WO2020194763A1 - 半導体膜 - Google Patents

半導体膜 Download PDF

Info

Publication number
WO2020194763A1
WO2020194763A1 PCT/JP2019/017940 JP2019017940W WO2020194763A1 WO 2020194763 A1 WO2020194763 A1 WO 2020194763A1 JP 2019017940 W JP2019017940 W JP 2019017940W WO 2020194763 A1 WO2020194763 A1 WO 2020194763A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor film
film
substrate
layer
crystal
Prior art date
Application number
PCT/JP2019/017940
Other languages
English (en)
French (fr)
Inventor
守道 渡邊
福井 宏史
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021508680A priority Critical patent/JP7176099B2/ja
Priority to CN201980081621.8A priority patent/CN113614292B/zh
Publication of WO2020194763A1 publication Critical patent/WO2020194763A1/ja
Priority to US17/467,943 priority patent/US20210408242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements

Definitions

  • the present invention relates to a semiconductor film, in particular, relates to ⁇ -Ga 2 O 3 based semiconductor film having a distribution in the impurity concentration and / or hetero-phase weight.
  • gallium oxide (Ga 2 O 3 ) has been attracting attention as a material for semiconductors.
  • Gallium oxide is known to have five crystal forms of ⁇ , ⁇ , ⁇ , ⁇ and ⁇ .
  • ⁇ -Ga 2 O 3 which is a metastable phase has a band gap of 5.3 eV. It is very large and is expected as a material for power semiconductors.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2014-72533 describes a semiconductor provided with a base substrate having a corundum-type crystal structure, a semiconductor layer having a corundum-type crystal structure, and an insulating film having a corundum-type crystal structure.
  • the apparatus is disclosed, and an example in which an ⁇ -Ga 2 O 3 film is formed as a semiconductor layer on a sapphire substrate is described.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2016-25256
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2016-25256 contains an n-type semiconductor layer containing a crystalline oxide semiconductor having a corundum structure as a main component and an inorganic compound having a hexagonal crystal structure as a main component.
  • a semiconductor device including a p-type semiconductor layer and an electrode is disclosed.
  • Patent Document 2 on a c-plane sapphire substrate, the alpha-Ga 2 O 3 film having a corundum structure metastable phase as an n-type semiconductor layer, hexagonal as p-type semiconductor layer crystal structure It is disclosed that a diode is produced by forming an ⁇ -Rh 2 O 3 film having.
  • Non-Patent Document 1 (Applied Physics Express, vol.9, pages 071101-1 to 071101-4), between ⁇ -Ga 2 O 3 and the sapphire substrate, in the c-axis direction and the a-axis direction. There is a lattice mismatch of 3.54% and 4.81%, respectively, and this mismatch causes defects in ⁇ -Ga 2 O 3 and a blade dislocation density of 7 ⁇ 10 10 cm- 2. It is disclosed that.
  • An example is shown in which the blade-shaped dislocation and the spiral dislocation are 3 ⁇ 10 8 / cm 2 and 6 ⁇ 10 8 / cm 2 , respectively.
  • Non-Patent Document 1 since power semiconductors are required to have a high withstand voltage, the method of introducing a buffer layer as disclosed in Non-Patent Document 1 also has insufficient dielectric breakdown electric field characteristics, and further reduction of crystal defects is required. Will be done.
  • the present inventors have now found, ⁇ -Ga 2 O 3 system, the impurity concentration and / or different phase of the semiconductor film by varying the surface and the back surface, the crystal defects significantly less ⁇ -Ga 2 O 3 based semiconductor film We obtained the knowledge that it can be provided.
  • an object of the present invention is to provide a semiconductor film having extremely few crystal defects and exhibiting high dielectric breakdown electric field characteristics.
  • the present invention is a semiconductor film having a corundum type crystal structure composed of ⁇ -Ga 2 O 3 or ⁇ -Ga 2 O 3 system solid solution, and the impurity concentration and the impurity concentration on the front surface and the back surface of the semiconductor film / Or semiconductor films having different amounts of different phases are provided.
  • the semiconductor film of the present invention has a corundum-type crystal structure composed of an ⁇ -Ga 2 O 3 or ⁇ -Ga 2 O 3 system solid solution.
  • ⁇ -Ga 2 O 3 belongs to a trigonal crystal group and has a corundum-type crystal structure.
  • the ⁇ -Ga 2 O 3 system solid solution is a solid solution of other components in ⁇ -Ga 2 O 3 , and the corundum type crystal structure is maintained.
  • the impurity concentration and / or hetero-phase amount between the front surface and the back surface are different. By doing so, it is possible to obtain a semiconductor film in which the density of crystal defects reaching the film surface is extremely low.
  • the crystal defect density on the side surface of the semiconductor film having a low impurity concentration and / or a small amount of heterogeneous phase is preferably 1.0 ⁇ 10 6 / cm 2 or less, more preferably 4.0 ⁇ 10 3 / cm 2 or less. Is.
  • the lower limit of the crystal defect density is not particularly limited, and a lower limit is preferable.
  • the crystal defect refers to a through-blade dislocation, a through-spiral dislocation, a through-mixed dislocation, and a basal plane dislocation
  • the crystal defect density is the total of each dislocation density.
  • the basal plane dislocation is a problem when the semiconductor film has an off angle, and is not a problem because the surface of the semiconductor film is not exposed when there is no off angle.
  • the penetrating blade-shaped dislocations are 3 ⁇ 10 4 / cm 2
  • the penetrating spiral dislocations are 6 ⁇ 10 4 / cm 2
  • the penetrating mixed dislocations are 4 ⁇ 10 4 / cm 2
  • the crystal defect density is 1.3. It becomes ⁇ 10 5 / cm 2 .
  • the present inventors reduce the density of crystal defects reaching the surface on the side where the impurity concentration is low or the amount of different phases is small. I found that. The reason is not clear, but the following mechanism can be considered. That is, one of the causes of defects is considered to be a lattice mismatch between the semiconductor film and the film-forming substrate. At this time, it is considered that the defect density can be reduced by relaxing the stress of the lattice mismatch in the film by having the impurity concentration and / or the amount of different phases distributed in the thickness direction in the film. Alternatively, it is considered that pair annihilation between defects is likely to occur.
  • the second cause of defects is considered to be the presence of defects in the film-forming substrate and the defects propagating to the semiconductor film. At this time, it is considered that the impurity concentration and / or the amount of different phases is distributed in the thickness direction in the film, so that pair annihilation between defects is likely to occur.
  • the third cause of defects is considered to be thermal stress due to the temperature distribution during film formation or when the temperature is lowered to room temperature after film formation. At this time, it is considered that the thermal stress is relaxed and the formation of new dislocations can be suppressed by having the impurity concentration and / or the amount of different phases distributed in the thickness direction in the film.
  • Impurities contained in the semiconductor film and having different concentrations on the front surface and the back surface preferably contain one or more components selected mainly from the group consisting of Cr, Fe and Ti. In other words, it is preferable that the total concentration of one or more components selected from the group consisting of Cr, Fe and Ti differs between the front surface and the back surface of the semiconductor film.
  • the heterogeneous phase contained in the semiconductor film and having different contents on the front surface and the back surface is composed of ⁇ -Ga 2 O 3 , ⁇ -Ga 2 O 3 , ⁇ -Ga 2 O 3 , and ⁇ -Ga 2 O 3. It is preferable to have one or more kinds of crystal structures selected from the group, and it is more preferable to have one or more kinds of crystal structures of ⁇ -Ga 2 O 3 and ⁇ -Ga 2 O 3 .
  • the semiconductor film can contain a Group 14 element as a dopant at a ratio of 1.0 ⁇ 10 16 to 1.0 ⁇ 10 21 / cm 3 .
  • the Group 14 element is the Group 14 element according to the periodic table formulated by the IUPAC (International Union of Pure and Applied Chemistry). Specifically, carbon (C), silicon (Si), and germanium (Ge). ), Tin (Sn) and lead (Pb).
  • the amount of dopant can be appropriately changed according to the desired characteristics, but is preferably 1.0 ⁇ 10 16 to 1.0 ⁇ 10 21 / cm 3 , and more preferably 1.0 ⁇ 10 17 to 1.0. ⁇ 10 19 / cm 3 . It is preferable that these dopants are uniformly distributed in the film and the concentrations on the front surface and the back surface are about the same. That is, it is preferable that the semiconductor film uniformly contains the Group 14 element as the dopant in the above ratio.
  • the semiconductor film is an alignment film oriented in a specific plane orientation.
  • the orientation of the semiconductor film can be investigated by using a known method, but it can be investigated by, for example, performing reverse pole map orientation mapping using an electron backscatter diffraction device (EBSD).
  • EBSD electron backscatter diffraction device
  • the film thickness of the semiconductor film may be appropriately adjusted from the viewpoint of cost and required characteristics. That is, if it is too thick, it takes time to form a film, so it is preferable that the film is not extremely thick from the viewpoint of cost. Further, when a device that requires a particularly high dielectric strength is manufactured, a thick film is preferable. On the other hand, when manufacturing a device that requires conductivity in the vertical direction (thickness direction), a thin film is preferable. As described above, the film thickness may be appropriately adjusted according to the desired characteristics, but is typically 0.1 to 50 ⁇ m, 0.2 to 20 ⁇ m, or 0.2 to 10 ⁇ m. By setting the thickness in such a range, it is possible to achieve both cost and semiconductor characteristics. When a self-supporting semiconductor film is required, a thick film may be used, for example, 50 ⁇ m or more, or 100 ⁇ m or more, and there is no particular upper limit unless there is a cost limitation.
  • the semiconductor film has an area of preferably 20 cm 2 or more, more preferably 70 cm 2 or more, and further preferably 170 cm 2 or more on one side thereof.
  • the upper limit of the size of the semiconductor film is not particularly limited, but is typically 700 cm 2 or less on one side.
  • the semiconductor film may be in the form of a self-supporting film of the film alone, or may be formed on a support substrate.
  • a substrate having a corundum structure and oriented in two axes of the c-axis and the a-axis (biaxially oriented substrate) is preferable.
  • a biaxially oriented substrate having a corundum structure as the support substrate, it is possible to serve as a seed crystal for heteroepitaxial growth of the semiconductor film.
  • the biaxially oriented substrate may be a polycrystal, a mosaic crystal (a set of crystals whose crystal orientations are slightly deviated), or a single crystal.
  • the main components of the support substrate are ⁇ -Al 2 O 3 , ⁇ -Cr 2 O 3 , ⁇ -Fe 2 O 3 , ⁇ -Ti 2 O 3 , ⁇ -V 2 O 3 , and ⁇ -Rh 2 O 3.
  • a solid solution containing two or more kinds selected from the group consisting of 3 is preferable, and a solid solution of ⁇ -Cr 2 O 3 or ⁇ -Cr 2 O 3 and a dissimilar material is particularly preferable.
  • a material having a corundum type crystal structure having a-axis length and / or c-axis length larger than the sapphire can also be used as a seed crystal for the support substrate and heteroepitaxial growth.
  • the alignment layer is a material selected from the group consisting of ⁇ -Cr 2 O 3 , ⁇ -Fe 2 O 3 , ⁇ -Ti 2 O 3 , ⁇ -V 2 O 3 , and ⁇ -Rh 2 O 3 , or ⁇ .
  • the semiconductor film formed on the film-forming substrate may be separated and reprinted on another support substrate.
  • the material of the other support substrate is not particularly limited, but a suitable material may be selected from the viewpoint of material physical properties.
  • a metal substrate such as Cu, a ceramic substrate such as SiC or AlN, or the like is preferable.
  • An example of such a support substrate is a substrate made of a Cu—Mo composite metal. The composite ratio of Cu and Mo can be appropriately selected in consideration of the matching of the coefficient of thermal expansion with the semiconductor film, the thermal conductivity, the conductivity and the like.
  • an ⁇ -Cr 2 O 3 or a biaxially oriented substrate composed of a solid solution of ⁇ -Cr 2 O 3 and a different material, or ⁇ -Cr 2 O 3 or ⁇ -Cr 2
  • Any composite substrate having an orientation layer composed of a solid solution of O 3 and a dissimilar material is preferable. By doing so, it is possible to serve as both a seed crystal (base substrate for film formation) for heteroepitaxial growth of the semiconductor film and a support substrate, and it is possible to significantly reduce crystal defects in the semiconductor film.
  • the semiconductor film of the present invention has extremely few crystal defects and can exhibit high dielectric breakdown electric field characteristics.
  • a technique for obtaining a semiconductor film having such a low crystal defect density has not been conventionally known.
  • the manufacturing method of the semiconductor film is not particularly limited as long as the film can be formed so that the impurity concentration and / or the amount of different phases differs between the front surface and the back surface.
  • a biaxially oriented substrate composed of a solid solution of ⁇ -Cr 2 O 3 or ⁇ -Cr 2 O 3 and a dissimilar material, or ⁇ -Cr 2 O 3 or ⁇ -Cr 2 O It is preferable to use any of the composite base substrates having an orientation layer composed of a solid solution of 3 and a different material as the base substrate for film formation.
  • the method for manufacturing a semiconductor film will be described in the order of (1) manufacturing of a composite substrate and (2) formation of a semiconductor film.
  • a sapphire substrate is prepared, (b) a predetermined orientation precursor layer is prepared, and (c) the alignment precursor layer is heat-treated on the sapphire substrate. It can be preferably produced by converting at least a portion near the sapphire substrate into an alignment layer and, if desired, performing processing such as (d) grinding or polishing to expose the surface of the alignment layer.
  • This alignment precursor layer becomes an alignment layer by heat treatment, and is a material having a corundum-type crystal structure whose a-axis length and / or c-axis length is larger than sapphire, or a-axis length and / or c-axis by heat treatment described later.
  • the orientation precursor layer may contain trace components in addition to the material having a corundum-type crystal structure. According to such a manufacturing method, the growth of the alignment layer can be promoted by using the sapphire substrate as a seed crystal. That is, the high crystallinity and crystal orientation orientation peculiar to a single crystal of a sapphire substrate are inherited by the alignment layer.
  • a sapphire substrate is prepared.
  • the sapphire substrate used may have any azimuth plane. That is, it may have a-plane, c-plane, r-plane, and m-plane, and may have a predetermined off-angle with respect to these planes.
  • c-plane sapphire since it is c-axis oriented with respect to the surface, it is possible to easily heteroepitaxially grow an oriented layer oriented c-axis on it.
  • a sapphire substrate to which a dopant has been added in order to adjust the electrical characteristics.
  • dopants can be used as such dopants.
  • orientation precursor layer A material having a corundum-type crystal structure whose a-axis length and / or c-axis length is larger than sapphire, or a corundum-type crystal structure whose a-axis length and / or c-axis length is larger than sapphire by heat treatment.
  • An orientation precursor layer containing the material to be used is prepared.
  • the method for forming the orientation precursor layer is not particularly limited, and a known method can be adopted.
  • Examples of methods for forming an orientation precursor layer include AD (aerosol deposition) method, sol-gel method, hydrothermal method, sputtering method, thin-film deposition method, various CVD (chemical vapor deposition) methods, PLD method, and CVT (chemical vapor deposition) method. Methods such as the vapor phase transport method and the sublimation method can be mentioned.
  • Examples of the CVD method include a thermal CVD method, a plasma CVD method, a mist CVD method, an MO (organic metal) CVD method, and the like.
  • a method may be used in which a molded product of the orientation precursor is prepared in advance and the molded product is placed on a sapphire substrate.
  • Such a molded product can be produced by molding the material of the orientation precursor by a method such as tape molding or press molding. Further, it is also possible to use a method in which a polycrystal prepared in advance by various CVD methods or sintering is used as the orientation precursor layer and placed on a sapphire substrate.
  • a method of directly forming the orientation precursor layer by using an aerosol deposition (AD) method, various CVD methods, or a sputtering method is preferable.
  • AD aerosol deposition
  • various CVD methods various CVD methods
  • a sputtering method it becomes possible to form a dense orientation precursor layer in a relatively short time, and it becomes easy to cause heteroepitaxial growth using a sapphire substrate as a seed crystal.
  • the AD method does not require a high vacuum process and has a relatively high film formation rate, and is therefore preferable in terms of manufacturing cost.
  • the sputtering method it is possible to form a film using a target made of the same material as the alignment precursor layer, but it is also possible to use a reactive sputtering method in which a metal target is used to form a film in an oxygen atmosphere. it can.
  • a method of placing the molded product prepared in advance on sapphire is also preferable as a simple method, but since the orientation precursor layer is not dense, a process of densification is required in the heat treatment step described later.
  • the method using a polycrystalline body prepared in advance as the orientation precursor layer requires two steps, a step of preparing the polycrystalline body and a step of heat treatment on the sapphire substrate.
  • the AD method is a technology in which fine particles and fine particle raw materials are mixed with a gas to form an aerosol, and this aerosol is jetted at high speed from a nozzle to collide with a substrate to form a film, which is said to be able to form a densified film at room temperature. It has characteristics.
  • FIG. 1 shows an example of a film forming apparatus (aerosol deposition (AD) apparatus) used in such an AD method.
  • the film forming apparatus 20 shown in FIG. 1 is configured as an apparatus used in the AD method of injecting raw material powder onto a substrate in an atmosphere of atmospheric pressure lower than atmospheric pressure.
  • the film forming apparatus 20 includes an aerosol generation unit 22 that generates an aerosol of a raw material powder containing a raw material component, and a film forming unit 30 that injects the raw material powder onto a sapphire substrate 21 to form a film containing the raw material component.
  • the aerosol generation unit 22 includes an aerosol generation chamber 23 that houses raw material powder and receives a carrier gas supply from a gas cylinder (not shown) to generate an aerosol, and a raw material supply pipe 24 that supplies the generated aerosol to the film forming unit 30.
  • the aerosol generation chamber 23 and the aerosol in the aerosol are provided with a vibration exciter 25 that applies vibration at a frequency of 10 to 100 Hz.
  • the film-forming unit 30 has a film-forming chamber 32 that injects aerosols onto the sapphire substrate 21, a substrate holder 34 that is arranged inside the film-forming chamber 32 and fixes the sapphire substrate 21, and a substrate holder 34 on the X-axis-Y-axis. It is equipped with an XY stage 33 that moves in a direction. Further, the film forming section 30 includes an injection nozzle 36 having a slit 37 formed at the tip thereof to inject aerosol into the sapphire substrate 21, and a vacuum pump 38 for reducing the pressure in the film forming chamber 32.
  • the AD method can control the film thickness, film quality, etc. depending on the film forming conditions.
  • the form of the AD film is easily affected by the collision rate of the raw material powder with the substrate, the particle size of the raw material powder, the aggregated state of the raw material powder in the aerosol, the injection amount per unit time, and the like.
  • the collision speed of the raw material powder with the substrate is affected by the differential pressure between the film forming chamber 32 and the injection nozzle 36, the opening area of the injection nozzle, and the like. If appropriate conditions are not used, the coating may become a powder or pores, so it is necessary to control these factors appropriately.
  • the raw material powder of the alignment precursor can be molded to prepare the molded product.
  • the orientation precursor layer is a press molded body.
  • the press-molded product can be produced by press-molding the raw material powder of the orientation precursor based on a known method.
  • the raw material powder is placed in a mold, preferably 100 to 400 kgf / cm 2 , more preferably 150. It may be produced by pressing at a pressure of about 300 kgf / cm 2 .
  • the molding method is not particularly limited, and in addition to press molding, tape molding, casting molding, extrusion molding, doctor blade method, and any combination thereof can be used.
  • additives such as a binder, a plasticizer, a dispersant, and a dispersion medium are appropriately added to the raw material powder to form a slurry, and the slurry is passed through a narrow slit-shaped discharge port to form a sheet. It is preferable to discharge and mold.
  • the thickness of the molded product formed into a sheet is not limited, but is preferably 5 to 500 ⁇ m from the viewpoint of handling. Further, when a thick orientation precursor layer is required, a large number of these sheet molded products may be stacked and used as a desired thickness.
  • the portion near the sapphire substrate becomes an orientation layer by the subsequent heat treatment on the sapphire substrate.
  • the molded product may contain trace components such as a sintering aid in addition to the material having or bringing about a corundum-type crystal structure.
  • (C) Heat treatment of the alignment precursor layer on the sapphire substrate The sapphire substrate on which the alignment precursor layer is formed is heat-treated at a temperature of 1000 ° C. or higher. By this heat treatment, at least a portion of the alignment precursor layer near the sapphire substrate can be converted into a dense alignment layer. Further, this heat treatment makes it possible to grow the oriented layer heteroepitaxially. That is, by forming the alignment layer with a material having a corundum-type crystal structure, heteroepitaxial growth occurs in which the material having a corundum-type crystal structure grows as a seed crystal using a sapphire substrate during heat treatment. At that time, the crystals are rearranged, and the crystals are arranged according to the crystal plane of the sapphire substrate.
  • the crystal axes of the sapphire substrate and the alignment layer can be aligned.
  • the sapphire substrate and the alignment layer can both be oriented in the c-axis with respect to the surface of the substrate.
  • this heat treatment makes it possible to form a gradient composition region in a part of the alignment layer. That is, during the heat treatment, a reaction occurs at the interface between the sapphire substrate and the alignment precursor layer, the Al component in the sapphire substrate diffuses into the alignment precursor layer and / or the component in the alignment precursor layer is in the sapphire substrate.
  • a gradient composition region composed of a solid solution containing ⁇ -Al 2 O 3 is formed.
  • the orientation precursor layer is in a non-oriented state at the time of its production, that is, it is an amorphous or non-oriented polycrystal, and it is preferable to cause crystal rearrangement using sapphire as a seed crystal during this heat treatment step. By doing so, the crystal defects reaching the surface of the alignment layer can be effectively reduced. The reason for this is not clear, but it is thought that the rearrangement of the crystal structure of the solid-phase orientation precursor layer once formed using sapphire as a seed may be effective in eliminating crystal defects.
  • the heat treatment is not particularly limited as long as a corundum-type crystal structure is obtained and heteroepitaxial growth using a sapphire substrate as a seed occurs, and the heat treatment can be carried out in a known heat treatment furnace such as a tube furnace or a hot plate. Further, in addition to these heat treatments under normal pressure (pressless), pressure heat treatments such as hot press and HIP, and combinations of normal pressure heat treatments and pressure heat treatments can also be used.
  • the heat treatment conditions can be appropriately selected depending on the material used for the alignment layer.
  • the heat treatment atmosphere can be selected from atmospheric, vacuum, nitrogen and inert gas atmospheres.
  • the preferred heat treatment temperature also varies depending on the material used for the alignment layer, but is preferably 1000 to 2000 ° C, more preferably 1200 to 2000 ° C, for example.
  • the heat treatment temperature and holding time are related to the thickness of the alignment layer generated by heteroepitaxial growth and the thickness of the inclined composition region formed by diffusion with the sapphire substrate, and are related to the type of material, the target alignment layer, and the thickness of the inclined composition region. It can be adjusted as appropriate depending on the size. However, when a prefabricated molded product is used as the orientation precursor layer, it is necessary to sinter and densify it during heat treatment, and atmospheric firing at high temperature, hot pressing, HIP, or a combination thereof is preferable. ..
  • the surface pressure is preferably 50 kgf / cm 2 or more, more preferably 100 kgf / cm 2 or more, particularly preferably preferably 200 kgf / cm 2 or more, the upper limit is not particularly limited.
  • the firing temperature is also not particularly limited as long as sintering, densification, and heteroepitaxial growth occur, but is preferably 1000 ° C. or higher, more preferably 1200 ° C. or higher, further preferably 1400 ° C. or higher, and particularly preferably 1600 ° C. or higher.
  • the firing atmosphere can also be selected from atmosphere, vacuum, nitrogen and an inert gas atmosphere.
  • the firing jig such as a mold, those made of graphite or alumina can be used.
  • an oriented precursor layer or a surface layer having poor orientation or no orientation may exist or remain.
  • the surface derived from the alignment precursor layer is subjected to processing such as grinding or polishing to expose the surface of the alignment layer.
  • processing such as grinding or polishing to expose the surface of the alignment layer.
  • a material having excellent orientation is exposed on the surface of the alignment layer, so that the semiconductor layer can be effectively epitaxially grown on the material.
  • the method for removing the orientation precursor layer and the surface layer is not particularly limited, and examples thereof include a method for grinding and polishing and a method for ion beam milling. Polishing of the surface of the alignment layer is preferably performed by lapping using abrasive grains or chemical mechanical polishing (CMP).
  • a semiconductor film is formed on the alignment layer of the obtained composite substrate.
  • a known method is used as long as a semiconductor film having the characteristics specified in the present invention can be obtained, in other words, as long as the film can be formed so that the impurity concentration and / or the amount of different phases differs between the front surface and the back surface.
  • any of the mist CVD method, HVPE method, MBE method, MOCVD method, hydrothermal method and sputtering method is preferable, and the mist CVD method, hydrothermal method or HVPE method is particularly preferable. Of these methods, the HVPE method will be described below.
  • the HVPE method (halide vapor deposition method) is a type of CVD and is a method applicable to film formation of compound semiconductors such as Ga 2 O 3 and GaN.
  • the Ga raw material and the halide are reacted to generate gallium halide gas, which is supplied onto the base substrate for film formation.
  • O 2 gas is supplied onto the film-forming base substrate, and the reaction between the gallium halide gas and the O 2 gas causes Ga 2 O 3 to grow on the film-forming base substrate. It is a method that enables high-speed and thick film growth and has a wide range of achievements in industry, and examples of film formation of ⁇ -Ga 2 O 3 as well as ⁇ -Ga 2 O 3 have been reported.
  • FIG. 2 shows an example of a vapor deposition apparatus using the HVPE method.
  • the vapor phase growth apparatus 40 using the HVPE method includes a reaction furnace 50, a susceptor 58 on which a film-forming substrate 56 is placed, an oxygen raw material supply source 51, a carrier gas supply source 52, and a Ga raw material supply source 53.
  • a heater 54 and a gas discharge unit 57 are provided.
  • An arbitrary reactor that does not react with the raw material is applied to the reactor 50, for example, a quartz tube. Any heater capable of heating up to at least 700 ° C. (preferably 900 ° C. or higher) is applied to the heater 54, for example, a resistance heating type heater.
  • a metal Ga 55 is placed inside the Ga raw material supply source 53, and a halogen gas or a hydrogen halide gas, for example, HCl is supplied.
  • the halogen gas or halogenated gas is preferably Cl 2 or HCl.
  • the supplied halogen gas or halogenated gas reacts with the metal Ga55 to generate gallium halide gas, which is supplied to the base substrate for film formation.
  • the gallium halide gas preferably contains GaCl and / or GaCl 3 .
  • the oxygen raw material supply source 51 can supply an oxygen source selected from the group consisting of O 2 , H 2 O and N 2 O, but O 2 is preferable. These oxygen raw material gases are supplied to the base substrate for film formation at the same time as the gallium halide gas.
  • the Ga raw material and the oxygen raw material gas may be supplied together with a carrier gas such as N 2 or a rare gas.
  • the gas discharge unit 57 may be connected to a vacuum pump such as a diffusion pump or a rotary pump, for example, and controls not only the discharge of unreacted gas in the reaction furnace 50 but also the inside of the reaction furnace 50 under reduced pressure. You may. This can suppress the gas phase reaction and improve the growth rate distribution.
  • a vacuum pump such as a diffusion pump or a rotary pump, for example, and controls not only the discharge of unreacted gas in the reaction furnace 50 but also the inside of the reaction furnace 50 under reduced pressure. You may. This can suppress the gas phase reaction and improve the growth rate distribution.
  • ⁇ -Ga 2 O 3 is formed on the film-forming base substrate 56 by heating the film-forming base substrate 56 to a predetermined temperature using the heater 54 and simultaneously supplying the gallium halide gas and the oxygen raw material gas. Will be done.
  • the film forming temperature is not particularly limited as long as ⁇ -Ga 2 O 3 is formed, but is typically 250 ° C to 900 ° C, for example.
  • the partial pressure of the Ga raw material gas and the oxygen raw material gas is also not particularly limited.
  • the partial pressure of the Ga raw material gas may be in the range of 0.05 kPa or more and 10 kPa or less
  • the partial pressure of the oxygen raw material gas may be in the range of 0.25 kPa or more and 50 kPa or less.
  • a separate supply source may be provided to supply the halides thereof, or these may be supplied from the Ga raw material supply source 53.
  • Halides may be mixed and supplied. Further, a material containing these metal elements may be placed in the same place as the metal Ga55, reacted with a halogen gas or a hydrogen halide gas, and supplied as a halide.
  • a separate supply source may be provided to supply the halides and the like, or the halides may be mixed and supplied from the Ga raw material supply source 53.
  • a material containing a Group 14 element, In, Al or the like may be placed in the same place as the metal Ga55, reacted with a halogen gas or a hydrogen halide gas, and supplied as a halide. Similar to gallium halide, those halide gases supplied to the film-forming substrate 56 react with the oxygen raw material gas to form oxides, which are incorporated into the ⁇ -Ga 2 O 3 system semiconductor film.
  • the HVPE method When forming a semiconductor film by the HVPE method, it is possible to form a film having a single-layer structure by keeping the supply amounts of Ga raw materials, oxygen raw materials, impurity raw materials, etc. constant and appropriately controlling the film forming conditions. it can.
  • the supply ratio of the raw material gas is changed stepwise and / or continuously during the film formation to obtain a film having a multilayer structure having different compositions. May be good.
  • the amount of Cr, Fe, Ti, etc. incorporated into the semiconductor film also changes depending on the conditions such as the film formation temperature. Therefore, for example, it is possible to produce a semiconductor film having a multi-layer structure in which the component composition changes in the thickness direction by gradually and / or continuously changing the conditions such as the film formation temperature during the film formation. Is.
  • a film-forming base substrate containing Cr, Fe, Ti, or the like as a main component is used, these impurities may be incorporated into the semiconductor film without adding the above impurities separately.
  • the source of impurities is a film-forming substrate, and the film-forming substrate reacts slightly with the film-forming gas during film-forming, and impurities are incorporated into the semiconductor film.
  • the amount of impurities incorporated into the semiconductor film can be controlled. Therefore, in order to produce a film having different impurity concentrations on the front surface and the back surface by using such a film-forming substrate, it is necessary to appropriately control these factors.
  • the supply ratio of the raw material gas may be changed stepwise and / or continuously during the film formation, the film formation temperature, the raw material supply rate, etc.
  • the conditions may be changed stepwise and / or continuously to obtain a multi-layered film having a different crystal structure from ⁇ -Ga 2 O 3 and changing the content of different phases in the semiconductor film.
  • the amount of different phases formed can be controlled by changing the film formation temperature, the raw material supply rate, the raw material supply ratio, and the like between the early stage and the late stage of film formation.
  • the semiconductor film is formed on the composite substrate.
  • the amount of impurities in the semiconductor film can be evaluated by a known analytical method such as D-SIMS, GD-MS, GD-OES, EDS, EPMA and the like.
  • a known analytical method such as D-SIMS, GD-MS, GD-OES, EDS, EPMA and the like.
  • the amount of heterogeneous phase in the semiconductor film can be evaluated by a known analytical method such as XRD or EBSD.
  • XRD X-ray diffraction
  • the crystal defect density in the semiconductor film can be evaluated by a plane TEM or a cross-section TEM.
  • the following method can be used to evaluate the crystal defect density by plane TEM observation (plan view).
  • ⁇ Acceleration voltage 300 kV
  • the semiconductor film thus produced typically has a significantly low surface crystal defect density of 1.0 ⁇ 10 6 / cm 2 or less.
  • Such a semiconductor layer having an extremely low crystal defect density is excellent in dielectric breakdown electric field characteristics and is suitable for use in power semiconductors.
  • the crystal defect density is preferably 1.0 ⁇ 10 5 / cm 2 or less, more preferably 4.0 ⁇ 10 3 / cm 2 or less.
  • the semiconductor film of the present invention has extremely small warpage when it is formed on a film-forming substrate or when it is separated from the film-forming substrate to form a self-standing film.
  • a biaxially oriented substrate composed of a solid solution of ⁇ -Cr 2 O 3 or ⁇ -Cr 2 O 3 and a different material, or ⁇ -Cr 2 O 3 or ⁇ -Cr.
  • the amount of warpage can be particularly reduced.
  • the amount of warpage when a 2-inch size semiconductor film is produced can be 30 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 10 ⁇ m or less.
  • the reason why such a small amount of warpage is obtained is not clear, but it is considered that the stress in the semiconductor film at the time of film formation is relaxed by distributing the impurity concentration and / or the amount of different phases in the thickness direction. ..
  • the semiconductor film of the present invention can be a film having a small mosaic property.
  • the ⁇ -Ga 2 O 3 film formed on the conventional sapphire substrate may be an aggregate (mosaic crystal) of domains having slightly different crystal orientations. The cause of this is not clear, but it can be mentioned that the film formation temperature is relatively low because ⁇ -Ga 2 O 3 is a metastable phase. Since the film formation temperature is low, it is difficult for the adsorbed components to migrate on the substrate surface, and step flow growth is difficult. For this reason, the growth mode of island-like growth (three-dimensional growth) tends to be dominant.
  • the base substrate for film formation there may be a lattice mismatch between the semiconductor film and the sapphire, and the crystal orientation directions of the island-shaped growth portions (domains) may be slightly different from each other. For this reason, the domains do not meet completely and tend to form mosaic crystals.
  • the semiconductor film of the present invention in particular as film formation base substrate, ⁇ -Cr 2 O 3, or ⁇ -Cr 2 O 3 and single crystal substrate composed of a solid solution of different materials, or ⁇ -Cr 2 O 3
  • any of the composite substrates having a single crystal layer composed of a solid solution of ⁇ -Cr 2 O 3 and a dissimilar material is used and the film forming conditions are appropriately controlled, there is no mosaic property (that is, a single crystal).
  • a semiconductor film having a small mosaic property can be obtained.
  • the reason for this is not clear, but the lattice constants of the semiconductor film being filmed and the underlying substrate for film formation are close or the same, and the impurity concentration and / or the amount of different phases are distributed in the thickness direction. It is considered that this is because the stress in the semiconductor film during or after the film formation is relaxed and the orientation directions are easily aligned. Further, as described above, since the stress applied to the film is relaxed, the crystal structure of ⁇ -Ga 2 O 3 is stabilized. In other words, it is possible to maintain the crystal structure of ⁇ -Ga 2 O 3 and form a film even if the film formation temperature is relatively high.
  • the adsorbed component is likely to migrate on the substrate surface, and step flow growth is likely to occur.
  • This point is also considered to be one of the factors for obtaining a semiconductor film having no mosaic property (that is, a single crystal) or a small mosaic property.
  • the film formation temperature is, for example, 600 ° C. or higher, preferably 700 ° C. or higher, more preferably 800 ° C. or higher, and further preferably 900 ° C. or higher.
  • known methods such as X-ray locking curve measurement, EBSD measurement, and TEM can be used, but the half-value width evaluation in the X-ray locking curve measurement is particularly preferable. ..
  • the following method can be used to evaluate the mosaic property of the semiconductor film by X-ray locking curve measurement (XRC).
  • XRC X-ray locking curve measurement
  • -Measuring device Bruker-AXS D8-DISCOVER
  • X-ray source CuK ⁇ ray, tube voltage 40kV, tube current 40mA, Ge (022) asymmetric reflection monochromator for parallel monochromator
  • Collimator diameter 0.5mm ⁇
  • Anti-scattering slit 3mm ⁇ ⁇ step width: 0.005 ° ⁇
  • Counting time 0.5 seconds
  • -XRD analysis software Bruker-AXS, "LEPTOS" Ver4.03
  • the half width of the (006) plane of the X-ray locking curve is preferably less than 40 seconds, more preferably less than 30 seconds, and there is no problem even if the value is equivalent to the half width peculiar to the X-ray source used for the measurement.
  • the (104) plane half width of the X-ray locking curve is preferably less than 40 seconds, more preferably less than 30 seconds, and there is no problem even if the value is equivalent to the half width peculiar to the X-ray source used for the measurement.
  • the half width of the X-ray locking curve is affected by the crystal defect density and crystal warpage in addition to the above-mentioned mosaic property.
  • the semiconductor film of the present invention has few crystal defects, no mosaic property, and small warpage. , It is considered that such a value can be realized.
  • the obtained semiconductor film can be formed as it is or divided into semiconductor elements.
  • the semiconductor film may be peeled off from the composite substrate to form a single film.
  • a peeling layer may be provided in advance on the alignment layer surface (deposition surface) of the composite base substrate.
  • Examples of such a release layer include those provided with a C injection layer and an H injection layer on the surface of the composite base substrate. Further, C or H may be injected into the film at the initial stage of film formation of the semiconductor film to provide a release layer on the semiconductor film side.
  • a support substrate (mounting substrate) different from the composite substrate is bonded and bonded to the surface of the semiconductor film formed on the composite substrate (that is, the surface opposite to the composite substrate), and then the semiconductor film is formed. It is also possible to peel off the composite substrate from the surface.
  • a support substrate (mounting substrate) a substrate having a thermal expansion coefficient of 6 to 13 ppm / K at 25 to 400 ° C., for example, a substrate composed of a Cu—Mo composite metal can be used.
  • known methods such as brazing, soldering, and solid phase bonding can be mentioned.
  • an electrode such as an ohmic electrode or a Schottky electrode, or another layer such as an adhesive layer may be provided between the semiconductor film and the support substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

結晶欠陥が著しく少なく、高い絶縁破壊電界特性を呈する半導体膜が提供される。この半導体膜は、α-Ga3、又はα-Ga系固溶体で構成されるコランダム型結晶構造を有し、半導体膜の表面と裏面とで不純物濃度及び/又は異相量が異なるものである。

Description

半導体膜
 本発明は、半導体膜に関するものであり、特に、不純物濃度及び/又は異相量に分布を有するα-Ga系半導体膜に関する。
 近年、酸化ガリウム(Ga)が半導体用材料として着目されている。酸化ガリウムはα、β、γ、δ及びεの5つの結晶形を有することが知られているが、この中で、準安定相であるα-Gaはバンドギャップが5.3eVと非常に大きく、パワー半導体用材料として期待を集めている。
 例えば、特許文献1(特開2014-72533号公報)には、コランダム型結晶構造を有する下地基板と、コランダム型結晶構造を有する半導体層と、コランダム型結晶構造を有する絶縁膜とを備えた半導体装置が開示されており、サファイア基板上に、半導体層としてα-Ga膜を成膜した例が記載されている。また、特許文献2(特開2016-25256号公報)には、コランダム構造を有する結晶性酸化物半導体を主成分として含むn型半導体層と、六方晶の結晶構造を有する無機化合物を主成分とするp型半導体層と、電極とを備えた半導体装置が開示されている。この特許文献2の実施例には、c面サファイア基板上に、n型半導体層として準安定相であるコランダム構造を有するα-Ga膜を、p型半導体層として六方晶の結晶構造を有するα-Rh膜を形成して、ダイオードを作製することが開示されている。
 ところで、これらの半導体デバイスにおいて、材料中の結晶欠陥が少ない方が、良好な特性を得ることができることが知られている。特に、パワー半導体は耐電圧特性に優れることが要求されるため、結晶欠陥を低減することが望ましい。これは、結晶欠陥の多寡によって絶縁破壊電界特性が左右されるためである。しかしながら、α-Gaは準安定相であるため、単結晶基板が実用化されておらず、サファイア基板等へのヘテロエピタキシャル成長で形成されるのが一般的である。しかしながら、このような場合には、サファイアとの格子定数差に起因した結晶欠陥が多数含まれることが知られている。例えば、非特許文献1(Applied Physics Express, vol.9, pages 071101-1~071101-4)には、α-Gaとサファイア基板との間には、c軸方向及びa軸方向にそれぞれ3.54%及び4.81%の格子の不整合があり、この不整合に起因してα-Gaに欠陥が生じることや、刃状転位密度が7×1010cm-2であることが開示されている。
 このような状況の中、α-Ga中の結晶欠陥低減に向けて、サファイアとα-Ga層間にバッファ層を形成する手法が報告されている。例えば、非特許文献1には、サファイアとα-Ga層間にバッファ層として(Al,Ga1-x層(x=0.2~0.9)を導入することで、刃状転位とらせん転位が、それぞれ3×10/cm及び6×10/cmとなるとされる例が示されている。
特開2014-72533号公報 特開2016-25256号公報
Riena Jinno et al., Reduction in edge dislocation density in corundum-structured α-Ga2O3 layers on sapphire substrates with quasi-graded α-(Al,Ga)2O3 buffer layers, Applied Physics Express, Japan, The Japan Society of Applied Physics, June 1, 2016, vol.9, pages 071101-1 to 071101-4
 しかしながら、パワー半導体は高耐圧が要求されるため、非特許文献1に開示されるようなバッファ層を導入する手法も、絶縁破壊電界特性が不十分であり、結晶欠陥の更なる低減が必要とされる。
 本発明者らは、今般、α-Ga系半導体膜の不純物濃度及び/又は異相量を表面と裏面で異ならせることで、結晶欠陥が著しく少ないα-Ga系半導体膜を提供できるとの知見を得た。
 したがって、本発明の目的は、結晶欠陥が著しく少なく、高い絶縁破壊電界特性を呈する半導体膜を提供することにある。
 本発明によれば、α-Ga、又はα-Ga系固溶体で構成されるコランダム型結晶構造を有する半導体膜であって、前記半導体膜の表面と裏面とで不純物濃度及び/又は異相量が異なる、半導体膜が提供される。
エアロゾルデポジション(AD)装置の構成を示す模式断面図である。 HVPE法を用いた気相成長装置の構成を示す模式断面図である。
 半導体膜
 本発明の半導体膜は、α-Ga、又はα-Ga系固溶体で構成されるコランダム型結晶構造を有する。α-Gaは、三方晶系の結晶群に属し、コランダム型結晶構造をとる。また、α-Ga系固溶体は、α-Gaに他の成分が固溶したものであり、コランダム型結晶構造が維持されている。
 本発明のα-Ga系半導体膜は、表面と裏面とで不純物濃度及び/又は異相量が異なる。こうすることで、膜表面に達する結晶欠陥の密度が著しく低い半導体膜とすることができる。半導体膜の、不純物濃度が低い及び/又は異相量が少ない側の面における結晶欠陥密度は、好ましくは1.0×10/cm以下、より好ましくは4.0×10/cm以下である。結晶欠陥密度の下限は特に限定されず、低い方が好ましい。なお、本明細書において、結晶欠陥とは、貫通刃状転位、貫通らせん転位、貫通混合転位、及び基底面転位を指し、結晶欠陥密度は、各転位密度の合計のことである。なお、基底面転位は、半導体膜にオフ角がある場合に問題となるものであり、オフ角がない場合は半導体膜の表面まで露出しないため、問題とならない。例えば、貫通刃状転位を3×10/cm、貫通らせん転位を6×10/cm、貫通混合転位を4×10/cm含むとすれば、結晶欠陥密度は1.3×10/cmとなる。 
 本発明者らは、半導体膜の表面と裏面とで不純物濃度及び/又は異相量を異ならせることで、不純物濃度が低い又は異相量が少ない側の表面に到達する結晶欠陥の密度が低減されることを見出した。その理由は定かではないが、以下のようなメカニズムが考えられる。すなわち、欠陥が生じる原因の1つとして、半導体膜と成膜用下地基板との格子ミスマッチが考えられる。このとき、不純物濃度及び/又は異相量が膜中の厚さ方向で分布を持つことで膜中の格子ミスマッチの応力を緩和して欠陥密度が低減できると考えられる。あるいは欠陥同士の対消滅が生じやすくなると考えられる。欠陥が生じる2つ目の原因として、成膜用下地基板に欠陥が存在し、その欠陥が半導体膜に伝搬する場合が考えられる。このとき、不純物濃度及び/又は異相量が膜中の厚さ方向で分布を持つことで欠陥同士の対消滅が生じやすくなると考えられる。欠陥が生じる3つ目の原因として、成膜時や成膜後に室温まで降温するときの温度分布による熱応力が考えられる。このとき、不純物濃度及び/又は異相量が膜中の厚さ方向で分布を持つことで熱応力が緩和され、新たな転位の生成を抑制できると考えられる。
 半導体膜に含まれ、表面と裏面とで濃度が異なる不純物には、主として、Cr、Fe及びTiからなる群から選択される1種以上の成分が含まれるのが好ましい。言い換えると、半導体膜の表面と裏面とでCr、Fe及びTiからなる群から選択される1種以上の成分の合計濃度が異なることが好ましい。また、半導体膜に含まれ、表面と裏面とで含有量が異なる異相は、β-Ga、ε-Ga、γ-Ga、及びδ-Gaからなる群から選択される1種以上の結晶構造を有することが好ましく、β-Ga及びε-Gaの1種以上の結晶構造を有することがさらに好ましい。
 半導体膜は、ドーパントとして14族元素を1.0×1016~1.0×1021/cmの割合で含むことができる。ここで、14族元素はIUPAC(国際純正・応用化学連合)が策定した周期律表による第14族元素のことであり、具体的には、炭素(C)、珪素(Si)、ゲルマニウム(Ge)、錫(Sn)及び鉛(Pb)のいずれかの元素である。ドーパント量は所望の特性に合わせて適宜変更することができるが、好ましくは、1.0×1016~1.0×1021/cm、より好ましくは1.0×1017~1.0×1019/cmである。これらのドーパントは膜中に均一に分布し、表面と裏面の濃度は同程度であることが好ましい。すなわち、半導体膜はドーパントとして14族元素を上記割合で均一に含むのが好ましい。
 さらに、半導体膜が特定の面方位に配向した配向膜であるのが好ましい。半導体膜の配向性は公知の手法を用いて調べることができるが、例えば、電子線後方散乱回折装置(EBSD)を用いて、逆極点図方位マッピングを行うことで、調べることができる。
 半導体膜の膜厚は、コスト面及び要求される特性の観点から適宜調整すればよい。すなわち、厚すぎると成膜に時間がかかるため、コスト面からは極端に厚くない方が好ましい。また、特に高い絶縁耐圧が要求されるデバイスを作製する場合には、厚い膜とすることが好ましい。一方、縦方向(厚さ方向)の導電性が要求されるデバイスを作製する場合には、薄い膜とすることが好ましい。このように所望の特性に合わせて膜厚を適宜調整すればよいが、典型的には0.1~50μm、又は0.2~20μm、又は0.2~10μmである。このような範囲の厚さとすることで、コスト面と半導体特性の両立が可能となる。また、自立した半導体膜が必要な場合は厚い膜とすればよく、例えば50μm以上、又は100μm以上であり、コスト面の制限がない限り特に上限はない。
 半導体膜は、その片面が、好ましくは20cm以上、より好ましくは70cm以上、さらに好ましくは170cm以上の面積を有する。このように半導体膜を大面積化することにより、一枚の半導体膜から半導体素子を多数個取りすることが可能となり、製造コストの低減化を図ることができる。半導体膜の大きさの上限は特に限定されるものではないが、典型的には、片面700cm以下である。
 半導体膜は、膜単独の自立膜の形態であってもよいし、支持基板上に形成されたものであってもよい。支持基板として、コランダム構造を有し、c軸及びa軸の二軸に配向した基板(二軸配向基板)が好ましい。支持基板にコランダム構造を有する二軸配向基板を用いることで、半導体膜がヘテロエピタキシャル成長するための種結晶を兼ねることが可能となる。二軸配向基板は、多結晶やモザイク結晶(結晶方位が若干ずれた結晶の集合)であってもよいし、単結晶であってもよい。コランダム構造を有する限り、単一の材料で構成されるものでもよいし、複数の材料の固溶体であってもよい。支持基板の主成分は、α-Al、α-Cr、α-Fe、α-Ti、α-V、及びα-Rhからなる群から選択される材料、又はα-Al、α-Cr、α-Fe、α-Ti、α-V、及びα-Rhからなる群から選択される2種以上を含む固溶体が好ましく、α-Cr又はα-Crと異種材料との固溶体が特に好ましい。
 また、支持基板兼ヘテロエピタキシャル成長用の種結晶として、サファイア、Cr等のコランダム単結晶上に、サファイアよりも大きいa軸長及び/又はc軸長を有するコランダム型結晶構造を有する材料で構成された配向層を形成した複合下地基板も用いることができる。配向層は、α-Cr、α-Fe、α-Ti、α-V、及びα-Rhからなる群から選択される材料、又はα-Al、α-Cr、α-Fe、α-Ti、α-V、及びα-Rhからなる群から選択される2種以上を含む固溶体を含む。
 また、成膜用下地基板上に作製した半導体膜を分離し、別の支持基板に転載してもよい。別の支持基板の材質は特に限定はないが、材料物性の観点から好適なものを選択すればよい。例えば、熱伝導率の観点では、Cu等の金属基板、SiC、AlN等のセラミックス基板等が好ましい。また、25~400℃での熱膨張率が6~13ppm/Kである基板を用いるのも好ましい。このような熱膨張率を有する支持基板を用いることで、半導体膜との熱膨張差を小さくすることができ、その結果、熱応力による半導体膜中のクラック発生や膜剥がれ等を抑制できる。このような支持基板の例としては、Cu-Mo複合金属で構成される基板が挙げられる。CuとMoの複合比率は、半導体膜との熱膨張率マッチング、熱伝導率、導電率等を勘案して、適宜選択することができる。
 半導体膜の支持基板としては、α-Cr、若しくはα-Crと異種材料との固溶体で構成される二軸配向基板、又はα-Cr、若しくはα-Crと異種材料との固溶体で構成される配向層を有する複合基板のいずれかが好ましい。こうすることで、半導体膜がヘテロエピタキシャル成長するための種結晶(成膜用下地基板)と支持基板を兼ねることができる上、半導体膜中の結晶欠陥を著しく低減することができる。
 前述のとおり、本発明の半導体膜は、結晶欠陥が著しく少なく、高い絶縁破壊電界特性を呈することが可能である。本発明者の知る限り、このように結晶欠陥密度が低い半導体膜を得る技術は従来知られていない。例えば、非特許文献1には、サファイアとα-Ga層間にバッファ層として(Al,Ga1-x層(x=0.2~0.9)を導入した基板を用いてα-Ga層を成膜することが開示されているが、得られたα-Ga層は、その刃状転位とらせん転位の密度が、それぞれ3×10/cm及び6×10/cmである。
 半導体膜の製造方法
 半導体膜は、表面と裏面とで不純物濃度及び/又は異相量が異なるように成膜できる限り、その製法は特に限定されるものではない。しかしながら、前述したような、α-Cr、若しくはα-Crと異種材料との固溶体で構成される二軸配向基板、又はα-Cr、若しくはα-Crと異種材料との固溶体で構成される配向層を有する複合下地基板のいずれかを成膜用下地基板として使用することが好ましい。以下に、半導体膜の製造方法を、(1)複合下地基板の作製、(2)半導体膜の形成の順に説明する。
(1)複合下地基板の作製
 複合下地基板は、(a)サファイア基板を準備し、(b)所定の配向前駆体層を作製し、(c)サファイア基板上で配向前駆体層を熱処理してその少なくともサファイア基板近くの部分を配向層に変換し、所望により(d)研削や研磨等の加工を施して配向層の表面を露出させることにより好ましく製造することができる。この配向前駆体層は熱処理により配向層となるものであり、a軸長及び/又はc軸長がサファイアより大きいコランダム型結晶構造を有する材料、あるいは後述する熱処理によってa軸長及び/又はc軸長がサファイアより大きいコランダム型結晶構造となる材料を含む。また、配向前駆体層はコランダム型結晶構造を有する材料の他に、微量成分を含んでいてもよい。このような製造方法によれば、サファイア基板を種結晶として配向層の成長を促すことができる。すなわち、サファイア基板の単結晶特有の高い結晶性と結晶配向方位が配向層に引き継がれる。
(a)サファイア基板の準備
 複合下地基板を作製するには、まず、サファイア基板を準備する。用いるサファイア基板は、いずれの方位面を有するものであってもよい。すなわち、a面、c面、r面、m面を有するものであってもよく、これらの面に対して所定のオフ角を有するものであってもよい。例えばc面サファイアを用いた場合、表面に対してc軸配向しているため、その上に、容易にc軸配向させた配向層をヘテロエピタキシャル成長させることが可能となる。また、電気特性を調整するために、ドーパントを加えたサファイア基板を用いることも可能である。このようなドーパントとしては公知のものが使用可能である。
(b)配向前駆体層の作製
 a軸長及び/又はc軸長がサファイアより大きいコランダム型結晶構造を有する材料、又は熱処理によってa軸長及び/又はc軸長がサファイアより大きいコランダム型結晶構造となる材料を含む配向前駆体層を作製する。配向前駆体層を形成する方法は特に限定されず、公知の手法が採用可能である。配向前駆体層を形成する方法の例としては、AD(エアロゾルデポジション)法、ゾルゲル法、水熱法、スパッタリング法、蒸着法、各種CVD(化学気相成長)法、PLD法、CVT(化学気相輸送)法、昇華法等の手法等が挙げられる。CVD法の例としては、熱CVD法、プラズマCVD法、ミストCVD法、MO(有機金属)CVD法等が挙げられる。あるいは、配向前駆体の成形体を予め作製し、この成形体をサファイア基板上に載置する手法であってもよい。このような成形体は、配向前駆体の材料を、テープ成形又はプレス成形等の手法で成形することで作製可能である。また、配向前駆体層として予め各種CVD法や焼結等で作製した多結晶体を使用し、サファイア基板上に載置する方法も用いることができる。
 しかしながら、エアロゾルデポジション(AD)法、各種CVD法、又はスパッタリング法を用いて配向前駆体層を直接形成する手法が好ましい。これらの方法を用いることで緻密な配向前駆体層を比較的短時間で形成することが可能となり、サファイア基板を種結晶としたヘテロエピタキシャル成長を生じさせることが容易になる。特に、AD法は高真空のプロセスを必要とせず、成膜速度も相対的に速いため、製造コストの面でも好ましい。スパッタリング法を用いる場合は、配向前駆体層と同材料のターゲットを用いて成膜することも可能であるが、金属ターゲットを使用し、酸素雰囲気下で成膜する反応性スパッタ法も用いることができる。予め作製した成形体をサファイア上に載置する手法も簡易な手法として好ましいが、配向前駆体層が緻密ではないため、後述する熱処理工程において緻密化するプロセスを必要とする。配向前駆体層として予め作製した多結晶体を用いる手法では、多結晶体を作製する工程と、サファイア基板上で熱処理する工程の二つが必要となる。また、多結晶体とサファイア基板の密着性を高めるため、多結晶体の表面を十分に平滑にしておく等の工夫も必要である。いずれの手法も公知の条件を用いることができるが、AD法を用いて配向前駆体層を直接形成する手法と、予め作製した成形体をサファイア基板上に載置する手法について、以下に説明する。
 AD法は、微粒子や微粒子原料をガスと混合してエアロゾル化し、このエアロゾルをノズルから高速噴射して基板に衝突させ、被膜を形成する技術であり、常温で緻密化された被膜を形成できるという特徴を有している。このようなAD法で用いられる成膜装置(エアロゾルデポジション(AD)装置)の一例を図1に示す。図1に示される成膜装置20は、大気圧より低い気圧の雰囲気下で原料粉末を基板上に噴射するAD法に用いられる装置として構成されている。この成膜装置20は、原料成分を含む原料粉末のエアロゾルを生成するエアロゾル生成部22と、原料粉末をサファイア基板21に噴射して原料成分を含む膜を形成する成膜部30とを備えている。エアロゾル生成部22は、原料粉末を収容し図示しないガスボンベからのキャリアガスの供給を受けてエアロゾルを生成するエアロゾル生成室23と、生成したエアロゾルを成膜部30へ供給する原料供給管24と、エアロゾル生成室23及びその中のエアロゾルに10~100Hzの振動数で振動が付与する加振器25とを備えている。成膜部30は、サファイア基板21にエアロゾルを噴射する成膜チャンバ32と、成膜チャンバ32の内部に配設されサファイア基板21を固定する基板ホルダ34と、基板ホルダ34をX軸-Y軸方向に移動するX-Yステージ33とを備えている。また、成膜部30は、先端にスリット37が形成されエアロゾルをサファイア基板21へ噴射する噴射ノズル36と、成膜チャンバ32を減圧する真空ポンプ38とを備えている。
 AD法は、成膜条件によって膜厚や膜質等を制御できることが知られている。例えば、AD膜の形態は、原料粉末の基板への衝突速度、原料粉末の粒径、エアロゾル中の原料粉末の凝集状態、単位時間当たりの噴射量等に影響を受けやすい。原料粉末の基板への衝突速度は、成膜チャンバ32と噴射ノズル36内の差圧や、噴射ノズルの開口面積等に影響を受ける。適切な条件を用いない場合、被膜が圧粉体となったり気孔を生じたりする場合があるので、これらのファクターを適切に制御することが必要である。
 配向前駆体層を予め作製した成形体を用いる場合、配向前駆体の原料粉末を成形して成形体を作製することができる。例えば、プレス成形を用いる場合、配向前駆体層はプレス成形体である。プレス成形体は、配向前駆体の原料粉末を公知の手法に基づきプレス成形することで作製可能であり、例えば、原料粉末を金型に入れ、好ましくは100~400kgf/cm、より好ましくは150~300kgf/cmの圧力でプレスすることにより作製すればよい。また、成形方法は特に限定されず、プレス成形の他、テープ成形、鋳込み成形、押出し成形、ドクターブレード法、及びこれらの任意の組合せを用いることができる。例えば、テープ成形を用いる場合、原料粉末にバインダー、可塑剤、分散剤、分散媒等の添加物を適宜加えてスラリー化し、このスラリーをスリット状の細い吐出口を通過させることにより、シート状に吐出及び成形するのが好ましい。シート状に成形した成形体の厚さに限定はないが、ハンドリングの観点では5~500μmであるのが好ましい。また、厚い配向前駆体層が必要な場合はこのシート成形体を多数枚積み重ねて、所望の厚さとして使用すればよい。
 これらの成形体はその後のサファイア基板上での熱処理によりサファイア基板近くの部分が配向層となるものである。上述したように、このような手法では後述する熱処理工程において成形体を焼結させ、緻密化する必要がある。このため、成形体はコランダム型結晶構造を有する又はもたらす材料の他に、焼結助剤等の微量成分を含んでいてもよい。
(c)サファイア基板上の配向前駆体層の熱処理
 配向前駆体層が形成されたサファイア基板を1000℃以上の温度で熱処理する。この熱処理により、配向前駆体層の少なくともサファイア基板近くの部分を緻密な配向層に変換することが可能となる。また、この熱処理により、配向層をヘテロエピタキシャル成長させることが可能となる。すなわち、配向層をコランダム型結晶構造を有する材料で構成することで、熱処理時にコランダム型結晶構造を有する材料がサファイア基板を種結晶として結晶成長するヘテロエピタキシャル成長が生じる。その際、結晶の再配列が起こり、サファイア基板の結晶面に倣って結晶が配列する。この結果、サファイア基板と配向層の結晶軸を揃えることができる。例えば、c面サファイア基板を用いると、サファイア基板と配向層が下地基板の表面に対していずれもc軸配向した態様とすることが可能となる。その上、この熱処理により、配向層の一部に傾斜組成領域を形成することが可能となる。すなわち、熱処理の際に、サファイア基板と配向前駆体層の界面で反応が生じ、サファイア基板中のAl成分が配向前駆体層中に拡散する及び/又は配向前駆体層中の成分がサファイア基板中に拡散して、α-Alを含む固溶体で構成される傾斜組成領域が形成される。
 なお、各種CVD法やスパッタリング法、PLD法、CVT法、昇華法等の方法では、1000℃以上の熱処理を経ることなくサファイア基板上にヘテロエピタキシャル成長を生じる場合があることが知られている。しかし、配向前駆体層はその作製時には配向していない状態、すなわち非晶質や無配向の多結晶であり、本熱処理工程時にサファイアを種結晶として結晶の再配列を生じさせることが好ましい。こうすることで、配向層表面に到達する結晶欠陥を効果的に低減することができる。この理由は定かではないが、一旦成膜された固相の配向前駆体層がサファイアを種として結晶構造の再配列を生じることが結晶欠陥の消滅に効果があるのではないかと考えている。
 熱処理は、コランダム型結晶構造が得られ、サファイア基板を種としたヘテロエピタキシャル成長が生じるかぎり特に限定されず、管状炉やホットプレート等、公知の熱処理炉で実施することができる。また、これらの常圧(プレスレス)での熱処理だけでなく、ホットプレスやHIP等の加圧熱処理や、常圧熱処理と加圧熱処理の組み合わせも用いることができる。熱処理条件は、配向層に用いる材料によって適宜選択できる。例えば、熱処理の雰囲気は大気、真空、窒素及び不活性ガス雰囲気から選択することができる。好ましい熱処理温度も配向層に用いる材料によって変わるが、例えば1000~2000℃が好ましく、1200~2000℃がさらに好ましい。熱処理温度や保持時間はヘテロエピタキシャル成長で生じる配向層の厚さやサファイア基板との拡散で形成される傾斜組成領域の厚さと関係しており、材料の種類、狙いとする配向層、傾斜組成領域の厚さ等によって適宜調整することができる。ただし、予め作製した成形体を配向前駆体層として用いる場合、熱処理中に焼結して緻密化させる必要があり、高温での常圧焼成、ホットプレス、HIP、又はそれらの組み合わせが好適である。例えば、ホットプレスを用いる場合、面圧は50kgf/cm以上が好ましく、より好ましくは100kgf/cm以上、特に好ましくは200kgf/cm以上が好ましく、上限は特に限定されない。また、焼成温度も、焼結及び緻密化並びにヘテロエピタキシャル成長が生じる限り、特に限定されないが、1000℃以上が好ましく、1200℃以上がさらに好ましく、1400℃以上がさらに好ましく、1600℃以上が特に好ましい。焼成雰囲気も大気、真空、窒素及び不活性ガス雰囲気から選択することができる。モールド等の焼成冶具は黒鉛製やアルミナ製のもの等が利用できる。
(d)配向層表面の露出
 熱処理によりサファイア基板近くに形成される配向層の上には、配向前駆体層や配向性に劣る又は無配向の表面層が存在又は残留しうる。この場合、配向前駆体層に由来する側の面に研削や研磨等の加工を施して配向層の表面を露出させるのが好ましい。こうすることで、配向層の表面に優れた配向性を有する材料が露出することになるため、その上に効果的に半導体層をエピタキシャル成長させることができる。配向前駆体層や表面層を除去する手法は特に限定されるものではないが、例えば、研削及び研磨する手法やイオンビームミリングする手法を挙げることができる。配向層の表面の研磨は、砥粒を用いたラップ加工や化学機械研磨(CMP)により行われるのが好ましい。
(2)半導体膜の形成
 次に、得られた複合下地基板の配向層上に半導体膜を形成する。半導体膜の形成手法としては、本発明で特定される特性を有する半導体膜が得られる限り、言い換えると表面と裏面とで不純物濃度及び/又は異相量が異なるように成膜できる限り、公知の手法が可能である。しかしながら、ミストCVD法、HVPE法、MBE法、MOCVD法、水熱法及びスパッタリング法のいずれかが好ましく、ミストCVD法、水熱法、又はHVPE法が特に好ましい。これらの方法のうち、HVPE法について以下に説明する。
 HVPE法(ハライド気相成長法)はCVDの一種であり、GaやGaN等の化合物半導体の成膜に適用可能な方法である。この方法では、Ga原料とハロゲン化物を反応させてハロゲン化ガリウムガスを発生させ、成膜用下地基板上に供給する。同時にOガスを成膜用下地基板上に供給し、ハロゲン化ガリウムガスとOガスが反応することで成膜用下地基板上にGaが成長する。高速及び厚膜成長が可能であり、工業的にも広く実績を有する方法であり、α-Gaだけでなくβ-Gaの成膜例が報告されている。
 図2にHVPE法を用いた気相成長装置の一例を示す。HVPE法を用いた気相成長装置40は、反応炉50と、成膜用下地基板56を載置するサセプタ58と、酸素原料供給源51と、キャリアガス供給源52と、Ga原料供給源53と、ヒーター54と、ガス排出部57を備えている。反応炉50は、原料と反応しない任意の反応炉が適用され、例えば石英管である。ヒーター54は少なくとも700℃(好ましくは900℃以上)まで加熱可能な任意のヒーターが適用され、例えば抵抗加熱式のヒーターである。
 Ga原料供給源53には内部に金属Ga55が載置されており、ハロゲンガス又はハロゲン化水素ガス、例えばHClが供給される。ハロゲンガス又はハロゲン化ガスは好ましくはCl又はHClである。供給されたハロゲンガス又はハロゲン化ガスは金属Ga55と反応し、ハロゲン化ガリウムガスが生じ、成膜用下地基板に供給される。ハロゲン化ガリウムガスは、好ましくはGaCl及び又はGaClを含む。酸素原料供給源51は、O、HO及びNOからなる群から選択される酸素源が供給可能だが、Oが好ましい。これらの酸素原料ガスは、ハロゲン化ガリウムガスと同時に成膜用下地基板に供給される。なお、Ga原料や酸素原料ガスはNや希ガス等のキャリアガスととともに供給してもよい。
 ガス排出部57は、例えば、拡散ポンプ、ロータリーポンプ等の真空ポンプに接続されていてもよく、反応炉50内の未反応のガスの排出だけでなく、反応炉50内を減圧下に制御してもよい。これにより、気相反応の抑制、及び成長速度分布が改善され得る。
 ヒーター54を用いて所定の温度まで成膜用下地基板56を加熱し、ハロゲン化ガリウムガスと酸素原料ガスを同時に供給することで、成膜用下地基板56上にα-Gaが形成される。成膜温度はα-Gaが成膜される限り特に限定されないが、例えば250℃~900℃が典型的である。Ga原料ガスや酸素原料ガスの分圧も特に限定されない。例えば、Ga原料ガス(ハロゲン化ガリウムガス)の分圧は0.05kPa以上10kPa以下の範囲としてもよく、酸素原料ガスの分圧は0.25kPa以上50kPa以下の範囲としてもよい。
 半導体膜中にCr、Fe及びTiから選択される1種以上を含む不純物を添加する場合は、別途供給源を設けてそれらのハロゲン化物を供給してもよいし、Ga原料供給源53からこれらのハロゲン化物を混合して供給してもよい。また、金属Ga55と同じ箇所にこれらの金属元素を含有する材料を載置し、ハロゲンガス又はハロゲン化水素ガスと反応させ、ハロゲン化物として供給してもよい。ドーパントとして14族元素を含有するα-Ga系半導体膜を成膜する場合や、InやAlの酸化物等を含むα-Gaとの混晶膜を成膜する場合においても、別途供給源を設けてそれらのハロゲン化物等を供給してもよいし、Ga原料供給源53からハロゲン化物を混合して供給してもよい。また、金属Ga55と同じ箇所に14族元素やIn、Al等を含有する材料を載置し、ハロゲンガス又はハロゲン化水素ガスと反応させ、ハロゲン化物として供給してもよい。成膜用下地基板56に供給されたそれらのハロゲン化物ガスは、ハロゲン化ガリウムと同様、酸素原料ガスと反応して酸化物となり、α-Ga系半導体膜中に取り込まれる。
 HVPE法で半導体膜を形成する際には、Ga原料、酸素原料、不純物原料等の供給量を一定のままとし、成膜条件を適切に制御することで単層構造の膜を形成することができる。しかし、表面と裏面とで不純物濃度が異なる半導体膜を作製する場合においては、成膜の途中で原料ガスの供給比率を段階的及び/又は連続的に変えて、組成の異なる多層構造の膜としてもよい。例えば、原料ガス中のCr、Fe、Ti等の金属濃度を成膜中に変えて、厚さ方向で成分組成が変化する多層構造の半導体膜を作製することが可能である。また、半導体膜中に取り込まれるCr、Fe、Ti等の量は成膜温度等の条件によっても変化する。このため、例えば、成膜の途中で成膜温度等の条件を段階的及び/又は連続的に変えることによっても、厚さ方向で成分組成が変化する多層構造の半導体膜を作製することが可能である。なお、Cr、Fe、Ti等を主成分として含む成膜用下地基板を用いると、上記不純物を別途加えなくても半導体膜中にこれらの不純物が取り込まれる場合がある。不純物の供給源は成膜用下地基板であり、成膜中に成膜用下地基板と成膜ガスがわずかに反応し、半導体膜中に不純物が取り込まれる。更に成膜温度や原料の供給速度等の諸条件を適切に調整することで、半導体膜中に取り込まれる不純物量を制御することができる。このため、このような成膜用下地基板を使用し、表面と裏面とで不純物濃度が異なる膜を作製するには、これらのファクターを適切に制御することが必要である。
 また、表面と裏面とで異相量が異なる半導体膜を作製する場合においては、成膜の途中で原料ガスの供給比率を段階的及び/又は連続的に変えたり、成膜温度や原料供給速度等の諸条件を段階的及び/又は連続的に変えたりして、半導体膜中にα-Gaと異なる結晶構造を有する異相の含有量が変化する多層構造の膜としてもよい。例えば、成膜初期と後期で、成膜温度、原料供給速度、原料供給比率等を変えることで異相の形成量を制御することができる。 
 このようにして、半導体膜を複合下地基板上に成膜する。半導体膜中の不純物量はD-SIMS、GD-MS、GD-OES、EDS、EPMA等の公知の分析手法にて評価することができる。例えば、D-SIMSを用いて半導体膜中の不純物量を評価するには、以下の方法を用いることができる。
<負イオンのD-SIMS測定>
・測定装置:Cameca社製IMS-7f
・一次イオン種:Cs
・一次イオン加速エネルギー:14.5keV
・二次イオン極性:Negative
・スパッタサイクル:0~60サイクル
・不純物量の評価:0~60スパッタサイクル間の平均値を不純物含有量とする。
<正イオンのD-SIMS測定>
・測定装置:FEI社製SIMS4550
・一次イオン種:O2+
・一次イオン加速エネルギー:3keV
・二次イオン極性:Positive
・スパッタサイクル:0~200サイクル
・不純物量の評価:0~200スパッタサイクル間の平均値を不純物含有量とする。
 また、半導体膜中の異相量はXRDやEBSD等の公知の分析手法にて評価することができる。例えば、XRDを用いて半導体膜中の異相量を評価するには、以下の方法を用いることができる。
<XRDによる異相量評価>
・測定装置:株式会社リガク製、RINT-TTR III
・測定範囲:2θ=20~70°
・X線源:CuKα線、電圧50kV、電流300mA
 半導体膜中の結晶欠陥密度については、平面TEMや断面TEMで評価することができる。例えば、平面TEM観察(プランビュー)にて結晶欠陥密度を評価するには、以下の方法を用いることができる。
<平面TEM観察(プランビュー)による結晶欠陥密度評価>
・測定装置:日立製H-90001UHR-I
・試験片:膜表面が含まれるような試験片を10個切り出し、測定視野50μm×50μm、測定視野周辺の試験片厚みが150nmとなるようにイオンミリングにて加工
・加速電圧:300kV
 このようにして作製した半導体膜は、典型的には、表面の結晶欠陥密度が1.0×10/cm以下と著しく低いものである。このように結晶欠陥密度が著しく低い半導体層は、絶縁破壊電界特性に優れ、パワー半導体の用途に適している。結晶欠陥密度は、好ましくは1.0×10/cm以下、より好ましくは4.0×10/cm以下である。
 なお、本発明の半導体膜は、成膜用下地基板に成膜した後や成膜用下地基板から分離して自立膜とした場合の反りが著しく小さい。特に、成膜用下地基板として、α-Cr、若しくはα-Crと異種材料との固溶体で構成される二軸配向基板、又はα-Cr、若しくはα-Crと異種材料との固溶体で構成される配向層を有する複合基板のいずれかを用いた場合、特に反り量を小さくすることができる。例えば、2インチサイズの半導体膜を作製した場合の反り量を30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下とすることができる。このような小さい反り量が得られる理由は定かではないが、不純物濃度及び/又は異相量が厚さ方向で分布することで、成膜時の半導体膜中の応力が緩和されるためと考えられる。
 本発明の半導体膜は、モザイク性が小さい膜とすることができる。従来のサファイア基板上に成膜したα-Ga膜は、結晶方位がわずかに異なるドメインの集合体(モザイク結晶)となる場合がある。この原因は定かではないが、α-Gaが準安定相のため成膜温度が比較的低温であることが挙げられる。成膜温度が低温のため、吸着成分が基板表面でマイグレーションしづらく、ステップフロー成長しにくい。このため、島状成長(三次元成長)する成長モードが支配的となりやすい。また、成膜用下地基板にサファイア基板を用いた場合、半導体膜とサファイア間の格子不整合があり、それぞれの島状成長部(ドメイン)はわずかに結晶配向方位が異なる場合がある。このため、各ドメインは完全には会合せず、モザイク結晶となりやすい。本発明の半導体膜は、特に成膜用下地基板として、α-Cr、若しくはα-Crと異種材料との固溶体で構成される単結晶基板、又はα-Cr、若しくはα-Crと異種材料との固溶体で構成される単結晶層を有する複合基板のいずれかを使用し、成膜条件を適切に制御した場合、モザイク性の無い(すなわち単結晶)又はモザイク性の小さい半導体膜を得ることができる。この理由は定かではないが、成膜中の半導体膜と成膜用下地基板の格子定数が近い又は同じであることに加え、不純物濃度及び/又は異相量が厚さ方向で分布することで、成膜中又は成膜後の降温時における半導体膜中の応力が緩和され、配向方位が揃いやすいためと考えられる。また、上述したように、膜中に印加される応力が緩和されるため、α-Gaの結晶構造が安定化する。言い換えると、成膜温度を比較的高温としてもα-Gaの結晶構造を保って成膜することが可能となる。高温下で成膜することで、吸着成分が基板表面でマイグレーションしやすくなり、ステップフロー成長が生じやすくなる。この点も、モザイク性のない(すなわち単結晶)又はモザイク性の小さい半導体膜が得られる要因の一つと考えられる。モザイク性の観点においては、成膜温度は、例えば600℃以上、好ましくは700℃以上、より好ましくは800℃以上、さらに好ましくは900℃以上である。半導体膜のモザイク性を評価するには、X線ロッキングカーブ測定、EBSD測定、TEM等の公知の手法を用いることができるが、特にX線ロッキングカーブ測定での半値幅での評価が好適である。
 例えば、X線ロッキングカーブ測定(XRC)にて半導体膜のモザイク性を評価するには、以下の方法を用いることができる。
<XRCによるモザイク性評価>
・測定装置:Bruker-AXS製D8-DISCOVER
・X線源:CuKα線、管電圧40kV、管電流40mA、Ge(022)非対称反射モノクロメーターで平行単色化
・コリメータ径:0.5mm
・アンチスキャッタリングスリット:3mm
・ωステップ幅:0.005°
・計数時間:0.5秒 
・XRD解析ソフトウェア:Bruker-AXS製、「LEPTOS」Ver4.03
 例えば、X線ロッキングカーブの(006)面半値幅は、40秒未満が好ましく、30秒未満がより好ましく、測定に使用したX線源固有の半値幅と同等の値でも問題はない。また、X線ロッキングカーブの(104)面半値幅は、40秒未満が好ましく、30秒未満がより好ましく、測定に使用したX線源固有の半値幅と同等の値でも問題はない。X線ロッキングカーブの半値幅は、上述したモザイク性の他、結晶欠陥密度や結晶の反りにも影響を受けるが、本発明の半導体膜は結晶欠陥が少なく、モザイク性が無く、反りも小さいため、このような値が実現できると考えられる。
 得られた半導体膜は、そのままの形態又は分割して半導体素子とすることが可能である。あるいは、半導体膜を複合下地基板から剥離して膜単体の形態としてもよい。この場合、複合下地基板からの剥離を容易にするために、複合下地基板の配向層表面(成膜面)に予め剥離層を設けたものを用いてもよい。このような剥離層は、複合下地基板表面にC注入層やH注入層を設けたものが挙げられる。また、半導体膜の成膜初期にCやHを膜中に注入させ、半導体膜側に剥離層を設けてもよい。さらに、複合下地基板上に成膜された半導体膜の表面(すなわち複合下地基板とは反対側の面)に複合下地基板とは異なる支持基板(実装基板)を接着及び接合し、その後、半導体膜から複合下地基板を剥離除去することも可能である。このような支持基板(実装基板)として、25~400℃での熱膨張率が6~13ppm/Kであるもの、例えばCu-Mo複合金属で構成される基板を用いることができる。また、半導体膜と支持基板(実装基板)を接着及び接合する手法の例としては、ロウ付け、半田、固相接合等の公知の手法を挙げることができる。さらに、半導体膜と支持基板との間に、オーミック電極、ショットキー電極等の電極、又は接着層等の他の層を設けてもよい。
 

Claims (7)

  1.  α-Ga、又はα-Ga系固溶体で構成されるコランダム型結晶構造を有する半導体膜であって、前記半導体膜の表面と裏面とで不純物濃度及び/又は異相量が異なる、半導体膜。
  2.  前記半導体膜に含まれる不純物が、Cr、Fe及びTiからなる群から選択される1種以上の成分を含む、請求項1に記載の半導体膜。
  3.  前記半導体膜に含まれる異相が、β-Ga、ε-Ga、γ-Ga、及びδ-Gaからなる群から選択される1種以上の結晶構造を有する、請求項1又は2に記載の半導体膜。
  4.  前記半導体膜に含まれる異相が、β-Ga及びε-Gaの1種以上の結晶構造を有する、請求項1~3のいずれか一項に記載の半導体膜。
  5.  前記半導体膜の、不純物濃度が低い及び/又は異相量が少ない側の面における結晶欠陥密度が、1.0×10/cm以下である、請求項1~4のいずれか一項に記載の半導体膜。
  6.  前記半導体膜は、ドーパントとして14族元素を1.0×1016~1.0×1021/cmの割合で含む、請求項1~5のいずれか一項に記載の半導体膜。
  7.  前記半導体膜が、特定の面方位に配向した配向膜である、請求項1~6のいずれか一項に記載の半導体膜。
PCT/JP2019/017940 2019-03-28 2019-04-26 半導体膜 WO2020194763A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021508680A JP7176099B2 (ja) 2019-03-28 2019-04-26 半導体膜
CN201980081621.8A CN113614292B (zh) 2019-03-28 2019-04-26 半导体膜
US17/467,943 US20210408242A1 (en) 2019-03-28 2021-09-07 Semiconductor film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019063603 2019-03-28
JP2019-063603 2019-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/467,943 Continuation US20210408242A1 (en) 2019-03-28 2021-09-07 Semiconductor film

Publications (1)

Publication Number Publication Date
WO2020194763A1 true WO2020194763A1 (ja) 2020-10-01

Family

ID=72611246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017940 WO2020194763A1 (ja) 2019-03-28 2019-04-26 半導体膜

Country Status (4)

Country Link
US (1) US20210408242A1 (ja)
JP (1) JP7176099B2 (ja)
CN (1) CN113614292B (ja)
WO (1) WO2020194763A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064783A1 (ja) * 2020-09-24 2022-03-31 日本碍子株式会社 積層構造体
WO2022230342A1 (ja) * 2021-04-27 2022-11-03 日本碍子株式会社 複合基板、複合基板の製法及び酸化ガリウム結晶膜の製法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017027A (ja) * 2013-10-17 2015-01-29 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法
JP2015196603A (ja) * 2014-03-31 2015-11-09 株式会社Flosfia 結晶性積層構造体、半導体装置
JP2016155714A (ja) * 2015-02-25 2016-09-01 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960319A (en) * 1995-10-04 1999-09-28 Sharp Kabushiki Kaisha Fabrication method for a semiconductor device
JP5159040B2 (ja) * 2005-03-31 2013-03-06 株式会社光波 低温成長バッファ層の形成方法および発光素子の製造方法
JP5583196B2 (ja) * 2011-12-21 2014-09-03 パナソニック株式会社 薄膜太陽電池およびその製造方法
JP5343224B1 (ja) * 2012-09-28 2013-11-13 Roca株式会社 半導体装置および結晶
KR102142037B1 (ko) * 2012-11-07 2020-08-06 엔지케이 인슐레이터 엘티디 세라믹스 재료 및 스퍼터링 타겟 부재
KR101536401B1 (ko) * 2013-06-13 2015-07-13 주식회사 포스코 전기 영동법에 의한 금속 기판의 광 활성 비 희생 양극 부식 방지 코팅방법 및 이에 의해 제조된 금속 기판
JP6601738B2 (ja) * 2013-09-30 2019-11-06 株式会社タムラ製作所 結晶積層構造体、及びその製造方法
JP6067532B2 (ja) * 2013-10-10 2017-01-25 株式会社Flosfia 半導体装置
JP5892495B2 (ja) * 2013-12-24 2016-03-23 株式会社タムラ製作所 Ga2O3系結晶膜の成膜方法、及び結晶積層構造体
JP6231908B2 (ja) * 2014-03-14 2017-11-15 日本碍子株式会社 目封止ハニカム構造体
JP6231909B2 (ja) * 2014-03-14 2017-11-15 日本碍子株式会社 目封止ハニカム構造体及びその製造方法
JP6253150B2 (ja) * 2014-05-09 2017-12-27 株式会社タムラ製作所 エピタキシャルウエハ及びその製造方法
JP2016031953A (ja) * 2014-07-25 2016-03-07 株式会社タムラ製作所 半導体素子及びその製造方法、半導体基板、並びに結晶積層構造体
JP5907465B2 (ja) * 2014-08-29 2016-04-26 株式会社タムラ製作所 半導体素子及び結晶積層構造体
JP5828568B1 (ja) * 2014-08-29 2015-12-09 株式会社タムラ製作所 半導体素子及びその製造方法
JP7166522B2 (ja) * 2017-08-21 2022-11-08 株式会社Flosfia 結晶膜の製造方法
WO2019191465A1 (en) * 2018-03-28 2019-10-03 Cornell University VERTICAL GALLIUM OXIDE (Ga2O3) POWER FETS
WO2020095421A1 (ja) * 2018-11-08 2020-05-14 日本碍子株式会社 電気光学素子のための複合基板とその製造方法
JPWO2021090635A1 (ja) * 2019-11-05 2021-05-14
WO2022075139A1 (ja) * 2020-10-08 2022-04-14 日本碍子株式会社 酸化ガリウム単結晶粒子及びその製法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017027A (ja) * 2013-10-17 2015-01-29 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法
JP2015196603A (ja) * 2014-03-31 2015-11-09 株式会社Flosfia 結晶性積層構造体、半導体装置
JP2016155714A (ja) * 2015-02-25 2016-09-01 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、α−Ga2O3の製造方法、および、それを用いた半導体素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064783A1 (ja) * 2020-09-24 2022-03-31 日本碍子株式会社 積層構造体
WO2022230342A1 (ja) * 2021-04-27 2022-11-03 日本碍子株式会社 複合基板、複合基板の製法及び酸化ガリウム結晶膜の製法

Also Published As

Publication number Publication date
US20210408242A1 (en) 2021-12-30
CN113614292A (zh) 2021-11-05
JPWO2020194763A1 (ja) 2021-11-18
CN113614292B (zh) 2024-08-23
JP7176099B2 (ja) 2022-11-21

Similar Documents

Publication Publication Date Title
JP6784871B1 (ja) 半導体膜
JP7289357B2 (ja) 半導体膜
JP7159449B2 (ja) 下地基板及びその製造方法
US20210408242A1 (en) Semiconductor film
US11942520B2 (en) Semiconductor film
US20210355602A1 (en) Underlying substrate
JP7320070B2 (ja) 下地基板及びその製造方法
JP7265624B2 (ja) 半導体膜
WO2020195497A1 (ja) 半導体膜
WO2021064817A1 (ja) 下地基板及びその製造方法
WO2020261356A1 (ja) 半導体膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921962

Country of ref document: EP

Kind code of ref document: A1