WO2020095421A1 - 電気光学素子のための複合基板とその製造方法 - Google Patents

電気光学素子のための複合基板とその製造方法 Download PDF

Info

Publication number
WO2020095421A1
WO2020095421A1 PCT/JP2018/041548 JP2018041548W WO2020095421A1 WO 2020095421 A1 WO2020095421 A1 WO 2020095421A1 JP 2018041548 W JP2018041548 W JP 2018041548W WO 2020095421 A1 WO2020095421 A1 WO 2020095421A1
Authority
WO
WIPO (PCT)
Prior art keywords
electro
refractive index
substrate
interface
low refractive
Prior art date
Application number
PCT/JP2018/041548
Other languages
English (en)
French (fr)
Inventor
雄大 鵜野
近藤 順悟
知義 多井
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2018/041548 priority Critical patent/WO2020095421A1/ja
Priority to CN202210482598.7A priority patent/CN114815329A/zh
Priority to CN201980061122.2A priority patent/CN112955811B/zh
Priority to PCT/JP2019/027570 priority patent/WO2020095478A1/ja
Priority to JP2019549494A priority patent/JP6646187B1/ja
Priority to EP19881111.9A priority patent/EP3879336A4/en
Priority to JP2020002430A priority patent/JP7337713B2/ja
Publication of WO2020095421A1 publication Critical patent/WO2020095421A1/ja
Priority to US17/217,360 priority patent/US11150497B2/en
Priority to US17/480,870 priority patent/US12025864B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/121Channel; buried or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator

Definitions

  • the technology disclosed in the present specification relates to a composite substrate for an electro-optical element (for example, an optical modulator) that utilizes an electro-optical effect.
  • an electro-optical element for example, an optical modulator
  • Electro-optical elements such as optical modulators are known.
  • the electro-optical element can convert an electric signal into an optical signal by utilizing the electro-optical effect.
  • the electro-optical element is an essential element for, for example, optical radio wave fusion communication, and further development is underway in order to realize high-speed and large-capacity communication.
  • An optical modulator is disclosed in Japanese Patent Laid-Open No. 2010-85789.
  • This optical modulator is a type of electro-optical element, and is configured using a composite substrate.
  • the composite substrate includes an electro-optic crystal substrate and a support substrate bonded to the electro-optic crystal substrate via a bonding layer.
  • a material having a lower refractive index than that of the electro-optic crystal substrate is used for the supporting substrate and the bonding layer.
  • the mechanical strength of the composite substrate (that is, the mechanical strength of the electro-optical element) can be increased as the thickness of the supporting substrate is increased.
  • the thickness of the support substrate is increased, electromagnetic waves are more likely to resonate in the composite substrate when the electro-optical element is used in a high frequency band (for example, 10 GHz or higher).
  • a high frequency band for example, 10 GHz or higher.
  • the present specification provides a technique capable of suppressing resonance of electromagnetic waves in a composite substrate.
  • the electromagnetic waves caused by it are repeatedly propagated in the composite substrate along the thickness direction while being reflected on the surface or interface of the composite substrate. Then, such electromagnetic waves overlap each other in the same phase, so that the resonance occurs in the composite substrate. Therefore, in the technique disclosed in this specification, at least one of the plurality of interfaces existing in the composite substrate is an interface having a high degree of roughness. With such a configuration, the electromagnetic waves propagating in the thickness direction of the composite substrate are variously refracted or reflected at the interface having a large degree of roughness, and an infinite number of variations occur in the paths along which the electromagnetic waves propagate. This makes it possible to prevent electromagnetic waves propagating in the composite substrate along the thickness direction from overlapping each other in the same phase.
  • the position of the interface having a large degree of roughness described above is not particularly limited. However, if the interface having a high degree of roughness is the interface in contact with the electro-optical crystal substrate, light transmitted through the electro-optical crystal substrate may be scattered or absorbed by the interface having a high degree of roughness. Therefore, in the present technology, the low-refractive index layer that is in contact with the electro-optical crystal substrate is provided, and the interface between the electro-optical crystal substrate and the low-refractive index layer is a smooth interface. Thereby, the scattering and absorption of the light transmitted through the electro-optic crystal substrate is suppressed, and the light can be confined in the electro-optic crystal substrate.
  • the interface having a high degree of roughness can be provided between the low refractive index layer and the supporting substrate to suppress the above resonance of electromagnetic waves.
  • One aspect of the present technology discloses a composite substrate for an electro-optical element.
  • This composite substrate has an electro-optic crystal substrate having an electro-optic effect, a low-refractive index layer that is in contact with the electro-optic crystal substrate and has a lower refractive index than the electro-optic crystal substrate, and at least a bonding layer in the low-refractive index layer And a support substrate bonded via the.
  • At least one of the plurality of interfaces existing between the low-refractive index layer and the support substrate is an interface having a higher degree of roughness than the interface between the electro-optic crystal substrate and the low-refractive index layer.
  • the existence of the interface having a high degree of roughness in the composite substrate can prevent the electromagnetic waves from resonating in the composite substrate.
  • the interface between the electro-optic crystal substrate and the low refractive index layer is relatively smooth, the scattering and absorption of the light propagating through the electro-optic crystal substrate is suppressed, and the light inside the electro-optic crystal substrate is suppressed. Can be trapped.
  • a method for manufacturing a composite substrate for an electro-optical element comprises a step of forming a low refractive index layer having a lower refractive index than the electro-optical crystal substrate on the surface of the electro-optical crystal substrate having an electro-optical effect, and a low refractive index provided on the electro-optical crystal substrate.
  • the method includes a step of forming a bonding layer on the surface of the layer, and a step of bonding a support substrate to the surface of the bonding layer formed on the low refractive index layer.
  • the surface of the low refractive index layer before the formation of the bonding layer has a higher degree of roughness than the surface of the electro-optic crystal substrate before the formation of the low refractive index layer.
  • the interface between the low refractive index layer and the bonding layer may be an interface having a higher degree of roughness than the interface between the electro-optical crystal substrate and the low refractive index layer. it can.
  • FIG. 1 is a perspective view schematically showing a composite substrate 10 of Example 1.
  • FIG. 1 is a perspective view schematically showing a composite substrate 10 of Example 1.
  • FIG. 3 is a diagram schematically showing a cross-sectional structure of the composite substrate 10 of Example 1.
  • FIG. 3 is a diagram showing a step of the method of manufacturing the composite substrate 10 of Example 1.
  • FIG. 3 is a diagram showing a step of the method of manufacturing the composite substrate 10 of Example 1.
  • FIG. 3 is a diagram showing a step of the method of manufacturing the composite substrate 10 of Example 1.
  • FIG. 3 is a diagram showing a step of the method of manufacturing the composite substrate 10 of Example 1.
  • FIG. 3 is a diagram showing a step of the method of manufacturing the composite substrate 10 of Example 1.
  • FIG. 7 shows a modified example of the composite substrate 10, in which electrodes 32 and 34 for applying an electric signal to the electro-optical crystal substrate 12 and an optical waveguide region 36 provided in the electro-optical crystal substrate 12 are added.
  • FIG 9 shows a modified example of the composite substrate 10, in which a ridge portion 13 is formed on the upper surface 12 a of the electro-optic crystal substrate 12.
  • FIG 9 shows a modified example of the composite substrate 10, in which electrodes 42 and 44 for applying an electric signal are added to the ridge portion 13.
  • the c-axis of the electro-optic crystal substrate 12 is parallel to the electro-optic crystal substrate 12.
  • FIG 9 shows a modified example of the composite substrate 10, in which electrodes 52 and 54 for applying an electric signal are added to the ridge portion 13.
  • the c-axis of the electro-optic crystal substrate 12 is perpendicular to the electro-optic crystal substrate 12.
  • FIG. 5 is a diagram schematically showing a cross-sectional structure of a composite substrate 10a of Example 2.
  • 6A and 6B are views for explaining the method for manufacturing the composite substrate 10a according to the second embodiment.
  • FIG. 9 is a diagram schematically showing a cross-sectional structure of a composite substrate 10b of Example 3.
  • 6A and 6B are diagrams illustrating a method of manufacturing the composite substrate 10b according to the third embodiment.
  • FIG. 9 is a diagram schematically showing a cross-sectional structure of a composite substrate 10c of Example 4.
  • 6A and 6B are diagrams illustrating a method of manufacturing the composite substrate 10c according to the fourth embodiment.
  • the roughness of the interface having a large roughness may be 3 times or more the roughness of the interface between the electro-optic crystal substrate and the low refractive index layer, or 5 It may be two times or more or ten times or more.
  • the effect of the present technology can be enhanced by increasing the difference in roughness between the two interfaces.
  • the arithmetic mean roughness (Ra) of the interface between the electro-optic crystal substrate and the low refractive index layer is in the range of 0.03 nm (nanometer) to 0.5 nm.
  • the arithmetic mean roughness (Ra) of the interface having a large roughness may be in the range of 0.5 nm to 500 nm.
  • the interface having a high degree of roughness may be the interface between the low refractive index layer and the bonding layer.
  • the arithmetic mean roughness (Ra) of the interface between the low refractive index layer and the bonding layer may be 1/1000 or more of the thickness of the low refractive index layer.
  • the arithmetic mean roughness (Ra) of the interface between the low refractive index layer and the bonding layer may be 0.5 nm or more, and the thickness of the low refractive index layer is 0.5 ⁇ m ( Micrometer) or more.
  • the interface having a large roughness may be the interface between the bonding layer and the supporting substrate. Even with such a structure, the resonance of the electromagnetic wave in the composite substrate can be suppressed by the existence of the interface having a large roughness in the composite substrate.
  • the composite substrate may further include an intermediate layer located between the low refractive index layer and the bonding layer.
  • the interface having high roughness may be the interface between the intermediate layer and the bonding layer. Even with such a structure, the resonance of the electromagnetic wave in the composite substrate can be suppressed by the existence of the interface having a large roughness in the composite substrate.
  • the material forming the intermediate layer may be a material that can be used for the low refractive index layer or the bonding layer, and is a material different from the material actually used for the low refractive index layer and the bonding layer. Good.
  • the composite substrate may further include an intermediate layer located between the bonding layer and the supporting substrate.
  • the interface having high roughness may be the interface between the intermediate layer and the supporting substrate. Even with such a structure, the resonance of the electromagnetic wave in the composite substrate can be suppressed by the existence of the interface having a large roughness in the composite substrate.
  • the composite substrate may further include a conductive layer made of a conductor.
  • the interface having a large degree of roughness may be located in the range between the electro-optic crystal substrate and the conductive layer.
  • the electromagnetic waves propagating through the composite substrate are shielded without passing through the conductive layer, so that they mainly propagate in the range between the electro-optic crystal substrate 12 and the conductive layer.
  • the interface having a large roughness is located in the range between the electro-optic crystal substrate and the conductive layer where electromagnetic waves mainly propagate.
  • the conductive layer may be at least a part of the bonding layer or the intermediate layer.
  • some or all of the bonding layer and / or the intermediate layer are made of metal. It may be made of a conductor.
  • the electro-optic crystal substrate is lithium niobate (LiNbO 3 : LN), lithium tantalate (LiTaO 3 : LT), potassium titanate phosphate (KTiOPO 4 : KTP), potassium niobate.
  • the substrate may be any one of a solid solution of lithium oxide and lithium tantalate.
  • the low refractive index layer includes silicon oxide (SiO 2 ), tantalum oxide (Ta 2 O 5 ), aluminum oxide (Al 2 O 3 ), magnesium fluoride (MgF 2 ), and fluorine. It may be composed of at least one of calcium fluoride (MgF 2 ).
  • the bonding layer is tantalum oxide (Ta 2 O 5 ), niobium oxide (Nb 2 O 5 ), silicon (Si), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ). , Gold (Au), silver (Ag), copper (Cu), aluminum (Al), platinum (Pt), and an alloy containing at least two of these metals. May be.
  • the support substrate is lithium niobate (LiNbO 3 : LN), lithium tantalate (LiTaO 3 : LT), silicon (Si), glass, sialon (Si 3 N 4 —Al 2 O 3). ), Mullite (3Al 2 O 3 ⁇ 2SiO 2 , 2Al 2 O 3 ⁇ SiO 2 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), magnesium oxide (MgO), sapphire, quartz, crystal, gallium nitride
  • the substrate may be any one of (GaN), silicon carbide (SiC), and gallium oxide (Ga 2 O 3 ).
  • the supporting substrate may have conductivity or semiconductivity from the viewpoint of suppressing resonance of electromagnetic waves.
  • lithium niobate and lithium tantalate are usually insulating materials, but they can acquire conductivity when they are in an oxygen-deficient state.
  • black LN or black LT is an example of such a material, and a black LN or black LT substrate can be adopted as a supporting substrate.
  • the present technology is embodied in a method for manufacturing a composite substrate.
  • the bonding layer is formed on the surface of the low refractive index layer having a large roughness. Therefore, the surface roughness of the bonding layer can be relatively large.
  • the surface of the bonding layer is preferably smooth. Therefore, in one embodiment of the present technology, the manufacturing method may further include a step of smoothing the surface of the bonding layer between the step of forming the bonding layer and the step of bonding the supporting substrate. With such a configuration, the electro-optic crystal substrate and the supporting substrate can be bonded well.
  • the low refractive index layer may be formed by sputtering in the step of forming the low refractive index layer.
  • the surface roughness of the low refractive index layer naturally increases. Therefore, by forming the low refractive index layer by sputtering, it is possible to easily form the low refractive index layer having a surface with a large degree of roughness.
  • the roughness of the surface of the low refractive index layer increases as the thickness of the low refractive index layer increases.
  • a treatment for roughening the surface of the low refractive index layer for example, lapping, sandblasting, etching, etc.
  • the manufacturing method may further include a step of forming a bonding layer on the surface of the supporting substrate before the step of bonding the supporting substrate.
  • the bonding layer formed on the supporting substrate may be made of the same material as the bonding layer formed on the low refractive index layer.
  • the composite substrate 10 of the present embodiment can be applied to various electro-optical elements such as an optical modulator.
  • the composite substrate 10 of the present embodiment is manufactured in the form of a so-called wafer and provided to the manufacturer of the electro-optical element.
  • composite substrate 10 has a diameter of approximately 10 centimeters (4 inches).
  • a plurality of electro-optical elements are manufactured from one composite substrate 10.
  • the composite substrate 10 is not limited to the wafer form, and may be manufactured and provided in various forms.
  • the composite substrate 10 includes an electro-optic crystal substrate 12, a low refractive index layer 14, a bonding layer 16, and a support substrate 18.
  • the electro-optic crystal substrate 12 is bonded to the support substrate 18 via the low refractive index layer 14 and the bonding layer 16.
  • These substrates 12, 18 and layers 14, 16 extend parallel to each other throughout the composite substrate 10.
  • the electro-optic crystal substrate 12 is located in the uppermost layer of the composite substrate 10, and its upper surface 12a is exposed to the outside. Part or all of the electro-optic crystal substrate 12 serves as an optical waveguide that transmits light in the electro-optic element manufactured from the composite substrate 10.
  • the electro-optic crystal substrate 12 is made of a crystal of a material having an electro-optic effect. Therefore, when an electric field is applied to the electro-optic crystal substrate 12, the refractive index of the electro-optic crystal substrate 12 changes. In particular, when an electric field is applied along the c-axis of the electro-optic crystal substrate 12, the refractive index of the electro-optic crystal substrate 12 changes significantly.
  • the c-axis of the electro-optical crystal substrate 12 may be parallel to the electro-optical crystal substrate 12. That is, the electro-optic crystal substrate 12 may be, for example, an x-cut or y-cut substrate. Alternatively, the c-axis of the electro-optic crystal substrate 12 may be perpendicular to the electro-optic crystal substrate 12. That is, the electro-optic crystal substrate 12 may be, for example, a z-cut substrate.
  • the thickness T12 of the electro-optic crystal substrate 12 is not particularly limited, but may be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the material constituting the electro-optic crystal substrate 12 is not particularly limited, but lithium niobate, lithium tantalate, potassium titanate phosphate, potassium niobate / lithium niobate, potassium niobate, tantalate / potassium niobate, lithium niobate. And a solid solution of lithium tantalate.
  • the electro-optic crystal substrate 12 may have an electro-optic effect of changing other optical constants in addition to or instead of the refractive index.
  • the low refractive index layer 14 is in contact with the electro-optic crystal substrate 12 below the electro-optic crystal substrate 12.
  • the low refractive index layer 14 has a lower refractive index than the electro-optic crystal substrate 12.
  • the material forming the low refractive index layer 14 is not particularly limited, but may be at least one of silicon oxide, tantalum oxide, aluminum oxide, magnesium fluoride, and calcium fluoride.
  • the thickness T14 of the low refractive index layer 14 is not particularly limited, but may be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the low refractive index layer 14 has a lower dielectric constant than the electro-optic crystal substrate 12. Therefore, when the composite substrate 10 includes the low refractive index layer 14, it becomes easy to satisfy the velocity matching condition and adjust the characteristic impedance in the electro-optical element manufactured from the composite substrate 10. Further, since the stray capacitance and the dielectric loss can be reduced, the electro-optical element can operate at high speed and the voltage can be lowered.
  • the bonding layer 16 is located between the low refractive index layer 14 and the supporting substrate 18.
  • the thickness T16 of the bonding layer 16 is not particularly limited, but may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the low refractive index layer 14 and the bonding layer 16 are formed on the electro-optic crystal substrate 12, and the support substrate 18 is bonded to the bonding layer 16 by direct bonding.
  • the bonding layer 16 is a film provided for this direct bonding, and can be made of a material suitable for direct bonding.
  • the material forming the bonding layer 16 may be at least one of tantalum oxide, niobium oxide, silicon, aluminum oxide, and titanium oxide.
  • the material forming the bonding layer 16 may be at least one of gold, silver, copper, aluminum, platinum, and an alloy containing at least two of these metals.
  • the support substrate 18 is located at the lowermost layer of the composite substrate 10, and the lower surface 18b thereof is exposed to the outside.
  • the support substrate 18 is provided to increase the strength of the composite substrate 10, and thus the thickness of the electro-optic crystal substrate 12 can be reduced.
  • the thickness T18 of the support substrate 18 is not particularly limited, but may be, for example, 100 ⁇ m or more and 1000 ⁇ m or less.
  • the support substrate 18 is not particularly limited, but includes lithium niobate, lithium tantalate, silicon, glass, sialon, mullite, aluminum nitride, silicon nitride, magnesium oxide, sapphire, quartz, quartz, gallium nitride, silicon carbide, and oxide. It may be any of the substrates of gallium.
  • the linear expansion coefficient of the support substrate 18 is preferably close to the linear expansion coefficient of the electro-optic crystal substrate 12.
  • the material forming the support substrate 18 may be the same as the material forming the electro-optic crystal substrate 12.
  • the mechanical strength of the composite substrate 10 (that is, the mechanical strength of the electro-optical element) can be increased.
  • the electromagnetic waves are more likely to resonate in the composite substrate 10 when the electro-optical element is used in a high frequency band (for example, 10 GHz or higher). When such resonance occurs, an unintended ripple (fluctuation) may occur in the output signal of the electro-optical element, which may hinder the normal operation of the electro-optical element.
  • the interface F2 between the low refractive index layer 14 and the bonding layer 16 is more than the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14.
  • the interface has a high degree of roughness.
  • the roughness of the interface F2 between the low refractive index layer 14 and the bonding layer 16 is the roughness of the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14. It may be more than three times the degree. Alternatively, the roughness of the interface F2 may be 5 times or more or 10 times or more that of the interface F1. The greater the difference in roughness between the two interfaces F1 and F2, the more the effect of the present technology can be enhanced.
  • the arithmetic mean roughness (Ra) of the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14 is in the range of 0.03 nm to 0.5 nm. Good.
  • the arithmetic mean roughness (Ra) of the interface F2 between the low refractive index layer 14 and the bonding layer 16 may be in the range of 0.5 nm to 500 nm.
  • the arithmetic mean roughness (Ra) of the interface F2 between the low refractive index layer 14 and the bonding layer 16 is 1/1000 or more of the thickness T14 of the low refractive index layer 14. You may. Additionally or alternatively, the arithmetic mean roughness (Ra) of the interface F2 between the low refractive index layer 14 and the bonding layer 16 may be 0.5 nm or more, and the thickness of the low refractive index layer 14 is It may be 0.5 ⁇ m or more. When the composite substrate 10 satisfies these numerical requirements, the composite substrate 10 having the effect of the present technology can be manufactured by a relatively simple procedure.
  • a first sample was prepared in which the electro-optic crystal substrate 12 was a lithium niobate substrate and the thickness T12 was 1.5 ⁇ m.
  • the low refractive index layer 14 was made of silicon oxide
  • its thickness T14 was set to 0.7 ⁇ m
  • the bonding layer 16 was made of tantalum oxide
  • its thickness T16 was set to 0.05 nm.
  • the supporting substrate 18 is a lithium niobate substrate, and its thickness T18 is 1000 ⁇ m.
  • the arithmetic mean roughness (Ra) of the interface F1 between the electro-optical crystal substrate 12 and the low refractive index layer 14 is 0.2 nm, and the interface F2 between the low refractive index layer 14 and the bonding layer 16 is obtained.
  • the arithmetic mean roughness (Ra) of was 0.7 nm.
  • a second sample was prepared by changing the thickness T14 of the low refractive index layer 14 to 2.5 ⁇ m in the first sample described above.
  • the arithmetic mean roughness (Ra) of the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14 is 0.2 nm
  • the interface F1 between the low refractive index layer 14 and the bonding layer 16 is The arithmetic mean roughness (Ra) of the interface F2 was 2.5 nm.
  • the electro-optic crystal substrate 12 is prepared, and the low refractive index layer 14 is formed on the lower surface 12 b of the electro-optic crystal substrate 12.
  • the roughness of the lower surface 14b of the low refractive index layer 14 is made larger than the roughness of the lower surface 12b of the electro-optic crystal substrate 12.
  • the arithmetic average roughness (Ra) of the lower surface 12b of the electro-optic crystal substrate 12 may be in the range of 0.03 nm to 0.5 nm.
  • the arithmetic average roughness (Ra) of the lower surface 14b of the low refractive index layer 14 is preferably in the range of 0.5 nm to 500 nm.
  • the formation of the low refractive index layer 14 is not particularly limited, but can be performed by sputtering.
  • the low refractive index layer 14 is formed by sputtering, the roughness of the lower surface 14b of the low refractive index layer 14 naturally becomes larger than the roughness of the lower surface 12b of the electro-optic crystal substrate 12.
  • the low refractive index layer 14 is made of silicon oxide, the tendency becomes more remarkable. Therefore, when the low-refractive index layer 14 is formed by sputtering, the treatment for roughening the lower surface 14b of the low-refractive index layer 14 can be omitted or simplified.
  • the method of forming the low refractive index layer 14 is not limited to sputtering, and may be vapor deposition (physical vapor deposition or chemical vapor deposition), for example. Further, after the formation of the low refractive index layer 14, a treatment for roughening the lower surface 14b of the low refractive index layer 14 (for example, lapping, sandblasting, etching, etc.) may be performed, if necessary.
  • the electro-optic crystal substrate 12 may be an x-cut or y-cut substrate (c-axis is parallel to the substrate) or a z-cut substrate (c-axis is perpendicular to the substrate).
  • the electro-optic crystal substrate 12 may be an offset substrate whose c-axis forms an angle within 10 ° with the horizontal plane of the substrate.
  • the bonding layer 16 is formed on the lower surface 14 b of the low refractive index layer 14.
  • the bonding layer 16 can be formed by sputtering similarly to the low refractive index layer 14.
  • the step of forming the low refractive index layer 14 is not limited to sputtering, and may be vapor deposition (physical vapor deposition or chemical vapor deposition), for example.
  • the lower surface 16b of the bonding layer 16 is smoothed by, for example, polishing. Since the bonding layer 16 is formed on the lower surface 14b of the low refractive index layer 14 having a large roughness, the lower surface 16b of the bonding layer 16 can also have a relatively large roughness. Therefore, the lower surface 16b of the bonding layer 16 may be smoothed, if necessary, before the step of bonding the support substrate 18 described below.
  • the support substrate 18 is prepared, and the support substrate 18 is bonded to the lower surface 16b of the bonding layer 16. Although the bonding of the support substrate 18 is not particularly limited, direct bonding can be performed. Finally, as shown in FIG. 7, the upper surface 12a of the electro-optic crystal substrate 12 is polished to process the electro-optic crystal substrate 12 to a desired thickness.
  • the composite substrate 10 may be further provided with electrodes 32 and 34.
  • These electrodes 32 and 34 are provided on the upper surface 12 a of the electro-optic crystal substrate 12 in order to apply an electric signal to the electro-optic crystal substrate 12.
  • the material forming the electrodes 32 and 34 may be a conductor, and may be a metal such as gold, silver, copper, aluminum or platinum.
  • the electrodes 32, 44 are titanium (Ti), chromium (Cr), nickel (Ni) as a base layer (bottom layer) in contact with the electro-optic crystal substrate 12 in order to prevent peeling and migration of the electrodes 32, 34. , Platinum or the like.
  • the numbers, positions, and shapes of the electrodes 32 and 34 are not particularly limited.
  • the number of electrodes 32 and 34 can be appropriately determined according to the number of electro-optical elements manufactured from the composite substrate 10 and the number of electrodes 32 and 34 required for each electro-optical element. If the electrodes 32 and 34 are provided in advance on the composite substrate 10, a manufacturer of the electro-optical element can easily manufacture the electro-optical element from the composite substrate 10.
  • the optical waveguide region 36 may be provided in the electro-optic crystal substrate 12 by doping impurities.
  • the refractive index can be selectively (that is, locally) increased by doping with a specific impurity such as titanium or zinc, whereby the optical waveguide region 36 can be formed. ..
  • the number, position, and shape of the optical waveguide regions 36 are also not particularly limited.
  • the number of optical waveguide regions 36 can be appropriately determined according to the number of electro-optical elements manufactured from the composite substrate 10 and the number of optical waveguide regions 36 required by each electro-optical element.
  • the manufacturer of the electro-optical element can easily manufacture the electro-optical element from the composite substrate 10.
  • a ridge portion 13 may be formed on the upper surface 12 a of the electro-optic crystal substrate 12.
  • the ridge portion 13 is a protruding portion that extends in an elongated shape along the upper surface 12a.
  • the ridge portion 13 constitutes a ridge type optical waveguide in the electro-optical element in which the composite substrate 10 is manufactured.
  • the width W of the ridge portion 13 is not particularly limited, but may be 1 ⁇ m or more and 10 ⁇ m or less.
  • the height TR of the ridge portion 13 is also not particularly limited, but may be 10% or more and 95% or less of the thickness T12 of the electro-optic crystal substrate 12.
  • the number, position, and shape of the ridge portions 13 are not particularly limited. As an example, when the composite substrate 10 is used for manufacturing a Mach-Zehnder type electro-optical modulator, it is preferable that at least two ridge portions 13 extending in parallel be formed.
  • the composite substrate 10 having the ridge portion 13 may be further provided with a first electrode 42 and a second electrode 44.
  • the first electrode 42 is preferably provided on the one side surface 13 a of the ridge portion 13. .
  • the second electrode 44 is preferably provided on the other side surface 13b of the ridge portion 13 and faces the first electrode 42 with the ridge portion 13 interposed therebetween.
  • the first electrode 42 and the second electrode 44 can apply an electric field parallel to the c-axis to the ridge portion 13 that serves as an optical waveguide in the electro-optical element.
  • the c-axis (c-axis) of the electro-optic crystal substrate 12 may be perpendicular to the electro-optic crystal substrate 12. Even in this case, the ridge portion 13 may be formed on the upper surface 12 a of the electro-optic crystal substrate 12. Further, the first electrode 52 and the second electrode 54 may be provided on the upper surface 12 a of the electro-optic crystal substrate 12. However, it is preferable that the first electrode 52 is provided on the top surface 13c of the ridge portion 13, and the second electrode 54 is within the range of the upper surface 12a of the electro-optic crystal substrate 12 excluding the portion of the ridge portion 13. It should be provided. With such a configuration, the first electrode 52 and the second electrode 54 can apply an electric field parallel to the c-axis to the ridge portion 13 that serves as an optical waveguide in the electro-optical element.
  • the composite substrate 10a of the second embodiment further includes an intermediate layer 20 located between the low refractive index layer 14 and the bonding layer 16, and in this respect, the composite substrate 10 of the first embodiment. Is different from. Then, instead of the interface F2 between the low refractive index layer 14 and the bonding layer 16, an interface F5 between the intermediate layer 20 and the bonding layer 16 is formed between the electro-optic crystal substrate 12 and the low refractive index layer 14. The interface has a higher degree of roughness than the interface F1.
  • the resonance of the electromagnetic wave in the composite substrate 10a can be suppressed by the existence of the interface F5 having a large roughness in the composite substrate 10a.
  • the interface F4 between the low refractive index layer 14 and the intermediate layer 20 is the electro-optical crystal substrate 12 and the low refractive index layer. It may be an interface having a higher degree of roughness than the interface F1 with the interface 14. Due to the presence of a plurality of interfaces having a high degree of roughness, the electromagnetic waves propagating in the composite substrate 10a along the thickness direction may overlap each other in the same phase as in the case where only one interface having a degree of roughness is present. Property is further reduced, and resonance of electromagnetic waves can be further suppressed.
  • the composite substrate 10a of this embodiment can also be manufactured by bonding the electro-optic crystal substrate 12 to the supporting substrate 18.
  • the intermediate layer 20 may be formed in advance on the electro-optic crystal substrate 12 between the low refractive index layer 14 and the bonding layer 16.
  • the interface F5 between the intermediate layer 20 and the bonding layer 16 has a larger degree of roughness than the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14. It can be an interface.
  • the material forming the intermediate layer 20 may be a material that can be used for the low refractive index layer 14 or the bonding layer 16, and It may be a material different from the material actually adopted for the low refractive index layer 14 and the bonding layer 16. However, since the intermediate layer 20 is located between the electro-optic crystal substrate 12 and the interface F4 having a high degree of roughness, the material forming the intermediate layer 20 is a metal so that electromagnetic waves are not shielded by the intermediate layer 20. It is advisable to avoid using such conductors.
  • a composite substrate 10b according to a third embodiment will be described with reference to FIGS.
  • the interface F3 between the bonding layer 16 and the support substrate 18 is larger than the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14.
  • the interface has a high degree of roughness. Even with such a configuration, resonance of electromagnetic waves in the composite substrate 10b can be suppressed by the presence of the interface F3 having a large degree of roughness in the composite substrate 10b.
  • the other interface F2 has a larger surface roughness than the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14. It may be an interface.
  • the composite substrate 10a of this embodiment can also be manufactured by bonding the electro-optic crystal substrate 12 to the support substrate 18.
  • the upper surface 18a of the support substrate 18 is roughened and then the bonding layer 16 'is formed on the upper surface 18a in advance.
  • the interface F3 between the bonding layer 16 and the supporting substrate 18 has a higher surface roughness than the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14. It can be a large interface.
  • the bonding layers 16 and 16 ′ are formed on the electro-optic crystal substrate 12 and the supporting substrate 18, respectively, the substrates 12 and 18 can be easily bonded.
  • the composite substrate 10c of the fourth embodiment further includes an intermediate layer 22 located between the bonding layer 16 and the support substrate 18, and in this respect, the composite substrate 10c differs from the composite substrate 10 of the third embodiment. To do. Further, instead of the interface F3 between the bonding layer 16 and the support substrate 18, an interface F6 between the intermediate layer 20 and the bonding layer 16 is an interface between the electro-optic crystal substrate 12 and the low refractive index layer 14. The interface has a higher surface roughness than F1.
  • the interface F6 having a large degree of roughness in the composite substrate 10c.
  • the other interfaces F2 and F7 are further rougher than the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14.
  • the interface may be large.
  • the composite substrate 10c of this embodiment can also be manufactured by bonding the electro-optic crystal substrate 12 to the support substrate 18.
  • the intermediate layer 22 and the bonding layer 16 ′ may be formed on the support substrate 18 in advance.
  • the interface F6 between the bonding layer 16 and the intermediate layer 22 has a higher surface roughness than the interface F1 between the electro-optic crystal substrate 12 and the low refractive index layer 14. It can be a large interface.
  • the bonding layer 16 and the intermediate layers 20, 22 may be made of a conductor such as metal.
  • a conductor such as metal.
  • electromagnetic waves propagating through the composite substrate 10, 10a-10c are shielded without passing through the conductive layer, so that the electro-optic crystal substrate 12 and the conductive layer are mainly used. Propagate the range between. Therefore, the interface having a large degree of roughness may be located in the range between the electro-optic crystal substrate 12 and the conductive layer, where electromagnetic waves mainly propagate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

電気光学素子のための複合基板を開示する。複合基板は、電気光学効果を有する電気光学結晶基板と、電気光学結晶基板に接しているとともに電気光学結晶基板よりも屈折率の低い低屈折率層と、低屈折率層に少なくとも接合層を介して接合された支持基板とを備える。この複合基板では、低屈折率層と支持基板との間に存在する複数の界面の少なくとも一つが、電気光学結晶基板と低屈折率層との間の界面よりも、粗面度が大きい界面である。

Description

電気光学素子のための複合基板とその製造方法
 本明細書で開示する技術は、電気光学効果を利用する電気光学素子(例えば、光変調器)のための複合基板に関する。
 光変調器といった電気光学素子が知られている。電気光学素子は、電気光学効果を利用して、電気信号を光信号に変換することができる。電気光学素子は、例えば光電波融合通信に不可欠な要素であり、高速かつ大容量な通信を実現するために、さらなる開発が進められている。
 特開2010-85789号公報に、光変調器が開示されている。この光変調器は、電気光学素子の一種であり、複合基板を用いて構成されている。複合基板は、電気光学結晶基板と、電気光学結晶基板に接合層を介して接合された支持基板とを備える。支持基板や接合層には、電気光学結晶基板よりも低い屈折率を有する材料が採用されている。
 上記の光変調器を含め、従来の電気光学素子では、支持基板の厚みを大きくするほど、複合基板の機械的な強度(即ち、電気光学素子の機械的な強度)を高めることができる。その一方で、支持基板の厚みを大きくしていくと、電気光学素子を高周波帯域(例えば、10ギガヘルツ以上)で使用したときに、複合基板内で電磁波が共振するおそれが高くなる。このような共振が発生すると、電気光学素子の出力信号に意図しないリップル(変動)が生じるなど、電気光学素子の正常な動作が妨げられる。
 そのことから、本明細書では、複合基板における電磁波の共振を抑制し得る技術が提供される。
 電気光学結晶基板に高周波の電気信号が印加されると、それに起因する電磁波が、複合基板の表面や界面で反射されながら、複合基板内を厚み方向に沿って繰り返し伝播する。そして、このような電磁波が同位相で互いに重なり合うことで、上述した複合基板内での共振が生じてしまう。そのことから、本明細書が開示する技術では、複合基板内に存在する複数の界面の少なくとも一つを、粗面度が大きい界面とする。このような構成によると、複合基板を厚み方向に伝播する電磁波は、粗面度が大きい界面において様々に屈折又は反射され、電磁波が伝播する経路に無数のバリエーションが生じる。これにより、複合基板内を厚み方向に沿って伝播する電磁波が、同位相で互いに重なり合うことを抑制することができる。
 上述した粗面度の大きい界面の位置は、特に限定されない。但し、粗面度の大きい界面が、電気光学結晶基板に接する界面であると、電気光学結晶基板を伝わる光が、粗面度の大きい界面によって散乱又は吸収されるおそれがある。そのことから、本技術では、電気光学結晶基板に接する低屈折率層を設け、電気光学結晶基板と低屈折率層との間の界面については、平滑な界面とする。これにより、電気光学結晶基板を伝わる光の散乱及び吸収が抑制され、電気光学結晶基板内に光を閉じ込めることができる。そして、粗面度の大きい界面については、低屈折率層と支持基板との間に設けることで、上述した電磁波の共振を抑制することもできる。
 本技術の一側面により、電気光学素子のための複合基板が開示される。この複合基板は、電気光学効果を有する電気光学結晶基板と、電気光学結晶基板に接しているとともに、電気光学結晶基板よりも屈折率の低い低屈折率層と、低屈折率層に少なくとも接合層を介して接合された支持基板とを備える。低屈折率層と支持基板との間に存在する複数の界面の少なくとも一つは、電気光学結晶基板と低屈折率層との間の界面よりも、粗面度が大きい界面である。
 上記した構成によると、複合基板内に粗面度の大きい界面が存在することで、複合基板内で電磁波が共振することを抑制することができる。その一方で、電気光学結晶基板と低屈折率層との間の界面は比較的に平滑であることから、電気光学結晶基板を伝わる光の散乱や吸収が抑制され、電気光学結晶基板内に光を閉じ込めることができる。
 本技術の他の一側面により、電気光学素子のための複合基板の製造方法も開示される。この製造方法は、電気光学効果を有する電気光学結晶基板の表面に、電気光学結晶基板よりも屈折率の低い低屈折率層を形成する工程と、電気光学結晶基板上に設けられた低屈折率層の表面に、接合層を形成する工程と、低屈折率層上に形成された接合層の表面に、支持基板を接合する工程とを備える。この製造方法において、低屈折率層の形成前における電気光学結晶基板の表面よりも、接合層の形成前における低屈折率層の表面の方が、粗面度が大きい。
 上記した製造方法によると、電気光学結晶基板と、電気光学結晶基板に接する低屈折率層と、低屈折率層に少なくとも接合層を介して接合された支持基板とを備える複合基板を製造することができる。特に、この製造方法では、低屈折率層の形成前における電気光学結晶基板の表面よりも、接合層の形成前における低屈折率層の表面の方が、粗面度が大きい。従って、製造された複合基板において、低屈折率層と接合層との間の界面を、電気光学結晶基板と低屈折率層との間の界面よりも、粗面度が大きい界面とすることができる。
実施例1の複合基板10を模式的に示す斜視図。
実施例1の複合基板10の断面構造を模式的に示す図。
実施例1の複合基板10の製造方法の一工程を示す図。
実施例1の複合基板10の製造方法の一工程を示す図。
実施例1の複合基板10の製造方法の一工程を示す図。
実施例1の複合基板10の製造方法の一工程を示す図。
実施例1の複合基板10の製造方法の一工程を示す図。
複合基板10の一変形例を示しており、電気光学結晶基板12に電気信号を印加する電極32、34と、電気光学結晶基板12内に設けられた光導波路領域36が付加されている。
複合基板10の一変形例を示しており、電気光学結晶基板12の上面12aにリッジ部13が形成されている。
複合基板10の一変形例を示しており、リッジ部13に電気信号を印加する電極42、44が付加されている。この変形例では、電気光学結晶基板12のc軸(c-axis)が、電気光学結晶基板12に対して平行である。
複合基板10の一変形例を示しており、リッジ部13に電気信号を印加する電極52、54が付加されている。この変形例では、電気光学結晶基板12のc軸(c-axis)が、電気光学結晶基板12に対して垂直である。
実施例2の複合基板10aの断面構造を模式的に示す図。
実施例2の複合基板10aの製造方法を説明する図。
実施例3の複合基板10bの断面構造を模式的に示す図。
実施例3の複合基板10bの製造方法を説明する図。
実施例4の複合基板10cの断面構造を模式的に示す図。
実施例4の複合基板10cの製造方法を説明する図。
 本技術の一実施形態において、粗面度が大きい界面の粗面度は、電気光学結晶基板と低屈折率層との間の界面の粗面度の3倍以上であってよく、又は、5倍以上若しくは10倍以上であってもよい。それらの二つの界面の間で粗面度の差を大きくするほど、本技術の効果を高めることができる。
 本技術の一実施形態において、電気光学結晶基板と低屈折率層との間の界面の算術平均粗さ(Ra)は、0.03nm(ナノメートル)から0.5nmまでの範囲内であってよく、粗面度が大きい界面の算術平均粗さ(Ra)は、0.5nmから500nmまでの範囲内であってもよい。複合基板がこれらの数値要件を満たしていると、本技術の効果を奏する複合基板を、比較的に簡素な手順で製造することができる。
 本技術の一実施形態において、粗面度の大きい界面は、低屈折率層と接合層との間の界面であってもよい。この場合、低屈折率層と接合層との間の界面の算術平均粗さ(Ra)は、低屈折率層の厚みの1000分の1以上であってよい。加えて、又は代えて、低屈折率層と接合層との間の界面の算術平均粗さ(Ra)は、0.5nm以上であってよく、低屈折率層の厚みは、0.5μm(マイクロメートル)以上であってよい。複合基板がこれらの数値要件を満たしていると、本技術の効果を奏する複合基板を、比較的に簡素な手順で製造することができる。
 上記に加え、又は代えて、粗面度の大きい界面は、接合層と支持基板との間の界面であってもよい。このような構成であっても、複合基板内に粗面度の大きい界面が存在することで、複合基板における電磁波の共振を抑制することができる。
 上記に加え、又は代えて、複合基板は、低屈折率層と接合層との間に位置する中間層をさらに備えてもよい。この場合、粗面度の大きい界面は、中間層と接合層との間の界面であってもよい。このような構成であっても、複合基板内に粗面度の大きい界面が存在することで、複合基板における電磁波の共振を抑制することができる。なお、中間層を構成する材料は、低屈折率層又は接合層に採用し得る材料であってよく、また、低屈折率層及び接合層に実際に採用された材料とは異なる材料であってもよい。
 上記に加え、又は代えて、複合基板は、接合層と支持基板との間に位置する中間層をさらに備えてもよい。この場合、粗面度の大きい界面は、中間層と支持基板との間の界面であってもよい。このような構成であっても、複合基板内に粗面度の大きい界面が存在することで、複合基板における電磁波の共振を抑制することができる。
 本技術の一実施形態において、複合基板は、導電体で構成された導電層をさらに備えてもよい。この場合、粗面度が大きい界面は、電気光学結晶基板と導電層との間の範囲に位置するとよい。複合基板内に導電層が存在していると、複合基板を伝播する電磁波は、導電層を通過することなく遮蔽されるので、主に電気光学結晶基板12と導電層との間の範囲を伝播する。そのことから、粗面度が大きい界面は、電磁波が主に伝播する電気光学結晶基板と導電層との間の範囲に位置するとよい。
 上記した実施形態において、導電層は、接合層又は中間層の少なくとも一部であってよい。言い換えると、接合層及び/又は中間層が、電気光学結晶基板12と粗面度が大きい界面との間に位置しないときは、その接合層及び/又は中間層の一部又は全部は、金属といった導電体で構成されてもよい。
 本技術の一実施形態において、電気光学結晶基板は、ニオブ酸リチウム(LiNbO:LN)、タンタル酸リチウム(LiTaO:LT)、チタン酸リン酸カリウム(KTiOPO:KTP)、ニオブ酸カリウム・リチウム(KLi(1-x)NbO:KLN)、ニオブ酸カリウム(KNbO:KN)、タンタル酸・ニオブ酸カリウム(KNbTa(1-x):KTN)、及び、ニオブ酸リチウムとタンタル酸リチウムとの固溶体、のうちのいずれかの基板であってもよい。
 本技術の一実施形態において、低屈折率層は、酸化シリコン(SiO)、酸化タンタル(Ta)、酸化アルミニウム(Al)、フッ化マグネシウム(MgF)、及び、フッ化カルシウム(MgF)のうちの少なくとも一つで構成されていてもよい。
 本技術の一実施形態において、接合層は、酸化タンタル(Ta)、酸化ニオブ(Nb)、シリコン(Si)、酸化アルミニウム(Al)、酸化チタン(TiO)、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、白金(Pt)、及び、それらの金属のうちの少なくとも二つを含む合金、のうちの少なくとも一つで構成されていてもよい。
 本技術の一実施形態において、支持基板は、ニオブ酸リチウム(LiNbO:LN)、タンタル酸リチウム(LiTaO:LT)、シリコン(Si)、ガラス、サイアロン(Si-Al)、ムライト(3Al・2SiO,2Al・SiO)、窒化アルミニウム(AlN)、窒化シリコン(Si)、酸化マグネシウム(MgO)、サファイア、石英、水晶、窒化ガリウム(GaN)、炭化シリコン(SiC)、酸化ガリウム(Ga)のうちのいずれかの基板であってよい。支持基板は、電磁波の共振を抑制するという観点から、導電性又は半導電性を有してもよい。例えば、ニオブ酸リチウムやタンタル酸リチウムは、通常、絶縁性材料であるが、酸素欠損状態となることで、導電性を獲得することができる。いわゆるブラックLNやブラックLTはそのような材料の一例であり、ブラックLNやブラックLTの基板を、支持基板として採用することができる。
 前述したように、本技術は、複合基板の製造方法に具現化される。この製造方法では、粗面度の大きい低屈折率層の表面に、接合層が形成される。従って、接合層の表面についても、その粗面度が比較的に大きくなり得る。しかしながら、接合層の表面に支持基板を接合するときは、接合層の表面が平滑であることが好ましい。そのことから、本技術の一実施形態では、製造方法が、接合層を形成する工程と支持基板を接合する工程との間に、接合層の表面を平滑化する工程をさらに備えてもよい。このような構成によると、電気光学結晶基板と支持基板との間を良好に接合することができる。
 本技術の一実施形態では、低屈折率層を形成する工程において、低屈折率層をスパッタリングによって形成してもよい。低屈折率層をスパッタリングによって形成すると、低屈折率層の表面の粗面度は自然と大きくなる。そのことから、低屈折率層をスパッタリングによって形成することで、粗面度の大きな表面を有する低屈折率層を容易に形成することができる。なお、スパッタリングによる低屈折率層の形成では、低屈折率層の厚みが大きいときほど、低屈折率層の表面の粗面度は大きくなる。また、低屈折率層を形成する工程では、必要に応じて、低屈折率層の表面を粗面化する処理(例えば、ラッピング、サンドブラスト、エッチング等)が実施されてもよい。
 本技術の一実施形態では、製造方法が、支持基板を接合する工程の前に、支持基板の表面に接合層を形成する工程をさらに備えてもよい。この場合、特に限定されないが、支持基板上に形成される接合層は、低屈折率層上に形成される接合層と同じ材料で構成されてもよい。このような構成によると、電気光学結晶基板と支持基板との間を良好に接合することができる。
 以下では、本発明の代表的かつ非限定的な具体例について、図面を参照して詳細に説明する。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本発明の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに発明は、さらに改善された複合基板、並びにそれらの使用及び製造方法を提供するために、他の特徴や発明とは別に、又は共に用いることができる。
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本発明を実施する際に必須のものではなく、特に本発明の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本発明の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
(実施例1)図面を参照して、実施例1の複合基板10とその製造方法について説明する。本実施例の複合基板10は、例えば光変調器といった、各種の電気光学素子に採用することができる。図1に示すように、本実施例の複合基板10は、いわゆるウエハの形態で製造され、電気光学素子の製造者へ提供される。一例ではあるが、複合基板10の直径は、およそ10センチメートル(4インチ)である。通常、一枚の複合基板10から、複数の電気光学素子が製造される。なお、複合基板10は、ウエハの形態に限定されず、様々な形態で製造され、提供されてもよい。
 図1、図2に示すように、複合基板10は、電気光学結晶基板12と、低屈折率層14と、接合層16と、支持基板18とを備える。電気光学結晶基板12は、低屈折率層14及び接合層16を介して、支持基板18に接合されている。これらの基板12、18及び層14、16は、複合基板10の全体に亘って、互いに平行に広がっている。
 電気光学結晶基板12は、複合基板10の最上層に位置しており、その上面12aは外部に露出している。電気光学結晶基板12の一部又は全部は、複合基板10から製造される電気光学素子において、光を伝える光導波路となる。電気光学結晶基板12は、電気光学効果を有する材料の結晶で構成されている。従って、電気光学結晶基板12に電界が印加されると、電気光学結晶基板12の屈折率が変化する。特に、電気光学結晶基板12のc軸に沿って電界が印加されると、電気光学結晶基板12の屈折率は大きく変化する。
 ここで、電気光学結晶基板12のc軸は、電気光学結晶基板12に平行であってもよい。即ち、電気光学結晶基板12は、例えばxカット又はyカットの基板であってもよい。あるいは、電気光学結晶基板12のc軸は、電気光学結晶基板12に垂直であってもよい。即ち、電気光学結晶基板12は、例えばzカットの基板であってもよい。電気光学結晶基板12の厚みT12は、特に限定されないが、例えば0.1μm以上であって、10μm以下であってよい。
 電気光学結晶基板12を構成する材料は、特に限定されないが、ニオブ酸リチウム、タンタル酸リチウム、チタン酸リン酸カリウム、ニオブ酸カリウム・リチウム、ニオブ酸カリウム、タンタル酸・ニオブ酸カリウム、ニオブ酸リチウムとタンタル酸リチウムとの固溶体のいずれかであってよい。なお、電気光学結晶基板12は、屈折率に加えて、又は代えて、他の光学定数を変化させる電気光学効果を有してもよい。
 低屈折率層14は、電気光学結晶基板12の下方において、電気光学結晶基板12に接している。低屈折率層14は、電気光学結晶基板12よりも低い屈折率を有する。これにより、電気光学結晶基板12と低屈折率層14との間の界面F1では、電気光学結晶基板12を伝わる光が全反射されやすく、電気光学結晶基板12から漏れ出すことが抑制される。低屈折率層14を構成する材料は、特に限定されないが、酸化シリコン、酸化タンタル、酸化アルミニウム、フッ化マグネシウム、及び、フッ化カルシウムのうちの少なくとも一つであってもよい。低屈折率層14の厚みT14は、特に限定されないが、例えば0.1μm以上であって、10μm以下であってもよい。
 加えて、屈折率は誘電率の平方根に比例するので、低屈折率層14の誘電率は、電気光学結晶基板12の誘電率よりも低くなる。従って、複合基板10が低屈折率層14を備えていると、複合基板10から製造された電気光学素子において、速度整合条件を満足させることや、特性インピーダンスを調整することが容易になる。また、浮遊容量や誘電損失が低減できることから、電気光学素子の高速での動作や低電圧化が可能となる。
 接合層16は、低屈折率層14と支持基板18との間に位置している。接合層16の厚みT16は、特に限定されないが、0.01μm以上であって、1μm以下であってよい。詳しくは後述するが、複合基板10の製造方法では、電気光学結晶基板12に低屈折率層14及び接合層16を形成し、その接合層16に対して支持基板18を直接接合によって接合する。接合層16は、この直接接合のために設けられた被膜であり、直接接合に適した材料で構成されることができる。この点に関して、接合層16を構成する材料は、酸化タンタル、酸化ニオブ、シリコン、酸化アルミニウム、及び、酸化チタンのうちの少なくとも一つであってよい。あるいは、接合層16を構成する材料は、金、銀、銅、アルミニウム、白金、及び、それらの金属のうちの少なくとも二つを含む合金のうちの少なくとも一つであってもよい。
 支持基板18は、複合基板10の最下層に位置しており、その下面18bは外部に露出している。支持基板18は、複合基板10の強度を高めるために設けられており、これによって、電気光学結晶基板12の厚みを薄くすることができる。支持基板18の厚みT18は、特に限定されないが、例えば100μm以上であって、1000μm以下であってもよい。支持基板18は、特に限定されないが、ニオブ酸リチウム、タンタル酸リチウム、シリコン、ガラス、サイアロン、ムライト、窒化アルミニウム、窒化シリコン、酸化マグネシウム、サファイア、石英、水晶、窒化ガリウム、炭化シリコン、及び、酸化ガリウムのうちのいずれかの基板であってよい。なお、複合基板10の熱変形(特に反り)を抑制するために、支持基板18の線膨張係数は、電気光学結晶基板12の線膨張係数に近いほどよい。この点に関して、支持基板18を構成する材料は、電気光学結晶基板12を構成する材料と同じであってもよい。
 本実施例の複合基板10では、支持基板18の厚みT18を大きくするほど、複合基板10の機械的な強度(即ち、電気光学素子の機械的な強度)を高めることができる。その一方で、支持基板18の厚みT18を大きくしていくと、電気光学素子を高周波帯域(例えば、10ギガヘルツ以上)で使用したときに、複合基板10内で電磁波が共振するおそれが高くなる。このような共振が発生すると、電気光学素子の出力信号に意図しないリップル(変動)が生じるなど、電気光学素子の正常な動作が妨げられるおそれがある。
 上記の問題に関して、本実施例の複合基板10では、低屈折率層14と接合層16との間の界面F2が、電気光学結晶基板12と低屈折率層14との間の界面F1よりも、粗面度の大きい界面となっている。このような構成によると、複合基板10を厚み方向に伝播する電磁波は、粗面度の大きい界面F2において様々に屈折又は反射され、電磁波が伝播する経路に無数のバリエーションが生じる。これにより、複合基板10内を厚み方向に沿って伝播する電磁波が、同位相で互いに重なり合うことを抑制することができる。
 本実施例の複合基板10において、低屈折率層14と接合層16との間の界面F2の粗面度は、電気光学結晶基板12と低屈折率層14との間の界面F1の粗面度の3倍以上であってよい。あるいは、界面F2の粗面度は、界面F1の粗面度の5倍以上若しくは10倍以上であってもよい。それらの二つの界面F1、F2の間で粗面度の差を大きくするほど、本技術の効果を十分に高めることができる。
 本実施例の複合基板10において、電気光学結晶基板12と低屈折率層14との間の界面F1の算術平均粗さ(Ra)は、0.03nmから0.5nmまでの範囲内であってよい。そして、低屈折率層14と接合層16との間の界面F2の算術平均粗さ(Ra)は、0.5nmから500nmまでの範囲内であってもよい。複合基板10がこれらの数値要件を満たしていると、本技術の効果を奏する複合基板10を、比較的に簡素な手順で製造することができる。
 本実施例の複合基板10において、低屈折率層14と接合層16との間の界面F2の算術平均粗さ(Ra)は、低屈折率層14の厚みT14の1000分の1以上であってよい。加えて、又は代えて、低屈折率層14と接合層16との間の界面F2の算術平均粗さ(Ra)は、0.5nm以上であってよく、低屈折率層14の厚みは、0.5μm以上であってよい。複合基板10がこれらの数値要件を満たしていると、本技術の効果を奏する複合基板10を、比較的に簡素な手順で製造することができる。
 一例として、電気光学結晶基板12をニオブ酸リチウムの基板とし、その厚みT12を1.5μmとした第1のサンプルを作成した。このサンプルでは、低屈折率層14を酸化シリコンで構成し、その厚みT14を0.7μmとするとともに、接合層16を酸化タンタルで構成するとともに、その厚みT16を0.05nmとした。支持基板18は、ニオブ酸リチウムの基板であり、その厚みT18は1000μmである。そして、電気光学結晶基板12と低屈折率層14との間の界面F1の算術平均粗さ(Ra)は、0.2nmであり、低屈折率層14と接合層16との間の界面F2の算術平均粗さ(Ra)は、0.7nmであった。第1のサンプルを用いて光変調器を製造し、電気光学結晶基板12に0~110GHzの電気信号を印加したところ、光変調器の出力信号にリップルは検出されなかった。
 他の一例として、上記した第1のサンプルにおいて、低屈折率層14の厚みT14を2.5μmに変更した第2のサンプルを作成した。このサンプルでは、電気光学結晶基板12と低屈折率層14との間の界面F1の算術平均粗さ(Ra)が、0.2nmであり、低屈折率層14と接合層16との間の界面F2の算術平均粗さ(Ra)は、2.5nmであった。第2のサンプルを用いて光変調器を製造し、電気光学結晶基板12に0~110GHzの電気信号を印加したところ、光変調器の出力信号にリップルは検出されなかった。
 以下、図3-図7を参照して、複合基板10の製造方法について説明する。先ず、図3に示すように、電気光学結晶基板12を用意して、電気光学結晶基板12の下面12bに低屈折率層14を形成する。このとき、低屈折率層14の下面14bの粗面度は、電気光学結晶基板12の下面12bの粗面度よりも大きくする。具体例として、電気光学結晶基板12を用意した段階において、電気光学結晶基板12の下面12bの算術平均粗さ(Ra)は、0.03nmから0.5nmまでの範囲であるとよい。そして、低屈折率層14の下面14bの算術平均粗さ(Ra)は、0.5nmから500nmまでの範囲内であるとよい。
 低屈折率層14の形成は、特に限定されないが、スパッタリングによって行うことができる。低屈折率層14をスパッタリングによって形成すると、低屈折率層14の下面14bの粗面度は、電気光学結晶基板12の下面12bの粗面度よりも、自然と大きくなる。特に、低屈折率層14を酸化シリコンで構成すると、その傾向はより顕著に現れる。従って、低屈折率層14をスパッタリングによって形成すると、低屈折率層14の下面14bを粗面化する処理を省略する、あるいは、簡素化することができる。但し、低屈折率層14を形成する手法は、スパッタリングに限定されず、例えば蒸着(物理蒸着又は化学蒸着)であってもよい。また、低屈折率層14の形成後に、必要に応じて、低屈折率層14の下面14bを粗面化する処理(例えば、ラッピング、サンドブラスト、エッチング等)が実施されてもよい。
 電気光学結晶基板12は、xカット又はyカットの基板(c軸が基板に平行)であってもよいし、zカットの基板(c軸が基板に垂直)であってもよい。また、分極反転部が形成される場合、電気光学結晶基板12は、c軸が基板の水平面と10°以内の角度を成すオフセット基板であってもよい。
 次に、図4に示すように、低屈折率層14の下面14bに、接合層16を形成する。接合層16は、低屈折率層14と同様に、スパッタリングによって形成することができる。但し、低屈折率層14を形成する工程は、スパッタリングに限定されず、例えば蒸着(物理蒸着又は化学蒸着)であってもよい。次に、図5に示すように、接合層16の下面16bを、例えば研磨することによって平滑化する。接合層16は、粗面度の大きい低屈折率層14の下面14bに形成されているので、接合層16の下面16bの粗面度も比較的に大きくなり得る。そのことから、後述する支持基板18を接合する工程の前に、必要に応じて、接合層16の下面16bを平滑化しておくとよい。
 次に、図6に示すように、支持基板18を用意して、接合層16の下面16bに支持基板18を接合する。支持基板18の接合は、特に限定されないが、直接接合によって行うことができる。最後に、図7に示すように、電気光学結晶基板12の上面12aを研磨して、電気光学結晶基板12を所望の厚みに加工する。
 図8に示すように、複合基板10には、電極32、34がさらに設けられてもよい。これらの電極32、34は、電気光学結晶基板12へ電気信号を印加するために、電気光学結晶基板12の上面12aに設けられる。電極32、34を構成する材料は、導電体であればよく、例えば金、銀、銅、アルミニウム、プラチナといった金属であってよい。電極32、44は、電気光学結晶基板12と接触する下地層(最下層)として、電極32、34のはがれやマイグレーションを防止するために、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、白金等の層を有してもよい。電極32、34の数、位置、形状については、特に限定されない。電極32、34の数については、複合基板10から製造される電気光学素子の数や、各々の電気光学素子が必要とする電極32、34の数に応じて、適宜定めることができる。複合基板10に電極32、34が予め設けられていると、電気光学素子の製造者は、複合基板10から電気光学素子を容易に製造することができる。
 加えて、又は代えて、電気光学結晶基板12内には、不純物をドーピングすることによって、光導波路領域36が設けられてもよい。電気光学結晶基板12では、チタン又は亜鉛といった特定の不純物をドーピングすることで、屈折率を選択的に(即ち、局所的に)高めることができ、これによって光導波路領域36を形成することができる。光導波路領域36の数、位置、形状についても、特に限定されない。例えば、光導波路領域36の数については、複合基板10から製造される電気光学素子の数や、各々の電気光学素子が必要とする光導波路領域36の数に応じて、適宜定めることができる。複合基板10に光導波路領域36が予め設けられていると、電気光学素子の製造者は、複合基板10から電気光学素子を容易に製造することができる。
 図9に示すように、電気光学結晶基板12の上面12aには、リッジ部13が形成されてもよい。リッジ部13は、上面12aに沿って細長く延びる突出部である。リッジ部13は、複合基板10が製造される電気光学素子において、リッジ型光導波路を構成する。複合基板10にリッジ部13が予め形成されていると、リッジ型光導波路を必要とする電気光学素子の製造を、容易に行うことができる。リッジ部13の幅Wは、特に限定されないが、1μm以上であって、10μm以下であってよい。リッジ部13の高さTRについても、特に限定されないが、電気光学結晶基板12の厚みT12の10パーセント以上であって、95パーセント以下であってよい。リッジ部13の数、位置、形状についても、特に限定されない。一例ではあるが、複合基板10がマッハツェンダー型の電気光学変調器の製造に用いられるときは、少なくとも一部が平行に延びる二つのリッジ部13が形成されるとよい。
 図10に示すように、リッジ部13を有する複合基板10には、第1の電極42及び第2の電極44がさらに設けられてもよい。ここで、電気光学結晶基板12のc軸(c-axis)が、電気光学結晶基板12に対して平行である場合、第1の電極42はリッジ部13の一方の側面13aに設けられるとよい。そして、第2の電極44は、リッジ部13の他方の側面13bに設けられ、リッジ部13を挟んで第1の電極42に対向するとよい。このような構成によると、電気光学素子において光導波路となるリッジ部13に対して、第1の電極42及び第2の電極44はc軸と平行に電界を印加することができる。
 図11に示すように、電気光学結晶基板12のc軸(c-axis)は、電気光学結晶基板12に対して垂直であってもよい。この場合でも、電気光学結晶基板12の上面12aには、リッジ部13が形成されてもよい。また、電気光学結晶基板12の上面12aには、第1の電極52及び第2の電極54が設けられてもよい。但し、第1の電極52は、リッジ部13の頂上面13cに設けられるとよく、第2の電極54は、電気光学結晶基板12の上面12aのうちのリッジ部13の部分を除いた範囲に設けられるとよい。このような構成によると、電気光学素子において光導波路となるリッジ部13に対して、第1の電極52及び第2の電極54はc軸と平行に電界を印加することができる。
(実施例2)図12、13を参照して、実施例2の複合基板10aについて説明する。図12に示すように、実施例2の複合基板10aは、低屈折率層14と接合層16との間に位置する中間層20をさらに備えており、この点で実施例1の複合基板10と相違する。そして、低屈折率層14と接合層16との間の界面F2に代えて、中間層20と接合層16との間の界面F5が、電気光学結晶基板12と低屈折率層14との間の界面F1よりも粗面度の大きい界面となっている。このような構成によっても、複合基板10a内に粗面度の大きい界面F5が存在することで、複合基板10aにおける電磁波の共振を抑制することができる。なお、中間層20と接合層16との間の界面F5に代えて、又は加えて、低屈折率層14と中間層20との間の界面F4が、電気光学結晶基板12と低屈折率層14との間の界面F1よりも粗面度の大きい界面であってもよい。粗面度の大きい界面が複数存在することで、粗面度の大きい界面が一つだけ存在する場合よりも、複合基板10a内を厚み方向に沿って伝播する電磁波が、同位相で互いに重なり合う可能性がさらに低くなり、電磁波の共振をさらに抑制することができる。
 図13に示すように、本実施例の複合基板10aについても、電気光学結晶基板12を、支持基板18に接合することによって製造することができる。この場合、電気光学結晶基板12には、低屈折率層14と接合層16との間に、中間層20を予め形成すればよい。そして、中間層20を形成するときは、中間層20の下面20bの粗面度を大きくするとよい。これにより、製造された複合基板10において、中間層20と接合層16との間の界面F5を、電気光学結晶基板12と低屈折率層14との間の界面F1よりも粗面度の大きい界面とすることができる。
 中間層20を構成する材料は、低屈折率層14又は接合層16に採用し得る材料であってよく、また。低屈折率層14及び接合層16へ実際に採用された材料とは異なる材料であってもよい。但し、中間層20は、電気光学結晶基板12と粗面度の大きい界面F4との間に位置するので、電磁波が中間層20によって遮蔽されないように、中間層20を構成する材料には、金属といった導電体の採用を避けるとよい。
(実施例3)図14、15を参照して、実施例3の複合基板10bについて説明する。図14に示すように、実施例3の複合基板10bでは、接合層16と支持基板18との間の界面F3が、電気光学結晶基板12と低屈折率層14との間の界面F1よりも粗面度の大きい界面となっている。このような構成であっても、複合基板10b内に粗面度の大きい界面F3が存在することで、複合基板10bにおける電磁波の共振を抑制することができる。なお、接合層16と支持基板18との間の界面F3に加えて、その他の界面F2をさらに、電気光学結晶基板12と低屈折率層14との間の界面F1よりも粗面度の大きい界面としてもよい。
 図15に示すように、本実施例の複合基板10aについても、電気光学結晶基板12を、支持基板18に接合することによって製造することができる。但し、支持基板18の上面18aを粗面化した上で、その上面18aに接合層16’を事前に形成しておくとよい。これにより、製造された複合基板10において、接合層16と支持基板18との間の界面F3を、電気光学結晶基板12と低屈折率層14との間の界面F1よりも、粗面度の大きい界面とすることができる。また、電気光学結晶基板12と支持基板18とのそれぞれに接合層16、16’が形成されていることで、両基板12、18を容易に接合することができる。
(実施例4)図16、17を参照して、実施例4の複合基板10cについて説明する。図16に示すように、実施例4の複合基板10cは、接合層16と支持基板18との間に位置する中間層22をさらに備えており、この点で実施例3の複合基板10と相違する。また、接合層16と支持基板18との間の界面F3に代えて、中間層20と接合層16との間の界面F6が、電気光学結晶基板12と低屈折率層14との間の界面F1よりも粗面度の大きい界面となっている。このような構成によっても、複合基板10c内に粗面度の大きい界面F6が存在することで、複合基板10cにおける電磁波の共振を抑制することができる。なお、中間層20と接合層16との間の界面F6に加えて、その他の界面F2、F7をさらに、電気光学結晶基板12と低屈折率層14との間の界面F1よりも粗面度の大きい界面としてもよい。
 図17に示すように、本実施例の複合基板10cについても、電気光学結晶基板12を、支持基板18に接合することによって製造することができる。この場合、支持基板18には、中間層22と接合層16’とを予め形成すればよい。そして、中間層22を形成するときは、中間層22の上面22aの粗面度を大きくするとよい。これにより、製造された複合基板10において、接合層16と中間層22との間の界面F6を、電気光学結晶基板12と低屈折率層14との間の界面F1よりも、粗面度の大きい界面とすることができる。
 実施例1-4の複合基板10、10a-10cにおいて、接合層16や中間層20、22は、金属といった導電体で構成されていてもよい。但し、そのような導電層が存在していると、複合基板10、10a-10cを伝播する電磁波は、導電層を通過することなく遮蔽されるので、主に電気光学結晶基板12と導電層との間の範囲を伝播する。そのことから、粗面度が大きい界面は、電磁波が主に伝播する電気光学結晶基板12と導電層との間の範囲に位置するとよい。
10:複合基板
12:電気光学結晶基板
13:リッジ部
14:低屈折率層
16、16’:接合層
18:支持基板
20、22:中間層
32、34、42、44、52、54:電極
36:光導波路領域
F1~F7:界面

Claims (20)

  1.  電気光学素子のための複合基板であって、
     電気光学効果を有する電気光学結晶基板と、
     前記電気光学結晶基板に接しているとともに、前記電気光学結晶基板よりも屈折率の低い低屈折率層と、
     前記低屈折率層に少なくとも接合層を介して接合された支持基板と、を備え、
     前記低屈折率層と前記支持基板との間に存在する複数の界面の少なくとも一つは、前記電気光学結晶基板と前記低屈折率層との間の界面よりも、粗面度が大きい界面である、
     複合基板。
  2.  前記粗面度が大きい界面の粗面度は、前記電気光学結晶基板と前記低屈折率層との間の界面の粗面度の3倍以上である、請求項1に記載の複合基板。
  3.  前記粗面度が大きい界面の粗面度は、前記電気光学結晶基板と前記低屈折率層との間の界面の粗面度の5倍以上である、請求項1に記載の複合基板。
  4.  前記電気光学結晶基板と前記低屈折率層との間の界面の算術平均粗さ(Ra)は、0.03nmから0.5nmまでの範囲内であり、
     前記粗面度が大きい界面の算術平均粗さ(Ra)は、0.5nmから500nmまでの範囲内である、請求項1から3のいずれか一項に記載の複合基板。
  5.  前記粗面度の大きい界面は、前記低屈折率層と前記接合層との間の界面である、請求項1から4のいずれか一項に記載の複合基板。
  6.  前記低屈折率層と前記接合層との間の界面の算術平均粗さ(Ra)は、前記低屈折率層の厚みの1000分の1以上である、請求項5に記載の複合基板。
  7.  前記低屈折率層と前記接合層との間の界面の算術平均粗さ(Ra)は、0.5nm以上であり、
     前記低屈折率層の厚みは、0.5μm以上である、請求項5又は6に記載の複合基板。
  8.  前記粗面度の大きい界面は、前記接合層と前記支持基板との間の界面である、請求項1から7のいずれか一項に記載の複合基板。
  9.  前記低屈折率層と前記接合層との間に位置する中間層をさらに備え、
     前記粗面度の大きい界面は、前記中間層と前記接合層との間の界面である、請求項1から8のいずれか一項に記載の複合基板。
  10.  前記接合層と前記支持基板との間に位置する中間層をさらに備え、
     前記粗面度の大きい界面は、前記中間層と前記支持基板との間の界面である、請求項1から9のいずれか一項に記載の複合基板。
  11.  導電体で構成された導電層をさらに備え、
     前記粗面度が大きい界面は、前記電気光学結晶基板と前記導電層との間に位置する複数の界面のいずれかである、請求項1から10のいずれか一項に記載の複合基板。
  12.  前記導電層は、前記接合層又は前記中間層の少なくとも一部である、請求項11に記載の複合基板。
  13.  前記電気光学結晶基板は、ニオブ酸リチウム、タンタル酸リチウム、チタン酸リン酸カリウム、ニオブ酸カリウム・リチウム、ニオブ酸カリウム、タンタル酸・ニオブ酸カリウム、及び、ニオブ酸リチウムとタンタル酸リチウムとの固溶体、のうちのいずれかの基板である、請求項1から12のいずれか一項に記載の複合基板。
  14.  前記低屈折率層は、酸化シリコン、酸化タンタル、酸化アルミニウム、フッ化マグネシウム、及び、フッ化カルシウム、のうちの少なくとも一つで構成されている、請求項1から13のいずれか一項に記載の複合基板。
  15.  前記接合層は、酸化タンタル、酸化ニオブ、シリコン、酸化アルミニウム、酸化チタン、金、銀、銅、アルミニウム、白金、及び、それらの金属のうちの少なくとも二つを含む合金、のうちの少なくとも一つで構成されている、請求項1から14のいずれか一項に記載の複合基板。
  16.  前記支持基板は、ニオブ酸リチウム、タンタル酸リチウム、シリコン、ガラス、サイアロン、ムライト、窒化アルミニウム、窒化シリコン、酸化マグネシウム、サファイア、石英、水晶、窒化ガリウム、炭化シリコン、酸化ガリウムのうちのいずれかの基板である、請求項1から15のいずれか一項に記載の複合基板。
  17.  電気光学素子のための複合基板の製造方法であって、
     電気光学効果を有する電気光学結晶基板の表面に、前記電気光学結晶基板よりも屈折率の低い低屈折率層を形成する工程と、
     前記電気光学結晶基板上に設けられた前記低屈折率層の表面に、接合層を形成する工程と、
     前記低屈折率層上に形成された前記接合層の表面に、支持基板を接合する工程と、
     を備え、
     前記低屈折率層の形成前における前記電気光学結晶基板の前記表面の粗面度よりも、前記接合層の形成前における前記低屈折率層の前記表面の粗面度の方が大きい、
     製造方法。
  18.  前記接合層を形成する工程と前記支持基板を接合する工程との間に、前記接合層の前記表面を平滑化する工程をさらに備える、請求項17に記載の製造方法。
  19.  前記低屈折率層を形成する工程では、前記低屈折率層をスパッタリングによって形成する、請求項17又は18に記載の製造方法。
  20.  前記支持基板を接合する工程の前に、前記支持基板の表面に接合層を形成する工程をさらに備える、請求項17から19のいずれか一項に記載の製造方法。
PCT/JP2018/041548 2018-11-08 2018-11-08 電気光学素子のための複合基板とその製造方法 WO2020095421A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2018/041548 WO2020095421A1 (ja) 2018-11-08 2018-11-08 電気光学素子のための複合基板とその製造方法
CN202210482598.7A CN114815329A (zh) 2018-11-08 2019-07-11 电光元件用的复合基板及其制造方法
CN201980061122.2A CN112955811B (zh) 2018-11-08 2019-07-11 电光元件用的复合基板及其制造方法
PCT/JP2019/027570 WO2020095478A1 (ja) 2018-11-08 2019-07-11 電気光学素子のための複合基板とその製造方法
JP2019549494A JP6646187B1 (ja) 2018-11-08 2019-07-11 電気光学素子のための複合基板とその製造方法
EP19881111.9A EP3879336A4 (en) 2018-11-08 2019-07-11 COMPOSITE SUBSTRATE FOR ELECTRO-OPTICAL ELEMENT AND MANUFACTURING METHOD THEREOF
JP2020002430A JP7337713B2 (ja) 2018-11-08 2020-01-09 電気光学素子のための複合基板とその製造方法
US17/217,360 US11150497B2 (en) 2018-11-08 2021-03-30 Composite substrate for electro-optic element and method for manufacturing the same
US17/480,870 US12025864B2 (en) 2018-11-08 2021-09-21 Composite substrate for electro-optic element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041548 WO2020095421A1 (ja) 2018-11-08 2018-11-08 電気光学素子のための複合基板とその製造方法

Publications (1)

Publication Number Publication Date
WO2020095421A1 true WO2020095421A1 (ja) 2020-05-14

Family

ID=70611851

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/041548 WO2020095421A1 (ja) 2018-11-08 2018-11-08 電気光学素子のための複合基板とその製造方法
PCT/JP2019/027570 WO2020095478A1 (ja) 2018-11-08 2019-07-11 電気光学素子のための複合基板とその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027570 WO2020095478A1 (ja) 2018-11-08 2019-07-11 電気光学素子のための複合基板とその製造方法

Country Status (4)

Country Link
US (1) US11150497B2 (ja)
EP (1) EP3879336A4 (ja)
JP (1) JP7337713B2 (ja)
WO (2) WO2020095421A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019224908A1 (ja) * 2018-05-22 2019-11-28 日本碍子株式会社 電気光学素子のための複合基板とその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211404A (ja) * 1996-01-29 1997-08-15 Tokin Corp 光導波路素子
JP2000275455A (ja) * 1999-03-29 2000-10-06 Sumitomo Osaka Cement Co Ltd 光導波路素子
JP2004145261A (ja) * 2002-05-31 2004-05-20 Matsushita Electric Ind Co Ltd 光学素子およびその製造方法
JP2006284963A (ja) * 2005-03-31 2006-10-19 Sumitomo Osaka Cement Co Ltd 光変調器
JP2007264548A (ja) * 2006-03-30 2007-10-11 Sumitomo Osaka Cement Co Ltd 光変調素子
US20070297732A1 (en) * 2006-06-07 2007-12-27 Collinear Corporation Efficient nonlinear optical waveguide using single-mode, high v-number structure
JP2016191823A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 光変調器モジュール
JP2018093329A (ja) * 2016-12-01 2018-06-14 日本碍子株式会社 弾性波素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069729A (en) * 1999-01-20 2000-05-30 Northwestern University High speed electro-optic modulator
JP4354100B2 (ja) * 2000-07-27 2009-10-28 日本碍子株式会社 光導波路素子
JP3963313B2 (ja) 2001-09-05 2007-08-22 日本碍子株式会社 光導波路デバイス、光変調器および光変調器の実装構造
US7295742B2 (en) 2002-05-31 2007-11-13 Matsushita Electric Industrial Co., Ltd. Optical element and method for producing the same
JP4545380B2 (ja) * 2003-01-16 2010-09-15 パナソニック株式会社 光導波路デバイスならびにそれを用いたコヒーレント光源およびそれを備えた光学装置
US7502530B2 (en) * 2003-08-21 2009-03-10 Ngk Insulators, Ltd. Optical waveguide devices and traveling wave type optical modulators
JP4658658B2 (ja) * 2005-03-29 2011-03-23 住友大阪セメント株式会社 光変調器
JP2006293022A (ja) * 2005-04-11 2006-10-26 Rohm Co Ltd 光変調装置の製造方法、光変調装置および光変調システム
JP2007101641A (ja) * 2005-09-30 2007-04-19 Sumitomo Osaka Cement Co Ltd 光変調器及びその製造方法
JP5041714B2 (ja) * 2006-03-13 2012-10-03 信越化学工業株式会社 マイクロチップ及びマイクロチップ製造用soi基板
JP5688203B2 (ja) * 2007-11-01 2015-03-25 株式会社半導体エネルギー研究所 半導体基板の作製方法
JP2010085789A (ja) 2008-09-30 2010-04-15 Sumitomo Osaka Cement Co Ltd 光導波路素子
FR2981204B1 (fr) * 2011-10-05 2014-07-04 Centre Nat Rech Scient Resonateurs a ondes de volume sur structures verticales micro-usinees.
EP2653908A1 (en) * 2012-04-16 2013-10-23 Leica Geosystems AG Electro-optic modulator and electro-optic distance-measuring device
JP6033196B2 (ja) * 2013-10-08 2016-11-30 日本碍子株式会社 光学部品の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211404A (ja) * 1996-01-29 1997-08-15 Tokin Corp 光導波路素子
JP2000275455A (ja) * 1999-03-29 2000-10-06 Sumitomo Osaka Cement Co Ltd 光導波路素子
JP2004145261A (ja) * 2002-05-31 2004-05-20 Matsushita Electric Ind Co Ltd 光学素子およびその製造方法
JP2006284963A (ja) * 2005-03-31 2006-10-19 Sumitomo Osaka Cement Co Ltd 光変調器
JP2007264548A (ja) * 2006-03-30 2007-10-11 Sumitomo Osaka Cement Co Ltd 光変調素子
US20070297732A1 (en) * 2006-06-07 2007-12-27 Collinear Corporation Efficient nonlinear optical waveguide using single-mode, high v-number structure
JP2016191823A (ja) * 2015-03-31 2016-11-10 住友大阪セメント株式会社 光変調器モジュール
JP2018093329A (ja) * 2016-12-01 2018-06-14 日本碍子株式会社 弾性波素子

Also Published As

Publication number Publication date
EP3879336A1 (en) 2021-09-15
WO2020095478A1 (ja) 2020-05-14
JP7337713B2 (ja) 2023-09-04
EP3879336A4 (en) 2022-09-14
US20210215955A1 (en) 2021-07-15
US11150497B2 (en) 2021-10-19
JP2020076998A (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
US8391651B2 (en) Optical waveguide device
WO2019180922A1 (ja) 電気光学素子のための複合基板
JP6646187B1 (ja) 電気光学素子のための複合基板とその製造方法
WO2006110365A1 (en) Optical modulator with coupled coplanar strip electrode and domain inversion
CN112154368B (zh) 电光元件用的复合基板及其制造方法
WO2020095421A1 (ja) 電気光学素子のための複合基板とその製造方法
JP7226554B2 (ja) プラズモニック導波路およびその製造方法
US12025864B2 (en) Composite substrate for electro-optic element and method for manufacturing the same
EP1441250A2 (en) Electrode systems for optical modulation and optical modulators
JP7098666B2 (ja) 電気光学素子のための複合基板とその製造方法
US8421559B2 (en) Interface acoustic wave device
JP7331208B2 (ja) 電気光学素子のための複合基板とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP