WO2022230342A1 - 複合基板、複合基板の製法及び酸化ガリウム結晶膜の製法 - Google Patents

複合基板、複合基板の製法及び酸化ガリウム結晶膜の製法 Download PDF

Info

Publication number
WO2022230342A1
WO2022230342A1 PCT/JP2022/008148 JP2022008148W WO2022230342A1 WO 2022230342 A1 WO2022230342 A1 WO 2022230342A1 JP 2022008148 W JP2022008148 W JP 2022008148W WO 2022230342 A1 WO2022230342 A1 WO 2022230342A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
crystal film
composite substrate
film
crystal
Prior art date
Application number
PCT/JP2022/008148
Other languages
English (en)
French (fr)
Inventor
潤 吉川
美穂 前田
宏之 柴田
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN202280016510.0A priority Critical patent/CN116888310A/zh
Priority to JP2023517095A priority patent/JPWO2022230342A1/ja
Publication of WO2022230342A1 publication Critical patent/WO2022230342A1/ja
Priority to US18/469,661 priority patent/US20240003043A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Definitions

  • the present invention relates to a composite substrate, a method for manufacturing a composite substrate, and a method for manufacturing a gallium oxide crystal film.
  • Patent Document 1 discloses a semiconductor device including a base substrate having a corundum crystal structure, a semiconductor layer having a corundum crystal structure, and an insulating film having a corundum crystal structure, and a sapphire substrate. An example in which an ⁇ -Ga 2 O 3 film is formed as a semiconductor layer is described above.
  • Patent Document 2 an n-type semiconductor layer containing as a main component a crystalline oxide semiconductor having a corundum structure, a p-type semiconductor layer containing as a main component an inorganic compound having a hexagonal crystal structure, and an electrode is disclosed.
  • an ⁇ -Ga 2 O 3 film having a metastable corundum structure as an n-type semiconductor layer and a hexagonal crystal structure as a p-type semiconductor layer are provided on a c-plane sapphire substrate. is disclosed to form a diode by forming an ⁇ -Rh 2 O 3 film having Also, ⁇ -Ga 2 O 3 is expected to be applied to phosphors.
  • the present invention has been made to solve such problems, and its main object is to suppress peeling between the ⁇ -Ga 2 O 3 crystal film and the underlying substrate.
  • the inventors of the present invention immersed an ⁇ -Cr 2 O 3 substrate as a base substrate in an aqueous solution containing Ga ions at a temperature of 390° C. or higher and a pressure of 22.1 MPa or higher.
  • I came up with the idea of making the supercritical state of In this method an ⁇ -Ga 2 O 3 crystal film is formed on the surface of the base substrate, and even if the ⁇ -Ga 2 O 3 crystal film is thickened to 10 ⁇ m or more, the ⁇ -Ga 2 O 3 crystal film will remain. It was found that peeling hardly occurs between the substrate and the underlying substrate.
  • the inventors have found that the ⁇ -Ga 2 O 3 crystal film formed on the base substrate contains at least one alkali metal element within a predetermined range, and have completed the present invention.
  • the composite substrate of the present invention is an underlying substrate; provided on the base substrate, has a film thickness of 10 ⁇ m or more, and contains at least one alkali metal element of 1.2 ⁇ 10 15 atoms/cm 3 or more and 1.0 ⁇ 10 18 atoms/cm 3 or less; an ⁇ -Ga 2 O 3 crystal film; is provided.
  • the manufacturing method of the composite substrate of the present invention comprises: A manufacturing method for manufacturing the composite substrate described above, The ⁇ -Ga 2 O 3 crystal film is formed on the surface of the underlying substrate by immersing the underlying substrate in an aqueous solution containing Ga ions and creating a supercritical state at a temperature of 390° C. or higher and a pressure of 22.1 MPa or higher. is generated.
  • the method for producing the gallium oxide crystal film of the present invention includes:
  • the ⁇ -Ga 2 O 3 crystal film is obtained by removing the underlying substrate from the composite substrate described above.
  • the self-supporting ⁇ -Ga 2 O 3 crystal film refers to a composite substrate from which the base substrate has been removed, and if the base substrate has been removed, it may be transferred onto another base material.
  • the method for producing a gallium oxide crystal film of the present invention includes: The self-supporting ⁇ -Ga 2 O 3 crystal film is obtained by removing the base substrate from the composite substrate manufactured by the method for manufacturing the composite substrate described above.
  • the composite substrate and the method for producing the composite substrate of the present invention can provide a composite substrate in which peeling between the ⁇ -Ga 2 O 3 crystal film and the underlying substrate is suppressed.
  • the reason why such an effect is obtained is presumed, for example, that the ⁇ -Ga 2 O 3 crystal film contains at least one alkali metal element at a suitable concentration.
  • the composite substrate manufacturing method of the present invention is suitable for manufacturing a composite substrate in which separation between the ⁇ -Ga 2 O 3 crystal film and the base substrate is suppressed.
  • a self-supporting ⁇ -Ga crystal layer is obtained by removing the underlying substrate from the composite substrate in which separation between the ⁇ -Ga 2 O 3 crystal film and the underlying substrate is suppressed and which has less cracks. Since a 2 O 3 crystal film is obtained, a gallium oxide crystal film with few cracks can be obtained.
  • FIG. FIG. 2 is a vertical cross-sectional view of the pressure-resistant container 10; Schematic explanatory drawing of the hydrothermal synthesis system 20.
  • FIG. 2 is a surface SEM image of the composite substrate obtained in Example 1.
  • FIG. 4 is a cross-sectional SEM image of the composite substrate obtained in Example 1.
  • FIG. FIG. 2 is a schematic cross-sectional view showing the configuration of an AD device 120;
  • FIG. 1 is a cross-sectional view of the composite substrate 50
  • FIG. 2 is a vertical cross-sectional view of the pressure vessel 10
  • FIG. 1 is a cross-sectional view of the composite substrate 50
  • FIG. 2 is a vertical cross-sectional view of the pressure vessel 10
  • FIG. 1 is a cross-sectional view of the composite substrate 50
  • FIG. 2 is a vertical cross-sectional view of the pressure vessel 10
  • FIG. 1 is a cross-sectional view of the composite substrate 50
  • FIG. 2 is a vertical cross-sectional view of the pressure vessel 10
  • the composite substrate 50 is a plate-like member and includes a base substrate 52 and an ⁇ -Ga 2 O 3 crystal film 54 provided on the base substrate 52 .
  • the area of this composite substrate 50 is, for example, 1 mm 2 or more, preferably 10 mm 2 or more.
  • the underlying substrate 52 is a substrate that serves as a seed crystal for the ⁇ -Ga 2 O 3 crystal film 54 .
  • the underlying substrate 52 is preferably a substrate having a corundum structure, and is particularly preferably a substrate (biaxially oriented substrate) oriented biaxially along the c-axis and an axis (a-axis, m-axis, etc.) perpendicular to the c-axis.
  • the biaxially oriented substrate may be a polycrystal, a mosaic crystal (a collection of crystals with slightly deviated crystal orientations), or a single crystal.
  • the underlying substrate 52 may be c-axis oriented with an off angle of 10° or less in the direction normal to the substrate.
  • the base substrate 52 may be provided with another substrate on the surface opposite to the surface on which the ⁇ -Ga 2 O 3 crystal film 54 is formed (formation surface 52a).
  • the underlying substrate 52 is an ⁇ -Cr 2 O 3 substrate.
  • the ⁇ -Cr 2 O 3 substrate may be, for example, ⁇ -Cr 2 O 3 containing no components other than unavoidable impurities (referred to as ⁇ -Cr 2 O 3 high-purity substrate), or ⁇ -Cr 2
  • a metal element and/or a metalloid element other than Cr such as Ti, Fe, Al, Mg, Si, Ca, etc. may be included within a range that includes O 3 and the total amount does not exceed the number of moles of Cr.
  • ⁇ -Cr 2 O 3 may form a crystal phase such as an oxide crystal (for example, ⁇ -Al 2 O 3 ).
  • ⁇ -Cr 2 O 3 solid solutions are also referred to as ⁇ -Cr 2 O 3 solid solutions.
  • ⁇ -Cr 2 O 3 substrate an ⁇ -Cr 2 O 3 high-purity substrate and an ⁇ -Cr 2 O 3 solid solution substrate containing at least one of Fe and Ti are particularly suitable.
  • the ⁇ -Ga 2 O 3 crystal film 54 is formed on one side (formation surface 52a) of the base substrate 52 with a thickness of 10 ⁇ m or more.
  • the ⁇ -Ga 2 O 3 crystals 55 forming the ⁇ -Ga 2 O 3 crystal film 54 are crystals having a corundum structure.
  • the ⁇ -Ga 2 O 3 crystal film 54 is preferably biaxially oriented (biaxially oriented) with the c-axis and an axis perpendicular to the c-axis.
  • the ⁇ -Ga 2 O 3 crystal film 54 may be polycrystal, mosaic crystal, or single crystal.
  • the ⁇ -Ga 2 O 3 crystal film 54 may be c-axis oriented with an off angle of 10° or less in the substrate normal direction.
  • the ⁇ -Ga 2 O 3 crystal film 54 has a content of at least one alkali metal element of 1.2 ⁇ 10 15 to 1.0 ⁇ 10 18 atoms/cm 3 .
  • Alkali metal elements include Li, Na, K and the like.
  • the content of each of Li, Na and K may be 1.2 ⁇ 10 15 atoms/cm 3 or more and 1.0 ⁇ 10 18 atoms/cm 3 or less.
  • the ⁇ -Ga 2 O 3 crystal film 54 may have a crystal orientation difference of 0.4° or less between the underlying substrate 52 and the (0001) plane and the (10-10) plane.
  • the ⁇ -Ga 2 O 3 crystal film 54 may have X-ray rocking curve (XRC) half widths of both the (006) plane and the (104) plane of 2000 arcsec or less.
  • the ⁇ -Ga 2 O 3 crystal film 54 may have a content of at least one of Cr and Ni of 2.0 ⁇ 10 15 to 1.0 ⁇ 10 17 atoms/cm 3 .
  • the ⁇ -Ga 2 O 3 crystal film 54 may have a Li, Na and K content of 1.2 ⁇ 10 15 to 1.0 ⁇ 10 18 atoms/cm 3 .
  • the ⁇ -Ga 2 O 3 crystal film 54 may contain a dopant.
  • dopants include Group 14 elements such as carbon (C), silicon (Si), germanium (Ge), tin (Sn), and lead (Pb).
  • the composite substrate 50 is manufactured by immersing the base substrate 52 in an aqueous solution containing Ga ions and bringing it into a supercritical state at a temperature of 390° C. or higher (preferably 400° C. or higher) and a pressure of 22.1 MPa or higher.
  • An ⁇ -Ga 2 O 3 crystal film 54 is formed on the surface of the underlying substrate 52 .
  • Examples of aqueous solutions containing Ga ions include gallium halide aqueous solutions, gallium nitrate aqueous solutions, gallium sulfate aqueous solutions, and gallium hydroxide aqueous solutions.
  • Gallium halides include gallium chloride, gallium bromide, and gallium iodide.
  • the aqueous solution containing Ga ions may contain alkali metal elements (alkali metal ions). Alkali metal elements include Li, Na, K and the like.
  • the aqueous solution containing Ga ions is preferably adjusted to pH 9.0 to 11.0 (more preferably 9.5 to 10.5) with a pH adjuster.
  • an aqueous solution of alkali metal hydroxide eg, KOH aqueous solution
  • an aqueous solution containing ammonium ions eg, ammonium water
  • the Ga ion concentration of the aqueous solution containing Ga ions is not particularly limited, but may be, for example, 0.1M or more and 10M or less.
  • the base substrate 52 immersed in the aqueous solution containing Ga ions is processed and deteriorated by CMP (chemical mechanical polishing), annealing, etching, RIE (reactive ion etching), etc. on at least one surface (surface to be the formation surface 52a). It is preferred that the layer has been removed.
  • CMP chemical mechanical polishing
  • etching etching
  • RIE reactive ion etching
  • the layer has been removed.
  • the underlying substrate 52 is immersed in an aqueous solution containing Ga ions
  • the surface from which the work-affected layer has been removed is placed in contact with the aqueous solution containing Ga ions.
  • a Ga 2 O 3 crystal film 54 is produced.
  • the underlying substrate 52 may be placed or fixed on a Pt jig or the like and immersed.
  • the aqueous solution containing Ga ions is placed in a pressure vessel and brought to a temperature of 390° C. or higher and a pressure of 22.1 MPa or higher. is preferred.
  • the pressure is determined by the internal volume of the pressure vessel, the amount of aqueous solution put into the pressure vessel, the temperature inside the pressure vessel, and the setting of the pressure regulating valve.
  • the reaction time is not particularly limited, it may be, for example, 0.5 hours or more and 100 hours or less.
  • the temperature inside the pressure vessel is lowered, and the base substrate 52 (composite substrate 50) with the ⁇ -Ga 2 O 3 crystal film 54 attached thereto is removed from the pressure vessel.
  • an aqueous solution containing Ga ions should be made to contain ions corresponding to the dopant.
  • dopants include Group 14 elements such as carbon (C), silicon (Si), germanium (Ge), tin (Sn), and lead (Pb).
  • Fig. 2 shows an example of a pressure-resistant container.
  • the pressure-resistant container 10 shown in FIG. 2 is made of stainless steel, and has a lid 12 with a projection 12a provided with a male screw screwed into a female screw provided in the opening of a bottomed cylindrical container body 11. is.
  • the internal volume of the pressure-resistant container 10 is preferably 50 mL or more.
  • a container body 11 of a pressure-resistant container 10 contains an aqueous solution 14 containing Ga ions. This aqueous solution 14 is preferably adjusted to pH 9.0 to 11.0 (more preferably pH 9.5 to 10.5).
  • a base substrate 52 arranged on the bottom surface of a box-shaped jig 16 made of Pt is immersed in the aqueous solution 14 .
  • the base substrate 52 is arranged so that the surface from which the damaged layer has been removed faces upward.
  • FIG. 3 is a schematic illustration of the hydrothermal synthesis system 20.
  • the pressure vessel 10 is set in the electric furnace housing 22 .
  • a heater 24 and a thermocouple 26 for measuring the furnace temperature are attached inside the electric furnace housing 22 .
  • a pressure-resistant container thermocouple 28 for measuring the internal temperature of the pressure-resistant container 10 is attached to the pressure-resistant container 10 .
  • the electric power supplied to the heater 24 is controlled so that the furnace temperature measured by the furnace temperature measuring thermocouple 26 becomes the set temperature.
  • a pipe 30 is connected to the pressure vessel 10 .
  • One end 30a of the pipe 30 is arranged inside the pressure vessel 10, and the other end 30b of the pipe 30 is arranged in the atmosphere.
  • the pipe 30 is cooled by cooling water in the cooling water tank 40 .
  • a pressure gauge 32, a safety valve 34, and a pressure regulating valve 36 are attached to the pipe 30 between the cooling water tank 40 and the other end 30b.
  • the entire pressure-resistant container 10 is heated by the heater 24 so that the internal temperature of the pressure-resistant container 10 is 390° C. or higher and the internal pressure of the pressure-resistant container 10 is 22.1 MPa or higher.
  • the internal pressure of the pressure-resistant container 10 is determined by the internal volume of the pressure-resistant container 10 , the amount of the aqueous solution 14 put into the pressure-resistant container 10 , the temperature inside the container, and the setting of the pressure regulating valve 36 .
  • the amount of the aqueous solution 14 put into the pressure vessel 10 should be adjusted so that the pressure inside the vessel becomes 22.1 MPa or more when the temperature inside the vessel is 390° C. or higher. This state is maintained for a predetermined period of time, and after that the internal temperature of the pressure vessel 10 is cooled to room temperature, the underlying substrate 52 (composite substrate 50) to which the ⁇ -Ga 2 O 3 crystal film 54 is adhered is taken out from the pressure vessel 10, After rinsing with pure water, dry with a dryer.
  • An example of the gallium oxide crystal film manufacturing method is to remove the underlying substrate 52 from the composite substrate 50 to obtain a self-supporting ⁇ -Ga 2 O 3 crystal film 54 .
  • Methods for removing the base substrate 52 from the composite substrate 50 include grinding, polishing, laser lift-off, etching of the substrate portion with acid or alkali, RIE (reactive ion etching), and the like.
  • RIE reactive ion etching
  • the composite substrate 50 and the method for manufacturing the composite substrate 50 described above can provide a composite substrate in which separation between the ⁇ -Ga 2 O 3 crystal film 54 and the underlying substrate 52 is suppressed. It is presumed that the reason why such an effect is obtained is, for example, that the ⁇ -Ga 2 O 3 crystal film 54 contains at least one alkali metal element at a suitable concentration. In addition, since the ⁇ -Ga 2 O 3 crystal film 54 contains at least one alkali metal element at a suitable concentration, heterogeneous phases such as ⁇ -Ga 2 O 3 are suppressed and ⁇ -Ga 2 O The effect of stably generating 3 crystals is also expected.
  • the method for manufacturing the composite substrate 50 is suitable for manufacturing the composite substrate 50 .
  • the base substrate 52 is removed from the composite substrate 50 with few cracks in which separation between the ⁇ -Ga 2 O 3 crystal film 54 and the base substrate 52 is suppressed, the ⁇ -layer with few cracks is used.
  • a Ga 2 O 3 crystal film 54 is obtained as a free-standing film.
  • the ratio of the peeled area between the ⁇ -Ga 2 O 3 crystal film 54 and the base substrate 52 may be, for example, 10% or less of the forming surface 52a, preferably 3% or less.
  • the thickness of the ⁇ - Ga 2 O 3 crystal film 54 is 10 ⁇ m or more. 54 is obtained.
  • Such an ⁇ -Ga 2 O 3 crystal film 54 is suitable for use in vertical structure power semiconductors that require current to flow in the thickness direction.
  • the thickness of the ⁇ -Ga 2 O 3 crystal film 54 may be appropriately adjusted depending on the application, but may be 100 ⁇ m or less, for example.
  • the film thickness of the ⁇ -Ga 2 O 3 crystal film 54 can be adjusted, for example, by changing the amount and concentration of Ga used and the hydrothermal synthesis time.
  • the underlying substrate 52 is an ⁇ -Cr 2 O 3 substrate, the ⁇ -Ga 2 O 3 crystal film is produced in a suitable state, thereby preventing the ⁇ -Ga 2 O 3 crystal film from forming. Delamination between 54 and base substrate 52 is further suppressed.
  • the ⁇ -Ga 2 O 3 crystal film 54 has a crystal orientation difference of 0.4° or less between the (0001) plane and the (10-10) plane with respect to the base substrate 52.
  • the crystal orientation is substantially the same as that of the underlying substrate 52 . If the crystal orientations are substantially the same, strain is less likely to occur between the ⁇ -Ga 2 O 3 crystal film 54 and the base substrate 52, so separation between the two is further suppressed.
  • the crystal orientation difference between the (0001) plane and the (10-10) plane is preferably 0.3° or less, more preferably 0.2° or less, and still more preferably 0.1° or less.
  • the ⁇ -Ga 2 O 3 crystal film 54 has X-ray rocking curve half widths of both the (006) plane and the (104) plane of 2000 arcsec or less. Crystal quality) is preferably sufficiently high.
  • the X-ray rocking curve half width of the (006) plane is preferably 1600 arcsec or less, may be 1000 arcsec or less, or may be 100 arcsec or less.
  • the X-ray rocking curve half width of the (104) plane is preferably 1900 arcsec or less, may be 1000 arcsec or less, or may be 400 arcsec or less.
  • the X-ray rocking curve half widths of the (006) plane and the (104) plane may each be 50 arcsec or more.
  • the ⁇ -Ga 2 O 3 crystal film 54 has a content of at least one of Cr and Ni of 2.0 ⁇ 10 15 to 1.0 ⁇ 10 17 atoms/cm 3 . preferable. By doing so, separation between the ⁇ -Ga 2 O 3 crystal film 54 and the underlying substrate 52 is further suppressed.
  • the content of each of Cr and Ni is preferably 2.0 ⁇ 10 15 to 1.0 ⁇ 10 17 atoms/cm 3 .
  • the total content of Cr and Ni is preferably 1.6 ⁇ 10 17 atoms/cm 3 or less, more preferably 5.0 ⁇ 10 16 atoms/cm 3 or less.
  • the ⁇ -Ga 2 O 3 crystal film 54 has a Li, Na and K content of 1.2 ⁇ 10 15 to 1.0 ⁇ 10 18 atoms/cm 3 . is preferred. Also, the total content of each of Li, Na and K is preferably 1.2 ⁇ 10 15 to 1.2 ⁇ 10 18 atoms/cm 3 .
  • the base substrate 52 is an ⁇ -Cr 2 O 3 substrate, but the base substrate 52 may be a sapphire substrate, an ⁇ -Fe 2 O 3 substrate, an ⁇ -Ga 2 O 3 substrate, or the like. good too.
  • ⁇ -Ga 2 O 3 crystals may be likely to be formed in the form of particles rather than in the form of a film, or different phases such as ⁇ -Ga 2 O 3 crystals may be easily formed. If the base substrate 52 is an ⁇ -Cr 2 O 3 substrate, ⁇ -Ga 2 O 3 crystals are easily formed in the form of a film, and a different phase is less likely to occur, which is preferable.
  • the underlying substrate 52 is an ⁇ -Cr 2 O 3 solid solution substrate
  • the ⁇ -Ga 2 O 3 crystal film 54 will have higher crystallinity
  • the ⁇ -Ga 2 O 3 crystal film 54 and the underlying substrate 52 will have higher crystallinity. is preferable because the difference in crystal orientation between
  • Example 1 Preparation of base substrate A commercially available c-plane (no off-angle) ⁇ -Cr 2 O 3 single crystal substrate, which is a high-purity ⁇ -Cr 2 O 3 substrate, was cut into pieces of about 4 mm square (4 mm square), and both surfaces were mirror-finished with diamond slurry. After polishing, one side was finished by CMP processing. The surface finished by the CMP treatment is also referred to as a base CMP surface, and the other surface is also referred to as a base non-CMP surface.
  • the pressure vessel 10 was set in the electric furnace housing 22 of the hydrothermal synthesis system 20 .
  • the pressure regulating valve 36 was set in advance so that the internal pressure of the pressure vessel 10 was 30.0 MPa.
  • the entire pressure-resistant container 10 was heated by the heater 24 of the electric furnace housing 22, and the internal temperature of the pressure-resistant container 10 was set to 410°C.
  • the internal pressure of the pressure vessel 10 was 30.0 MPa. This state was maintained for 24 hours.
  • the resulting substrate was taken out from the pressure vessel 10, rinsed with pure water, and dried in a dryer. In this composite substrate, a crystal film was formed on the underlying CMP surface.
  • the ⁇ -Cr 2 O 3 (underlying substrate) of the composite substrate and the ⁇ -Ga 2 O 3 crystal film can be easily distinguished from each other due to the difference in contrast.
  • the film thickness of the ⁇ -Ga 2 O 3 crystal film was measured from this cross-sectional SEM image. Table 1 shows the results. As can be seen from FIGS. 4 and 5, almost no fine holes were observed in the crystal film formed on the underlying substrate.
  • EBSD backscattered electron diffraction
  • the tilt angle distribution of ⁇ -Ga 2 O 3 and ⁇ -Cr 2 O 3 with respect to (0001) orientation and (10-10) orientation was analyzed, and the peak top of the obtained angle distribution The position difference was calculated.
  • the histogram of the tilt angle distribution displayed by Legend of the analysis program for the crystal orientation mapping image measured in the field of view including both the ⁇ -Ga 2 O 3 film and the ⁇ -Cr 2 O 3 substrate.
  • the class width of the histogram is set to 0.010, and the peak top position of the tilt angle distribution of the (0001) orientation of the ⁇ -Ga 2 O 3 film portion is within the range of 10 to 11 degrees
  • axis alignment was performed using the analysis program virtual Chamber so that the peak top position of the tilt angle distribution of the (10-10) orientation of the ⁇ -Ga 2 O 3 film portion was within the range of 10 to 11 degrees.
  • the angle of the peak top position of the tilt angle distribution of the (0001) orientation of the ⁇ -Ga 2 O 3 film portion is c1 [°] (10 ⁇ c1 ⁇ 11), and the angle of the ⁇ -Ga 2 O 3 film portion is (10 -10)
  • the angle of the peak top position of the tilt angle distribution of the azimuth was set to a1 [°] (10 ⁇ a1 ⁇ 11).
  • the angle c2 [°] of the peak top position of the tilt angle distribution of the (0001) orientation of the base substrate ( ⁇ -Cr 2 O 3 ) portion is obtained, and the base substrate and ⁇
  • the angle a2 [°] of the peak top position of the tilt angle distribution of the (10-10) orientation of the base substrate ( ⁇ -Cr 2 O 3 ) portion is obtained, and the angle between the base substrate and the ⁇ -Ga 2 O 3 film ( 10-10)
  • Example 1 the orientation difference between the underlying substrate and the ⁇ -Ga 2 O 3 film was 0.10 degrees in the (0001) orientation and 0.13 degrees in the (10-10) orientation. It was found that an ⁇ -Ga 2 O 3 film having almost the same crystal orientation was obtained.
  • the crystal orientation [0001] of the (0001) plane is defined as the (0001) orientation
  • the crystal orientation [10-10] of the (10-10) plane is defined as the (10-10) orientation.
  • Various conditions for the EBSD measurement were as follows.
  • Example 2 In preparing the raw material solution, a 1 M LiOH aqueous solution was used as a pH adjuster, the pH of the 0.1 M gallium nitrate octahydrate aqueous solution was adjusted to 10.5, and the internal temperature of the pressure vessel 10 was set to 400 ° C. A sample was prepared and evaluated in the same manner as in Example 1. The main phase of the crystal film formed on the underlying substrate was ⁇ -Ga 2 O 3 . Various evaluation results are shown in Table 1.
  • Example 3 In preparing the raw material solution, a sample was prepared in the same manner as in Example 1 except that a 1M NaOH aqueous solution was used as a pH adjuster and the pH of the 0.1M gallium nitrate octahydrate aqueous solution was adjusted to 9.5. evaluated. The main phase of the crystal film formed on the underlying substrate was ⁇ -Ga 2 O 3 . Various evaluation results are shown in Table 1.
  • a base substrate which is an ⁇ -Cr 2 O 3 solid solution substrate, was prepared as follows.
  • AD aerosol deposition
  • An AD film was formed on a sapphire substrate (diameter 50.8 mm (2 inches), thickness 1.0 mm, c-plane, off-angle 0.5°) by the apparatus 120 .
  • the AD device 120 shown in FIG. 6 is configured as a device used for the AD method in which raw material powder is jetted onto a substrate under an atmosphere of pressure lower than atmospheric pressure.
  • the film forming apparatus 120 includes an aerosol generating unit 122 that generates an aerosol of raw material powder containing raw material components, and a film forming unit 130 that injects the raw material powder onto a sapphire substrate 121 to form a film containing raw material components.
  • the aerosol generation unit 122 includes an aerosol generation chamber 123 that contains raw material powder and receives carrier gas supplied from a gas cylinder (not shown) to generate an aerosol, a raw material supply pipe 124 that supplies the generated aerosol to the film formation unit 130, It has an aerosol generation chamber 123 and a vibration exciter 125 that imparts vibration to the aerosol therein at a frequency of 10 to 100 Hz.
  • the film forming unit 130 includes a film forming chamber 132 for injecting an aerosol onto the sapphire substrate 121, a substrate holder 134 disposed inside the film forming chamber 132 for fixing the sapphire substrate 121, and the substrate holder 134 on the X axis and the Y axis. and an XY stage 133 that moves in the directions.
  • the film forming unit 130 also includes an injection nozzle 136 having a slit 137 formed at its tip for injecting an aerosol onto the sapphire substrate 121 and a vacuum pump 138 for reducing the pressure in the film forming chamber 132 .
  • the AD film formation conditions were as follows. That is, Ar was used as the carrier gas, and a ceramic nozzle having a slit with a long side of 5 mm and a short side of 0.3 mm was used.
  • the nozzle scanning conditions were a scan speed of 0.5 mm/s, a 55 mm movement in the forward direction perpendicular to the long side of the slit, a 5 mm movement in the long side direction of the slit, and a vertical return to the long side of the slit. moving 55 mm in the direction of the slit and moving 5 mm in the long side direction of the slit and in the direction opposite to the initial position. and the cycle of returning to the initial position was defined as one cycle, and this was repeated 400 cycles.
  • the set pressure of the carrier gas was adjusted to 0.07 MPa, the flow rate was adjusted to 9 L/min, and the pressure in the chamber was adjusted to 100 Pa or less.
  • the AD film thus formed had a thickness of about 100 ⁇ m.
  • the sapphire substrate on which the AD film was formed was taken out from the AD apparatus and annealed at 1680°C for 4 hours in a nitrogen atmosphere.
  • the substrate thus obtained was fixed on a ceramic surface plate, and the surface on which the AD film was formed was ground to #2000 using a grindstone to flatten the plate surface.
  • the plate surface was smoothed by lapping using diamond abrasive grains. The flatness was enhanced while the size of the abrasive grains was gradually reduced from 3 ⁇ m to 0.5 ⁇ m.
  • CMP chemical mechanical polishing
  • the arithmetic mean roughness Ra after processing was 0.1 nm, the amount of grinding and polishing was 50 ⁇ m, and the thickness of the composite base substrate after completion of polishing was 1.05 mm. Note that the side on which the AD film is formed is referred to as the "surface".
  • composition analysis of the surface of the composite base substrate was performed with a probe size of 30 ⁇ m ⁇ 30 ⁇ m.
  • the FE-EPMA measurement was performed under measurement conditions of an acceleration voltage of 15 kV and an irradiation current of 50 nA.
  • Cr, O, Ti and Fe were detected.
  • the quantitative values of the detected elements were 83.7 at % for Cr, 3.7 at % for Ti, and 12.6 at % for Fe.
  • Example 1 A sample was prepared and evaluated in the same manner as in Example 1, except that the composite base substrate prepared as described above was used with the AD film ( ⁇ -Cr 2 O 3 solid solution substrate) side facing up. .
  • the main phase of the crystal film formed on the underlying substrate was ⁇ -Ga 2 O 3 .
  • Table 1 Various evaluation results are shown in Table 1.
  • the substrate was placed on a susceptor provided inside in advance, and the temperature of the chamber was raised to 490°C. Since the misted raw material solution is layered in the form of a film by the CVD reaction on the surface of the underlying substrate, such film formation is performed for 60 minutes, and by repeating this five times, a crystal film is deposited on the underlying substrate. rice field. It was confirmed by XRD that the main phase of the crystal film formed on the underlying substrate was ⁇ -Ga 2 O 3 . In Comparative Example 1, 50% or more of the film was visually peeled off, and many cracks were generated around the peeled portion. Table 2 shows various evaluation results.
  • Comparative Example 2 Using the same ⁇ -Cr 2 O 3 substrate as in Example 1 as a base substrate, an ⁇ -Ga 2 O 3 crystal film was formed in the same manner as in Comparative Example 1 by the mist CVD method. However, the film formation for 60 minutes was repeated 10 times to make a total of 600 minutes. The main phase of the crystal film formed on the underlying substrate was confirmed to be ⁇ -Ga 2 O 3 by XRD. In Comparative Example 2, 40% or more of the film was visually peeled off, and cracks frequently occurred around the peeled portion. The film thickness was measured by cross-sectional observation of a part where no peeling occurred. Table 2 shows various evaluation results.
  • the difference in crystal orientation between the ⁇ -Ga 2 O 3 crystal film and the underlying substrate between the (0001) plane and the (10-10) plane is 0.4° or less.
  • the X-ray rocking curve half widths of the (006) plane and (104) plane of the Ga 2 O 3 crystal film were both 2000 arcsec or less.
  • indicating a numerical range is used to include the numerical values before and after it as lower and upper limits.
  • the present invention can be used, for example, as materials for power semiconductors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

複合基板50は、下地基板52と、下地基板52上に設けられたα-Ga2O3結晶膜54と、を備えている。α-Ga2O3結晶膜54は、膜厚が10μm以上で、アルカリ金属元素の少なくとも1種の含有量が1.2×1015atoms/cm3以上1.0×1018atoms/cm3以下である。

Description

複合基板、複合基板の製法及び酸化ガリウム結晶膜の製法
 本発明は、複合基板、複合基板の製法及び酸化ガリウム結晶膜の製法に関する。
 近年、酸化ガリウム(Ga23)が半導体用材料として着目されている。酸化ガリウムはα、β、γ、δ及びεの5つの結晶形を有することが知られているが、この中で、準安定相であるα-Ga23はバンドギャップが5.3eVと非常に大きく、パワー半導体用材料として期待を集めている。例えば、特許文献1には、コランダム型結晶構造を有する下地基板と、コランダム型結晶構造を有する半導体層と、コランダム型結晶構造を有する絶縁膜とを備えた半導体装置が開示されており、サファイア基板上に、半導体層としてα-Ga23膜を形成した例が記載されている。また、特許文献2には、コランダム構造を有する結晶性酸化物半導体を主成分として含むn型半導体層と、六方晶の結晶構造を有する無機化合物を主成分とするp型半導体層と、電極とを備えた半導体装置が開示されている。この特許文献2の実施例には、c面サファイア基板上に、n型半導体層として準安定相であるコランダム構造を有するα-Ga23膜を、p型半導体層として六方晶の結晶構造を有するα-Rh23膜を形成して、ダイオードを作製することが開示されている。また、α-Ga23は蛍光体への応用も期待されている。
特開2014-72533号公報 特開2016-25256号公報
 しかしながら、α-Ga23結晶膜を厚膜化しようとすると、サファイア基板などの下地基板上にα-Ga23結晶膜を成長させる際に下地基板との間に剥離が発生し、剥離部やその周辺でクラックが多発することがあった。このため、α-Ga23結晶膜と下地基板との間の剥離を抑制することが望まれていた。
 本発明はこのような課題を解決するためになされたものであり、α-Ga23結晶膜と下地基板との間の剥離を抑制することを主目的とする。
 上述した課題を解決するために鋭意研究したところ、本発明者らは、Gaイオンを含有する水溶液に下地基板としてα-Cr23基板を浸漬させ、温度390℃以上かつ圧力22.1MPa以上の超臨界状態にすることに想到した。そして、この方法では、下地基板の表面にα-Ga23結晶膜が生成し、α-Ga23結晶膜を10μm以上などまで厚膜化させてもα-Ga23結晶膜と下地基板との間に剥離が生じにくいことを見出した。また、下地基板上に生成したα-Ga23結晶膜は、アルカリ金属元素の少なくとも1種の含有量が所定範囲内であることを見出し、本発明を完成するに至った。
 すなわち、本発明の複合基板は、
 下地基板と、
 前記下地基板上に設けられ、膜厚が10μm以上で、アルカリ金属元素の少なくとも1種の含有量が1.2×1015atoms/cm3以上1.0×1018atoms/cm3以下であるα-Ga23結晶膜と、
 を備えたものである。
 本発明の複合基板の製法は、
 上述した複合基板を製造する製法であって、
 Gaイオンを含有する水溶液に下地基板を浸漬させた状態で、温度390℃以上かつ圧力22.1MPa以上の超臨界状態にすることで、前記下地基板の表面に前記α-Ga23結晶膜を生成させるものである。
 本発明の酸化ガリウム結晶膜の製法は、
 上述した複合基板から前記下地基板を除去して自立した前記α-Ga23結晶膜を得るものである。なお、自立したα-Ga23結晶膜とは、複合基板から下地基板が除去されたものをいい、下地基板が除去されていれば別の基材上に転載されていてもよい。
 あるいは、本発明の酸化ガリウム結晶膜の製法は、
 上述した複合基板の製法で製造した複合基板から前記下地基板を除去して自立した前記α-Ga23結晶膜を得るものである。
 本発明の複合基板及び複合基板の製法では、α-Ga23結晶膜と下地基板との間の剥離が抑制された複合基板を提供できる。こうした効果が得られる理由は、例えば、α-Ga23結晶膜中にアルカリ金属元素の少なくとも1種が好適な濃度で含まれているためと推察される。本発明の複合基板の製法は、α-Ga23結晶膜と下地基板との間の剥離が抑制された複合基板を製造するのに適している。また、本発明の酸化ガリウム結晶膜の製法では、α-Ga23結晶膜と下地基板との間の剥離が抑制されたクラックの少ない複合基板から下地基板を除去して自立したα-Ga23結晶膜を得るため、クラックの少ない酸化ガリウム結晶膜が得られる。
複合基板50の断面図。 耐圧容器10の縦断面図。 水熱合成システム20の概略説明図。 実施例1で得られた複合基板の表面SEM画像。 実施例1で得られた複合基板の断面SEM画像。 AD装置120の構成を示す模式断面図。
 本発明の好適な実施形態を、図面を参照しながら以下に説明する。図1は複合基板50の断面図、図2は耐圧容器10の縦断面図、図3は水熱合成システム20の概略説明図である。
[複合基板]
 複合基板50は、板状の部材であり、下地基板52と下地基板52上に設けられたα-Ga23結晶膜54と、を備えたものである。この複合基板50の面積は、例えば1mm2以上、好ましくは10mm2以上である。
 下地基板52は、α-Ga23結晶膜54の種結晶となる基板である。下地基板52は、コランダム構造を有する基板が好ましく、特にc軸及びc軸に垂直な軸(a軸やm軸など)の二軸に配向した基板(二軸配向基板)が好ましい。二軸配向基板は、多結晶やモザイク結晶(結晶方位が若干ずれた結晶の集合)であってもよいし、単結晶であってもよい。下地基板52は、基板法線方向にオフ角10°以下でc軸配向しているものとしてもよい。下地基板52は、α-Ga23結晶膜54が形成される面(形成面52a)とは反対側の面に、さらに別の基板が設けられていてもよい。
 下地基板52は、α-Cr23基板である。α-Cr23基板は、例えば、不可避的不純物以外の成分を含まないα-Cr23からなるもの(α-Cr23高純度基板という)としてもよいし、α-Cr23を含み総量がCrのモル数を超えない範囲でTi、Fe、Al、Mg、Si、CaなどのCr以外の金属元素及び/又は半金属元素を含むものとしてもよい。これらの金属元素及び/又は半金属元素は、α-Cr23に固溶していてもよく、酸化物結晶などの結晶相(例えばα-Al23)としてα-Cr23に固溶していてもよい。こうした固溶体をα-Cr23固溶体とも称する。α-Cr23基板としては、α-Cr23高純度基板、Fe及びTiのうちの少なくとも一方を含むα-Cr23固溶体基板が特に好適である。
 α-Ga23結晶膜54は、下地基板52の片面(形成面52a)に10μm以上の膜厚で形成されている。α-Ga23結晶膜54を構成するα-Ga23結晶55は、コランダム構造を有する結晶である。α-Ga23結晶膜54は、c軸及びc軸に垂直な軸の二軸に配向(二軸配向)していることが好ましい。α-Ga23結晶膜54は、多結晶やモザイク結晶であってもよいし、単結晶であってもよい。α-Ga23結晶膜54は、基板法線方向にオフ角10°以下でc軸配向しているものとしてもよい。このα-Ga23結晶膜54は、アルカリ金属元素の少なくとも1種の含有量が1.2×1015~1.0×1018atoms/cm3である。アルカリ金属元素としては、Li、Na、Kなどが挙げられる。Li、Na及びKの各々の含有量が1.2×1015atoms/cm3以上1.0×1018atoms/cm3以下であってもよい。α-Ga23結晶膜54は、下地基板52との(0001)面及び(10-10)面の結晶方位差がいずれも0.4°以下であるものとしてもよい。α-Ga23結晶膜54は、(006)面及び(104)面のX線ロッキングカーブ(XRC)半値幅がいずれも2000arcsec以下であるものとしてもよい。α-Ga23結晶膜54は、Cr及びNiの少なくとも一方の含有量が2.0×1015~1.0×1017atoms/cm3であるものとしてもよい。α-Ga23結晶膜54は、Li、Na及びKの各々の含有量が1.2×1015~1.0×1018atoms/cm3であるものとしてもよい。α-Ga23結晶膜54はドーパントを含むものとしてもよい。ドーパントとしては、例えば炭素(C)、珪素(Si)、ゲルマニウム(Ge)、錫(Sn)、鉛(Pb)などの14族元素が挙げられる。α-Ga23結晶膜54にドーパントを含有させることでα-Ga23結晶膜54の導電性を制御することができる。
[複合基板の製法]
 次に、複合基板50の製法について説明する。複合基板50の製法は、Gaイオンを含有する水溶液に下地基板52を浸漬させた状態で、温度390℃以上(好ましくは400℃以上)かつ圧力22.1MPa以上の超臨界状態にすることで、下地基板52の表面にα-Ga23結晶膜54を生成させるものである。
 Gaイオンを含有する水溶液としては、ハロゲン化ガリウム水溶液、硝酸ガリウム水溶液、硫酸ガリウム水溶液、水酸化ガリウム水溶液などが挙げられる。ハロゲン化ガリウムとしては、塩化ガリウム、臭化ガリウム、ヨウ化ガリウムなどが挙げられる。Gaイオンを含有する水溶液は、アルカリ金属元素(アルカリ金属イオン)を含有していてもよい。アルカリ金属元素としては、Li、Na、Kなどが挙げられる。Gaイオンを含有する水溶液は、pH調整剤で好ましくはpH9.0~11.0(より好ましくは9.5~10.5)に調整したものである。pH調整剤としては、アルカリ金属水酸化物の水溶液(例えばKOH水溶液)を用いてもよいし、アンモニウムイオンを含有する水溶液(例えばアンモニウム水)を用いてもよい。Gaイオンを含有する水溶液のGaイオン濃度は、特に限定するものではないが、例えば0.1M以上10M以下としてもよい。
 Gaイオンを含有する水溶液に浸漬させる下地基板52は、少なくとも一方の面(形成面52aになる面)において、CMP(化学機械研磨)、アニール、エッチング、RIE(反応性イオンエッチング)などによって加工変質層が除去されたものであることが好ましい。この下地基板52をGaイオンを含有する水溶液に浸漬させる際には、加工変質層が除去された面がGaイオンを含有する水溶液と接触するように配置すると、加工変質層を除去した面にα-Ga23結晶膜54が生成する。下地基板52をGaイオンを含有する水溶液に浸漬させる際には、Pt製の治具などに下地基板52を載置又は固定して浸漬させてもよい。
 Gaイオンを含有する水溶液を温度390℃以上且つ圧力22.1MPa以上の超臨界状態にするには、Gaイオンを含有する水溶液を耐圧容器に入れて温度390℃以上且つ圧力22.1MPa以上にすることが好ましい。圧力は、耐圧容器の内容積と耐圧容器に入れる水溶液の液量と耐圧容器内の温度及び圧力調整弁の設定によって決定される。反応時間は特に限定するものではないが、例えば0.5時間以上100時間以下としてもよい。反応終了後、耐圧容器内の温度を下げ、α-Ga23結晶膜54が付着した下地基板52(複合基板50)を耐圧容器から取り出す。
 ドーパントを含有したα-Ga23結晶膜54を生成させたい場合には、Gaイオンを含有する水溶液にドーパントに対応するイオンを含有させておけばよい。ドーパントとしては、例えば炭素(C)、珪素(Si)、ゲルマニウム(Ge)、錫(Sn)、鉛(Pb)などの14族元素が挙げられる。α-Ga23結晶膜54にドーパントを含有させることでα-Ga23結晶膜54の導電性を制御することができる。
 耐圧容器の一例を図2に示す。図2の耐圧容器10は、ステンレス製であり、有底筒状の容器本体11の開口部に設けられた雌ネジに、雄ネジが設けられた突起12aの付いた蓋12がねじ込まれたものである。耐圧容器10の内容積は、50mL以上が好ましい。耐圧容器10の容器本体11には、Gaイオンを含有する水溶液14が入っている。この水溶液14は、好ましくはpH9.0~11.0(より好ましくはpH9.5~10.5)に調整されている。この水溶液14には、Pt製の箱状の治具16の底面に配置された下地基板52が浸漬されている。下地基板52は、加工変質層が除去された面が上を向くように配置されている。
 図3は水熱合成システム20の概略説明図である。この水熱合成システム20では、電気炉筐体22に耐圧容器10がセットされている。電気炉筐体22の内部には、ヒーター24及び炉内温度測定用熱電対26が取り付けられている。耐圧容器10には、耐圧容器10の内部温度を測定する耐圧容器用熱電対28が取り付けられている。ヒーター24へ供給する電力は、炉内温度測定用熱電対26によって測定される炉内温度が設定温度になるように制御される。耐圧容器10には、配管30が接続されている。配管30の一端30aは、耐圧容器10の内部に配置され、配管30の他端30bは、大気中に配置されている。配管30は、冷却水槽40内の冷却水によって冷却される。配管30のうち冷却水槽40から他端30bまでの間には、圧力計32と安全弁34と圧力調整弁36とが取り付けられている。ヒーター24により耐圧容器10の全体を加熱し、耐圧容器10の内部温度が390℃以上で且つ耐圧容器10の内部圧力が22.1MPa以上になるようにする。耐圧容器10の内部圧力は、耐圧容器10の内容積と耐圧容器10に入れる水溶液14の液量と容器内温度及び圧力調整弁36の設定によって決定される。そのため、容器内温度を390℃以上にしたときに容器内圧力が22.1MPa以上になるように、耐圧容器10に入れる水溶液14の液量を調整すればよい。この状態で所定時間保持し、その後、耐圧容器10の内部温度を室温まで冷却した後、α-Ga23結晶膜54が付着した下地基板52(複合基板50)を耐圧容器10から取り出し、純水にてリンスした後、乾燥器で乾燥させる。
[酸化ガリウム結晶膜の製法]
 続いて、酸化ガリウム結晶膜の製法について説明する。酸化ガリウム結晶膜の製法の一例は、複合基板50から下地基板52を除去して自立したα-Ga23結晶膜54を得るものである。複合基板50から下地基板52を除去する方法としては、研削、研磨、レーザーリフトオフ、基板部分の酸又はアルカリによるエッチング、RIE(反応性イオンエッチング)などが挙げられる。複合基板50から下地基板52を除去することで、自立したα-Ga23結晶膜54を得ることができる。α-Ga23結晶膜54は、下地基板52が除去されていれば、別の基板上に転載されていてもよい。
 以上説明した複合基板50及び複合基板50の製法では、α-Ga23結晶膜54と下地基板52との間の剥離が抑制された複合基板を提供できる。こうした効果が得られる理由は、例えば、α-Ga23結晶膜54中にアルカリ金属元素の少なくとも1種が好適な濃度で含まれているためと推察される。また、α-Ga23結晶膜54中にアルカリ金属元素の少なくとも1種が好適な濃度で含まれていることにより、β-Ga23等の異相が抑制され、α-Ga23結晶が安定して生成されるという効果も期待される。複合基板50の製法は、複合基板50を製造するのに適している。酸化ガリウム結晶膜の製法では、α-Ga23結晶膜54と下地基板52との間の剥離が抑制されたクラックの少ない複合基板50から下地基板52を除去するため、クラックの少ないα-Ga23結晶膜54が自立膜として得られる。なお、複合基板50において、α-Ga23結晶膜54と下地基板52との剥離面積の割合は、例えば形成面52aの10%以下であるものとしてもよく、3%以下が好ましい。
 また、複合基板50では、α-Ga23結晶膜54の膜厚が10μm以上であるため、下地基板52を除去すれば、10μm以上の厚膜の自立したα-Ga23結晶膜54が得られる。このようなα-Ga23結晶膜54は、厚さ方向に電流を流す必要のある縦型構造のパワー半導体に用いるのに適している。なお、α-Ga23結晶膜54の膜厚は、用途に応じて適宜調整すればよいが、例えば100μm以下としてもよい。α-Ga23結晶膜54の膜厚は、例えば、使用するGaの量や濃度、水熱合成の時間を変えることによって調整できる。
 さらに、複合基板50において、下地基板52はα-Cr23基板であるため、α-Ga23結晶膜が好適な状態で生成されることなどにより、α-Ga23結晶膜54と下地基板52との間の剥離がより抑制されたものとなる。
 さらにまた、複合基板50において、α-Ga23結晶膜54は、下地基板52との(0001)面及び(10-10)面の結晶方位差がいずれも0.4°以下であること、換言すれば、下地基板52と結晶方位がほぼ同一であることが好ましい。結晶方位がほぼ同一であれば、α-Ga23結晶膜54と下地基板52との間にひずみが生じにくいため、両者の間の剥離がより抑制されたものとなる。なお、(0001)面及び(10-10)面の結晶方位差は、各々、0.3°以下がより好ましく、0.2°以下がさらに好ましく、0.1°以下が一層好ましい。
 更にまた、α-Ga23結晶を、高耐圧が要求されるパワー半導体等に利用する場合、結晶品質によって絶縁破壊電界特性が左右されるため、高い結晶品質が要求される。そのため、複合基板50において、α-Ga23結晶膜54は、(006)面及び(104)面のX線ロッキングカーブ半値幅がいずれも2000arcsec以下であること、換言すれば、結晶性(結晶品質)が十分高いことが好ましい。なお、(006)面のX線ロッキングカーブ半値幅は、1600arcsec以下であることが好ましく、1000arcsec以下としてもよく、100arcsec以下としてもよい。(104)面のX線ロッキングカーブ半値幅は、1900arcsec以下であることが好ましく、1000arcsec以下としてもよく、400arcsec以下としてもよい。(006)面及び(104)面のX線ロッキングカーブ半値幅は、各々、50arcsec以上としてもよい。
 そしてまた、複合基板50において、α-Ga23結晶膜54は、Cr及びNiの少なくとも一方の含有量が2.0×1015~1.0×1017atoms/cm3であることが好ましい。こうすれば、α-Ga23結晶膜54と下地基板52との間の剥離がより抑制されたものとなる。また、Cr及びNiの各々の含有量が2.0×1015~1.0×1017atoms/cm3であることが好ましい。また、Cr及びNiの含有量の総和が1.6×1017atoms/cm3以下であることが好ましく、5.0×1016atoms/cm3以下であることがより好ましい。
 そしてさらに、複合基板50において、α-Ga23結晶膜54は、Li、Na及びKの各々の含有量が1.2×1015~1.0×1018atoms/cm3であることが好ましい。また、Li、Na及びKの各々の含有量の総和が1.2×1015~1.2×1018atoms/cm3であることが好ましい。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、下地基板52は、α-Cr23基板としたが、下地基板52は、サファイア基板や、α-Fe23基板、α-Ga23基板などとしてもよい。ただし、下地基板52の種類によっては、α-Ga23結晶が膜状でなく粒子状に生成したり、β-Ga23結晶などの異相が生成したりしやすいことがある。下地基板52がα-Cr23基板であれば、α-Ga23結晶が膜状に生成しやすく、異相も生じにくいため、好ましい。なかでも、下地基板52がα-Cr23固溶体基板であれば、α-Ga23結晶膜54の結晶性がより高く、また、α-Ga23結晶膜54と下地基板52との結晶方位差がより小さいため、好ましい。
 以下に、本発明の実施例について説明する。なお、以下の実施例は本発明を何ら限定するものではない。
[実施例1]
1.下地基板準備
 α-Cr23高純度基板である市販のc面(オフ角無し)α-Cr23単結晶基板を約4mm角(□4mm)に切り出し、両面をダイヤモンドスラリーにて鏡面研磨した後、更に片面をCMP処理で仕上げた。CMP処理で仕上げた面を下地CMP面、他方の面を下地非CMP面とも称する。
2.水熱合成
 硝酸ガリウム八水和物(キシダ化学製)0.1M水溶液を作製し、pH調整剤として1M KOH水溶液を用いてpHを10.0に調整し、原料溶液を得た。続いて、図2に示すSUS316製の耐圧容器10(内径19mm、内容積50mL)に、4mm角のc面α-Cr23単結晶基板(下地基板52)を、厚さ50μmのPt箔で作製した高さ10mm、幅10mm、奥行き10mの治具16内に下地CMP面を上にした状態で入れ、更に前出の原料溶液45mLを入れ、密閉した。続いて、耐圧容器10を水熱合成システム20の電気炉筐体22にセットした。なお、圧力調整弁36は予め耐圧容器10の内部圧力が30.0MPaとなるようにセットしておいた。次に、電気炉筐体22のヒーター24により耐圧容器10の全体を加熱し、耐圧容器10の内部温度を410℃とした。このとき、耐圧容器10の内部圧力は30.0MPaであった。この状態で24時間保持した。耐圧容器10の内部温度を室温まで冷却した後、得られた基板(複合基板)を耐圧容器10から取り出し、純水にてリンスした後、乾燥器で乾燥させた。この複合基板では、下地CMP面上に結晶膜が生成していた。
3.下地基板の除去
 上記2.で得られた複合基板の下地側の面(下地非CMP面)を研磨用プレートにワックスで貼りつけ、結晶膜の表面をダイヤモンドスラリーで研磨し、CMPにて平滑に仕上げた(結晶膜CMP面)。研磨用プレートから複合基板を外し、複合基板の結晶膜CMP面に、ワックスを用いてサファイア基板を接合して接合体を得た。更に、接合体のサファイア面を研磨用プレートにワックスで貼りつけ、グラインダにて#1000及び#6000の砥石を用いて下地基板(Cr23部分)を研削除去した。これにより、サファイア基板に転載された酸化ガリウム結晶膜が得られた。サファイア基板はワックスで酸化ガリウム結晶膜に貼り付けられているため、容易に除去できる。これにより、自立した酸化ガリウム結晶膜が得られる。
4.評価
(1)結晶相
 上記2.で下地CMP面上に生成した結晶に対し、XRD装置(リガク製、RINT-TTR III)を用い、下記の条件にてXRDプロファイルを取得した。その結果、生成した結晶膜の主相はα-Ga23であると同定された。
・X線管球 Cuターゲット
・管電圧 50kV
・管電流 300mA
・2θ/θ法
・2θ範囲 10°~80°
(2)剥離有無
 上記2.で得られた複合基板に対し、下地基板とα-Ga23結晶膜との間の剥離有無を目視にて確認したところ、複合基板外周部にわずか(3%以下)に剥離が見られたものの、全体的な剥離は認められなかった。
(3)微構造観察
 上記2.で得られた複合基板の表面(α-Ga23結晶膜表面)を走査電子顕微鏡(SEM,日本電子製JSM-IT500)により観察した結果、図4のような結晶膜が確認された。基板を樹脂埋めした後、マイクロカッターにて断面を作製し、クロスセクションポリッシャ(日本電子製IB-19500CP)で断面観察用試料を作製した。得られた断面の反射電子像を走査型電子顕微鏡(日立ハイテクノロジーズ製、SU-5000)にて撮影した。このとき、図5に示されるように、コントラスト差により複合基板のα-Cr23(下地基板)とα-Ga23結晶膜とを容易に見分けることができる。この断面SEM像よりα-Ga23結晶膜の膜厚を計測した。結果を表1に示す。図4、5からわかるように、下地基板上に生成した結晶膜には、微細な孔がほとんど確認されなかった。
(4)X線ロッキングカーブ半値幅
 XRD装置(Bruker-AXS製、D8-DISCOVER)を用い、上記2.で下地CMP面上に生成した結晶の(006)面および(104)面のXRC測定を行った。具体的には2θ、ω、χ及びφを調整してα-Ga23の(006)面又は(104)面のピークが出るように軸立てを行った後、管電圧40kV、管電流40mA、アンチスキャッタリングスリット3mmで、(006)面測定の場合はω=20.0~20.4°の範囲、(104)面測定の場合はω=16.5~17.5°の範囲、ωステップ幅0.001°、及び計数時間0.5秒の条件を用いた。また、X線源にはGe(022)非対称反射モノクロメーターでCuKα線を平行単色光化したものを用いた。得られたα-Ga23のXRCプロファイルの半値幅は、XRD解析ソフトウェア(Bruker-AXS製、「LEPTOS」Ver4.03)を使用し、プロファイルのスムージングを行った後にピークサーチを行うことにより決定した。結果を表1に示す。
(5)EBSD(後方散乱電子回折)
 上記(3)で断面観察用に作製した試料を用い、EBSD(オックスフォード・インストゥルメンツ株式会社製、Nordlys Nano)を組み合わせた走査型電子顕微鏡(日立ハイテクノロジーズ製、SU-5000)を用いて、EBSD測定を行った。得られた逆極点図方位マッピングより、α-Ga23結晶膜は基板法線方向にc軸配向した配向層であると共に、基板面内方向にも配向した二軸配向層であることが分かった。さらに得られた結晶方位マッピングにおいて、(0001)方位および(10-10)方位に対するα-Ga23、α-Cr23の傾斜角度分布を解析し、得られた角度分布のピークトップ位置の差を算出した。具体的には、まずα-Ga23膜とα-Cr23基板の双方を含む視野で測定した結晶方位マッピング像に対して、解析プログラムのLegendにより表示される傾斜角度分布のヒストグラムにおいて、ヒストグラムのClass widthを0.010に設定した上で、α-Ga23膜部分の(0001)方位の傾斜角度分布のピークトップ位置が10~11度の範囲内になるように、かつα-Ga23膜部分の(10-10)方位の傾斜角度分布のピークトップ位置が10~11度の範囲内になるように、解析プログラムのvirtual Chamberを用いて軸合わせを行った。この時のα-Ga23膜部分の(0001)方位の傾斜角度分布のピークトップ位置の角度をc1[°](10<c1<11)、α-Ga23膜部分の(10-10)方位の傾斜角度分布のピークトップ位置の角度をa1[°](10<a1<11)とした。続いて、軸合わせの状態を維持したままで、下地基板(α-Cr23)部分の(0001)方位の傾斜角度分布のピークトップ位置の角度c2[°]を求め、下地基板とα-Ga23膜の(0001)方位差を|c1-c2|[°]で算出した。同様に、下地基板(α-Cr23)部分の(10-10)方位の傾斜角度分布のピークトップ位置の角度a2[°]を求め、下地基板とα-Ga23膜の(10-10)方位差を|a1-a2|[°]で算出した。結果を表1に示す。この結果より、実施例1では、下地基板とα-Ga23膜の方位差は(0001)方位で0.10度、(10-10)方位で0.13度であり、下地基板と結晶方位をほぼ同一にしたα-Ga23膜が得られたことがわかった。なお、上記の説明では、(0001)面の結晶方位[0001]を(0001)方位とし、(10-10)面の結晶方位[10-10]を(10-10)方位として説明した。EBSD測定の諸条件は以下のとおりとした。
<EBSD測定条件>
・加速電圧: 15kV
・スポット強度: 70
・ワーキングディスタンス: 22.5mm
・ステップサイズ: 0.4μm
・試料傾斜角:70°
・測定プログラム: AZtec
・解析プログラム: OXFORD HKL CHANNEL5
(6)組成分析
 二次イオン質量分析装置(SIMS)を用いて、上記2.で得られた複合基板の表面のα-Ga23結晶膜の組成分析(D-SIMS分析)を行った。このD-SIMS分析の諸条件は以下のとおりとした。
<D-SIMS分析条件>
・装置:CAMECA社製 IMS-7f
・一次イオン種:O2 +
・一次イオン加速電圧:8.0kV
 各イオンの含有量はGa23標準試料を用いて「atoms/cm3」の単位に換算し、デプスプロファイルを作成、表面より1μmから2μmの深さの値の平均値として求めた。結果を表1に示す。
[実施例2]
 原料溶液を調製するにあたり、pH調整剤として1M LiOH水溶液を用い、硝酸ガリウム八水和物0.1M水溶液のpHを10.5に調整し、耐圧容器10の内部温度を400℃とした以外は実施例1と同様の方法で試料を作製、評価した。下地基板上に生成した結晶膜の主相はα-Ga23であった。各種評価結果を表1に示す。
[実施例3]
 原料溶液を調製するにあたり、pH調整剤として1M NaOH水溶液を用い、硝酸ガリウム八水和物0.1M水溶液のpHを9.5に調整した以外は実施例1と同様の方法で試料を作製、評価した。下地基板上に生成した結晶膜の主相はα-Ga23であった。各種評価結果を表1に示す。
[実施例4]
 α-Cr23固溶体基板である下地基板を以下のように作製した。原料粉末としてCr23粉末100重量部に、TiO2粉末5重量部及びFe23粉末16重量部を添加し、湿式混合した混合粉末を用い、図6に示されるAD(エアロゾルデポジション)装置120によりサファイア基板(直径50.8mm(2インチ)、厚さ1.0mm、c面、オフ角0.5°)上にAD膜を形成した。図6に示されるAD装置120は、大気圧より低い気圧の雰囲気下で原料粉末を基板上に噴射するAD法に用いられる装置として構成されている。この成膜装置120は、原料成分を含む原料粉末のエアロゾルを生成するエアロゾル生成部122と、原料粉末をサファイア基板121に噴射して原料成分を含む膜を形成する成膜部130とを備えている。エアロゾル生成部122は、原料粉末を収容し図示しないガスボンベからのキャリアガスの供給を受けてエアロゾルを生成するエアロゾル生成室123と、生成したエアロゾルを成膜部130へ供給する原料供給管124と、エアロゾル生成室123及びその中のエアロゾルに10~100Hzの振動数で振動を付与する加振器125とを備えている。成膜部130は、サファイア基板121にエアロゾルを噴射する成膜チャンバ132と、成膜チャンバ132の内部に配設されサファイア基板121を固定する基板ホルダ134と、基板ホルダ134をX軸-Y軸方向に移動するX-Yステージ133とを備えている。また、成膜部130は、先端にスリット137が形成されエアロゾルをサファイア基板121へ噴射する噴射ノズル136と、成膜チャンバ132を減圧する真空ポンプ138とを備えている。
 AD成膜条件は以下のとおりとした。すなわち、キャリアガスはArとし、長辺5mm×短辺0.3mmのスリットが形成されたセラミックス製のノズルを用いた。ノズルのスキャン条件は、0.5mm/sのスキャン速度で、スリットの長辺に対して垂直かつ進む方向に55mm移動、スリットの長辺方向に5mm移動、スリットの長辺に対して垂直かつ戻る方向に55mm移動、スリットの長辺方向かつ初期位置とは反対方向に5mm移動、とのスキャンを繰り返し、スリットの長辺方向に初期位置から55mm移動した時点で、それまでとは逆方向にスキャンを行い、初期位置まで戻るサイクルを1サイクルとし、これを400サイクル繰り返した。室温での1サイクルの成膜において、搬送ガスの設定圧力を0.07MPa、流量を9L/min、チャンバ内圧力を100Pa以下に調整した。このようにして形成したAD膜は厚み約100μmであった。
 AD膜を形成したサファイア基板をAD装置から取り出し、窒素雰囲気中で1680℃にて4時間アニールした。このようにして得た基板をセラミックスの定盤に固定し、AD膜を形成した側の面を砥石を用いて#2000まで研削して板面を平坦にした。次いで、ダイヤモンド砥粒を用いたラップ加工により、板面を平滑化した。砥粒のサイズを3μmから0.5μmまで段階的に小さくしつつ、平坦性を高めた。□4mmのサイズにダイサーを用いて切断した後、コロイダルシリカを用いた化学機械研磨(CMP)により鏡面仕上げ加工を行い、複合下地基板を得た。加工後の算術平均粗さRaは0.1nm、研削及び研磨量は50μmであり、研磨完了後の複合下地基板の厚みは1.05mmとなった。なお、AD膜を形成した側の面を「表面」と称することとする。
 電子線プローブマイクロアナライザー(FE-EPMA)(日本電子株式会社製、電子線プローブマイクロアナライザー、JXA-8500F)を用いて、複合下地基板表面の組成分析をプローブサイズ30μm×30μmで実施した。FE-EPMA測定は、加速電圧15kV、照射電流50nAの測定条件で行った。その結果、Cr、O、Ti及びFeが検出された。検出された元素の定量値(Oを除く原子の原子組成百分率)は、Crが83.7at%、Tiが3.7at%、Feが12.6at%であった。
 上述のように作製した複合下地基板をAD膜(α-Cr23固溶体基板)側の面を上にした状態で用いた以外は、実施例1と同様の方法で試料を作製、評価した。下地基板上に生成した結晶膜の主相はα-Ga23であった。各種評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[比較例1]
 下地基板として□4mmのc面サファイア基板(オフ角無し、表面CMP処理済み)を用い、ミストCVD法にて以下のようにα-Ga23結晶膜を作製した。原料溶液として、ガリウムアセチルアセトナート濃度が0.08mol/Lで、36%塩酸を体積比で1.5%を含有する水溶液を用いた。この原料溶液を超音波振動子を用いて2.4MHzで振動させることによりミスト化させ、窒素ガスによって成膜室に導入した。成膜室では、予め、内部に配設されたサセプタ上に基板を配置し、室内を490℃まで昇温させておいた。ミスト化された原料溶液は、下地基板の表面でのCVD反応によって膜状に積層されるので、こうした成膜を60分行い、それを5回繰り返すことで、下地基板上に結晶膜を積層させた。下地基板上に生成した結晶膜の主相はXRDにてα-Ga23と確認された。比較例1では、目視にて膜の50%以上が剥離し、剥離部分の周辺でクラックが多発していたため、膜厚は一部剥離が起きていなかった部分での断面観察にて計測した。各種評価結果を表2に示す。
[比較例2]
 下地基板として実施例1と同様のα-Cr23基板を用い、ミストCVD法により比較例1と同様にしてα-Ga23結晶膜を作製した。但し、60分の成膜を10回繰り返し、計600分とした。下地基板上に生成した結晶膜の主相は、XRDにてα-Ga23と確認された。比較例2では、目視にて膜の40%以上が剥離し、剥離部分の周辺でクラックが多発していた。膜厚は一部剥離が起きていなかった部分での断面観察にて計測した。各種評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、α-Ga23結晶膜に含まれるアルカリ金属元素の各々の含有量が全て1.2×1015atoms/cm3未満である比較例1及び比較例2では、α-Ga23結晶膜と下地基板との間の広い範囲に剥離が発生した。一方で、表1に示すように、アルカリ金属元素の少なくとも1種の含有量が1.2×1015~1.0×1018atoms/cm3である実施例1~4では、α-Ga23結晶膜と下地基板との間の剥離が抑制されており、剥離面積はいずれも3%以下であった。また、実施例1~4では、α-Ga23結晶膜と下地基板との(0001)面及び(10-10)面の結晶方位差がいずれも0.4°以下であり、α-Ga23結晶膜の(006)面及び(104)面のX線ロッキングカーブ半値幅がいずれも2000arcsec以下であった。
 なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
  本出願は、2021年4月27日に出願された日本国特許出願第2021-075004号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、例えばパワー半導体用材料などに利用可能である。
10 耐圧容器、11 容器本体、12 蓋、12a 突起、14 Gaイオンを含有する水溶液、16 治具、20 水熱合成システム、22 電気炉筐体、24 ヒーター、26 炉内温度測定用熱電対、28 耐圧容器用熱電対、30 配管、30a 一端、30b 他端、32 圧力計、34 安全弁、36 圧力調整弁、40 冷却水槽、50 複合基板、52 下地基板、52a 形成面、54 α-Ga23結晶膜、55 α-Ga23結晶、120 AD装置、121 サファイア基板、122 エアロゾル生成部、123 エアロゾル生成室、124 原料供給管、125 加振器、130 成膜部、132 成膜チャンバ、133 X-Yステージ、134 基板ホルダ、136 噴射ノズル、137 スリット、138 真空ポンプ。

Claims (10)

  1.  下地基板と、
     前記下地基板上に設けられ、膜厚が10μm以上で、アルカリ金属元素の少なくとも1種の含有量が1.2×1015atoms/cm3以上1.0×1018atoms/cm3以下であるα-Ga23結晶膜と、
     を備えた、
     複合基板。
  2.  前記下地基板は、α-Cr23基板である、
     請求項1に記載の複合基板。
  3.  前記α-Ga23結晶膜は、前記下地基板との(0001)面及び(10-10)面の結晶方位差がいずれも0.4°以下である、
     請求項1又は2に記載の複合基板。
  4.  前記α-Ga23結晶膜は、(006)面及び(104)面のX線ロッキングカーブ半値幅がいずれも2000arcsec以下である、
     請求項1~3のいずれか1項に記載の複合基板。
  5.  前記α-Ga23結晶膜は、Cr及びNiの少なくとも一方の含有量が2.0×1015atoms/cm3以上1.0×1017atoms/cm3以下である、
     請求項1~4のいずれか1項に記載の複合基板。
  6.  前記α-Ga23結晶膜は、Li、Na及びKの各々の含有量が1.2×1015atoms/cm3以上1.0×1018atoms/cm3以下である、
     請求項1~5のいずれか1項に記載の複合基板。
  7.  請求項1~6のいずれか1項に記載の複合基板を製造する製法であって、
     Gaイオンを含有する水溶液に下地基板を浸漬させた状態で、温度390℃以上かつ圧力22.1MPa以上の超臨界状態にすることで、前記下地基板の表面に前記α-Ga23結晶膜を生成させる、
     複合基板の製法。
  8.  前記水溶液は、アルカリ金属元素を含む、
     請求項7に記載の複合基板の製法。
  9.  請求項1~6のいずれか1項に記載の複合基板から前記下地基板を除去して自立した前記α-Ga23結晶膜を得る、
     酸化ガリウム結晶膜の製法。
  10.  請求項7又は8に記載の複合基板の製法で製造した複合基板から前記下地基板を除去して自立した前記α-Ga23結晶膜を得る、
     酸化ガリウム結晶膜の製法。
PCT/JP2022/008148 2021-04-27 2022-02-28 複合基板、複合基板の製法及び酸化ガリウム結晶膜の製法 WO2022230342A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280016510.0A CN116888310A (zh) 2021-04-27 2022-02-28 复合基板、复合基板的制法及氧化镓晶体膜的制法
JP2023517095A JPWO2022230342A1 (ja) 2021-04-27 2022-02-28
US18/469,661 US20240003043A1 (en) 2021-04-27 2023-09-19 Composite substrate, method for producing composite substrate, and method for producing gallium oxide crystal film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-075004 2021-04-27
JP2021075004 2021-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/469,661 Continuation US20240003043A1 (en) 2021-04-27 2023-09-19 Composite substrate, method for producing composite substrate, and method for producing gallium oxide crystal film

Publications (1)

Publication Number Publication Date
WO2022230342A1 true WO2022230342A1 (ja) 2022-11-03

Family

ID=83846869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008148 WO2022230342A1 (ja) 2021-04-27 2022-02-28 複合基板、複合基板の製法及び酸化ガリウム結晶膜の製法

Country Status (4)

Country Link
US (1) US20240003043A1 (ja)
JP (1) JPWO2022230342A1 (ja)
CN (1) CN116888310A (ja)
WO (1) WO2022230342A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993110A (zh) * 2010-11-14 2011-03-30 青岛理工大学 一种微波水热法制备β-氧化镓的方法
JP2013028480A (ja) * 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
CN107841785A (zh) * 2017-10-27 2018-03-27 浙江理工大学 一种氧化镓相结纳米柱阵列及其制备方法
WO2020194763A1 (ja) * 2019-03-28 2020-10-01 日本碍子株式会社 半導体膜
JP2021042120A (ja) * 2019-04-24 2021-03-18 日本碍子株式会社 半導体膜
WO2021064803A1 (ja) * 2019-09-30 2021-04-08 日本碍子株式会社 α-Ga2O3系半導体膜
WO2021090635A1 (ja) * 2019-11-05 2021-05-14 日本碍子株式会社 酸化ガリウム結晶の製法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993110A (zh) * 2010-11-14 2011-03-30 青岛理工大学 一种微波水热法制备β-氧化镓的方法
JP2013028480A (ja) * 2011-07-27 2013-02-07 Kochi Univ Of Technology ドーパントを添加した結晶性の高い導電性α型酸化ガリウム薄膜およびその生成方法
CN107841785A (zh) * 2017-10-27 2018-03-27 浙江理工大学 一种氧化镓相结纳米柱阵列及其制备方法
WO2020194763A1 (ja) * 2019-03-28 2020-10-01 日本碍子株式会社 半導体膜
JP2021042120A (ja) * 2019-04-24 2021-03-18 日本碍子株式会社 半導体膜
WO2021064803A1 (ja) * 2019-09-30 2021-04-08 日本碍子株式会社 α-Ga2O3系半導体膜
WO2021090635A1 (ja) * 2019-11-05 2021-05-14 日本碍子株式会社 酸化ガリウム結晶の製法

Also Published As

Publication number Publication date
CN116888310A (zh) 2023-10-13
US20240003043A1 (en) 2024-01-04
JPWO2022230342A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
JP7461851B2 (ja) 半導体膜
JP7289357B2 (ja) 半導体膜
US20210404089A1 (en) Ground substrate and method for producing same
US11942520B2 (en) Semiconductor film
WO2020261355A1 (ja) 半導体膜
WO2022230342A1 (ja) 複合基板、複合基板の製法及び酸化ガリウム結晶膜の製法
JP7221410B2 (ja) α-Ga2O3系半導体膜
JP7124207B2 (ja) 下地基板
US20230231013A1 (en) Multilayer structure
JP7439117B2 (ja) 下地基板及びその製造方法
JP7320070B2 (ja) 下地基板及びその製造方法
JP7265624B2 (ja) 半導体膜
Yuk et al. Evolution mechanisms of the surface morphology of grains in ZnO thin films grown on p-InP substrates due to thermal annealing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280016510.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023517095

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795265

Country of ref document: EP

Kind code of ref document: A1