WO2022041145A1 - 指纹识别装置及电子设备 - Google Patents

指纹识别装置及电子设备 Download PDF

Info

Publication number
WO2022041145A1
WO2022041145A1 PCT/CN2020/112269 CN2020112269W WO2022041145A1 WO 2022041145 A1 WO2022041145 A1 WO 2022041145A1 CN 2020112269 W CN2020112269 W CN 2020112269W WO 2022041145 A1 WO2022041145 A1 WO 2022041145A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
fingerprint
fingerprint identification
identification device
Prior art date
Application number
PCT/CN2020/112269
Other languages
English (en)
French (fr)
Inventor
高攀
吴宝全
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/112269 priority Critical patent/WO2022041145A1/zh
Publication of WO2022041145A1 publication Critical patent/WO2022041145A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the present application relates to the technical field of biometric identification, and in particular, to fingerprint identification devices and electronic equipment.
  • the fingerprint identification device may include a light-blocking layer, and a light-passing hole may be provided on the light-blocking layer to allow the light signal returned by the finger above the display screen to pass through, and the fingerprint sensor chip may perform fingerprint identification according to the light signal; the fingerprint identification device also includes The filter layer, because when receiving the light reflected by the finger, also receives the ambient light passing through the finger, usually, the light passing through the finger is red light and light in the infrared band, therefore, it is set below the light blocking layer.
  • the filter layer reflects light in the red and infrared bands.
  • one of the technical problems solved by the embodiments of the present application is to provide a fingerprint identification device and an electronic device to at least partially overcome the defects in the prior art.
  • an embodiment of the present application provides a fingerprint identification device, which is suitable for an electronic device with a display screen.
  • the fingerprint identification device is arranged below the display screen and includes: a light blocking layer, a filter layer, a fingerprint sensor chip, A transparent filling layer, an optically transparent medium layer and a microlens array;
  • the filter layer is arranged on the side of the fingerprint sensor chip facing the incident light;
  • the light-blocking layer is arranged between the fingerprint sensor chip and the filter layer, and the light-blocking layer has a plurality of
  • the first light-passing hole is used to guide the light signal returned by the finger above the display screen to the fingerprint sensor chip;
  • the transparent filling and leveling layer is arranged between the light-blocking layer and the light-filtering layer, and fills in more
  • the optically transparent medium layer is arranged on the side of the filter layer facing the incident light;
  • the microlens array is arranged on the side of the optically transparent medium layer facing the incident light;
  • the fingerprint sensor chip is
  • an embodiment of the present application provides a fingerprint identification device, which is suitable for an electronic device with a display screen, and the fingerprint identification device is arranged below the display screen, including:
  • the fingerprint sensor chip includes a sensing array and a metal graphic layer, the sensing array is used for receiving light signals for fingerprint identification, and the metal graphic layer has a plurality of second light-passing holes; the light-blocking layer is arranged on the fingerprint sensor chip.
  • the light-blocking layer has a plurality of first light-passing holes; the transparent filling and leveling layer is arranged above the light-shielding layer, and fills the plurality of first light-passing holes; the filter layer is arranged above the transparent filling and leveling layer; a contact layer, which is arranged above the transparent filling and leveling layer and the filter layer, and covers the filter layer; an optically transparent medium layer, which is arranged on the adhesive contact layer; and an optical component, which is arranged on the optically transparent medium layer; a finger
  • the returned optical signal passes through the optical component and reaches the sensing array of the fingerprint sensor chip through the first light-passing hole and the second light-passing hole, and the fingerprint sensor chip receives the light signal for fingerprint identification.
  • an embodiment of the present application provides an electronic device, including: a display screen, and the fingerprint identification device as described in the first aspect or the second aspect, where the fingerprint identification device is disposed below the display screen.
  • the light-blocking layer of the fingerprint identification device is disposed between the filter layer and the fingerprint sensor chip, the steps at the edge of the filter layer and the uniform thickness of the light-blocking layer are avoided.
  • the influence of the light-blocking layer will not cause the aperture sizes of the plurality of first light-passing holes in the light-blocking layer to be inconsistent, thereby ensuring better consistency of the optical signals passing through the first light-passing holes.
  • the edge steps of the filter layer need not be expanded, thereby avoiding cutting a whole wafer to prepare the fingerprint identification device.
  • the width of the dicing road is too large, which can increase the number of fingerprint identification devices made of the whole wafer and improve the utilization rate of the wafer.
  • FIG. 1 is a schematic structural diagram of an electronic device used in an embodiment of the present application.
  • FIG 2 is another schematic structural diagram of an electronic device used in an embodiment of the present application.
  • Fig. 3 is a kind of scene schematic diagram of fingerprint identification under the screen provided by the prior art
  • FIG. 4 is a structural diagram of a fingerprint identification device provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • FIG. 6 is a structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • FIG. 7 is a structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • FIG. 8 is a structural diagram of an electronic device provided by an embodiment of the present application.
  • the photosensitive devices in electronic products such as fingerprint recognition, front camera, etc.
  • the most widely used under-screen fingerprint recognition technology is the under-screen optical fingerprint recognition technology. Due to the particularity of the under-screen optical fingerprint device, it is required that the light with the fingerprint signal can be transmitted through the display screen to the fingerprint sensor below, and then the fingerprint signal can be obtained.
  • embodiments of the present application can be applied to optical fingerprint systems, including but not limited to optical fingerprint identification systems and medical diagnostic products based on optical fingerprint imaging.
  • the embodiments of the application constitute any limitation, and the embodiments of the present application are also applicable to other systems adopting optical imaging technology, and the like.
  • the optical fingerprint system provided by the embodiments of the present application can be applied to portable or mobile computing devices such as smart phones, tablet computers, and game devices, as well as electronic databases, automobiles, and bank automated teller machines (automated teller machines, ATMs). ) and other electronic devices, but the embodiments of the present application are not limited to this, and the embodiments of the present application may be applied to other mobile terminals or other electronic devices with display screens; more specifically, in the above electronic devices, the fingerprint identification device may Specifically, it is an optical fingerprint device, which can be arranged in a partial area or all areas below the display screen, thereby forming an under-display optical fingerprint system. Alternatively, the fingerprint identification device may also be partially or fully integrated into the display screen of the electronic device, thereby forming an in-display optical fingerprint system.
  • FIG. 1 and FIG. 2 are two schematic structural diagrams of electronic devices to which the embodiments of the present application are applicable, wherein FIG. 1 is a top view and FIG. 2 is a side view.
  • the electronic device 10 includes a display screen 120 and an optical fingerprint device 130 , wherein the optical fingerprint device 130 is arranged in a partial area below the display screen 120 .
  • the optical fingerprint device 130 includes a fingerprint sensor chip, and the fingerprint sensor chip includes a sensing array 133 having a plurality of optical sensing units 131 .
  • the fingerprint detection area 103 is located in the display area of the display screen 120 .
  • the optical fingerprint device 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the electronic device 10, and the optical path design is used to design the light path of the display screen 120. At least part of the light signal of the display area is guided to the optical fingerprint device 130 , so that the fingerprint detection area 103 is actually located in the display area of the display screen 120 .
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the optical fingerprint device 130.
  • the The area of the fingerprint detection area 103 corresponding to the optical fingerprint device 130 is larger than the area of the sensing array of the optical fingerprint device 130 .
  • the fingerprint detection area 103 corresponding to the optical fingerprint device 130 can also be designed to be substantially the same as the area of the sensing array of the optical fingerprint device 130 .
  • the electronic device 10 with the above structure does not need to reserve a space on the front of the electronic device 10 to set the fingerprint button (such as the Home button), so that the full screen solution can be adopted, that is, the display area of the display screen 120 can be It basically extends to the entire front of the electronic device 10 .
  • the optical fingerprint device 130 includes a light detection part 134 and an optical component 132
  • the light detection part 134 includes a sensing array and a reading circuit electrically connected to the sensing array and other auxiliary circuits, which can be fabricated on a chip (Die) by a semiconductor process, such as an optical imaging chip or a fingerprint sensor chip
  • the sensing array is specifically a photo detector (Photo detector) array, which includes a plurality of arrays distributed
  • the photodetector can be used as the above-mentioned optical sensing unit;
  • the optical component 132 can be arranged above the sensing array of the photodetecting part 134, which can specifically include a filter layer (Filter), a light guide layer or
  • the optical path guiding structure and other optical elements the filter layer can be used to filter out ambient light that penetrates the finger, and the light guiding layer or the optical path guiding structure is mainly used to guide the light returning from the finger to the sensing array for processing.
  • Optical detection can be used as the above-ment
  • the optical component 132 and the light detection part 134 can be packaged in the same optical fingerprint component.
  • the optical component 132 and the optical detection part 134 can be packaged in the same optical fingerprint chip, or the optical component 132 can be arranged outside the chip where the optical detection part 134 is located, for example, the optical component 132 can be attached to the Above the chip, or some elements of the optical assembly 132 are integrated in the above-mentioned chip.
  • the light guide layer of the optical component 132 can be specifically a collimator layer made of a semiconductor silicon wafer, It has a plurality of collimation units or micro-hole arrays, and the collimation unit can be specifically a small hole.
  • the light perpendicularly incident to the collimation unit can pass through and be sensed by the optics below it.
  • the light with an excessively large incident angle is attenuated by multiple reflections inside the collimating unit, so each optical sensing unit can basically only receive the reflected light from the fingerprint pattern directly above it, so that the sensing The array can then detect the fingerprint image of the finger.
  • the light guide layer or the light path guide structure may also be an optical lens (Lens) layer, which has one or more lens units, such as a lens group composed of one or more aspherical lenses.
  • the assembly 132 may include a lens for converging the reflected light from the finger to the sensing array of the light detection portion 134 below it, so that the sensing array can image based on the reflected light to obtain the fingerprint of the finger image.
  • the optical lens layer can also be formed with pinholes in the optical path of the lens unit, and the pinholes can cooperate with the optical lens layer to expand the field of view of the optical fingerprint device, so as to improve the fingerprint imaging of the optical fingerprint device 130 Effect.
  • the light guide layer or the light path guide structure may also specifically adopt a micro-lens (Micro-Lens) layer, and the micro-lens layer has a micro-lens array formed by a plurality of micro-lenses, which can be obtained through a semiconductor growth process or Other processes are formed over the sensing array of the light detection portion 134, and each microlens may correspond to one of the sensing units of the sensing array, respectively.
  • other optical film layers such as a dielectric layer or a passivation layer, may also be formed between the microlens layer and the sensing unit. More specifically, a barrier with microholes may also be formed between the microlens layer and the sensing unit.
  • the light-blocking layer can block the optical interference between adjacent micro-lenses and the sensing unit, and make the light corresponding to the sensing unit pass through the The micro-lenses converge inside the micro-hole and are transmitted to the sensing unit via the micro-hole for optical fingerprint imaging.
  • a microlens layer may be further provided under the collimator layer or the optical lens layer.
  • the collimator layer or the optical lens layer is used in combination with the microlens layer, its specific stack structure or optical path may need to be adjusted according to actual needs.
  • the optical fingerprint device 130 may only include one fingerprint sensor chip.
  • the fingerprint detection area 103 of the optical fingerprint device 130 has a small area and a fixed position. It is necessary to press the finger to a specific position of the fingerprint detection area 103 , otherwise the optical fingerprint device 130 may fail to capture the fingerprint image, resulting in poor user experience.
  • the optical fingerprint device 130 may specifically include multiple fingerprint sensor chips; the multiple fingerprint sensor chips may be arranged side by side under the display screen 120 by splicing, and the sensing of the multiple fingerprint sensor chips The areas together constitute the fingerprint detection area 103 corresponding to the optical fingerprint device 130 . That is to say, the fingerprint detection area 103 corresponding to the optical fingerprint device 130 may include a plurality of sub-areas, and each sub-area corresponds to the sensing area of one of the fingerprint sensor chips, so that the fingerprint detection area 103 of the optical fingerprint module 130 It can be extended to the main area of the lower half of the display screen, that is, to the area where the finger is habitually pressed, so as to realize the blind-pressing fingerprint input operation. Alternatively, when the number of fingerprint sensor chips is sufficient, the fingerprint detection area 130 can also be extended to half of the display area or even the entire display area, so as to realize half-screen or full-screen fingerprint detection.
  • the electronic device 10 further includes a transparent cover plate 110 , or a transparent protective cover plate 110
  • the cover plate 110 may be a glass cover plate or a sapphire cover plate, which is located on the display screen 120 above and covering the front of the electronic device 10 .
  • the so-called finger pressing on the display screen 120 actually refers to pressing the cover plate 110 above the display screen 120 or the surface of the protective layer covering the cover plate 110 .
  • the display screen 120 in the embodiment of the present application may adopt a display screen having a self-luminous display unit, such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro-LED) display screen .
  • a self-luminous display unit such as an organic light-emitting diode (Organic Light-Emitting Diode, OLED) display screen or a micro light-emitting diode (Micro-LED) display screen .
  • OLED Organic Light-Emitting Diode
  • Micro-LED micro light-emitting diode
  • the display screen 120 When the finger 140 is pressed on the fingerprint detection area 103 , the display screen 120 emits a beam of light 111 to the target finger 140 above the fingerprint detection area 103 , and the light 111 is reflected on the surface of the finger 140 to form reflected light or passes through the finger 140 Internal scattering to form scattered light.
  • the above-mentioned reflected light and scattered light are collectively referred to as reflected light. Since the ridges and valleys of the fingerprint have different reflection capabilities for light, the reflected light 151 from the fingerprint ridge 141 and the occurrence 152 from the fingerprint valley 142 have different light intensities, and the reflected light passes through the optical component 132 After that, it is received by the sensing array 134 in the optical fingerprint device 130 and converted into a corresponding electrical signal, that is, a fingerprint detection signal; based on the fingerprint detection signal, fingerprint image data can be obtained, and fingerprint matching verification can be further performed, so that in the The electronic device 10 implements an optical fingerprint recognition function.
  • FIG. 3 is a schematic diagram of a fingerprint identification scenario provided by the prior art, which is generally applied to electronic equipment.
  • the electronic equipment includes a display screen 120 and a fingerprint identification device 130.
  • the fingerprint identification The device 130 is disposed below the display screen 120 , and realizes fingerprint recognition by receiving the light signal reflected by the finger 140 from the light emitted upward from the display screen 120 .
  • the fingerprint identification device 130 includes a light blocking layer 1321, a filter layer 1322, a fingerprint sensor chip 134 and a transparent adhesive layer 1323. It can be understood that, a glass cover plate or a sapphire cover plate is generally disposed above the display screen 120 .
  • the orientation of the side where the fingerprint sensor chip 134 senses the light signal is defined as the upper side
  • the orientation of the side where the backlight of the fingerprint sensor chip 134 is located is defined as the lower side.
  • the direction in which the incident light vertically irradiates the photosensitive surface of the fingerprint sensor chip 134 is defined as the downward direction
  • the opposite direction is the upper direction.
  • the filter layer 1322 , the transparent adhesive layer 1323 and the light blocking layer 1321 are all located above the fingerprint sensor chip 134 , and are the light blocking layer 1321 , the transparent adhesive layer 1323 , the filter layer 1322 , and the fingerprint sensor chip 134 in order from top to bottom.
  • the incident light in this application may also be referred to as an optical signal, and its name is not limited.
  • the light emitted by the display screen 120 irradiates the finger 140 vertically upwards, and is reflected by the finger 140 to form incident light directed towards the fingerprint sensor chip 134 .
  • the incident light carries the fingerprint characteristics of the finger 140 .
  • the incident light 30 After being irradiated downward to the photosensitive area of the fingerprint sensor chip 134, the fingerprint sensor chip 134 converts the received optical signal of incident light into an electrical signal, and obtains a fingerprint image.
  • the plurality of first light-passing holes 1324 provided on the light-blocking layer 1321 can limit the angle of the incident light, so that the fingerprint features carried by the incident light irradiating the photosensitive area of the fingerprint sensor chip 134 are more clear and fail to pass through the first light-passing holes.
  • the light signal 1324 is irradiated on the light blocking layer 1321 , and the light signal outside the first light-passing hole 1324 will be absorbed by the light blocking layer 1321 .
  • the ambient light can include sunlight, lights and the like.
  • the light passing through the finger usually includes red light (wavelength 622nm-770nm) and light in the infrared band (770nm-1mm). This part of the ambient light will affect the accuracy of fingerprint recognition, and if the environment If the light is too strong, overexposure will be formed on the fingerprint sensor chip 134, which will also affect the normal identification of fingerprints. Therefore, a filter layer 1322 is provided under the light blocking layer 1321, and the filter layer 1322 is used to filter out the light signals in the red light and infrared light bands, so as to improve the accuracy of fingerprint identification.
  • the fingerprint sensor chip 134 is the detection part 134 in FIG. 2 .
  • the fingerprint sensor chip 134 includes a sensing array 133 for receiving optical signals for fingerprint identification.
  • a fingerprint identification device usually use a whole wafer to make a plurality of fingerprint sensor chips 134, then form a filter layer 1322, a light blocking layer 1321, etc. on the wafer, and then cut the whole wafer to obtain a plurality of fingerprint identification devices 130.
  • marking is usually carried out in the dicing lane planned on the wafer, and the dicing lane is the cutting position.
  • the filter layer 1322 covers the dicing lane, the marks in the dicing lane cannot be recognized normally, which affects the cutting accuracy. Therefore, the filter layer 1322 cannot cover the scribe line.
  • the edge of the filter layer 1322 is within the edge of the fingerprint sensor chip 134, so that a step is formed at the edge of the filter layer 1322.
  • the transparent adhesive layer 1323 is disposed between the filter layer and between the filter layer 1322 and the light blocking layer 1321, and can play a role of adhesion. However, during the coating process of the transparent adhesive layer, bulges may occur at the steps at the edge of the filter layer 1322 . At this time, if the light-blocking layer 1321 is formed on the transparent adhesive layer 1323, the thickness of the light-blocking layer 1321 will be uneven at the steps of the edge of the filter layer 1322, and a plurality of first light-passing holes 1324 are formed by opening holes through exposure and development.
  • the light energy received by the light-blocking layer 1321 is uniform, but because the thickness of the light-blocking layer 1321 is uneven at the steps of the edge of the filter layer 1322, the aperture size of the first light-transmitting holes 1324 formed is inconsistent, which will affect the passage through The consistency of the incident light of the first light-transmitting hole 1324 affects fingerprint recognition.
  • the edge of the filter layer 1322 can be expanded outward, that is, the edge of the filter layer 1322 can be extended outward to expand the coverage of the filter layer 1322, so that the edge of the filter layer 1322 can be extended. It is staggered from the position where the first light-passing hole 1324 is formed, but this will further affect the position of the dicing road set on the wafer, so that the area occupied by a single fingerprint identification device increases, thereby reducing the production capacity of the entire wafer.
  • the number of fingerprint sensor chips 134 reduces wafer utilization.
  • FIG. 4 is a structural diagram of a fingerprint identification device provided by an embodiment of the application.
  • the fingerprint identification device 20 includes: a light blocking layer 201 , a filter layer 202 , a fingerprint sensor chip 203 , and a transparent filling layer 204, an optically transparent medium layer 205 and a microlens array 206;
  • the filter layer 202 is disposed on the side of the fingerprint sensor chip 203 facing the incident light; the light-blocking layer 201 is disposed between the fingerprint sensor chip 203 and the filter layer 202, and the light-blocking layer 201 has a plurality of first light-passing holes 2011.
  • a light-passing hole 2011 is used to guide the light signal returned by the finger above the display screen to the fingerprint sensor chip 203; the transparent fill-in layer 204 is disposed between the light-blocking layer 201 and the filter layer 202, and fills in a plurality of first A light-passing hole 2011; the optically transparent medium layer 205 is arranged on the side of the filter layer 202 facing the incident light; the microlens array 206 is arranged on the side of the optically transparent medium layer 205 facing the incident light; the fingerprint sensor chip 203 is used to receive the finger The returned optical signal is used for fingerprint identification.
  • the light emitted by the display screen is reflected by the finger to form the incident light to the fingerprint sensor chip 203 , the incident light is collected by the microlens array 206 , and then passes through the optically transparent medium layer 205 , and is filtered by the filter layer 202 to remove red light and The light in the infrared band then passes through the transparent filling layer 204 and the first light-passing hole 2011 of the light blocking layer 201, and is sensed by the fingerprint sensor chip 203, thereby realizing fingerprint identification.
  • the light-blocking layer 201 of the fingerprint identification device 20 is disposed between the filter layer 202 and the fingerprint sensor chip 203, the influence of the steps at the edge of the filter layer 202 on the uniform thickness of the light-blocking layer 201 is avoided, and the blocking layer 201 will not be blocked.
  • the aperture sizes of the plurality of first light-passing holes 2011 in the optical layer 201 are inconsistent, thereby ensuring better consistency of optical signals passing through the first light-passing holes 2011 .
  • the edge steps of the filter layer 202 do not need to be expanded outward, thereby avoiding cutting a whole wafer to prepare fingerprint identification.
  • the width of the dicing road is too large, which can increase the number of fingerprint identification devices 20 fabricated from a whole wafer, improve the utilization rate of the wafer, thereby reducing the cost and improving the production efficiency.
  • the filter layer 202 will be described in detail.
  • the filter layer 202 is disposed on the side of the fingerprint sensor chip 203 facing the incident light. It can also be said that the filter layer 202 is disposed above the fingerprint sensor chip 203.
  • the edge is located within the edge of the fingerprint sensor chip 203 , therefore, steps are formed at the edge of the filter layer 202 to prevent the filter layer 202 from affecting the identification of marks in the dicing line.
  • the filter layer 202 may be formed by deposition (sputtering or evaporation), and the material of the filter layer 202 may be an inorganic material.
  • the filter layer 202 is used to reflect red light (wavelength 622nm-770nm) and light in the infrared band (770nm-1mm), and the filter layer 202 may also be called infrared filter (English: Infra-red Cut). , IRC) layer.
  • the filter layer 202 reflects the ambient light penetrating the finger, reduces the interference of ambient light, and improves the fingerprint identification accuracy.
  • the light-blocking layer 201 is described in detail, the light-blocking layer 201 is disposed under the light-filtering layer, and optionally, the material of the light-blocking layer 201 may include: at least one of metals, inorganic oxides, and metal oxides kind.
  • the metal may include at least one of chromium (Cr) and nano silver (Ag);
  • the inorganic oxide may include silicon dioxide (SiO2), silicon nitride (SiNx), etc.;
  • the metal oxide may include iron tetroxide at least one of (Fe3O4).
  • the light blocking layer 201 is used for guiding the light signal passing through the light filtering layer 202 to pass through the first light passing hole 2011 .
  • the light-blocking layer 201 can also be a black glue layer, and the light-blocking layer 201 has the characteristics of low reflection and high absorption of light signals, that is to say, the light-blocking layer 201 has low reflectivity to light signals and absorbs light. high rate.
  • the light blocking layer 201 can absorb light signals with wavelengths between 600 nanometers and 1200 nanometers; the transmittance through which the light blocking layer 201 penetrates can be less than 0.1%; or the optical density of the light blocking layer 201 (English: Optical Density, OD) value is greater than or equal to 3.
  • the light-blocking layer 201 absorbs the light signal that cannot be directed to the fingerprint sensor chip 203 through the first light-passing hole 2011 , which can avoid overexposure caused by the strong light signal, and can also control the passage of the light-blocking layer through the first light-passing hole 2011 201 , the angle of the incident light to the fingerprint sensor chip 203 .
  • an offset angle between the center of the first light-passing hole 2011 and the center of the corresponding photosensitive unit in the fingerprint sensor chip 203 in the direction perpendicular to the fingerprint sensor chip 203 is between 0 degrees and 45 degrees.
  • the direction perpendicular to the fingerprint sensor chip 203 in the present application may be the direction perpendicular to the photosensitive surface of the fingerprint sensor chip 203 .
  • the offset angle is between 0 degrees and 45 degrees, which further limits the angle of incoming light.
  • the thickness of the light-blocking layer 201 can be between 0.5 microns and 3 microns. If the thickness of the light-blocking layer 201 is too small, the light-blocking effect will be reduced.
  • the expansion coefficient of the optical layer 201 is different from that of the wafer, which causes the edge of the light-blocking layer 201 to warp.
  • the thickness of the light blocking layer 201 may be between 1 micrometer and 2 micrometers. When the thickness of the light-blocking layer 201 is between 1 micrometer and 2 micrometers, the edge of the light-blocking layer 201 will not be lifted, and a better light-blocking effect is also ensured.
  • the light-blocking layer 201 may be prepared by coating, and the light-blocking layer 201 may be opened by an exposure and development process or a lift-off process to form a plurality of first light-transmitting holes 2011 .
  • the transparent fill-in layer 204 is disposed between the light blocking layer 201 and the filter layer 202 and fills the plurality of first light-transmitting holes 2011 .
  • the transparent filling and leveling layer 204 is a transparent material, which may be an organic material or an inorganic material.
  • the transparent filling layer 204 can be coated on the light blocking layer 201 to make the surface contacted by the lower surface of the filter layer 202 flat. During preparation, the filter layer 202 can be deposited on the flat surface to facilitate the preparation.
  • a first chemical assistant is provided between the transparent filling layer 204 and the light blocking layer 201 , and/or a first chemical agent is arranged between the transparent filling layer 204 and the filter layer 202 Two chemical additives.
  • the first chemical auxiliary agent and the second chemical auxiliary agent can be the same or different, and the first chemical auxiliary agent and the second chemical auxiliary agent are used to adjust the materials between the contact interfaces (ie the transparent filling layer 204 and the filter layer 202, and Transparent filling layer 204 and light blocking layer 201) to enhance adhesion.
  • the first chemical agent and the second chemical agent can be silicon dioxide (SiO2) or hexamethyldisilazane (HMDS), and using silicon dioxide or hexamethyldisilazane as the contact interface can improve the Adhesion, you can also choose a film with uneven surface, which can increase the contact area and further improve the adhesion.
  • the roughness must be within a suitable range, and the roughness will affect the optical properties (for example, refractive index, reflectivity, transmission, etc.). rate, etc.).
  • an adhesive is provided between the transparent filling and leveling layer 204 and the light blocking layer 201 , and/or an adhesive is provided between the transparent filling and leveling layer 204 and the filter layer 202 .
  • the agent can enhance the bonding strength between the transparent filling layer 204 and the light blocking layer 201 , and the bonding strength between the transparent filling layer 204 and the filter layer 202 .
  • the materials of the transparent filling layer 204 and the filter layer 202 may not match the subsequent processing technology, and the high temperature annealing of the filter layer 202 will affect the adhesion effect due to the mismatch of material stress.
  • two examples are listed to illustrate how to solve it.
  • the transparent filling and leveling layer 204 is cured on the surface of the light blocking layer 201 by baking, and the transparent filling and leveling layer 204 is baked by using a gradient heating during the baking process.
  • the filter layer 202 is deposited on the transparent leveling layer 204 by coating.
  • the coating temperature, ion source power, and annealing temperature of the filter layer 202 are matched with the stress of the material of the transparent leveling layer 204. For example, the annealing time is prolonged and the temperature is lowered. , matching the stress under the structure of the filter layer 202 and the transparent filling layer 204, weakening the stress accumulation of the laminated material, and avoiding the cracking of the film layer caused by the stress agent.
  • the optically transparent medium layer 205 is described in detail, the optically transparent medium layer 205 is disposed on the side of the filter layer 202 facing the incident light, it can also be said that the optically transparent medium layer 205 is disposed above the filter layer 202, or , the optically transparent medium layer 205 is disposed on the side of the filter layer 202 away from the fingerprint sensor chip 203 .
  • the optically transparent medium layer 205 can cover the transparent filling and leveling layer 204, and the area not covered by the filter layer 202 is to fill up the steps at the edge of the filter layer 202, so as to play a flat role; and the optically transparent medium layer 205 can adjust the microlens
  • the optical path between the array 206 and the fingerprint sensor chip 203 can also be said to adjust the focal position of the microlens array 206.
  • the thickness of the optically transparent medium layer 205 can be adjusted during the preparation process so that the focal point of the microlens array 206 falls on
  • the photosensitive area of the optical sensor chip 203 can also make the focus of the microlens array 206 fall on the filter area of the filter layer 202 .
  • the microlens array 206 is arranged on the side of the optically transparent medium layer 205 facing the incident light, it can also be said that the microlens array 206 is arranged above the optically transparent medium layer 205, or the microlens array 206 is arranged on the optically transparent medium layer 205 away from fingerprints One side of the sensor chip 203 .
  • the microlens array 206 has the function of concentrating the incident light, and can condense the incident light to the filter area of the filter layer 202 .
  • FIG. 5 is a structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • the fingerprint sensor chip 203 includes a sensing array. 2031, the sensing array 2031 is used for receiving optical signals for fingerprint identification; and a metal pattern layer 2032; Hole 2033. It should be noted that the sensing array 2031 and the metal pattern layer 2032 can be disposed inside the wafer.
  • the sensing array 2031 can be formed by a plurality of sensing units, and the metal pattern layer 2032 is used for wiring, so that the fingerprint sensor chip 203 can be connected with external circuits.
  • the second light hole 2033 provided on the metal pattern layer 2032 can limit the angle of incident light, and because the light blocking layer 201 is located between the filter layer 202 and the fingerprint sensor chip 203, it can effectively absorb the reflection of the metal pattern layer 2032 back. It can reduce the influence of the reflected light signal on fingerprint recognition.
  • the offset angle between the center of the second light-passing hole 2033 and the center of the first light-passing hole 2011 in the direction perpendicular to the fingerprint sensor chip is between 0 degrees and 45 degrees, which can be further limited. The angle of the incident light.
  • the fingerprint identification device 40 may further include a contact buffer layer 207 ; the contact buffer layer 207 is disposed between the microlens array 206 and the optically transparent medium layer 205 for The microlens array 206 and the optically transparent medium layer 205 play a role of adhesion.
  • FIG. 6 is a structural diagram of another fingerprint identification device 50 provided by an embodiment of the present application.
  • the fingerprint identification device 50 further includes an adhesive contact layer 208 and a color filter layer 209 .
  • the color filter layer 209 has a plurality of third light holes 2091 corresponding to the plurality of first light holes 2011 respectively, and the color filter layer 209 is disposed between the adhesive contact layer 208 and the optically transparent medium layer 205 and the optically transparent medium layer 205 fills the plurality of third light-transmitting holes 2091 .
  • the color filter layer 209 can be a color filter (Color Filter, CF), specifically, when the color filter layer can be a blue filter, it is arranged in the entire active area (Active Area, AA) area for By absorbing the red light and infrared light reflected by the filter layer 202, the influence of these light signals on the fingerprint identification is further reduced, the accuracy of the fingerprint identification is improved, and the appearance can also be improved.
  • Color Filter Color Filter
  • the material of the color filter layer 209 can also be a color resist, for example, a blue, cyan or black color resist, and a plurality of third color resists can be formed by exposing and developing or etching the color resist. Through holes 2091, the color filter layer 209 is formed.
  • the aperture of the third light-passing hole 2091 in the color filter layer 209 is greater than or equal to the aperture of the first light-passing hole 2011 in the light blocking layer 201, so that the incident angle of the incident light can be better limited .
  • an offset angle between the center of the third light-passing hole 2091 and the center of the first light-passing hole 2011 in the direction perpendicular to the fingerprint sensor chip 203 is between 0 degrees and 45 degrees, thereby further Limits the angle of incident light.
  • the adhesive contact layer 208 is disposed between the transparent filling layer 204 and the color filter layer 209 and covers the filter layer 202 .
  • the adhesive contact layer 208 can be disposed on the upper surface of the filter layer 202 by coating, which has the function of flattening the surface of the filter layer 202 . Since the color filter layer 209 is an organic layer and the color filter layer 202 is an inorganic layer, the adhesion performance between the two is poor, and the adhesion between the two is improved by adhering the contact layer 208 .
  • the adhesive contact layer 208 can play an adhesive role between the filter layer 202 and the color filter layer 209 to enhance the bonding strength between the filter layer 202 and the color filter layer 209 .
  • the fingerprint identification device 50 further includes: a transparent diaphragm layer 210 ; the transparent diaphragm layer 210 is disposed between the fingerprint sensor chip 203 and the light blocking layer 201 for adjusting the incident light from blocking the light Optical path from layer 201 to fingerprint sensor chip 203 .
  • the transparent diaphragm layer 210 is made of a transparent material with a visible light transmittance exceeding 95%, so that incident light can better pass through the transparent diaphragm layer 210 .
  • the transparent diaphragm layer 210 is made of an inorganic oxide material such as silicon dioxide, and the transparent diaphragm layer 210 is prepared by coating (sputtering or vapor deposition, etc.).
  • the transparent diaphragm layer 210 is made of organic transparent adhesive material (such as polyimide, acrylic resin, etc.), or organic/inorganic siloxane (SOG) and other materials, and the transparent diaphragm layer 210 can be prepared by coating.
  • the transparent diaphragm layer 210 is located between the light blocking layer 201 and the fingerprint sensor chip 203 , the distance between the light blocking layer 201 and the fingerprint sensor chip 203 is adjusted, that is, the reflection path of the light signal reflected by the fingerprint sensor chip 203 is adjusted. , further reducing the impact of reflected light on fingerprint recognition, and optimizing the matching of optical path structure and optical performance.
  • the incident light is condensed by the microlens array 206 and passes through the optically transparent medium layer 205 , the third light-passing hole 2091 of the color filter layer 209 , the adhesive contact layer 208 , the filter layer 202 , and the transparent filling layer in sequence.
  • the layer 204 , the first light-passing hole 2011 of the light blocking layer 201 , the transparent diaphragm layer 206 and the second light-passing hole 2033 of the metal pattern layer 2032 are received by the fingerprint sensor chip 203 .
  • the light blocking layer 201 is located between the filter layer 202 and the fingerprint sensor chip 203, which can effectively absorb the light signal reflected back by the metal pattern layer 2032 and reduce the influence of the reflected light signal on fingerprint identification;
  • the diaphragm layer 206 is located between the light blocking layer 201 and the metal pattern layer 2032, and adjusts the distance between the light blocking layer 201 and the metal pattern layer 2032, that is, adjusts the reflection path of the light signal reflected by the metal pattern layer 2032, and further The influence of reflected light on fingerprint recognition is reduced, and the matching of optical path structure and optical performance is optimized.
  • the transparent filling layer 204 also adjusts the distance between the filter layer 202 and the light blocking layer 201, which further optimizes the matching of the optical path structure and optical performance.
  • FIG. 7 is a structural diagram of another fingerprint identification device provided by an embodiment of the present application.
  • the fingerprint identification device 60 is suitable for an electronic device with a display screen, and the fingerprint identification device 60 is arranged on the display screen.
  • the bottom of the screen includes: a fingerprint sensor chip 203, which includes a sensing array 2031 and a metal pattern layer 2032, the sensing array 2031 is used for receiving optical signals for fingerprint identification, and the metal pattern layer 2032 has a plurality of second light-passing holes 2033;
  • the light layer 201, the light blocking layer 201 is disposed above the fingerprint sensor chip 203, the light blocking layer 201 has a plurality of first light holes 2011;
  • the transparent filling layer 204 is disposed above the light blocking layer 201, and fills a plurality of first light holes 2011.
  • the second light-passing hole 2033 reaches the sensing array 2031 of the fingerprint sensor chip 203, and the fingerprint sensor chip 203 receives the light signal for fingerprint identification.
  • the electronic device 30 includes: a display screen 31 , and any one of the foregoing embodiments
  • the fingerprint identification device 20 is arranged below the display screen 31 .
  • the display screen 31 may be any of the display screens described above, and the display screen 31 may be, for example, a self-luminous display screen, such as an OLED screen.
  • the fingerprint identification device 20 may also be any one of the fingerprint identification devices described above, which will not be repeated here to simplify the description.
  • the electronic devices provided by the embodiments of the present application may be portable or mobile computing devices such as smartphones, tablet computers, and game devices, as well as other electronic devices such as electronic databases, automobiles, and bank automated teller machines (automated teller machines, ATMs).
  • the fingerprint identification device may be arranged in a partial area or the entire area below the display screen, thereby forming an under-display optical fingerprint system.
  • the fingerprint identification device may also be partially or fully integrated into the display screen of the electronic device, thereby forming an in-display optical fingerprint system.
  • the edge steps of the filter layer need not be expanded, thereby avoiding cutting a whole wafer to prepare the fingerprint identification device.
  • the width of the dicing road is too large, which can increase the number of fingerprint identification devices made of the whole wafer and improve the utilization rate of the wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Image Input (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请实施例提供一种指纹识别装置及电子设备,指纹识别装置适用于具有显示屏的电子设备,指纹识别装置设置在显示屏的下方,其包括:挡光层,滤光层、指纹传感器芯片、透明填平层、光学透明介质层以及微透镜阵列;滤光层设置于指纹传感器芯片朝向入射光的一侧;挡光层设置于指纹传感器芯片与滤光层之间,挡光层具有多个第一通光孔;透明填平层设置于挡光层与滤光层之间,并填平多个第一通光孔;光学透明介质层设置于滤光层朝向入射光的一侧;微透镜阵列设置于光学透明介质层朝向入射光的一侧。本申请实施例在保证通过第一通光孔的光信号的一致性更好的同时,能够增加整块晶圆制作的指纹识别装置的数量,提高晶圆的利用率。

Description

指纹识别装置及电子设备 技术领域
本申请涉及生物识别技术领域,尤其涉及指纹识别装置及电子设备。
背景技术
随着全面屏时代的到来,将指纹识别装置设置于显示屏下方的屏下指纹识别装置越来越广泛。以屏下指纹识别为例,显示屏向上发出的光信号经过手指反射,进入指纹识别装置,即可实现指纹识别。指纹识别装置可以包括挡光层,挡光层上可以设置有通光孔,可以使显示屏上方的手指返回的光信号通过,指纹传感器芯片可以根据该光信号进行指纹识别;指纹识别装置还包括滤光层,因为在接收手指反射的光时,也会接收到穿过手指的环境光,通常情况下,穿过手指的光为红光及红外波段的光,因此,在挡光层下方设置滤光层,反射红光及红外波段的光。但是在实现上述方案的过程中,为了保证挡光层通光孔孔径的均一性,以使得通过通光孔的光信号更均匀,往往需要将滤光层边缘外扩,导致切割道宽度增加,减少了一整块晶圆可以制作的指纹识别装置的数量,晶圆利用率低。
实用新型内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供一种指纹识别装置及电子设备,用以至少部分克服现有技术中的缺陷。
第一方面,本申请实施例提供了一种指纹识别装置,适用于具有显示屏的电子设备,指纹识别装置设置在显示屏的下方,其包括:挡光层,滤光层、指纹传感器芯片、透明填平层、光学透明介质层以及微透镜阵列;滤光层设置于指纹传感器芯片朝向入射光的一侧;挡光层设置于指纹传感器芯片与滤光层之间,挡光层具有多个第一通光孔,第一通光孔用于将经过显示屏上方的手指返回的光信号引导至指纹传感器芯片;透明填平层设置于挡光层与滤光层之间,并填平多个第一通光孔;光学透明介质层设置于滤光层朝向入射光的一侧;微透镜阵列设置于光学透明介质层朝向入射光的一侧;指纹传感器芯片用于接收手指返回的光信号,光信号用于进行指纹识别。
第二方面,本申请实施例提供了一种指纹识别装置,适用于具有显示屏 的电子设备,所述指纹识别装置设置在所述显示屏的下方,包括:
指纹传感器芯片,其包括感应阵列以及金属图形层,感应阵列用于接收光信号以进行指纹识别,金属图形层具多个第二通光孔;挡光层,挡光层设置在指纹传感器芯片的上方,挡光层具有多个第一通光孔;透明填平层设置于挡光层上方,且填平多个第一通光孔;滤光层,其设置在透明填平层上方;黏附接触层,设置于透明填平层与滤光层的上方,且包覆滤光层;光学透明介质层,其设置在黏附接触层上;以及光学组件,其设置在光学透明介质层上;手指返回的光信号经过光学组件,并通过第一通光孔与第二通光孔到达指纹传感器芯片的感应阵列,指纹传感器芯片接收光信号以进行指纹识别。
第三方面,本申请实施例提供了一种电子设备,包括:显示屏,以及如第一方面或第二方面所描述的指纹识别装置,指纹识别装置设置在显示屏的下方。
本申请实施例提供的指纹识别装置及电子设备,由于指纹识别装置的挡光层设置于滤光层和指纹传感器芯片之间,避免了滤光层边缘处的台阶对挡光层厚度均匀所产生的影响,不会造成挡光层具有的多个第一通光孔的孔径大小不一致,从而保证了通过第一通光孔的光信号的一致性更好。同时,无需为了防止滤光层边缘处的台阶对挡光层厚度均匀所产生的影响,将滤光层的边缘台阶外扩,从而避免了对一整块晶圆切割以制备指纹识别装置时,切割道的宽度太大,能够增加整块晶圆制作的指纹识别装置的数量,提高晶圆的利用率。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本申请实施例的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比值绘制的。附图中:
图1是本申请实施例所使用的电子设备的一种结构示意图;
图2是本申请实施例所使用的电子设备的另一种结构示意图;
图3为现有技术提供的一种屏下指纹识别的场景示意图;
图4为本申请实施例提供的一种指纹识别装置的结构图;
图5为本申请实施例提供的另一种指纹识别装置的结构图;
图6为本申请实施例提供的又一种指纹识别装置的结构图;
图7为本申请实施例提供的又一种指纹识别装置的结构图;
图8为本申请实施例提供的一种电子设备的结构图。
具体实施方式
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
伴随时代的发展和科技的进步,电子产品显示屏的屏占比越来越高,全面屏已经成为众多电子产品的发展趋势。为适应这种全面屏的发展趋势,电子产品中的感光器件例如指纹识别、前置摄像头等也将被放置在显示屏之下。屏下指纹识别技术应用最多的是屏下光学指纹识别技术,由于屏下光学指纹器件的特殊性,要求带有指纹信号的光能够透过显示屏传递到下方的指纹传感器,进而得到指纹信号。
以屏下光学指纹识别为例,对指纹识别过程进行详细描述。
应理解,本申请实施例可以应用于光学指纹系统,包括但不限于光学指纹识别系统和基于光学指纹成像的医疗诊断产品,本申请实施例仅以光学指纹系统为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技术的系统等。
作为一种常见的应用场景,本申请实施例提供的光学指纹系统可以应用在智能手机、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(automated teller machine,ATM)等其他电子设备,但本申请实施例对此并不限定,本申请实施例可以应用在其他具有显示屏的移动终端或者其他电子设备;更具体地,在上述电子设备中,指纹识别装置可以具体为光学指纹装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,所述指纹识别装置也可以部分或者全部集成至所述电子设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
如图1和图2所示为本申请实施例可以适用的电子设备的两个结构示意图,其中,图1为俯视图,图2为侧视图。该电子设备10包括显示屏120和光学指纹装置130,其中,该光学指纹装置130设置在该显示屏120下方的局部区域。该光学指纹装置130包括指纹传感器芯片,该指纹传感器芯片包括具有多个光学感应单元131的感应阵列133,该感应阵列所在区域或者其感应区域为该光学指纹装置130对应的指纹检测区域103。如图1所示,该指纹检测区域103位于该显示屏120的显示区域之中。在一种替代实施例中,该光学指纹 装置130还可以设置在其他位置,比如该显示屏120的侧面或者该电子设备10的边缘非透光区域,并通过光路设计来将该显示屏120的至少部分显示区域的光信号导引到该光学指纹装置130,从而使得该指纹检测区域103实际上位于该显示屏120的显示区域。
应当理解,该指纹检测区域103的面积可以与该光学指纹装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得该光学指纹装置130对应的指纹检测区域103的面积大于该光学指纹装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,该光学指纹装置130对应的指纹检测区域103也可以设计成与该光学指纹装置130的感应阵列的面积基本一致。
因此,使用者在需要对该电子设备进行解锁或者其他指纹验证的时候,只需要将手指按压在位于该显示屏120的指纹检测区域103,便可以实现指纹输入。由于指纹检测可以在屏内实现,因此采用上述结构的电子设备10无需其正面专门预留空间来设置指纹按键(比如Home键),从而可以采用全面屏方案,即该显示屏120的显示区域可以基本扩展到整个电子设备10的正面。
作为一种可选的实现方式,如图2所示,该光学指纹装置130包括光检测部分134和光学组件132,该光检测部分134包括感应阵列以及与该感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者指纹传感器芯片,该感应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,该光探测器可以作为上述的光学感应单元;该光学组件132可以设置在该光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,该滤光层可以用于滤除穿透手指的环境光,而该导光层或光路引导结构主要用于将从手指处返回的光导引至该感应阵列进行光学检测。
在具体实现上,该光学组件132可以与该光检测部分134封装在同一个光学指纹部件。比如,该光学组件132可以与该光学检测部分134封装在同一个光学指纹芯片,也可以将该光学组件132设置在该光检测部分134所在的芯片外部,比如将该光学组件132贴合在该芯片上方,或者将该光学组件132的部分元件集成在上述芯片之中。
其中,该光学组件132的导光层或者光路引导结构有多种实现方案,比 如,该光学组件132的该导光层可以具体为在半导体硅片制作而成的准直器(Collimator)层,其具有多个准直单元或者微孔阵列,该准直单元可以具体为小孔,从手指反射回来的反射光中,垂直入射到该准直单元的光线可以穿过并被其下方的光学感应单元接收,而入射角度过大的光线在该准直单元内部经过多次反射被衰减掉,因此每一个光学感应单元基本只能接收到其正上方的指纹纹路反射回来的反射光,从而该感应阵列便可以检测出手指的指纹图像。
在另一种实施例中,该导光层或者光路引导结构也可以为光学透镜(Lens)层,其具有一个或多个透镜单元,比如一个或多个非球面透镜组成的透镜组,该光学组件132可以包括一个透镜,其用于将从手指反射回来的反射光汇聚到其下方的光检测部分134的感应阵列,以使得该感应阵列可以基于该反射光进行成像,从而得到该手指的指纹图像。可选地,该光学透镜层在该透镜单元的光路中还可以形成有针孔,该针孔可以配合该光学透镜层扩大该光学指纹装置的视场,以提高该光学指纹装置130的指纹成像效果。
在其他实施例中,该导光层或者光路引导结构也可以具体采用微透镜(Micro-Lens)层,该微透镜层具有由多个微透镜形成的微透镜阵列,其可以通过半导体生长工艺或者其他工艺形成在该光检测部分134的感应阵列上方,并且每一个微透镜可以分别对应于该感应阵列的其中一个感应单元。并且,该微透镜层和该感应单元之间还可以形成其他光学膜层,比如介质层或者钝化层,更具体地,该微透镜层和该感应单元之间还可以包括具有微孔的挡光层,其中该微孔形成在其对应的微透镜和感应单元之间,该挡光层可以阻挡相邻微透镜和感应单元之间的光学干扰,并使得该感应单元所对应的光线通过该微透镜汇聚到该微孔内部并经由该微孔传输到该感应单元以进行光学指纹成像。应当理解,上述光路引导结构的几种实现方案可以单独使用也可以结合使用,比如,可以在该准直器层或者该光学透镜层下方进一步设置微透镜层。当然,在该准直器层或者该光学透镜层与该微透镜层结合使用时,其具体叠层结构或者光路可能需要按照实际需要进行调整。
可选的,在某些实施例中,该光学指纹装置130可以仅包括一个指纹传感器芯片,此时光学指纹装置130的指纹检测区域103的面积较小且位置固定,因此用户在进行指纹输入时需要将手指按压到该指纹检测区域103的特定位置,否则光学指纹装置130可能无法采集到指纹图像而造成用户体验不佳。
在其他替代实施例中,该光学指纹装置130可以具体包括多个指纹传感 器芯片;该多个指纹传感器芯片可以通过拼接方式并排设置在该显示屏120的下方,且该多个指纹传感器芯片的感应区域共同构成该光学指纹装置130对应的指纹检测区域103。也即是说,该光学指纹装置130对应的指纹检测区域103可以包括多个子区域,每个子区域分别对应于其中一个指纹传感器芯片的感应区域,从而将该光学指纹模组130的指纹检测区域103可以扩展到该显示屏的下半部分的主要区域,即扩展到手指惯常按压区域,从而实现盲按式指纹输入操作。可替代地,当该指纹传感器芯片数量足够时,该指纹检测区域130还可以扩展到半个显示区域甚至整个显示区域,从而实现半屏或者全屏指纹检测。
应当理解的是,在具体实现上,该电子设备10还包括透明盖板110,或者称为透明保护盖板110,该盖板110可以为玻璃盖板或者蓝宝石盖板,其位于该显示屏120的上方并覆盖该电子设备10的正面。因为,本申请实施例中,所谓的手指按压在该显示屏120实际上是指按压在该显示屏120上方的盖板110或者覆盖该盖板110的保护层表面。
应理解,本申请实施例中的该显示屏120可以采用具有自发光显示单元的显示屏,比如有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏或者微型发光二极管(Micro-LED)显示屏。以采用OLED显示屏为例,该光学指纹装置130可以利用该OLED显示屏120位于该指纹检测区域103的显示单元(即OLED光源)来作为光学指纹检测的激励光源。当手指140按压在该指纹检测区域103时,显示屏120向该指纹检测区域103上方的目标手指140发出一束光111,该光111在手指140的表面发生反射形成反射光或者经过该手指140内部散射而形成散射光。
应理解,为便于描述,上述反射光和散射光统称为反射光。由于指纹的嵴(ridge)与峪(valley)对于光的反射能力不同,因此,来自指纹嵴141的反射光151和来自指纹峪142的发生过152具有不同的光强,反射光经过光学组件132后,被光学指纹装置130中的感应阵列134所接收并转换为相应的电信号,即指纹检测信号;基于该指纹检测信号便可以获得指纹图像数据,并且可以进一步进行指纹匹配验证,从而在该电子设备10实现光学指纹识别功能。
基于上述图2所示的结构,参见图3,图3为现有技术提供的一种指纹识别的场景示意图,其一般应用于电子设备,电子设备包括显示屏120和指纹识别装置130,指纹识别装置130设置于所述显示屏120的下方,通过接收显示屏120向上发出的光经过手指140反射的光信号,从而实现指纹识别。通常 情况下,指纹识别装置130包含挡光层1321、滤光层1322、指纹传感器芯片134以及透明胶层1323。可以理解的是,所述显示屏120上方一般设置有玻璃盖板或者蓝宝石盖板。
为了便于理解,本申请中,将指纹传感器芯片134感测光信号的一面所在的方位定义为上方,将指纹传感器芯片134的背光的一面所在的方位定义为下方。也可以说,将入射光垂直照射指纹传感器芯片134的感光面的方向定义为下方,相反的方向即为上方。滤光层1322、透明胶层1323以及挡光层1321均位于指纹传感器芯片134的上方,从上到下依次为挡光层1321、透明胶层1323、滤光层1322、指纹传感器芯片134。还需要说明的是,本申请中入射光也可以称为光信号,对其名称不作限制。
如图1所示,显示屏120发出的光垂直向上照射到手指140,被手指140反射后形成射向指纹传感器芯片134的入射光,该入射光携带了手指140的指纹特征,该入射光30向下照射到指纹传感器芯片134的感光区域之后,指纹传感器芯片134将接收的入射光的光信号转换为电信号,并得到指纹图像。
挡光层1321上设置的多个第一通光孔1324可以限制入射光的角度,使得照射到指纹传感器芯片134的感光区域的入射光携带的指纹特征更加清晰,未能通过第一通光孔1324的光信号,即照射到挡光层1321上,且在第一通光孔1324之外的光信号会被挡光层1321吸收。
在显示屏120发出的光经手指140反射后形成向下的入射光的同时,还有一部分环境光可以透过手指140射向指纹传感器芯片134,例如,环境光可以包括太阳光、灯光等。因为手指140接近红色,因此,透过手指的光通常包含红光(波长622nm~770nm)以及红外波段(770nm~1mm)的光,这一部分环境光会影响指纹识别的准确度,而且,如果环境光太强,在指纹传感器芯片134形成过曝,还会影响指纹正常识别。因此,在挡光层1321下方设置滤光层1322,所述滤光层1322用于滤除红光和红外光波段的光信号,以提高提高指纹识别的准确度。
需要说明的是,指纹传感器芯片134即为图2中的检测部分134,在图3中,指纹传感器芯片134包括感应阵列133,用于接收光信号,以进行指纹识别,在制作指纹识别装置时,通常利用一整块晶圆制作多个指纹传感器芯片134,然后在晶圆上形成滤光层1322、挡光层1321等,然后对这一整块晶圆进行切割,得到多个指纹识别装置130。为了更精准地进行切割,通常在晶圆上规划 的切割道内进行标记,切割道即为切割的位置,滤光层1322如果覆盖切割道,会使得切割道内的标记无法正常识别,影响切割精度。因此,滤光层1322不能覆盖切割道,对于单个指纹识别装置130而言,会使得滤光层1322的边缘在指纹传感器芯片134的边缘之内,使得滤光层1322的边缘处形成台阶。
透明胶层1323设置于滤光层设置于滤光层1322与挡光层1321之间,可以起黏附作用。但是,透明胶层在涂布过程中,在滤光层1322边缘的台阶处会发生隆起。此时,如果在透明胶层1323上形成挡光层1321,会使得挡光层1321在滤光层1322边缘的台阶处厚度不均,利用曝光显影进行开孔形成多个第一通光孔1324时,挡光层1321接受的光能量是均匀的,但因为挡光层1321在滤光层1322边缘的台阶处厚度不均,使得形成的第一通光孔1324孔径大小不一致,会影响穿过第一通光孔1324的入射光的一致性,影响指纹识别。
为了保证第一通光孔1324孔径大小一致,可以将滤光层1322的边缘外扩,即将滤光层1322的边缘向外延伸,扩大滤光层1322的覆盖范围,使得滤光层1322的边缘与形成第一通光孔1324的位置错开,但这又会进一步影响在晶圆上设置的切割道的位置,使得单个指纹识别装置所占用的面积增大,从而减少整块晶圆所能制作的指纹传感器芯片134的数量,降低了晶圆利用率。
结合上述对于图1-图3的解释说明,本申请实施例提供一种指纹识别装置,用于解决上述部分或者全部问题,该指纹识别装置适用于具有显示屏的电子设备,且设置在显示屏的下方。参照图4所示,图4为本申请实施例提供的一种指纹识别装置的结构图,该指纹识别装置20包括:挡光层201,滤光层202、指纹传感器芯片203、透明填平层204、光学透明介质层205以及微透镜阵列206;
滤光层202设置于指纹传感器芯片203朝向入射光的一侧;挡光层201设置于指纹传感器芯片203与滤光层202之间,挡光层201具有多个第一通光孔2011,第一通光孔2011用于将经过显示屏上方的手指返回的光信号引导至指纹传感器芯片203;透明填平层204设置于挡光层201与滤光层202之间,并填平多个第一通光孔2011;光学透明介质层205设置于滤光层202朝向入射光的一侧;微透镜阵列206设置于光学透明介质层205朝向入射光的一侧;指纹传感器芯片203用于接收手指返回的光信号,光信号用于进行指纹识别。
显示屏发出的光被手指反射后形成射向指纹传感器芯片203的入射光,该入射光通过微透镜阵列206进行汇聚,然后穿过光学透明介质层205,经过 滤光层202滤除红光及红外波段的光,然后穿过透明填平层204以及挡光层201的第一通光孔2011,被指纹传感器芯片203感测,从而实现指纹识别。
由于指纹识别装置20的挡光层201设置于滤光层202和指纹传感器芯片203之间,避免了滤光层202边缘处的台阶对挡光层201厚度均匀所产生的影响,不会造成挡光层201具有的多个第一通光孔2011的孔径大小不一致,从而保证了通过第一通光孔2011的光信号的一致性更好。同时,无需为了防止滤光层202边缘处的台阶对挡光层201厚度均匀所产生的影响,将滤光层202的边缘台阶外扩,从而避免了对一整块晶圆切割以制备指纹识别装置20时,切割道的宽度太大,能够增加整块晶圆制作的指纹识别装置20的数量,提高晶圆的利用率,从而降低了成本并提高了生产效率。
可选地,对滤光层202进行详细说明,滤光层202设置于指纹传感器芯片203朝向入射光的一侧,也可以说滤光层202设置于指纹传感器芯片203上方,滤光层202的边缘位于指纹传感器芯片203的边缘之内,因此,滤光层202的边缘处形成台阶,以避免滤光层202影响切割道内的标记识别。可选地,滤光层202可以通过镀膜(溅射或蒸镀)沉积形成,滤光层202的材质可以是无机材质。可选地,滤光层202用于对红光(波长622nm~770nm)以及红外波段(770nm~1mm)的光进行反射,滤光层202也可以称为红外线滤除(英文:Infra-red Cut,IRC)层。滤光层202对于穿透手指的环境光进行反射,减小环境光干扰,提高指纹识别精度。
可选地,对挡光层201进行详细说明,挡光层201设置在滤光层下方,可选地,挡光层201的材质可以包括:金属、无机氧化物、金属氧化物中的至少一种。其中,金属可以包括铬(Cr)、纳米银(Ag)中的至少一种;无机氧化物可以包括二氧化硅(SiO2)、氮化硅(SiNx)等;金属氧化物可以包括四氧化三铁(Fe3O4)中的至少一种。挡光层201用于引导穿过滤光层202光信号从第一通光孔2011通过。在本实施例中,所述挡光层201也可以为黑胶层,挡光层201对光信号具有低反射,高吸收的特性,也就是说挡光层201对光信号反射率低,吸收率高。挡光层201可以吸收波长在600纳米到1200纳米之间的光信号;挡光层201光信号穿透的透过率可以小于0.1%;或者也可以是挡光层201的光密度(英文:Optical Density,OD)值大于或等于3。挡光层201将不能通过第一通光孔2011射向指纹传感器芯片203的光信号进行吸收,可以避免光信号过强引起过度曝光,还可以通过第一通光孔2011控制穿过挡光层 201,射向指纹传感器芯片203的入射光的角度。
可选地,第一通光孔2011的中心与指纹传感器芯片203中对应的感光单元的中心的连线,在垂直于指纹传感器芯片203的方向上的偏移角度在0度到45度之间。本申请中垂直于指纹传感器芯片203的方向可以是垂直于指纹传感器芯片203感光面的方向。偏移角度在0度到45度之间,可以更进一步地限制入射光的角度。
可选地,挡光层201的厚度可以在0.5微米到3微米之间,如果挡光层201的厚度太小,会降低挡光效果,如果挡光层201的厚度太大,又会因为挡光层201与晶圆的膨胀系数不同,导致挡光层201的边缘翘起,在挡光层201的厚度在0.5微米到3微米之间时,挡光效果较好,且不会发生边缘翘起。具体地,挡光层201的厚度可以在1微米到2微米之间。当挡光层201的厚度在1微米到2微米之间时,挡光层201边缘不会翘起,还保证了更好的挡光效果。
具体地,挡光层201可以通过镀膜进行制备,可以在挡光层201上利用曝光显影工艺或揭开-剥离(Lift-Off)工艺进行开孔形成多个第一通光孔2011。
可选地,对透明填平层204进行详细说明,透明填平层204设置在挡光层201和滤光层202之间,且将多个第一通光孔2011填充。透明填平层204为透明材质,可以是有机材质,也可以是无机材质。透明填平层204可以涂布在挡光层201上,使得滤光层202的下表面所接触的面平整,在制备时,可以在平整的表面之上沉积滤光层202,便于制备。
此处,列举两个示例说明如何增强透明填平层204与滤光层202以及透明填平层204与挡光层201之间的黏附性。
可选地,在第一个示例中,透明填平层204与挡光层201之间设置有第一化学助剂,和/或,透明填平层204与滤光层202之间设置有第二化学助剂。第一化学助剂和第二化学助剂可以相同或者不同,第一化学助剂和第二化学助剂用于调整接触界面之间的材质(即透明填平层204与滤光层202,以及透明填平层204与挡光层201),增强黏附性。例如,第一化学助剂和第二化学助剂可以是二氧化硅(SiO2)或者六甲基二硅氮烷(HMDS),利用二氧化硅或者六甲基二硅氮烷作为接触界面可以提高黏附性,还可以选用表面凹凸不平的膜材,可以增加接触面积,进一步提高黏附性,当然,粗糙度须在合适范围内,粗糙度过大会影响光学特性(例如,折射率、反射率、透射率等)。
可选地,在第二个示例中,透明填平层204与挡光层201之间设置有黏 附剂,和/或,透明填平层204与滤光层202之间设置有黏附剂,黏附剂可以增强透明填平层204与挡光层201之间的粘结强度,以及透明填平层204与滤光层202之间的粘结强度。
当然,两个示例可以单独使用,也可以任意结合使用,也可以采用其他方式,此处只是示例性说明。
另外,需要说明的是,在制备过程中,透明填平层204与滤光层202的材质可能与后段加工工艺不匹配,滤光层202高温退火会因为材质应力不匹配,影响黏附效果。此处,列举两个示例分别说明如何解决。可选地,在第一个示例中,透明填平层204通过烘烤固化于挡光层201表面,透明填平层204在烘烤过程中采用梯度式升温进行烘烤。因为采用梯度式升温进行烘烤,可以使得透明填平层204的材质中的气体逐步释放且尽可能达到完全释放,避免后续产生气泡,影响黏附效果;可选地,在第二个示例中,滤光层202通过镀膜沉积于透明填平层204上,滤光层202的镀膜温度、离子源功率,以及退火温度与透明填平层204材质的应力匹配,例如,将退火时间加长,温度降低,匹配滤光层202与透明填平层204这一结构下的应力,弱化叠层材料应力积累,避免应力剂中带来膜层开裂。
可选地,对光学透明介质层205进行详细说明,光学透明介质层205设置于滤光层202朝向入射光的一侧,也可以说光学透明介质层205设置于滤光层202的上方,或者,光学透明介质层205设置于滤光层202远离指纹传感器芯片203的一侧。光学透明介质层205可以覆盖透明填平层204上,滤光层202未覆盖的区域,即将滤光层202边缘处的台阶填平,起到平坦作用;而且光学透明介质层205可以调整微透镜阵列206与指纹传感器芯片203之间的光程,也可以说调节微透镜阵列206的焦点位置,例如,可以在制备过程中调整光学透明介质层205的厚度,使得微透镜阵列206的焦点落在光学传感器芯片203的感光区域,也可以使得微透镜阵列206的焦点落在滤光层202的滤光区域。
微透镜阵列206设置于光学透明介质层205朝向入射光的一侧,也可以说微透镜阵列206设置于光学透明介质层205的上方,或者,微透镜阵列206设置于光学透明介质层205远离指纹传感器芯片203的一侧。微透镜阵列206对入射光起汇聚作用,可以将入射光汇聚到滤光层202的滤光区域。
图5为本申请实施例提供的另一种指纹识别装置的结构图,可选地,在本申请的一个实施例中,在图5所示的指纹传感器40中,指纹传感器芯片203 包括感应阵列2031,感应阵列2031用于接收光信号,以进行指纹识别;以及金属图形层2032;金属图形层2032设置于感应阵列2031上方,金属图形层2032具有与感应阵列2031对应的多个第二通光孔2033。需要说明的是,感应阵列2031及金属图形层2032可以设置于晶圆内部。感应阵列2031可以由多个感应单元形成,金属图形层2032用于走线,使得指纹传感器芯片203可以与外部电路连接。金属图形层2032上设置的第二通光孔2033,可以限制入射光的角度,而且,因为挡光层201位于滤光层202与指纹传感器芯片203之间,可以有效吸收金属图形层2032反射回的光信号,减少反射回的光信号对指纹识别的影响。可选地,第二通光孔2033的中心与第一通光孔2011的中心的连线,在垂直于指纹传感器芯片的方向上的偏移角度在0度到45度之间,可以进一步限制入射光的角度。
可选地,如图5所示,本申请实施例提供的指纹识别装置40还可以包括接触缓冲层207;接触缓冲层207设置于微透镜阵列206和光学透明介质层205之间,用于对微透镜阵列206和光学透明介质层205起黏附作用。
图6为本申请实施例提供的又一种指纹识别装置50的结构图。在本实施例中,所述指纹识别装置50还包括:黏附接触层208以及彩色滤光层209。其中,所述彩色滤光层209具有分别与多个第一通光孔2011相对应的多个第三通光孔2091,彩色滤光层209设置在黏附接触层208与光学透明介质层205之间,且光学透明介质层205填充多个第三通光孔2091。
彩色滤光层209可以是彩色滤光片(Color Filter,CF),具体地,当彩色滤光层可以是蓝色滤光片,设置在整个可操作区(Active Area,AA)区域,用于吸收滤光层202反射的红光与红外光,进一步减少这些光信号对指纹识别的影响,提高指纹识别的准确度,还可以改善外观。
可以理解的是,所述彩色滤光层209的材质也可以是色阻,例如,蓝色、青色或者黑色的色阻,可以通过将色阻进行曝光显影或刻蚀工艺制作形成多个第三通光孔2091,从而形成彩色滤光层209。
在本实施例中,彩色滤光层209中的第三通光孔2091的孔径大于或等于挡光层201中的第一通光孔2011的孔径,从而能够更好地限制入射光的入射角度。可选地,第三通光孔2091的中心与第一通光孔2011的中心的连线,在垂直于指纹传感器芯片203的方向上的偏移角度在0度到45度之间,从而进一步限制入射光的角度。
所述黏附接触层208设置于透明填平层204与彩色滤光层209之间且包覆滤光层202。在本实施例中,该粘附接触层208可以通过涂布的方式设置在滤光层202的上表面,其具有平坦化滤光层202表面的作用。由于所述彩色滤光层209为有机层,而所述滤光层202为无机层,二者之间的黏附性能较差,通过黏附接触层208以增加二者之间的黏附性能。
黏附接触层208可以在滤光层202和彩色滤光层209之间起黏附作用,增强滤光层202和彩色滤光层209之间的粘结强度。
可选地,如图6所示,指纹识别装置50还包括:透明光阑层210;透明光阑层210设置于指纹传感器芯片203与挡光层201之间,用于调整入射光从挡光层201到指纹传感器芯片203的光程。
具体地,透明光阑层210为可见光透过率超过95%的透明材质,从而能够更好地让入射光透过透明光阑层210。
具体地,如透明光阑层210采用二氧化硅等无机氧化物材质,透明光阑层210通过镀膜(溅射或蒸镀等)制备。如透明光阑层210采用有机透明胶材(如聚酰亚胺、亚克力树脂等),或者有机/无机硅氧烷(SOG)等材质,透明光阑层210可以通过涂布制备。因为透明光阑层210位于挡光层201与指纹传感器芯片203之间,调节了挡光层201与指纹传感器芯片203之间的距离,即调节被指纹传感器芯片203反射回的光信号的反射路径,进一步减少反射光对指纹识别的影响,优化了光路结构和光学性能的匹配。
如图6所示,入射光通过微透镜阵列206汇聚,依次穿过光学透明介质层205、彩色滤光层209的第三通光孔2091、黏附接触层208、滤光层202、透明填平层204、挡光层201的第一通光孔2011、透明光阑层206以及金属图形层2032的第二通光孔2033,被指纹传感器芯片203接收。
需要说明的是,挡光层201位于滤光层202与指纹传感器芯片203之间,可以有效吸收金属图形层2032反射回的光信号,减少反射回的光信号对指纹识别的影响;而且因为透明光阑层206位于挡光层201与金属图形层2032之间,调节了挡光层201与金属图形层2032之间的距离,即调节被金属图形层2032反射回的光信号的反射路径,进一步减少反射光对指纹识别的影响,优化了光路结构和光学性能的匹配。此外,透明填平层204也调节了滤光层202与挡光层201之间距离,更进一步地优化了光路结构和光学性能的匹配。
可选地,如图7所示,图7为本申请实施例提供的又一种指纹识别装置 的结构图,指纹识别装置60,适用于具有显示屏的电子设备,指纹识别装置60设置在显示屏的下方,包括:指纹传感器芯片203,其包括感应阵列2031以及金属图形层2032,感应阵列2031用于接收光信号以进行指纹识别,金属图形层2032具多个第二通光孔2033;挡光层201,挡光层201设置在指纹传感器芯片203的上方,挡光层201具有多个第一通光孔2011;透明填平层204设置于挡光层201上方,且填平多个第一通光孔2011;滤光层202,其设置在透明填平层204上方;黏附接触层208,设置于透明填平层204与滤光层202的上方,且包覆滤光层202;光学透明介质层205,其设置在黏附接触层208上;以及微透镜阵列206,其设置在光学透明介质层205上;手指返回的光信号经过微透镜阵列206,并通过第一通光孔2011与第二通光孔2033到达指纹传感器芯片203的感应阵列2031,指纹传感器芯片203接收光信号以进行指纹识别。
基于上述图4-图7所描述的指纹识别装置,本申请实施例提供一种电子设备,如图8所示,该电子设备30包括:显示屏31,以及如上述实施例中任一实施例所描述的指纹识别装置20,指纹识别装置20设置在显示屏31的下方。该显示屏31可以是上文描述的任一种显示屏,该显示屏31例如可以为自发光显示屏,如OLED屏。该指纹识别装置20也可以为上文描述的任一种指纹识别装置,为简化描述,此处不再赘述。
本申请实施例提供的电子设备可以为智能手机、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(automated teller machine,ATM)等其他电子设备,本申请实施例对此并不限定;更具体地,在上述电子设备中,指纹识别装置可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹系统。或者,所述指纹识别装置也可以部分或者全部集成至所述电子设备的显示屏内部,从而形成屏内(In-display)光学指纹系统。
本申请实施例提供的电子设备,由于指纹识别装置的挡光层设置于滤光层和指纹传感器芯片之间,避免了滤光层边缘处的台阶对挡光层厚度均匀所产生的影响,不会造成挡光层具有的多个第一通光孔的孔径大小不一致,从而保证了通过第一通光孔的光信号的一致性更好。同时,无需为了防止滤光层边缘处的台阶对挡光层厚度均匀所产生的影响,将滤光层的边缘台阶外扩,从而避免了对一整块晶圆切割以制备指纹识别装置时,切割道的宽度太大,能够增加整块晶圆制作的指纹识别装置的数量,提高晶圆的利用率。
至此,已经对本主题的特定实施例进行了描述。其它实施例在所附权利要求书的范围内。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种指纹识别装置,适用于具有显示屏的电子设备,其特征在于,所述指纹识别装置设置在所述显示屏的下方,包括:挡光层,滤光层、指纹传感器芯片、透明填平层、光学透明介质层以及微透镜阵列;
    所述滤光层设置于所述指纹传感器芯片朝向入射光的一侧;
    所述挡光层设置于所述指纹传感器芯片与所述滤光层之间,所述挡光层具有多个第一通光孔,所述第一通光孔用于将经过所述显示屏上方的手指返回的光信号引导至所述指纹传感器芯片;
    所述透明填平层设置于所述挡光层与所述滤光层之间,并填平所述多个第一通光孔;
    所述光学透明介质层设置于所述滤光层朝向入射光的一侧;
    所述微透镜阵列设置于所述光学透明介质层朝向所述入射光的一侧;
    所述指纹传感器芯片用于接收所述手指返回的光信号,所述光信号用于进行指纹识别。
  2. 根据权利要求1所述的指纹识别装置,其特征在于,所述指纹传感器芯片包括感应阵列,所述感应阵列用于接收所述光信号,以进行指纹识别;以及金属图形层;
    所述金属图形层设置于所述感应阵列的上方,所述金属图形层具有与所述感应阵列对应的多个第二通光孔。
  3. 根据权利要求1所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:黏附接触层,所述黏附接触层设置于所述透明填平层与所述光学透明介质层之间且包覆所述滤光层。
  4. 根据权利要求3所述的指纹识别装置,其特征在于,所述指纹识别装置进一步包括彩色滤光层,所述彩色滤光层具有分别与所述多个第一通光孔相对应的多个第三通光孔,所述彩色滤光层设置在所述黏附接触层与所述光学透明介质层之间,且所述光学透明介质层填充所述多个第三通光孔。
  5. 根据权利要求4所述的指纹识别装置,其特征在于,所述第三通光孔的中心与所述第一通光孔的中心的连线,在垂直于所述指纹传感器芯片的方向上的偏移角度在0度到45度之间。
  6. 根据权利要求1至5中任意一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:透明光阑层;
    所述透明光阑层设置于所述指纹传感器芯片与所述挡光层之间,用于调整 入射光从所述挡光层到所述指纹传感器芯片的光程。
  7. 根据权利要求6所述的指纹识别装置,其特征在于,所述透明光阑层为可见光透过率超过95%的透明材质。
  8. 根据权利要求1至5中任意一项所述的指纹识别装置,其特征在于,所述指纹识别装置还包括:接触缓冲层;
    所述接触缓冲层设置于所述微透镜阵列和所述光学透明介质层之间,用于对所述微透镜阵列和所述光学透明介质层起黏附作用。
  9. 根据权利要求1至5中任意一项所述的指纹识别装置,其特征在于,
    所述透明填平层与所述挡光层之间设置有增强黏附性的第一化学助剂,和/或,所述透明填平层与所述滤光层之间设置有增强黏附性的第二化学助剂。
  10. 根据权利要求1至5中任意一项所述的指纹识别装置,其特征在于,
    所述透明填平层通过烘烤固化于所述挡光层表面,所述透明填平层在烘烤过程中采用梯度式升温进行烘烤。
  11. 根据权利要求1至5中任意一项所述的指纹识别装置,其特征在于,
    所述滤光层通过镀膜沉积于所述透明填平层上,所述滤光层的镀膜温度、离子源功率,以及退火温度与所述透明填平层材质的应力匹配。
  12. 根据权利要求1至5中任意一项所述的指纹识别装置,其特征在于,所述挡光层的厚度范围为0.5微米到3微米之间。
  13. 根据权利要求1至5中任意一项所述的指纹识别装置,其特征在于,
    所述第一通光孔的中心与所述指纹传感器芯片中对应的感应单元的中心的连线,在垂直于所述指纹传感器芯片的方向上的偏移角度在0度到45度之间。
  14. 一种指纹识别装置,适用于具有显示屏的电子设备,其特征在于,所述指纹识别装置设置在所述显示屏的下方,包括:
    指纹传感器芯片,其包括感应阵列以及金属图形层,所述感应阵列用于接收所述光信号以进行指纹识别,所述金属图形层具多个第二通光孔;
    挡光层,所述挡光层设置在所述指纹传感器芯片的上方,所述挡光层具有多个第一通光孔;
    透明填平层设置于所述挡光层上方,且填平所述多个第一通光孔;
    滤光层,其设置在所述透明填平层上方;
    黏附接触层,设置于所述透明填平层与所述滤光层的上方,且包覆所述滤光层;
    光学透明介质层,其设置在所述黏附接触层上;以及
    微透镜阵列,其设置在所述光学透明介质层上;
    所述手指返回的光信号经过所述微透镜阵列,并通过所述第一通光孔与所述第二通光孔到达所述指纹传感器芯片的感应阵列,所述指纹传感器芯片接收所述光信号以进行指纹识别。
  15. 一种电子设备,其特征在于,包括显示屏,以及如权利要求1-14任一项所述的指纹识别装置,所述指纹识别装置设置在所述显示屏的下方。
PCT/CN2020/112269 2020-08-28 2020-08-28 指纹识别装置及电子设备 WO2022041145A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112269 WO2022041145A1 (zh) 2020-08-28 2020-08-28 指纹识别装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112269 WO2022041145A1 (zh) 2020-08-28 2020-08-28 指纹识别装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022041145A1 true WO2022041145A1 (zh) 2022-03-03

Family

ID=80352435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112269 WO2022041145A1 (zh) 2020-08-28 2020-08-28 指纹识别装置及电子设备

Country Status (1)

Country Link
WO (1) WO2022041145A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210295125U (zh) * 2019-08-08 2020-04-10 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111095279A (zh) * 2019-07-12 2020-05-01 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111192941A (zh) * 2020-03-02 2020-05-22 苏州晶方半导体科技股份有限公司 指纹识别芯片的封装结构和方法
CN111507229A (zh) * 2019-11-01 2020-08-07 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN211319244U (zh) * 2020-01-22 2020-08-21 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095279A (zh) * 2019-07-12 2020-05-01 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN210295125U (zh) * 2019-08-08 2020-04-10 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
CN111507229A (zh) * 2019-11-01 2020-08-07 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN211319244U (zh) * 2020-01-22 2020-08-21 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备
CN111192941A (zh) * 2020-03-02 2020-05-22 苏州晶方半导体科技股份有限公司 指纹识别芯片的封装结构和方法

Similar Documents

Publication Publication Date Title
CN110088768B (zh) 屏下指纹识别装置和电子设备
CN210038821U (zh) 光学指纹识别装置和电子设备
WO2020150888A1 (zh) 指纹识别装置和电子设备
WO2020151158A1 (zh) 生物特征识别的装置
WO2021072753A1 (zh) 指纹检测装置和电子设备
WO2020102949A1 (zh) 指纹识别装置和电子设备
CN111133444B (zh) 指纹识别装置和电子设备
WO2021035622A1 (zh) 指纹识别装置和电子设备
TWM592604U (zh) 感光模組及取像裝置
CN213659462U (zh) 指纹识别装置和电子设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
WO2021007730A1 (zh) 指纹检测装置和电子设备
WO2020113396A1 (zh) 光学镜头及其制作方法、指纹识别模组、移动终端
WO2021077406A1 (zh) 指纹识别装置和电子设备
WO2021077368A1 (zh) 指纹识别装置和电子设备
WO2020243934A1 (zh) 光学图像采集装置和电子设备
CN213659463U (zh) 指纹识别装置和电子设备
CN213211040U (zh) 指纹识别装置及电子设备
WO2022041145A1 (zh) 指纹识别装置及电子设备
US11783619B2 (en) Fingerprint identification apparatus and electronic device
CN113486801B (zh) 感测装置
EP3706040B1 (en) Under-display sensing device
CN114078888A (zh) 光学指纹器件
CN114594629B (zh) 指纹识别显示面板及装置
WO2022099562A1 (zh) 指纹识别装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950815

Country of ref document: EP

Kind code of ref document: A1