WO2020206894A1 - 光学指纹识别装置和电子设备 - Google Patents
光学指纹识别装置和电子设备 Download PDFInfo
- Publication number
- WO2020206894A1 WO2020206894A1 PCT/CN2019/100657 CN2019100657W WO2020206894A1 WO 2020206894 A1 WO2020206894 A1 WO 2020206894A1 CN 2019100657 W CN2019100657 W CN 2019100657W WO 2020206894 A1 WO2020206894 A1 WO 2020206894A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- microlens
- fingerprint identification
- optical fingerprint
- identification device
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 221
- 238000001514 detection method Methods 0.000 claims abstract description 123
- 230000000903 blocking effect Effects 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 9
- 239000002313 adhesive film Substances 0.000 claims description 3
- 229910000679 solder Inorganic materials 0.000 claims description 3
- 238000001914 filtration Methods 0.000 abstract 4
- 239000010410 layer Substances 0.000 description 205
- 238000010586 diagram Methods 0.000 description 13
- 238000000576 coating method Methods 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000013461 design Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000012634 optical imaging Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
- H01L27/14621—Colour filter arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
- G06V40/1318—Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
- G02B3/0056—Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/003—Light absorbing elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/005—Diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
- H01L27/14623—Optical shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
- H01L27/14627—Microlenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14636—Interconnect structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14678—Contact-type imagers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/2919—Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32135—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/32145—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
- H01L2224/331—Disposition
- H01L2224/3318—Disposition being disposed on at least two different sides of the body, e.g. dual array
- H01L2224/33181—On opposite sides of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48105—Connecting bonding areas at different heights
- H01L2224/48106—Connecting bonding areas at different heights the connector being orthogonal to a side surface of the semiconductor or solid-state body, e.g. parallel layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73205—Bump and strap connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8385—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
- H01L2224/83851—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
Definitions
- This application relates to the field of optical fingerprint technology, and more specifically, to an optical fingerprint identification device and electronic equipment.
- under-screen fingerprint identification devices have become more and more widely used, and under-screen optical fingerprint identification devices are the most popular.
- the mass-produced under-screen optical fingerprint recognition device in the industry mainly adopts two schemes.
- One is the use of small hole imaging scheme. In actual industrial manufacturing, the size of the small hole cannot be further reduced, which limits the improvement of its fingerprint image resolution. ; And the small hole only allows the incident light in the vertical direction to enter, unable to provide enough light, resulting in relatively limited imaging signals, affecting the quality of fingerprint images.
- the other is to use an optical lens solution, using spherical or aspherical lens to condense the image.
- the distance from the finger pressing the surface of the mobile phone screen to the fingerprint collection area of the optical chip is relatively short, and the total optical thickness of the optical lens is small. Therefore, the fingerprint collection area of this solution is very limited. Collecting fingerprints on a large area affects the performance of the fingerprint identification device.
- the embodiments of the present application provide an optical fingerprint identification device and electronic equipment, which can improve the performance of the optical fingerprint identification device.
- an optical fingerprint recognition device including:
- the filter layer is arranged above the light detection array and is used to filter out the light signals in the non-target waveband and transmit the light signals in the target waveband, and the filter layer and the light detection array are integrated in the photoelectric sensor chip;
- the first light blocking layer is formed above the filter layer, wherein the first light blocking layer is provided with a plurality of light passing holes;
- the first microlens array is arranged above the first light blocking layer
- the first microlens array is used to converge light signals to a plurality of light-passing holes of the first light-blocking layer, and the light signal passes through a plurality of light-passing holes of the first light-blocking layer Transmitted to the light detection array.
- the first light blocking layer is integrally grown on the light detection array, and a plurality of light passing holes are provided on the first light blocking layer, and the first microlens array
- the optical signals are converged to the plurality of light-passing holes, and the light signals are transmitted to the light detection array through the plurality of light-passing holes for optical fingerprint collection, so as to realize a large-area high-resolution fingerprint image recognition
- the thickness of the fingerprint identification device is reduced, and the filter layer and the light detection array are integrated into the photoelectric sensor chip, which can further reduce the thickness of the fingerprint identification device, thereby improving the performance of the optical fingerprint identification device.
- the optical fingerprint identification device further includes: a first medium layer and a second medium layer;
- the first dielectric layer is grown on the surface of the filter layer
- the first light blocking layer is grown on the surface of the first dielectric layer
- the second dielectric layer is grown on the surface of the first light-blocking layer and fills a plurality of light-passing holes of the first light-blocking layer.
- the upper surfaces of the first microlens array are all light-concentrating areas, and the light-concentrating areas of the first microlens array cover the photosensitive areas of the light detection array.
- the first microlens array includes a plurality of microlenses
- the light detection array includes a plurality of pixel units
- the first microlens of the plurality of microlenses of the first microlens array is used to converge the first optical signal from above the first microlens to the light-passing hole of the first light blocking layer
- the first light signal is transmitted through the first light-passing hole to the pixel unit corresponding to the first microlens The first pixel unit.
- the optical signal is an optical signal in a first specific direction
- the connection direction between the optical center of the first microlens and the center of the first light-passing hole is A specific direction is the same or similar
- the connection direction between the center of the first light-passing hole and the center of the first pixel unit is the same or similar to the first specific direction.
- the first specific direction is a direction perpendicular to the light detection array.
- the first specific direction is a direction inclined to the light detection array.
- the ratio of the orthographic projection area of the first microlens on the light detection array to the area of the first pixel unit is greater than 70%.
- the first microlens is a quadrilateral microlens.
- the orthographic projection of the first microlens on the light detection array coincides with the first pixel unit.
- the upper surface of the first microlens is spherical or aspherical.
- the light-passing hole is a circular hole with a diameter of less than 10 ⁇ m.
- the optical fingerprint identification device includes multiple layers of the first light blocking layer.
- the second light-blocking layer is provided between the first light-blocking layers and between the first light-blocking layer and the first microlens array.
- a dielectric layer, and the first light blocking layer and the second dielectric layer are grown sequentially through a growth process;
- the second dielectric layer fills a plurality of light passing holes of the first light blocking layer.
- the diameter of the light-passing hole of the first light-blocking layer in the upper layer is larger than the diameter of the light-passing hole of the first light-blocking layer in the lower layer.
- the optical signal is an optical signal in a second specific direction
- the center of the light-passing hole of the first light blocking layer located in the upper layer corresponds to the center of the first light blocking layer located in the lower layer.
- the connection direction of the center of the light-passing hole of the optical layer is the same or similar to the second specific direction;
- connection direction between the center of the light-passing hole of the first light-blocking layer in the upper layer and the center of the corresponding pixel unit on the photodetection array is the same or similar to the second specific direction.
- the wavelength range of the target wavelength band includes 350-700 nm and/or 800-1000 nm.
- the thickness of the filter layer is less than or equal to 20 ⁇ m.
- the optical fingerprint identification device further includes a circuit board, and the circuit board is electrically connected to the optical fingerprint identification device through an electrical connection device.
- the light detecting part is provided with a metal pad
- the electrical connection device is electrically connected to the optical fingerprint identification device through the metal pad.
- the circuit board is a flexible circuit board
- the electrical connection device is solder, anisotropic conductive adhesive film or a metal connection device.
- the circuit board is a printed circuit board
- the electrical connection device is a wire bonding device
- the printed circuit board is arranged under the light detecting part or arranged in parallel with the light detecting part.
- an electronic device including: a display screen and the optical fingerprint identification device in the first aspect or any possible implementation of the first aspect, wherein the optical fingerprint identification device is disposed on the display screen Below.
- FIG. 1 is a schematic plan view of an electronic device to which an embodiment of the present application can be applied.
- Fig. 2 is a schematic structural diagram of an optical fingerprint identification device provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of a multilayer three-dimensional structure of an optical fingerprint identification device provided by an embodiment of the present application.
- Fig. 4 is a schematic structural diagram of another optical fingerprint identification device provided by an embodiment of the present application.
- Fig. 5 is a schematic structural diagram of another optical fingerprint identification device provided by an embodiment of the present application.
- Fig. 6 is a schematic structural diagram of another optical fingerprint identification device provided by an embodiment of the present application.
- Fig. 7 is a schematic structural diagram of another optical fingerprint identification device provided by an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of another optical fingerprint identification device provided by an embodiment of the present application.
- FIG. 9 is a schematic diagram of a multilayer three-dimensional structure of a microlens array component in an optical fingerprint identification device provided by an embodiment of the application.
- Fig. 10 is a schematic block diagram of an electronic device according to an embodiment of the present application.
- the optical fingerprint identification device provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other terminal equipment, and the technical solutions of the embodiments of this application can be used for Biometric recognition technology.
- the biometric recognition technology includes but is not limited to fingerprint recognition, palmprint recognition, iris recognition, face recognition, and living body recognition.
- fingerprint recognition technology uses fingerprint recognition technology as an example.
- the optical fingerprint identification device may be arranged in a partial area or an entire area below the display screen, thereby forming an under-display optical fingerprint system.
- FIG. 1 is a schematic structural diagram of a terminal device to which the embodiment of the application can be applied.
- the terminal device 10 includes a display screen 120 and an optical fingerprint recognition device 20, wherein the optical fingerprint recognition device 20 is provided on the display screen. Partial area below 120.
- the optical fingerprint identification device 20 includes an optical fingerprint sensor, the optical fingerprint sensor includes a light detection array 400 having a plurality of pixel units 410, and the area where the light detection array 400 is located or its sensing area is the optical fingerprint identification device 20 The fingerprint detection area 103. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
- the optical fingerprint identification device 20 can also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the terminal device 10, and the optical fingerprint identification device 20 can be designed to The optical signal of at least part of the display area of the display screen 120 is guided to the optical fingerprint identification device 20, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
- the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint recognition device 20, for example, through a light path design such as lens imaging, a reflective folding light path design, or other light convergence or reflection light path designs.
- the area of the fingerprint detection area 103 of the optical fingerprint identification device 20 can be made larger than the area of the sensing array of the optical fingerprint identification device 20.
- the fingerprint detection area 103 of the optical fingerprint identification device 20 can also be designed to be substantially the same as the area of the sensing array of the optical fingerprint identification device 20.
- the terminal device 10 adopting the above structure does not need to reserve space on the front side for setting fingerprint buttons (such as the Home button), so that a full screen solution can be adopted, that is, the display area of the display screen 120 It can be basically extended to the front of the entire terminal device 10.
- the optical fingerprint identification device 20 includes an optical assembly 30 and a light detection part 40.
- the light detection part 40 includes the light detection array 400 and the light detection
- the reading circuit and other auxiliary circuits that are electrically connected to the array can be fabricated on a chip (Die) by a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
- the light detection array is specifically a photodetector (Photodetector)
- the array includes a plurality of photodetectors distributed in an array, and the photodetectors can be used as the above-mentioned pixel unit; the optical component 30 can be arranged above the sensing array of the photodetection part 40.
- the optical assembly 30 and the light detecting part 40 may be packaged in the same optical fingerprint component.
- the optical component 30 and the light detecting part 40 may be packaged in the same optical fingerprint chip, or the optical component 30 may be arranged outside the chip where the light detecting part 40 is located, for example, the optical component 30 is attached above the chip, or some components of the optical assembly 30 are integrated into the chip.
- the display screen 120 may be a display screen with a self-luminous display unit, such as an organic light-emitting diode (OLED) display or a micro-LED (Micro-LED) display. Screen.
- the optical fingerprint identification device 20 may use the display unit (ie, an OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as an excitation light source for optical fingerprint detection.
- the display unit ie, an OLED light source
- the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
- the light 111 is reflected on the surface of the finger 140 to form reflected light or pass through all the fingers.
- the finger 140 scatters to form scattered light.
- the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge and the reflected light 152 from the fingerprint ridge have different light intensities.
- the light detection array 400 in the optical fingerprint identification device 20 is received and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, thereby
- the terminal device 10 implements an optical fingerprint recognition function.
- a circuit board 150 such as a flexible printed circuit (FPC) may also be provided under the optical fingerprint identification device 20.
- the optical fingerprint identification device 20 can be glued to the circuit board 150 through adhesive, and is electrically connected to the circuit board 150 through soldering pads and metal wires.
- the optical fingerprint identification device 20 can realize electrical interconnection and signal transmission with other peripheral circuits or other components of the electronic device 10 through the circuit board 150.
- the optical fingerprint recognition device 20 may receive the control signal of the processing unit of the electronic device 10 through the circuit board 150, and may also output the fingerprint detection signal from the optical fingerprint recognition device 20 to the processing unit of the electronic device 10 through the circuit board 150. Control unit, etc.
- the terminal device 10 further includes a transparent protective cover.
- the cover may be a glass cover or a sapphire cover, which is located above the display screen 120 and covers the terminal device 10. Of the front. Because, in the embodiment of the present application, the so-called finger pressing on the display screen 120 actually refers to pressing on the cover plate above the display screen 120 or covering the surface of the protective layer of the cover plate.
- the optical fingerprint recognition device 20 may include only one optical fingerprint sensor.
- the fingerprint detection area 103 of the optical fingerprint recognition device 20 has a small area and a fixed position, so the user is performing During fingerprint input, it is necessary to press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint identification device 20 may not be able to collect fingerprint images, which may result in poor user experience.
- the optical fingerprint identification device 20 may specifically include multiple optical fingerprint sensors; the multiple optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the multiple The sensing area of the optical fingerprint sensor collectively constitutes the fingerprint detection area 103 of the optical fingerprint identification device 20.
- the fingerprint detection area 103 of the optical fingerprint recognition device 20 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint of the optical fingerprint recognition device 20 is collected
- the area 103 can be expanded to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
- the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
- optical fingerprint identification device 20 in the embodiments of the present application may also be referred to as an optical fingerprint identification module, fingerprint identification device, fingerprint identification module, fingerprint module, fingerprint acquisition device, etc., and the above terms can be replaced with each other.
- the embodiments of the present application provide an improved optical fingerprint identification device, which increases the resolution of the fingerprint image while collecting fingerprint images in a large area, reduces the thickness of the fingerprint identification device, and further improves the performance of the off-screen optical fingerprint identification.
- optical fingerprint identification device according to the embodiment of the present application will be described in detail with reference to FIGS. 2-9.
- FIG. 2 is a schematic structural diagram of an optical fingerprint identification device 20 provided by an embodiment of the present application.
- the optical fingerprint identification device 20 may include:
- the first light blocking layer 300 is formed above the light detection array 400, wherein the first light blocking layer 300 is provided with a plurality of light passing holes;
- the first microlens array 200 is disposed above the first light blocking layer 300;
- the first microlens array 200 is used to converge light signals to a plurality of light-passing holes of the first light-blocking layer 300, and the light signals pass through the multiple light-passing holes of the first light-blocking layer 300.
- the light holes are transmitted to the light detection array 400.
- the optical signal is an optical signal reflected by a finger.
- the first light-blocking layer 300 may be prepared on the light detection array 400 by using a micro-nano processing technology or a nano-printing process, for example, using a micro-nano processing technology, through atomic layer deposition, sputtering coating, and electronic Beam evaporation coating, ion beam coating and other methods prepare a layer of non-transparent material film above the light detection array 400, and then perform small hole pattern photolithography and etching to form multiple light-passing holes.
- the optical assembly 30 in FIG. 1 may include the first microlens array 200 and the first light blocking layer 300 described above.
- the upper surface of the first microlens array 200 is a light-concentrating area, and the light-concentrating area covers the photosensitive area of the light detection array.
- FIG. 3 is a multi-layer three-dimensional schematic diagram of the optical fingerprint identification device 20.
- the upper surface of the first microlens array 200 is an array formed by splicing multiple spherical or aspheric surfaces. All areas are curved surfaces and excluding flat surfaces.
- the upper surface of the first microlens array 200 All areas on the surface can converge light.
- the photosensitive area in the light detection array 400 is an area that can receive light signals.
- the light detection array 400 is a pixel array in a photosensor
- the photosensitive area of the light detection array 400 is a pixel array area in the photosensor.
- the first microlens array 200 includes a plurality of microlenses
- the light detection array 400 includes a plurality of pixel units.
- the first microlens 210 of the plurality of microlenses is used to converge the first light signal from above the first microlens 210 into the light-passing hole of the first light blocking layer and the The first light-passing hole 310 corresponding to the first microlens, and the first light signal is transmitted through the first light-passing hole 310 to the first light-passing hole 310 corresponding to the first microlens 210 among the plurality of pixel units.
- One pixel unit 410 One pixel unit 410.
- the focal point of the first microlens 210 is located at any point between the first light blocking layer 300 and the first pixel unit 410.
- the focal point of the first microlens 210 is located in the first aperture 310, or the focal point of the first microlens 210 is located on the first pixel unit 410.
- the first microlens 210 may be used to converge the optical signals above the first microlens 210 perpendicular to the light detection array 400 into the first light-passing aperture 310.
- the first microlens 210 can also be used to converge optical signals in a specific direction above the first microlens to the first light-passing aperture 310.
- the surface of the first microlens 210 may be spherical or aspherical.
- the first microlens 210 is a polygonal lens, such as a square lens or a hexagonal lens.
- the first microlens 210 may also be a circular lens.
- the first microlens 210 is a quadrilateral lens, and the quadrilateral lens is a microlens with a spherical upper surface and a quadrilateral lens on the lower surface.
- the material of the first microlens array 200 is a transparent medium whose light transmittance is greater than 99%, such as resin.
- first microlens 210 is any one of a plurality of microlenses in the first microlens array 200, and in the embodiment of the present application, the first microlens 210 is located on the first microlens array 200. The specific location is not limited.
- the shape and size of the multiple microlenses in the first microlens array 200 may be the same as or different from the shape and size of the first microlens 210, and the embodiment of the present application does not limit the shape and size of the multiple microlenses.
- each of the plurality of microlenses in the first microlens array 200 is the same as the first microlens 210, as shown in FIGS. 2 and 3, the first microlens array 200
- Each microlens is a quadrilateral microlens, and the multiple quadrilateral microlenses are arranged in an array on a horizontal plane.
- each microlens in the first microlens array 200 may also be a circular microlens or other polygonal microlenses.
- the optical signal may be transmitted to the light detection array 400 through a plurality of light-passing holes of the first light blocking layer 300.
- the first light blocking layer 300 is used to block light signals that interfere with fingerprint detection, such as ambient light and stray light.
- the first light blocking layer 300 has a transmittance of less than 20% for light in a specific wavelength band (such as visible light or a wavelength band above 610 nm), so as to prevent the corresponding light from passing through.
- a specific wavelength band such as visible light or a wavelength band above 610 nm
- the material of the first light blocking layer 300 may be metal or black opaque material.
- the optical fingerprint identification device includes only one first light blocking layer.
- the number of the first light blocking layer 300 is 1, and the first light blocking layer 300 includes a first light-passing hole 310 corresponding to the first microlens 210.
- a micro lens 210 is used to converge the first light signal from above the first micro lens to the first light-passing hole 310.
- the first light-passing hole 310 may be a circular hole with a diameter of less than 10 ⁇ m for optical imaging, and the resolution of optical imaging can be improved by reducing the size of the light-passing hole, thereby Improve the resolution of fingerprint images.
- the diameter of the first light-passing hole 310 is greater than a certain threshold, so that sufficient light signals can be used for imaging to improve imaging quality.
- the shape of the first light-passing hole 310 may also be a polygon, and the shape of the first light-passing hole 310 is not limited in the embodiment of the present application.
- each light-passing hole on the first light blocking layer 300 may be the same as or different from the first light-passing hole 310, which is not limited in the embodiment of the present application.
- each light-passing hole on the first light blocking layer 300 has the same shape and size as the first light-passing hole 310, and the positions of the multiple light-passing holes They are arranged in an array, and each light-passing hole corresponds to a microlens on the first microlens array.
- the optical signal is transmitted to the light detection array 400 through a plurality of light-passing holes of the first light blocking layer 300.
- the light detection array 400 is configured to receive the light signal and convert the light signal into an electrical signal.
- the light detection array processes the electrical signal to obtain a fingerprint image signal.
- the light detection array 400 includes a plurality of pixel units, and the plurality of pixel units includes a first pixel unit 410 corresponding to the first microlens 210, and the first light The signal is transmitted to the first pixel unit 410 through the first light-passing hole 310.
- the first pixel unit 410 is further configured to process the first optical signal to obtain a first fingerprint image electrical signal, where the first fingerprint image electrical signal is a unit pixel in the fingerprint image.
- the first pixel unit 410 may use a photodiode (photodiode), a metal oxide semiconductor field effect transistor (metal oxide semiconductor field effect transistor, MOSFET) and other devices.
- the first pixel unit 410 has higher optical sensitivity and higher quantum efficiency for light of a specific wavelength, so as to facilitate detection of optical signals of corresponding wavelengths.
- the shape of the first pixel unit 410 may also be a polygon, and the embodiment of the present application does not limit the shape of the first pixel unit 410.
- each pixel unit on the light detection array 400 may be the same as or different from the first pixel unit 410, which is not limited in the embodiment of the present application.
- the first pixel unit 410 has a quadrilateral shape, and each pixel unit in the light detection array 400 may be the same as the first pixel unit 410, and both are quadrilateral.
- the array is arranged, and each pixel unit corresponds to a microlens on the first microlens array.
- the light detection array 400 is in a photosensor, and the multiple pixel units are multiple pixel units in the photosensor.
- the light detection array 400 may be integrated in a photosensor chip.
- the optical center of the first microlens 210, the center of the first light-passing hole 310, and the center of the first pixel unit 410 are located at the same vertical to the light.
- the vertical line of the array 400 is detected.
- the first microlens 210 is used to converge the optical signals above the first microlens 210 perpendicular to the light detection array 400 into the first light-passing aperture 310.
- the light detection array 400 and the first pixel unit 410 are located on parallel planes, the first light blocking layer 300 is arranged in parallel above the light detection array 400, and the first A lens array 200 is arranged in parallel above the first light blocking layer 300.
- the optical center of the first microlens 210, the first aperture 310 and the center of the first pixel unit 410 are all located on a vertical line 201, and the vertical line 201 is the first microlens 210's main optical axis.
- the orthographic projection of the first microlens 210 on the light detection array 400 (for ease of description, the orthographic projection of the first microlens 210 on the light detection array 400 is also written as the orthographic projection of the first microlens 210).
- the orthographic projection is the same as the cross section of the largest area of the first microlens 210.
- the orthographic projection of the first microlens 210 on the light detection array 400 is the same as the lower surface. quadrilateral.
- the first microlens 210 is on the first pixel unit 410
- the projection of is a quadrilateral.
- the ratio of the projected area of the first microlens 210 on the light detection array 400 to the area of the first pixel unit 410 is greater than 70%.
- the orthographic projection shape of the first microlens 210 is different from the shape of the first pixel unit 410.
- the first microlens 210 is a circular microlens
- the first pixel unit 410 is Quadrilateral
- the orthographic projection of the first microlens 210 is located in the first pixel unit 410
- the ratio of the circular area of the orthographic projection of the first microlens 210 to the area of the first pixel unit 410 is greater than 70% .
- the orthographic projection shape of the first microlens 210 is the same as the shape of the first pixel unit 410, for example, as shown in FIG. 3, the first microlens 210 is a quadrangular microlens, and the second The orthographic projection shape of a microlens 210 and the first pixel unit 410 are both the same quadrilateral.
- the orthographic projection shape of the first microlens 210 on the light detection array 400 coinciding with the first pixel unit 410, the ratio of the area of the orthographic projection of the first microlens 210 on the light detection array 400 to the area of the first pixel unit 410 is 100%.
- the optical center of the first microlens 210, the center of the first light-passing hole 310, and the center of the first pixel unit 410 are located at different perpendicular directions to the The vertical line of the light detection array 400.
- the first microlens 210 converges the optical signals in a specific direction above it to In the first light-passing hole 310, the light signal in the specific direction is transmitted to the first pixel unit 410 through the first light-passing hole 310.
- connection direction between the center of the first light-passing aperture 310 and the optical center of the first microlens 210 is close to or the same as the direction of the optical signal in the first specific direction;
- connection direction between the center of the small hole 310 and the center of the first pixel unit 410 is close to or the same as the direction of the light signal in the first specific direction.
- the optical center of the first microlens 210 and the center of the first light-passing hole 310 are both located on a straight line 202 in a first specific direction, and the first light-passing hole 310 And the center of the first pixel unit 410 is also located on the straight line 202 in the first specific direction, that is, the first specific direction may be a direction inclined to the light detection array.
- the light signal 121 in the first specific direction passing through the optical center of the first microlens 210 is located on the straight line 202 in the first specific direction, and the light signal 121 in the first specific direction that does not pass the optical center of the first microlens 210 After the signal 122 is refracted by the first microlens 210, its direction is close to the first specific direction, and the light signal on the line 202 in the first specific direction intersects on the image side of the first microlens 210 On the focal plane.
- each microlens in the first microlens array 200 includes a corresponding aperture and a pixel unit, and the relative positional relationship between each microlens and its corresponding aperture and pixel unit is consistent with the The relative positional relationship between the first microlens 210 and the corresponding first light-passing aperture 310 and the first pixel unit 410 is the same.
- the optical signal is concentrated to the multiple light-passing holes of the first light-blocking layer 300 through the first microlens array 200, and the light signal passes through the light-blocking layer 300.
- a plurality of light-passing holes are transmitted to the light detection array 400 for optical fingerprint collection. While realizing large-area and high-resolution fingerprint image recognition, the thickness of the fingerprint recognition device is reduced, thereby improving the optical fingerprint recognition device 20 performance.
- the optical fingerprint identification device 20 further includes: a first medium layer 610 and a second medium layer 620;
- the first dielectric layer 610 is grown on the surface of the light detection array 400;
- the first light blocking layer 300 is grown on the surface of the first dielectric layer 610;
- the second dielectric layer 620 grows on the surface of the first light-blocking layer 300 and fills the light-passing holes of the first light-blocking layer 300.
- the first dielectric layer 610 and the second dielectric layer 620 can be grown by a semiconductor process, for example, atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam coating and other coating methods.
- the first medium layer 610 and the second medium layer 620 are made of an organic transparent medium material or an inorganic transparent medium material, such as resin or silicon oxide.
- the dielectric materials of the first dielectric layer 610 and the second dielectric layer 620 are the same or different.
- the first light blocking layer 300, the first medium layer 610, and the second medium layer 620 are all integrated with the light detection array 400 in a photosensor.
- the first dielectric layer 610 and the second dielectric layer 620 are both silicon oxide, and a first dielectric layer 610 is formed by coating a film on a plurality of pixel units of the photosensor, and then a first dielectric layer 610 is formed on the first dielectric layer.
- a first light blocking layer 300 is prepared above 610, and then a second dielectric layer 620 is prepared above the first light blocking layer 300.
- the first light blocking layer 300 and the first medium layer 610 are integrated with the light detection array 400 in a photoelectric sensor, and the second medium layer 620 is grown on the surface of the photoelectric sensor.
- the first dielectric layer 610 is silicon oxide
- the second dielectric layer 620 is resin.
- the optical fingerprint identification device includes multiple layers of the first light blocking layer.
- the optical fingerprint identification device 20 includes two first light blocking layers 300, wherein the first light blocking layer located on the top layer is the first upper light blocking layer 301, and the first light blocking layer located on the bottom layer is The layer is the first lower light blocking layer 302.
- the second dielectric layer is provided between multiple layers of the first light-blocking layer and between the first light-blocking layer disposed on the topmost layer and the first microlens array, and The first light blocking layer and the second dielectric layer are grown sequentially through a growth process;
- the second dielectric layer fills a plurality of light passing holes of the first light blocking layer.
- the first dielectric layer 610 is grown on the photodetection array 400, and the second dielectric layer 620 includes a second upper dielectric layer 621 and a second lower dielectric layer 622, so The second upper dielectric layer 621 is disposed between the first microlens array 200 and the first upper light blocking layer 301, and in the light-passing holes on the first upper light blocking layer 301;
- the second lower dielectric layer 622 is disposed between the first upper light-blocking layer 301 and the first lower light-blocking layer 302, and in the light-passing holes on the first lower light-blocking layer 302.
- the diameter of the light-passing hole of the first light-blocking layer in the upper layer is larger than the diameter of the light-passing hole of the first light-blocking layer in the lower layer.
- the diameter of the light passing hole of the first upper light blocking layer 301 is larger than the diameter of the light passing hole of the first lower light blocking layer 302.
- the optical signal is an optical signal in a second specific direction
- the center of the light-passing hole of the first light-blocking layer in the upper layer corresponds to the light-passing hole of the first light-blocking layer in the lower layer.
- the connection direction of the center of the small hole is the same or similar to the second specific direction; the center of the light-passing small hole of the first light blocking layer located in the upper layer is between the center of the pixel unit on the corresponding photodetection array
- the connection direction is the same or similar to the second specific direction.
- the second specific direction is a direction perpendicular to the light detection array.
- the light-passing hole of the first upper light-blocking layer 301 is located directly above the light-passing hole of the corresponding first lower light-blocking layer 302, and the first lower light-blocking layer 302
- the light-passing hole is located directly above the pixel unit of the corresponding photodetection array 400, the light-passing hole on the first upper light-blocking layer 301 and the light-passing hole on the first lower light-blocking layer 302
- the small holes are used to receive optical signals perpendicular to the light detection array.
- the plurality of light-passing holes on the first upper light-blocking layer 301 includes a first upper light-passing hole 311, and the plurality of light-passing holes on the first lower light-blocking layer 302 includes and The first upper light-passing hole corresponds to the first lower light-passing hole 312.
- the first light-passing aperture 310 may include the first upper light-passing aperture 311 and the first lower light-passing aperture 312.
- the first upper light-passing hole 311 and the first lower light-passing hole 312 correspond to the first microlens 210 and the first pixel unit 410.
- the first microlens 210 transmits the first light signal from above the first microlens 210 to the first upper light-passing aperture 311 and the first lower light-passing aperture 312, and the second An optical signal is transmitted to the first pixel unit 410 through the first upper light-passing hole 311 and the first lower light-passing hole 312.
- the focal point of the first microlens 210 is located between the bottommost first light blocking layer and the light detection array, for example, the focal point of the first microlens 210 is located at the first bottom. Any point between the light blocking layer 302 and the first pixel unit 410.
- the focal point of the first microlens 210 may be located on the first pixel unit 410 or in the first lower light-passing hole 312.
- the diameter of the first upper light-passing hole 311 is larger than the first lower light-passing hole 312.
- the first upper light-passing aperture 311 and the first lower light-passing aperture 322 are circular apertures with a diameter of less than 10 ⁇ m for optical imaging.
- the diameter of the first upper light-passing hole 311 and the first lower light-passing hole 322 is greater than a certain threshold.
- the shapes of the first upper light-passing aperture 311 and the first lower light-passing aperture 322 may also be polygons, which are not limited in the embodiment of the present application.
- the optical center of the first microlens 210, the center of the first upper light-passing hole 311, the center of the first lower light-passing hole 312, and the second The centers of a pixel unit 410 are all located on the same vertical line of the photo detection array 400.
- the first microlens 210 converges the first light signal above it perpendicular to the light detection array 400 to the first upper light-passing hole 311 or the first lower light-passing hole 312,
- the first light signal perpendicular to the light detection array 400 is transmitted to the first pixel unit 410 through the first upper light-passing hole 311 and the first lower light-passing hole 312.
- the optical center of the first microlens 210, the center of the first upper light-passing aperture 311, the center of the first lower light-passing aperture 312, and the center of the first pixel unit 410 They are all located on different vertical lines of the light detection array 400.
- the first microlens 210 by adjusting the relative positions of the first microlens 210, the first upper aperture 311, the first lower aperture 312, and the first pixel unit 410, respectively, the first microlens 210
- the optical signal in the second specific direction above it is concentrated on the first lower light-passing hole 312, and the optical signal in the second specific direction passes through the first upper light-passing hole 311 and the first lower light-passing hole 312.
- the hole 312 is transmitted to the first pixel unit 410.
- each light-passing hole on the first upper light-blocking layer 301 is the same as the shape and size of the first upper light-passing hole 311, and each light-passing hole on the first lower light-blocking layer 302
- the shape and size of each light-passing hole is the same as that of the first lower light-passing hole 312.
- each light-passing hole on the first upper light-blocking layer 301 and its corresponding light-passing hole on the first lower light-blocking layer 302 is the same as the first upper light-passing hole
- the relative positional relationship between the small hole 311 and the first lower light-passing small hole 312 is the same.
- first upper light-passing aperture 311 may be the same as or different from the shape of the first lower light-passing aperture 312, which is not limited in the embodiment of the present application.
- the design of the two-layer light-blocking layer is described as an example above, the technical solution of the embodiment of the present application is not limited to the two-layer light-blocking layer.
- the design of two light-blocking layers described above can be adopted between every two light-blocking layers.
- the multilayer light-blocking layer and the light-passing hole it is possible to further facilitate the collection and imaging of light in a specific direction, and further block ambient light or interference light signals in other non-specific directions, thereby improving imaging quality .
- the optical fingerprint identification device 20 further includes:
- the filter layer 500 is used to filter out the optical signal in the non-target waveband and transmit the optical signal in the target waveband (that is, the optical signal in the waveband required for fingerprint image collection).
- the filter layer 500 is disposed above the first microlens array 200.
- a buffer layer 520 is disposed above the first microlens array 200, and the buffer layer 520 is The optical refractive index of the transparent medium buffer layer is lower than that of the first lens array 200.
- the optical refractive index of the buffer layer 520 is lower than 1.3.
- the lower surface of the filter layer 500 is completely attached to the upper surface of the buffer layer 520 through the adhesive layer 510.
- the adhesive layer 510 may be a low refractive index glue, and the refractive index of the low refractive index glue is less than 1.25.
- the filter layer 500 can also be fixed above the first microlens array 200 by a fixing device, for example, a sealant or other support is provided in a non-photosensitive area around the first microlens array 200 to The filter layer 500 is supported and fixed above the first microlens array, and there is an air gap layer between the lower surface of the filter layer 500 and the upper surface of the first microlens array 200.
- a fixing device for example, a sealant or other support is provided in a non-photosensitive area around the first microlens array 200 to The filter layer 500 is supported and fixed above the first microlens array, and there is an air gap layer between the lower surface of the filter layer 500 and the upper surface of the first microlens array 200.
- the filter layer 500 may also be disposed in the optical path between the first microlens array 200 and the light detection array 400. Specifically, the filter layer 500 may be disposed on the first resister. Between the light layer 300 and the light detection array 400, for example, as shown in FIG. 7, the first light blocking layer 300 is formed above the filter layer 500, and the filter layer 500 is disposed on the light detection array. Above 400. It is understandable that when the filter layer 500 is disposed between the first light blocking layer 300 and the light detection array 400, the first dielectric layer 610 can be grown on the surface of the filter layer 500.
- the filter layer 500 can be integrated with the photodetection array 400 in a photosensor chip. Specifically, an evaporation process can be used to coat multiple pixel units of the photosensor to form the filter.
- a thin film of filter material is prepared over a plurality of pixel units of the photoelectric sensor by methods such as atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam coating and the like. In this technical solution, the thickness of the filter layer 500 is less than or equal to 20 ⁇ m.
- the filter layer 500 is an optical wavelength cut-off filter, which is used to filter out optical signals in a specific wavelength band, which is beneficial to reduce the influence of ambient light signals in a specific wavelength band, thereby improving fingerprint recognition performance.
- the filter layer 500 is used to pass optical signals in the 350-700 nm band.
- the filter layer 500 may also be used for optical signals passing through the 800-1000 nm band.
- the filter layer 500 may be used to pass optical signals in the 350-700 nm band and the 800-1000 nm band at the same time.
- the optical fingerprint identification device 20 further includes:
- the circuit board 50 is electrically connected to the optical fingerprint device 20 through the electrical connection device 501.
- a metal pad 401 is provided on the light detecting portion 40 of the optical fingerprint identification device 20, and the electrical connection device 501 is electrically connected to the optical fingerprint identification device 20 through the metal pad 401.
- the circuit board 50 may be a flexible circuit board FPC, and the electrical connection device 501 may be solder or anisotropic conductive adhesive film. (anisotropic conductive film, ACF) or other metal connection devices.
- ACF anisotropic conductive film
- the circuit board 50 may also be a printed circuit board (printed circuit board, PCB), and the electrical connection device 501 may be a wire bonding (WB) device .
- the electrical connection device 501 may be a bonding wire made of gold (Au).
- the printed circuit board 50 may be arranged under the light detecting part 40 or arranged in parallel with the light detecting part 40.
- the circuit board 50 may be the circuit board 150 in FIG. 1.
- the electrical connection device 501 may also be a miniature metal connection post or a connector or other electrical connection methods, as long as the electrical connection between the circuit board 50 and the optical fingerprint device 20 can be realized, and the implementation of this application The example does not limit this.
- the optical fingerprint identification device 20 further includes: a microlens array assembly 700, which is disposed above the first microlens array 200, and is configured to converge the optical signal to the first microlens array 200 .
- a microlens array assembly 700 which is disposed above the first microlens array 200, and is configured to converge the optical signal to the first microlens array 200 .
- the microlens array assembly 700 includes:
- the second light blocking layer 720 is disposed between the second microlens array 710 and the first microlens array 200, wherein the second light blocking layer 720 is provided with a plurality of light-passing holes;
- the second microlens array 710 is used to converge the optical signal to a plurality of light-passing holes of the second light-blocking layer, and the light signal passes through the plurality of light-passing holes of the second light-blocking layer.
- the light holes are transmitted to the first microlens array 200.
- the upper surfaces of the second microlens array 710 are all light-concentrating areas, and the light-concentrating areas cover the photosensitive areas of the light detection array.
- FIG. 9 is a multi-layer three-dimensional schematic diagram of the microlens array assembly 700 in the optical fingerprint identification device.
- the upper surface of the second microlens array 710 is an array formed by splicing a plurality of spherical or aspheric surfaces. All areas are curved surfaces and excluding flat surfaces. The upper surface of the second microlens array 710 All areas of the surface can converge light.
- the second microlens array 710 includes a plurality of microlenses, wherein the second microlens 711 of the plurality of microlenses of the second microlens array 710 is used to combine The second light signal above 711 is converged to the second light-passing hole 721 corresponding to the second microlens among the multiple light-passing holes of the second light blocking layer 720, and the second light signal passes through The second light-passing hole 721 is transmitted to the micro lens corresponding to the second micro lens 711 in the first micro lens array 200.
- the microlens corresponding to the second microlens 711 in the first microlens array 710 may be the aforementioned first microlens 210, and the second optical signal includes the aforementioned first optical signal.
- the second microlens 711 may be used to converge the second optical signal above the second microlens 711 perpendicular to the light detection array 400 into the second light-passing aperture 721.
- the focal point of the second microlens 711 is located in the second light-passing hole 721.
- the second microlens 711 can also be used to converge the second optical signal in a specific direction above the second microlens to the second light-passing hole 721.
- the surface of the second microlens 711 may be spherical or aspherical.
- the second microlens 711 is a polygonal lens, such as a square lens or a hexagonal lens.
- the second microlens 711 may also be a circular lens.
- the second microlens 711 is a quadrilateral lens.
- the quadrilateral lens has a spherical upper surface and a quadrilateral microlens on the lower surface.
- the material of the second microlens array 710 is a transparent medium, and the light transmittance of the transparent medium is greater than 99%, such as resin.
- the second microlens 711 is any one of the plurality of microlenses in the second microlens array 710. In the embodiment of the present application, the second microlens 711 is located on the second microlens array 710. The specific location is not limited.
- shape and size of the multiple microlenses in the second microlens array 710 may be the same as or different from that of the second microlens 711, and the embodiment of the present application does not limit the shape and size of the multiple microlenses.
- each of the plurality of microlenses in the second microlens array 710 is the same as the second microlens 711, as shown in FIGS. 8 and 9, in the second microlens array 710
- Each microlens is a quadrilateral microlens, and the multiple quadrilateral microlenses are arranged in an array on a horizontal plane.
- each microlens in the second microlens array 710 may also be a circular microlens or other polygonal microlenses.
- the optical signal is transmitted to the first microlens array 200 through a plurality of light-passing holes of the second light blocking layer 720.
- the second light blocking layer 720 is used to further block light signals that interfere with fingerprint detection, such as ambient light and stray light.
- the material of the second light blocking layer 720 may be metal or black opaque material.
- the number of the second light blocking layer 720 is greater than or equal to one.
- the number of the second light blocking layer 720 is 1, and the second light blocking layer 720 includes a second light-passing hole 721 corresponding to the second microlens 711.
- the two microlenses 711 are used to converge the second light signal from above the second microlens to the second light-passing hole 721.
- the second light-transmitting small hole 721 may be a circular small hole with a diameter less than 10 ⁇ m.
- the diameter of the second light-passing hole 721 is greater than a certain threshold, so that sufficient light signals can be used for imaging to improve imaging quality.
- the shape of the second light-passing hole 721 may also be a polygon, and the embodiment of the present application does not limit the shape of the second light-passing hole 721.
- each second light-passing hole on the second light blocking layer 720 may be the same as or different from the second light-passing hole 721, which is not limited in the embodiment of the present application.
- each second light-passing hole on the second light blocking layer 720 has the same shape and size as the second light-passing hole 721, and multiple second light-passing holes The positions of the small holes are arranged in an array, and each second light-passing small hole corresponds to a second micro lens.
- the optical center of the second microlens 711 and the center of the second light-passing hole 721 are located on the same vertical line perpendicular to the light detection array 400.
- the center of the first pixel unit 410 is also located on the same vertical line.
- the second microlens 711 is used to converge the second light signal above the second microlens 711 perpendicular to the light detection array 400 into the second light-passing hole 721.
- the light detection array 400 and the first pixel unit 410 are located on parallel planes, the second light blocking layer 720 is arranged in parallel above the light detection array 400, and the first The two lens array 710 is arranged in parallel above the second light blocking layer 720.
- the optical center of the second microlens 711, the second light-passing aperture 721 and the center of the first pixel unit 410 are all located on the vertical line 201.
- the orthographic projection of the second microlens 711 on the light detection array 400 (for convenience of description, the orthographic projection of the second microlens 711 on the light detection array 400 below is also written as the orthographic projection of the second microlens 711
- the orthographic projection is the same as the cross section of the largest area of the second microlens 711.
- the orthographic projection of the second microlens 711 on the light detection array 400 is the same as that of the lower surface. quadrilateral.
- the second microlens 711 is on the first pixel unit 410
- the projection of is a quadrilateral.
- the orthographic projection area of the second microlens 711 on the light detection array 400 is greater than or equal to the area of the pixel unit corresponding to the second microlens 711 on the light detection array 400.
- the orthographic projection of the second microlens 711 on the light detection array 400 coincides with the corresponding pixel unit of the second microlens 711 on the light detection array 400.
- the orthographic projection area of the second microlens 711 on the light detection array 400 is greater than or equal to the area of the first pixel unit 410.
- the orthographic projection shape of the second microlens 711 is the same as the shape of the first pixel unit 410.
- the second microlens 711 is a quadrangular microlens.
- the orthographic projection shape of the two microlenses 711 and the first pixel unit 410 are both the same quadrilateral.
- the orthographic projection shape of the second microlens 711 on the light detection array 400 It overlaps with the first pixel unit 410.
- each microlens in the second microlens array 710 includes a corresponding light-passing hole, and the relative positional relationship between each microlens and its corresponding light-passing hole is the same as that of the second microlens 711
- the relative positional relationship of the corresponding second light-passing hole 721 is the same.
- the second microlens array 710 is completely the same as the first microlens array 200. Specifically, each microlens on the second microlens array 710 is exactly the same as its corresponding microlens on the first microlens array 200; the gap between the multiple microlenses on the second microlens array 710 The relative positional relationship is the same as the relative positional relationship between the plurality of microlenses on the first microlens array 200.
- the micro lens array assembly 700 further includes a third micro lens array 730.
- the third microlens array 730 is disposed between the second light blocking layer 720 and the first microlens array 200.
- the third microlens array 730 is identical to the second microlens array 710 and is arranged in mirror images on both sides of the second light blocking layer 720.
- the lower surface of the third microlens array 730 is an array formed by splicing a plurality of spherical or aspheric surfaces. All areas are curved surfaces and excluding flat surfaces. The lower surface of the third microlens array 730 All areas of the surface can converge light.
- the intensity of the optical signal received by the optical detection array can be increased, and the quality of the optical fingerprint image can be improved.
- the optical fingerprint identification device 20 may further include a supporting structure for supporting the optical fingerprint identification device 20, and a corresponding processing chip, which is not limited in the embodiment of the present application.
- an embodiment of the present application also provides an electronic device 30.
- the electronic device 30 may include the above-mentioned display screen 120 and the optical fingerprint identification device 20 of the above-mentioned embodiment of the present application, wherein the optical fingerprint identification device 20 is arranged below the display screen 120.
- the electronic device can be any electronic device with a display screen.
- the units can be implemented by electronic hardware, computer software, or a combination of both, in order to clearly illustrate the interchangeability of hardware and software.
- the composition and steps of each example have been described generally in terms of function. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
- the disclosed system and device may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
- the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Input (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
一种光学指纹识别装置(20)和电子设备(10),能够提升光学指纹识别装置(20)的性能。该光学指纹识别装置(20)包括:光检测阵列(400);滤波层(500),设置于所述光检测阵列(400)上方,用于滤掉非目标波段的光信号,透过目标波段的光信号,且所述滤波层(500)与所述光检测阵列(400)一起集成在光电传感器芯片中;第一阻光层(300),形成于所述滤波层(500)上方,其中,所述第一阻光层(300)设置有多个通光小孔(310);第一微透镜阵列(200),设置于所述第一阻光层(300)上方;其中,所述第一微透镜阵列(200)用于将光信号汇聚至所述第一阻光层(300)的多个通光小孔(310),所述光信号通过所述第一阻光层(300)的多个通光小孔(310)传输至所述光检测阵列(400)。
Description
本申请要求于2019年4月10日提交中国专利局、申请号为201920480285.1、发明名称为“光学指纹识别装置和电子设备”的实用新型申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光学指纹技术领域,并且更具体地,涉及一种光学指纹识别装置和电子设备。
随着手机全面屏时代的到来,屏下指纹识别装置的应用越来越广泛,其中以屏下光学指纹识别装置最为普及。目前业界量产的屏下光学指纹识别装置主要采用两种方案,一种是采用小孔成像方案,在实际的工业制造中,小孔的尺寸无法进一步缩小,从而限制其指纹图像分辨率的提升;且小孔只允许垂直方向的入射光进入,无法提供足够的光线导致成像信号相对有限,影响指纹图像质量。另一种是采用光学透镜方案,利用球面或者非球面镜头聚光成像。在手机轻薄化的发展趋势下,从手指按压手机屏表面到光学芯片的指纹采集区的距离较短,光学镜头的总光学厚度较小,因而该方案的指纹采集的面积是非常有限的,无法进行大面积指纹采集,影响了指纹识别装置的性能。
因此,如何提升屏下光学指纹识别装置的性能,成为一项亟需解决的问题。
发明内容
本申请实施例提供了一种光学指纹识别装置和电子设备,能够提升光学指纹识别装置的性能。
第一方面,提供了一种光学指纹识别的装置,包括:
光检测阵列;
滤波层,设置于所述光检测阵列上方,用于滤掉非目标波段的光信号,透过目标波段的光信号,且所述滤波层与所述光检测阵列一起集成在光电传 感器芯片中;
第一阻光层,形成于所述滤波层上方,其中,所述第一阻光层设置有多个通光小孔;
第一微透镜阵列,设置于所述第一阻光层上方;
其中,所述第一微透镜阵列用于将光信号汇聚至所述第一阻光层的多个通光小孔,所述光信号通过所述第一阻光层的多个通光小孔传输至所述光检测阵列。
本申请实施例的技术方案,在所述光检测阵列上一体生长所述第一阻光层,且在所述第一阻光层上设置多个通光小孔,通过第一微透镜阵列将光信号汇聚至所述多个通光小孔,并使光信号通过所述多个通光小孔传输至所述光检测阵列以进行光学指纹采集,在实现大面积高分辨率的识别指纹图像的同时,减小指纹识别装置的厚度,且将滤波层与光检测阵列一起集成在光电传感器芯片中,能够进一步的减小指纹识别装置的厚度,从而提升光学指纹识别装置的性能。
在一种可能的实现方式中,所述光学指纹识别装置还包括:第一介质层和第二介质层;
所述第一介质层生长在所述滤波层的表面;
所述第一阻光层生长在所述第一介质层的表面;
所述第二介质层生长在所述第一阻光层的表面并填充所述第一阻光层的多个通光小孔。
在一种可能的实现方式中,所述第一微透镜阵列上表面均为聚光区域,所述第一微透镜阵列的聚光区域覆盖所述光检测阵列的感光区域。
在一种可能的实现方式中,所述第一微透镜阵列包括多个微透镜,所述光检测阵列包括多个像素单元;
其中,所述第一微透镜阵列的多个微透镜中的第一微透镜用于将来自所述第一微透镜上方的第一光信号汇聚至所述第一阻光层的通光小孔中与所述第一微透镜对应的第一通光小孔,所述第一光信号通过所述第一通光小孔传输至所述多个像素单元中与所述第一微透镜对应的第一像素单元。
在一种可能的实现方式中,所述光信号为第一特定方向的光信号,所述第一微透镜的光心和所述第一通光小孔的中心的连线方向和所述第一特定方向相同或相近,所述第一通光小孔的中心和所述第一像素单元的中心的连 线方向和所述第一特定方向相同或相近。
在一种可能的实现方式中,所述第一特定方向为垂直于所述光检测阵列的方向。
在一种可能的实现方式中,所述第一特定方向为倾斜于所述光检测阵列的方向。
在一种可能的实现方式中,所述第一微透镜在所述光检测阵列上的正投影面积与所述第一像素单元的面积之比大于70%。
在一种可能的实现方式中,所述第一微透镜为四边形微透镜。
在一种可能的实现方式中,所述第一微透镜在所述光检测阵列上的正投影与所述第一像素单元重合。
在一种可能的实现方式中,所述第一微透镜的上表面为球面或者非球面。
在一种可能的实现方式中,所述通光小孔为直径小于10μm的圆形小孔。
在一种可能的实现方式中,所述光学指纹识别装置包括多层所述第一阻光层。
在一种可能的实现方式中,多层所述第一阻光层之间和设置在最顶层的所述第一阻光层与所述第一微透镜阵列之间均设置有所述第二介质层,并且所述第一阻光层与所述第二介质层依次通过生长工艺进行生长;
所述第二介质层填充所述第一阻光层的多个通光小孔。
在一种可能的实现方式中,位于上层的所述第一阻光层的通光小孔的直径大于位于下层的所述第一阻光层的通光小孔的直径。
在一种可能的实现方式中,所述光信号为第二特定方向的光信号,位于上层的所述第一阻光层的通光小孔的中心与对应的位于下层的所述第一阻光层的通光小孔的中心的连线方向和所述第二特定方向相同或相近;
位于上层的所述第一阻光层的通光小孔的中心与对应的所述光检测阵列上像素单元的中心的连线方向和所述第二特定方向相同或相近。
在一种可能的实现方式中,所述目标波段的波长范围包括350~700nm和/或800~1000nm。
在一种可能的实现方式中,所述滤波层的厚度小于等于20μm。
在一种可能的实现方式中,所述光学指纹识别装置还包括电路板,所述电路板通过电连接装置与所述光学指纹识别装置进行电连接。
在一种可能的实现方式中,所述光检测部分设置有金属焊盘,所述电连接装置通过所述金属焊盘与所述光学指纹识别装置进行电连接。
在一种可能的实现方式中,所述电路板为柔性电路板,所述电连接装置为焊锡、异方性导电胶膜或者金属连接装置。
在一种可能的实现方式中,所述电路板为印刷电路板,所述电连接装置为引线键合装置。
在一种可能的实现方式中,所述印刷电路板设置在所述光检测部分下方或者与所述光检测部分平行设置。
第二方面,提供了一种电子设备,包括:显示屏以及第一方面或第一方面的任意可能的实现方式中的光学指纹识别装置,其中,所述光学指纹识别装置设置于所述显示屏下方。
图1是本申请实施例可以适用的电子设备的平面示意图。
图2是本申请实施例提供的一种光学指纹识别装置的示意性结构图。
图3是本申请实施例提供的一种光学指纹识别装置的多层立体结构示意图。
图4是本申请实施例提供的另一种光学指纹识别装置的示意性结构图。
图5是本申请实施例提供的另一种光学指纹识别装置的示意性结构图。
图6是本申请实施例提供的另一种光学指纹识别装置的示意性结构图。
图7是本申请实施例提供的另一种光学指纹识别装置的示意性结构图。
图8是本申请实施例提供的另一种光学指纹识别装置的示意性结构图。
图9是本申请实施例提供的光学指纹识别装置中微透镜阵列组件的多层立体结构示意图。
图10是根据本申请实施例的电子设备的示意性框图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
作为一种常见的应用场景,本申请实施例提供的光学指纹识别装置可以 应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他终端设备,且本申请实施例的技术方案可以用于生物特征识别技术。其中,生物特征识别技术包括但不限于指纹识别、掌纹识别、虹膜识别、人脸识别以及活体识别等识别技术。为了便于说明,下文以指纹识别技术为例进行说明。
更具体地,在上述终端设备中,所述光学指纹识别装置可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。
如图1所示为本申请实施例可以适用的终端设备的结构示意图,所述终端设备10包括显示屏120和光学指纹识别装置20,其中,所述光学指纹识别装置20设置在所述显示屏120下方的局部区域。所述光学指纹识别装置20包括光学指纹传感器,所述光学指纹传感器包括具有多个像素单元410的光检测阵列400,所述光检测阵列400所在区域或者其感应区域为所述光学指纹识别装置20的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。在一种替代实施例中,所述光学指纹识别装置20还可以设置在其他位置,比如所述显示屏120的侧面或者所述终端设备10的边缘非透光区域,并通过光路设计来将所述显示屏120的至少部分显示区域的光信号导引到所述光学指纹识别装置20,从而使得所述指纹检测区域103实际上位于所述显示屏120的显示区域。
应当理解,所述指纹检测区域103的面积可以与所述光学指纹识别装置20的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述光学指纹识别装置20的指纹检测区域103的面积大于所述光学指纹识别装置20感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述光学指纹识别装置20的指纹检测区域103也可以设计成与所述光学指纹识别装置20的感应阵列的面积基本一致。
因此,使用者在需要对所述终端设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于所述显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏下实现,因此采用上述结构的终端设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即所述显示屏120的显示区域可以基本扩展到整个终端设备10的正面。
作为一种可选的实现方式,如图1所示,所述光学指纹识别装置20包括光学组件30和光检测部分40,所述光检测部分40包括所述光检测阵列400以及与所述光检测阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,所述光检测阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的像素单元;所述光学组件30可以设置在所述光检测部分40的感应阵列的上方。
在具体实现上,所述光学组件30可以与所述光检测部分40封装在同一个光学指纹部件。比如,所述光学组件30可以与所述光检测部分40封装在同一个光学指纹芯片,也可以将所述光学组件30设置在所述光检测部分40所在的芯片外部,比如将所述光学组件30贴合在所述芯片上方,或者将所述光学组件30的部分元件集成在上述芯片之中。
作为一种可选的实施例,所述显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(organic light-emitting diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,所述光学指纹识别装置20可以利用所述OLED显示屏120位于所述指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在所述指纹检测区域103时,显示屏120向所述指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过所述手指140内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴的反射光151和来自指纹峪的反射光152具有不同的光强,反射光经过光学组件30后,被光学指纹识别装置20中的光检测阵列400所接收并转换为相应的电信号,即指纹检测信号;基于所述指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在所述终端设备10实现光学指纹识别功能。
应当理解,光学指纹识别装置20的下方还可以设置有电路板150,比如软性电路板(flexible printed circuit,FPC)。光学指纹识别装置20可以通过背胶粘接在所述电路板150上,并通过焊盘及金属线焊接与所述电路板150实现电性连接。光学指纹识别装置20可以通过电路板150实现与其他外围 电路或者电子设备10的其他元件的电性互连和信号传输。比如,光学指纹识别装置20可以通过电路板150接收电子设备10的处理单元的控制信号,并且还可以通过电路板150将来自光学指纹识别装置20的指纹检测信号输出给电子设备10的处理单元或者控制单元等。
应当理解,在具体实现上,所述终端设备10还包括透明保护盖板,所述盖板可以为玻璃盖板或者蓝宝石盖板,其位于所述显示屏120的上方并覆盖所述终端设备10的正面。因为,本申请实施例中,所谓的手指按压在所述显示屏120实际上是指按压在所述显示屏120上方的盖板或者覆盖所述盖板的保护层表面。
另一方面,在某些实施例中,所述光学指纹识别装置20可以仅包括一个光学指纹传感器,此时光学指纹识别装置20的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到所述指纹检测区域103的特定位置,否则光学指纹识别装置20可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,所述光学指纹识别装置20可以具体包括多个光学指纹传感器;所述多个光学指纹传感器可以通过拼接方式并排设置在所述显示屏120的下方,且所述多个光学指纹传感器的感应区域共同构成所述光学指纹识别装置20的指纹检测区域103。也即是说,所述光学指纹识别装置20的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将所述光学指纹识别装置20的指纹采集区域103可以扩展到所述显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当所述光学指纹传感器数量足够时,所述指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
需要说明的是,本申请实施例中的光学指纹识别装置20也可以称为光学指纹识别模组、指纹识别装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。
由于大面积指纹识别、高分辨率指纹图像、厚度轻薄化等因素的需求,对光学指纹识别装置20的设计要求越来越高。本申请实施例提供了一种改进的光学指纹识别装置,在大面积采集指纹图像的同时,提高指纹图像的分辨率,减小指纹识别装置的厚度,进一步提升屏下光学指纹识别的性能。
以下,结合图2至图9,详细介绍本申请实施例的光学指纹识别装置。
图2是本申请实施例提供的一种光学指纹识别装置20的示意性结构图,该光学指纹识别装置20可以包括:
光检测阵列400;
第一阻光层300,形成于所述光检测阵列400上方,其中,所述第一阻光层300设置有多个通光小孔;
第一微透镜阵列200,设置于所述第一阻光层300上方;
其中,所述第一微透镜阵列200用于将光信号汇聚至所述第一阻光层300的多个通光小孔,所述光信号通过所述第一阻光层300的多个通光小孔传输至所述光检测阵列400。
具体地,该光信号为经过手指反射的光信号。
具体地,所述第一阻光层300可以采用微纳加工工艺或者纳米印刷工艺在所述光检测阵列400上进行制备,例如,采用微纳加工工艺,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在所述光检测阵列400上方制备一层非透光材料薄膜,再进行小孔图形光刻和刻蚀,形成多个通光小孔。可选地,图1中的光学组件30可以包括上述第一微透镜阵列200以及第一阻光层300。
可选地,所述第一微透镜阵列200上表面均为聚光区域,所述聚光区域覆盖所述光检测阵列的感光区域。图3为所述光学指纹识别装置20的多层立体示意图。如图3所示,所述第一微透镜阵列200的上表面为多个球面或非球面拼接而成的阵列,所有区域均为曲面且不包括平面,所述微第一透镜阵列200的上表面上所有区域均能对光线进行汇聚。所述光检测阵列400中的感光区域为可以接收光信号的区域,例如光检测阵列400为光电传感器中的像素阵列,则光检测阵列400的感光区域即为光电传感器中的像素阵列区域。
可选地,所述第一微透镜阵列200包括多个微透镜,所述光检测阵列400包括多个像素单元。其中,所述多个微透镜中的第一微透镜210用于将来自所述第一微透镜210上方的第一光信号汇聚至所述第一阻光层的通光小孔中与所述第一微透镜对应的第一通光小孔310,所述第一光信号通过所述第一通光小孔310传输至所述多个像素单元中与所述第一微透镜210对应的第一像素单元410。
可选地,所述第一微透镜210的焦点位于所述第一阻光层300与所述第 一像素单元410之间的任意一点。
例如,所述第一微透镜210的焦点位于所述第一通光小孔310内,或者所述第一微透镜210的焦点位于所述第一像素单元410上。
可选地,所述第一微透镜210可以用于将其上方垂直于所述光检测阵列400的光信号汇聚于所述第一通光小孔310。
可选地,所述第一微透镜210还可以用于将其上方特定方向的光信号汇聚于所述第一通光小孔310。
可选地,所述第一微透镜210的表面可以为球面或者非球面。
可选地,所述第一微透镜210为多边形透镜,例如正方形透镜或者六边形透镜,可选地,所述第一微透镜210也可以为圆形透镜。如图2和图3所示,所述第一微透镜210为四边形透镜,该四边形透镜为上表面为球面,下表面为四边形的微透镜。
可选地,所述第一微透镜阵列200的材料为透明介质,该透明介质的光透过率大于99%,例如树脂等。
应理解,所述第一微透镜210为所述第一微透镜阵列200中多个微透镜的任意一个,本申请实施例对所述第一微透镜210位于所述第一微透镜阵列200的具体位置不做限定。
应理解,所述第一微透镜阵列200中多个微透镜可以与所述第一微透镜210的形状大小相同或不同,本申请实施例对多个微透镜的形状大小不做限定。
可选地,所述第一微透镜阵列200中多个微透镜中的每一个微透镜均与所述第一微透镜210相同,如图2和图3所示,第一微透镜阵列200中每一个微透镜均为四边形微透镜,所述多个四边形微透镜在水平面上呈阵列排列。此外第一微透镜阵列200中每一个微透镜还可以为圆形微透镜或者其它多边形微透镜。
在本申请实施例中,所述光信号可以通过所述第一阻光层300的多个通光小孔传输至所述光检测阵列400。所述第一阻光层300用于阻挡环境光、杂散光等干扰指纹检测的光信号。
例如,所述第一阻光层300对特定波段(比如可见光或者610nm以上波段)的光的透过率小于20%,避免相应的光通过。可选地,所述第一阻光层300的材料可以为金属或黑色不透光材料。
可选地,所述光学指纹识别装置仅包括一层第一阻光层。例如,如图2所示,所示第一阻光层300的数量为1,第一阻光层300上包括与所述第一微透镜210对应的第一通光小孔310,所述第一微透镜210用于将来自所述第一微透镜上方的第一光信号汇聚至第一通光小孔310。
可选地,所述第一通光小孔310可以为圆形小孔,其直径小于10μm,以便进行光学成像,并且可以通过减小通光小孔的尺寸,提高光学成像的分辨率,从而提高指纹图像的分辨率。
可选地,所述第一通光小孔310的直径大于一定阈值,以便通过足够的光信号进行成像,提高成像质量。
可选的,所述第一通光小孔310的形状还可以为多边形,本申请实施例对第一通光小孔310的形状不做限定。
应理解,所述第一阻光层300上每个通光小孔的形状大小可以与所述第一通光小孔310相同或者不同,本申请实施例对此并不限定。
可选地,如图2和图3所示,所述第一阻光层300上每个通光小孔与所述第一通光小孔310形状大小相同,多个通光小孔的位置呈阵列排布,每个通光小孔对应一个第一微透镜阵列上的微透镜。
在本申请实施例中,所述光信号通过所述第一阻光层300的多个通光小孔传输至所述光检测阵列400。所述光检测阵列400用于接收所述光信号并将光信号转换为电信号,可选地,所述光检测阵列对该电信号处理得到指纹图像信号。
可选地,如图2和图3所示,光检测阵列400包括多个像素单元,多个像素单元中包括与所述第一微透镜210对应的第一像素单元410,所述第一光信号通过所述第一通光小孔310传输至所述第一像素单元410。
可选地,所述第一像素单元410还用于将所述第一光信号处理得到第一指纹图像电信号,该第一指纹图像电信号为指纹图像中一个单元像素。
可选地,所述第一像素单元410可以采用光电二极管(photo diode)、金属氧化物半导体场效应管(metal oxide semiconductor field effect transistor,MOSFET)等器件。可选地,所述第一像素单元410对于特定波长光具有较高的光灵敏度和较高的量子效率,以便于检测相应波长的光信号。
可选的,所述第一像素单元410的形状还可以为多边形,本申请实施例对第一像素单元410的形状不做限定。
应理解,所述光检测阵列400上每个像素单元的形状大小可以与所述第一像素单元410相同或者不同,本申请实施例对此并不限定。
可选地,如图2和图3所示,所述第一像素单元410为四边形,所述光检测阵列400中每个像素单元可以与所述第一像素单元410相同,均为四边形,呈阵列排布,每个像素单元对应一个第一微透镜阵列上的微透镜。
可选地,所述光检测阵列400在光电传感器中,所述多个像素单元为所述光电传感器中多个的像素单元,具体地,所述光检测阵列400可以集成在光电传感器芯片。
在本申请实施例中,可选地,所述第一微透镜210的光心、所述第一通光小孔310的中心和所述第一像素单元410的中心位于同一垂直于所述光检测阵列400的垂直线上。
可选地,所述第一微透镜210用于将其上方垂直于所述光检测阵列400的光信号汇聚于所述第一通光小孔310。
例如,如图2所示,所述光检测阵列400和所述第一像素单元410位于平行面上,所述第一阻光层300平行设置于所述光检测阵列400的上方,所述第一透镜阵列200平行设置于所述第一阻光层300上方。所述第一微透镜210的光心、所述第一通光小孔310和所述第一像素单元410的中心均位于竖直线201上,该竖直线201为所述第一微透镜210的主光轴。
可选地,所述第一微透镜210在光检测阵列400上的正投影(为方便描述,下述第一微透镜210在光检测阵列400上的正投影也写为第一微透镜210的正投影)与所述第一微透镜210面积最大的截面相同。例如,如图3所示,当第一微透镜210为上表面为球面,下表面为四边形的微透镜时,第一微透镜210在所述光检测阵列400的正投影为与下表面相同的四边形。当所述第一微透镜210的光心和所述第一像素单元410中心位于同一垂直于所述光检测阵列400的垂直线上时,第一微透镜210在所述第一像素单元410上的投影为四边形。
可选地,所述第一微透镜210在所述光检测阵列400上的投影面积与所述第一像素单元410的面积之比大于70%。
可选地,所述第一微透镜210的正投影形状与所述第一像素单元410的形状不同,例如,所述第一微透镜210为圆形微透镜,所述第一像素单元410为四边形,所述第一微透镜210的正投影位于所述第一像素单元410中,且 第一微透镜210的正投影的圆形面积与所述第一像素单元410的面积之比大于70%。
可选地,所述第一微透镜210的正投影形状与所述第一像素单元410的形状相同,例如,如图3所示,所述第一微透镜210为四边形微透镜,所述第一微透镜210的正投影形状与所述第一像素单元410均为相同的四边形。可选地,所述第一微透镜210的光心位于垂直于所述第一像素单元410中心的垂直线上时,所述第一微透镜210在所述光检测阵列400上的正投影形状与所述第一像素单元410重合,所述第一微透镜210在所述光检测阵列400上的正投影的面积与所述第一像素单元410的面积之比为100%。
在本申请实施例中,可选地,所述第一微透镜210的光心、所述第一通光小孔310的中心和所述第一像素单元410的中心位于不同的垂直于所述光检测阵列400的垂直线上。在此情况下,通过分别调整第一微透镜210,第一通光小孔310以及第一像素单元410之间的相对位置,所述第一微透镜210将其上方特定方向的光信号汇聚于所述第一通光小孔310,所述特定方向的光信号通过所述第一通光小孔310传输至所述第一像素单元410。
可选地,所述第一通光小孔310的中心与所述第一微透镜210的光心的连线方向与第一特定方向的光信号的方向相近或相同;所述第一通光小孔310的中心与所述第一像素单元410的中心的连线方向与第一特定方向的光信号的方向相近或相同。
例如,如图4所示,所述第一微透镜210的光心和所述第一通光小孔310的中心均位于第一特定方向的直线202上,所述第一通光小孔310和所述第一像素单元410的中心也位于第一特定方向的直线202上,即所述第一特定方向可以为倾斜于所述光检测阵列的方向。经过所述第一微透镜210的光心的第一特定方向的光信号121位于该第一特定方向的直线202上,不经过所述第一微透镜210的光心的第一特定方向的光信号122经过所述第一微透镜210折射后,其方向与所述第一特定方向相近,与所述第一特定方向的直线202上的光信号相交于所述第一微透镜210的像方焦平面上。
可选地,所述第一微透镜阵列200中每一个微透镜都包含对应的通光小孔以及像素单元,且每一个微透镜与其对应的通光小孔和像素单元的相对位置关系与所述第一微透镜210与其对应的第一通光小孔310和第一像素单元410的相对位置关系相同。
本申请实施例的技术方案,通过第一微透镜阵列200将光信号汇聚至所述第一阻光层300的多个通光小孔,所述光信号通过所述第一阻光层300的多个通光小孔传输至所述光检测阵列400以进行光学指纹采集,在实现大面积高分辨率的识别指纹图像的同时,减小指纹识别装置的厚度,从而提升光学指纹识别装置20的性能。
可选地,如图5所示,所述光学指纹识别装置20还包括:第一介质层610和第二介质层620;
所述第一介质层610生长在所述光检测阵列400的表面;
所述第一阻光层300生长在所述第一介质层610的表面;
所述第二介质层620生长在所述第一阻光层300的表面并填充所述第一阻光层300的多个通光小孔。
可选地,所述第一介质层610和第二介质层620可以通过半导体工艺生长,例如通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等镀膜方法生长制备。
可选地,所述第一介质层610和所述第二介质层620为有机透明介质材料或者无机透明介质材料,例如树脂或氧化硅。
可选地,所述第一介质层610和所述第二介质层620的介质材料相同或者不同。
可选地,所述第一阻光层300、所述第一介质层610以及所述第二介质层620均与所述光检测阵列400集成在光电传感器中。例如,所述第一介质层610和所述第二介质层620均为氧化硅,首先在所述光电传感器的多个像素单元上方镀膜形成第一介质层610,然后在所述第一介质层610上方制备第一阻光层300,然后在所述第一阻光层300上方制备第二介质层620。
可选地,所述第一阻光层300和所述第一介质层610与所述光检测阵列400集成在光电传感器中,所述第二介质层620生长在所述光电传感器表面。例如,所述第一介质层610为氧化硅,所述第二介质层620为树脂。
可选地,所述光学指纹识别装置包括多层所述第一阻光层。
例如,如图6所示,所述光学指纹识别装置20包括两层第一阻光层300,其中位于顶层的第一阻光层为第一上阻光层301,位于底层的第一阻光层为第一下阻光层302。
可选地,多层所述第一阻光层之间和设置在最顶层的所述第一阻光层与 所述第一微透镜阵列之间均设置有所述第二介质层,并且所述第一阻光层与所述第二介质层依次通过生长工艺进行生长;
所述第二介质层填充所述第一阻光层的多个通光小孔。
可选地,如图6所示,所述第一介质层610生长在所述光检测阵列400上,所述第二介质层620包括第二上介质层621和第二下介质层622,所述第二上介质层621设置于所述第一微透镜阵列200与所述第一上阻光层301之间,以及所述第一上阻光层301上的通光小孔内;所述第二下介质层622设置于所述第一上阻光层301与所述第一下阻光层302之间,以及所述第一下阻光层302上的通光小孔内。
可选地,位于上层的所述第一阻光层的通光小孔的直径大于位于下层的所述第一阻光层的通光小孔的直径。例如,如图6所示,所述第一上阻光层301的通光小孔的直径大于所述第一下阻光层302的通光小孔的直径。
可选地,所述光信号为第二特定方向的光信号,位于上层的所述第一阻光层的通光小孔的中心与对应的位于下层的所述第一阻光层的通光小孔的中心的连线方向和所述第二特定方向相同或相近;位于上层的所述第一阻光层的通光小孔的中心与对应的所述光检测阵列上像素单元的中心的连线方向和所述第二特定方向相同或相近。
可选地,所述第二特定方向为垂直于所述光检测阵列的方向。例如,如图6所示,所述第一上阻光层301的通光小孔位于对应的所述第一下阻光层302的通光小孔的正上方,第一下阻光层302的通光小孔位于对应的所述光检测阵列400的像素单元的正上方,所述第一上阻光层301上的通光小孔和所述第一下阻光层302上的通光小孔均用于接收垂直于所述光检测阵列的光信号。
可选地,所述第一上阻光层301上多个通光小孔中包括第一上通光小孔311,所述第一下阻光层302上多个通光小孔中包括与所述第一上通光小孔对应的第一下通光小孔312。
可选地,在本申请实施例中,上述第一通光小孔310可以包括所述第一上通光小孔311和所述第一下通光小孔312。所述第一上通光小孔311和所述第一下通光小孔312对应于所述第一微透镜210和第一像素单元410。
具体地,所述第一微透镜210将来自所述第一微透镜210上方的第一光信号传输至所述第一上通光小孔311和第一下通光小孔312,所述第一光信 号通过所述第一上通光小孔311和第一下通光小孔312传输至所述第一像素单元410。
可选地,所述第一微透镜210的焦点位于最底层的所述第一阻光层与所述光检测阵列之间,例如,所述第一微透镜210的焦点位于所述第一下阻光层302与所述第一像素单元410之间的任意一点。
具体地,所述第一微透镜210的焦点可以位于所述第一像素单元410上或者第一下通光小孔312内。
可选地,所述第一上通光小孔311的直径大于所述第一下通光小孔312。
可选地,所述第一上通光小孔311和第一下通光小孔322为圆形小孔,直径小于10μm,以便进行光学成像。可选地,所述第一上通光小孔311和第一下通光小孔322的直径大于一定阈值。
可选的,所述第一上通光小孔311和第一下通光小孔322的形状还可以为多边形,本申请实施例对此不做限定。
可选地,如图6所示,所述第一微透镜210的光心,所述第一上通光小孔311的中心、所述第一下通光小孔312的中心以及所述第一像素单元410的中心均位于同一所述光检测阵列400的垂直线上。在此情况下,所述第一微透镜210将其上方垂直于所述光检测阵列400的第一光信号汇聚于所述第一上通光小孔311或第一下通光小孔312,所述垂直于所述光检测阵列400的第一光信号通过所述第一上通光小孔311和第一下通光小孔312传输至所述第一像素单元410。
可选地,所述第一微透镜210的光心,所述第一上通光小孔311的中心、所述第一下通光小孔312的中心以及所述第一像素单元410的中心均位于不同的所述光检测阵列400的垂直线上。在此情况下,通过分别调整第一微透镜210、第一上通光小孔311,第一下通光小孔312以及第一像素单元410之间的相对位置,所述第一微透镜210将其上方第二特定方向的光信号汇聚于所述第一下通光小孔312,所述第二特定方向的光信号通过所述第一上通光小孔311和第一下通光小孔312传输至所述第一像素单元410。
可选地,所述第一上阻光层301上每个通光小孔的形状大小与所述第一上通光小孔311的形状大小相同,所述第一下阻光层302上每个通光小孔的形状大小与所述第一下通光小孔312的形状大小相同。
可选地,所述第一上阻光层301上每个通光小孔与所述第一下阻光层 302上与其对应的通光小孔的相对位置关系与所述第一上通光小孔311和所述第一下通光小孔312的相对位置关系相同。
应理解,所述第一上通光小孔311的形状可以与所述第一下通光小孔312的形状相同或者不同,本申请实施例对此并不限定。
应理解,虽然以上以两层阻光层的设计为例进行了描述,但本申请实施例的技术方案并不限定于两层阻光层。对于多于两层阻光层的情况,每两层阻光层之间可以采用以上描述的两层阻光层的设计。
在本申请实施例中,通过多层阻光层以及通光小孔,可以进一步方便实现对特定方向的光线进行采集成像,且进一步阻挡环境光或其他非特定方向的干扰光信号,提高成像质量。
可选地,所述光学指纹识别装置20还包括:
滤波层500,用于滤掉非目标波段的光信号,透过目标波段的光信号(即指纹图像采集所需波段的光信号)。
可选地,所述滤波层500设置于所述第一微透镜阵列200的上方,例如,如图6所示,所述第一微透镜阵列200上方设置缓冲层520,所述缓冲层520为透明介质缓冲层,其光学折射率低于所述第一透镜阵列200,可选地,所述缓冲层520的光学折射率低于1.3。所述滤波层500的下表面通过粘接层510与所述缓冲层520的上表面完全贴合。可选地,所述粘接层510可以为低折射率胶,该低折射率胶的折射率小于1.25。
可选地,所述滤波层500还可以通过固定装置固定在第一微透镜阵列200的上方,例如,在所述第一微透镜阵列200四周的非感光区域设置框胶或者其它支撑件,以支撑并固定所述滤波层500在所述第一微透镜阵列的上方,所述滤波层500的下表面与所述第一微透镜阵列200的上表面之间存在空气间隙层。
可选地,所述滤波层500还可以设置于所述第一微透镜阵列200到所述光检测阵列400之间的光路中,具体地,所述滤波层500可以设置于所述第一阻光层300和所述光检测阵列400之间,例如,如图7所示,所述第一阻光层300形成于所述滤波层500上方,所述滤波层500设置于所述光检测阵列400的上方。可以理解的是,当所述滤波层500设置于所述第一阻光层300和所述光检测阵列400之间时,所述第一介质层610可以生长在所述滤波层500的表面。
可选地,所述滤波层500可以与所述光检测阵列400一起集成在光电传感器芯片中,具体的,可以采用蒸镀工艺在所述光电传感器的多个像素单元上进行镀膜形成所述滤波层500,例如,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在所述光电传感器的多个像素单元上方制备一层滤光材料薄膜。该技术方案中滤波层500的厚度小于等于20μm。
可选地,所述滤波层500为光波长截止滤波片,用于滤除特定波段的光信号,有利于降低特定波段的环境光信号的影响,从而能够提升指纹识别性能。
可选地,所述滤波层500用于通过350~700nm波段范围的光信号。
可选地,所述滤波层500还可以用于通过800~1000nm波段范围的光信号。
可选地,所述滤波层500可以用于同时通过350~700nm波段范围以及800~1000nm波段范围的光信号。
可选地,如图6和图7所示,所述光学指纹识别装置20还包括:
电路板50,通过电连接装置501与所述光学指纹装置20进行电连接。
可选地,所述光学指纹识别装置20中的光检测部分40上设置有金属焊盘401,所述电连接装置501通过金属焊盘401与所述光学指纹识别装置20进行电连接。
可选地,在一种可能的实施方式中,如图6和图7所示,所述电路板50可以为柔性电路板FPC,所述电连接装置501可以为焊锡、异方性导电胶膜(anisotropic conductive film,ACF)或者其它金属连接装置。
可选地,在一种可能的实施方式中,所述电路板50还可以为印刷电路板(printed circuit board,PCB),所述电连接装置501可以为引线键合(wire bonding,WB)装置。例如,所述电连接装置501可以为材料为金(Au)的绑定线(bonding wire)。所述印刷电路板50可以设置在光检测部分40下方,或者与所述光检测部分40平行设置。
可选地,所述电路板50可以为图1中的电路板150。
应理解,所述电连接装置501也可以为一种微型的金属连接柱或者连接器等其他电连接方式,只要能够实现电路板50和光学指纹装置20之间的电连接即可,本申请实施例对此并不限定。
可选地,所述光学指纹识别装置20还包括:微透镜阵列组件700,设置 于所述第一微透镜阵列200的上方,用于将所述光信号汇聚至所述第一微透镜阵列200。
可选地,如图8所示,所述微透镜阵列组件700包括:
第二微透镜阵列710;
第二阻光层720,设置于所述第二微透镜阵列710与所述第一微透镜阵列200之间,其中,所述第二阻光层720上设置有多个通光小孔;
其中,所述第二微透镜阵列710用于将所述光信号汇聚至所述第二阻光层的多个通光小孔,所述光信号通过所述第二阻光层的多个通光小孔传输至所述第一微透镜阵列200。
可选地,所述第二微透镜阵列710上表面均为聚光区域,所述聚光区域覆盖所述光检测阵列的感光区域。
图9为所述光学指纹识别装置中微透镜阵列组件700的多层立体示意图。如图9所示,所述第二微透镜阵列710的上表面为多个球面或非球面拼接而成的阵列,所有区域均为曲面且不包括平面,所述第二微透镜阵列710的上表面所有区域均能对光线进行汇聚。
可选地,所述第二微透镜阵列710包括多个微透镜,其中,所述第二微透镜阵列710的多个微透镜中的第二微透镜711用于将来自所述第二微透镜711上方的第二光信号汇聚至所述第二阻光层720的多个通光小孔中与所述第二微透镜对应的第二通光小孔721,所述第二光信号通过所述第二通光小孔721传输至所述第一微透镜阵列200中与所述第二微透镜711对应的微透镜。
可选地,所述第一微透镜阵列710中与所述第二微透镜711对应的微透镜可以为上述第一微透镜210,所述第二光信号包括上述第一光信号。
可选地,所述第二微透镜711可以用于将其上方垂直于所述光检测阵列400的第二光信号汇聚于所述第二通光小孔721。
可选地,所述第二微透镜711的焦点位于所述第二通光小孔721内。
可选地,所述第二微透镜711还可以用于将其上方特定方向的第二光信号汇聚于所述第二通光小孔721。
可选地,所述第二微透镜711的表面可以为球面或者非球面。
可选地,所述第二微透镜711为多边形透镜,例如正方形透镜或者六边形透镜,可选地,所述第二微透镜711也可以为圆形透镜。如图8和图9所 示,所述第二微透镜711为四边形透镜,该四边形透镜为上表面为球面,下表面为四边形的微透镜。
可选地,所述第二微透镜阵列710的材料为透明介质,该透明介质的光透过率大于99%,例如树脂等。
应理解,所述第二微透镜711为所述第二微透镜阵列710中多个微透镜的任意一个,本申请实施例对所述第二微透镜711位于所述第二微透镜阵列710的具体位置不做限定。
应理解,所述第二微透镜阵列710中多个微透镜可以与所述第二微透镜711的形状大小相同或不同,本申请实施例对多个微透镜的形状大小不做限定。
可选地,所述第二微透镜阵列710中多个微透镜中的每一个微透镜均与所述第二微透镜711相同,如图8和图9所示,第二微透镜阵列710中每一个微透镜均为四边形微透镜,所述多个四边形微透镜在水平面上呈阵列排列。此外第二微透镜阵列710中每一个微透镜还可以为圆形微透镜或者其它多边形微透镜。
在本申请实施例中,所述光信号通过所述第二阻光层720的多个通光小孔传输至所述第一微透镜阵列200。所述第二阻光层720用于进一步阻挡环境光、杂散光等干扰指纹检测的光信号。
可选地,所述第二阻光层720的材料可以为金属或黑色不透光材料。
可选地,所述第二阻光层720的数量大于等于1。例如,如图7所示,所示第二阻光层720的数量为1,第二阻光层720上包括与所述第二微透镜711对应的第二通光小孔721,所述第二微透镜711用于将来自所述第二微透镜上方的第二光信号汇聚至第二通光小孔721。
可选地,所述第二通光小孔721可以为圆形小孔,其直径小于10μm。可选地,所述第二通光小孔721的直径大于一定阈值,以便通过足够的光信号进行成像,提高成像质量。
可选的,所述第二通光小孔721的形状还可以为多边形,本申请实施例对第二通光小孔721的形状不做限定。
应理解,所述第二阻光层720上每个第二通光小孔的形状大小可以与所述第二通光小孔721相同或者不同,本申请实施例对此并不限定。
可选地,如图8和图9所示,所述第二阻光层720上每个第二通光小孔 与所述第二通光小孔721形状大小相同,多个第二通光小孔的位置呈阵列排布,每个第二通光小孔对应一个第二微透镜。
在本申请实施例中,可选地,所述第二微透镜711的光心和所述第二通光小孔721的中心位于同一垂直于所述光检测阵列400的垂直线上。可选地,所述第一像素单元410中心也位于该同一垂直线上。
在此情况下,所述第二微透镜711用于将其上方垂直于所述光检测阵列400的第二光信号汇聚于所述第二通光小孔721。
例如,如图8所示,所述光检测阵列400和所述第一像素单元410位于平行面上,所述第二阻光层720平行设置于所述光检测阵列400的上方,所述第二透镜阵列710平行设置于所述第二阻光层720上方。第二微透镜711的光心、第二通光小孔721和第一像素单元410的中心均位于该竖直线201上。
可选地,所述第二微透镜711在光检测阵列400上的正投影(为方便描述,下述第二微透镜711在光检测阵列400上的正投影也写为第二微透镜711的正投影)与所述第二微透镜711最大面积的截面相同。例如,如图9所示,当第二微透镜711为上表面为球面,下表面为四边形的微透镜时,第二微透镜711在所述光检测阵列400的正投影为与下表面相同的四边形。当所述第二微透镜711的光心和所述第一像素单元410中心位于同一垂直于所述光检测阵列400的垂直线上时,第二微透镜711在所述第一像素单元410上的投影为四边形。
可选地,所述第二微透镜711在所述光检测阵列400上的正投影面积大于等于所述第二微透镜711在所述光检测阵列400上对应的像素单元的面积。
可选地,所述第二微透镜711在所述光检测阵列400上的正投影与所述第二微透镜711在所述光检测阵列400上对应的像素单元重合。
例如,如图8所示,所述第二微透镜711在所述光检测阵列400上的正投影面积大于等于所述第一像素单元410的面积。
可选地,所述第二微透镜711的正投影形状与所述第一像素单元410的形状相同,例如,如图9所示,所述第二微透镜711为四边形微透镜,所述第二微透镜711的正投影形状与所述第一像素单元410均为相同的四边形。可选地,所述第二微透镜711的光心位于垂直于所述第一像素单元410中心 的垂直线上时,所述第二微透镜711在所述光检测阵列400上的正投影形状与所述第一像素单元410重合。
可选地,所述第二微透镜阵列710中每一个微透镜都包含对应的通光小孔,且每一个微透镜与其对应的通光小孔的相对位置关系与所述第二微透镜711与其对应的第二通光小孔721的相对位置关系相同。
可选地,所述第二微透镜阵列710与所述第一微透镜阵列200完全相同。具体地,所述第二微透镜阵列710上每个微透镜与所述第一微透镜阵列200上与其对应的微透镜完全相同;所述第二微透镜阵列710上多个微透镜之间的相对位置关系与所述第一微透镜阵列200上多个微透镜之间的相对位置关系相同。
可选地,所述微透镜阵列组件700还包括第三微透镜阵列730。
可选地,如图8所示,所述第三微透镜阵列730设置于所述第二阻光层720与所述第一微透镜阵列200之间。
可选地,如图9所示,所述第三微透镜阵列730与所述第二微透镜阵列710完全相同且在所述第二阻光层720两侧呈镜像设置。
如图9所示,所述第三微透镜阵列730的下表面为多个球面或非球面拼接而成的阵列,所有区域均为曲面且不包括平面,所述第三微透镜阵列730的下表面所有区域均能对光线进行汇聚。
在本申请实施例中,通过光学指纹识别装置20中进一步增加微透镜阵列组件700,对光信号进行多次汇聚,能够增加光检测阵列接收的光信号强度,提高光学指纹图像的质量。
应理解,所述光学指纹识别装置20还可以包括用于支撑所述光学指纹识别装置20的支撑结构件,以及相应的处理芯片等,本申请实施例对此并不限定。
如图10所示,本申请实施例还提供了一种电子设备30,该电子设备30可以包括上述显示屏120以及上述本申请实施例的光学指纹识别装置20,其中,所述光学指纹识别装置20设置于所述显示屏120下方。
该电子设备可以为任何具有显示屏的电子设备。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描 述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部 分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (24)
- 一种光学指纹识别装置,其特征在于,包括:光检测阵列;滤波层,设置于所述光检测阵列上方,用于滤掉非目标波段的光信号,透过目标波段的光信号,且所述滤波层与所述光检测阵列一起集成在光电传感器芯片中;第一阻光层,形成于所述滤波层上方,其中,所述第一阻光层设置有多个通光小孔;第一微透镜阵列,设置于所述第一阻光层上方;其中,所述第一微透镜阵列用于将光信号汇聚至所述第一阻光层的多个通光小孔,所述光信号通过所述第一阻光层的多个通光小孔传输至所述光检测阵列。
- 根据权利要求1所述的光学指纹识别装置,其特征在于,所述光学指纹识别装置还包括:第一介质层和第二介质层;所述第一介质层生长在所述滤波层的表面;所述第一阻光层生长在所述第一介质层的表面;所述第二介质层生长在所述第一阻光层的表面并填充所述第一阻光层的多个通光小孔。
- 根据权利要求1或2所述的光学指纹识别装置,其特征在于,所述第一微透镜阵列上表面均为聚光区域,所述第一微透镜阵列的聚光区域覆盖所述光检测阵列的感光区域。
- 根据权利要求1-3中任一项所述的光学指纹识别装置,其特征在于,所述第一微透镜阵列包括多个微透镜,所述光检测阵列包括多个像素单元;其中,所述第一微透镜阵列的多个微透镜中的第一微透镜用于将来自所述第一微透镜上方的第一光信号汇聚至所述第一阻光层的通光小孔中与所述第一微透镜对应的第一通光小孔,所述第一光信号通过所述第一通光小孔传输至所述多个像素单元中与所述第一微透镜对应的第一像素单元。
- 根据权利要求4所述的光学指纹识别装置,其特征在于,所述光信号为第一特定方向的光信号,所述第一微透镜的光心和所述第一通光小孔的中心的连线方向和所述第一特定方向相同或相近,所述第一通光小孔的中心和所述第一像素单元的中心的连线方向和所述第一特定方向相同或相近。
- 根据权利要求5所述的光学指纹识别装置,其特征在于,所述第一特定方向为垂直于所述光检测阵列的方向。
- 根据权利要求5所述的光学指纹识别装置,其特征在于,所述第一特定方向为倾斜于所述光检测阵列的方向。
- 根据权利要求4-7中任一项所述的光学指纹识别装置,其特征在于,所述第一微透镜在所述光检测阵列上的正投影面积与所述第一像素单元的面积之比大于70%。
- 根据权利要求4-8中任一项所述的光学指纹识别装置,其特征在于,所述第一微透镜为四边形微透镜。
- 根据权利要求4-9中任一项所述的光学指纹识别装置,其特征在于,所述第一微透镜在所述光检测阵列上的正投影与所述第一像素单元重合。
- 根据权利要求4-10中任一项所述的光学指纹识别装置,其特征在于,所述第一微透镜的上表面为球面或者非球面。
- 根据权利要求1-11中任一项所述的光学指纹识别装置,其特征在于,所述通光小孔为直径小于10μm的圆形小孔。
- 根据权利要求2-12中任一项所述的光学指纹识别装置,其特征在于,所述光学指纹识别装置包括多层所述第一阻光层。
- 根据权利要求13所述的光学指纹识别装置,其特征在于,多层所述第一阻光层之间和设置在最顶层的所述第一阻光层与所述第一微透镜阵列之间均设置有所述第二介质层,并且所述第一阻光层与所述第二介质层依次通过生长工艺进行生长;所述第二介质层填充所述第一阻光层的多个通光小孔。
- 根据权利要求13或14所述的光学指纹识别装置,其特征在于,位于上层的所述第一阻光层的通光小孔的直径大于位于下层的所述第一阻光层的通光小孔的直径。
- 根据权利要求13-15中任一项所述的光学指纹识别装置,其特征在于,所述光信号为第二特定方向的光信号,位于上层的所述第一阻光层的通光小孔的中心与对应的位于下层的所述第一阻光层的通光小孔的中心的连线方向和所述第二特定方向相同或相近;位于上层的所述第一阻光层的通光小孔的中心与对应的所述光检测阵列上像素单元的中心的连线方向和所述第二特定方向相同或相近。
- 根据权利要求1-16中任一项所述的光学指纹识别装置,其特征在于,所述目标波段的波长范围包括350~700nm和/或800~1000nm。
- 根据权利要求1-17中任一项所述的光学指纹识别装置,其特征在于,所述滤波层的厚度小于等于20μm。
- 根据权利要求1-18中任一项所述的光学指纹识别装置,其特征在于,所述光学指纹识别装置还包括电路板,所述电路板通过电连接装置与所述光学指纹识别装置进行电连接。
- 根据权利要求19所述的光学指纹识别装置,其特征在于,所述光检测部分设置有金属焊盘,所述电连接装置通过所述金属焊盘与所述光学指纹识别装置进行电连接。
- 根据权利要求19或20所述的光学指纹识别装置,其特征在于,所述电路板为柔性电路板,所述电连接装置为焊锡、异方性导电胶膜或者金属连接装置。
- 根据权利要求19或20所述的光学指纹识别装置,其特征在于,所述电路板为印刷电路板,所述电连接装置为引线键合装置。
- 根据权利要求22所述的光学指纹识别装置,其特征在于,所述印刷电路板设置在所述光检测部分下方或者与所述光检测部分平行设置。
- 一种电子设备,其特征在于,包括:显示屏以及,根据权利要求1至23中任一项所述的光学指纹识别装置,其中,所述光学指纹识别装置设置于所述显示屏下方。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980095272.5A CN113661493A (zh) | 2019-04-10 | 2019-08-14 | 光学指纹识别装置和电子设备 |
EP19801466.4A EP3748532B1 (en) | 2019-04-10 | 2019-08-14 | Optical fingerprint recognition apparatus and electronic device |
US16/693,341 US11403869B2 (en) | 2019-04-10 | 2019-11-24 | Optical fingerprint identification apparatus and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920480285.1U CN208848221U (zh) | 2019-04-10 | 2019-04-10 | 光学指纹识别装置和电子设备 |
CN201920480285.1 | 2019-04-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/693,341 Continuation US11403869B2 (en) | 2019-04-10 | 2019-11-24 | Optical fingerprint identification apparatus and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020206894A1 true WO2020206894A1 (zh) | 2020-10-15 |
Family
ID=66376262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/100657 WO2020206894A1 (zh) | 2019-04-10 | 2019-08-14 | 光学指纹识别装置和电子设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11403869B2 (zh) |
EP (1) | EP3748532B1 (zh) |
CN (4) | CN210038821U (zh) |
WO (1) | WO2020206894A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12105306B2 (en) * | 2019-08-30 | 2024-10-01 | Boe Technology Group Co., Ltd. | Texture image acquiring device, display device, and collimator |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201937401A (zh) * | 2018-02-21 | 2019-09-16 | 申雲洪 | 光學指紋感應模組 |
DE19724378T1 (de) | 2018-05-07 | 2020-10-01 | VVaveTouch Denmark A/S | Kompakter optischer Sensor zur Fingerabdruckerkennung |
CN210038821U (zh) * | 2019-04-10 | 2020-02-07 | 深圳市汇顶科技股份有限公司 | 光学指纹识别装置和电子设备 |
KR20200137081A (ko) | 2019-05-28 | 2020-12-09 | 삼성디스플레이 주식회사 | 지문 센서 및 이를 포함하는 표시 장치 |
CN111247524B (zh) * | 2019-06-05 | 2023-08-22 | 深圳市汇顶科技股份有限公司 | 光学指纹装置、制作方法和电子设备 |
WO2020244006A1 (zh) * | 2019-06-05 | 2020-12-10 | 深圳市汇顶科技股份有限公司 | 指纹芯片、制作指纹芯片的方法和电子设备 |
CN110286717B (zh) * | 2019-06-24 | 2021-07-02 | Oppo广东移动通信有限公司 | 显示装置、电子设备及图像获取方法 |
CN112151572B (zh) * | 2019-06-28 | 2023-06-23 | 云谷(固安)科技有限公司 | 指纹识别显示器件及其制备方法、指纹识别显示装置 |
CN111095279B (zh) * | 2019-07-12 | 2023-09-08 | 深圳市汇顶科技股份有限公司 | 指纹检测装置和电子设备 |
KR102475288B1 (ko) * | 2019-07-12 | 2022-12-06 | 선전 구딕스 테크놀로지 컴퍼니, 리미티드 | 지문 검출 장치 및 전자 장치 |
CN111108510B (zh) | 2019-07-12 | 2021-04-16 | 深圳市汇顶科技股份有限公司 | 指纹检测装置和电子设备 |
CN110379826A (zh) * | 2019-07-26 | 2019-10-25 | 上海思立微电子科技有限公司 | 光学指纹识别芯片以及制造方法 |
EP3979123B1 (en) | 2019-08-02 | 2023-11-29 | Shenzhen Goodix Technology Co., Ltd. | Fingerprint detection apparatus and electronic device |
KR20210019641A (ko) * | 2019-08-12 | 2021-02-23 | 삼성전자주식회사 | 생체 정보 센싱 모듈 및 이를 포함하는 전자 장치 |
CN111328398B (zh) * | 2019-08-23 | 2021-09-17 | 深圳市汇顶科技股份有限公司 | 指纹识别装置和电子设备 |
CN111095284B (zh) | 2019-08-23 | 2023-09-22 | 深圳市汇顶科技股份有限公司 | 指纹检测装置、方法和电子设备 |
CN111095285B (zh) * | 2019-08-23 | 2021-09-17 | 深圳市汇顶科技股份有限公司 | 指纹识别装置和电子设备 |
CN111133445B (zh) * | 2019-08-23 | 2021-09-24 | 深圳市汇顶科技股份有限公司 | 指纹识别装置和电子设备 |
WO2021036101A1 (zh) * | 2019-08-23 | 2021-03-04 | 深圳市汇顶科技股份有限公司 | 指纹识别装置和电子设备 |
CN110674699A (zh) * | 2019-08-30 | 2020-01-10 | 华为技术有限公司 | 一种指纹装置、电子设备及其制造方法 |
CN111104919B (zh) * | 2019-10-16 | 2024-07-23 | 深圳阜时科技有限公司 | 光学检测装置和电子设备 |
CN111837131B (zh) * | 2019-10-18 | 2024-04-26 | 深圳市汇顶科技股份有限公司 | 指纹识别装置和电子设备 |
CN111095282B (zh) * | 2019-10-18 | 2023-09-05 | 深圳市汇顶科技股份有限公司 | 指纹检测装置和电子设备 |
EP3889828B1 (en) * | 2019-10-21 | 2023-01-18 | Shenzhen Goodix Technology Co., Ltd. | Fingerprint recognition apparatus and electronic device |
CN111095278B (zh) * | 2019-10-24 | 2023-09-05 | 深圳市汇顶科技股份有限公司 | 指纹识别装置和电子设备 |
KR20220073835A (ko) * | 2019-11-01 | 2022-06-03 | 상하이 핑거 테크놀로지 컴퍼니 리미티드 | 이미지 수집 광학 구조 및 생체 특징의 진위를 감별하는 방법과 전자 장치 |
WO2021084122A1 (en) * | 2019-11-01 | 2021-05-06 | Wavetouch Denmark A/S | Method for manufacturing a biometric imaging device by means of nanoimprint lithography |
CN111104866A (zh) * | 2019-11-22 | 2020-05-05 | 深圳阜时科技有限公司 | 光学式指纹感测装置和电子设备 |
CN110796123A (zh) * | 2019-11-22 | 2020-02-14 | 深圳阜时科技有限公司 | 光学式指纹感测装置和电子设备 |
CN111104864B (zh) * | 2019-11-22 | 2024-07-23 | 深圳阜时科技有限公司 | 光学式指纹感测装置和电子设备 |
CN110828498A (zh) * | 2019-11-22 | 2020-02-21 | 深圳阜时科技有限公司 | 光学式感测装置和电子设备 |
CN110796122A (zh) * | 2019-11-22 | 2020-02-14 | 深圳阜时科技有限公司 | 光学式指纹感测装置和电子设备 |
TWI792016B (zh) * | 2019-12-11 | 2023-02-11 | 神盾股份有限公司 | 指紋感測系統及其使用方法 |
CN110928017A (zh) * | 2019-12-13 | 2020-03-27 | 武汉华星光电技术有限公司 | 显示面板 |
WO2021126058A1 (en) * | 2019-12-18 | 2021-06-24 | Fingerprint Cards Ab | Biometric imaging device and electronic device |
CN113009610A (zh) * | 2019-12-19 | 2021-06-22 | 上海箩箕技术有限公司 | 滤光组件及其形成方法和滤光方法 |
US11017200B1 (en) * | 2020-01-29 | 2021-05-25 | Omnivision Technologies, Inc. | Collimator for under-display optical fingerprint sensing |
CN211857087U (zh) * | 2020-02-24 | 2020-11-03 | 宁波激智科技股份有限公司 | 一种减干涉准直膜 |
WO2021174423A1 (zh) * | 2020-03-03 | 2021-09-10 | 深圳市汇顶科技股份有限公司 | 指纹识别装置、显示屏和电子设备 |
CN115298701A (zh) * | 2020-03-18 | 2022-11-04 | 上海思立微电子科技有限公司 | 屏下光学指纹识别装置及指纹识别方法 |
CN111366997A (zh) * | 2020-04-16 | 2020-07-03 | 欧菲微电子技术有限公司 | 微透镜阵列、生物识别模组及其电子设备 |
CN111490085B (zh) * | 2020-04-22 | 2022-12-09 | 京东方科技集团股份有限公司 | 显示面板、其制作方法及显示装置 |
CN111368809A (zh) * | 2020-04-23 | 2020-07-03 | 上海菲戈恩微电子科技有限公司 | 光学生物指纹识别结构及图像边缘相对照度提高方法 |
CN113555377A (zh) * | 2020-04-26 | 2021-10-26 | 上海箩箕技术有限公司 | 滤光组件及其形成方法 |
WO2021217465A1 (zh) * | 2020-04-28 | 2021-11-04 | 北京小米移动软件有限公司南京分公司 | 终端设备 |
KR20210142789A (ko) * | 2020-05-18 | 2021-11-26 | 삼성디스플레이 주식회사 | 지문 센서, 그의 제조 방법, 및 그를 포함한 표시 장치 |
CN115398630A (zh) * | 2020-05-21 | 2022-11-25 | 华为技术有限公司 | 图像传感器显示器及其操作方法 |
CN113836987A (zh) * | 2020-06-24 | 2021-12-24 | 京东方科技集团股份有限公司 | 传感器装置、电子设备和降低信号噪声的方法 |
DE112020007197T5 (de) * | 2020-09-24 | 2023-04-20 | Boe Technology Group Co., Ltd. | Texturerkennungsmodul, Herstellungsverfahren dafür und Anzeigevorrichtung |
CN112185987A (zh) * | 2020-10-09 | 2021-01-05 | 苏州晶方半导体科技股份有限公司 | 生物识别指纹芯片的封装结构和方法 |
CN112259584B (zh) * | 2020-10-20 | 2024-04-16 | 京东方科技集团股份有限公司 | 显示基板及其制备方法、显示装置 |
WO2022098201A1 (ko) * | 2020-11-09 | 2022-05-12 | 주식회사 엘엠에스 | 광학 시트 |
FR3117611B1 (fr) * | 2020-12-14 | 2023-08-04 | Isorg | Filtre angulaire optique |
FR3117613A1 (fr) * | 2020-12-14 | 2022-06-17 | Isorg | Filtre angulaire optique |
FR3117612A1 (fr) * | 2020-12-14 | 2022-06-17 | Isorg | Filtre optique |
FR3117615B1 (fr) * | 2020-12-14 | 2023-08-04 | Isorg | Filtre angulaire optique |
CN112596187A (zh) * | 2020-12-18 | 2021-04-02 | 江西晶超光学有限公司 | 镜头组件、镜头模组及电子设备 |
CN112699761A (zh) * | 2020-12-24 | 2021-04-23 | 厦门天马微电子有限公司 | 一种指纹识别面板和指纹识别显示模组 |
CN112698432B (zh) * | 2020-12-31 | 2022-08-19 | 维沃移动通信有限公司 | 光学膜片、光学模组及电子设备 |
CN112885873A (zh) * | 2021-01-14 | 2021-06-01 | 京东方科技集团股份有限公司 | 显示面板及其制备方法、显示装置 |
TW202238971A (zh) * | 2021-03-18 | 2022-10-01 | 神盾股份有限公司 | 光感測模組 |
CN113138481A (zh) * | 2021-04-27 | 2021-07-20 | 武汉华星光电技术有限公司 | 显示面板及显示装置 |
TWI811854B (zh) * | 2021-07-23 | 2023-08-11 | 友達光電股份有限公司 | 光學感測裝置 |
CN114002769A (zh) * | 2021-10-20 | 2022-02-01 | 武汉华星光电技术有限公司 | 滤光准直复合膜及其制造方法、显示装置 |
EP4213116A1 (en) * | 2022-01-14 | 2023-07-19 | WaveTouch Denmark A/S | Compact optical sensor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9177190B1 (en) * | 2014-05-30 | 2015-11-03 | Cheng Uei Precision Industry Co., Ltd. | Fingerprint sensor module |
CN106847872A (zh) * | 2017-03-24 | 2017-06-13 | 京东方科技集团股份有限公司 | 显示装置 |
CN107728240A (zh) * | 2017-08-28 | 2018-02-23 | 苏州端景光电仪器有限公司 | 一种用于指纹识别的自聚焦透镜阵列及移动终端 |
CN108010931A (zh) * | 2017-12-28 | 2018-05-08 | 苏州晶方半导体科技股份有限公司 | 一种光学指纹芯片的封装结构以及封装方法 |
CN108073912A (zh) * | 2018-01-03 | 2018-05-25 | 京东方科技集团股份有限公司 | 指纹识别装置和指纹识别设备 |
CN208848221U (zh) * | 2019-04-10 | 2019-05-10 | 深圳市汇顶科技股份有限公司 | 光学指纹识别装置和电子设备 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6344263B1 (en) * | 1998-03-30 | 2002-02-05 | 3M Innovative Properties Company | Light dispersing film and method of manufacture |
WO2007007467A1 (ja) * | 2005-07-08 | 2007-01-18 | Nikon Corporation | 固体撮像素子 |
KR100826452B1 (ko) * | 2006-12-18 | 2008-04-29 | 삼성전기주식회사 | 광학 부품 및 그 제조방법 |
TWI358533B (en) * | 2007-11-21 | 2012-02-21 | Wintek Corp | Light sensing apparatus and display thereof |
TWI529390B (zh) * | 2012-11-21 | 2016-04-11 | 茂丞科技股份有限公司 | 生物感測器模組、組件、製造方法及使用其之電子設備 |
US10147757B2 (en) * | 2015-02-02 | 2018-12-04 | Synaptics Incorporated | Image sensor structures for fingerprint sensing |
US10126562B2 (en) * | 2015-02-09 | 2018-11-13 | Samsung Electronics Co., Ltd. | Apparatus and methods for reducing moire fringe |
KR102458297B1 (ko) * | 2016-01-12 | 2022-10-25 | 삼성전자주식회사 | 전자 장치 및 그를 제조하는 방법 |
TW201730809A (zh) * | 2016-02-19 | 2017-09-01 | 致伸科技股份有限公司 | 指紋辨識模組及其製造方法 |
US10108841B2 (en) * | 2016-03-31 | 2018-10-23 | Synaptics Incorporated | Biometric sensor with diverging optical element |
CN107437055A (zh) | 2016-05-25 | 2017-12-05 | 深圳印象认知技术有限公司 | 一种图像采集器和指纹采集设备 |
CN107437046B (zh) * | 2016-05-25 | 2020-12-01 | 讯芯电子科技(中山)有限公司 | 指纹传感器封装结构及其制作方法 |
US10331932B2 (en) | 2016-06-08 | 2019-06-25 | Novatek Microelectronics Corp. | Optical sensor device and a fingerprint sensor apparatus |
US10354114B2 (en) * | 2016-06-13 | 2019-07-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fingerprint sensor in InFO structure and formation method |
WO2018004243A1 (ko) * | 2016-06-28 | 2018-01-04 | 주식회사 비욘드아이즈 | 지문인식 기능을 구비한 디스플레이 |
WO2018139790A1 (ko) * | 2017-01-24 | 2018-08-02 | 엘지전자 주식회사 | 이동 단말기 |
CN109302848A (zh) * | 2017-01-24 | 2019-02-01 | 华为技术有限公司 | 一种显示面板及其制作方法、显示装置 |
US10388689B2 (en) * | 2017-02-13 | 2019-08-20 | Egis Technology Inc. | Fingerprint identification system, sensing method and manufacturing method |
KR101910518B1 (ko) * | 2017-04-11 | 2018-10-22 | 삼성전자주식회사 | 생체 센서 및 생체 센서를 포함하는 장치 |
CN109033926A (zh) | 2017-06-08 | 2018-12-18 | 上海箩箕技术有限公司 | 指纹成像模组和电子设备 |
US10891460B2 (en) * | 2017-07-18 | 2021-01-12 | Will Semiconductor (Shanghai) Co. Ltd. | Systems and methods for optical sensing with angled filters |
CN107818732B (zh) * | 2017-11-21 | 2020-07-21 | 京东方科技集团股份有限公司 | 一种显示单元、显示面板及显示装置 |
US10796128B2 (en) * | 2017-12-12 | 2020-10-06 | Fingerprint Cards Ab | Optical sensor with ambient light filter |
WO2019184361A1 (en) * | 2018-03-27 | 2019-10-03 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Display screen assembly and electronic device |
JP6864120B2 (ja) | 2018-09-21 | 2021-04-21 | シェンチェン グディックス テクノロジー カンパニー,リミテッド | 指紋認識装置及び電子機器 |
EP3731137B1 (en) | 2019-02-02 | 2023-01-25 | Shenzhen Goodix Technology Co., Ltd. | Fingerprint recognition apparatus and electronic device |
-
2019
- 2019-04-10 CN CN201921013044.2U patent/CN210038821U/zh active Active
- 2019-04-10 CN CN201920528506.8U patent/CN209640880U/zh active Active
- 2019-04-10 CN CN201920480285.1U patent/CN208848221U/zh active Active
- 2019-08-14 EP EP19801466.4A patent/EP3748532B1/en active Active
- 2019-08-14 WO PCT/CN2019/100657 patent/WO2020206894A1/zh unknown
- 2019-08-14 CN CN201980095272.5A patent/CN113661493A/zh not_active Withdrawn
- 2019-11-24 US US16/693,341 patent/US11403869B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9177190B1 (en) * | 2014-05-30 | 2015-11-03 | Cheng Uei Precision Industry Co., Ltd. | Fingerprint sensor module |
CN106847872A (zh) * | 2017-03-24 | 2017-06-13 | 京东方科技集团股份有限公司 | 显示装置 |
CN107728240A (zh) * | 2017-08-28 | 2018-02-23 | 苏州端景光电仪器有限公司 | 一种用于指纹识别的自聚焦透镜阵列及移动终端 |
CN108010931A (zh) * | 2017-12-28 | 2018-05-08 | 苏州晶方半导体科技股份有限公司 | 一种光学指纹芯片的封装结构以及封装方法 |
CN108073912A (zh) * | 2018-01-03 | 2018-05-25 | 京东方科技集团股份有限公司 | 指纹识别装置和指纹识别设备 |
CN208848221U (zh) * | 2019-04-10 | 2019-05-10 | 深圳市汇顶科技股份有限公司 | 光学指纹识别装置和电子设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3748532A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12105306B2 (en) * | 2019-08-30 | 2024-10-01 | Boe Technology Group Co., Ltd. | Texture image acquiring device, display device, and collimator |
Also Published As
Publication number | Publication date |
---|---|
US11403869B2 (en) | 2022-08-02 |
EP3748532A4 (en) | 2020-12-09 |
CN209640880U (zh) | 2019-11-15 |
EP3748532A1 (en) | 2020-12-09 |
CN210038821U (zh) | 2020-02-07 |
CN113661493A (zh) | 2021-11-16 |
US20200327296A1 (en) | 2020-10-15 |
EP3748532B1 (en) | 2022-11-16 |
CN208848221U (zh) | 2019-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020206894A1 (zh) | 光学指纹识别装置和电子设备 | |
WO2020181493A1 (zh) | 屏下指纹识别装置和电子设备 | |
WO2020151159A1 (zh) | 指纹识别的装置和电子设备 | |
WO2020220305A1 (zh) | 屏下指纹识别装置和电子设备 | |
WO2020133344A1 (zh) | 指纹识别装置和电子设备 | |
WO2020133378A1 (zh) | 指纹识别装置和电子设备 | |
WO2020147018A1 (zh) | 光学图像采集系统和电子设备 | |
WO2020248286A1 (zh) | 光学指纹装置和电子设备 | |
KR102374723B1 (ko) | 광학 지문 장치 및 전자 기기 | |
WO2021035622A1 (zh) | 指纹识别装置和电子设备 | |
WO2021077259A1 (zh) | 识别指纹的方法、指纹识别装置和电子设备 | |
WO2021077265A1 (zh) | 指纹识别装置和电子设备 | |
WO2020146985A1 (zh) | 指纹识别装置和电子设备 | |
WO2021035714A1 (zh) | 纹路图像获取装置、显示装置及准直部件 | |
WO2020191600A1 (zh) | 指纹识别装置和电子设备 | |
WO2021077368A1 (zh) | 指纹识别装置和电子设备 | |
WO2020243926A1 (zh) | 光学指纹装置和电子设备 | |
CN114625264B (zh) | 显示装置 | |
WO2021051737A1 (zh) | 指纹识别装置、背光模组、液晶显示屏和电子设备 | |
WO2022016547A1 (zh) | 指纹识别装置和电子设备 | |
WO2021022596A1 (zh) | 光学指纹装置和电子设备 | |
WO2021077406A1 (zh) | 指纹识别装置和电子设备 | |
WO2021007730A1 (zh) | 指纹检测装置和电子设备 | |
WO2022041145A1 (zh) | 指纹识别装置及电子设备 | |
CN210983440U (zh) | 取像装置与使用其的电子装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019801466 Country of ref document: EP Effective date: 20191120 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19801466 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |