeable lithium batteries
WO2023160307A1 (zh) 正极补锂添加剂及其制备方法和应用
WO2023124990A1 (zh) 复合补锂添加剂及制备方法和应用
CN116014104A (zh) 富锂镍系正极材料及其制备方法、正极片与二次电池
Guo et al. Modification of LiCoO 2 through rough coating with lithium lanthanum zirconium tantalum oxide for high-voltage performance in lithium ion batteries
WO2022121280A1 (zh) 一种类石榴结构硅基复合材料、其制备方法及其应用
CN117559013A (zh) 一种补锂剂复合材料及其制备方法与应用
CN116230908A (zh) 补锂剂、正极极片、电化学装置及补锂剂的制备方法
WO2023071913A1 (zh) 补锂添加剂及其制备方法和应用
WO2022194219A1 (zh) 用于电池负极的复合固态电解质材料、负极片及全固态锂电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902343

Country of ref document: EP

Kind code of ref document: A1