WO2021077265A1 - 指纹识别装置和电子设备 - Google Patents

指纹识别装置和电子设备 Download PDF

Info

Publication number
WO2021077265A1
WO2021077265A1 PCT/CN2019/112361 CN2019112361W WO2021077265A1 WO 2021077265 A1 WO2021077265 A1 WO 2021077265A1 CN 2019112361 W CN2019112361 W CN 2019112361W WO 2021077265 A1 WO2021077265 A1 WO 2021077265A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
fingerprint identification
identification device
chip
Prior art date
Application number
PCT/CN2019/112361
Other languages
English (en)
French (fr)
Inventor
刘辰锦
张建湘
吴宝全
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP19950144.6A priority Critical patent/EP3889828B1/en
Priority to KR1020217020099A priority patent/KR102611843B1/ko
Priority to CN201980004271.5A priority patent/CN111133444B/zh
Priority to PCT/CN2019/112361 priority patent/WO2021077265A1/zh
Publication of WO2021077265A1 publication Critical patent/WO2021077265A1/zh
Priority to US17/362,608 priority patent/US11403870B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1329Protecting the fingerprint sensor against damage caused by the finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0613Square or rectangular array
    • H01L2224/06134Square or rectangular array covering only portions of the surface to be connected
    • H01L2224/06135Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Definitions

  • This application relates to the field of optical fingerprint technology, and more specifically, to a fingerprint identification device and electronic equipment.
  • under-screen fingerprint identification devices are more and more widely used, among which under-screen optical fingerprint identification devices are the most popular.
  • the mass-produced under-screen optical fingerprint recognition device in the industry mainly adopts two schemes.
  • One is the use of small hole imaging scheme. In actual industrial manufacturing, the size of the small hole cannot be further reduced, which limits the improvement of its fingerprint image resolution. ; And the small hole only allows the incident light in the vertical direction to enter, and cannot provide enough light, which results in relatively limited imaging signals, which affects the quality of fingerprint images.
  • the other is to use an optical lens solution, which uses spherical or aspherical lens to condense the image.
  • the distance from the finger pressing the surface of the mobile phone screen to the fingerprint collection area of the optical chip is relatively short, and the total optical thickness of the optical lens is small. Therefore, the fingerprint collection area of this solution is very limited and cannot be Collecting fingerprints in a large area affects the performance of the fingerprint identification device.
  • the embodiments of the present application provide a fingerprint identification device and electronic equipment, which can improve the performance of the fingerprint identification device.
  • a fingerprint identification device configured to be installed under the display screen of an electronic device, including:
  • the sensor chip includes a light detection array and a chip protection ring, and the chip protection ring is arranged around the light detection array;
  • a light blocking layer is formed above the light detection array, wherein the light blocking layer is provided with a plurality of light-passing holes, and the light blocking layer covers the entire area of the light detection array and at least a part of the chip guard ring;
  • the fingerprint light signal returned after being reflected or scattered by the finger above the display screen is transmitted to the light detection array through a plurality of light-passing holes on the light blocking layer for fingerprint identification.
  • the fingerprint optical signal is transmitted to the light detection array through the multiple light-passing holes of the light-blocking layer for fingerprint recognition, which can realize a large-area and high-resolution fingerprint recognition image.
  • the light-blocking layer Cover the chip protection ring to avoid the interference of stray light signals on fingerprint recognition and prevent the light signals reflected by the fingerprint recognition device from being transmitted to the outside of the display screen to be received by human eyes. While improving the performance of the fingerprint recognition device, it can also solve the problem of the fingerprint recognition device. Exterior Problems.
  • the fingerprint identification device further includes: a microlens array disposed above the light blocking layer; wherein, the microlens array is used to converge the fingerprint light signal to a plurality of light blocking layers. Through the light-passing holes, the fingerprint light signal is transmitted to the light detection array through the plurality of light-passing holes.
  • the fingerprint optical signal is condensed to multiple light-passing holes of the light-blocking layer through a microlens array, and the fingerprint light signal is transmitted to the light detection array through the multiple light-passing holes of the light-blocking layer to perform fingerprints.
  • Recognition can reduce the thickness of the fingerprint recognition device while realizing a large-area and high-resolution fingerprint recognition image.
  • the fingerprint identification device further includes: a filter layer, which is disposed between the light blocking layer and the sensor chip, and is used to filter out light signals of non-target wavelength bands, and transmit light signals of the target wavelength bands.
  • the filter layer covers the entire area of the light detection array and covers a part of the chip guard ring.
  • the filter layer covers a part of the chip protection ring, so that while the filter layer completely covers the photodetection array, its edge is far away from the photodetection array, and the process problems at the edge of the filter layer will not affect
  • the fingerprint light signal received by the light detection array further improves the performance of the fingerprint identification device.
  • the sensor chip further includes: a chip bonding area including a plurality of chip pads; the chip guard ring has a polygonal ring structure, and the chip bonding area is located in the chip guard ring and is close to the chip protection ring. The first side of the chip guard ring;
  • the light blocking layer does not cover the chip welding area and the first side of the chip guard ring.
  • the chip guard ring has a quadrangular ring structure, and the light blocking layer covers at least one side of the chip guard ring except the first side.
  • the filter layer does not cover the chip bonding area and the first side of the chip guard ring.
  • the chip guard ring has a quadrangular ring structure, and the filter layer covers at least one side of the chip guard ring except the first side.
  • the light-blocking layer covers a part of the dicing lane of the sensor chip.
  • the filter layer covers a partial area of the dicing lane of the sensor chip.
  • the light-blocking layer is one of the multilayer light-blocking layers, and at least one light-blocking layer in the multilayer light-blocking layer covers the entire area of the photodetection array and at least covers the Part of the chip guard ring.
  • the filter layer is a filter material film formed above the light detection array, and the filter layer and the light detection array are integrated in the sensor chip.
  • the filter layer covers the entire area of the light detection array, and the distance between the boundary of the filter layer and the boundary of the light detection array is greater than 150 ⁇ m.
  • the thickness of the filter layer is between 1 ⁇ m and 10 ⁇ m, and the wavelength range of the target waveband includes 400 nm to 650 nm.
  • the filter layer includes a multilayer oxide film, wherein the silicon oxide film and the titanium oxide film are sequentially overlapped to form the multilayer oxide film, or the silicon oxide and the niobium oxide film are sequentially overlapped.
  • the multilayer oxide film is formed by overlapping.
  • the light blocking layer has a transmittance of less than 8% for visible light with a wavelength range of 400 nm to 600 nm.
  • the fingerprint identification device further includes:
  • the surface light-shielding layer is formed above the light-blocking layer, and an opening is arranged therein, and the microlens array is arranged in the opening;
  • the surface light shielding layer is used to block the light signals around the microlens array from entering the light detection array.
  • the surface light shielding layer is used to block the light signal around the microlens array from entering the light detection array, while also preventing the reflected light signal of the fingerprint identification device from passing through the display screen and being received by human eyes.
  • the light-shielding layer can further prevent the interference of stray light signals on fingerprint detection, and can further solve the appearance problem of the fingerprint identification device under the display screen, thereby further optimizing the performance of the fingerprint identification device.
  • the edge of the surface light shielding layer covers the edge of the light blocking layer and/or the edge of the filter layer.
  • the surface light shielding layer has a transmittance of less than 8% for visible light with a wavelength range of 400 nm to 600 nm.
  • the fingerprint identification device further includes: a first medium layer and a second medium layer;
  • the first dielectric layer is grown on the surface of the filter layer, and the light blocking layer is grown on the surface of the first dielectric layer;
  • the second dielectric layer is grown on the surface of the light-blocking layer and fills a plurality of light-passing holes of the light-blocking layer.
  • each microlens in the microlens array is a quadrilateral microlens or a circular lens.
  • the upper surface of each microlens in the microlens array is a spherical surface or an aspherical surface.
  • the fingerprint optical signal is a vertical direction optical signal perpendicular to the display screen or a specific direction optical signal inclined to the display screen.
  • an electronic device including a display screen and a fingerprint identification device as in the first aspect or any possible implementation of the first aspect.
  • the display screen is an organic light-emitting diode display screen
  • the light-emitting layer of the display screen includes a plurality of organic light-emitting diode light sources
  • the fingerprint identification device uses at least part of the organic light-emitting diode light sources as the fingerprint identification device. Stimulate the light source.
  • the electronic device has good fingerprint identification performance, improves the fingerprint identification success rate, and improves the user experience.
  • FIG. 1 is a schematic diagram of the structure of an electronic device to which an embodiment of the present application is applied.
  • Fig. 2 is a schematic structural diagram of a fingerprint identification device according to an embodiment of the present application.
  • Fig. 3 is a schematic top view of the fingerprint identification device in Fig. 2.
  • Fig. 4 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 5 is a schematic top view of the fingerprint identification device in Fig. 4.
  • Fig. 6 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 7 is a schematic top view of the fingerprint identification device in Fig. 6.
  • Fig. 8 is a schematic structural diagram of another fingerprint identification device according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • optical fingerprint systems including but not limited to optical fingerprint identification systems and products based on optical fingerprint imaging.
  • the embodiments of this application only take optical fingerprint systems as an example for illustration, but should not be implemented in this application.
  • the examples constitute any limitation, and the examples of this application are also applicable to other systems that use optical imaging technology.
  • the optical fingerprint system provided in the embodiments of this application can be applied to smart phones, tablet computers, and other mobile terminals with display screens or other electronic devices; more specifically, in the above electronic devices, fingerprint identification
  • the device may specifically be an optical fingerprint device, which may be arranged in a partial area or an entire area under the display screen, thereby forming an under-display optical fingerprint system.
  • the fingerprint identification device may be partially or fully integrated into the display screen of the electronic device, thereby forming an in-display optical fingerprint system.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130, wherein the optical fingerprint device 130 is disposed in a partial area under the display screen 120.
  • the optical fingerprint device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array 133 is located or its sensing area is the fingerprint detection area 103 of the optical fingerprint device 130. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the optical fingerprint device 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transmissive area at the edge of the electronic device 10, and at least part of the display area of the display screen 120 is designed through the optical path.
  • the optical signal is guided to the optical fingerprint device 130, so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130.
  • the optical fingerprint can be made The area of the fingerprint detection area 103 of the device 130 is larger than the area of the sensing array of the optical fingerprint device 130.
  • the fingerprint detection area 103 of the optical fingerprint device 130 can also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130.
  • the electronic device 10 with the above structure does not need to reserve space on the front side to set the fingerprint button (such as the Home button), so that a full-screen solution can be adopted, that is, the display area of the display screen 120 can be basically Extend to the front of the entire electronic device 10.
  • the optical fingerprint device 130 includes a light detecting portion 134 and an optical component 132.
  • the light detecting portion 134 includes a sensing array and a reading circuit electrically connected to the sensing array.
  • Other auxiliary circuits which can be fabricated on a chip (Die) through a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector array, which includes a plurality of arrays distributed
  • the photodetector can be used as the above-mentioned optical sensing unit; the optical component 132 can be arranged above the sensing array of the light detecting part 134, and it can specifically include a light guide layer or a light path guide structure and other optical elements.
  • the light guide layer or light path guide structure is mainly used to guide the reflected light reflected from the surface of the finger to the sensing array for optical detection.
  • the optical assembly 132 and the light detecting part 134 may be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 can be attached to the Above the chip, or part of the components of the optical assembly 132 are integrated into the above-mentioned chip.
  • the light guide layer or light path guiding structure of the optical component 132 has multiple implementation schemes.
  • the light guide layer may be specifically a collimator layer made on a semiconductor silicon wafer, which has multiple collimators.
  • the collimating unit can be specifically a small hole, the reflected light reflected from the finger, the light that is perpendicularly incident on the collimating unit can pass through and be received by the optical sensor unit below it, and the incident angle Excessive light is attenuated by multiple reflections inside the collimating unit, so each optical sensor unit can basically only receive the reflected light reflected by the fingerprint pattern directly above it, so the sensor array can detect the finger Fingerprint image.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspheric lenses, which is used for The reflected light reflected from the finger is condensed to the sensing array of the light detection part 134 below it, so that the sensing array can perform imaging based on the reflected light, thereby obtaining a fingerprint image of the finger.
  • the optical lens layer may further have a pinhole formed in the optical path of the lens unit, and the pinhole may cooperate with the optical lens layer to expand the field of view of the optical fingerprint device, so as to improve the fingerprint imaging effect of the optical fingerprint device 130.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer.
  • the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses. The process is formed above the sensing array of the light detecting part 134, and each microlens may correspond to one of the sensing units of the sensing array, respectively.
  • other optical film layers may be formed between the micro lens layer and the sensing unit, such as a dielectric layer or a passivation layer. More specifically, a light blocking layer with micro holes may also be formed between the micro lens layer and the sensing unit. The micro-hole is formed between the corresponding micro-lens and the sensing unit.
  • the light blocking layer can block the optical interference between the adjacent micro-lens and the sensing unit, and make the light corresponding to the sensing unit converge into the micro-hole through the micro-lens And it is transmitted to the sensing unit through the micro-hole for optical fingerprint imaging.
  • a microlens layer can be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the micro lens layer, the specific laminated structure or optical path may need to be adjusted according to actual needs.
  • the display screen 120 may adopt a display screen with a self-luminous display unit, such as an organic light-emitting diode (OLED) display screen or a micro-LED (Micro-LED) display screen.
  • a self-luminous display unit such as an organic light-emitting diode (OLED) display screen or a micro-LED (Micro-LED) display screen.
  • the optical fingerprint device 130 may use the display unit (ie, OLED light source) of the OLED display screen 120 located in the fingerprint detection area 103 as the excitation light source for optical fingerprint detection.
  • OLED light source the display unit of the OLED display screen 120 located in the fingerprint detection area 103.
  • the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103.
  • the light 111 is reflected on the surface of the finger 140 to form reflected light or scattered inside the finger 140.
  • the scattered light is formed.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridge and valley of the fingerprint have different light reflection capabilities, the reflected light 151 from the fingerprint ridge and the reflected light 152 from the fingerprint ridge have different light intensities. After the reflected light passes through the optical component 132, It is received by the sensor array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that the electronic device 10 Realize the optical fingerprint recognition function.
  • the optical fingerprint device 130 may also use a built-in light source or an external light source to provide an optical signal for fingerprint detection.
  • the optical fingerprint device 130 may be suitable for non-self-luminous display screens, such as liquid crystal display screens or other passively-luminous display screens.
  • the optical fingerprint system of the electronic device 10 may also include an excitation light source for optical fingerprint detection.
  • the optical fingerprint device 130 can be specifically an infrared light source or a light source of invisible light of a specific wavelength, which can be arranged under the backlight module of the liquid crystal display or arranged in the edge area under the protective cover of the electronic device 10, and the optical fingerprint device 130 can be arranged with a liquid crystal panel or Under the edge area of the protective cover and guided by the light path so that the fingerprint detection light can reach the optical fingerprint device 130; or, the optical fingerprint device 130 can also be arranged under the backlight module, and the backlight module passes through the diffusion sheet, the brightness enhancement sheet,
  • the film layer such as the reflective sheet has holes or other optical designs to allow the fingerprint detection light to pass through the liquid crystal panel and the backlight module and reach the optical fingerprint device 130.
  • the optical fingerprint device 130 adopts a built-in light source or an external light source to provide an optical signal for fingerprint detection, the detection principle is the same as that described above.
  • the electronic device 10 further includes a transparent protective cover plate, which may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the front surface of the electronic device 10.
  • a transparent protective cover plate which may be a glass cover plate or a sapphire cover plate, which is located above the display screen 120 and covers the front surface of the electronic device 10.
  • the electronic device 10 may further include a circuit board 150 disposed under the optical fingerprint device 130.
  • the optical fingerprint device 130 can be adhered to the circuit board 150 through adhesive, and is electrically connected to the circuit board 150 through soldering pads and metal wires.
  • the optical fingerprint device 130 can realize electrical interconnection and signal transmission with other peripheral circuits or other components of the electronic device 10 through the circuit board 150.
  • the optical fingerprint device 130 can receive the control signal of the processing unit of the electronic device 10 through the circuit board 150, and can also output the fingerprint detection signal from the optical fingerprint device 130 to the processing unit or the control unit of the electronic device 10 through the circuit board 150 Wait.
  • the optical fingerprint device 130 may include only one optical fingerprint sensor.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position. Therefore, the user needs to perform fingerprint input Press the finger to a specific position of the fingerprint detection area 103, otherwise the optical fingerprint device 130 may not be able to collect fingerprint images, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include a plurality of optical fingerprint sensors; the plurality of optical fingerprint sensors may be arranged side by side under the display screen 120 in a splicing manner, and the sensing areas of the plurality of optical fingerprint sensors are common The fingerprint detection area 103 of the optical fingerprint device 130 is constituted.
  • the fingerprint detection area 103 of the optical fingerprint device 130 may include multiple sub-areas, and each sub-area corresponds to the sensing area of one of the optical fingerprint sensors, so that the fingerprint collection area 103 of the optical fingerprint device 130 can be extended to display
  • the main area of the lower half of the screen is extended to the area where the finger is habitually pressed, so as to realize the blind fingerprint input operation.
  • the fingerprint detection area 103 can also be extended to half of the display area or even the entire display area, thereby realizing half-screen or full-screen fingerprint detection.
  • the sensing array in the optical fingerprint device may also be referred to as a pixel array
  • the optical sensing unit or sensing unit in the sensing array may also be referred to as a pixel unit.
  • optical fingerprint device in the embodiments of the present application may also be referred to as an optical fingerprint identification module, a fingerprint identification device, a fingerprint identification module, a fingerprint module, a fingerprint acquisition device, etc., and the above terms can be replaced with each other.
  • the embodiments of the present application provide an improved optical fingerprint identification device, which increases the resolution of the fingerprint image while collecting fingerprint images in a large area, reduces the thickness of the fingerprint identification device, and further improves the performance of the off-screen optical fingerprint identification.
  • FIG. 2 is a schematic structural diagram of a fingerprint identification device 200 according to an embodiment of the present application
  • FIG. 3 is a schematic top view of the fingerprint identification device 200 in FIG. 2, as shown in FIGS. 2 and 3, the fingerprint identification device 200 include:
  • the sensor chip 230 includes a light detection array 231 and a chip protection ring 232, and the chip protection ring 232 is arranged around the light detection array 231;
  • the light blocking layer 220 is formed above the light detection array 231, wherein the light blocking layer 220 is provided with a plurality of light-passing holes, and the light blocking layer 220 covers the entire area of the light detection array 231 and at least covers the chip protection Part of the area in the ring 232;
  • the fingerprint light signal returned after being reflected or scattered by the finger above the display screen is transmitted to the light detection array 231 through a plurality of light-passing holes on the light blocking layer 220 for fingerprint identification.
  • the fingerprint identification device 200 may further include: a microlens array 210 disposed above the light blocking layer 220;
  • the microlens array 210 is used to converge the fingerprint light signals returned after being reflected or scattered by the fingers above the display screen to a plurality of light-passing holes of the light-blocking layer 220, and the fingerprint light signals pass through the light-blocking layers 220.
  • the light-passing hole is transmitted to the light detection array 231 for fingerprint identification.
  • the above-mentioned microlens array 210 includes a plurality of microlenses, and the plurality of microlenses includes a first microlens 211, and the first microlens 211 is used to converge the fingerprint light signal above it to In the first light-passing hole 221 below it, the fingerprint light signal is transmitted to the first pixel unit 2311 in the light detection array 231 through the first light-passing hole 221.
  • the first microlens 211 may be used to converge the optical signal above the first microlens 211 perpendicular to the display screen to the first light-passing hole 221.
  • the first microlens 211 can also be used to converge the optical signal above the first microlens 211 that is inclined to the display screen to the first light-passing hole 221.
  • the converted electrical signal is used to form a pixel in the fingerprint image.
  • the upper surface of the first microlens 211 may be a spherical surface or an aspherical surface.
  • the first microlens 211 is a polygonal lens or a circular lens.
  • the quadrilateral lens has a spherical or aspheric upper surface and a quadrilateral lower surface.
  • the material of the microlens array 210 is a transparent medium, and the light transmittance of the transparent medium is greater than 99%, for example, the transparent medium is resin, glass, or the like.
  • the first microlens 211 is any one of a plurality of microlenses in the microlens array 210, and the plurality of microlenses in the microlens array 210 may be the same or different in shape and size from the first microlens 211.
  • the present application The embodiment does not limit the shape and size of the multiple microlenses.
  • the above-mentioned light blocking layer 220 completely covers the light detection array 231 in the sensor chip 230.
  • a micro-nano processing technology or a nano-printing process can be used to prepare the sensor chip 230, for example, a micro-nano processing technology, through spin coating, spray coating, atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam Coating and other methods prepare one or more layers of non-light-transmitting material films on the sensor chip 230, and then perform small hole pattern photolithography and etching to form a plurality of light-transmitting small holes.
  • the optical component 132 in FIG. 1 may include the aforementioned microlens array 210 and the light blocking layer 220.
  • the light blocking layer 220 is used to block light signals that interfere with fingerprint detection, such as ambient light and stray light.
  • the light blocking layer 220 has a transmittance of light in a specific wavelength band (such as visible light or a wavelength band above 610 nm) of less than a certain threshold, so as to prevent the corresponding light from passing through.
  • the material of the light blocking layer 220 may be metal or black opaque material.
  • the light blocking layer 220 has a transmittance of less than 8% for visible light with a wavelength range of 400 nm to 600 nm.
  • the light-passing hole on the light blocking layer 220 may be a circular hole with a diameter of less than 10 ⁇ m for optical imaging, and the resolution of the optical imaging can be improved by reducing the size of the light-passing hole. Thereby improving the resolution of the fingerprint image.
  • the diameter of the light-passing hole may also be greater than a certain threshold, so as to perform imaging with sufficient light signals to improve imaging quality.
  • the positions of a plurality of light-passing holes on the light blocking layer 220 are arranged in an array, and each light-passing hole corresponds to a microlens on a microlens array.
  • the light detection array 231 in the sensor chip 230 is used to receive fingerprint light signals passing through the microlens array 210 and the light blocking layer 220 and convert the fingerprint light signals into electrical signals.
  • the optical detection array processes the electrical signal to obtain a fingerprint image signal for fingerprint identification.
  • the light detection array 231 includes a plurality of pixel units, and the pixel units may include a photodiode (PD), a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor, and MOSFET). ) And other devices.
  • the pixel unit has higher optical sensitivity and higher quantum efficiency for light of a specific wavelength, so as to facilitate detection of optical signals of corresponding wavelengths.
  • the photodetection array 231 can be the same as the sensing array in the photodetection part 134 in FIG. 1.
  • the functional circuit in addition to the photodetection array 231, the functional circuit also includes a reader connected to the photodetection array 231.
  • the fetch circuit and other auxiliary circuits are used to realize the normal operation of the light detection array 231 and to read and process the fingerprint electrical signal formed by the light detection array 231.
  • the chip guard ring (Seal Ring) 232 in the sensor chip 230 is a ring structure formed by stacking multiple layers of materials such as a metal layer, an oxide layer, and a nitride layer, and is located on the periphery of the sensor chip 230. .
  • the functional circuit in the sensor chip 230 is located in the chip guard ring 232, and the distance from the chip guard ring 232 is greater than a certain threshold. For example, the distance between the edge of the light detection array 231 in the sensor chip 230 and the chip guard ring 232 must be greater than Certain threshold.
  • the outer area of the chip guard ring 232 is a scribe line on the wafer, and the sensor chip 230 is obtained by dicing on the scribe line on the wafer.
  • the chip protection ring 231 therein may also be a quadrilateral ring structure, which can protect the functional circuits in the chip.
  • the chip guard ring 231 can prevent the chip from mechanical damage during cutting. Grounding the chip guard ring 231 can shield external interference from the chip, and can also prevent water vapor from entering the chip from the cross section of the chip and causing the chip to work abnormally.
  • chip guard ring 231 in the embodiment of the present application is the same as the chip guard ring (Seal Ring) in the chip in the prior art, and those skilled in the art can implement the chip guard ring in the sensor chip through the prior art. The detailed technical scheme will not be repeated here.
  • the chip guard ring includes, but is not limited to, a quadrilateral ring structure, and can also be other polygonal or circular ring structures.
  • the specific shape is related to the shape of the chip. The implementation of this application The example does not limit this.
  • the following description takes the sensor chip as a quadrilateral chip and the chip guard ring as a quadrilateral ring structure as an example.
  • the chip guard ring has other shapes and structures, the specific solution can be referred to related descriptions, which will not be repeated here.
  • the light blocking layer 220 covers the entire area of the light detection array 231 and covers at least one side of the chip guard ring 232, for example, as shown in FIG. As shown in FIG. 2 and FIG. 3, the light blocking layer 220 covers a part of the area on the right side of the chip guard ring 232.
  • the area outside the chip guard ring 232 is the dicing lane 233.
  • the edge of the light blocking layer 200 may be located directly above the chip guard ring, and does not cover the cutting lane 233 outside the chip guard ring 232.
  • the edge of the light blocking layer 220 may also be located obliquely above the chip protection ring, and while covering at least one side of the chip protection ring, it also covers a part of the dicing lane 233 outside the chip protection ring 232.
  • the light-blocking layer 220 when the light-blocking layer 220 covers the right part of the chip guard ring 232, the light-blocking layer 220 also covers the outer part of the dicing track area on the right side of the chip guard ring 232. Similarly, when the light-blocking layer 220 covers other side areas of the chip guard ring 232, correspondingly, the light-blocking layer 220 also covers the other side outer part of the chip guard ring 232 dicing area.
  • the above-mentioned light-blocking layer 220 is any one of the multi-layer light-blocking layers, each of which is provided with a plurality of light-passing holes , Used to transmit the fingerprint optical signal to the optical detection array.
  • at least one light-blocking layer in the multi-layer light-blocking layer covers the entire area of the photo detection array 231 and at least covers a part of the area of the chip guard ring 232.
  • all the light-blocking layers in the multi-layer light-blocking layer may cover a part of the chip guard ring 232.
  • all the light-blocking layers cover one side of the chip guard ring.
  • multi-sided there may be only one layer in the multi-layer light-blocking layer, for example, the light-blocking layer 220 or a part of the light-blocking layer covers a part of the chip guard ring, which is not specifically limited in the embodiment of the present application.
  • the fingerprint optical signal is condensed to multiple light-passing holes of the light-blocking layer through a microlens array, and the fingerprint light signal is transmitted to the light detection array through the multiple light-passing holes of the light-blocking layer to perform fingerprints.
  • Recognition can reduce the thickness of the fingerprint recognition device while achieving large-area and high-resolution fingerprint recognition images.
  • the chip protection ring is covered by a light-blocking layer to avoid the interference of stray light signals on fingerprint recognition and the fingerprint recognition device
  • the reflected light signal is transmitted to the outside of the display screen, which not only improves the performance of the fingerprint identification device, but also solves the appearance problem of the fingerprint identification device.
  • the sensor chip 230 of the fingerprint identification device 200 further includes a chip bonding area 234.
  • the chip bonding area 234 is provided with at least one chip pad 2341, and the chip pad is used for electrical connection with other electrical devices such as a circuit board. Connect to transmit the electrical signal generated by the light detection array 210.
  • the chip bonding area 234 also belongs to the functional circuit of the sensor chip 230 and is located in the chip guard ring 232.
  • the chip bonding area 234 may be close to the left side of the chip guard ring 232 (an example of the first side of the chip guard ring). At this time, the light blocking layer 220 does not cover the The chip bonding area 234 does not cover the left part of the chip guard ring 232.
  • the light blocking layer 220 may only cover the right part of the chip guard ring 232.
  • the light blocking layer 220 may also cover any one side portion or any multiple side portions of the right side portion, the upper side portion, and the lower side portion of the chip guard ring 232.
  • the light blocking layer simultaneously covers the right, upper, and lower portions of the chip guard ring 232.
  • the chip bonding area 234 can also be arranged close to multiple sides of the chip guard ring.
  • the chip bonding area 234 is arranged close to the left and upper sides of the chip guard ring 232.
  • the chip guard ring 232 is on the left side.
  • a plurality of chip pads 2341 are provided near the side and the upper side, and the light blocking layer 220 does not cover the left and upper parts of the chip guard ring, but only covers the lower and/or right part of the chip guard ring.
  • FIG. 4 shows a schematic structural diagram of another fingerprint identification device 200
  • FIG. 5 is a schematic top view of the fingerprint identification device 200 in FIG. 4.
  • the fingerprint identification device 200 further includes: a filter layer 240, which is disposed between the light blocking layer 220 and the sensor chip 230, and is used to filter out light signals in non-target wavelength bands. Transmitting the optical signal of the target waveband helps reduce the influence of the optical signal of the non-target waveband, thereby improving the fingerprint recognition performance.
  • a filter layer 240 which is disposed between the light blocking layer 220 and the sensor chip 230, and is used to filter out light signals in non-target wavelength bands. Transmitting the optical signal of the target waveband helps reduce the influence of the optical signal of the non-target waveband, thereby improving the fingerprint recognition performance.
  • the filter layer 240 is grown on the surface of the sensor chip 230 and integrated in the sensor chip 230, and the filter layer 240 completely covers the light detection array 231 in the sensor chip 230.
  • a physical vapor deposition (Physical Vapor Deposition, PVD) process may be used to coat a plurality of pixel units of the sensor chip 230 to form the filter layer 240, for example, by atomic layer deposition, sputtering coating, electron beam evaporation coating, A method such as ion beam coating is used to prepare a multi-layer filter material film on the sensor chip 230.
  • PVD Physical Vapor Deposition
  • the filter layer 240 includes a multilayer oxide film, wherein the multilayer oxide film includes a silicon oxide film and a titanium oxide film, and the silicon oxide film and the titanium oxide film The filter layer 240 is alternately grown in sequence; or the multilayer oxide film includes a silicon oxide film and a niobium oxide film, and the silicon oxide film and the niobium oxide film are alternately grown to form the filter layer 240 in sequence.
  • the thickness of the filter layer 240 is between 1 ⁇ m and 10 ⁇ m.
  • the filter layer 240 is used to pass optical signals in the wavelength range of 400 nm to 650 nm.
  • the wavelength range of the above-mentioned target wavelength range includes 400 nm to 650 nm.
  • the filter layer 240 covers at least a part of the chip guard ring 232, so that the filter layer 240 completely covers the light detection array 231 while the entire area of the filter layer is larger, and its edge is far away from the light.
  • the detection array 231 is far away.
  • the edge area of the filter layer 240 will affect the quality of the material grown thereon, for example, affect the growth quality of the light blocking layer 220, or may also affect the filter layer.
  • the growth quality of the medium layer between the light-blocking layer and the light-blocking layer affects the quality of the optical signal received by the fingerprint detection device and the performance of the fingerprint detection device.
  • the edge area of the filter layer 240 is separated from the light detection array 231 is far away. Therefore, the process problem of the filter layer 240 will not affect the fingerprint light signal received by the light detection array 231, thereby further improving the performance of the fingerprint identification device.
  • the distance between the boundary of the filter layer 240 and the boundary of the light detection array 231 is greater than 150 ⁇ m.
  • the upper boundary of the filter layer 240 and the upper boundary of the light detection array 231 The distance A of the boundary is greater than 150 ⁇ m.
  • the boundary of the filter layer 240 is the boundary of the projection of the filter layer 240 on the sensor chip 230, and the distance between the boundary of the filter layer 240 and the boundary of the light detection array 231 is the shortest distance between the two. .
  • the filter layer 240 covers the right partial area and the lower partial area of the chip guard ring 232.
  • the filter layer 240 may also cover any one side region or any multiple side regions among the upper region, the right region, and the lower region of the chip guard ring 232.
  • the filter layer 240 simultaneously covers the right, upper, and lower portions of the chip guard ring 232.
  • the edge of the filter layer 240 may be located directly above the chip protection ring, and does not cover the cutting lane 233 outside the chip protection ring 232.
  • the edge of the filter layer 240 may also be located obliquely above the chip protection ring, and while covering the chip protection ring, it also covers the cutting lane 233 outside the chip protection ring 232.
  • the filter layer 240 when the filter layer 240 covers the right partial area and the lower partial area of the chip guard ring 232, the filter layer 240 also covers the right outer partial dicing area and the lower outer partial dicing area of the chip guard ring 232 . Similarly, when the filter layer 240 covers other side areas of the chip guard ring 232, correspondingly, the filter layer 240 also covers the other side outer dicing areas of the chip guard ring 232.
  • the chip bonding area 234 is also arranged close to the left area of the chip guard ring 232, and the filter layer 240 does not cover the chip bonding area 234, nor does it cover the left area of the chip guard ring 232. .
  • the filter layer 240 does not cover the other side or multiple sides of the chip guard ring 232.
  • FIG. 6 shows a schematic structural diagram of another fingerprint identification device 200
  • FIG. 7 is a schematic top view of the fingerprint identification device 200 in FIG. 6.
  • the fingerprint identification device 200 further includes: a surface light-shielding layer 250 formed above the light-blocking layer 220, the surface light-shielding layer 250 is formed with an opening 251, and the microlens array 210 is disposed on the surface of the light-shielding layer. Open the window 251 in.
  • the surface light shielding layer 250 is used to block the light signal around the microlens array 210 from entering the light detection array 231, and at the same time prevent the reflected light signal of the fingerprint identification device 200 from passing through the display screen and being received by human eyes.
  • the light-shielding layer can further prevent the interference of stray light signals on fingerprint detection, and can further solve the appearance problem of the fingerprint identification device under the display screen, thereby further optimizing the performance of the fingerprint identification device.
  • the edge of the surface light shielding layer 250 covers the edge of the light blocking layer 220 and/or the edge of the filter layer 240.
  • the edge of the surface light shielding layer 250 completely covers the edge of the light blocking layer 220 and/or the edge of the filter layer 240.
  • the edge of the surface light-shielding layer 250 may also only cover a partial area of the edge of the light blocking layer and/or a partial area of the edge of the filter layer. For example, only three side edges of the surface light shielding layer 250 cover the three side edges corresponding to the light blocking layer 220, and the other side edge does not cover the other side edge corresponding to the light blocking layer 220.
  • the edges of the surface light-shielding layer 250 can cover the four edges of the light-blocking layer 220, and at the same time, the surface light-shielding layer also covers the upper, lower, and right side regions of the chip guard ring 232, and covers the upper, lower, and right side dicing lanes of the sensor chip 230.
  • the surface light shielding layer 250 also covers the four edges of the filter layer 240 at the same time.
  • the surface shading layer 250 can also be prepared on the sensor chip 230 by using a micro-nano processing technology or a nano-printing process, for example, using a micro-nano processing technology, through spin coating, spray coating, and atomic layer deposition. , Sputtering coating, electron beam evaporation coating, ion beam coating and other methods to prepare a non-transparent material film on the light blocking layer 220.
  • the surface light shielding layer 250 also has a transmittance of light in a specific wavelength band (for example, visible light or a wavelength band above 610 nm) of less than a certain threshold, so as to prevent the corresponding light from passing through.
  • a specific wavelength band for example, visible light or a wavelength band above 610 nm
  • the material of the surface light-shielding layer may be metal or black opaque material.
  • the surface light shielding layer has a transmittance of less than 8% for visible light with a wavelength range of 400 nm to 600 nm.
  • an opening 251 is formed in the surface light shielding layer 250.
  • the area of the opening 251 is slightly larger than or equal to the area of the microlens array 210, so that the microlens array 210 can be disposed on the opening. 251 in.
  • a transparent medium layer is provided between the light-blocking layer 220 and the microlens array 210, the surface light-shielding layer 250 is provided above the transparent medium layer, and the microlens array 210 is adhered to by an optically transparent adhesive bonding layer. Above the transparent medium layer.
  • FIG. 8 shows a schematic structural diagram of another fingerprint identification device 200.
  • the fingerprint identification device 200 further includes: a first medium layer 261 and a second medium layer 262;
  • the first dielectric layer 261 is grown on the surface of the filter layer 240, the light blocking layer 220 is grown on the surface of the first dielectric layer 261, and the second dielectric layer 262 is grown on the surface of the light blocking layer 220 and fills the light blocking layer 220.
  • a plurality of light-passing holes, a microlens array 210 and a surface light-shielding layer 250 are formed on the surface of the second dielectric layer 262.
  • the first dielectric layer 261 and the second dielectric layer 262 can be grown by a semiconductor process, for example, by atomic layer deposition, sputtering coating, electron beam evaporation coating, ion beam coating and other coating methods.
  • the first medium layer 261 and the second medium layer 262 are made of an organic transparent medium material or an inorganic transparent medium material, such as resin or silicon oxide.
  • the first medium layer 261 and the second medium layer 262 may also be optically transparent adhesive bonding layers for connecting the microlens array 210, the light blocking layer 220, the filter layer 240, and the like.
  • the dielectric materials of the first dielectric layer 261 and the second dielectric layer 262 are the same or different.
  • the light blocking layer 220, the first dielectric layer 261, and the second dielectric layer 262 are all integrated with the light detection array 231 in the sensor chip 230.
  • the first dielectric layer 261 and the second dielectric layer 262 are both silicon oxide.
  • a first dielectric layer 261 is formed on the filter layer 240, and then a light blocking layer 220 is prepared on the first dielectric layer 261, and then A second dielectric layer 262 is prepared on the light blocking layer 220.
  • a dielectric layer is also provided between the multiple light-blocking layers.
  • the material of the dielectric layer may be the same as the first dielectric layer or the second dielectric layer for connection. Two adjacent light-blocking layers.
  • the fingerprint identification device 200 may further include a supporting structure for supporting the fingerprint identification device 200, and a corresponding processing chip, which is not limited in the embodiment of the present application.
  • an embodiment of the present application also provides an electronic device 20.
  • the electronic device 20 may include the above-mentioned display screen 120 and the fingerprint identification device 200 of the above-mentioned application embodiment. Below the screen 120.
  • the electronic device can be any electronic device with a display screen.
  • the display screen 120 may specifically be a self-luminous display (such as an OLED display), and it includes a plurality of self-luminous display units (such as an OLED pixel or an OLED light source).
  • the optical image acquisition system is a biological feature recognition system
  • part of the self-luminous display unit in the display screen can be used as an excitation light source for the biological feature recognition system to perform biological feature recognition, and is used to emit light signals to the biological feature detection area for use in biological features.
  • Feature detection part of the self-luminous display unit in the display screen can be used as an excitation light source for the biological feature recognition system to perform biological feature recognition, and is used to emit light signals to the biological feature detection area for use in biological features. Feature detection.
  • the units can be implemented by electronic hardware, computer software, or a combination of the two, in order to clearly illustrate the interchangeability of hardware and software.
  • the composition and steps of each example have been described generally in terms of function. Whether these functions are performed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the disclosed system and device may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

一种指纹识别装置和电子设备,能够提升指纹识别装置的性能。该指纹识别装置,用于设置在电子设备的显示屏下方,包括:传感器芯片,包括光检测阵列和芯片保护环,该芯片保护环设置在该光检测阵列周围;阻光层,形成于该光检测阵列上方,其中,该阻光层设置有多个通光小孔,该阻光层覆盖该光检测阵列的全部区域并至少覆盖该芯片保护环的部分区域;其中,经过该显示屏上方手指反射或散射后返回的指纹光信号通过该阻光层上的多个通光小孔传输至该光检测阵列以进行指纹识别。

Description

指纹识别装置和电子设备 技术领域
本申请涉及光学指纹技术领域,并且更具体地,涉及一种指纹识别装置和电子设备。
背景技术
随着手机全面屏时代的到来,屏下指纹识别装置的应用越来越广泛,其中以屏下光学指纹识别装置最为普及。目前业界量产的屏下光学指纹识别装置主要采用两种方案,一种是采用小孔成像方案,在实际的工业制造中,小孔的尺寸无法进一步缩小,从而限制其指纹图像分辨率的提升;且小孔只允许垂直方向的入射光进入,无法提供足够的光线导致成像信号相对有限,影响指纹图像质量。另一种是采用光学透镜方案,利用球面或者非球面镜头聚光成像。在手机轻薄化的发展趋势下,从手指按压手机屏表面到光学芯片的指纹采集区的距离较短,光学镜头的总光学厚度较小,因而该方案的指纹采集的面积是非常有限的,无法进行大面积指纹采集,影响了指纹识别装置的性能。
因此,如何提升屏下光学指纹识别装置的性能,成为一项亟需解决的问题。
发明内容
本申请实施例提供了一种指纹识别装置和电子设备,能够提升指纹识别装置的性能。
第一方面,提供了一种指纹识别装置,用于设置在电子设备的显示屏下方,包括:
传感器芯片,包括光检测阵列和芯片保护环,该芯片保护环设置在该光检测阵列周围;
阻光层,形成于该光检测阵列上方,其中,该阻光层设置有多个通光小孔,该阻光层覆盖该光检测阵列的全部区域并至少覆盖该芯片保护环的部分区域;
其中,经过所述显示屏上方手指反射或散射后返回的指纹光信号通过所 述阻光层上的多个通光小孔传输至所述光检测阵列以进行指纹识别。
本申请实施例的方案,指纹光信号通过阻光层的多个通光小孔传输至光检测阵列以进行指纹识别,可以在实现大面积高分辨率的指纹识别图像,此外,通过阻光层覆盖芯片保护环,避免杂光信号对指纹识别的干扰以及避免指纹识别装置反射的光信号传输至显示屏外被人眼接收,在提升指纹识别装置的性能的同时,还能解决指纹识别装置的外观问题。
在一种可能的实现方式中,指纹识别装置还包括:微透镜阵列,设置于该阻光层上方;其中,该微透镜阵列用于将该指纹光信号汇聚至该阻光层上的多个通光小孔,该指纹光信号通过该多个通光小孔传输至所述光检测阵列。
本申请实施例的方案,通过微透镜阵列将指纹光信号会聚至阻光层的多个通光小孔,指纹光信号通过阻光层的多个通光小孔传输至光检测阵列以进行指纹识别,可以在实现大面积高分辨率的指纹识别图像的同时,减小指纹识别装置的厚度。
在一种可能的实现方式中,该指纹识别装置还包括:滤波层,设置于该阻光层与该传感器芯片之间,用于滤掉非目标波段的光信号,透过目标波段的光信号,该滤波层覆盖该光检测阵列的全部区域并覆盖该芯片保护环的部分区域。
通过本申请实施例的方案,滤波层覆盖芯片保护环的部分区域,使得滤波层在完全覆盖光检测阵列的同时,其边缘距离光检测阵列的距离较远,滤波层边缘的工艺问题不会影响光检测阵列接收的指纹光信号,从而进一步提高了指纹识别装置的性能。
在一种可能的实现方式中,该传感器芯片还包括:芯片焊接区域,包括多个芯片焊盘;该芯片保护环为多边形环状结构,该芯片焊接区域位于该芯片保护环中并靠近于该芯片保护环的第一侧;
该阻光层未覆盖该芯片焊接区域及该芯片保护环的第一侧。
在一种可能的实现方式中,该芯片保护环为四边形环状结构,该阻光层覆盖该芯片保护环除该第一侧外的至少一侧。
在一种可能的实现方式中,该滤波层未覆盖该芯片焊接区域及该芯片保护环的第一侧。
在一种可能的实现方式中,该芯片保护环为四边形环状结构,该滤波层 覆盖该芯片保护环除该第一侧外的至少一侧。
在一种可能的实现方式中,该阻光层覆盖该传感器芯片的切割道的部分区域。
在一种可能的实现方式中,该滤波层覆盖该传感器芯片的切割道的部分区域。
在一种可能的实现方式中,该阻光层为多层阻光层中的一层,该多层阻光层中的至少一层阻光层覆盖该光检测阵列的全部区域并至少覆盖该芯片保护环的部分区域。
在一种可能的实现方式中,该滤波层为在该光检测阵列上方形成的滤光材料薄膜,且该滤波层与该光检测阵列一起集成在该传感器芯片中。
在一种可能的实现方式中,该滤波层覆盖该光检测阵列的全部区域,且该滤波层的边界与该光检测阵列的边界的距离大于150μm。
在一种可能的实现方式中,该滤波层的厚度在1μm至10μm之间,该目标波段的波长范围包括400nm至650nm。
在一种可能的实现方式中,该滤波层包括多层氧化物薄膜,其中,硅氧化物薄膜和钛氧化物薄膜依次交叠形成该多层氧化物薄膜,或者硅氧化物和铌氧化物依次交叠形成该多层氧化物薄膜。
在一种可能的实现方式中,该阻光层对波长范围为400nm至600nm的可见光的透过率小于8%。
在一种可能的实现方式中,该指纹识别装置还包括:
表面遮光层,形成于该阻光层上方,其中设置有开窗,该微透镜阵列设置于该开窗中;
该表面遮光层用于阻挡该微透镜阵列周围的光信号进入该光检测阵列。
通过本申请实施例的方案,表面遮光层用于阻挡微透镜阵列周围的光信号进入光检测阵列,同时还防止指纹识别装置的反射的光信号穿过显示屏被人眼接收,通过设置该表面遮光层,能够进一步的防止杂光信号对于指纹检测的干扰,还能进一步解决显示屏下方指纹识别装置的外观问题,从而进一步优化指纹识别装置的性能。
在一种可能的实现方式中,该表面遮光层的边缘覆盖该阻光层的边缘和/或该滤波层的边缘。
在一种可能的实现方式中,该表面遮光层对波长范围为400nm至600nm 的可见光的透过率小于8%。
在一种可能的实现方式中,该指纹识别装置还包括:第一介质层和第二介质层;
该第一介质层生长在该滤波层的表面,该阻光层生长在该第一介质层的表面;
该第二介质层生长在该阻光层的表面并填充该阻光层的多个通光小孔。
在一种可能的实现方式中,该微透镜阵列中的每个微透镜为四边形微透镜或圆形透镜。
在一种可能的实现方式中,该微透镜阵列中的每个微透镜的上表面为球面或者非球面。
在一种可能的实现方式中,该指纹光信号为垂直于该显示屏的垂直方向光信号或者为倾斜于该显示屏的特定方向光信号。
第二方面,提供了一种电子设备,包括显示屏以及如第一方面或第一方面的任一可能的实现方式中的指纹识别装置。
在一种可能的实现方式中,该显示屏为有机发光二极管显示屏,该显示屏的发光层包括多个有机发光二极管光源,其中,该指纹识别装置采用至少部分有机发光二极管光源作为指纹识别的激励光源。
通过在电子设备中设置上述指纹识别装置,使得该电子设备具有良好的指纹识别性能,提升指纹识别成功率,提高用户体验。
附图说明
图1是本申请实施例所适用的电子设备的结构示意图。
图2是根据本申请实施例的一种指纹识别装置的示意性结构图。
图3是图2中指纹识别装置的示意性俯视图。
图4是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图5是图4中指纹识别装置的示意性俯视图。
图6是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图7是图6中指纹识别装置的示意性俯视图。
图8是根据本申请实施例的另一种指纹识别装置的示意性结构图。
图9是根据本申请实施例的一种电子设备的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑以及其他具有显示屏的移动终端或者其他电子设备;更具体地,在上述电子设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,该指纹识别装置也可以部分或者全部集成至电子设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
如图1所示为本申请实施例可以适用的电子设备的结构示意图,该电子设备10包括显示屏120和光学指纹装置130,其中,该光学指纹装置130设置在显示屏120下方的局部区域。该光学指纹装置130包括光学指纹传感器,该光学指纹传感器包括具有多个光学感应单元131的感应阵列133,该感应阵列133所在区域或者其感应区域为光学指纹装置130的指纹检测区域103。如图1所示,指纹检测区域103位于显示屏120的显示区域之中。在一种替代实施例中,光学指纹装置130还可以设置在其他位置,比如显示屏120的侧面或者电子设备10的边缘非透光区域,并通过光路设计来将显示屏120的至少部分显示区域的光信号导引到光学指纹装置130,从而使得指纹检测区域103实际上位于显示屏120的显示区域。
应当理解,指纹检测区域103的面积可以与光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得光学指纹装置130的指纹检测区域103的面积大于光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,光学指纹装置130的指纹检测区域103也可以设计成与该光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于显示屏120的指纹检测区域103,便可以实现指纹输 入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图1所示,光学指纹装置130包括光检测部分134和光学组件132,该光检测部分134包括感应阵列以及与该感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,该感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,该光探测器可以作为上述的光学感应单元;该光学组件132可以设置在光检测部分134的感应阵列的上方,其可以具体包括导光层或光路引导结构以及其他光学元件,该导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至感应阵列进行光学检测。
在具体实现上,光学组件132可以与光检测部分134封装在同一个光学指纹部件。比如,该光学组件132可以与该光学检测部分134封装在同一个光学指纹芯片,也可以将该光学组件132设置在该光检测部分134所在的芯片外部,比如将该光学组件132贴合在该芯片上方,或者将该光学组件132的部分元件集成在上述芯片之中。
其中,光学组件132的导光层或者光路引导结构有多种实现方案,比如,该导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,该准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到该准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在该准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得该感应阵列可以基于该反射光进行成像,从而得到该手指的指纹图像。可选地,该光学透镜层在该透镜单元的光路中还可以形成有针孔,该针孔可以配合该光学透镜层扩大光学指纹装置的视场,以提高光学指纹装置130的指纹成像效果。
在其他实施例中,导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,该微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于感应阵列的其中一个感应单元。并且,微透镜层和感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,微透镜层和感应单元之间还可以包括具有微孔的挡光层,其中该微孔形成在其对应的微透镜和感应单元之间,挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得感应单元所对应的光线通过微透镜汇聚到微孔内部并经由该微孔传输到该感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在准直器层或者光学透镜层下方进一步设置微透镜层。当然,在准直器层或者光学透镜层与微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
作为一种可选的实施例,显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,光学指纹装置130可以利用OLED显示屏120位于指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在指纹检测区域103时,显示屏120向指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过手指140内部散射而形成散射光,在相关专利申请中,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴的反射光151和来自指纹峪的反射光152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹检测信号;基于该指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在电子设备10实现光学指纹识别功能。
在其他实施例中,光学指纹装置130也可以采用内置光源或者外置光源来提供用于进行指纹检测的光信号。在这种情况下,该光学指纹装置130可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。以应用在具有背光模组和液晶面板的液晶显示屏为例,为支持液晶显示屏的屏 下指纹检测,电子设备10的光学指纹系统还可以包括用于光学指纹检测的激励光源,该激励光源可以具体为红外光源或者特定波长非可见光的光源,其可以设置在液晶显示屏的背光模组下方或者设置在电子设备10的保护盖板下方的边缘区域,而光学指纹装置130可以设置液晶面板或者保护盖板的边缘区域下方并通过光路引导以使得指纹检测光可以到达光学指纹装置130;或者,光学指纹装置130也可以设置在背光模组下方,且背光模组通过对扩散片、增亮片、反射片等膜层进行开孔或者其他光学设计以允许指纹检测光穿过液晶面板和背光模组并到达光学指纹装置130。当采用光学指纹装置130采用内置光源或者外置光源来提供用于进行指纹检测的光信号时,其检测原理与上面描述内容是一致的。
应当理解的是,在具体实现上,电子设备10还包括透明保护盖板,该盖板可以为玻璃盖板或者蓝宝石盖板,其位于显示屏120的上方并覆盖电子设备10的正面。因为,本申请实施例中,所谓的手指按压在显示屏120实际上是指按压在显示屏120上方的盖板或者覆盖该盖板的保护层表面。
还应当理解,电子设备10还可以包括电路板150,该电路板设置在光学指纹装置130的下方。光学指纹装置130可以通过背胶粘接在电路板150上,并通过焊盘及金属线焊接与电路板150实现电性连接。光学指纹装置130可以通过电路板150实现与其他外围电路或者电子设备10的其他元件的电性互连和信号传输。比如,光学指纹装置130可以通过电路板150接收电子设备10的处理单元的控制信号,并且还可以通过电路板150将来自光学指纹装置130的指纹检测信号输出给电子设备10的处理单元或者控制单元等。
另一方面,在某些实施例中,光学指纹装置130可以仅包括一个光学指纹传感器,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。在其他替代实施例中,光学指纹装置130可以具体包括多个光学指纹传感器;该多个光学指纹传感器可以通过拼接方式并排设置在显示屏120的下方,且该多个光学指纹传感器的感应区域共同构成光学指纹装置130的指纹检测区域103。也即是说,光学指纹装置130的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个光学指纹传感器的感应区域,从而将光学指纹装置130的指纹采集区域103可以扩展到显示屏的下半部分的主要 区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当光学指纹传感器数量足够时,指纹检测区域103还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
还应理解,在本申请实施例中,光学指纹装置中的感应阵列也可以称为像素阵列,感应阵列中的光学感应单元或感应单元也可称为像素单元。
需要说明的是,本申请实施例中的光学指纹装置也可以称为光学指纹识别模组、指纹识别装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。
由于大面积指纹识别、高分辨率指纹图像、厚度轻薄化等因素的需求,对光学指纹识别装置的设计要求越来越高。本申请实施例提供了一种改进的光学指纹识别装置,在大面积采集指纹图像的同时,提高指纹图像的分辨率,减小指纹识别装置的厚度,进一步提升屏下光学指纹识别的性能。
以下,结合图2至图9,详细介绍本申请实施例的指纹识别装置。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
图2是本申请实施例提供的一种指纹识别装置200的示意性结构图,图3是图2中指纹识别装置200的示意性俯视图,如图2和图3所示,该指纹识别装置200包括:
传感器芯片230,包括光检测阵列231和芯片保护环232,该芯片保护环232设置在该光检测阵列231周围;
阻光层220,形成于该光检测阵列231上方,其中,该阻光层220设置有多个通光小孔,该阻光层220覆盖上述光检测阵列231的全部区域并至少覆盖上述芯片保护环232中的部分区域;
其中,经过显示屏上方手指反射或散射后返回的指纹光信号通过阻光层220上的多个通光小孔传输至光检测阵列231以进行指纹识别。
可选地,如图2所示,该指纹识别装置200还可以包括:微透镜阵列210,设置于该阻光层220上方;
其中,该微透镜阵列210用于将经过显示屏上方手指反射或散射后返回的指纹光信号汇聚至阻光层220的多个通光小孔,该指纹光信号通过阻光层220的多个通光小孔传输至光检测阵列231以进行指纹识别。
具体地,如图2所示,上述微透镜阵列210包括多个微透镜,该多个微 透镜中包括第一微透镜211,该第一微透镜211用于将其上方的指纹光信号会聚至其下方的第一通光小孔221中,指纹光信号通过该第一通光小孔221传输至光检测阵列231中的第一像素单元2311。
可选地,第一微透镜211可以用于将其上方垂直于显示屏的光信号会聚于第一通光小孔221。
可选地,第一微透镜211还可以用于将其上方倾斜于显示屏的光信号会聚于第一通光小孔221。
第一像素单元2311接收指纹光信号后,其转换得到的电信号用于形成指纹图像中的一个像素。
可选地,第一微透镜211的上表面可以为球面或者非球面。
可选地,第一微透镜211为多边形透镜或者圆形透镜,例如,当第一微透镜211为四边形透镜时,该四边形透镜为上表面为球面或者非球面,下表面为四边形。
可选地,该微透镜阵列210的材料为透明介质,该透明介质的光透过率大于99%,例如该透明介质为树脂、玻璃等。
应理解,第一微透镜211为微透镜阵列210中多个微透镜中的任意一个,该微透镜阵列210中多个微透镜可以与该第一微透镜211的形状大小相同或不同,本申请实施例对多个微透镜的形状大小不做限定。
具体地,在本申请实施例中,上述阻光层220完全覆盖传感器芯片230中的光检测阵列231。具体地,可以采用微纳加工工艺或者纳米印刷工艺在传感器芯片230上进行制备,例如,采用微纳加工工艺,通过旋涂、喷涂、原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在传感器芯片230上方制备一层或多层非透光材料薄膜,再进行小孔图形光刻和刻蚀,形成多个通光小孔。可选地,图1中的光学组件132可以包括上述微透镜阵列210以及阻光层220。
具体地,该阻光层220用于阻挡环境光、杂散光等干扰指纹检测的光信号。例如,该阻光层220对特定波段(比如可见光或者610nm以上波段)的光的透过率小于一定阈值,避免相应的光通过。可选地,该阻光层220的材料可以为金属或黑色不透光材料。
可选地,在一种可能的实施方式中,该阻光层220对波长范围为400nm至600nm的可见光的透过率小于8%。
可选地,阻光层220上的通光小孔可以为圆形小孔,其直径小于10μm,以便进行光学成像,并且可以通过减小通光小孔的尺寸,提高光学成像的分辨率,从而提高指纹图像的分辨率。
可选地,通光小孔的直径还可以大于一定阈值,以便通过足够的光信号进行成像,提高成像质量。
可选地,如图2所示,阻光层220上多个通光小孔的位置呈阵列排布,每个通光小孔对应一个微透镜阵列上的微透镜。
具体地,在本申请实施例中,传感器芯片230中的光检测阵列231用于接收经过微透镜阵列210以及阻光层220的指纹光信号并将指纹光信号转换为电信号,可选地,所述光检测阵列对该电信号处理得到指纹图像信号以进行指纹识别。
可选地,如图2所示,光检测阵列231包括多个像素单元,该像素单元可以包括光电二极管(Photo Diode,PD)、金属氧化物半导体场效应管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)等器件。可选地,该像素单元对于特定波长光具有较高的光灵敏度和较高的量子效率,以便于检测相应波长的光信号。
可选地,该光检测阵列231可以图1中的光检测部分134中的感应阵列相同,在传感器芯片230中,功能电路除了光检测阵列231外,还包括与该光检测阵列231连接的读取电路以及其他辅助电路,用于实现光检测阵列231的正常运行以及读取并处理该光检测阵列231形成的指纹电信号。
具体地,传感器芯片230中的芯片保护环(Seal Ring)232是一种由金属层、氧化物层、氮化物层等多层材料堆叠而成的环状结构,其位于传感器芯片230的四周边缘。传感器芯片230中的功能电路位于该芯片保护环232之中,且与该芯片保护环232的距离大于一定阈值,例如,传感器芯片230中的光检测阵列231的边缘距离该芯片保护环232需大于一定阈值。此外,该芯片保护环232的外部区域即为晶圆上的切割道(Scribe Line),通过在晶圆上的切割道上进行切割,分离得到该传感器芯片230。
可选地,如图3所示,当指纹识别装置200中的传感器芯片230为四边形芯片时,其中的芯片保护环231也可以为四边形的环状结构,能够保护芯片中的功能电路。具体地,芯片保护环231可以防止芯片在切割时受到机械损伤,将芯片保护环231接地,能够屏蔽芯片外的干扰,还能够防止水汽从 芯片的断面进入芯片内部造成芯片工作异常。
应理解,本申请实施例中的芯片保护环231与现有技术中芯片中的芯片保护环(Seal Ring)相同,本领域技术人员可以通过现有技术在传感器芯片中实现该芯片保护环,此处不再赘述其详细的技术方案。
还应理解,本申请实施例中,芯片保护环包括但不限于为四边形环状结构,还可以为其它多边形或者是圆形的环状结构,其具体形态与芯片的形态的相关,本申请实施例对此不做限定。
为了方便描述,下文以传感器芯片为四边形芯片,以及芯片保护环为四边形环状结构为例进行说明,当芯片保护环为其它形状结构时,具体方案可以参考相关说明,此处不再赘述。
具体地,在本申请实施例中,当芯片保护环232为多边形环状结构时,阻光层220覆盖光检测阵列231的全部区域,并且覆盖芯片保护环232的至少一侧,例如,如图2和图3所示,阻光层220覆盖芯片保护环232的右侧的部分区域。
在传感器芯片230中,芯片保护环232外部的区域为切割道233。可选地,阻光层200的边缘可以位于芯片保护环的正上方,未覆盖芯片保护环232外侧的切割道233。
可选地,阻光层220的边缘还可以位于芯片保护环的斜上方,在覆盖至少一侧芯片保护环的同时,还覆盖芯片保护环232外侧的部分切割道233。
例如,如图3所示,当阻光层220覆盖芯片保护环232的右侧部分区域时,该阻光层220还覆盖芯片保护环232右侧外部部分切割道区域。同样的,当阻光层220覆盖芯片保护环232的其它侧部分区域时,对应的,该阻光层220还覆盖芯片保护环232其它侧外部部分切割道区域。
可选地,当指纹识别装置200包括多层阻光层时,上述阻光层220为多层阻光层中的任意一层,该多层阻光层上均设置有多个通光小孔,用于传输指纹光信号至光检测阵列。其中,该多层阻光层中的至少一层阻光层覆盖上述光检测阵列231的全部区域并至少覆盖上述芯片保护环232中的部分区域。
可选地,多层阻光层中的所有阻光层可以均覆盖芯片保护环232的部分区域,例如,当芯片保护环为多边形环状结构时,所有阻光层覆盖芯片保护环的一侧或者多侧。可选地,多层阻光层中也可以只有一层,例如上述阻光 层220或者部分阻光层覆盖芯片保护环的部分区域,本申请实施例对此不做具体限定。
本申请实施例的方案,通过微透镜阵列将指纹光信号会聚至阻光层的多个通光小孔,指纹光信号通过阻光层的多个通光小孔传输至光检测阵列以进行指纹识别,可以在实现大面积高分辨率的指纹识别图像的同时,减小指纹识别装置的厚度,此外,通过阻光层覆盖芯片保护环,避免杂光信号对指纹识别的干扰以及避免指纹识别装置反射的光信号传输至显示屏外,在提升指纹识别装置的性能的同时,还能解决指纹识别装置的外观问题。
可选地,指纹识别装置200的传感器芯片230中还包括芯片焊接区域234,该芯片焊接区域234上设置有至少一个芯片焊盘2341,该芯片焊盘用于与电路板等其它电学装置进行电连接,传输光检测阵列210产生的电信号。在本申请实施例中,该芯片焊接区域234同样属于传感器芯片230的功能电路,位于芯片保护环232内。
可选地,如图2和图3所示,该芯片焊接区域234可以靠近于芯片保护环232的左侧(芯片保护环的第一侧的一例),此时,阻光层220未覆盖该芯片焊接区域234,且未覆盖芯片保护环232的左侧部分。
可选地,如图2和图3所示,当该芯片焊接区域234靠近于芯片保护环232的左侧设置时,阻光层220可以只覆盖芯片保护环232的右侧部分。
应理解,除上述情况之外,阻光层220也可以覆盖芯片保护环232的右侧部分、上侧部分以及下侧部分中的任意一侧部分或者任意多侧部分。例如,阻光层同时覆盖芯片保护环232的右侧部分、上侧部分以及下侧部分。
还应理解,该芯片焊接区域234还可以靠近于芯片保护环的多侧设置,例如,芯片焊接区域234靠近于芯片保护环232的左侧和上侧设置,此时,芯片保护环232的左侧和上侧附近设置有多个芯片焊盘2341,阻光层220未覆盖芯片保护环的左侧和上侧部分,而只覆盖芯片保护环的下侧部分和/或右侧部分。
图4示出了另一种指纹识别装置200的示意性结构图,图5为图4中的指纹识别装置200的示意性俯视图。
如图4和图5所示,该指纹识别装置200还包括:滤波层240,该滤波层240设置于上述阻光层220和传感器芯片230之间,用于滤掉非目标波段的光信号,透过目标波段的光信号,有利于降低非目标波段的光信号的影响, 从而能够提升指纹识别性能。
可选地,该滤波层240生长于传感器芯片230的表面,并集成在该传感器芯片230中,该滤波层240完全覆盖传感器芯片230中的光检测阵列231。
具体地,可以采用物理气相沉积(Physical Vapour Deposition,PVD)工艺在传感器芯片230的多个像素单元上进行镀膜形成上述滤波层240,例如,通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在传感器芯片230上方制备多层滤光材料薄膜。
可选地,在本申请实施例中,滤波层240包括多层氧化物薄膜,其中,该多层氧化物薄膜包括硅氧化物薄膜和钛氧化物薄膜,该硅氧化物薄膜和钛氧化物薄膜依次交替生长形成该滤波层240;或者该多层氧化物薄膜包括硅氧化物薄膜和铌氧化物薄膜,该硅氧化物薄膜和铌氧化物薄膜依次交替生长形成该滤波层240。
可选地,本申请实施例中,滤波层240的厚度在1μm至10μm之间。
可选地,滤波层240用于通过400nm至650nm波段范围的光信号,换言之,上述目标波段的波长范围包括400nm至650nm。
可选地,在本申请实施例中,滤波层240至少覆盖芯片保护环232的部分区域,使得滤波层240在完全覆盖光检测阵列231的同时,滤波层的整体面积较大,其边缘距离光检测阵列231的距离较远。在滤波层240生长过程中,滤波层240的边缘区域由于生长工艺以及设备的影响,会影响其上方生长的材料质量,例如影响到阻光层220的生长质量,或者还有可能影响到滤波层与阻光层之间的介质层的生长质量,从而影响指纹检测装置接收的光信号质量以及指纹检测装置的性能,因此,通过本申请实施例的方案,滤波层240的边缘区域距离光检测阵列231较远,因此,滤波层240的工艺问题不会影响光检测阵列231接收的指纹光信号,从而进一步提高了指纹识别装置的性能。
可选地,在一种可能的实施方式中,该滤波层240的边界与光检测阵列231的边界的距离大于150μm,例如,图5中,滤波层240的上边界与光检测阵列231的上边界的距离A大于150μm。此处需要说明的是,该滤波层240的边界为滤波层240在传感器芯片230上的投影的边界,该滤波层240的边界与光检测阵列231的边界的距离为两者之间的最短距离。
可选地,如图5所示,滤波层240覆盖芯片保护环232的右侧部分区域 以及下侧部分区域。可选地,滤波层240还可以覆盖芯片保护环232的上侧区域、右侧区域以及下侧区域中的任意一侧区域或者任意多侧区域。例如,滤波层240同时覆盖芯片保护环232的右侧部分、上侧部分以及下侧部分。
可选地,滤波层240的边缘可以位于芯片保护环的正上方,未覆盖芯片保护环232外侧的切割道233。
可选地,滤波层240的边缘还可以位于芯片保护环的斜上方,在覆盖芯片保护环的同时,还覆盖芯片保护环232外侧的切割道233。
可选地,当滤波层240覆盖芯片保护环232的右侧部分区域以及下侧部分区域时,该滤波层240还覆盖芯片保护环232右侧外部部分切割道区域以及下侧外部部分切割道区域。同样的,当滤波层240覆盖芯片保护环232的其它侧部分区域时,对应的,该滤波层240还覆盖芯片保护环232其它侧外部部分切割道区域。
可选地,如图5所示,芯片焊接区域234同样靠近于芯片保护环232的左侧区域设置,滤波层240不覆盖该芯片焊接区域234,也不覆盖该芯片保护环232的左侧区域。
同样的,当芯片焊接区域234靠近于芯片保护环232的其它一侧或者多侧区域设置时,滤波层240不覆盖该芯片保护环232的其它一侧或者多侧。
图6示出了另一种指纹识别装置200的示意性结构图,图7为图6中的指纹识别装置200的示意性俯视图。
如图6和图7所示,该指纹识别装置200还包括:表面遮光层250,形成与上述阻光层220上方,该表面遮光层250中形成有开窗251,微透镜阵列210设置于该开窗251中。具体地,该表面遮光层250用于阻挡微透镜阵列210周围的光信号进入光检测阵列231,同时还防止指纹识别装置200的反射的光信号穿过显示屏被人眼接收,通过设置该表面遮光层,能够进一步的防止杂光信号对于指纹检测的干扰,还能进一步解决显示屏下方指纹识别装置的外观问题,从而进一步优化指纹识别装置的性能。
可选地,在本申请实施例中,该表面遮光层250的边缘覆盖上述阻光层220的边缘和/或滤波层240的边缘。可选地,该表面遮光层250的边缘完全覆盖上述阻光层220的边缘和/或滤波层240的边缘。可选地,该表面遮光层250的边缘也可以只覆盖上述阻光层的边缘的部分区域和/或滤波层的边缘的部分区域。例如,表面遮光层250中仅有三侧边缘覆盖阻光层220对应的 三侧边缘,另一侧边缘未覆盖阻光层220对应的另一侧边缘。
如图7所示,当阻光层220覆盖芯片保护环232的上侧部分区域,下侧部分区域以及右侧区域时,该表面遮光层250的边缘可以覆盖阻光层220的四边边缘,与此同时,该表面遮光光层同样覆盖芯片保护环232的上侧部分区域,下侧部分区域以及右侧区域,并且覆盖传感器芯片230上侧、下侧以及右侧的部分切割道。
可选地,如图7所示,该表面遮光层250还同时覆盖滤光层240的四边边缘。
具体地,在本申请实施例中,表面遮光层250同样可以采用微纳加工工艺或者纳米印刷工艺在传感器芯片230上进行制备,例如,采用微纳加工工艺,通过旋涂、喷涂、原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等方法在阻光层220上方制备非透光材料薄膜。
具体地,该表面遮光层250同样对特定波段(比如可见光或者610nm以上波段)的光的透过率小于一定阈值,避免相应的光通过。可选地,该表面遮光层的材料可以为金属或黑色不透光材料。
可选地,在一种可能的实施方式中,该表面遮光层对波长范围为400nm至600nm的可见光的透过率小于8%。
如图6和图7所示,该表面遮光层250中形成有开窗251,该开窗251的面积略大于或等于微透镜阵列210的面积,使得该微透镜阵列210可以设置于该开窗251中。
可选地,该阻光层220与微透镜阵列210之间设置有透明介质层,该表面遮光层250设置于该透明介质层上方,该微透镜阵列210通过光学透明胶粘接层粘接在该透明介质层上方。
可选地,图8示出了另一种指纹识别装置200的示意性结构图。
如图8所示,指纹识别装置200还包括:第一介质层261和第二介质层262;
第一介质层261生长在上述滤波层240的表面,上述阻光层220生长在该第一介质层261的表面,第二介质层262生长在阻光层220的表面并填充该阻光层220的多个通光小孔,微透镜阵列210以及表面遮光层250形成于该第二介质层262的表面。
可选地,该第一介质层261和第二介质层262可以通过半导体工艺生长, 例如通过原子层沉积、溅射镀膜、电子束蒸发镀膜、离子束镀膜等镀膜方法生长制备。
可选地,该第一介质层261和第二介质层262为有机透明介质材料或者无机透明介质材料,例如树脂或氧化硅。
可选地,该第一介质层261和第二介质层262还可以为光学透明胶粘结层,用于连接微透镜阵列210、阻光层220以及滤波层240等。
可选地,该第一介质层261和第二介质层262的介质材料相同或者不同。
可选地,上述阻光层220、第一介质层261以及第二介质层262均与该光检测阵列231集成在传感器芯片230中。例如,该第一介质层261和该第二介质层262均为氧化硅,首先在滤波层240上方形成第一介质层261,然后在该第一介质层261上方制备阻光层220,然后在该阻光层220上方制备第二介质层262。
应理解,指纹识别装置200包括多层阻光层时,多层阻光层之间同样设置有介质层,该介质层的材料可以与上述第一介质层或第二介质层相同,用于连接相邻的两层阻光层。
还应理解,指纹识别装置200还可以包括用于支撑该指纹识别装置200的支撑结构件,以及相应的处理芯片等,本申请实施例对此不做限定。
如图9所示,本申请实施例还提供了一种电子设备20,该电子设备20可以包括上述显示屏120以及上述申请实施例的指纹识别装置200,其中,该指纹识别装置20设置于显示屏120下方。
该电子设备可以为任何具有显示屏的电子设备。
可选地,在本申请一个实施例中,显示屏120可以具体为自发光显示屏(比如OLED显示屏),且其包括多个自发光显示单元(比如OLED像素或者OLED光源)。在光学图像采集系统为生物特征识别系统时,显示屏中的部分自发光显示单元可以作为生物特征识别系统进行生物特征识别的激励光源,用于向生物特征检测区域发射光信号,以用于生物特征检测。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在 包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟 或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种指纹识别装置,其特征在于,用于设置在电子设备的显示屏下方,包括:
    传感器芯片,包括光检测阵列和芯片保护环,所述芯片保护环设置在所述光检测阵列周围;
    阻光层,形成于所述光检测阵列上方,其中,所述阻光层设置有多个通光小孔,所述阻光层覆盖所述光检测阵列的全部区域并至少覆盖所述芯片保护环的部分区域;
    其中,经过所述显示屏上方手指反射或散射后返回的指纹光信号通过所述阻光层上的多个通光小孔传输至所述光检测阵列以进行指纹识别。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:微透镜阵列,设置于所述阻光层上方;
    其中,所述微透镜阵列用于将所述指纹光信号汇聚至所述阻光层上的多个通光小孔,所述指纹光信号通过所述多个通光小孔传输至所述光检测阵列。
  3. 根据权利要求1或2所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:滤波层,设置于所述阻光层与所述传感器芯片之间,用于滤掉非目标波段的光信号,透过目标波段的光信号,所述滤波层覆盖所述光检测阵列的全部区域并至少覆盖所述芯片保护环的部分区域。
  4. 根据权利要求3所述的指纹识别装置,其特征在于,所述传感器芯片还包括:芯片焊接区域,包括多个芯片焊盘;
    所述芯片保护环为多边形环状结构,所述芯片焊接区域位于所述芯片保护环中并靠近于所述芯片保护环的第一侧;
    所述阻光层未覆盖所述芯片焊接区域及所述芯片保护环的第一侧。
  5. 根据权利要求4所述的指纹识别装置,其特征在于,所述芯片保护环为四边形环状结构,所述阻光层覆盖所述芯片保护环除所述第一侧外的至少一侧。
  6. 根据权利要求4或5所述的指纹识别装置,其特征在于,所述滤波层未覆盖所述芯片焊接区域及所述芯片保护环的第一侧。
  7. 根据权利要求6所述的指纹识别装置,其特征在于,所述芯片保护环为四边形环状结构,所述滤波层覆盖所述芯片保护环除所述第一侧外的至 少一侧。
  8. 根据权利要求1-7中任一项所述的指纹识别装置,其特征在于,所述阻光层覆盖所述传感器芯片的切割道的部分区域。
  9. 根据权利要求3-8中任一项所述的指纹识别装置,其特征在于,所述滤波层覆盖所述传感器芯片的切割道的部分区域。
  10. 根据权利要求1-9中任一项所述的指纹识别装置,其特征在于,所述阻光层为多层阻光层中的一层,所述多层阻光层中的至少一层阻光层覆盖所述光检测阵列的全部区域并至少覆盖所述芯片保护环的部分区域。
  11. 根据权利要求1-10中任一项所述的指纹识别装置,其特征在于,所述阻光层对波长范围为400nm至600nm的可见光的透过率小于8%。
  12. 根据权利要求3-11中任一项所述的指纹识别装置,其特征在于,所述滤波层为在所述光检测阵列上方形成的滤光材料薄膜,且所述滤波层与所述光检测阵列一起集成在所述传感器芯片中。
  13. 根据权利要求3-12中任一项所述的指纹识别装置,其特征在于,所述滤波层覆盖所述光检测阵列的全部区域,且所述滤波层的边界与所述光检测阵列的边界的距离大于150μm。
  14. 根据权利要求3-13中任一项所述的指纹识别装置,其特征在于,所述滤波层的厚度在1μm至10μm之间,所述目标波段的波长范围包括400nm至650nm。
  15. 根据权利要求3-14中任一项所述的指纹识别装置,其特征在于,所述滤波层包括多层氧化物薄膜,其中,硅氧化物薄膜和钛氧化物薄膜依次交叠形成所述多层氧化物薄膜,或者硅氧化物和铌氧化物依次交叠形成所述多层氧化物薄膜。
  16. 根据权利要求3-15中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:
    表面遮光层,形成于所述阻光层上方,其中设置有开窗,所述微透镜阵列设置于所述开窗中;
    所述表面遮光层用于阻挡所述微透镜阵列周围的光信号进入所述光检测阵列。
  17. 根据权利要求16所述的指纹识别装置,其特征在于,所述表面遮光层的边缘覆盖所述阻光层的边缘和/或所述滤波层的边缘。
  18. 根据权利要求16或17所述的指纹识别装置,其特征在于,所述表面遮光层对波长范围为400nm至600nm的可见光的透过率小于8%。
  19. 根据权利要求3-18中任一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:第一介质层和第二介质层;
    所述第一介质层生长在所述滤波层的表面;
    所述阻光层生长在所述第一介质层的表面;
    所述第二介质层生长在所述阻光层的表面并填充所述阻光层的多个通光小孔。
  20. 根据权利要求2-19中任一项所述的指纹识别装置,其特征在于,所述微透镜阵列中的每个微透镜的上表面为球面或者非球面。
  21. 根据权利要求1-20中任一项所述的指纹识别装置,其特征在于,所述指纹光信号为垂直于所述显示屏的垂直方向光信号或者为倾斜于所述显示屏的特定方向光信号。
  22. 一种电子设备,其特征在于,包括:显示屏以及,
    如权利要求1至21中任一项所述的指纹识别装置。
  23. 根据权利要求22所述的电子设备,其特征在于,所述显示屏为有机发光二极管显示屏,所述显示屏的发光层包括多个有机发光二极管光源,其中,所述指纹识别装置采用至少部分有机发光二极管光源作为指纹识别的激励光源。
PCT/CN2019/112361 2019-10-21 2019-10-21 指纹识别装置和电子设备 WO2021077265A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19950144.6A EP3889828B1 (en) 2019-10-21 2019-10-21 Fingerprint recognition apparatus and electronic device
KR1020217020099A KR102611843B1 (ko) 2019-10-21 2019-10-21 지문 인식 장치 및 전자 장치
CN201980004271.5A CN111133444B (zh) 2019-10-21 2019-10-21 指纹识别装置和电子设备
PCT/CN2019/112361 WO2021077265A1 (zh) 2019-10-21 2019-10-21 指纹识别装置和电子设备
US17/362,608 US11403870B2 (en) 2019-10-21 2021-06-29 Fingerprint identification apparatus and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/112361 WO2021077265A1 (zh) 2019-10-21 2019-10-21 指纹识别装置和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/362,608 Continuation US11403870B2 (en) 2019-10-21 2021-06-29 Fingerprint identification apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2021077265A1 true WO2021077265A1 (zh) 2021-04-29

Family

ID=70507769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112361 WO2021077265A1 (zh) 2019-10-21 2019-10-21 指纹识别装置和电子设备

Country Status (5)

Country Link
US (1) US11403870B2 (zh)
EP (1) EP3889828B1 (zh)
KR (1) KR102611843B1 (zh)
CN (1) CN111133444B (zh)
WO (1) WO2021077265A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112487849A (zh) * 2019-09-12 2021-03-12 群创光电股份有限公司 电子装置及利用电子装置进行指纹辨识的方法
KR102374723B1 (ko) 2019-11-04 2022-03-14 선전 구딕스 테크놀로지 컴퍼니, 리미티드 광학 지문 장치 및 전자 기기
CN111507273B (zh) * 2020-04-20 2024-02-02 京东方科技集团股份有限公司 显示面板、显示装置和显示面板的制作方法
CN113707676A (zh) * 2020-05-22 2021-11-26 格科微电子(上海)有限公司 光学指纹器件的制造方法
CN113764440A (zh) * 2020-06-03 2021-12-07 格科微电子(上海)有限公司 光学指纹器件的制造方法
CN115914804A (zh) * 2021-09-29 2023-04-04 宁波舜宇光电信息有限公司 成像组件及其制造方法和摄像模组、电子设备
CN117423715B (zh) * 2023-12-19 2024-04-12 华天科技(昆山)电子有限公司 一种晶圆级光学芯片封装结构的制备方法及封装结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850840A (zh) * 2015-05-19 2015-08-19 苏州晶方半导体科技股份有限公司 芯片封装方法和芯片封装结构
US9832402B2 (en) * 2015-10-29 2017-11-28 Sony Semiconductor Solutions Corporation Row and column noise correction with defective pixel processing
CN107820618A (zh) * 2017-09-30 2018-03-20 深圳市汇顶科技股份有限公司 传感像素单元及光学指纹传感器
CN208092775U (zh) * 2018-04-16 2018-11-13 江西立茂科技有限公司 一种具有保护环的指纹识别智能卡
CN108881750A (zh) * 2017-04-17 2018-11-23 三星电子株式会社 包括阻光图案的光学传感器以及电子设备
CN208848221U (zh) * 2019-04-10 2019-05-10 深圳市汇顶科技股份有限公司 光学指纹识别装置和电子设备
CN110088768A (zh) * 2019-03-12 2019-08-02 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备
CN110097821A (zh) * 2018-01-30 2019-08-06 华为技术有限公司 屏幕模组和配置屏幕模组的电子设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581498B2 (ja) * 2004-06-15 2010-11-17 カシオ計算機株式会社 生体高分子分析チップ
US9666635B2 (en) * 2010-02-19 2017-05-30 Synaptics Incorporated Fingerprint sensing circuit
CN204029789U (zh) * 2014-07-01 2014-12-17 苏州晶方半导体科技股份有限公司 指纹识别芯片封装结构
CN104051366B (zh) * 2014-07-01 2017-06-20 苏州晶方半导体科技股份有限公司 指纹识别芯片封装结构和封装方法
CN104051367A (zh) * 2014-07-01 2014-09-17 苏州晶方半导体科技股份有限公司 指纹识别芯片封装结构和封装方法
CN107004130B (zh) * 2015-06-18 2020-08-28 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
CN106653701A (zh) * 2015-11-03 2017-05-10 深圳市汇顶科技股份有限公司 传感芯片封装组件、其制备方法和电子设备
US9996725B2 (en) * 2016-11-03 2018-06-12 Optiz, Inc. Under screen sensor assembly
CN106845436B (zh) * 2017-02-10 2020-06-02 京东方科技集团股份有限公司 指纹识别模块、指纹识别方法及触控屏
US20180307342A1 (en) * 2017-04-19 2018-10-25 Qualcomm Incorporated Chip seal ring for capacitive touch sensing
CN108491761B (zh) * 2018-02-26 2019-11-15 维沃移动通信有限公司 指纹感光识别装配结构及电子设备
CN110263600A (zh) * 2018-03-12 2019-09-20 上海箩箕技术有限公司 指纹成像模组和电子设备
WO2019178793A1 (zh) * 2018-03-22 2019-09-26 深圳市汇顶科技股份有限公司 屏下生物特征识别装置和电子设备
WO2020061823A1 (zh) * 2018-09-26 2020-04-02 深圳市汇顶科技股份有限公司 光学图像采集单元、光学图像采集装置和电子设备
CN109496313B (zh) * 2018-10-26 2022-05-17 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN210864753U (zh) * 2019-10-21 2020-06-26 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850840A (zh) * 2015-05-19 2015-08-19 苏州晶方半导体科技股份有限公司 芯片封装方法和芯片封装结构
US9832402B2 (en) * 2015-10-29 2017-11-28 Sony Semiconductor Solutions Corporation Row and column noise correction with defective pixel processing
CN108881750A (zh) * 2017-04-17 2018-11-23 三星电子株式会社 包括阻光图案的光学传感器以及电子设备
CN107820618A (zh) * 2017-09-30 2018-03-20 深圳市汇顶科技股份有限公司 传感像素单元及光学指纹传感器
CN110097821A (zh) * 2018-01-30 2019-08-06 华为技术有限公司 屏幕模组和配置屏幕模组的电子设备
CN208092775U (zh) * 2018-04-16 2018-11-13 江西立茂科技有限公司 一种具有保护环的指纹识别智能卡
CN110088768A (zh) * 2019-03-12 2019-08-02 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备
CN208848221U (zh) * 2019-04-10 2019-05-10 深圳市汇顶科技股份有限公司 光学指纹识别装置和电子设备

Also Published As

Publication number Publication date
CN111133444B (zh) 2023-10-13
US11403870B2 (en) 2022-08-02
US20210326570A1 (en) 2021-10-21
KR20210096203A (ko) 2021-08-04
EP3889828A4 (en) 2022-01-19
EP3889828B1 (en) 2023-01-18
CN111133444A (zh) 2020-05-08
EP3889828A1 (en) 2021-10-06
KR102611843B1 (ko) 2023-12-07

Similar Documents

Publication Publication Date Title
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
WO2021077265A1 (zh) 指纹识别装置和电子设备
WO2020206894A1 (zh) 光学指纹识别装置和电子设备
WO2020151159A1 (zh) 指纹识别的装置和电子设备
WO2020133344A1 (zh) 指纹识别装置和电子设备
CN110720106B (zh) 指纹识别的装置和电子设备
WO2021035622A1 (zh) 指纹识别装置和电子设备
WO2020248286A1 (zh) 光学指纹装置和电子设备
WO2021087695A1 (zh) 光学指纹装置和电子设备
WO2021189478A1 (zh) 指纹检测的装置和电子设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
WO2021203337A1 (zh) 指纹识别的方法、装置和电子设备
CN211349383U (zh) 指纹识别的装置和电子设备
WO2020191600A1 (zh) 指纹识别装置和电子设备
WO2020243926A1 (zh) 光学指纹装置和电子设备
WO2021022488A1 (zh) 指纹检测的装置和电子设备
WO2021077406A1 (zh) 指纹识别装置和电子设备
WO2021007730A1 (zh) 指纹检测装置和电子设备
WO2020243934A1 (zh) 光学图像采集装置和电子设备
CN210864753U (zh) 指纹识别装置和电子设备
US11783619B2 (en) Fingerprint identification apparatus and electronic device
CN111164609A (zh) 指纹识别装置和电子设备
WO2021042396A1 (zh) 指纹识别装置和电子设备
WO2021077368A1 (zh) 指纹识别装置和电子设备
WO2021056425A1 (zh) 滤光片、指纹检测的装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217020099

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019950144

Country of ref document: EP

Effective date: 20210629

NENP Non-entry into the national phase

Ref country code: DE