WO2020196783A1 - 共焦点顕微鏡ユニット及び共焦点顕微鏡 - Google Patents

共焦点顕微鏡ユニット及び共焦点顕微鏡 Download PDF

Info

Publication number
WO2020196783A1
WO2020196783A1 PCT/JP2020/013799 JP2020013799W WO2020196783A1 WO 2020196783 A1 WO2020196783 A1 WO 2020196783A1 JP 2020013799 W JP2020013799 W JP 2020013799W WO 2020196783 A1 WO2020196783 A1 WO 2020196783A1
Authority
WO
WIPO (PCT)
Prior art keywords
subunit
fluorescence
excitation light
confocal microscope
mirror
Prior art date
Application number
PCT/JP2020/013799
Other languages
English (en)
French (fr)
Inventor
慈郎 山下
康行 田邊
俊輔 松田
寺田 浩敏
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to US17/442,238 priority Critical patent/US20220155577A1/en
Priority to CN202080025057.0A priority patent/CN113646686B/zh
Priority to EP20776340.0A priority patent/EP3951466A4/en
Priority to JP2021509611A priority patent/JPWO2020196783A1/ja
Publication of WO2020196783A1 publication Critical patent/WO2020196783A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0048Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces

Definitions

  • the present disclosure relates to a confocal microscope unit and a confocal microscope that constitute a confocal microscope.
  • a confocal microscope capable of obtaining an optical tomographic image of an observation target specimen with high resolution.
  • a microscope connection port connected to a microscope, a stimulation unit that irradiates a sample with light, an observation unit that detects light emitted from the sample, a microscope, a stimulation unit, and an observation unit are described.
  • a microscope connection unit including an optical path synthesizer that synthesizes optical paths that are optically connected is disclosed.
  • This microscope connection unit uses the same optical system that guides light emitted from multiple light sources, a dichroic mirror for detecting the fluorescence generated in response to each of multiple wavelengths, a confocal pinhole, and a photomultiplier tube. It is held in the observation unit of. In such a configuration, by using excitation light of a plurality of wavelengths and detecting the fluorescence generated accordingly, imaging in a plurality of wavelength regions can be realized with the same device.
  • the positions of the light source that outputs the excitation light and the diaphragm member that limits the fluorescence light beam are coupled to the dichroic mirror that separates the excitation light and the fluorescence. It was necessary to install it in a position, and it took time and effort to adjust the optical of this conjugate position.
  • the embodiment has been made in view of such a problem, and by providing the dichroic mirror with a unit in which the positions of the light source for outputting the excitation light and the diaphragm member for limiting the luminous flux of fluorescence are set at the conjugate positions.
  • An object of the present invention is to provide a confocal microscope unit capable of easily performing confocal imaging at a plurality of wavelengths.
  • the cofocal microscope unit is a cofocal microscope unit that constitutes a cofocal microscope by being attached to a connection port of a microscope having a microscope optical system, and outputs a first excitation light.
  • a light source a first aperture member that limits the light beam of the first fluorescence generated from the sample to be observed in response to the first excitation light, and a first aperture member that detects the first fluorescence that has passed through the first aperture member.
  • a scan lens that guides the formed fluorescence to the scan mirror, and a main housing that is configured to be attached to a connection port and has the scan mirror, scan lens, first subsystem, and second subsystem fixed
  • the first subsystem has a first beam splitter that reflects the first excitation light and the first fluorescence and transmits the second excitation light and the second fluorescence.
  • the first excitation light output from the first subunit is reflected on the first beam splitter and then scanned onto the sample via the scan mirror and scan lens, and accordingly.
  • the first fluorescence generated from the sample passes through the scan lens and the scan mirror, and then reflects into the first beam splitter to enter the first subunit, and the first in the first subunit.
  • the image is tied to the diaphragm member of No. 1 and detected by the first light detector.
  • the second excitation light output from the second subunit passes through the first beam splitter in the first subunit and then is scanned onto the sample via the scan mirror and scan lens.
  • the second fluorescence generated from the sample passes through the first beam splitter via the scan lens and the scan mirror and then enters the second subunit, and then enters the second subunit.
  • the image is formed on the second diaphragm member of the above and is detected by the second photodetector.
  • the optical system of the light source and the diaphragm member in units of the first and second subunits are used. It is possible to set the positional relationship of. As a result, it is possible to improve the accuracy of imaging in a plurality of wavelength regions while facilitating the setting work.
  • another embodiment of the present disclosure is a confocal microscope comprising the above-mentioned confocal microscope unit and a microscope having a microscope optical system and a connection port to which the confocal microscope unit is attached. According to such a confocal microscope, confocal imaging at a desired excitation wavelength and fluorescence wavelength can be easily performed.
  • FIG. 1 is a schematic configuration diagram of a confocal microscope A according to an embodiment.
  • the confocal microscope A shown in FIG. 1 constitutes a confocal microscope that acquires an image that enables the construction of an optical tomographic image of the sample M to be observed, and the confocal microscope unit 1 is for connecting an external unit of the microscope 50. It is configured to be connected to the connection port P1.
  • the confocal microscope unit 1 irradiates a sample M arranged on a stage of the microscope 50 or the like with excitation light via a microscope optical system such as an imaging lens 51 and an objective lens 52 in the microscope 50.
  • This is an apparatus that receives (detects) fluorescence generated from sample M in response to excitation light via the microscope optical system of the microscope 50 to generate and output an optical tomographic image.
  • the confocal microscope unit 1 constitutes the main housing 2, a part of the main housing 2, and has a lens barrel 3 detachably connected to the connection port P1 of the microscope 50, and the main housing 2.
  • the scan mirror 4 fixed inside, the fixed mirror 5, the first to fourth subunits 6a to 6d, and the scan lens 7 fixed inside the lens barrel 3 are included.
  • each component of the confocal microscope unit 1 will be described in detail.
  • the scan lens 7 in the lens barrel 3 is an optical element having a function of relaying the reflecting surface of the scan mirror 4 to the pupil position of the objective lens 52 and at the same time forming a spot on the primary imaging surface of the microscope optical system of the microscope 50. is there.
  • the scan lens 7 irradiates the sample M with the excitation light scanned by the scan mirror 4 by guiding the excitation light to the microscope optical system, and guides the fluorescence generated from the sample M to the scan mirror 4 accordingly.
  • the scan mirror 4 in the main housing 2 is, for example, an optical scanning element such as a MEMS (Micro Electro Mechanical System) mirror configured so that the reflector can be tilted in two axes.
  • the scan mirror 4 scans the excitation light output from the first to fourth subunits 6a to 6d on the sample M by continuously changing the reflection angle, and emits fluorescence generated in response to the excitation light. , It has a role of guiding toward the first to fourth subunits 6a to 6d.
  • the fixed mirror 5 is a light reflecting element fixed in the main housing 2, and reflects the excitation light output from the first to fourth subsystems 6a to 6d toward the scan mirror 4 to reflect the excitation light toward the scan mirror 4.
  • the fluorescence reflected by is reflected toward the first to fourth subsystems 6a to 6d coaxially with the excitation light.
  • the first subsystem 6a includes a base plate 8a, a dichroic mirror (first beam splitter) 9a arranged on the base plate 8a, a light source 10a, a dichroic mirror 11a, and a pinhole plate (first diaphragm member) 12a. , A photodetector (first photodetector) 13a.
  • the dichroic mirror 9a is fixed in the fluorescence reflection direction of the fixed mirror 5, and the first excitation light of the wavelength ⁇ 1 irradiated by the first subsystem 6a and the first excitation light of the wavelength range ⁇ 1 generated from the sample M accordingly.
  • the dichroic mirror 11a is arranged in the reflection direction of the first fluorescent dichroic mirrors 9a, it passes through the first fluorescence wavelength range [Delta] [lambda] 1, reflects the first excitation light of a shorter wavelength lambda 1 than the wavelength range [Delta] [lambda] 1 It is a beam splitter that has the property of causing.
  • the light source 10a is a light emitting element (for example, a laser diode) that outputs a first excitation light (for example, laser light) having a wavelength ⁇ 1 , and the first excitation light is coaxial with the first fluorescence by the dichroic mirror 11a. It is arranged so as to be reflected toward the dichroic mirror 9a.
  • the pinhole plate 12a is a diaphragm member whose pinhole position coincides with the conjugate position of the spot of the first excitation light of the sample M and limits the light flux of the first fluorescence, and together with the light source 10a and the like. It constitutes a cofocal optical system.
  • the pinhole plate 12a has a pinhole diameter that can be adjusted from the outside, and the resolution of the image detected by the photodetector 13a and the signal intensity of the image can be changed.
  • the photodetector 13a is arranged with its detection surface facing the pinhole plate 12a, and receives and detects the first fluorescence that has passed through the pinhole plate 12a.
  • the photodetector 13a is a photomultiplier tube, a photodiode, an avalanche photodiode, an MPPC (Multi-Pixel Photon Counter), an HPD (Hybrid Photo Detector), an area image sensor, or the like.
  • the second to fourth subunits 6b to 6d also have the same configuration as the first subunit 6a.
  • the second subsystem 6b includes a base plate 8b, a dichroic mirror (second beam splitter) 9b, a light source 10b, a dichroic mirror 11b, a pinhole plate (second diaphragm member) 12b, and a photodetector (second beam splitter). 2 Photodetector) 13b.
  • the dichroic mirror 9b reflects the second excitation light of the wavelength ⁇ 2 (> ⁇ 1 ) irradiated by the second subunit 6b and the second fluorescence of the wavelength range ⁇ 2 generated from the sample M accordingly, and the second It has the property of transmitting light having a wavelength longer than that of the second excitation light and the second fluorescence.
  • the dichroic mirror 11b passes through a second fluorescence wavelength range [Delta] [lambda] 2, has a property of reflecting the second excitation light of a shorter wavelength lambda 2 from the wavelength range [Delta] [lambda] 2.
  • the light source 10b is a light emitting element that outputs a second excitation light having a wavelength of ⁇ 2 .
  • the pinhole plate 12b is a diaphragm member whose pinhole position is arranged so as to coincide with the conjugate position of the second excitation light spot of the sample M and limits the light flux of the second fluorescence.
  • the photodetector 13b has its detection surface opposed to the pinhole plate 12b and receives and detects the second fluorescence that has passed through the pinhole plate 12b.
  • the photodetector 13b is a photomultiplier tube, a photodiode, an avalanche photodiode, an MPPC (Multi-Pixel Photon Counter), an HPD (Hybrid Photo Detector), an area image sensor, or the like.
  • the third subsystem 6c includes a base plate 8c, a dichroic mirror (third beam splitter) 9c, a light source 10c, a dichroic mirror 11c, a pinhole plate (third diaphragm member) 12c, and a photodetector (third diaphragm member). It has a photodetector) 13c.
  • the dichroic mirror 9c reflects the third excitation light of the wavelength ⁇ 3 (> ⁇ 2 ) irradiated by the third subsystem 6c and the third fluorescence of the wavelength range ⁇ 3 generated from the sample M accordingly. It has the property of transmitting light having a wavelength longer than that of the excitation light of No. 3 and the third fluorescence.
  • the dichroic mirror 11c is transmitted through the third fluorescence having a wavelength range [Delta] [lambda] 3, has the property of reflecting the third pumping light having a wavelength shorter lambda 3 than the wavelength range [Delta] [lambda] 3.
  • the light source 10c is a light emitting element that outputs a third excitation light having a wavelength of ⁇ 3 .
  • the pinhole plate 12c is a diaphragm member whose pinhole position is arranged so as to coincide with the conjugate position of the third excitation light spot of the sample M and limits the light flux of the third fluorescence.
  • the photodetector 13c is arranged with its detection surface facing the pinhole plate 12c, and receives and detects the third fluorescence that has passed through the pinhole plate 12c.
  • the photodetector 13c is a photomultiplier tube, a photodiode, an avalanche photodiode, an MPPC (Multi-Pixel Photon Counter), an HPD (Hybrid Photo Detector), an area image sensor, or the like.
  • the fourth subsystem 6d includes a base plate 8d, a total reflection mirror 9d, a light source 10d, a dichroic mirror 11d, a pinhole plate (fourth aperture member) 12d, and a photodetector (fourth photodetector) 13d.
  • the total reflection mirror 9c reflects the fourth excitation light of the wavelength ⁇ 4 (> ⁇ 3 ) irradiated by the fourth subunit 6d and the fourth fluorescence of the wavelength range ⁇ 4 generated from the sample M accordingly.
  • the dichroic mirror 11d is transmitted through the fourth fluorescence wavelength range [Delta] [lambda] 4, have the property of reflecting the fourth pumping light wavelength shorter lambda 4 than the wavelength range [Delta] [lambda] 4.
  • the light source 10d is a light emitting element that outputs a fourth excitation light having a wavelength of ⁇ 4 .
  • the pinhole plate 12d is a diaphragm member whose pinhole position is arranged so as to coincide with the conjugate position of the fourth excitation light spot of the sample M and limits the luminous flux of the fourth fluorescence.
  • the photodetector 13d is arranged with its detection surface facing the pinhole plate 12d, and receives and detects the fourth fluorescence that has passed through the pinhole plate 12d.
  • the photodetector 13d is a photomultiplier tube, a photodiode, an avalanche photodiode, an MPPC (Multi-Pixel Photon Counter), an HPD (Hybrid Photo Detector), an area image sensor, or the like.
  • the first to fourth subsystems 6a to 6d are arranged in this order in the direction away from the fixed mirror 5 along the light guide direction of the first to fourth fluorescence by the scan mirror 4 and the fixed mirror 5. Moreover, the dichroic mirrors 9a to 9c and the total reflection mirror 9d are fixed in the main housing 2 so as to be located on the first to fourth fluorescent optical paths. Specifically, the second to fourth subunits 6b to 6d are based on the center positions of the dichroic mirrors 9a to 9c and the total reflection mirror 9d with respect to the first to third subunits 6a to 6c, respectively. Therefore, they are arranged so as to shift by a predetermined distance d in a direction perpendicular to the light guide direction of the second to fourth fluorescence.
  • This predetermined distance d is set to be substantially equal to the shift amount ⁇ in the direction perpendicular to the optical path caused by the refraction of fluorescence in each of the dichroic mirrors 9a to 9c in the optical path of fluorescence transmitted by the dichroic mirrors 9a to 9c. ..
  • the thicknesses of the mirror members constituting the dichroic mirrors 9a to 9c are set to be the same, the shift amounts generated by the dichroic mirrors 9a to 9c are substantially the same, and accordingly, the first to fourth The shift distance d between two adjacent subunits among the subunits 6a to 6d of the above is also set to be the same.
  • the shift distance d is appropriately set according to the thickness and the refractive index of the mirror members constituting the dichroic mirrors 9a to 9c. Specifically, when the mirror member has a thickness t and a refractive index n, the incident angle of the fluorescence incident on the mirror member is ⁇ , and the refraction angle inside the mirror member is ⁇ , the shift amount ⁇ of the fluorescence by the mirror member is , As shown in FIG. At this time, since the shift amount ⁇ can be obtained by the following equation (1), the shift distance (predetermined distance) d may be set according to the shift amount ⁇ . There is a relationship of the following equation (2) between the incident angle ⁇ and the refraction angle ⁇ .
  • FIG. 3 shows an example of the positioning structure of the first to fourth subunits 6a to 6d.
  • the components of the first to third subunits 6a to 6d are not shown.
  • two protrusions (first to fourth positioning portions) 15a corresponding to the first to fourth subunits 6a to 6d are respectively.
  • To 15d are provided, and the holes 16 formed in the base plates 8a to 8d of the first to fourth subunits 6a to 6d are fitted into the two protrusions 15a to 15d, respectively.
  • the first to fourth subunits 6a to 6d are positioned so as to shift each other by a predetermined distance d.
  • the distance between the two protrusions 15a to 15d on the base plate 14 and the distance between the two holes 16 on the base plates 8a to 8d are all formed to be the same.
  • any subunit can be selected from the first to fourth subunits 6a to 6d and arranged on the base plate 14 in the main housing 2.
  • the selected subunits are packed and arranged on the fixed mirror 5 side, and the wavelength of the excitation light to be irradiated is emitted. Are arranged so as to line up from the fixed mirror 5 side in order from the shortest one.
  • the first excitation light output from the first subsystem 6a reflects the dichroic mirror 9a and then passes through the scan mirror 4 and the scan lens 7 to the sample M.
  • the first fluorescence generated from the sample M which is scanned upward, passes through the scan lens 7 and the scan mirror 4 and then reflects off the dichroic mirror 9a to enter the first subsystem 6a.
  • the image is formed on the pinhole plate 12a in the first subsystem 6a and detected by the light detector 13a.
  • the second excitation light output from the second subsystem 6b reflects the dichroic mirror 9b in the second subsystem 6b and then passes through the dichroic mirror 9a in the first subsystem 6a.
  • the dichroic mirror 9a is transmitted through the dichroic mirror 9a via the scan lens 7 and the scan mirror 4.
  • the dichroic mirror 9b is reflected and incident on the second subsystem 6b, and the image is formed on the pinhole plate 12b in the second subsystem 6b and detected by the optical detector 13b.
  • the excitation light emitted from the own unit and the fluorescence generated accordingly reflect the dichroic mirror of the own unit and pass through the dichroic mirror of the other unit.
  • first to fourth subunits 6a to 6d can be adjusted so that the positions of the light source and the pinhole are in a conjugate relationship outside the confocal microscope unit 1, respectively, and the confocal microscope unit 1 After mounting on the device, troublesome optical adjustment is not required, and subunits can be easily added or replaced.
  • FIG. 4 is a graph showing the wavelength distribution characteristics of excitation light and fluorescence handled by the first to fourth subunits 6a to 6d.
  • Wavelength range [Delta] [lambda] 1 of fluorescence generated in response to the excitation light having a wavelength lambda 1 emitted from the first sub-unit 6a is generally a range of wavelength longer than the wavelength lambda 1 and in the vicinity of the wavelength lambda 1 Become.
  • the wavelength ⁇ 2 of the excitation light emitted from the second subunit 6b and the wavelength range ⁇ 2 of the fluorescence generated thereby are in a wavelength range longer than the wavelength ⁇ 1 and the wavelength range ⁇ 1. ..
  • the boundary wavelength ⁇ d1 of the optical division of the dichroic mirror 9a of the first subunit 6a is longer than the wavelength ⁇ 1 and the wavelength range ⁇ 1 , and is longer than the wavelength ⁇ 2 and the wavelength range ⁇ 2. It is set to a value that is a short wavelength. This enables confocal measurement in the wavelength ⁇ 1 and wavelength range ⁇ 1 using the first subunit 6a, and the wavelength ⁇ 2 and wavelength range ⁇ using the second subunit 6b of the same device. Confocal measurement in the range of 2 is possible.
  • the boundary wavelength ⁇ d2 of the optical division of the dichroic mirror 9b of the second subsystem 6b is longer than the wavelength ⁇ 2 and the wavelength range ⁇ 2 , and is longer than the wavelength ⁇ 3 and the wavelength range ⁇ 3. It is set to a value that is a short wavelength, and the boundary wavelength ⁇ d3 of the optical division of the dichroic mirror 9c of the third subsystem 6c is a longer wavelength than the wavelength ⁇ 3 and the wavelength range ⁇ 3 , and the wavelength ⁇ It is set to a value that is shorter than 4 and the wavelength range ⁇ 4 .
  • the scan mirror 4, the scan lens 7, and the first to fourth subunits 6a to 6d are fixed to the main housing 2, and the first to fourth subunits 6a to 6d are arbitrary subunits.
  • such a setting can be performed in units of subunits, and after the first to fourth subunits 6a to 6d are housed in the main housing 2, the scan mirror 4 and the scan lens 7 are adjusted. Highly accurate image detection is possible just by doing so.
  • pinhole plates 12a to 12d of the first to fourth subunits 6a to 6d can be adjusted according to the wavelength of the fluorescence to be observed, the wavelength of the fluorescence to be observed.
  • the resolution of the image and the signal strength of the image can be adjusted accordingly.
  • the thicknesses of the mirror members constituting the first to third dichroic mirrors 9a to 9c are substantially the same. According to such a configuration, the deviation of the optical axis of the excitation light or the fluorescence generated by passing through each of the first to third dichroic mirrors 9a to 9c can be made equal, and the first to fourth dichroic mirrors can be made equivalent.
  • the displacement of the arrangement between the subunits 6a to 6d may be set to the same distance d, and the positioning structure can be simplified. As a result, imaging in a plurality of wavelength regions can be realized while facilitating the setting work of the first to fourth subunits 6a to 6b.
  • the main housing 2 is provided with protrusions 15a to 15d for positioning the first to fourth subunits 6a to 6d, and these protrusions 15a to 15d provide the second to fourth subunits.
  • Each of 6b to 6d is configured to be positioned by shifting each of the first to third subunits 6a to 6c by a predetermined distance d in a direction perpendicular to the light guide direction of fluorescence.
  • the subunit can be positioned with respect to the other subunit in the previous stage according to the deviation of the optical axis of the excitation light or fluorescence caused by passing through the dichroic mirror in the other subunit in the previous stage. As a result, the accuracy of imaging in four wavelength regions can be improved.
  • the shift distance d with respect to the first to third subunits 6a to 6c in the preceding stage of the second to fourth subunits 6b to 6d depends on the shift amount ⁇ of the fluorescent optical path by the dichroic mirrors 9a to 9c. May be set. Further, since this shift amount differs depending on the wavelength of fluorescence, the shift distance d with respect to the subunit in the previous stage may be set to a different value for each subunit. However, when the shift amount ⁇ of the optical path of fluorescence by the dichroic mirrors 9a to 9c is almost the same, the shift distance d of each subunit with respect to the subunit in the previous stage may be the same value.
  • the scan mirror 4 is composed of a MEMS mirror. In the case of such a configuration, the device can be easily miniaturized.
  • a pinhole plate is used as a diaphragm member to form a confocal optical system, but the diaphragm member may be an optical element that limits the luminous flux, for example, a color diaphragm or a fiber core. You may.
  • the position of the end face of the fiber core may be the diaphragm position (the position where the luminous flux is limited).
  • a laser light source such as a solid-state laser or a diode laser can also be used.
  • the position of the beam waist of these laser light sources may be set to the diaphragm position (the position where the luminous flux is limited), and the light source itself plays the role of a diaphragm member.
  • the first to fourth subunits 6a to 6d are arranged in the order of shortening the wavelength range of the excitation light and fluorescence to be handled in the direction away from the scan mirror 4 side, but in the order of the longest wavelength range. It may be arranged.
  • the characteristics of the dichroic mirrors 9a to 9c reflect the relatively long-wavelength excitation light and fluorescence handled by each of the subsystems 6a to 6c, and the relatively short-wavelength excitation light handled by the other subsystems. And the characteristics are set to transmit fluorescence.
  • the main housing has a first positioning unit for positioning the first subunit and a second positioning unit for positioning the second subunit, and the first positioning unit and the first positioning unit and the second positioning unit are provided.
  • the second positioning unit may shift the second subunit with respect to the first subunit by a predetermined distance in the direction intersecting the fluorescence light guide direction. As a result, the horizontal positions of the beams from each subunit can be aligned.
  • this predetermined distance may be set according to the shift amount of the fluorescence optical path in the direction intersecting the fluorescence light guide direction.
  • the second subunit can be positioned with respect to the first subunit according to the deviation of the optical axis of the excitation light or fluorescence caused by passing through the first beam splitter. As a result, the accuracy of imaging in a plurality of wavelength regions can be improved.
  • the scan mirror may be a MEMS mirror.
  • the device can be easily miniaturized.
  • first subunit and the second subunit are arranged in the main housing in the order of the first subunit and the second subunit along the light guide direction of fluorescence by the scan mirror. It may be fixed.
  • the first and second excitation lights emitted from the first and second subunits, respectively are passed through the first beam splitter in the first subunit to the sample on the microscope side.
  • the first and second fluorescence, respectively, generated from the sample can be irradiated towards the first subunit via the first beam splitter in the first subunit. It can be installed in the unit. As a result, it is possible to realize imaging in a plurality of wavelength regions with the same device.
  • a light source that outputs a third excitation light
  • a third aperture member that limits the light flux of the third fluorescence generated from the sample in response to the third excitation light
  • a third aperture member that has passed through the third aperture member. It further comprises a third subunit having a third light detector that detects the fluorescence of the third, the second subunit reflecting the second excitation light and the second fluorescence, the third excitation light and It may have a second beam splitter that transmits a third fluorescence.
  • the second excitation light output from the second subunit reflects the second beam splitter in the second subunit and then the first beam splitter in the first subunit.
  • the third excitation light output from the third subunit passes through the second beam splitter in the second subunit and the first beam splitter in the first subunit before scanning.
  • the third beam generated from the sample is scanned onto the sample via the mirror and the scan lens, and the third beam is transmitted through the scan lens and the scan mirror to the first beam splitter and the second beam splitter. Then, it is incident on the third subunit, and the image is formed on the third diaphragm member in the third subunit and detected by the third optical detector. This makes it possible to realize imaging in three wavelength regions with the same device.
  • the main housing has a second positioning portion for positioning the second subunit and a third positioning portion for positioning the third subunit, and the second positioning portion and the third positioning portion are provided.
  • the unit may position the third subunit by shifting it with respect to the second subunit by a predetermined distance in the direction intersecting the fluorescent light guide direction.
  • the third subunit can be positioned with respect to the second subunit according to the deviation of the optical axis of the excitation light or fluorescence caused by passing through the second beam splitter. As a result, the accuracy of imaging in a plurality of wavelength regions can be improved.
  • the thickness of the first beam splitter and the thickness of the second beam splitter may be the same.
  • the first subunit, the second subunit, and the third subunit are the first subunit, the second subunit, and the third subunit along the light guide direction of fluorescence by the scan mirror.
  • the subunits may be fixed to the main housing in the order of the subunits.
  • the first to third excitation lights emitted from each of the first to third subunits are microscoped via the first and second beam splitters in the first and second subunits. It is possible to irradiate the sample on the side and correspondingly pass the first to third fluorescence generated from the sample via the first and second beam splitters in the first and second subunits. Then, it can be introduced into the first to third subunits. As a result, it is possible to realize imaging in three wavelength regions with the same device.
  • a confocal microscope unit and a confocal microscope constituting the confocal microscope are used, and the positions of the light source that outputs excitation light and the aperture member that limits the light beam of fluorescence are set to the conjugate position with respect to the dichroic mirror.
  • M ... sample, P1 ... connection port, d ... predetermined distance, 10a to 10d ... light source, 12a to 12d ... pinhole plate (aperture member), 13a to 13d ... light detector, 15a to 15d ... protrusion (positioning part) , 6a to 6b ... 1st to 4th subsystems, 9a to 9c ... Dycroic mirrors (1st to 3rd beam splitters), 1 ... Confocal microscope unit, 2 ... Main housing, 3 ... Lens barrel, 4 ... scan mirror, 7 ... scan lens, 50 ... microscope, A ... confocal microscope.

Abstract

実施形態にかかる共焦点顕微鏡ユニット1は、光源10a、ピンホール板12a、及び、光検出器13aを有する第1のサブユニット6aと、光源10b、ピンホール板12b、及び、光検出器13bを有する第2のサブユニット6bと、励起光を試料M上で走査させ、試料Mから生じる蛍光を第1及び第2のサブユニット6a,6bに向けて導くスキャンミラー4と、励起光を導光し、蛍光をスキャンミラー4に導光するスキャンレンズ7と、接続ポートP1に取り付け可能にされ、スキャンミラー4、スキャンレンズ7、及びサブユニット6a,6bが固定されたメイン筐体2と、を備え、第1のサブユニット6aは、自ユニットで扱う励起光及び蛍光を第2のサブユニット6bの扱うそれらと分離するダイクロイックミラー9aを有する。

Description

共焦点顕微鏡ユニット及び共焦点顕微鏡
 本開示は、共焦点顕微鏡を構成する共焦点顕微鏡ユニット及び共焦点顕微鏡に関する。
 従来から、観察対象の標本の光学断層像を高解像度で得ることが可能な共焦点顕微鏡が知られている。例えば、下記特許文献1には、顕微鏡に接続される顕微鏡接続ポートと、標本に光を照射する刺激ユニットと、標本から発せられる光を検出する観察ユニットと、顕微鏡と刺激ユニット及び観察ユニットとを光学的に接続する光路を合成する光路合成部とを備える顕微鏡接続ユニットが開示されている。この顕微鏡接続ユニットは、複数の光源から発せられた光を導く光学系、それに応じて発生した蛍光を複数波長ごとに検出するためのダイクロイックミラー、共焦点ピンホール、及び光電子増倍管を、同一の観察ユニット内に有している。このような構成では、複数の波長の励起光を用いてそれに応じて生じる蛍光を検出することにより、同一の装置で複数波長領域でのイメージングが実現される。
特開2011-90248号公報
 上述したような従来のユニットでは、共焦点光学系を構成するにあたり、励起光と蛍光を分離するダイクロイックミラーに対して、励起光を出力する光源や蛍光の光束を制限する絞り部材の位置を共役位置に設置する必要があり、この共役位置の光学調整に手間がかかっていた。
 実施形態は、かかる課題に鑑みてなされたものであり、ダイクロイックミラーに対して、励起光を出力する光源及び蛍光の光束を制限する絞り部材の位置を共役位置に設置したユニットを設けることで、複数波長での共焦点イメージングを容易に行うことができる共焦点顕微鏡ユニットを提供することを課題とする。
 本開示の一形態に係る共焦点顕微鏡ユニットは、顕微鏡光学系を有する顕微鏡の接続ポートに取り付けられることにより、共焦点顕微鏡を構成する共焦点顕微鏡ユニットであって、第1の励起光を出力する光源、第1の励起光に応じて観察対象の試料から生じる第1の蛍光の光束を制限する第1の絞り部材、及び、第1の絞り部材を通過した第1の蛍光を検出する第1の光検出器を有する第1のサブユニットと、第2の励起光を出力する光源、第2の励起光に応じて試料から生じる第2の蛍光の光束を制限する第2の絞り部材、及び、第2の絞り部材を通過した第2の蛍光を検出する第2の光検出器を有する第2のサブユニットと、第1及び第2のサブユニットから出力された励起光を、試料上で走査させ、励起光に応じて試料から生じる蛍光を第1及び第2のサブユニットに向けて導くスキャンミラーと、スキャンミラーによって走査された励起光を顕微鏡光学系に導光し、顕微鏡光学系によって結像された蛍光をスキャンミラーに導光するスキャンレンズと、接続ポートに取り付け可能に構成され、スキャンミラー、スキャンレンズ、第1のサブユニット、及び第2のサブユニットが固定されたメイン筐体と、を備え、第1のサブユニットは、第1の励起光及び第1の蛍光を反射し、第2の励起光及び第2の蛍光を透過する第1のビームスプリッタを有する。
 上記一形態によれば、第1のサブユニットから出力された第1の励起光が、第1のビームスプリッタを反射してからスキャンミラー及びスキャンレンズを経由して試料上に走査され、それに応じて試料上から生じた第1の蛍光がスキャンレンズ及びスキャンミラーを経由してから第1のビームスプリッタを反射することにより第1のサブユニット内に入射し、第1のサブユニット内の第1の絞り部材にその像が結ばれて第1の光検出器で検出される。加えて、第2のサブユニットから出力された第2の励起光が、第1のサブユニット内の第1のビームスプリッタを透過してからスキャンミラー及びスキャンレンズを経由して試料上に走査され、それに応じて試料上から生じた第2の蛍光が、スキャンレンズ及びスキャンミラーを経由して第1のビームスプリッタを透過してから第2のサブユニット内に入射し、第2のサブユニット内の第2の絞り部材にその像が結ばれて第2の光検出器で検出される。ここで、これらのスキャンミラー、スキャンレンズ、第1及び第2のサブユニットはメイン筐体に固定されているので、第1及び第2のサブユニットの単位での光源の光学系と絞り部材との位置関係の設定が可能となる。その結果、設定作業を容易にしつつ複数波長領域でのイメージングの精度を高めることが可能となる。
 あるいは、本開示の他の形態は、上述の共焦点顕微鏡ユニットと、顕微鏡光学系及び共焦点顕微鏡ユニットが取り付けられる接続ポートを有する顕微鏡を備える共焦点顕微鏡である。このような共焦点顕微鏡によれば、所望の励起波長及び蛍光波長における共焦点イメージングを容易に行うことができる。
 本開示の一側面によれば、光源の光学系及び絞り部材の設定を容易にして複数波長領域でのイメージングの精度を高めることができる。
実施形態にかかる共焦点顕微鏡Aの概略構成図である。 ダイクロイックミラー9a~9cにおける蛍光の屈折状態を示す平面図である。 図1の共焦点顕微鏡ユニット1の第1~第4のサブユニット6a~6dの位置決め構造を示す平面図である。 図1の第1~第4のサブユニット6a~6dで扱われる励起光及び蛍光の波長分布特性を示すグラフである。
 以下、添付図面を参照して、本開示の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
 図1は、実施形態にかかる共焦点顕微鏡Aの概略構成図である。図1に示す共焦点顕微鏡Aは、観察対象の試料Mの光学断層像の構築を可能とする画像を取得する共焦点顕微鏡を構成し、共焦点顕微鏡ユニット1が顕微鏡50の外部ユニット接続用の接続ポートP1に接続されて構成される。この共焦点顕微鏡ユニット1は、顕微鏡50内の結像レンズ51、対物レンズ52等の顕微鏡光学系を経由して、顕微鏡50のステージ上等に配置された試料Mに励起光を照射し、その励起光に応じて試料Mから生じた蛍光を、顕微鏡50の顕微鏡光学系を経由して受光(検出)して光学的断層像を生成して出力する装置である。
 詳細には、共焦点顕微鏡ユニット1は、メイン筐体2と、メイン筐体2の一部を構成し、顕微鏡50の接続ポートP1に着脱可能に接続される鏡筒3と、メイン筐体2内に固定されたスキャンミラー4、固定ミラー5、第1~第4のサブユニット6a~6dと、鏡筒3内に固定されたスキャンレンズ7とを含んで構成される。以下、共焦点顕微鏡ユニット1の各構成要素について詳細に説明する。
 鏡筒3内のスキャンレンズ7は、スキャンミラー4の反射面を対物レンズ52の瞳位置にリレーすると同時に、顕微鏡50の顕微鏡光学系の1次結像面にスポットを結ぶ機能を有する光学素子である。スキャンレンズ7は、スキャンミラー4によって走査された励起光を顕微鏡光学系に導光することにより試料Mに照射させ、それに応じて試料Mから生じた蛍光をスキャンミラー4に導光する。
 メイン筐体2内のスキャンミラー4は、例えば、反射板を2軸で傾動可能に構成されたMEMS(Micro Electro Mechanical System)ミラー等の光走査素子である。スキャンミラー4は、反射角度を連続的に変更することにより、第1~第4のサブユニット6a~6dから出力された励起光を試料M上に走査させ、その励起光に応じて生じる蛍光を、第1~第4のサブユニット6a~6dに向けて導く役割を有する。
 固定ミラー5は、メイン筐体2内に固定された光反射素子であり、第1~第4のサブユニット6a~6dから出力された励起光をスキャンミラー4に向けて反射させ、スキャンミラー4で反射された蛍光を励起光と同軸で第1~第4のサブユニット6a~6dに向けて反射する。
 第1のサブユニット6aは、ベース板8aと、ベース板8a上に配置されたダイクロイックミラー(第1のビームスプリッタ)9a、光源10a、ダイクロイックミラー11a、ピンホール板(第1の絞り部材)12a、光検出器(第1の光検出器)13aとを有する。ダイクロイックミラー9aは、固定ミラー5の蛍光の反射方向に固定され、第1のサブユニット6aが照射する波長λの第1の励起光及びそれに応じて試料Mから生じる波長範囲Δλの第1の蛍光を反射し、第1の励起光及び第1の蛍光よりも長波長の光を透過させる性質を有するビームスプリッタである。ダイクロイックミラー11aは、ダイクロイックミラー9aの第1の蛍光の反射方向に設けられ、波長範囲Δλの第1の蛍光を透過し、波長範囲Δλより短い波長λの第1の励起光を反射させる性質を有するビームスプリッタである。光源10aは、波長λの第1の励起光(例えば、レーザ光)を出力する発光素子(例えば、レーザダイオード)であり、第1の励起光がダイクロイックミラー11aによって第1の蛍光と同軸でダイクロイックミラー9aに向けて反射されるように配置される。ピンホール板12aは、そのピンホール位置が試料Mの第1の励起光のスポットの共役位置に一致するように配置され、第1の蛍光の光束を制限する絞り部材であり、光源10a等とともに共焦点光学系を構成する。このピンホール板12aは、ピンホールの径を外部から調整可能にされ、光検出器13aによって検出される画像の解像度と画像の信号強度を変更可能とする。光検出器13aは、その検出面がピンホール板12aに対向して配置され、ピンホール板12aを通過した第1の蛍光を受光および検出する。なお、光検出器13aは、光電子増倍管、フォトダイオード、アバランシェフォトダイオード、MPPC(Multi-Pixel Photon Counter)、HPD(Hybrid Photo Detector)、或いはエリアイメージセンサ等である。
 第2~第4のサブユニット6b~6dも、第1のサブユニット6aと同様な構成を有する。
 すなわち、第2のサブユニット6bは、ベース板8bと、ダイクロイックミラー(第2のビームスプリッタ)9b、光源10b、ダイクロイックミラー11b、ピンホール板(第2の絞り部材)12b、光検出器(第2の光検出器)13bとを有する。ダイクロイックミラー9bは、第2のサブユニット6bが照射する波長λ(>λ)の第2の励起光及びそれに応じて試料Mから生じる波長範囲Δλの第2の蛍光を反射し、第2の励起光及び第2の蛍光よりも長波長の光を透過させる性質を有する。ダイクロイックミラー11bは、波長範囲Δλの第2の蛍光を透過し、波長範囲Δλより短い波長λの第2の励起光を反射させる性質を有する。光源10bは、波長λの第2の励起光を出力する発光素子である。ピンホール板12bは、そのピンホール位置が試料Mの第2の励起光のスポットの共役位置に一致するように配置され、第2の蛍光の光束を制限する絞り部材である。光検出器13bは、その検出面がピンホール板12bに対向して配置され、ピンホール板12bを通過した第2の蛍光を受光および検出する。なお、光検出器13bは、光電子増倍管、フォトダイオード、アバランシェフォトダイオード、MPPC(Multi-Pixel Photon Counter)、HPD(Hybrid Photo Detector)、或いはエリアイメージセンサ等である。
 第3のサブユニット6cは、ベース板8cと、ダイクロイックミラー(第3のビームスプリッタ)9c、光源10c、ダイクロイックミラー11c、ピンホール板(第3の絞り部材)12c、光検出器(第3の光検出器)13cとを有する。ダイクロイックミラー9cは、第3のサブユニット6cが照射する波長λ(>λ)の第3の励起光及びそれに応じて試料Mから生じる波長範囲Δλの第3の蛍光を反射し、第3の励起光及び第3の蛍光よりも長波長の光を透過させる性質を有する。ダイクロイックミラー11cは、波長範囲Δλの第3の蛍光を透過し、波長範囲Δλより短い波長λの第3の励起光を反射させる性質を有する。光源10cは、波長λの第3の励起光を出力する発光素子である。ピンホール板12cは、そのピンホール位置が試料Mの第3の励起光のスポットの共役位置に一致するように配置され、第3の蛍光の光束を制限する絞り部材である。光検出器13cは、その検出面がピンホール板12cに対向して配置され、ピンホール板12cを通過した第3の蛍光を受光および検出する。なお、光検出器13cは、光電子増倍管、フォトダイオード、アバランシェフォトダイオード、MPPC(Multi-Pixel Photon Counter)、HPD(Hybrid Photo Detector)、或いはエリアイメージセンサ等である。
 第4のサブユニット6dは、ベース板8dと、全反射ミラー9d、光源10d、ダイクロイックミラー11d、ピンホール板(第4の絞り部材)12d、光検出器(第4の光検出器)13dとを有する。全反射ミラー9cは、第4のサブユニット6dが照射する波長λ(>λ)の第4の励起光及びそれに応じて試料Mから生じる波長範囲Δλの第4の蛍光を反射する。ダイクロイックミラー11dは、波長範囲Δλの第4の蛍光を透過し、波長範囲Δλより短い波長λの第4の励起光を反射させる性質を有する。光源10dは、波長λの第4の励起光を出力する発光素子である。ピンホール板12dは、そのピンホール位置が試料Mの第4の励起光のスポットの共役位置に一致するように配置され、第4の蛍光の光束を制限する絞り部材である。光検出器13dは、その検出面がピンホール板12dに対向して配置され、ピンホール板12dを通過した第4の蛍光を受光および検出する。なお、光検出器13dは、光電子増倍管、フォトダイオード、アバランシェフォトダイオード、MPPC(Multi-Pixel Photon Counter)、HPD(Hybrid Photo Detector)、或いはエリアイメージセンサ等である。
 上記構成の第1~第4のサブユニット6a~6dの位置関係について説明する。
 第1~第4のサブユニット6a~6dは、スキャンミラー4及び固定ミラー5による第1~第4の蛍光の導光方向に沿って、この順番で固定ミラー5から離れる方向に並ぶように、かつ、第1~第4の蛍光の光路上にダイクロイックミラー9a~9c及び全反射ミラー9dが位置するように、メイン筐体2内に固定されている。詳細には、第2~第4のサブユニット6b~6dは、それぞれ、第1~第3のサブユニット6a~6cに対して、ダイクロイックミラー9a~9c及び全反射ミラー9dの中心位置を基準にして、第2~第4の蛍光の導光方向に垂直な方向に所定距離dだけシフトするように、配置されている。
 この所定距離dは、ダイクロイックミラー9a~9cによって透過される蛍光の光路において、それぞれのダイクロイックミラー9a~9cにおいて蛍光の屈折によって生じる、その光路に垂直な方向のシフト量δに略等しく設定される。本実施形態では、ダイクロイックミラー9a~9cを構成するミラー部材の厚さは同一に設定されているため、ダイクロイックミラー9a~9cで生じるシフト量はほぼ同じとなり、それに応じて、第1~第4のサブユニット6a~6dのうちの隣り合う2つのサブユニット間のシフト距離dも同じに設定される。このシフト距離dは、ダイクロイックミラー9a~9cを構成するミラー部材の厚さ及び屈折率に応じて適切に設定される。詳しくは、ミラー部材が厚さt、屈折率nであり、ミラー部材に入射する蛍光の入射角をθ、ミラー部材内部への屈折角をφとした場合、ミラー部材による蛍光のシフト量δは、図2のようになる。この時、シフト量δは、下記式(1)のように求めることができるため、このシフト量δに合わせてシフト距離(所定距離)dを設定すればよい。なお、入射角θと屈折角φの間には、下記式(2)の関係がある。
δ=t・sin(θ‐φ)/cosφ    …(1)
φ=arcsin(sinθ/n)        …(2)
なお、入射角θを45度とした場合、ミラー部材の屈折率nが1.5であれば、d=δ=0.33tとなり、ミラー部材の屈折率nが1.4であれば、d=δ=0.29tとなる。
 図3には、第1~第4のサブユニット6a~6dの位置決め構造の例を示している。図3においては、第1~第3のサブユニット6a~6dの構成部品の図示は省略されている。このように、メイン筐体2を構成するベース板14上には、第1~第4のサブユニット6a~6dのそれぞれに対応して2つの突起部(第1~第4の位置決め部)15a~15dが設けられており、それぞれの2つの突起部15a~15dに対して第1~第4のサブユニット6a~6dのベース板8a~8dに形成された穴部16が嵌め込まれることにより、第1~第4のサブユニット6a~6dが互いに所定距離dだけシフトするように位置決めされる。ここで、ベース板14上の2つの突起部15a~15dのそれぞれの間隔と、ベース板8a~8dの2つの穴部16のそれぞれの間隔とは、全て同一になるように形成されている。このようにすることで、第1~第4のサブユニット6a~6dのうちから任意のサブユニットを選択してメイン筐体2内のベース板14上に配置することができる。ただし、第1~第4のサブユニット6a~6dのうちから一部のサブユニットを選択する場合には、選択されたサブユニットは固定ミラー5側に詰めて配置され、照射する励起光の波長が短いものから順に固定ミラー5側から並ぶように配置される。
 以上説明した共焦点顕微鏡ユニット1によれば、第1のサブユニット6aから出力された第1の励起光が、ダイクロイックミラー9aを反射してからスキャンミラー4及びスキャンレンズ7を経由して試料M上に走査され、それに応じて試料M上から生じた第1の蛍光がスキャンレンズ7及びスキャンミラー4を経由してからダイクロイックミラー9aを反射することにより第1のサブユニット6a内に入射し、第1のサブユニット6a内のピンホール板12aにその像が結ばれて光検出器13aで検出される。加えて、第2のサブユニット6bから出力された第2の励起光が、第2のサブユニット6b内のダイクロイックミラー9bを反射した後に第1のサブユニット6a内のダイクロイックミラー9aを透過してからスキャンミラー4及びスキャンレンズ7を経由して試料M上に走査され、それに応じて試料M上から生じた第2の蛍光が、スキャンレンズ7及びスキャンミラー4を経由してダイクロイックミラー9aを透過した後にダイクロイックミラー9bを反射して第2のサブユニット6b内に入射し、第2のサブユニット6b内のピンホール板12bにその像が結ばれて光検出器13bで検出される。同様に、他の第2及び第3のサブユニット6c,6dに関しても、自ユニットから照射された励起光及びそれに応じて生じた蛍光が自ユニットのダイクロイックミラーを反射し他ユニットのダイクロイックミラーを透過するように構成されることで、2つの波長の励起光に応じて生じた蛍光の検出が独立に可能となる。また、第1~第4のサブユニット6a~6dはそれぞれ、共焦点顕微鏡ユニット1の外部で、光源やピンホールの位置を共役な関係になるように調整することができ、共焦点顕微鏡ユニット1に搭載後、面倒な光学調整が不要となり、サブユニットの追加や交換が容易に行える。
 図4は、第1~第4のサブユニット6a~6dで扱われる励起光及び蛍光の波長分布特性を示すグラフである。第1のサブユニット6aから照射される波長λの励起光に応じて生じる蛍光の波長範囲Δλは、一般的には、波長λの近傍であって波長λより長波長の範囲となる。これに対して、第2のサブユニット6bから照射される励起光の波長λ、及びそれによって生じる蛍光の波長範囲Δλは、波長λ及び波長範囲Δλよりも長波長の範囲となる。ここで、第1のサブユニット6aのダイクロイックミラー9aの光分割の境界波長λd1は、波長λ及び波長範囲Δλよりも長波長であり、かつ、波長λ及び波長範囲Δλよりも短波長となる値に設定されている。これにより、第1のサブユニット6aを用いた波長λ及び波長範囲Δλの範囲の共焦点計測が可能となり、同一装置の第2のサブユニット6bを用いて、波長λ及び波長範囲Δλの範囲の共焦点計測が可能となる。同様に、第2のサブユニット6bのダイクロイックミラー9bの光分割の境界波長λd2は、波長λ及び波長範囲Δλよりも長波長であり、かつ、波長λ及び波長範囲Δλよりも短波長となる値に設定されており、第3のサブユニット6cのダイクロイックミラー9cの光分割の境界波長λd3は、波長λ及び波長範囲Δλよりも長波長であり、かつ、波長λ及び波長範囲Δλよりも短波長となる値に設定されている。これにより、同一の装置の第3のサブユニット6cを用いた波長λ及び波長範囲Δλの範囲の共焦点計測が可能となり、同一装置の第4のサブユニット6dを用いて、波長λ及び波長範囲Δλの範囲の共焦点計測が可能となる。
 ここで、これらのスキャンミラー4、スキャンレンズ7、第1~第4のサブユニット6a~6dはメイン筐体2に固定され、第1~第4のサブユニット6a~6dは、任意のサブユニットを選択的にメイン筐体2のベース板14上に配置可能とされている。このような構成により、第1~第4のサブユニット6a~6dの単位での光源10a~10dの光学系とピンホール板12a~12d及び光検出器13a~13dとの位置関係の設定が可能となる。その結果、設定作業を容易にしつつ複数波長領域でのイメージングの精度を高めることが可能となる。すなわち、共焦点顕微鏡Aによる観察においては検出器側のピンホールと光源とを共役位置に設定することが測定精度維持のために重要となる。本実施形態によれば、そのような設定がサブユニット単位で実施可能となり、第1~第4のサブユニット6a~6dをメイン筐体2に収容した後はスキャンミラー4及びスキャンレンズ7を調整するだけで精度の高い画像検出が可能となる。
 また、各第1~第4のサブユニット6a~6dのピンホール板12a~12dは、それらのピンホール径を観察する蛍光の波長に応じて調整可能とされているので、観察する蛍光の波長に応じて画像の解像度と画像の信号強度を調整することができる。
 また、本実施形態では、第1~第3のダイクロイックミラー9a~9cを構成するミラー部材の厚さが略同一とされている。このような構成によれば、第1~第3のダイクロイックミラー9a~9cのそれぞれを透過することにより生じる励起光あるいは蛍光の光軸のずれを同等とすることができ、第1~第4のサブユニット6a~6d間の配置のずれを同一の距離dに設定すればよく、位置決め構造を単純化することができる。その結果、第1~第4のサブユニット6a~6bの設定作業を容易にしつつ複数波長領域でのイメージングを実現できる。
 詳細には、メイン筐体2に、第1~第4のサブユニット6a~6dを位置決めする突起部15a~15dが設けられ、これらの突起部15a~15dにより、第2~第4のサブユニット6b~6dのそれぞれを第1~第3のサブユニット6a~6cのそれぞれに対して、蛍光の導光方向に垂直な方向に所定距離dだけシフトして位置決めするように構成されている。かかる構成を採れば、前段の他サブユニット内のダイクロイックミラーを透過することにより生じる励起光あるいは蛍光の光軸のずれに合わせて、サブユニットを前段の他のサブユニットに対して位置決めできる。その結果、4つの波長領域でのイメージングの精度を向上できる。
 なお、それぞれの第2~第4のサブユニット6b~6dの前段の第1~第3のサブユニット6a~6cに対するシフト距離dは、ダイクロイックミラー9a~9cによる蛍光の光路のシフト量δに応じて設定してもよい。また、このシフト量は蛍光の波長によって異なるため、前段のサブユニットに対するシフト距離dは、サブユニット毎に異なる値に設定されもよい。ただし、ダイクロイックミラー9a~9cによる蛍光の光路のシフト量δがほとんど変わらない場合、前段のサブユニットに対する各サブユニットのシフト距離dを同じ値にしてもよい。
 上記実施形態においては、スキャンミラー4はMEMSミラーで構成されている。このような構成の場合、装置の小型化を容易に実現することができる。
 以上、本開示の種々の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。
 上記実施形態は、共焦点光学系を構成するために絞り部材としてピンホール板を用いているが、絞り部材は光束を制限する光学素子であればよく、例えば、色彩絞りやファイバコアなどであってもよい。ファイバ出力タイプの光源を用いる場合、ファイバコア端面の位置を絞り位置(光束が制限される位置)とすればよい。
 また、上記実施形態は、固体レーザやダイオードレーザなどのレーザ光源を用いることもできる。この場合、これらのレーザ光源のビームウェストの位置を絞り位置(光束が制限される位置)とすればよく、光源自体が絞り部材の役割を果たすことになる。
 上記実施形態においては、扱う励起光及び蛍光の波長範囲が短い順番でスキャンミラー4側から離れる方向に第1~第4のサブユニット6a~6dが配置されていたが、波長範囲が長い順番で配置されてもよい。ただし、この場合、ダイクロイックミラー9a~9cの特性は、各サブユニット6a~6cのそれぞれで扱う比較的長波長の励起光及び蛍光を反射し、他のサブユニットで扱う比較的短波長の励起光及び蛍光を透過するような特性に設定される。
 上記実施形態においては、メイン筐体は、第1のサブユニットを位置決めする第1の位置決め部と、第2のサブユニットを位置決めする第2の位置決め部とを有し、第1の位置決め部及び第2の位置決め部は、第2のサブユニットを第1のサブユニットに対して、蛍光の導光方向に交わる方向に所定距離だけシフトして位置決めしてもよい。これにより、各サブユニットからのビームの水平位置を揃えることができる。
 また、この所定の距離は、蛍光の導光方向に交わる方向における、蛍光の光路のシフト量に合わせて設定されてもよい。この場合、第1のビームスプリッタを透過することにより生じる励起光あるいは蛍光の光軸のずれに合わせて第2のサブユニットを第1のサブユニットに対して位置決めできる。その結果、複数波長領域でのイメージングの精度を向上できる。
 上記実施形態においては、スキャンミラーはMEMSミラーであってもよい。この場合、装置の小型化を容易に実現することができる。
 また、第1のサブユニットと第2のサブユニットとは、スキャンミラーによる蛍光の導光方向に沿って、第1のサブユニットおよび第2のサブユニットの順で並んだ状態でメイン筐体に固定されてもよい。かかる構成によれば、第1及び第2のサブユニットのそれぞれから照射された第1及び第2の励起光を、第1のサブユニット内の第1のビームスプリッタを経由して顕微鏡側の試料に向けて照射することができるとともに、それに応じて試料から生じる第1及び第2の蛍光のそれぞれを、第1のサブユニット内の第1のビームスプリッタを経由して第1及び第2のサブユニット内に導入することできる。その結果、同一の装置で複数波長領域でのイメージングを実現可能となる。
 またさらに、第3の励起光を出力する光源、第3の励起光に応じて試料から生じる第3の蛍光の光束を制限する第3の絞り部材、及び、第3の絞り部材を通過した第3の蛍光を検出する第3の光検出器を有する第3のサブユニットをさらに備え、第2のサブユニットは、第2の励起光及び第2の蛍光を反射し、第3の励起光及び第3の蛍光を透過する第2のビームスプリッタを有してもよい。かかる構成によれば、第2のサブユニットから出力された第2の励起光が、第2のサブユニット内の第2のビームスプリッタを反射後に第1のサブユニット内の第1のビームスプリッタを透過してからスキャンミラー及びスキャンレンズを経由して試料上に走査され、それに応じて試料上から生じた第2の蛍光が、スキャンレンズ及びスキャンミラーを経由して第1のビームスプリッタを透過した後に第2のビームスプリッタを反射してから第2のサブユニット内に入射し、第2のサブユニット内の第2の絞り部材にその像が結ばれて第2の光検出器で検出される。加えて、第3のサブユニットから出力された第3の励起光が、第2のサブユニット内の第2のビームスプリッタ及び第1のサブユニット内の第1のビームスプリッタを透過してからスキャンミラー及びスキャンレンズを経由して試料上に走査され、それに応じて試料上から生じた第3の蛍光が、スキャンレンズ及びスキャンミラーを経由して第1のビームスプリッタ及び第2のビームスプリッタを透過してから第3のサブユニット内に入射し、第3のサブユニット内の第3の絞り部材にその像が結ばれて第3の光検出器で検出される。これにより、同一の装置で3つの波長領域でのイメージングを実現可能となる。
 さらに、メイン筐体は、第2のサブユニットを位置決めする第2の位置決め部と、第3のサブユニットを位置決めする第3の位置決め部とを有し、第2の位置決め部及び第3の位置決め部は、第3のサブユニットを第2のサブユニットに対して、蛍光の導光方向に交わる方向に所定距離だけシフトして位置決めしてもよい。かかる構成を採れば、第2のビームスプリッタを透過することにより生じる励起光あるいは蛍光の光軸のずれに合わせて第3のサブユニットを第2のサブユニットに対して位置決めできる。その結果、複数の波長領域でのイメージングの精度を向上できる。
 また、第1のビームスプリッタの厚さと、第2のビームスプリッタの厚さは同一であってもよい。かかる構成を採れば、第1及び第2のビームスプリッタのそれぞれを透過することにより生じる励起光あるいは蛍光の光軸のずれを同等とすることができ、第1~第3のサブユニット間の配置の設定を容易にすることができる。その結果、設定作業を容易にしつつ複数波長領域でのイメージングを実現できる。
 さらにまた、第1のサブユニットと第2のサブユニットと第3のサブユニットとは、スキャンミラーによる蛍光の導光方向に沿って、第1のサブユニット、第2のサブユニット、および第3のサブユニットの順で並んだ状態でメイン筐体に固定されてもよい。この場合、第1~第3のサブユニットのそれぞれから照射された第1~第3の励起光を、第1及び第2のサブユニット内の第1及び第2のビームスプリッタを経由して顕微鏡側の試料に向けて照射することができるとともに、それに応じて試料から生じる第1~第3の蛍光のそれぞれを、第1及び第2のサブユニット内の第1及び第2のビームスプリッタを経由して第1~第3のサブユニット内に導入することできる。その結果、同一の装置で3つの波長領域でのイメージングを実現可能となる。
 実施形態は、共焦点顕微鏡を構成する共焦点顕微鏡ユニット及び共焦点顕微鏡を使用用途とし、ダイクロイックミラーに対して、励起光を出力する光源及び蛍光の光束を制限する絞り部材の位置を共役位置に設置したユニットを設けることで、複数波長での共焦点イメージングを容易に行うことができるものである。
 M…試料、P1…接続ポート、d…所定距離、10a~10d…光源、12a~12d…ピンホール板(絞り部材)、13a~13d…光検出器、15a~15d…突起部(位置決め部)、6a~6b…第1~第4のサブユニット、9a~9c…ダイクロイックミラー(第1~第3のビームスプリッタ)、1…共焦点顕微鏡ユニット、2…メイン筐体、3…鏡筒、4…スキャンミラー、7…スキャンレンズ、50…顕微鏡、A…共焦点顕微鏡。

Claims (10)

  1.  顕微鏡光学系を有する顕微鏡の接続ポートに取り付けられることにより、共焦点顕微鏡を構成する共焦点顕微鏡ユニットであって、
     第1の励起光を出力する光源、前記第1の励起光に応じて観察対象の試料から生じる第1の蛍光の光束を制限する第1の絞り部材、及び、前記第1の絞り部材を通過した第1の蛍光を検出する第1の光検出器を有する第1のサブユニットと、
     第2の励起光を出力する光源、前記第2の励起光に応じて前記試料から生じる第2の蛍光の光束を制限する第2の絞り部材、及び、前記第2の絞り部材を通過した第2の蛍光を検出する第2の光検出器を有する第2のサブユニットと、
     前記第1及び第2のサブユニットから出力された励起光を、前記試料上で走査させ、前記励起光に応じて前記試料から生じる蛍光を前記第1及び第2のサブユニットに向けて導くスキャンミラーと、
     前記スキャンミラーによって走査された前記励起光を前記顕微鏡光学系に導光し、前記顕微鏡光学系によって結像された前記蛍光を前記スキャンミラーに導光するスキャンレンズと、
     前記接続ポートに取り付け可能に構成され、前記スキャンミラー、前記スキャンレンズ、前記第1のサブユニット、及び前記第2のサブユニットが固定されたメイン筐体と、
    を備え、
     前記第1のサブユニットは、前記第1の励起光及び前記第1の蛍光を反射し、前記第2の励起光及び前記第2の蛍光を透過する第1のビームスプリッタを有する、
    共焦点顕微鏡ユニット。
  2.  前記メイン筐体は、前記第1のサブユニットを位置決めする第1の位置決め部と、前記第2のサブユニットを位置決めする第2の位置決め部とを有し、
     前記第1の位置決め部及び前記第2の位置決め部は、前記第2のサブユニットを前記第1のサブユニットに対して、前記蛍光の導光方向に交わる方向に所定距離だけシフトして位置決めする、
    請求項1に記載の共焦点顕微鏡ユニット。
  3.  前記所定の距離は、前記蛍光の導光方向に交わる方向における、前記蛍光の光路のシフト量に応じて設定される、
    請求項2に記載の共焦点顕微鏡ユニット。
  4.  前記スキャンミラーはMEMSミラーである、
    請求項1~3のいずれか1項に記載の共焦点顕微鏡ユニット。
  5.  前記第1のサブユニットと前記第2のサブユニットとは、前記スキャンミラーによる前記蛍光の導光方向に沿って、前記第1のサブユニットおよび前記第2のサブユニットの順で並んだ状態で前記メイン筐体に固定されている、
    請求項1~4のいずれか1項に記載の共焦点顕微鏡ユニット。
  6.  第3の励起光を出力する光源、前記第3の励起光に応じて前記試料から生じる第3の蛍光の光束を制限する第3の絞り部材、及び、前記第3の絞り部材を通過した第3の蛍光を検出する第3の光検出器を有する第3のサブユニットをさらに備え、
     前記第2のサブユニットは、前記第2の励起光及び前記第2の蛍光を反射し、前記第3の励起光及び前記第3の蛍光を透過する第2のビームスプリッタを有する、
    請求項1~5のいずれか1項に記載の共焦点顕微鏡ユニット。
  7.  前記メイン筐体は、前記第2のサブユニットを位置決めする第2の位置決め部と、前記第3のサブユニットを位置決めする第3の位置決め部とを有し、
     前記第2の位置決め部及び前記第3の位置決め部は、前記第3のサブユニットを前記第2のサブユニットに対して、前記蛍光の導光方向に交わる方向に所定距離だけシフトして位置決めする、
    請求項6に記載の共焦点顕微鏡ユニット。
  8.  前記第1のビームスプリッタの厚さと、前記第2のビームスプリッタの厚さは同一である、
    請求項6~7のいずれか一項に記載の共焦点顕微鏡ユニット。
  9.  前記第1のサブユニットと前記第2のサブユニットと前記第3のサブユニットとは、前記スキャンミラーによる前記蛍光の導光方向に沿って、前記第1のサブユニット、前記第2のサブユニット、および前記第3のサブユニットの順で並んだ状態で前記メイン筐体に固定されている、
    請求項6~8のいずれか1項に記載の共焦点顕微鏡ユニット。
  10.  請求項1~9のいずれか1項に記載の共焦点顕微鏡ユニットと、
     前記顕微鏡光学系及び前記共焦点顕微鏡ユニットが取り付けられる接続ポートを有する顕微鏡を備える、共焦点顕微鏡。
PCT/JP2020/013799 2019-03-28 2020-03-26 共焦点顕微鏡ユニット及び共焦点顕微鏡 WO2020196783A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/442,238 US20220155577A1 (en) 2019-03-28 2020-03-26 Confocal microscope unit and confocal microscope
CN202080025057.0A CN113646686B (zh) 2019-03-28 2020-03-26 共聚焦显微镜单元和共聚焦显微镜
EP20776340.0A EP3951466A4 (en) 2019-03-28 2020-03-26 CONFOCAL MICROSCOPE UNIT AND CONFOCAL MICROSCOPE
JP2021509611A JPWO2020196783A1 (ja) 2019-03-28 2020-03-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019062976 2019-03-28
JP2019-062976 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196783A1 true WO2020196783A1 (ja) 2020-10-01

Family

ID=72608840

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/013799 WO2020196783A1 (ja) 2019-03-28 2020-03-26 共焦点顕微鏡ユニット及び共焦点顕微鏡
PCT/JP2020/013801 WO2020196784A1 (ja) 2019-03-28 2020-03-26 共焦点顕微鏡ユニット及び共焦点顕微鏡

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013801 WO2020196784A1 (ja) 2019-03-28 2020-03-26 共焦点顕微鏡ユニット及び共焦点顕微鏡

Country Status (5)

Country Link
US (2) US20220179185A1 (ja)
EP (2) EP3951466A4 (ja)
JP (2) JPWO2020196783A1 (ja)
CN (2) CN113646686B (ja)
WO (2) WO2020196783A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230254A1 (ja) 2021-04-26 2022-11-03 浜松ホトニクス株式会社 共焦点顕微鏡ユニット、共焦点顕微鏡、及び共焦点顕微鏡ユニットの制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022134422A (ja) * 2021-03-03 2022-09-15 株式会社日立ハイテク 分光測定装置
DE102022114257A1 (de) * 2022-06-07 2023-12-07 Ludwig-Maximilians-Universität München (Körperschaft des öffentlichen Rechts) Baukastensystem für eine Mikroskopievorrichtung, Mikroskopievorrichtung und Verfahren zum Herstellen einer Mikroskopievorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167654A (ja) * 1992-07-24 1994-06-14 Carl Zeiss:Fa 顕微鏡
JPH10206742A (ja) * 1996-11-21 1998-08-07 Olympus Optical Co Ltd レーザ走査顕微鏡
JP2009116082A (ja) * 2007-11-07 2009-05-28 Nsk Ltd 光走査ユニット及び観察装置
JP2011090248A (ja) 2009-10-26 2011-05-06 Olympus Corp 顕微鏡接続ユニットおよび顕微鏡システム
US20110119034A1 (en) * 2008-06-20 2011-05-19 Carl Zeiss Microimaging Gmbh Method for recording pulse signals
US20130015370A1 (en) * 2011-07-15 2013-01-17 Huron Technologies International In Confocal fluorescence slide scanner with parallel detection
WO2017145230A1 (ja) * 2016-02-22 2017-08-31 株式会社日立ハイテクノロジーズ 発光検出装置
JP2017535816A (ja) * 2014-11-12 2017-11-30 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh 歪曲収差の少ない顕微鏡

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185927A (ja) * 2001-12-13 2003-07-03 Olympus Optical Co Ltd 走査型レーザー顕微鏡
US7038848B2 (en) * 2002-12-27 2006-05-02 Olympus Corporation Confocal microscope
EP1688774B1 (en) * 2003-11-26 2013-02-20 Olympus Corporation Laser scanning type fluorescent microscope
JP4409390B2 (ja) * 2004-08-24 2010-02-03 オリンパス株式会社 光走査型共焦点観察装置
JP2006133499A (ja) * 2004-11-05 2006-05-25 Shimadzu Corp 共焦点スキャナ及び共焦点顕微鏡
JP5058625B2 (ja) 2007-02-19 2012-10-24 オリンパス株式会社 レーザ顕微鏡
EP2259125B1 (de) 2007-10-22 2017-07-26 Tecan Trading AG Laser Scanner-Gerät für Fluoreszenzmessungen
JP5452180B2 (ja) * 2009-11-13 2014-03-26 オリンパス株式会社 顕微鏡装置
JP5056871B2 (ja) * 2010-03-02 2012-10-24 横河電機株式会社 共焦点顕微鏡システム
JP5926966B2 (ja) * 2012-01-30 2016-05-25 オリンパス株式会社 蛍光観察装置
JP5969803B2 (ja) * 2012-04-23 2016-08-17 オリンパス株式会社 顕微鏡装置
CN106980174B (zh) * 2017-02-28 2019-04-16 浙江大学 一种综合性荧光超分辨显微成像装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167654A (ja) * 1992-07-24 1994-06-14 Carl Zeiss:Fa 顕微鏡
JPH10206742A (ja) * 1996-11-21 1998-08-07 Olympus Optical Co Ltd レーザ走査顕微鏡
JP2009116082A (ja) * 2007-11-07 2009-05-28 Nsk Ltd 光走査ユニット及び観察装置
US20110119034A1 (en) * 2008-06-20 2011-05-19 Carl Zeiss Microimaging Gmbh Method for recording pulse signals
JP2011090248A (ja) 2009-10-26 2011-05-06 Olympus Corp 顕微鏡接続ユニットおよび顕微鏡システム
US20130015370A1 (en) * 2011-07-15 2013-01-17 Huron Technologies International In Confocal fluorescence slide scanner with parallel detection
JP2017535816A (ja) * 2014-11-12 2017-11-30 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh 歪曲収差の少ない顕微鏡
WO2017145230A1 (ja) * 2016-02-22 2017-08-31 株式会社日立ハイテクノロジーズ 発光検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230254A1 (ja) 2021-04-26 2022-11-03 浜松ホトニクス株式会社 共焦点顕微鏡ユニット、共焦点顕微鏡、及び共焦点顕微鏡ユニットの制御方法

Also Published As

Publication number Publication date
CN113646686B (zh) 2023-10-03
WO2020196784A1 (ja) 2020-10-01
CN113631980B (zh) 2023-07-28
EP3951466A1 (en) 2022-02-09
CN113631980A (zh) 2021-11-09
EP3951468A1 (en) 2022-02-09
EP3951466A4 (en) 2023-01-04
EP3951468A4 (en) 2023-01-04
JP7344281B2 (ja) 2023-09-13
JPWO2020196783A1 (ja) 2020-10-01
US20220155577A1 (en) 2022-05-19
CN113646686A (zh) 2021-11-12
JPWO2020196784A1 (ja) 2020-10-01
US20220179185A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2020196783A1 (ja) 共焦点顕微鏡ユニット及び共焦点顕微鏡
US7239384B2 (en) Laser-scanning fluoroscopy apparatus
US20060187499A1 (en) Connection unit and optical-scanning fluoroscopy apparatus
JP4898023B2 (ja) 光学要素
JP2006030988A (ja) レーザ走査型顕微鏡
JP2002228934A (ja) 走査型顕微鏡
JP4818634B2 (ja) 走査型蛍光観察装置
CN113631981B (zh) 扫描型显微镜单元
JP5461527B2 (ja) 試料をエバネッセント照明する装置および方法
EP2718666A1 (en) Coupled multi-wavelength confocal systems for distance measurements
JP5623654B2 (ja) 共焦点レーザー走査顕微鏡
US20060050375A1 (en) Confocal microscope
JP2005077391A (ja) 位置姿勢計測装置および位置と姿勢の計測方法
JP2008164719A (ja) 走査型共焦点顕微鏡
GB2369192A (en) Scanning microscope having an optical circulator
US7719663B2 (en) Heterodyne laser doppler probe and measurement system using the same
JP6300496B2 (ja) レーザ共焦点顕微鏡
US8108942B2 (en) Probe microscope
JP2006195390A (ja) レーザ走査型蛍光顕微鏡および検出光学系ユニット
JP2003270543A (ja) 共焦点用光スキャナ
JPH1195114A (ja) 走査型光学顕微鏡装置
US7453578B2 (en) 4Pi microscope
JP2010262194A (ja) 走査型顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020776340

Country of ref document: EP

Effective date: 20211028