WO2020189647A1 - リン酸肥料原料の製造方法 - Google Patents

リン酸肥料原料の製造方法 Download PDF

Info

Publication number
WO2020189647A1
WO2020189647A1 PCT/JP2020/011562 JP2020011562W WO2020189647A1 WO 2020189647 A1 WO2020189647 A1 WO 2020189647A1 JP 2020011562 W JP2020011562 W JP 2020011562W WO 2020189647 A1 WO2020189647 A1 WO 2020189647A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
concentration
hot metal
raw material
slag
Prior art date
Application number
PCT/JP2020/011562
Other languages
English (en)
French (fr)
Inventor
俊哉 原田
基紘 坂元
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202080021366.0A priority Critical patent/CN113574187A/zh
Priority to KR1020217029747A priority patent/KR102592125B1/ko
Priority to JP2021507351A priority patent/JP6940028B2/ja
Publication of WO2020189647A1 publication Critical patent/WO2020189647A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B5/00Thomas phosphate; Other slag phosphates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising

Definitions

  • This disclosure relates to a method for producing a phosphate fertilizer raw material.
  • hot metal having a phosphorus concentration of 0.5% by mass or more (hereinafter, also referred to as "high phosphorus”) can be produced by reducing steelmaking slag or using high-phosphorus iron ore.
  • this hyperphosphorylation molten iron and dephosphorization treatment such as phosphoric acid (P 2 O 5) is known to be able to produce a dephosphorization slag of a high concentration of more than 15 wt%.
  • Such derinsed slag is used as a raw material for phosphate fertilizer having a high fertilizer effect.
  • the P concentration in the hot metal must be reduced to 0.15% by mass or less. If the P concentration in the hot metal is reduced to 0.15% by mass or less, it is difficult to secure the phosphorus concentration in the derinsed lag of 15% by mass or more, and the value as a phosphate fertilizer is impaired. Therefore, various proposals have been made to solve such problems.
  • Patent Document 1 is divided into a first dephosphorization step having a high P concentration and a second dephosphorization step to reduce the P concentration to 0.15% or less after treatment for the purpose of producing slag having a high phosphoric acid concentration.
  • a technique for reusing a dephosphorized slag having a low phosphoric acid concentration produced in the second dephosphorization step as a flux in the first dephosphorization step instead of a fertilizer raw material is disclosed.
  • Patent Document 2 discloses a method of projecting CaO powder into an oxygen jet in order to promote slagging of CaO.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2017-125244
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5829788
  • the present disclosure describes phosphorus capable of producing a phosphoric acid fertilizer raw material having a high fertilizer effect and at the same time producing a normal hot metal having a P concentration of 0.15% by mass or less, which can melt low phosphorus steel.
  • An object of the present invention is to provide a method for producing a raw material for acid fertilizer.
  • the present disclosure is as follows. [1] Of the dephosphorizing agents, in the dephosphorizing treatment in which an oxygen source and a dephosphorizing agent containing CaO are supplied to hot metal having a C concentration of 2.0% by mass or more and a P concentration of 0.3% by mass or more. A dephosphorizing agent of 50% by mass or more of the required amount of CaO is projected onto the hot metal with a burner, and the basicity (CaO) / (SiO 2 ) of the derinsed lag generated is adjusted to 2.5 or more.
  • a method for producing a phosphoric acid fertilizer raw material which obtains a normal hot metal having a P concentration of 0.06 to 0.15% by mass and a dephosphorized slag having a phosphoric acid concentration of 15% by mass or more.
  • a raw material mainly composed of iron oxide containing oxygen corresponding to an oxygen intensity of at least 1.5 Nm 3 / t or more with respect to the hot metal is continuously burner-projected or used as the oxygen source.
  • Nitrogen or an inert gas is blown into the hot metal at 2 to 40 NL / t / min by a bottom blowing tuyere or a dipping lance, and the (T.Fe) of the derinsed lag is adjusted to 5% by mass or more and 20% by mass or less.
  • the method for producing a phosphoric acid fertilizer raw material according to any one of [1] to [4].
  • the dephosphorizing agent is described in any one of [1] to [5], which comprises one or more selected from the group consisting of quicklime, limestone, dolomite, light-baked dolomite, converter slag, and silica stone. Method of manufacturing phosphoric acid fertilizer raw material.
  • normal hot metal with a P concentration of 0.15% by mass or less capable of melting low-phosphorus steel by subsequent converter blowing while producing dephosphorized slag which is a raw material for phosphoric acid fertilizer with high fertilizer effect.
  • dephosphorized slag which is a raw material for phosphoric acid fertilizer with high fertilizer effect.
  • the numerical range represented by using “-” means a range including the numerical values before and after “-” as the lower limit value and the upper limit value.
  • the numerical range when "greater than” or “less than” is added to the numerical values before and after “to” means a range in which these numerical values are not included as the lower limit value or the upper limit value.
  • the method for producing a phosphoric acid fertilizer raw material of the present disclosure supplies an oxygen source and a dephosphorizing agent containing CaO to hot metal having a C concentration of 2.0% by mass or more and a P concentration of 0.3% by mass or more.
  • the dephosphorization agent of 50% by mass or more of the required amount of CaO is projected onto the hot metal with a burner to generate the basicity (CaO) / (SiO) of the dephosphorization slag. 2 ) is adjusted to 2.5 or more to obtain a normal hot metal having a P concentration of 0.06 to 0.15% by mass and a dephosphorized slag having a phosphoric acid concentration of 15% by mass or more.
  • Ordinary hot metal of mass% or less can be produced at the same time.
  • a dephosphorization treatment method can be provided.
  • the effective dephosphorization treatment is from a hot metal having a high P concentration (a hot metal having a P concentration of 0.30% by mass or more and a C concentration of 2% by mass or more) to a high phosphoric acid (P 2 O 5 ) concentration.
  • a hot metal having a P concentration of 0.30% by mass or more and a C concentration of 2% by mass or more a high phosphoric acid (P 2 O 5 ) concentration.
  • P 2 O 5 phosphoric acid
  • the dephosphorized slag having a high phosphoric acid (P 2 O 5 ) concentration refers to a dephosphorized slag having a phosphoric acid concentration of 15% by mass or more, which has a high fertilizing effect.
  • the derinsed slag is also simply referred to as "slag".
  • hot metal refers to hot metal after dephosphorization treatment.
  • the low P concentration normal hot metal means a hot metal having a P concentration of 0.15% by mass or less in the hot metal after dephosphorization, and more preferably a C concentration of 2% by mass or more in the hot metal.
  • Normal hot metal with a low P concentration is hot metal that can melt low-phosphorus steel without problems in converter blowing and has sufficient thermal abundance when performing decarburization blowing.
  • the P concentration in normal hot metal is reduced to 0.15% by mass or less and the phosphoric acid concentration in dephosphorized slag is 15% by mass by dephosphorization treatment from a high P concentration hot metal.
  • C / S high basicity
  • the phosphorus distribution ratio (P 2 O 5 ) / [P] must be 100 or more.
  • the C / S in the slag must be secured at 2.5 or more, preferably 3.0 or more.
  • Such high-basic slag has a high melting point, and at a hot metal temperature of about 1300 to 1400 ° C., a large amount of undissolved lime is generated and the fluidity is low. Therefore, the slag does not become highly reactive and is sufficiently dephosphorized. No reaction can be expected. Therefore, it is difficult to realize by the dephosphorization treatment using ordinary oxygen gas.
  • the slag layer is externally heated during the dephosphorization treatment to raise the temperature of the slag layer higher than that of the hot metal, thereby achieving a high basicity. Dissolve the slag. On the other hand, by lowering the slag metal interface temperature to be lower than the average temperature of the slag layer, the decrease in dephosphorization ability is suppressed.
  • the dephosphorization treatment for supplying the oxygen source and the dephosphorizing agent containing CaO 50% by mass or more of the dephosphorizing agent in the required input amount of CaO is added to the hot metal. Burner projection. Thereby, the basicity (CaO) / (SiO 2 ) of the generated derinsed lag can be adjusted to 2.5 or more, preferably 3.0 or more. As a result, the P concentration in the hot metal can be set to 0.15% by mass or less, and the phosphoric acid concentration in the derinsed lag can be secured to 15% by mass or more.
  • the basicity (CaO) / (SiO 2 ) of the derinsed slag produced can be adjusted to 2.5 or more.
  • the dephosphorylation oxygen efficiency decreases and the decarboxylation efficiency increases. Therefore, the C concentration in the hot metal decreases, and the melting point of the hot metal rises.
  • the dephosphorization treatment is more likely to proceed when the hot metal temperature is low, and when the C concentration in the hot metal is 2% by mass or less, the melting point of the hot metal becomes 1400 ° C. or higher, and the dephosphorization treatment at a low temperature becomes difficult. Further, if the C concentration in the normal hot metal after the dephosphorization treatment is low, the thermal abundance decreases in the subsequent converter blowing, and the operation restriction becomes large.
  • the decarburization reaction is promoted at the end of the datsurin treatment, the formation of the datsurin slag is likely to occur. Assuming that the dephosphorization treatment is performed in the ladle, the freeboard is small, so the tolerance for forming is low, and when the decarburization reaction is activated, the forming may induce slag overflow.
  • the method for producing a phosphoric acid fertilizer raw material of the present disclosure it is preferable to promote the dephosphorization reaction and suppress the decarburization reaction, so it is preferable to use the following three methods.
  • the ratio of iron oxide-based raw materials to oxygen gas is increased.
  • a raw material mainly composed of iron oxide supplies oxygen
  • the temperature of the dephosphorization reaction site is reduced by the heat of reduction, which is advantageous for dephosphorization and disadvantageous for decarburization.
  • heat compensation for the dephosphorization treatment may be performed by using an external heat source such as a burner so that the heat source is not insufficient due to the heat of reduction even if a raw material mainly composed of iron oxide is used. Since the decarburization reaction tends to be more dominant than the dephosphorization reaction at the end of the dephosphorization treatment in which the P concentration in the hot metal decreases, the decarburization suppressing effect can be enhanced by using iron oxide.
  • the amount of generated slag is optimized. Adjust the amount of dephosphorizing agent by balance calculation to optimize the amount of slag so that the phosphoric acid concentration in the slag exceeds the target value when the dephosphorization reaction progresses to the target concentration of P in the hot metal. To do. If the amount of slag is too small, the dephosphorization reaction stops when the phosphoric acid reaches the upper limit of equilibrium, and after that, the decarburization reaction proceeds unilaterally, making it difficult for the P concentration in the hot metal to drop to the target value. On the other hand, if the amount of slag is too large, it becomes difficult for the phosphoric acid concentration in the slag to reach the target value even if the P concentration in the hot metal drops to the target value. Therefore, by optimizing the amount of slag, it is possible to cause a competitive reaction between the dephosphorization reaction and the decarburization reaction until the end, which leads to suppression of the decarburization reaction.
  • the stirring power is optimized. Since the oxygen potential between the slag metals is non-equilibrium, when strong stirring is performed, the carbon in the hot metal reacts violently with the iron oxide in the slag, and the decarburization reaction easily proceeds. Therefore, the stirring should be performed so as not to be the mass transfer rate-determining factor of phosphorus or phosphoric acid. On the other hand, if the agitation of the slag is too weak, an external heat source such as a burner is used, so that the surface temperature of the slag rises and the heat transfer efficiency deteriorates, so that the minimum agitation force is secured.
  • the most effective dephosphorization treatment is a treatment in which all dephosphorizing agents containing CaO are projected by a burner, all oxygen sources are supplied from a raw material mainly composed of iron oxide, and a shortage of heat sources is compensated by a burner.
  • the fuel cost becomes too high, it is necessary to consider how little fuel can be used to enjoy the same effect. Based on this viewpoint, a specific method for producing a phosphate fertilizer raw material of the present disclosure will be described below.
  • the apparatus shown in FIG. 1 includes a pan 10 for accommodating hot metal 11A, an accommodating portion 12A for accommodating an iron oxide-based raw material as an oxygen source, an accommodating portion 12B for accommodating a dephosphorizing agent, and an iron oxide-based apparatus.
  • a burner device 14 for projecting a burner of the raw material and / or a dephosphorizing agent, a top blowing lance 16 for blowing oxygen gas as an oxygen source into the hot metal 11A, and a bottom blowing blade for blowing nitrogen or an inert gas into the hot metal 11A.
  • a mouth 18 and an exhaust duct 20 are provided.
  • the phosphoric acid fertilizer raw material is produced by using the apparatus shown in FIG. In the following description, the reference numerals in the apparatus shown in FIG. 1 will be omitted.
  • hot metal having a P concentration of 0.3% by mass or more and a C concentration of 2% by mass or more (hereinafter, also referred to as “initial hot metal”) is used.
  • initial hot metal having a P concentration of 0.3% by mass or more and a C concentration of 2% by mass or more
  • an oxygen source and a dephosphorizing agent containing CaO are supplied to the contained initial hot metal, and the dephosphorizing treatment is performed until the P concentration in the hot metal becomes 0.06 to 0.15% by mass.
  • the P concentration in the normal hot metal after the dephosphorization treatment exceeds 0.15% by mass, it becomes difficult to produce high-grade steel by subsequent converter blowing. Further, if the P concentration in the normal hot metal after the dephosphorization treatment is less than 0.06% by mass, it is difficult to secure the phosphoric acid concentration in the derinsed lag to 15% by mass or more by phosphorus partitioning. Further, the decarburization reaction proceeds at the final stage of the dephosphorization treatment, so that the C concentration in the hot metal becomes low and slag forming occurs.
  • the initial hot metal hot metal having a C concentration of 2.0% by mass or more and a P concentration of 0.3% by mass or more is applied.
  • the P concentration of the initial hot metal is 0.3% by mass or more and less than 1.0% by mass, 0.3% by mass or more and 0.9% by mass or less, 0.3% by mass or more and 0.8% by mass or less, 0. It may be 3% by mass or more and 0.7% by mass or less.
  • the upper limit of the C concentration of the initial hot metal is, for example, 4.5% by mass or less.
  • the derinsing agent is supplied by irradiating the burner from the burner device toward the slag and projecting the burner. Details of the method for supplying the datsurin agent will be described later.
  • the type of dephosphorizing agent is not particularly limited, but it is preferable to include, for example, one or more selected from the group consisting of quicklime, limestone, dolomite, light-baked dolomite, converter slag, and silica stone.
  • the oxygen source is basically supplied by blowing oxygen gas from the top blow lance. However, at the end of the dephosphorization treatment, the oxygen source is preferably supplied by adding a raw material mainly composed of iron oxide. The details of the oxygen source supply method will be described later.
  • the basicity (C / S) in the derinsed slag produced by supplying the oxygen source and the dephosphorizing agent is 2.5 or more, preferably 3.0 or more.
  • the basicity (C / S) in the derinsed lag is less than 2.5, the phosphorus distribution ratio is low. Therefore, when the P concentration in the hot metal is reduced to 0.15% by mass, the phosphoric acid concentration in the derinsed lag is reduced to 15. It becomes impossible to secure more than mass%.
  • the lower limit of the basicity (C / S) in the derinsed lag may exceed 2.5, 2.6 or more, or 2.7 or more.
  • the upper limit of basicity (C / S) during derinsing lag is, for example, 4.0.
  • the basicity of the derinsed slag is high, the melting point of the slag rises, the viscosity of the derinsed slag decreases, and the reaction efficiency between the slag metals decreases. Therefore, the basicity (C / S) during derinsing lag cannot be 2.5 or more. Therefore, in order to dissolve the slag, the burner is irradiated from the burner device. In addition, among the dephosphorizing agents to be added, a dephosphorizing agent of 50% by mass or more of the required input amount of CaO is burner-projected.
  • all the dephosphorizing agents may be added at a high temperature by burner projection, but after the start of the dephosphorizing treatment, a part of the dephosphorizing agent may be injected all at once or continuously in a short time.
  • the dephosphorizing agent may be added without heating. That is, some datsurin agents may be added without heating.
  • the dephosphorizer dissolves easily. Therefore, until the basicity (C / S) is about 1.5, it is not necessary to use a burner to project the dephosphorizing agent with a burner, and the dephosphorizing agent is added from above the ladle by a usual method. However, the reactivity does not decrease. Therefore, in order to reduce the cost of the burner fuel, the dephosphorizer of up to 50% by mass of the required input amount of CaO out of the required input amount of CaO is treated in a powdery or lumpy state.
  • the dephosphorizing agent is added all at once or continuously from above the pan, and then the remaining dephosphorizing agent of 50% by mass or more and less than 100% by mass of the required amount of CaO is added to the basicity of 2. Burner projection may be used to raise the temperature to .5 or higher.
  • the dephosphorizing agent without heating in the first half of the dephosphorization treatment and to burner the remaining dephosphorizing agent in the latter half of the dephosphorization treatment.
  • the basicity (C / S) in the slag reaches 1.5, it exceeds 0% by mass and 50% by mass or less of the required input amount of CaO.
  • a dephosphorizing agent preferably 10% by mass or more and 50% by mass or less, or 20% by mass or more and 50% by mass or less
  • the average particle size of the dephosphoric acid agent is preferably 2 mm or less.
  • an iron oxide-based raw material containing oxygen corresponding to an oxygen intensity of at least 1.5 Nm 3 / t is added.
  • an iron oxide-based raw material containing oxygen corresponding to an oxygen intensity of at least 1.5 Nm 3 / t can be added.
  • the dephosphorizing agent containing CaO has a high melting point, it does not easily dissolve even if it becomes a compound, but the raw material mainly composed of iron oxide dissolves easily in slag without heating with a burner. Therefore, the iron oxide-based raw material may be burner-projected together with the burner via the burner device, but the iron oxide-based raw material may not necessarily be burner-projected and may be added without heating from above the pan as usual. ..
  • oxygen gas may be blown as an oxygen source
  • a raw material mainly composed of iron oxide may be burner-projected or unheated and added as an oxygen source.
  • oxygen of at least 1.5 Nm 3 / t or more with respect to the hot metal A raw material mainly composed of iron oxide containing oxygen corresponding to the basic unit may be continuously burner-projected or unheated and added as an oxygen source.
  • the raw material mainly composed of iron oxide include iron ore powder, dust powder, and scale powder.
  • the iron oxide-based raw material functions as a coolant and also has a function of suppressing the decarburization reaction. That is, by cooling the reaction site with the heat of reduction, the temperature rise at the reaction interface is suppressed, the dephosphorization reaction is promoted, and the decarburization reaction is suppressed. Therefore, at least at the timing when the dephosphorization reaction decreases and the decarburization reaction becomes the main component, it is preferable to stop the supply of oxygen gas and change the oxygen source to a raw material mainly composed of iron oxide. That is, when the P concentration in the hot metal drops to around 0.2% by mass, the main body of the reaction shifts from the dephosphorization reaction to the decarburization reaction.
  • the amount of oxygen required to reduce the P concentration in the hot metal from 0.2% by mass to 0.15% by mass is 0.45 Nm 3 / t, and the dephosphorization oxygen efficiency at that time is 30%.
  • the required amount of oxygen is 1.5 Nm 3 / t. Therefore, if at least 1.5 Nm 3 / t of oxygen is supplied as a raw material mainly composed of iron oxide, the decarburization suppressing effect can be exhibited at the timing when the decarburization reaction is most activated.
  • 1.5 Nm 3 / t is the minimum value, and if the fuel cost is acceptable, a raw material mainly composed of iron oxide may be used.
  • the iron oxide-based raw material is not sparingly soluble, it is not always necessary to add it using a burner, and it may be added from above the ladle (that is, non-heated addition).
  • the required energy is input, if the amount of powder corresponding to the input energy cannot be secured only by the dephosphorizing agent, it is preferable to burner a part or all of the iron oxide-based raw material.
  • oxygen gas is supplied at the initial stage of dephosphorization treatment in which the dephosphorization reaction is predominant, and after supplying the required amount of oxygen, it is switched to burner projection of a raw material mainly composed of iron oxide, and iron oxide is mainly supplied. It is preferable to continuously supply the raw materials.
  • the dephosphorization treatment it is preferable to blow nitrogen or an inert gas as a stirring gas from the bottom blowing tuyere for the purpose of stirring the hot metal and slag.
  • the flow rate of the stirring gas is 2 to 40 NL / t / min so that the (T.Fe) in the slag is 5% by mass or more and 20% by mass or less.
  • the method of introducing the stirring gas is not limited to the bottom blowing tuyere, and may be introduced from the immersion lance.
  • (T.Fe) means the content of Fe (iron).
  • the upper limit of the flow rate of the stirring gas is preferably 40 NL / t / min.
  • the lower limit of the flow rate of the stirring gas is preferably 2NL / t / min.
  • the dephosphorization treatment capacity tends to decrease due to the decrease in the oxygen potential of the slag.
  • the (T.Fe) content of the slag exceeds 20% by mass, the (P 2 O 5 ) concentration and the (CaO) concentration in the slag tend to decrease, particularly high (P). 2 O 5 ) Concentration range is not preferable because it has the effect of reducing the dephosphorization treatment ability.
  • (T.Fe) of the slag As a method for adjusting the (T.Fe) of the slag, when the (T.Fe) in the slag is high, a carbon source is put into the slag surface, or only bottom blowing stirring is continued after the dephosphorization treatment. , (T.Fe) may be adjusted within the above range.
  • the high-phosphorus hot metal may be desiliconized before the dephosphorization treatment to reduce the amount of lime input.
  • the conditions in the example are one condition example adopted for confirming the feasibility and effect of the present disclosure, and the present disclosure is based on this one condition example. Not limited.
  • the present disclosure may adopt various conditions as long as the gist of the present disclosure is not deviated and the object of the present disclosure is achieved.
  • Comparative Example 1 oxygen gas was blown from the top-blown lance as an oxygen source at a constant speed of 14.2 Nm 3 / t in 60 minutes. Further, 20 minutes after the start of the treatment as an oxygen source, a total of 16.4 kg / t of iron ore was continuously charged from above the pan at a rate of 50 kg / min. Further, at the initial stage of the dephosphorization treatment, 12.4 kg / t of quicklime, 8.1 kg / t of light-baked dolomite, and 8.6 kg / t of silica sand were added as dephosphorizing agents from above the ladle in a short time. .. At this time, the datsurin agent was not heated by a burner.
  • an amount of dephosphorizing agent corresponding to 60% of the required input amount of CaO was uniformly and continuously burned.
  • the dephosphorizing agent a mixture of 23 kg / t of converter slag powder, 3.8 kg / t of quicklime, and 2.50 kg / t of lightly baked dolomite was used in total. Further, the amount of (T.Fe) in the slag at the end of the dephosphorization treatment was around 20% by mass, but before the completion of the dephosphorization treatment, 0.8 kg / t of smokeless charcoal powder was added to finally. (T.Fe) in the slag was adjusted to 13.3% by mass.
  • an amount of dephosphorizing agent corresponding to 50% of the required input amount of CaO was uniformly and continuously burned.
  • a dephosphorizing agent a mixture of quicklime 12.4 kg / t and light-baked dolomite 4.8 kg / t was used, and 3.9 kg / t of silica sand was separately added without heating from above the ladle. Further, the amount of (T.Fe) in the slag at the end of the dephosphorization treatment was around 20% by mass, but before the completion of the dephosphorization treatment, 0.8 kg / t of smokeless charcoal powder was added and finally. (T.Fe) in the slag was adjusted to 13.0% by mass.
  • Disclosure Example 1 the entire dephosphorizing agent was projected by a burner, and the basicity of the derinsing lag could be as high as 3.21. Therefore, the concentration of phosphoric acid (P 2 O 5 ) in the dephosphorized slag could be made higher than 15% by mass while dephosphorizing the P concentration in the hot metal to 0.12% by mass. In addition, since oxygen gas was not sprayed, the amount of decarburized hot metal could be suppressed as compared with Comparative Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Fertilizers (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

C濃度が2.0質量%以上、P濃度が0.3質量%以上の溶銑に対して、酸素源とCaOを含む脱リン剤とを供給する脱リン処理において、前記脱リン剤のうち、CaO分の必要投入量の50質量%以上の脱リン剤を、前記溶銑に対し、バーナー投射し、生成する脱リンスラグの塩基度(CaO)/(SiO)を2.5以上に調整して、P濃度が0.06~0.15質量%の通常溶銑、及びリン酸濃度が15質量%以上の脱リンスラグを得るリン酸肥料原料の製造方法。

Description

リン酸肥料原料の製造方法
 本開示は、リン酸肥料原料の製造方法に関する。
 従来から、製鋼スラグを還元したり高リン鉄鉱石を用いたりすることによって、例えばリン濃度が0.5質量%以上の溶銑(以下「高リン」とも称する)を製造することができことが知られている。さらに、この高リン溶銑を脱リン処理して、例えばリン酸(P)が15質量%以上の高濃度の脱リンスラグを製造できることが知られている。このような脱リンスラグは肥料効果の高いリン酸肥料原料として用いられる。
 一方で、脱リン処理後の溶銑を用いて、転炉吹錬によって低リン鋼を製造するためには、溶銑中のP濃度を0.15質量%以下まで低減しなければならない。溶銑中のP濃度を0.15質量%以下まで低減しようとすると、脱リンスラグ中のリン濃度を15質量%以上確保することは難しく、リン酸肥料としての価値が損なわれる。そこで、このような課題を解決するために様々な提案がなされている。
 特許文献1には、リン酸濃度の高いスラグの製造を目的とした処理後、P濃度の高い第1脱リン工程と、P濃度を0.15%以下まで下げる第2脱リン工程に分け、第2脱リン工程で生成されたリン酸濃度の低い脱リンスラグを、肥料原料ではなく、第1脱リン工程のフラックスとして再利用する技術が開示されている。
 また、特許文献2には、CaOの滓化を促進するために、酸素ジェットの中にCaO粉を投射する方法が開示されている。
  特許文献1:特開2017-125244号公報
  特許文献2:特許第5829788号公報
 しかしながら、特許文献1に記載の方法では、溶鉄中Pの低濃度化とスラグ中Pの高濃度化を両立させることが難しく、リン酸濃度の高いスラグの製造を目的とした第1脱リン工程と、溶銑P濃度を0.15%以下まで下げる第2脱リン工程に分ける必要があった。
 また、特許文献2に記載の方法では、高温高酸素ポテンシャルの中にCaOを投射することで、カルシウムフェライトが生成し、脱リン反応は促進される。しかしながら、熱的裕度は増加しないためスラグ全体の温度は変わらず、脱リン反応を促進させるためにスラグの塩基度(CaO)/(SiO2)を上げることが難しく、溶鉄中Pの低濃度化とスラグ中Pの高濃度化を両立させることは難しい。
 そこで、本開示は、前述の問題点を鑑み、肥料効果の高いリン酸肥料原料を製造しながら、同時に低リン鋼を溶製可能なP濃度0.15質量%以下の通常溶銑を製造できるリン酸肥料原料の製造方法を提供することを目的とする。
 本開示は、以下の通りである。
[1]
 C濃度が2.0質量%以上、P濃度が0.3質量%以上の溶銑に対して、酸素源とCaOを含む脱リン剤とを供給する脱リン処理において、前記脱リン剤のうち、CaO分の必要投入量の50質量%以上の脱リン剤を、前記溶銑に対し、バーナー投射し、生成する脱リンスラグの塩基度(CaO)/(SiO)を2.5以上に調整して、P濃度が0.06~0.15質量%の通常溶銑、及びリン酸濃度が15質量%以上の脱リンスラグを得るリン酸肥料原料の製造方法。
[2]
 前記溶銑のP濃度が、0.3質量%以上1.0質量%未満である[1]に記載のリン酸肥料原料の製造方法。
[3]
 前記脱リン剤のうち、CaO分の必要投入量の50質量%以上100質量%未満の脱リン剤を、前記溶銑に対し、バーナー投射する[1]又は[2]に記載のリン酸肥料原料の製造方法。
[4]
 前記脱リン処理末期において、前記溶銑に対して、少なくとも、1.5Nm3/t以上の酸素原単位に相当する酸素を含む酸化鉄主体の原料を、前記酸素源として、連続的にバーナー投射または非加熱添加する[1]~[3]のいずれか1項に記載のリン酸肥料原料の製造方法。
[5]
 底吹き羽口または浸漬ランスにより、前記溶銑に対して、窒素又は不活性ガスを2~40NL/t/minで吹き込み、前記脱リンスラグの(T.Fe)を5質量%以上20質量%以下となるように調整する[1]~[4]のいずれか1項に記載のリン酸肥料原料の製造方法。
[6]
 前記脱リン剤は、生石灰、石灰石、ドロマイト、軽焼ドロマイト、転炉スラグ、及び珪石からなる群より選ばれる1種または2種以上を含む[1]~[5]のいずれか1項に記載のリン酸肥料原料の製造方法。
 本開示によれば、肥料効果の高いリン酸肥料原料となる脱リンスラグを製造しつつ、その後の転炉吹錬により低リン鋼の溶製が可能なP濃度0.15質量%以下の通常溶銑を同時に製造することができる。
本開示のリン酸肥料原料の製造方法で利用する装置の一例を示す概略構成図である。 脱リン時の脱炭抑制効果に及ぼす、撹拌ガスの流量(図中底吹流量と表記)の影響を説明するための図である。 到達リン酸濃度に及ぼすスラグの塩基度の影響を説明するための図である。 酸素源、及び脱リン剤の供給方法、及び供給タイミングの一例を示す模式図である。
 以下、本開示について説明する。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 「~」の前後に記載される数値に「超」または「未満」が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。
 本開示のリン酸肥料原料の製造方法は、C濃度が2.0質量%以上、P濃度が0.3質量%以上の溶銑に対して、酸素源とCaOを含む脱リン剤とを供給する脱リン処理において、前記脱リン剤のうち、CaO分の必要投入量の50質量%以上の脱リン剤を、溶銑に対し、バーナー投射し、生成する脱リンスラグの塩基度(CaO)/(SiO)を2.5以上に調整して、P濃度が0.06~0.15質量%の通常溶銑、及びリン酸濃度が15質量%以上の脱リンスラグを得る方法である。
 本開示のリン酸肥料原料の製造方法では、肥料効果の高いリン酸肥料原料となる脱リンスラグを製造しつつ、その後の転炉吹錬により低リン鋼の溶製が可能なP濃度0.15質量%以下の通常溶銑を同時に製造することができる。
 つまり、本開示のリン酸肥料原料の製造方法によれば、高P濃度の溶銑を脱リン処理して、高リン酸濃度の肥料原料と低P濃度の通常溶銑とを製造するための有効な脱リン処理方法を提供できる。
 ここで、有効な脱リン処理とは、高P濃度の溶銑(P濃度が0.30質量%以上、かつC濃度が2質量%以上の溶銑)から、高いリン酸(P)濃度を有する肥料効果の高い脱リンスラグを生成可能な脱リン処理を指す。
 高いリン酸(P)濃度を有する脱リンスラグとは、肥料効果が高いリン酸濃度が15質量%以上の脱リンスラグを指す。以下、脱リンスラグを単に「スラグ」とも称する。
 通常溶銑とは、脱リン処理後の溶銑を指す。そして、低P濃度の通常溶銑とは、脱リン後の溶銑中のP濃度が0.15質量%以下であり、好ましくはさらに溶銑中のC濃度が2質量%以上の溶銑を指す。低P濃度の通常溶銑は、転炉吹錬において問題なく低リン鋼が溶製でき、かつ脱炭吹錬を行う際に十分な熱裕度を有する溶銑である。
 以下、本開示のリン酸肥料原料の製造方法の詳細について説明する。
 本開示のリン酸肥料原料の製造方法において、高P濃度の溶銑から脱リン処理によって、通常溶銑中のP濃度を0.15質量%以下とし、かつ脱リンスラグ中のリン酸濃度を15質量%以上確保するためには、脱リン処理において、塩基度(CaO)/(SiO2)(以下、C/Sと称す)の高いスラグを生成することが必要である。
 具体的には、図3に示すように、少なくともリン分配比(P25)/[P]は100以上でなければならない。そのためには、スラグ中のC/Sは2.5以上、好ましくは3.0以上を確保しなければならない。このような高塩基度のスラグは融点が高く、1300~1400℃程度の溶銑温度では未溶解石灰が多く発生し、流動性が低いため、反応性の高いスラグとはならず、十分な脱リン反応は期待できない。したがって、通常の酸素ガスを用いた脱リン処理では実現が難しい。
 そこで、本開示のリン酸肥料原料の製造方法では、脱リン処理の際に、スラグ層に外部加熱を行い、溶銑よりもスラグ層の温度を高くすることによって、高融点となる高塩基度のスラグを溶解させる。一方で、スラグメタル界面温度をスラグ層の平均温度よりも低くすることによって脱リン能の低下を抑制する。
 具体的には、酸素源とCaOを含む脱リン剤とを供給する脱リン処理において、脱リン剤のうち、CaO分の必要投入量の50質量%以上の脱リン剤を、溶銑に対し、バーナー投射する。それにより、生成する脱リンスラグの塩基度(CaO)/(SiO)を2.5以上、好ましくは3.0以上に調整できる。その結果、通常溶銑中のP濃度を0.15質量%以下とし、かつ脱リンスラグ中のリン酸濃度を15質量%以上確保することができる。
 なお、全ての脱リン剤をバーナー投射しても、生成する脱リンスラグの塩基度(CaO)/(SiO)を2.5以上に調整できる。しかし、バーナーの燃料コストを考慮すると、脱リン剤のうち、CaO分の必要投入量の50質量%以上100質量%未満の脱リン剤を、溶銑に対し、バーナー投射することがよい。
 一方、脱リン処理によって、溶銑中のP濃度を0.15質量%以下にしようとすると、脱リン酸素効率は低下し、脱炭酸素効率が増加する。そのため、溶銑中のC濃度が低下し、溶銑の融点が上昇する。脱リン処理は、溶銑温度が低い方が進行しやすく、溶銑中のC濃度が2質量%以下となると溶銑の融点は1400℃以上となり、低温での脱リン処理が困難になる。また、脱リン処理後の通常溶銑中のC濃度が低いと、その後の転炉吹錬において熱裕度が低下し、操業制約が大きくなる。さらに、脱リン処理末期に、脱炭反応が促進されると、脱リンスラグのフォーミングが起こりやすくなる。取鍋で脱リン処理を行うことを前提とした場合、フリーボードが小さいのでフォーミングに対する許容度が低く、脱炭反応が活発化するとフォーミングによってスラグのオーバーフローを誘発する可能性がある。
 そこで、本開示のリン酸肥料原料の製造方法では、脱リン反応を促進し、かつ脱炭反応を抑制することが好ましいことから、以下の3つの方法を用いることが好ましい。
 まず、酸素源として、酸素ガスに対して酸化鉄主体の原料の使用比率を上昇させることである。
 酸化鉄主体の原料が酸素を供給する際、その還元熱によって脱リン反応サイトの温度を低減し、脱リンに有利でかつ脱炭に不利な状況とする。その際に、酸化鉄主体の原料を使用しても還元熱によって熱源不足とならないよう、バーナー等の外部熱源を利用して脱リン処理の熱補償を行ってもよい。溶銑中のP濃度が低下する脱リン処理末期ほど、脱炭反応が脱リン反応に対して優勢となりやすくなるため、酸化鉄を使用することによって脱炭抑制効果を高めることができる。
 次に、生成スラグ量を適正化することである。
 溶銑中のP濃度が目標とする濃度まで脱リン反応が進行した時点でスラグ中のリン酸濃度が目標値以上となるよう、バランス計算によって脱リン剤の量を調整してスラグ量を適正化する。スラグ量が少なすぎるとリン酸が平衡上限に到達した時点で脱リン反応が停止し、それ以降は脱炭反応が一方的に進行し、溶銑中のP濃度が目標値まで下がり難くなる。一方、スラグ量が多すぎると溶銑中のP濃度が目標値まで下がってもスラグ中のリン酸濃度が目標値に到達でき難くなる。従って、スラグ量の適正化を図ることによって、最後まで脱リン反応と脱炭反応との競合反応を起こさせることができ、脱炭反応の抑制につながる。
 次に、撹拌力を適正化することである。
 スラグメタル間の酸素ポテンシャルは非平衡であるため、強撹拌を行うと、溶銑中の炭素とスラグ中の酸化鉄とが激しく反応し、脱炭反応が進行しやすくなる。従って、リン又はリン酸の物質移動律速とならない程度に攪拌を行うようにする。一方、スラグの撹拌が弱すぎると、バーナー等の外部熱源を利用するため、スラグの表面温度が上昇し、着熱効率が悪化するため、最低限の撹拌力は確保する。
 これらの点を改善することにより、より好ましい脱リン処理が可能となる。
 最も効果的な脱リン処理は、CaOを含む脱リン剤はすべてバーナー投射し、酸素源はすべて酸化鉄主体の原料で供給し、熱源の不足はバーナーによって補償する処理である。
 しかしながら、燃料コストが高くなり過ぎることから、いかに少ない燃料で、同等の効果を享受することができるかも考慮する必要がある。
 その観点を踏まえて、以下に、本開示の具体的なリン酸肥料原料の製造方法を説明する。
 まず、本開示のリン酸肥料原料の製造方法で利用する装置について説明する。
 図1に示す装置は、溶銑11Aが収容される取鍋10と、酸素源としての、酸化鉄主体の原料を収容する収容部12Aと、脱リン剤を収容する収容部12Bと、酸化鉄主体の原料及び/又は脱リン剤をバーナー投射するためのバーナー装置14と、酸素源としての酸素ガスを溶銑11Aに吹き込む上吹きランス16と、窒素または不活性ガスを溶銑11A中に吹き込む底吹き羽口18と、排気ダクト20と、を備える。なお、図1中、10Bは脱リンスラグ、14Aはバーナーを示す。
 本開示のリン酸肥料原料の製造方法は、例えば、図1に示す装置を用いて、リン酸肥料原料を製造する。なお、以下の説明において、図1に示す装置における符号は省略する。
 本開示のリン酸肥料原料の製造方法では、例えば、図1に示すように、P濃度が0.3質量%以上、C濃度が2質量%以上の溶銑(以下「初期溶銑」とも称する)を取鍋に収容する。そして、収容した初期溶銑に、酸素源とCaOを含む脱リン剤とを供給し、溶銑中のP濃度が0.06~0.15質量%となるまで脱リン処理を行う。
 ここで、脱リン処理後の通常溶銑中のP濃度が0.15質量%を超えると、その後の転炉吹錬で高級鋼を製造することが困難になる。また、脱リン処理後の通常溶銑中のP濃度が0.06質量%未満では、リン分配で脱リンスラグ中のリン酸濃度を15質量%以上に確保することが難しい。さらに、脱リン処理末期に脱炭反応が進行し、溶銑中のC濃度が低くなったりスラグのフォーミングが起こったりするからである。
 初期溶銑は、C濃度が2.0質量%以上、P濃度が0.3質量%以上の溶銑を適用する。一方で、リン酸肥料原料の製造方法では、初期溶銑のP濃度が低くても、P濃度が0.06~0.15質量%の通常溶銑、及びリン酸濃度が15質量%以上の脱リンスラグを得ることができる。そのため、初期溶銑のP濃度は、0.3質量%以上1.0質量%未満、0.3質量%以上0.9質量%以下、0.3質量%以上0.8質量%以下、0.3質量%以上0.7質量%以下であってもよい。
 なお、初期溶銑のC濃度の上限は、例えば、4.5質量%以下である。
 脱リン剤は、バーナー装置からスラグに向けてバーナーを照射し、バーナー投射することにより供給する。脱リン剤の供給方法の詳細については後述する。
 なお、脱リン剤の種類は、特に限定しないが、例えば、生石灰、石灰石、ドロマイト、軽焼ドロマイト、転炉スラグ、及び珪石からなる群より選ばれる1種または2種以上を含むことが好ましい。
 一方、酸素源は、基本的には上吹きランスから酸素ガスを吹き込むことにより供給する。しかし、脱リン処理末期では、酸素源は、酸化鉄主体の原料を投入することにより供給することが好ましい。酸素源の供給方法の詳細については後述する。
 酸素源と脱リン剤とを供給することによって、生成される脱リンスラグ中の塩基度(C/S)を2.5以上とし、好ましくは3.0以上とする。脱リンスラグ中の塩基度(C/S)が2.5未満では、リン分配比が低いため、溶銑中のP濃度を0.15質量%まで低下させると、脱リンスラグ中のリン酸濃度を15質量%以上確保することができなくなる。
 なお、脱リンスラグ中の塩基度(C/S)の下限は、2.5超え、2.6以上、又は2.7以上であってもよい。一方、脱リンスラグ中の塩基度(C/S)の上限は、例えば、4.0である。
 そして、脱リンスラグ中の塩基度が高いとスラグの融点が上がり、脱リンスラグの粘度が低下して、スラグメタル間の反応効率が低下する。そのため、脱リンスラグ中の塩基度(C/S)が2.5以上とすることができない。
 そこで、スラグを溶解させるために、バーナー装置からバーナーを照射する。加えて、添加する脱リン剤のうち、CaO分の必要投入量の50質量%以上の脱リン剤をバーナー投射する。
 なお、前述したように脱リン剤をすべてバーナー投射によって高温で投入してもよいが、脱リン処理開始後、酸素ガスの吹込み中に、一括または連続的に、短時間で、一部の脱リン剤を加熱せずに添加してもよい。つまり、一部の脱リン剤を非加熱添加してもよい。
 溶銑の脱リン処理の温度域(1300~1400℃)では、高い塩基度のスラグは溶解が難しい。そこで、バーナーを用いて脱リン剤をバーナー投射することにより、脱リン剤を高温化してスラグを高温化する。それにより、脱リン剤の溶解を促進させ、スラグの流動性と均一性とを向上させることができる。
 また、脱リン剤の溶解を促進させることによって、リン酸(P)とCaOとの結合を促してリン酸の活量係数を低下させる。それにより、復リンを抑え、スラグ中にリン酸を高濃度に確保させることができる。リン酸濃度が高く肥料効果が特に高いリン酸肥料原料を製造する場合には、特にこの効果が大きい。
 溶銑の脱リン処理の温度域(1300~1400℃)において、スラグ中の塩基度(C/S)が1.5程度であれば、脱リン剤は容易に溶解する。そのため、塩基度(C/S)が1.5程度までは、バーナーを用いて脱リン剤をバーナー投射しなくてもよく、取鍋の上方から、通常の方法により脱リン剤を投入しても反応性は低下しない。
 したがって、バーナー燃料のコストを削減するために、CaO分の必要投入量の脱リン剤うち、CaO分の必要投入量の最大50質量%の脱リン剤を、粉状または塊状の状態で、処理開始後、酸素ガスを供給しながら、取鍋上方から一括または連続投入し、その後、残りの、CaO分の必要投入量の50質量%以上100質量%未満の脱リン剤を、塩基度を2.5以上まで上昇させるために、バーナー投射してもよい。
 つまり、図4に示すように、脱リン処理前半では、一部の脱リン剤を非加熱添加し、脱リン処理後半では、残りの脱リン剤をバーナー投射することがよい。
 具体的には、脱リン処理において、脱リン剤のうち、スラグ中の塩基度(C/S)が1.5になるまでは、CaO分の必要投入量の0質量%超え50質量%以下(好ましくは、10質量%以上50質量%以下、又は20質量%以上50質量%以下)の脱リン剤を、溶銑に対し非加熱添加することがよい。
 その後、スラグ中の塩基度(C/S)を1.5から2.5以上にするために、CaO分の必要投入量の50質量%以上50質量%以下100質量%未満(好ましくは、50質量%以上90質量%以下、又は50質量%以上80質量%以下)の脱リン剤を、溶銑に対しバーナー投射することがよい。
 なお、バーナー燃料のコストが許容できる範囲であれば、操業を簡略化するために、必要投入量のすべての脱リン剤をバーナー投射してもよい。また、脱リン酸剤をバーナー投射する場合には、脱リン剤の平均粒径は2mm以下とすることが好ましい。
 酸素源の供給は、まず、上吹きランスから酸素ガスを吹き込み、その後、脱リン処理末期において、少なくとも1.5Nm3/tの酸素原単位に相当する酸素を含む酸化鉄主体の原料を投入することが好ましい。具体的には、溶銑中のP濃度が0.2質量%以下まで低下した段階で、少なくとも1.5Nm3/tの酸素原単位に相当する酸素を含む酸化鉄主体の原料を投入することが好ましい。
 CaOを含む脱リン剤は融点が高いため、化合物となっても容易に溶解はしないが、酸化鉄主体の原料はバーナーで加熱しなくてもスラグ中で容易に溶解する。そのため、バーナー装置を経由してバーナーとともに酸化鉄主体の原料をバーナー投射してもよいが、酸化鉄主体の原料は必ずしもバーナー投射しないで、通常通り、取鍋上方から非加熱添加してもよい。
 つまり、図4に示すように、脱リン処理前半では、酸素源として酸素ガスを吹き込み、脱リン処理末期では、酸素源として酸化鉄主体の原料をバーナー投射又は非加熱添加することがよい。
 具体的には、脱リン処理末期(具体的には、溶銑中のP濃度が0.2質量%以下まで低下した段階)において、溶銑に対して、少なくとも、1.5Nm3/t以上の酸素原単位に相当する酸素を含む酸化鉄主体の原料を、酸素源として、連続的にバーナー投射または非加熱添加することがよい。
 なお、酸化鉄主体の原料としては、鉄鉱石粉、ダスト粉、スケール粉などが挙げられる。
 酸化鉄主体の原料は、冷却材として機能するとともに、脱炭反応を抑制する機能を有する。すなわち、反応サイトを還元熱で冷却することにより、反応界面での温度上昇を抑え、脱リン反応を促進して脱炭反応を抑制する。従って、少なくとも脱リン反応が低下し、脱炭反応が主体となってくるタイミングでは、酸素ガスの供給を中止して、酸素源を酸化鉄主体の原料に変更することが好ましい。つまり、溶銑中のP濃度が0.2質量%付近まで低下すると反応の主体が脱リン反応から脱炭反応に移行する。ここで、溶銑中のP濃度を0.2質量%から0.15質量%まで低下させるのに必要な酸素量は0.45Nm3/t、そのときの脱リン酸素効率を30%と仮定すると、必要な酸素量は1.5Nm3/tとなる。
 よって、少なくとも1.5Nm3/tの酸素分を酸化鉄主体の原料で供給すれば、最も脱炭反応の活性化するタイミングで脱炭抑制効果を発揮させることができる。もちろん1.5Nm3/tは最低値であり、燃料コストを許容できれば、それ以上の酸化鉄主体の原料を用いてもよい。
 また、酸化鉄主体の原料は、難溶性ではないため、必ずしもバーナーを用いて投入する必要はなく、取鍋の上方から添加(つまり、非加熱添加)してもよい。一方で、必要なエネルギーを投入する際に、投入エネルギーに相当する粉体量を脱リン剤だけでは確保できない場合には、酸化鉄主体の原料の一部または全部をバーナー投射することが好ましい。また、酸素源の供給方法としては、脱リン反応が優勢な脱リン処理初期は酸素ガスを供給し、必要量の酸素を供給後、酸化鉄主体の原料のバーナー投射に切り替え、酸化鉄主体の原料を連続供給することが好ましい。
 脱リン処理中は、溶銑及びスラグの攪拌を目的として、底吹き羽口から、撹拌ガスとして窒素または不活性ガスを吹き込むことが好ましい。その際に、撹拌ガスの流量を2~40NL/t/minとすることにより、スラグ中の(T.Fe)を5質量%以上20質量%以下とすることが好ましい。ただし、撹拌ガスの導入方法は底吹き羽口に限定されず、浸漬ランスから導入してもよい。
 なお、(T.Fe)とは、Fe(鉄)の含有量を意味する。
 図2に示すように、撹拌ガスの流量(図2中底吹き流量と表記)が多い場合には、溶銑中のP濃度が下がると、溶銑中のC濃度も下がりやすくなることがわかる。つまり、撹拌ガスの流量が多すぎると強攪拌により溶銑中の炭素と酸化鉄との反応が促進され、脱炭が進行すると同時に(T.Fe)が低下する。したがって、撹拌ガスの流量の上限は40NL/t/minとすることが好ましい。
 一方で、撹拌ガスの流量が少なすぎると、スラグ中の(T.Fe)が増加すると共にスラグの流動低下によりバーナーの着熱効率が低下する。また、溶銑中のPの移動が停滞し、脱リン反応が抑制される。したがって、撹拌ガスの流量の下限は2NL/t/minとすることが好ましい。
 以上のように撹拌ガスの流量を調整することによって、スラグ中の(T.Fe)を5~20質量%に調整することができ、より脱リン反応を高く、脱炭反応を低くすることができる。
 スラグの(T.Fe)が5質量%以下になると、スラグの酸素ポテンシャルの低下により脱リン処理能力が低下する傾向となる。一方、スラグの(T.Fe)が20質量%を超えると、相対的にスラグ中の、(P)濃度、および(CaO)濃度の低下を招く傾向がある、特に、高い(P)濃度域では、脱リン処理能低下の影響があるため、好ましくない。
 スラグの(T.Fe)調整方法として、スラグ中の(T.Fe)が高い場合には、炭素源をスラグ面に投入したり、脱リン処理後に底吹撹拌のみを継続したりすることによって、(T.Fe)を前述の範囲内に調整してもよい。
 また、脱リンスラグが多くなり過ぎると、スラグ中のリン酸濃度を15質量%以上確保することが困難になることがある。そのため、必要に応じて、脱リン処理を行う前に高リン溶銑に対して脱珪処理を行い、投入石灰量の低減を図ってもよい。
 次に、本開示の実施例について説明するが、実施例での条件は、本開示の実施可能性及び効果を確認するために採用した一条件例であり、本開示は、この一条件例に限定されるものではない。本開示は、本開示の要旨を逸脱せず、本開示の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 まず、表1に示す組成の初期溶銑(高P濃度の溶銑)100tを取鍋に用意し、表1に示す条件で脱リン処理を行った。なお、脱リン処理中においては、撹拌ガスとして、底吹き羽口から2NL/t/min(200NL/min)の窒素ガスを溶銑に吹き込んだ。また、開示例と比較例とで、以下のように条件を変えて実験を行った。なお、表1中の%は質量%を意味する。
 比較例1では、酸素源として上吹きランスから酸素ガスを60分間で14.2Nm3/t、一定速度で吹き込んだ。さらに、酸素源として処理開始20分後から鉄鉱石を50kg/minの速度でトータル16.4kg/tを取鍋上方から連続投入した。また、脱リン処理の初期に、短時間のうちに、脱リン剤として、生石灰12.4kg/t、軽焼ドロマイト8.1kg/t、珪砂8.6kg/tを、取鍋上方から投入した。このとき、脱リン剤に、バーナーによる加熱は行わなかった。
 比較例2では、酸素源として上吹きランスから酸素ガスを60分間で12.7Nm3/t一定で吹き込んだ。さらに、酸素源として処理開始30分後から、30kg/minの速度で、トータル7.9kg/tの鉄鉱石を、取鍋上方から連続投入した。また、脱リン処理の初期に、短時間のうちに、脱リン剤として、転炉スラグ30.9kg/t、軽焼ドロマイト1.90kg/t、珪砂3.4kg/tを取鍋上方から投入した。このとき、脱リン剤に、バーナーによる加熱は行わなかった。
 開示例1では、脱リン処理の間、酸素源として、トータル32.7kg/tの鉄鉱石を、取鍋上方から連続的にシュートで投入した。このとき酸素ガスの吹き込みは行わなかった。
 一方で、バーナーを、処理開始から終了まで65分間でLPG原単位6.32Nm3/tの量(600Nm3/hの速度)でスラグに向けて連続照射した。このとき、バーナーとともに、脱リン剤として、転炉スラグ19.7kg/t、生石灰3.9kg/t、及び軽焼ドロマイト2.0kg/tを、全期間で均等に連続的にバーナー投射した。
 開示例2では、脱リン処理開始から、上吹きランスから酸素ガス5.3Nm3/tを32分間吹込み、酸素ガスの吹き込みを終了した後に、鉄鉱石15.0kg/tを約20分間で連続投入した。
 一方、CaO分の必要投入量の40%に相当する量の脱リン剤を、脱リン処理の初期に一括して投入した。この時、脱リン剤に、バーナーによる加熱は行わなかった。そして、酸素ガスの吹き込みが終了した後に、バーナーに切り替えて、LPG原単位2.66Nm3/tの量(600Nm3/hの速度)でスラグに向けて27分間バーナーを照射した。このとき、CaO分の必要投入量の60%に相当する量の脱リン剤を均等に連続的にバーナー投射した。
 なお、脱リン剤として、合計で、転炉スラグ粉23kg/t、生石灰3.8kg/t、軽焼ドロマイト2.50kg/tの混合物を用いた。
 さらに、脱リン処理終了時点でスラグ中の(T.Fe)は、20質量%前後を推移していたが、脱リン処理終了前に無煙炭粉0.8kg/tを投入して、最終的にスラグ中の(T.Fe)を13.3質量%に調整した。
 開示例3では、脱リン処理開始から、上吹きランスから酸素ガス10.4Nm3/tを32分間吹込み、酸素ガスの吹き込みを終了した後に、鉄鉱石7.5kg/tを約8分間で連続投入した。
 一方、CaO分の必要投入量の50%に相当する量の脱リン剤を、脱リン処理の初期に一括して投入した。この時、脱リン剤に、バーナーによる加熱は行わなかった。そして、酸素ガスの吹き込みが終了した後に、バーナーに切り替えて、LPG原単位0.55Nm3/tの量(150Nm3/hの速度)でスラグに向けて22分間バーナーを照射した。このとき、CaO分の必要投入量の50%に相当する量の脱リン剤を均等に連続的にバーナー投射した。
 なお、脱リン剤として、合計で、生石灰12.4kg/t、軽焼ドロマイト4.8kg/tの混合物を用い、珪砂3.9kg/tを、別途、取鍋上方から非加熱添加した。
 さらに、脱リン処理終了時点でスラグ中の(T.Fe)は、20質量%前後を推移していたが、脱リン処理終了前に無煙炭粉0.8kg/tを投入して、最終的にスラグ中の(T.Fe)を13.0質量%に調整した。
 比較例3では、脱リン処理開始から、上吹きランスから酸素ガス10.8Nm3/tを33分間吹込み、酸素ガスの吹き込みを終了した後に、鉄鉱石7.0kg/tを約8分間で連続投入した。
 一方、CaO分の必要投入量の50%に相当する量の脱リン剤を、脱リン処理の初期に一括して投入した。この時、脱リン剤に、バーナーによる加熱は行わなかった。そして、酸素ガスの吹き込みが終了した後に、バーナーに切り替えて、LPG原単位0.74Nm3/tの量(200Nm3/hの速度)でスラグに向けて22分間バーナーを照射した。このとき、CaO分の必要投入量の50%に相当する量の脱リン剤を均等に連続的にバーナー投射した。
 なお、脱リン剤として、合計で、生石灰15.0kg/t、軽焼ドロマイト5.2kg/tの混合物を用い、珪砂5.4kg/tを、別途、取鍋上方から非加熱添加した。
 さらに、脱リン処理終了時点でスラグ中の(T.Fe)は、20質量%前後を推移していたが、脱リン処理終了前に無煙炭粉0.9kg/tを投入して、最終的にスラグ中の(T.Fe)を10.5質量%に調整した。
 
Figure JPOXMLDOC01-appb-T000001
 比較例1では、処理末期に鉄鉱石を投入して脱リン反応を促進させたが、バーナー加熱を行わなかったため、スラグの粘度が上昇し過ぎない程度にしか脱リン剤を投入することができなかった。したがって、塩基度が1.58で低かったため、脱リン反応が十分でなく、スラグ中のリン酸(P25)濃度が15質量%よりも低かった。
 比較例2においても、同様に、処理末期に鉄鉱石を投入して脱リン反応を促進させたが、バーナー加熱を行わなかったことから塩基度が1.72で低かった。そのため、脱リン反応が十分でなく、スラグ中のリン酸(P)濃度が15質量%よりも低かった。
 これに対して、開示例1では、脱リン剤の全部をバーナー投射し、脱リンスラグの塩基度を3.21と高位にすることができた。そのため、通常溶銑中のP濃度を0.12質量%まで脱リンしつつ、脱リンスラグ中のリン酸(P)濃度を15質量%よりも高くすることができた。また、酸素ガスの吹き付けを行わなかったため、比較例1及び2と比べて溶銑の脱炭量を抑えることができた。
 開示例2では、CaO分の必要投入量の60%に相当する量の脱リン剤のみ、バーナー投射したが、脱リンスラグの塩基度を3.18と高位にすることができた。そのため、通常溶銑中のP濃度を0.12質量%まで脱リンしつつ、脱リンスラグ中のリン酸(P)濃度を15質量%よりも高くすることができた。また、溶銑中のP濃度が低くなる脱リン処理の後半では、酸素ガスの吹き付けを行わなかったため、比較例1及び2と比べて溶銑の脱炭量を抑えることができた。さらに、バーナーの適用時期を脱リン処理後半に限定したことで、LPG消費量を6.32Nm3/tから2.66Nm3/tに削減することができた。
 開示例3では、CaO分の必要投入量の50%に相当する量の脱リン剤のみ、バーナー投射したが、脱リンスラグの塩基度を2.5と高位にすることができた。そのため、通常溶銑中のP濃度を0.12質量%まで脱リンしつつ、脱リンスラグ中のリン酸(P)濃度を15質量%よりも高くすることができた。また、溶銑中のP濃度が低くなる脱リン処理の後半では、酸素ガスの吹き付けを行わなかったため、比較例1及び2と比べて溶銑の脱炭量を抑えることができた。さらに、バーナーの適用時期を脱リン処理後半に限定したことで、LPG消費量を6.32Nm3/tから0.55Nm3/tに削減することができた。
 比較例3では、スラグの珪酸肥料効果を高める目的で、珪砂投入量を増加したため、脱リンスラグの塩基度は2.4と低位となった。そのため、通常溶銑中のP濃度を0.12質量%まで脱リンできても、脱リンスラグ中のリン酸(P)濃度は15質量%よりも低くなった。
 図面の符号の説明は、次の通りである。
 10 取鍋
 10A 溶銑
 10B 脱リンスラグ
 12A 酸化鉄主体の原料の収容部
 12B 脱リン剤の収容部
 14 バーナー装置
 16 上吹きランス
 18 底吹き羽口
 なお、日本国特許出願第2019-048152号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1.  C濃度が2.0質量%以上、P濃度が0.3質量%以上の溶銑に対して、酸素源とCaOを含む脱リン剤とを供給する脱リン処理において、前記脱リン剤のうち、CaO分の必要投入量の50質量%以上の脱リン剤を、前記溶銑に対し、バーナー投射し、生成する脱リンスラグの塩基度(CaO)/(SiO)を2.5以上に調整して、P濃度が0.06~0.15質量%の通常溶銑、及びリン酸濃度が15質量%以上の脱リンスラグを得るリン酸肥料原料の製造方法。
  2.  前記溶銑のP濃度が、0.3質量%以上1.0質量%未満である請求項1に記載のリン酸肥料原料の製造方法。
  3.  前記脱リン剤のうち、CaO分の必要投入量の50質量%以上100質量%未満の脱リン剤を、前記溶銑に対し、バーナー投射する請求項1又は請求項2に記載のリン酸肥料原料の製造方法。
  4.  前記脱リン処理末期において、前記溶銑に対して、少なくとも、1.5Nm3/t以上の酸素原単位に相当する酸素を含む酸化鉄主体の原料を、前記酸素源として、連続的にバーナー投射または非加熱添加する請求項1~請求項3のいずれか1項に記載のリン酸肥料原料の製造方法。
  5.  底吹き羽口または浸漬ランスにより、前記溶銑に対して、窒素又は不活性ガスを2~40NL/t/minで吹き込み、前記脱リンスラグの(T.Fe)を5質量%以上20質量%以下となるように調整する請求項1~請求項4のいずれか1項に記載のリン酸肥料原料の製造方法。
  6.  前記脱リン剤は、生石灰、石灰石、ドロマイト、軽焼ドロマイト、転炉スラグ、及び珪石からなる群より選ばれる1種または2種以上を含む請求項1~請求項5のいずれか1項に記載のリン酸肥料原料の製造方法。
PCT/JP2020/011562 2019-03-15 2020-03-16 リン酸肥料原料の製造方法 WO2020189647A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080021366.0A CN113574187A (zh) 2019-03-15 2020-03-16 磷酸肥料原料的制造方法
KR1020217029747A KR102592125B1 (ko) 2019-03-15 2020-03-16 인산 비료 원료의 제조 방법
JP2021507351A JP6940028B2 (ja) 2019-03-15 2020-03-16 リン酸肥料原料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048152 2019-03-15
JP2019-048152 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189647A1 true WO2020189647A1 (ja) 2020-09-24

Family

ID=72520163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011562 WO2020189647A1 (ja) 2019-03-15 2020-03-16 リン酸肥料原料の製造方法

Country Status (5)

Country Link
JP (1) JP6940028B2 (ja)
KR (1) KR102592125B1 (ja)
CN (1) CN113574187A (ja)
TW (1) TW202100494A (ja)
WO (1) WO2020189647A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092158A (ja) * 2005-09-30 2007-04-12 Jfe Steel Kk 溶銑の脱燐処理方法
JP2016074940A (ja) * 2014-10-06 2016-05-12 新日鐵住金株式会社 脱リンスラグ及びリン酸肥料原料の製造方法
JP2017128747A (ja) * 2016-01-18 2017-07-27 新日鐵住金株式会社 リン酸肥料の製造方法及びリン酸肥料の製造装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829788U (ja) 1981-08-24 1983-02-26 昭和アルミニウム株式会社 耐火性断熱雨戸
EP1391445A1 (en) * 2001-05-17 2004-02-25 JFE Steel Corporation Material for phosphate fertilizer and method for production thereof
JP4421314B2 (ja) * 2004-01-26 2010-02-24 株式会社神戸製鋼所 溶銑の精錬でのスラグ量の決定方法
JP5332651B2 (ja) * 2008-12-26 2013-11-06 Jfeスチール株式会社 製鋼スラグからの鉄及び燐の回収方法
CN102776311A (zh) * 2012-06-28 2012-11-14 辽宁天和科技股份有限公司 一种高磷铁水脱磷工艺
CN103773919B (zh) * 2014-02-18 2015-04-29 钢铁研究总院 一种转炉冶炼中、高磷铁水的方法
JP6631265B2 (ja) 2016-01-15 2020-01-15 日本製鉄株式会社 脱リンスラグの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092158A (ja) * 2005-09-30 2007-04-12 Jfe Steel Kk 溶銑の脱燐処理方法
JP2016074940A (ja) * 2014-10-06 2016-05-12 新日鐵住金株式会社 脱リンスラグ及びリン酸肥料原料の製造方法
JP2017128747A (ja) * 2016-01-18 2017-07-27 新日鐵住金株式会社 リン酸肥料の製造方法及びリン酸肥料の製造装置

Also Published As

Publication number Publication date
TW202100494A (zh) 2021-01-01
KR20210128458A (ko) 2021-10-26
JPWO2020189647A1 (ja) 2021-09-13
CN113574187A (zh) 2021-10-29
JP6940028B2 (ja) 2021-09-22
KR102592125B1 (ko) 2023-10-23

Similar Documents

Publication Publication Date Title
JP5954551B2 (ja) 転炉製鋼法
JP6693536B2 (ja) 転炉製鋼方法
TWI609839B (zh) 熔鐵的脫磷劑、精煉劑及脫磷方法
JP6597332B2 (ja) リン酸肥料の製造方法及びリン酸肥料の製造装置
JP5211786B2 (ja) 吹錬制御方法および該吹錬制御方法を用いた低りん溶銑の製造方法
JP2008266666A (ja) 溶銑の脱燐処理方法
KR20130105732A (ko) 용선의 탈규ㆍ탈인 방법
JP4977870B2 (ja) 製鋼方法
JP6992604B2 (ja) リン酸スラグ肥料の製造方法
JP6361885B2 (ja) 溶銑の精錬方法
JP2000073111A (ja) 低燐溶銑の製造方法
WO2020189647A1 (ja) リン酸肥料原料の製造方法
JP3709069B2 (ja) 溶銑予備処理方法
JP5061545B2 (ja) 溶銑の脱燐処理方法
JP2006009146A (ja) 溶銑の精錬方法
JP2013064167A (ja) 溶銑の脱りん方法
JP4695312B2 (ja) 溶銑の予備処理方法
JP2007092181A (ja) 低燐溶銑の製造方法
JP2001288507A (ja) 低燐溶銑の製造方法
JP5131872B2 (ja) 溶銑の脱燐処理方法
JP5691198B2 (ja) 溶銑の脱珪処理方法
JP2004083989A (ja) 低燐溶銑の製造方法
JP4414544B2 (ja) 転炉型溶銑脱燐炉の精錬方法
JP5402383B2 (ja) 転炉を用いる製鋼精錬プロセスおよび低燐鋼の製造方法
JP2011058046A (ja) 溶銑の脱燐処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507351

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217029747

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772916

Country of ref document: EP

Kind code of ref document: A1