WO2020189621A1 - ペプチド化合物の製造方法 - Google Patents

ペプチド化合物の製造方法 Download PDF

Info

Publication number
WO2020189621A1
WO2020189621A1 PCT/JP2020/011420 JP2020011420W WO2020189621A1 WO 2020189621 A1 WO2020189621 A1 WO 2020189621A1 JP 2020011420 W JP2020011420 W JP 2020011420W WO 2020189621 A1 WO2020189621 A1 WO 2020189621A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mmol
amino acid
solution
formula
Prior art date
Application number
PCT/JP2020/011420
Other languages
English (en)
French (fr)
Inventor
久征 竹内
幸雄 浅香
昭裕 長屋
道玄 半田
圭一 舛屋
知憲 田栗
圭崇 根本
小林 豊
歩 松田
晴彰 倉崎
ダグラス ロバート キャリー
Original Assignee
日産化学株式会社
ペプチドリーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社, ペプチドリーム株式会社 filed Critical 日産化学株式会社
Priority to EP20773236.3A priority Critical patent/EP3939959A4/en
Priority to US17/439,601 priority patent/US20220153777A1/en
Priority to CA3133805A priority patent/CA3133805A1/en
Priority to JP2021507338A priority patent/JPWO2020189621A1/ja
Priority to CN202080020354.6A priority patent/CN113614061A/zh
Publication of WO2020189621A1 publication Critical patent/WO2020189621A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/08General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0202Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-X-X-C(=0)-, X being an optionally substituted carbon atom or a heteroatom, e.g. beta-amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0205Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-(X)3-C(=0)-, e.g. statine or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06026Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • C07K5/06052Val-amino acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/0606Dipeptides with the first amino acid being neutral and aliphatic the side chain containing heteroatoms not provided for by C07K5/06086 - C07K5/06139, e.g. Ser, Met, Cys, Thr
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06078Dipeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06139Dipeptides with the first amino acid being heterocyclic
    • C07K5/06147Dipeptides with the first amino acid being heterocyclic and His-amino acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0806Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0815Tripeptides with the first amino acid being basic
    • C07K5/0817Tripeptides with the first amino acid being basic the first amino acid being Arg
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1016Tetrapeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1021Tetrapeptides with the first amino acid being acidic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1024Tetrapeptides with the first amino acid being heterocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a peptide having an N-alkyl amino acid.
  • a method for producing a peptide containing an N-alkyl amino acid for example, the following method is known.
  • Non-Patent Document 2 -Activates the C-terminus of the N-terminal protective peptide with 1- [bis (dimethylamino) methylene] -1H-1,2,3, -triazolo [4,5-b] pyridinium 3-oxide hexafluorophosphate (HATU) A method of reacting with N-methylalanine (see, for example, Patent Document 2).
  • Patent Document 2 uses HATU containing an explosive triazole structure as a condensing agent, and is not always applicable in the production of industrial peptides.
  • Patent Document 1 and Non-Patent Document 3 the C-terminal of the peptide to be produced is protected, and a deprotection step is further required to obtain a peptide having an unprotected C-terminal. Therefore, since a deprotection step always occurs in addition to the condensation step, it has not been applicable as an efficient method for producing a peptide.
  • the present invention provides a method for producing a peptide containing an N-alkyl amino acid and having an unprotected C-terminal.
  • the present invention also provides a method for producing a peptide using an amino acid or peptide containing an N-alkyl group and whose N-terminal and C-terminal are not protected and an N-terminal protected amino acid or peptide as materials.
  • the present inventors mixed an unprotected amino acid or peptide containing an N-alkyl group and whose N-terminal and C-terminal were not protected with a silylating agent, and further specified an N-terminal protected amino acid or peptide.
  • a carboxylic acid activator having a structure, and have completed the present invention. That is, the present invention is characterized by the following.
  • PA 1- OH in the formula, P is an N-terminal protective group, A 1 is an amino acid-derived group, NC 1-6 alkyl amino acid-derived group (C 1-6 alkyl is).
  • An N-terminal protected amino acid or N-terminal protected peptide represented by (which may have a substituent) or represents a peptide-derived group) is represented by the formula (II).
  • X represents a halogen atom
  • R 1 represents a secondary or tertiary aliphatic hydrocarbon group having 5 or more carbon atoms and may have a substituent, or has a carbon number of carbons.
  • a primary aliphatic hydrocarbon group having 4 or more and having a substituent (here, the substituent of the primary aliphatic hydrocarbon group exists on a carbon atom bonded to carbonyl carbon).
  • X represents a halogen atom
  • R 2 represents a secondary aliphatic hydrocarbon group having 5 or more carbon atoms and may have a substituent
  • an alkyl halide represented by an alkyl halide represented by an alkyl halide.
  • a 2 is a group derived from an NC 1-6 alkyl amino acid (C 1-6 alkyl may have a substituent), or 4- A group derived from a 6-membered cyclic secondary amino acid (the 4-6-membered ring is fused with a cyclic compound selected from the group consisting of a C 6-14 aryl ring, a C 6-14 haloaryl ring and a C 3-8 cycloalkyl ring.
  • an N-C 1-6 alkyl amino acid (C 1-6 alkyl may have a substituent) or a 4-6-membered cyclic secondary amino acid (which may have a substituent).
  • the 4-6-membered ring may be fused to a cyclic compound selected from the group consisting of C 6-14 aryl ring, C 6-14 haloaryl ring and C 3-8 cycloalkyl ring)).
  • a step of mixing an amino acid or peptide represented by) with a silylating agent (3) The step of mixing the product obtained in the step (1) and the product obtained in the step (2), A method for producing a peptide containing.
  • a primary aliphatic hydrocarbon group having 4 or more and having a substituent (here, the substituent of the primary aliphatic hydrocarbon group exists on a carbon atom bonded to carbonyl carbon).
  • a carboxylate halide represented by formula (III) (In the formula, X represents a halogen atom, R 2 represents a secondary aliphatic hydrocarbon group having 5 or more carbon atoms and may have a substituent), and an alkyl halide represented by an alkyl halide.
  • a 2 has a group derived from N-methylamino acid, a group derived from NC 1-6 alkylglycine (C 1-6 alkyl has a substituent).
  • a group derived from a 4-6-membered cyclic secondary amino acid, or an N-terminal residue is an N-methyl amino acid, NC 1-6 alkylglycine (C 1-6 alkyl has a substituent).
  • PA 1- OH or formula (V) PA 3- OH (in the formula, P is an N-terminal protective group, and A 1 and A 3 are peptide-derived groups, respectively.
  • the amino acid located at the C-terminal in the N-terminal protected peptide represented by) is an NC 1-6 alkyl amino acid (C 1-6 alkyl may have a substituent) or 4-6 members.
  • the 4-6-membered ring may be fused with a cyclic compound selected from the group consisting of a C 6-14 aryl ring, a C 6-14 haloaryl ring and a C 3-8 cycloalkyl ring.
  • the amino acid located at the C-terminal in the N-terminal protected amino acid represented by the formula (I) or the N-terminal protected peptide represented by the formula (I) is an ⁇ -amino acid, ⁇ -amino acid or ⁇ -amino acid.
  • the amino acid located at the C-terminal in the N-terminal protected amino acid represented by the formula (I) or the N-terminal protected peptide represented by the formula (I) is an ⁇ -amino acid, according to the above [8]. Method for producing peptide of.
  • the amino acid represented by the formula (IV) or the amino acid located at the N-terminal in the peptide represented by the formula (IV) is NC 1-6 alkyl- ⁇ -amino acid (C 1-6 alkyl).
  • the amino acid represented by the formula (IV) or the amino acid located at the N-terminal in the peptide represented by the formula (IV) is an N-methyl- ⁇ -amino acid or an N-ethyl- ⁇ -amino acid (N-).
  • the activator is a carboxylic acid halide represented by the formula (II), R 1 has 5 to 20 carbon atoms, and X is a chlorine atom.
  • the method for producing a peptide according to any one.
  • the silylating agent is N, O-bis (trimethylsilyl) acetamide, N, N'-bis (trimethylsilyl) urea or N, O-bis (trimethylsilyl) trifluoroacetamide, as described above [1] to [19]. ], The method for producing a peptide according to any one of.
  • a novel method for producing a peptide containing an N-alkyl group whose N-terminal and C-terminal are not protected and an N-terminal protected amino acid or peptide as materials and whose C-terminal is unprotected can be obtained. I was able to provide it. According to the production method of the present invention, regardless of the type of N-alkyl amino acid to be introduced and the N-terminal residue of the peptide to be introduced, the purpose is The peptide to be obtained can be obtained in a satisfactory yield.
  • n- is normal, “s-” is secondary, “t-” and “tert-” are tertiary, “Me” is methyl, “Et” is ethyl, “Pr” is propyl, and “"Bu” is butyl, “Ph” is phenyl, “Bn” is benzyl, “Boc” is t-butoxycarbonyl, “Cbz” is benzyloxycarbonyl, “Fmoc” is 9-fluorenylmethoxycarbonyl, “Trt” is Trityl, “TMS” means trimethylsilyl, “TFA” means trifluoroacetic acid.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • alkyl group means a linear or branched chain monovalent group of saturated aliphatic hydrocarbons.
  • C 1-6 alkyl group means a linear or branched alkyl group having 1 to 6 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • n-butyl group isobutyl group, s-butyl group, t-butyl group, n-pentyl group, 3-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 1, Examples thereof include 2-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, n-hexyl group and 3,3-dimethylbutane-2-yl group.
  • the "secondary or tertiary C 5-40 alkyl group” is a saturated aliphatic hydrocarbon having 5 to 40 carbon atoms and containing at least one secondary or tertiary carbon atom. It means a monovalent group from which hydrogen on a tertiary or tertiary carbon atom has been removed, and specific examples thereof include 2-methylbutane-2-yl group, 3-methylbutane-2-yl group, and 3,3-dimethyl.
  • Butane-2-yl group, 3-pentyl group, 2,2,4-trimethylpentane-3-yl group, 2,4-dimethylpentane-3-yl group, 4-ethyl-2,2-dimethylhexane-3 -Il group, 3-heptyl group, 2,2,4,8,10,10-hexamethylundecane-5-yl group and the like can be mentioned.
  • the "secondary or tertiary C 5-20 alkyl group” means a secondary or tertiary alkyl group having 5 to 20 carbon atoms.
  • the "primary C 4-40 alkyl group” is a linear or branched saturated aliphatic hydrocarbon having 4 to 40 carbon atoms from which hydrogen on the primary carbon atom has been removed. Means a valent group, n-butyl group, isobutyl group, n-pentyl group, 2-methylbutyl group or 3-methylbutyl group, or n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group.
  • the "primary C 4-20 alkyl group” means a primary alkyl group having 4 to 20 carbon atoms.
  • alkenyl group means a monovalent group of unsaturated aliphatic hydrocarbons containing at least one carbon-carbon double bond in a straight chain or branched chain.
  • a “secondary or tertiary alkenyl group” is a secondary from an unsaturated aliphatic hydrocarbon containing at least one secondary or tertiary carbon atom and at least one carbon-carbon double bond.
  • it means a monovalent group from which hydrogen on a tertiary carbon atom has been removed, and specific examples thereof include an isopropenyl group and a 1-methyl-1-propenyl group.
  • the "secondary or tertiary C 5-40 alkenyl group” has 5 to 40 carbon atoms, and the “secondary or tertiary C 5-20 alkenyl group” has 5 to 40 carbon atoms. It means 20 secondary or tertiary alkenyl groups.
  • a “primary C 4-40 alkenyl group” is an unsaturated aliphatic hydrocarbon containing at least one carbon-carbon double bond in the form of a linear or branched chain having 4 to 40 carbon atoms. It means a monovalent group from which hydrogen on the primary carbon atom has been removed, and examples thereof include a 2-butenyl group, a 3-butenyl group, and a 2-pentenyl group.
  • the "primary C 4-20 alkenyl group” means a primary alkenyl group having 4 to 20 carbon atoms.
  • the "C 6-14 aryl group” means an aromatic hydrocarbon group having 6 to 14 carbon atoms, and specific examples thereof include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and a 1-. Examples thereof include an anthryl group, a 2-anthryl group, a 9-antryl group and a biphenyl group. Further, the "C 6-14 aryl ring” means an aromatic hydrocarbon ring having 6 to 14 carbon atoms.
  • the "C 6-14 haloaryl group” means an aromatic hydrocarbon group having 6 to 14 carbon atoms substituted with one or more halogen atoms, and specific examples thereof include a 4-chlorophenyl group. 2,4-Dichlorophenyl group, 5-fluoro-1-naphthyl group, 6-bromo-2-naphthyl group, 6,7-diiodo-1-anthryl group, 10-bromo-9-anthryl group, 4'-chloro- Examples thereof include (1,1'-biphenyl) -2-yl group.
  • the "C 6-14 haloaryl ring” means an aromatic hydrocarbon ring having 6 to 14 carbon atoms substituted with one or more halogen atoms.
  • the "C 6-14 aryloxy group” means an aryloxy group having 6 to 14 carbon atoms, and specific examples thereof include a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a 1-. Examples thereof include an anthryloxy group, a 2-anthrioxy group, a 9-anthrioxy group, and a biphenyloxy group.
  • the "5-10-membered heterocyclic group” has 5 to 10 atoms constituting the ring and is independent of the group consisting of nitrogen atom, oxygen atom and sulfur atom in the atom constituting the ring. It means a heterocyclic group of a monocyclic system or a fused ring system containing 1 to 4 heteroatoms selected from the above.
  • the heterocyclic group may be saturated, partially unsaturated or unsaturated, and specific examples thereof include a pyrrolidinyl group, a tetrahydrofuryl group, a tetrahydrothienyl group, a piperidyl group, a tetrahydropyranyl group and a tetrahydrothiopyranyl group.
  • C 1-6 alkoxy group means a linear or branched alkoxy group having 1 to 6 carbon atoms, and specific examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, and an iso. Examples thereof include a propoxy group, an n-butoxy group, an isobutoxy group, a t-butoxy group, an n-pentyloxy group and an n-hexyloxy group.
  • C 3-6 cycloalkyl group means a monovalent group of a cyclic saturated aliphatic hydrocarbon having 3 to 6 carbon atoms, and specific examples thereof include a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group. Groups, cyclohexyl groups and the like can be mentioned.
  • the "C 3-8 cycloalkyl group” means a cycloalkyl group having 3 to 8 carbon atoms, and specific examples thereof include cycloheptyl in addition to the above-mentioned "C 3-6 cycloalkyl group”. Examples include a group and a cyclooctyl group.
  • the "C 5-8 cycloalkyl group” is a cycloalkyl group having 5 to 8 carbon atoms
  • the "C 5-6 cycloalkyl group” is a cycloalkyl group having 5 to 6 carbon atoms.
  • the "C 3-8 cycloalkyl ring” means a cycloalkyl ring having 3 to 8 carbon atoms.
  • C 3-6 cycloalkoxy group means a cycloalkyloxy group having 3 to 6 carbon atoms, and specific examples thereof include a cyclopropoxy group, a cyclobutoxy group, a cyclopentyloxy group, and a cyclohexyloxy group. Can be mentioned.
  • the "mono-C 1-6 alkylamino group” means a group in which one "C 1-6 alkyl group” is bonded to an amino group, and specific examples thereof include a monomethylamino group and a monoethylamino group.
  • Mono-n-propylamino group, monoisopropylamino group, mono-n-butylamino group, monoisobutylamino group, mono-t-butylamino group, mono-n-pentylamino group, mono-n-hexylamino group, etc. Can be mentioned.
  • di C 1-6 alkylamino group means a group in which two identical or different "C 1-6 alkyl groups” are bonded to an amino group, and specific examples thereof include a dimethylamino group and a diethylamino group.
  • Di-n-propylamino group diisopropylamino group, di-n-butylamino group, diisobutylamino group, di-t-butylamino group, di-n-pentylamino group, di-n-hexylamino group, N -Ethyl-N-methylamino group, N-methyl-Nn-propylamino group, N-isopropyl-N-methylamino group, Nn-butyl-N-methylamino group, N-isobutyl-N-methyl Amino group, Nt-butyl-N-methylamino group, N-methyl-Nn-pentylamino group, Nn-hexyl-N-methylamino group, N-ethyl-Nn-propylamino group , N-ethyl-N-isopropylamino group, Nn-butyl-N-ethylamino group,
  • the “C 1-6 alkoxycarbonyl group” means a linear or branched alkoxycarbonyl group having 1 to 6 carbon atoms, and specific examples thereof include a methoxycarbonyl group, an ethoxycarbonyl group, and n ⁇ . Examples thereof include a propoxycarbonyl group, an isopropoxycarbonyl group, an n-butoxycarbonyl group, an isobutoxycarbonyl group, a t-butoxycarbonyl group, an n-pentyloxycarbonyl group, and an n-hexyloxycarbonyl group.
  • tri-C 1-6 alkylsilyl group means a group in which the same or different three "C 1-6 alkyl groups" are bonded to a silyl group, and specific examples thereof include a trimethylsilyl (TMS) group. Examples thereof include a triethylsilyl group, a triisopropylsilyl group, a t-butyldimethylsilyl group and a di-t-butylisobutylsilyl group.
  • tri-C 1-6 alkylsilyloxy group means a group in which the same or different three "C 1-6 alkyl groups" are bonded to a silyloxy group, and specific examples thereof include a trimethylsilyloxy group and a triethyl. Examples thereof include a silyloxy group, a triisopropylsilyloxy group, a t-butyldimethylsilyloxy group, and a di-t-butylisobutylsilyloxy group.
  • the "bicycloalkyl group” means a monovalent group of a saturated aliphatic hydrocarbon containing two bridgehead carbons and having two rings, and as a specific example, an octahydroinden-3-yl group. , Octahydronaphthalene-4-yl group, bicyclo [2.2.1] heptane-1-yl group or bicyclo [2.2.1] heptane-2-yl group and the like.
  • the "C 5-10 bicycloalkyl group” means a bicycloalkyl group having 5 to 10 carbon atoms
  • the "C 7-10 bicycloalkyl group” means a bicycloalkyl group having 7 to 10 carbon atoms. To do.
  • tricycloalkyl group means a monovalent group of a saturated aliphatic hydrocarbon containing at least 3 bridge carbons and having 3 rings, and a specific example thereof is tricyclo [3.3. 1.1 3,7 ] Decane-1-yl (adamantan-1-yl) group or tricyclo [3.3.1.1 3,7 ] decane-2-yl (adamantan-2-yl) group, etc. Be done.
  • the "C 5-15 tricycloalkyl group” has 5 to 15 carbon atoms, and the "C 7-15 tricycloalkyl group” has 7 to 15 carbon atoms. Means a group.
  • a "secondary or tertiary aliphatic hydrocarbon group” is a branched or cyclic, saturated or unsaturated aliphatic hydrocarbon containing at least one secondary or tertiary carbon atom in a hydrocarbon chain.
  • Examples thereof include an alkenyl group, and specific examples thereof include a secondary or tertiary alkyl group having 5 or more carbon atoms, a bicycloalkyl group, a tricycloalkyl group, a secondary or tertiary alkenyl group, and the like, which is preferable.
  • Examples include a secondary or tertiary C 5-40 alkyl group, a C 5-10 bicycloalkyl group, a C 5-15 tricycloalkyl group, a secondary or tertiary C 5-40 alkenyl group, and the like, more preferably.
  • Examples include a secondary or tertiary C 5-20 alkyl group, a C 7-10 bicycloalkyl group, a C 7-15 tricycloalkyl group, a secondary or tertiary C 5-20 alkenyl group, and the like.
  • a "secondary aliphatic hydrocarbon group” is a branched or cyclic, saturated or unsaturated aliphatic hydrocarbon containing at least one secondary carbon atom in a hydrocarbon chain. It is a monovalent group from which hydrogen on the carbon atom of the carbon atom has been removed, and examples thereof include a secondary alkyl group, a cycloalkyl group, and a secondary alkenyl group. Specific examples thereof are secondary groups having 5 or more carbon atoms. Alkyl group, cycloalkyl group, secondary alkenyl group and the like, preferably secondary C 5-40 alkyl group, C 3-8 cycloalkyl group, secondary C 5-40 alkenyl group and the like. More preferably, a secondary C 5-20 alkyl group, a C 3-6 cycloalkyl group, a secondary C 5-20 alkenyl group and the like can be mentioned.
  • a "primary aliphatic hydrocarbon group” is a monovalent group in which hydrogen on a primary carbon atom is removed from a linear or branched, saturated or unsaturated aliphatic hydrocarbon.
  • Examples thereof include a primary alkyl group and a primary alkenyl group. Specific examples thereof include a primary alkyl group having 4 or more carbon atoms and a primary alkenyl group, and a primary alkenyl group is preferable.
  • Examples thereof include a C 4-40 alkyl group, a primary C 4-40 alkenyl group, and more preferably a primary C 4-20 alkyl group and a primary C 4-20 alkenyl group.
  • arbitrary substituent is not particularly limited as long as it is a substituent that does not adversely affect the reaction targeted by the present invention.
  • the C 1-6 alkyl group may have a substituent
  • substituents examples include a C 6-14 aryl group, a C 6-14 haloaryl group, and a C 6-14 aryloxy group.
  • the "substituent" in the "secondary or tertiary aliphatic hydrocarbon group which may have a substituent” or the "primary aliphatic hydrocarbon group having a substituent” for example, C 6-14 aryl group, C 6-14 haloaryl group, C 6-14 aryloxy group, 5-10-membered heterocyclic group, hydroxy group, C 1-6 alkoxy group, C 3-6 cycloalkoxy group, acetoxy group , Benzoyloxy group, mono C 1-6 alkylamino group, N-acetylamino group, diC 1-6 alkylamino group, halogen atom, C 1-6 alkoxycarbonyl group, phenoxycarbonyl group, N-methylcarbamoyl group, Examples thereof include N-phenylcarbamoyl group, tri C 1-6 alkylsilyl group, tri C 1-6 alkylsilyloxy group, C 3-8 cycloalkyl group, cyano
  • N-terminal protected amino acid and N-terminal protected peptide mean amino acids and peptides in which the N-terminal amino group is protected and the C-terminal carboxy group is not protected, respectively.
  • C-terminal protected amino acid and C-terminal protected peptide mean amino acids and peptides in which the C-terminal carboxy group is protected and the N-terminal amino group is not protected, respectively.
  • amino acids with unprotected N-terminal and C-terminal and peptides with unprotected N-terminal and C-terminal are amino acids with unprotected N-terminal amino group and C-terminal carboxy group, respectively. Means a peptide.
  • the functional group may or may not be protected. .. It is preferably a side chain protected amino acid.
  • the amino acid used in the present invention is an organic compound having both functional groups of an amino group and a carboxy group, and means natural and non-natural amino acids. It is preferably an ⁇ -, ⁇ - or ⁇ -amino acid, or a homoamino acid, and more preferably an ⁇ -amino acid. If these amino acids have two or more amino groups (eg, arginine, lysine, 2,3-diaminopropionic acid (Dap), etc.) and two or more carboxy groups (eg, glutamic acid, aspartic acid).
  • amino groups eg, arginine, lysine, 2,3-diaminopropionic acid (Dap), etc.
  • carboxy groups eg, glutamic acid, aspartic acid
  • the amino acids used in the present invention are amino, carboxy and non-peptide formation.
  • reactive functional groups eg, cysteine, serine, tyrosine, glutamine, histidine, tryptophan, etc.
  • the amino acids used in the present invention are amino, carboxy and non-peptide formation.
  • reactive functional groups also include protected and / or modified amino acids.
  • the "4-6-membered cyclic secondary amino acid" used in the present invention is an amino acid in which a nitrogen atom of an amino group and two alkyl groups bonded to the amino group are combined to form a 4-6-membered ring.
  • proline can be mentioned.
  • the 4-6-membered ring is fused to a cyclic compound selected from the group consisting of C 6-14 aryl rings, C 6-14 haloaryl rings and C 3-8 cycloalkyl rings, the preferred cyclic compound is C 6-. It is a 14 aryl ring, more preferably benzene. Therefore, specific examples of the case where a 4-6-membered cyclic secondary amino acid is condensed with a cyclic compound include 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic).
  • the NC 1-6 alkyl amino acid used in the present invention is an amino acid in which the amino group of the amino acid is substituted with a C 1-6 alkyl group which may have a substituent, and is preferably the amino of the amino acid.
  • the groups are C 6-14 aryl group, C 6-14 haloaryl group, C 1-6 alkoxy group, di C 1-6 alkylamino group, tri C 1-6 alkylsilyl group, tri C 1-6 alkylsilyloxy.
  • the amino group of the amino acid is an amino acid substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a benzyl group or a cyclohexylmethyl group, and even more preferably, the amino group of the amino acid is a methyl group or an ethyl group. It is a substituted amino acid, and particularly preferably, the amino group of the amino acid is an amino acid substituted with a methyl group.
  • amino acid derived group used in the present invention, "group derived from N-C 1-6 alkylamino acid", N-C 1-6 alkylamino amino or N-C 1-6 alkyl amino acids of an amino acid It means a divalent group in which a hydrogen atom is removed from the nitrogen atom of the group and a hydroxy group is removed from the carboxy group.
  • group derived from N-methylamino acid is a divalent group in which the hydrogen atom is removed from the nitrogen atom of the N-methylamino group of the N-methylamino acid and the hydroxy group is removed from the carboxy group.
  • the "group derived from NC 1-6 alkyl glycine” includes a hydrogen atom removed from the nitrogen atom of the NC 1-6 alkyl amino group of NC 1-6 alkyl glycine, and a hydroxy group from the carboxy group.
  • the divalent group from which is removed has a hydrogen atom removed from the nitrogen atom of the secondary amino group of the cyclic secondary amino acid, and a hydroxy group removed from the carboxy group.
  • the obtained divalent group, "group derived from a 4-6-membered cyclic secondary amino acid” has a hydrogen atom removed from the nitrogen atom of the secondary amino group of the 4-6-membered cyclic secondary amino acid. Moreover, it means a divalent group in which a hydroxy group is removed from a carboxy group.
  • amino acids constituting the peptide used in the present invention are the above-mentioned amino acids.
  • the "peptide-derived group" used in the present invention has a hydrogen atom removed from the primary or secondary amino group of various amino acids constituting the N-terminal, and a hydroxy group from the carboxy group of the amino acid constituting the C-terminal. Means the excluded divalent group.
  • the three-dimensional structure of the amino acid is not particularly limited, but it is preferably L-form.
  • N-terminal protecting group represented by P in the formulas (I) and (V) is a protecting group on the N-terminal side when carrying out a peptide extension reaction (amidation reaction).
  • known protecting groups can be used.
  • carbamate protecting groups (9-fluorenylmethoxycarbonyl group, t-butoxycarbonyl group, benzyloxycarbonyl group, allyloxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group, 2-( p-biphenyl) isopropyloxycarbonyl group, etc.
  • amide protecting group acetyl group, trifluoroacetyl group, etc.
  • imide protecting group phthaloyl group, etc.
  • sulfonamide protecting group p-toluenesulfonyl group, 2- Nitrobenzenesulfonyl group and the like
  • benzyl group and the like preferably 9-fluorenylmethoxycarbonyl group, t-butoxycarbonyl group, benzyloxycarbonyl group and the like.
  • each step (1) to (5) of the method for producing a peptide of the present invention will be described below.
  • the production of the peptide of the present invention comprises the respective unit steps described as the following steps (1) to (5).
  • the peptide of the present invention can be produced by all or a combination of the unit steps described as the following steps (1) to (5) as appropriate. This specific description will be described based on the following.
  • R 1 and R 2 in the description of steps (1) to (5) have the same meanings as described above.
  • the specific conditions of the reaction are not particularly limited as long as the production of the peptide of the present invention is achieved. Preferred conditions for each reaction will be described in detail as appropriate.
  • the solvent described in each reaction may be used alone or in combination of two or more.
  • This step is a step of mixing an N-terminal protected amino acid or an N-terminal protected peptide with a carboxylic acid halide or an alkyl halide formic acid.
  • This step is a step of activating the C-terminal of an N-terminal protected amino acid or N-terminal protected peptide with a carboxylic acid halide or an alkyl halide formic acid.
  • formula (I) PA 1- OH in the formula, P is an N-terminal protecting group, A 1 is an amino acid-derived group, NC 1-6 alkyl amino acid-derived group.
  • N-terminal protected amino acid or N-terminal protected peptide is represented by a carboxylic acid halide or an alkyl halide. It is a process of mixing with.
  • 3 -OH Formula (V) P-A (wherein, P is N-terminal protecting group, A 3 represents.
  • a group of derived peptides) N represented by This is a step of mixing the terminal protecting peptide with a carboxylic acid halide.
  • the N-terminal protected amino acid or N-terminal protected peptide is the above-mentioned amino acid or peptide that is N-terminal protected, and specifically, an N-terminal protected amino acid or an N-C 1-6 alkyl amino acid (N-terminal protected NC 1-6 alkyl amino acid).
  • C 1-6 alkyl is a peptide which is also be) or N-terminal protected have a substituent.
  • the C-terminal amino acid is an NC 1-6 alkyl amino acid (C 1-6 alkyl may have a substituent) or 4-6 members.
  • the 4-6-membered ring may be fused with a cyclic compound selected from the group consisting of a C 6-14 aryl ring, a C 6-14 haloaryl ring and a C 3-8 cycloalkyl ring. ), which is an N-terminal protective peptide.
  • the carboxylic acid halide is represented by the following formula (II).
  • R 1 represents a secondary or tertiary aliphatic hydrocarbon group having 5 or more carbon atoms and may have a substituent, or has a carbon number of carbons.
  • a primary aliphatic hydrocarbon group having 4 or more and having a substituent here, the substituent of the primary aliphatic hydrocarbon group exists on a carbon atom bonded to carbonyl carbon). Represent.
  • the carboxylic acid halide represented by the formula (II) preferably has a secondary or tertiary C 5-40 alkyl group in which R 1 may have a substituent, even if it has a substituent.
  • the substituent of the C 4-40 alkenyl group is a carboxylic acid halide which is (existing on the carbon atom bonded to the carbonyl carbon), more preferably a secondary in which R 1 may have a substituent. Alternatively , it has a tertiary C 5-20 alkyl group, a C 7-10 bicycloalkyl group which may have a substituent, a C 7-15 tricycloalkyl group which may have a substituent, and a substituent.
  • R 1 may have a secondary or tertiary C 5-20 alkyl group which may have a substituent, a C 7-10 bicycloalkyl group which may have a substituent, and a substituent.
  • a carboxylic group that is a C 7-15 tricycloalkyl group that may have a substituent, a secondary or tertiary C 5-20 alkenyl group that may have a substituent, or an isobutyl group that has a substituent. It is an acid chloride, and more preferably selected from the following compound group.
  • the alkyl halide formic acid is represented by the following formula (III).
  • X represents a halogen atom
  • R 2 represents a secondary aliphatic hydrocarbon group having 5 or more carbon atoms and may have a substituent.
  • the alkyl halide represented by the formula (III) is preferably a secondary C 5-40 alkyl group in which R 2 may have a substituent, and C 5 in which R 2 may have a substituent.
  • R 2 has a secondary C 5-20 alkyl group which may have a substituent, a C 5-6 cycloalkyl group which may have a substituent, and a substituent. It is an alkyl chloronate which is a secondary C 5-20 alkenyl group which may be used, and is particularly preferably selected from the following compound group.
  • the number of carbon atoms in R 1 or R 2 is the sum of the number of carbon atoms having R 1 or R 2, respectively, when the R 1 or R 2 has a substituent, the number of carbon atoms in the substituent Is also included.
  • the base used in this step is not particularly limited, and examples thereof include aliphatic amines (eg, triethylamine, N, N-diisopropylethylamine, N-methylmorpholin), aromatic amines (eg, pyridine, imidazole, etc.). N, N-dimethyl-4-aminopyridine), amidine (eg, diazabicycloundecene), alkali metal salts (eg, sodium hydrogencarbonate, potassium carbonate) and the like. It is preferably an aliphatic amine, more preferably N, N-diisopropylethylamine, triethylamine or N-methylmorpholine.
  • the amount of the carboxylate halide or alkyl halide used in this step is preferably 0.2 to 50 equivalents, more preferably 0.5 equivalents or more, relative to the N-terminal protected amino acid or N-terminal protected peptide. It is 20 equivalents, more preferably 0.8 equivalents to 5 equivalents.
  • the amount of the base used in this step is preferably 0.2 to 50 equivalents, more preferably 0.5 to 20 equivalents, and even more preferably 0. Equivalent to the carboxylic acid halide or alkyl halide formic acid. It is 8 equivalents to 5 equivalents.
  • the solvent used in this step is not particularly limited as long as it does not interfere with the activation reaction, and examples thereof include halogen-containing hydrocarbon solvents (for example, dichloromethane and chloroform) and aromatic hydrocarbon solvents (for example, toluene and xylene).
  • Ether solvent eg, tetrahydrofuran, 1,4-dioxane, cyclopentylmethyl ether, methyl-t-butyl ether
  • amide solvent eg, N, N-dimethylformamide, N, N-dimethylacetamide
  • nitrile solvent eg, eg.
  • Acetonitrile ketone solvents (eg acetone, methyl ethyl ketone), aliphatic hydrocarbon solvents (eg hexane, heptane, cyclohexane), ester solvents (eg ethyl acetate) and the like. It is preferably a nitrile solvent, an amide solvent, or an ether solvent, and more preferably acetonitrile, tetrahydrofuran, or N, N-dimethylacetamide.
  • ketone solvents eg acetone, methyl ethyl ketone
  • aliphatic hydrocarbon solvents eg hexane, heptane, cyclohexane
  • ester solvents eg ethyl acetate
  • It is preferably a nitrile solvent, an amide solvent, or an ether solvent, and more preferably acetonitrile, tetrahydrofuran, or N
  • the amount of the solvent used in this step is preferably 100 times by mass or less, more preferably 1 to 50 times by mass, still more preferably 3 times by mass or less with respect to the carboxylic acid halide or alkyl halide formic acid. It is a mass times to 20 mass times.
  • the N-terminal protected amino acid or N-terminal protected peptide is mixed with the carboxylic acid halide or alkyl halide formic acid, if necessary, in the presence of a solvent and / or base.
  • the temperature of the obtained mixture is controlled by using an oil bath or a cooling bath, if necessary.
  • the temperature of the mixture is not particularly limited, but is preferably from ⁇ 40 ° C. to the reflux temperature of the mixture, more preferably ⁇ 20 ° C. to 50 ° C., still more preferably ⁇ 10 ° C. to 30 ° C.
  • This step forms an N-terminal protected amino acid or N-terminal protected peptide with the C-terminal activated.
  • the product obtained by this step means an N-terminal protected amino acid or N-terminal protected peptide with C-terminal activation, or a mixture containing either of them.
  • the C-terminally activated N-terminal protected amino acid or N-terminal protected peptide thus obtained is isolated as a reaction solution or as a (crude) purified product without undergoing a purification step, followed by a subsequent step. It may be used for (3).
  • N-alkyl amino acid means an N-alkyl amino acid in which the N-terminal amino group and the C-terminal carboxy group are not protected, and "a peptide having an N-alkyl amino acid at the N-terminal”. Means a peptide having an N-alkyl amino acid at the N-terminus and unprotected N-terminal amino group and C-terminal carboxy group.
  • the N-alkyl amino acid or a peptide having an N-alkyl amino acid at the N-terminal is reacted with a silylating agent to cause the C-terminal, N-terminal and / or hydroxy (if any) of the amino acid or peptide.
  • a silylating agent to cause the C-terminal, N-terminal and / or hydroxy (if any) of the amino acid or peptide.
  • a peptide in which at least a part of a functional group such as a group has a trialkylsilylated N-alkyl amino acid or an N-alkyl amino acid at the N-terminal (hereinafter, also referred to as "trialkylsilylated amino acid or peptide"). This is the process of obtaining.
  • a 2 is a group derived from an NC 1-6 alkyl amino acid (C 1-6 alkyl has a substituent). (May be), or a group derived from a 4-6-membered cyclic secondary amino acid (the 4-6-membered ring consists of a C 6-14 aryl ring, a C 6-14 haloaryl ring and a C 3-8 cycloalkyl ring). (May be condensed with a cyclic compound selected from), or the N-terminal residue is an NC 1-6 alkyl amino acid (C 1-6 alkyl may have a substituent) or 4-6 members.
  • the 4-6-membered ring may be fused with a cyclic compound selected from the group consisting of a C 6-14 aryl ring, a C 6-14 haloaryl ring and a C 3-8 cycloalkyl ring.
  • a 2 ' is, N- methyl amino acids derived from groups, N-C 1-6 alkyl glycine group derived from (C 1-6 alkyl may have a substituent) or represents a group derived from a 4-6-membered cyclic secondary amino acid] N-terminal amino group and C-terminal carboxy group Is a step of mixing an unprotected amino acid with a silylating agent.
  • the N-alkyl amino acid in this step or the N-terminal amino acid in the peptide having an N-alkyl amino acid at the N-terminal is preferably an NC 1-6 alkyl amino acid (C 1-6 alkyl is substituted with cyclohexyl or phenyl). It may be), more preferably N-methyl amino acid, N-ethyl amino acid, N-propyl amino acid, N-butyl amino acid, N-pentyl amino acid, N-cyclohexylmethyl amino acid or N-benzyl amino acid, and further. It is preferably an N-methyl amino acid or an N-ethyl amino acid, and particularly preferably an N-methyl amino acid.
  • the silylating agent in this step is not particularly limited, and examples thereof include trimethylsilyl chloride, trimethylsilyl cyanide, 1,1,1,3,3,3-hexamethyldisilazane, N-trimethylsilylacetamide, and N. , N'-bis (trimethylsilyl) urea, N-methyl-N-trimethylsilyltrifluoroacetamide, N, O-bis (trimethylsilyl) acetamido, N, O-bis (trimethylsilyl) trifluoroacetamide and other trimethylsilylating agents, N- (Tert-Butyldimethylsilyl) -N-methyltrifluoroacetamide and the like can be mentioned.
  • it is trimethylsilyl chloride, N, O-bis (trimethylsilyl) acetamide, N, N'-bis (trimethylsilyl) urea or N, O-bis (trimethylsilyl) trifluoroacetamide, and more preferably N, O-bis. (Trimethylsilyl) acetamide.
  • the amount of the silylating agent used is preferably 0.01 to 50 equivalents, more preferably 0.1 to 20 equivalents, relative to the N-alkyl amino acid or the peptide having the N-alkyl amino acid at the N-terminus. More preferably, it is 0.2 to 5 equivalents.
  • silylation reaction can be carried out in the presence of a base and / or a solvent, if necessary.
  • the base used is not particularly limited, and examples thereof include aliphatic amines (eg, dicyclohexylamine, piperidine, triethylamine, N, N-diisopropylethylamine, N-methylmorpholin), aromatic amines (eg, pyridine, etc.). Imidazole, N, N-dimethyl-4-aminopyridine), alkali metal salts (for example, sodium hydrogen carbonate, potassium carbonate) and the like can be mentioned. It is preferably an aliphatic amine, and more preferably triethylamine or N, N-diisopropylethylamine.
  • aliphatic amines eg, dicyclohexylamine, piperidine, triethylamine, N, N-diisopropylethylamine, N-methylmorpholin
  • aromatic amines eg, pyridine, etc.
  • the amount of the base used is preferably 0.01 to 50 equivalents, more preferably 0.1 to 20 equivalents, still more preferably 0.1 equivalents, relative to the N-alkyl amino acid or the peptide having the N-alkyl amino acid at the N-terminal. Is 0.2 equivalent to 5 equivalent.
  • the solvent used in this step is not particularly limited as long as it does not interfere with the silylation reaction, and examples thereof include halogen-containing hydrocarbon solvents (for example, dichloromethane and chloroform) and aromatic hydrocarbon solvents (for example, toluene and xylene).
  • Ether solvent eg, tetrahydrofuran, 1,4-dioxane, cyclopentylmethyl ether, methyl-t-butyl ether
  • amide solvent eg, N, N-dimethylformamide
  • nitrile solvent eg, acetonitrile
  • It is preferably a nitrile solvent, an amide solvent, or an ether solvent, and more preferably acetonitrile, tetrahydrofuran, or N, N-dimethylacetamide.
  • the amount of the solvent used in this step is preferably 100 times by mass or less, more preferably 1 to 50 times by mass, that of the N-alkyl amino acid or the peptide having an N-alkyl amino acid at the N-terminal. Yes, more preferably 3 to 20 times by mass.
  • a peptide having an N-alkyl amino acid or an N-alkyl amino acid at the N-terminal is mixed with a silylating agent in the presence of a solvent and / or a base.
  • the temperature of the obtained mixture is controlled by using an oil bath or a cooling bath, if necessary.
  • the temperature of the mixture is not particularly limited, but is preferably from 0 ° C. to the reflux temperature of the mixture, more preferably 10 ° C. to 100 ° C., still more preferably 20 ° C. to 80 ° C.
  • the mixture may also be exposed to microwave irradiation.
  • a trialkylsilylated N-alkyl amino acid or a peptide having an N-alkyl amino acid at the N-terminal is formed.
  • the product obtained by this step means a mixture containing a trialkylsilylated N-alkyl amino acid or a peptide having an N-alkyl amino acid at the N-terminus.
  • the trialkylsilylated amino acid or peptide thus obtained is isolated as a reaction solution or as a (crude) purified product without undergoing a purification step, and is used in the subsequent step (3). May be good.
  • the trialkylsilylated N-alkyl amino acid or the peptide having an N-alkyl amino acid at the N-terminal can be analyzed by an analytical instrument such as NMR.
  • Process (3) This step is a step of mixing the product obtained in the step (1) and the product obtained in the step (2).
  • the C-terminally activated N-terminal protected amino acid or N-terminal protected peptide obtained in step (1) is reacted with the trialkylsilylated amino acid or peptide obtained in step (2).
  • This is a peptide extension step, and is preferably carried out by mixing and stirring the reaction solution obtained in the step (1) and the reaction solution obtained in the step (2).
  • peptide extension by reacting the C-terminally activated N-terminal protected amino acid obtained in step (1) with the trialkylsilylated amino acid or peptide obtained in step (2). It is a process.
  • peptide extension by reacting the C-terminally activated N-terminal protected peptide obtained in step (1) with the trialkylsilylated amino acid obtained in step (2). It is a process.
  • the temperature of the obtained mixture is controlled by using an oil bath or a cooling bath as needed.
  • the temperature of the mixture is not particularly limited, but is preferably from ⁇ 40 ° C. to the reflux temperature of the reaction mixture, more preferably ⁇ 20 ° C. to 50 ° C., still more preferably ⁇ 10 ° C. to 30 ° C.
  • the peptide chain can be further extended by repeating the following steps (4) to (5) a desired number of times with respect to the peptide obtained in the step (3). .. (4) A step of removing the N-terminal protecting group of the peptide obtained in step (3) or (5). (5) A step of reacting the N-terminal of the peptide obtained in step (4) with an N-terminal protected amino acid or an N-terminal protected peptide. Step (5) can be carried out by the same operation as in steps (1), (2) and (3) above, or by a general peptide synthesis reaction.
  • the purification steps of steps (1) to (5) can be appropriately omitted as long as the reaction of the next step is not affected.
  • Step (4) N-terminal deprotection step
  • the N-terminal protecting group is removed from the peptide obtained in the above step (3) or (5), and the N-terminal and C-terminal are unprotected peptides. Is the process of obtaining.
  • the deprotection reagent used in this step is appropriately selected according to the protecting group used.
  • examples include acids (eg, trifluoroacetic acid, hydrochloric acid, Lewis acid), secondary or tertiary amines (eg, pyrrolidine, piperidine, morpholine, triethylamine), hydrogenation (eg, palladium catalyst / hydrogenation) and the like.
  • acids eg, trifluoroacetic acid, hydrochloric acid, Lewis acid
  • secondary or tertiary amines eg, pyrrolidine, piperidine, morpholine, triethylamine
  • hydrogenation eg, palladium catalyst / hydrogenation
  • the deprotection conditions used in this step are appropriately selected depending on the type of N-terminal protecting group.
  • a 9-fluorenylmethoxycarbonyl group it is carried out by treating with a base, and t-butoxycarbonyl.
  • a group it is carried out by treatment with an acid, and in the case of a benzyloxycarbonyl group or an allyloxycarbonyl group, it is neutral, for example, by hydrogenation in the presence of a metal catalyst.
  • reaction substrate has a hydroxy group, a mercapto group, an amino group, a carboxy group or a carbonyl group (particularly when the side chain of the amino acid or peptide has a functional group), these groups are generally used in peptide chemistry and the like.
  • a protective group such as that used in the above may be introduced, and the target compound can be obtained by removing the protective group if necessary after the reaction.
  • Protection and deprotection use commonly known protecting groups to protect and deprotect reactions (eg, Protective Group in Organic Synthesis, Fourth edition). , TWGreene, John Wiley & Sons Inc. (2006), etc.).
  • amino acid A The N-terminal amino acid in the N-terminal protected amino acid or N-terminal protected peptide used in step (1)
  • amino acid B The N-terminal amino acid in the amino acid or peptide used in step (2)
  • amino acid A and B are ⁇ -, ⁇ - or ⁇ -amino acids, respectively, and more preferably either amino acid A or amino acid B is an ⁇ -amino acid.
  • amino acid A is ⁇ -amino acid and amino acid B is ⁇ -amino acid, ⁇ -amino acid or ⁇ -amino acid, or amino acid A is ⁇ -amino acid, ⁇ -amino acid or ⁇ -amino acid.
  • Amino acid B is ⁇ -amino acid, particularly preferably amino acid A is ⁇ -amino acid, and amino acid B is ⁇ -amino acid, ⁇ -amino acid or ⁇ -amino acid.
  • the N-terminal amino acid in the peptide used in step (2) is preferably ⁇ -amino acid.
  • Initiator + manufactured by Biotage was used as the microwave reactor.
  • the proton nuclear magnetic resonance ( 1 H-NMR) of the synthesis example is JNM-ECP300 manufactured by JEOL, or JNM-ECX300 manufactured by JEOL, or Bruker. Measured in deuterated chloroform or deuterated dimethylsulfoxide solvent using Ascend TM 500 manufactured by the company, the chemical shift was shown by the ⁇ value (ppm) when tetramethylsilane was used as the internal standard (0.0 ppm).
  • high performance liquid chromatography / mass spectrometry is either ACQUITY UPLC H-Class / QDa manufactured by Waters, ACQUITY UPLC H-Class / SQD2 manufactured by Waters, or LC-20AD / Triple Tof5600 manufactured by Shimadzu. Was measured using.
  • ESI + means a positive mode of electrospray ionization
  • M + H means a proton adduct
  • M + Na means a sodium adduct.
  • ESI- is a negative mode of electrospray ionization
  • MH means a proton deficient.
  • silica gel column chromatography used either a Hi-Flash column manufactured by Yamazen, SNAP Ultra Silka Cartridge manufactured by Biotage, silica gel 60 manufactured by Merck, or PSQ60B manufactured by Fuji Silysia Chemical Ltd.
  • the yield or quantitative yield may exceed 100%. All of these exceed 100% due to measurement error, the influence of the purity of the raw material or product, or other factors based on common general knowledge. In the following examples, the causes when the yield exceeds 100% are not individually mentioned, but those skilled in the art can fully understand the scientific validity of these examples.
  • 2,2,4-trimethylpentane-3-ol (5.25 g, 40.3 mmol) and pyridine (3.67 g, 46.3 mmol) were mixed with carbon tetrachloride (40 mL) and cooled to 0 ° C.
  • the obtained reaction solution was washed twice with water (50 mL) and sequentially with saturated aqueous sodium chloride solution (50 mL).
  • the obtained organic layer was concentrated to obtain 2,2,4-trimethylpentane-3-ylcarbonochloride (6.06 g, 78% yield) as a colorless transparent liquid. This compound was used in the next step without further purification.
  • Synthesis Example 7 Synthesis of 3-methylbutano-2-ylcarbonochloridate 3-Methylbutano-2-ol (3.97 g, 45.0 mmol) and pyridine (4.09 g, 51.8 mmol) were mixed with carbon tetrachloride (40 mL) and cooled to 0 ° C. A solution in which triphosgene (5.47 g, 18.5 mmol) and carbon tetrachloride (20 mL) were separately mixed was added to this solution, and the mixture was further heated to 60 ° C. and stirred for 8 hours. The obtained reaction solution was washed twice with water (50 mL) and sequentially with saturated aqueous sodium chloride solution (50 mL). The obtained organic layer was concentrated to obtain 3-methylbutano-2-ylcarbonochloridate (5.10 g, yield 95%) as a colorless transparent liquid. This compound was used in the next step without further purification.
  • Boc-Phe-OH (0.066 g, 0.25 mmol) and triethylamine (0.033 g, 0.32 mmol) were mixed with tetrahydrofuran (5 mL) and 2,2-dimethylbutanoyl chloride (0.040 g) at 0 ° C. , 0.30 mmol) and stirred for 1 hour.
  • H-MePhe-OH (0.067 g, 0.38 mmol), N, O-bis (trimethylsilyl) acetamide (0.161 g, 0.750 mmol) and acetonitrile (4 mL) are separately mixed with this solution and irradiated with microwaves. The solution prepared by stirring at 75 ° C.
  • Fmoc-Phe-OH (0.097 g, 0.25 mmol) and N-methylmorpholine (0.033 g, 0.33 mmol) were mixed with tetrahydrofuran (5.0 mL) and 4-ethyl-2,2 at 0 ° C. -Dimethylhexane-3-ylcarbonochloride (0.066 g, 0.30 mmol) was added, and the mixture was stirred for 1 hour.
  • Fmoc-Phe-OH (0.097 g, 0.25 mmol) and N-methylmorpholine (0.033 g, 0.33 mmol) were mixed with N, N-dimethylacetamide (5.0 mL) and 4- at 0 ° C.
  • Ethyl-2,2-dimethylhexane-3-ylcarbonochloride (0.066 g, 0.30 mmol) was added, and the mixture was stirred for 1 hour.
  • reaction solution was diluted with ethyl acetate (30 mL) and washed successively with 10 mass% citric acid aqueous solution (50 mL), 10 mass% sodium chloride aqueous solution (20 mL) and saturated sodium chloride aqueous solution (20 mL).
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Fmoc-Phe-MePhe-OH (0.137 g, yield 100%) as a white solid.
  • Fmoc-Phe-OH (0.194 g, 0.500 mmol) and triethylamine (0.0607 g, 0.60 mmol) were mixed with tetrahydrofuran (10 mL) and 2,2-dimethylbutanoyl chloride (0.074 g) at 0 ° C. , 0.550 mmol) and stirred for 1 hour.
  • H-MePhe-OH (0.108 g, 0.600 mmol
  • N, N'-bis (trimethylsilyl) urea (0.250 g, 1.20 mmol)
  • acetonitrile (4.0 mL) were separately mixed with this solution.
  • Fmoc-Phe-OH (0.097 g, 0.250 mmol) and triethylamine (0.0304 g, 0.300 mmol) were mixed with tetrahydrofuran (5 mL) and at 0 ° C. 2,2-dimethylbutanoyl chloride (0.0371 g). , 0.275 mmol) and stirred for 1 hour.
  • H-MePhe-OH (0.0538 g, 0.300 mmol), N, O-bis (trimethylsilyl) trifluoroacetamide (0.155 g, 0.601 mmol) and acetonitrile (4.0 mL) are separately mixed with this solution. , The solution prepared by stirring at 75 ° C.
  • Boc-MePhe-OH (0.070 g, 0.250 mmol) and triethylamine (0.033 g, 0.32 mmol) were mixed with tetrahydrofuran (5 mL) and 2,2-dimethylbutanoyl chloride (0.040 g) at 0 ° C. , 0.30 mmol) and stirred for 1 hour.
  • H-MePhe-OH (0.067 g, 0.38 mmol), N, O-bis (trimethylsilyl) acetamide (0.161 g, 0.774 mmol) and acetonitrile (4.0 mL) were separately mixed with this solution, and 75 The prepared solution was added by stirring at ° C.
  • reaction solution was concentrated, diluted with ethyl acetate (20 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), and saturated aqueous sodium chloride solution (10 mL).
  • the obtained organic layer was washed successively with a 10 mass% citric acid aqueous solution (20 mL) and a saturated sodium chloride aqueous solution (20 mL).
  • Boc-MePhe-OH (1.40 g, 5.00 mmol) and N-methylmorpholine (0.556 g, 5.50 mmol) are mixed with tetrahydrofuran (50 mL) and isopropyl chloroformate (0.643 g, 5) at 0 ° C. .25 mmol) was added and the mixture was stirred for 15 minutes.
  • H-Phe-OH (0.991 g, 6.00 mmol), N, O-bis (trimethylsilyl) acetamide (2.57 g, 12.4 mmol) and acetonitrile (15 mL) were separately added to this solution under microwave irradiation 75. Stir at ° C.
  • reaction solution was diluted with ethyl acetate (200 mL) and washed successively with 10 mass% citric acid aqueous solution (75 mL), 5 mass% sodium chloride aqueous solution (75 mL) and saturated sodium chloride aqueous solution (75 mL).
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Boc-MePhe-Phe-OH (2.20 g, yield 103%) as a white solid.
  • Fmoc-MePhe-OH (2.00 g, 5.00 mmol) and N-methylmorpholine (0.556 g, 5.50 mmol) are mixed with tetrahydrofuran (30 mL) and isopropyl chloroformate (0.663 g, 5) at 0 ° C. .25 mmol) was added and the mixture was stirred for 30 minutes.
  • H-Phe-OH (0.991 g, 6.00 mmol), N, O-bis (trimethylsilyl) acetamide (2.68 g, 12.9 mmol) and acetonitrile (15 mL) were separately mixed with this solution and heated to 75 ° C.
  • the obtained reaction solution was diluted with ethyl acetate (75 mL) and washed successively with 10 mass% citric acid aqueous solution (50 mL), 5 mass% sodium chloride aqueous solution (50 mL) and saturated sodium chloride aqueous solution (50 mL).
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Fmoc-MePhe-Phe-OH (2.85 g, yield 98%) as a white solid.
  • Boc-MePhe-Phe-OH (0.213 g, 0.500 mmol) was mixed with 4M-HCl / ethyl acetate (10 mL) and stirred at 25 ° C. for 1 hour.
  • the obtained reaction solution was concentrated, diisopropyl ether was added and suspended, and the produced solid was collected by filtration through a Kiriyama funnel, dried, and H-MePhe-Phe-OH ⁇ HCl (0.164 g, yield 91%) was added. Obtained as a white solid.
  • the obtained reaction solution was diluted with ethyl acetate (40 mL) and washed successively with 10% by mass aqueous citric acid solution and saturated aqueous sodium chloride solution.
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Boc-Phe-MePhe-MePhe-MePhe-OH (0.532 g, 90% yield) as a white solid.
  • Acetonitrile (10 mL) and N, O-bis (trimethylsilyl) acetamide (0.430 g, 2.07 mmol) were mixed with the obtained residue, and the mixture was stirred at 25 ° C. for 20 minutes to obtain a colorless and transparent solution.
  • the obtained reaction solution was diluted with ethyl acetate (20 mL) and washed successively with 10 mass% citric acid aqueous solution (20 mL), 10 mass% sodium chloride aqueous solution (20 mL) and saturated sodium chloride aqueous solution (20 mL).
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Boc-Phe-MePhe-MePhe-Phe-OH (0.453 g, yield 92%) as a white solid.
  • Acetonitrile (10 mL) and N, O-bis (trimethylsilyl) acetamide (0.621 g, 2.99 mmol) were mixed with the obtained residue, and the mixture was stirred at 25 ° C. for 20 minutes to obtain a colorless and transparent solution.
  • the obtained reaction solution was diluted with ethyl acetate (40 mL) and washed successively with 10% by mass aqueous citric acid solution and saturated aqueous sodium chloride solution.
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Boc-MePhe-MePhe-Phe-OH (0.701 g, yield 103%) as a brown solid.
  • Boc-MePhe-OH (1.40 g, 5.00 mmol) and N-methylmorpholine (0.556 g, 5.50 mmol) were mixed with tetrahydrofuran (30 mL) and 3,3-dimethylbutane-2- at 0 ° C.
  • Ilcarbonochloridate (0.864 g, 5.25 mmol) was added, and the mixture was stirred for 1 hour.
  • H-Pro-OH (0.691 g, 6.00 mmol), N, O-bis (trimethylsilyl) acetamide (3.85 g, 18.6 mmol) and acetonitrile (12 mL) were separately mixed with this solution and heated to 70 ° C.
  • the obtained reaction solution was diluted with ethyl acetate (40 mL) and washed successively with 10% by mass aqueous citric acid solution and saturated aqueous sodium chloride solution.
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Boc-MePhe-MePhe-Pro-OH (1.71 g, 90% yield) as a white solid.
  • Boc-MePhe-MePhe-Pro-OH (1.61 g, 3.00 mmol) was mixed with 4M-HCl / ethyl acetate (15 mL) and stirred at 25 ° C. for 90 minutes.
  • the obtained reaction solution was concentrated, ethyl acetate (5 mL) and diisopropyl ether (20 mL) were added and suspended, and the produced solid was collected by filtration through a Kiriyama funnel. Washed with diisopropyl ether (10 mL) and dried to give H-MePhe-MePhe-Pro-OH ⁇ HCl (1.30 g, 91% yield) as a white solid. The obtained solid was used in the next step.
  • Condensation step Solution B was mixed while the solution A was cooled to 0 ° C, and the mixture was further stirred at 25 ° C for 1 hour.
  • the obtained reaction solution was diluted with ethyl acetate (40 mL) and washed successively with 10% by mass aqueous citric acid solution and saturated aqueous sodium chloride solution.
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Boc-Tyr-MePhe-MePhe-Pro-OH (0.698 g, yield 99%) as a white solid.
  • the obtained reaction solution was concentrated, diluted with ethyl acetate (30 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), and saturated aqueous sodium chloride solution (10 mL).
  • the obtained organic layer was washed successively with 10% by mass aqueous citric acid solution (20 mL) and saturated aqueous sodium chloride solution.
  • Boc-MePhe-MeAla-Tyr-OH (0.474 g, 0.898 mmol) was mixed with 4M-HCl / ethyl acetate (5 mL) and stirred at 25 ° C. for 60 minutes.
  • the obtained reaction solution was concentrated, acetonitrile (5 mL) and N, N-diisopropylethylamine (1.74 g, 13.5 mmol) were added and suspended, and the produced solid was collected by filtration through a Kiriyama funnel.
  • Boc-Phe-OH (0.125 g, 0.470 mmol) and triethylamine (0.057 g, 0.564 mmol) were mixed with tetrahydrofuran (5.0 mL) and 2,2-dimethylbutanoyl chloride (0) at 0 ° C. .070 g, 0.52 mmol) was added, and the mixture was stirred for 45 minutes.
  • H-MePhe-MeAla-Tyr-OH (0.221 g, 0.517 mmol), N, O-bis (trimethylsilyl) acetamide (0.332 g, 1.60 mmol) and acetonitrile (5.0 mL) were separately added to this solution.
  • Boc-Phe-MePhe-MeAla-Tyr-OH (0.317 g, 0.470 mmol) was mixed with trifluoroacetic acid (1.45 mL) and stirred at 25 ° C. for 15 minutes.
  • the obtained reaction solution was concentrated, acetonitrile (7 mL) and triethylamine (0.476 g, 4.70 mmol) were added and suspended, and the produced solid was collected by filtration through a Kiriyama funnel.
  • Boc-MePhe-OH (0.092 g, 0.33 mmol) and triethylamine (0.040 g, 0.396 mmol) were mixed with tetrahydrofuran (5.0 mL) and 2,2-dimethylbutanoyl chloride (0) at 0 ° C. .0489 g, 0.363 mmol) was added, and the mixture was stirred for 45 minutes.
  • the obtained reaction solution was concentrated, diluted with ethyl acetate (40 mL), and washed successively with 10 mass% citric acid aqueous solution and saturated sodium chloride aqueous solution.
  • Boc-MePhe-OH (0.559 g, 2.00 mmol) and triethylamine (0.243 g, 2.40 mmol) were mixed with tetrahydrofuran (30 mL) and 2,2-dimethylbutanoyl chloride (0.296 g) at 0 ° C. 2.20 mmol) was added and the mixture was stirred for 45 minutes.
  • H-MeAla-Phe-OH (0.601 g, 2.40 mmol), N, O-bis (trimethylsilyl) acetoamide (1.03 g, 4.95 mmol) and acetonitrile (20 mL) were separately mixed with this solution, and 25 The prepared solution was added by stirring at ° C.
  • Boc-MePhe-MeAla-Phe-OH (1.06 g, 2.08 mmol) was mixed with 4M-HCl / ethyl acetate (20 mL) and stirred at 25 ° C. for 60 minutes. The obtained reaction solution was concentrated, diisopropyl ether (20 mL) was added and suspended, and the produced solid was collected by filtration with a Kiriyama funnel. Washing and drying with diisopropyl ether (10 mL) gave H-MePhe-MeAla-Phe-OH ⁇ HCl (0.886 g, 95% yield) as a white solid.
  • the obtained reaction solution was concentrated, diluted with ethyl acetate (20 mL), and washed twice with saturated aqueous sodium hydrogen carbonate solution (30 mL), water (30 mL), and saturated aqueous sodium chloride solution (12 mL).
  • the obtained organic layer was washed successively with a 10 mass% citric acid aqueous solution (20 mL) and a saturated sodium chloride aqueous solution (20 mL).
  • the resulting organic layer was concentrated and the residue was dissolved in ethyl acetate (5.0 mL) and poured into hexane (95 mL).
  • Solution B Mix H-MePhe-MeAla-Tyr-OH (0.171 g, 0.400 mmol), N, N-diisopropylethylamine (0.431 g, 3.33 mmol) and acetonitrile (20 mL) and concentrate the solution to prepare the solvent. Removed. Acetonitrile (10 mL) and N, O-bis (trimethylsilyl) acetamide (0.343 g, 1.65 mmol) were mixed with the obtained residue, and the mixture was stirred at 25 ° C. for 40 minutes to obtain a colorless and transparent solution.
  • the obtained reaction solution was concentrated, diluted with ethyl acetate (20 mL), and washed twice with saturated aqueous sodium hydrogen carbonate solution (15 mL), water (15 mL), and saturated aqueous sodium chloride solution (7.5 mL).
  • the obtained organic layer was washed successively with a 10 mass% citric acid aqueous solution (20 mL) and a saturated sodium chloride aqueous solution (20 mL).
  • Fmoc-BnGly-OH (0.387 g, 1.00 mmol) and N-methylmorpholine (0.111 g, 1.10 mmol) were mixed with tetrahydrofuran (20 mL) and isopropyl chloroformate (0.129 g, 1) at 0 ° C. 0.05 mmol) was added and the mixture was stirred for 5 minutes.
  • This solution is separately mixed with H-Phe-OH (0.198 g, 1.20 mmol), N, O-bis (trimethylsilyl) acetamide (0.519 g, 2.48 mmol), and acetonitrile (5 mL) and irradiated with microwaves.
  • Boc-Phe-OH (0.066 g, 0.25 mmol) and triethylamine (0.030 g, 0.30 mmol) were mixed with tetrahydrofuran (5 mL) and 2,2-dimethylbutanoyl chloride (0.037 g) at 0 ° C. , 0.28 mmol) and stirred for 45 minutes.
  • H-BnGly-Phe-OH (0.093 g, 0.30 mmol), N, O-bis (trimethylsilyl) acetamide (0.129 g, 0.616 mmol) and acetonitrile (4 mL) were separately mixed with this solution, and 25 The prepared solution was added by stirring at ° C.
  • reaction solution was concentrated, diluted with ethyl acetate (40 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), and saturated aqueous sodium chloride solution (10 mL). The obtained organic layer was washed successively with a 10 mass% citric acid aqueous solution and a saturated sodium chloride aqueous solution (20 mL).
  • reaction solution was concentrated, diluted with ethyl acetate (20 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), and saturated aqueous sodium chloride solution (10 mL). The obtained organic layer was washed twice with a 10 mass% citric acid aqueous solution (20 mL) and a saturated sodium chloride aqueous solution (20 mL).
  • Boc-Phe-OH (0.066 g, 0.25 mmol) and triethylamine (0.030 g, 0.300 mmol) were mixed with tetrahydrofuran (5.0 mL) and 2,2-dimethylbutanoyl chloride (0) at 0 ° C. .037 g, 0.27 mmol) was added, and the mixture was stirred for 45 minutes.
  • Hn-PrGly-Phe-OH (0.066 g, 0.25 mmol), N, O-bis (trimethylsilyl) acetamide (0.118 g, 0.564 mmol), and acetonitrile (4.0 mL) were separately added to this solution. The solution was mixed, stirred at 25 ° C.
  • reaction solution was concentrated, diluted with ethyl acetate (40 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), and saturated aqueous sodium chloride solution (10 mL). The obtained organic layer was washed successively with a 10 mass% citric acid aqueous solution and a saturated sodium chloride aqueous solution.
  • Fmoc-MePhe-OH (0.080 g, 0.20 mmol) and triethylamine (0.024 g, 0.24 mmol) were mixed with tetrahydrofuran (5 mL) and 2,2-dimethylbutanoyl chloride (0.030 g) at 0 ° C. , 0.22 mmol) and stirred for 45 minutes.
  • Hn-PrGly-Phe-OH (0.063 g, 0.24 mmol), N, O-bis (trimethylsilyl) acetamide (0.104 g, 0.50 mmol) and acetonitrile (2 mL) are separately mixed with this solution.
  • Boc-MePhe-OH (0.084 g, 0.30 mmol) and triethylamine (0.036 g, 0.36 mmol) were mixed with tetrahydrofuran (6.0 mL) and 2,2-dimethylbutanoyl chloride (0) at 0 ° C. .044 g, 0.331 mmol) was added and the mixture was stirred for 1 hour.
  • reaction solution was concentrated, diluted with ethyl acetate (40 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), and saturated aqueous sodium chloride solution (10 mL).
  • the obtained organic layer was washed successively with a 10 mass% citric acid aqueous solution and a saturated sodium chloride aqueous solution.
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Boc-MePhe-MePhe-MeAla-Tyr-OH (0.177 g, yield 85%) as a white solid.
  • Acetonitrile (5.0 mL) and N, O-bis (trimethylsilyl) acetamide (0.167 g, 0.80 mmol) were mixed with the obtained residue, and the mixture was stirred at 25 ° C. for 5 minutes to obtain a colorless and transparent solution.
  • the obtained reaction solution was concentrated, diluted with ethyl acetate (30 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), and saturated aqueous sodium chloride solution (10 mL).
  • the obtained organic layer was concentrated to obtain Fmoc-Glu (tBu) -MePhe-MePhe-MeAla-Tyr-OH (0.192 g, 90% yield) as a white solid.
  • Fmoc-Cys (Trt) -OH (0.147 g, 0.251 mmol) and triethylamine (0.031 g, 0.30 mmol) were mixed with tetrahydrofuran (5.0 mL) and 2,2-dimethylbutanoyl at 0 ° C.
  • Chloride (0.037 g, 0.28 mmol) was added and the mixture was stirred for 1 hour.
  • H-MePhe-OH (0.054 g, 0.30 mmol), N, O-bis (trimethylsilyl) acetamide (0.130 g, 0.62 mmol) and acetonitrile (4.0 mL) were separately mixed with this solution, and 75 The prepared solution was added by stirring at ° C.
  • reaction solution was concentrated, diluted with ethyl acetate (40 mL), and washed successively with 10 mass% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution, water and saturated aqueous sodium chloride solution.
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Fmoc-Cys (Trt) -MePhe-OH (0.187 g, 100% yield) as a white solid.
  • Boc-Arg (Cbz) 2- OH (0.136 g, 0.250 mmol) and triethylamine (0.030 g, 0.30 mmol) were mixed with tetrahydrofuran (5.0 mL) and 2,2-dimethylbuta at 0 ° C.
  • Noyl chloride (0.037 g, 0.28 mmol) was added and the mixture was stirred for 45 minutes.
  • H-MePhe-OH 0.054 g, 0.30 mmol
  • N, O-bis (trimethylsilyl) acetamide (0.128 g, 0.62 mmol) and acetonitrile (4.0 mL) were separately mixed with this solution, and 75 The prepared solution was added by stirring at ° C.
  • reaction solution was concentrated, diluted with ethyl acetate (40 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), and saturated aqueous sodium chloride solution (10 mL). The obtained organic layer was washed successively with a 10 mass% citric acid aqueous solution and a saturated sodium chloride aqueous solution.
  • Boc-Arg (Cbz) 2- OH (0.136 g, 0.251 mmol) and triethylamine (0.030 g, 0.30 mmol) were mixed with tetrahydrofuran (5.0 mL) and 2,2-dimethylbuta at 0 ° C.
  • Noyl chloride (0.037 g, 0.28 mmol) was added, and the mixture was stirred for 1 hour.
  • H-MeAla-Phe-OH (0.075 g, 0.30 mmol), N, O-bis (trimethylsilyl) acetoamide (0.130 g, 0.621 mmol) and acetonitrile (4.0 mL) are separately mixed with this solution.
  • reaction solution was concentrated, diluted with ethyl acetate (40 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (20 mL), water (20 mL), and saturated aqueous sodium chloride solution (10 mL). The obtained organic layer was washed successively with a 10 mass% citric acid aqueous solution and a saturated sodium chloride aqueous solution.
  • Fmoc-His (Boc) -OH (0.120 g, 0.251 mmol) and N-methylmorpholine (0.033 g, 0.33 mmol) were mixed with tetrahydrofuran (5.0 mL) and 4-ethyl- at 0 ° C. 2,2-Dimethylhexane-3-ylcarbonochloride (0.067 g, 0.30 mmol) was added, and the mixture was stirred for 2 hours.
  • the obtained reaction solution was concentrated, diluted with ethyl acetate (40 mL), and washed successively with 10 mass% citric acid aqueous solution and saturated sodium chloride aqueous solution.
  • the obtained organic layer was concentrated and then purified by silica gel column chromatography to obtain Fmoc-MeHis (Trt) -Leu-OH (1.37 g, yield 92%) as a pale yellow solid.
  • Fmoc-Phe-OH (0.078 g, 0.20 mmol) and triethylamine (0.024 g, 0.24 mmol) were mixed with tetrahydrofuran (5.0 mL) and 2,2-dimethylbutanoyl chloride (0) at 0 ° C. .030 g, 0.22 mmol) was added and the mixture was stirred for 1 hour.
  • reaction solution was concentrated, diluted with ethyl acetate (40 mL), and washed successively with 10 mass% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution, water and saturated aqueous sodium chloride solution.
  • the obtained organic layer was concentrated to obtain Fmoc-Phe-MeHis (Trt) -Leu-OH (0.154 g, yield 86%) as a white solid.
  • Fmoc-Val-OH (0.101 g, 0.298 mmol) and triethylamine (0.053 mL, 0.383 mmol) were mixed with tetrahydrofuran (1.0 g) and pivaloyl chloride (0.043 mL, 0) at 0 ° C. .354 mmol) was added and the mixture was stirred for 1 hour.
  • H-MePhe-OH (0.080 g, 0.446 mmol), trimethylsilyl chloride (0.070 mL, 0.554 mmol), triethylamine (0.082 mL, 0.592 mmol), acetonitrile (0.80 g) were separately added to this solution.
  • the obtained reaction solution was diluted with ethyl acetate (5.0 g) and washed twice with a 10 mass% citric acid aqueous solution (3.0 g) and a saturated salt aqueous solution (2.0 g).
  • the quantitative yield was 11%.
  • the ratio of the raw material Fmoc-Val-OH to the product Fmoc-Val-MePhe-OH was calculated by analysis ⁇ analysis condition 4> using high performance liquid chromatography.
  • Synthesis Example 53 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.100 g, 0.295 mmol) and triethylamine (0.053 mL, 0.38 mmol) were mixed with tetrahydrofuran (1.0 g) and 0. Pivaloyl chloride (0.043 mL, 0.35 mmol) was added at ° C., and the mixture was stirred for 1 hour.
  • Synthesis Example 54 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.100 g, 0.295 mmol) and N-methylmorpholine (0.042 mL, 0.383 mmol) are mixed with tetrahydrofuran (1.0 g). Then, isobutylcarbonochloridate (0.046 mL, 0.35 mmol) was added at 0 ° C., and the mixture was stirred for 5 minutes.
  • Synthesis Example 55 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.100 g, 0.295 mmol) and triethylamine (0.053 mL, 0.38 mmol) were mixed with tetrahydrofuran (1.0 g) and 0. 2-Ethylbutanoyl chloride (0.048 mL, 0.35 mmol) was added at ° C., and the mixture was stirred for 1 hour.
  • Synthesis Example 56 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.100 g, 0.295 mmol) and triethylamine (0.053 mL, 0.38 mmol) were mixed with tetrahydrofuran (1.0 g) and 0. 2,2-Dimethylbutanoyl chloride (0.049 mL, 0.35 mmol) was added at ° C., and the mixture was stirred for 1 hour.
  • Synthesis Example 57 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.100 g, 0.295 mmol) and N, N-diisopropylethylamine (0.058 mL, 0.32 mmol) were added to acetonitrile (1.0 g). At 0 ° C., a 50 mass% toluene solution of 2- (4,4-dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride (0.107 g, 0.354 mmol) was added. Stirred for 2 hours.
  • reaction solution was quenched with methanol (0.5 mL) and N, N-diisopropylethylamine (0.05 mL), diluted with ethyl acetate (5.0 g), and diluted with 10 mass% aqueous citric acid solution (2.0 g). And washed twice with saturated aqueous saline solution (1.0 g). The quantitative yield of Fmoc-Val-MePhe-OH in the collected organic layer was 96%.
  • Synthesis Example 58 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.100 g, 0.295 mmol) and N-methylmorpholine (0.071 mL, 0.648 mmol) were added to N, N-dimethylacetamide (5). .9 mL) was mixed, 2,4-dimethylpentane-3-yl carbonochloridet (0.105 g, 0.589 mmol) was added at 0 ° C., and the mixture was stirred for 2 hours.
  • reaction solution was quenched with methanol (5.0 mL) and N, N-diisopropylethylamine (0.50 mL), diluted with ethyl acetate (30.0 g), and diluted with 10 mass% aqueous citric acid solution (18.0 g). And washed twice with saturated aqueous saline solution (6.0 g). The quantitative yield of Fmoc-Val-MePhe-OH in the collected organic layer was 85%.
  • Synthesis Example 59 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.100 g, 0.295 mmol) and N-methylmorpholine (0.071 mL, 0.648 mmol) were added to N, N-dimethylacetamide (5). .9 mL) was mixed, 2,2,4-tritylpentane-3-yl carbonochloridet (0.114 g, 0.589 mmol) was added at 0 ° C., and the mixture was stirred for 2 hours.
  • reaction solution was quenched with methanol (5.0 mL) and N, N-diisopropylethylamine (0.50 mL), diluted with ethyl acetate (30.0 g), and diluted with 10 mass% aqueous citric acid solution (18.0 g). And washed twice with saturated aqueous saline solution (6.0 g). The quantitative yield of Fmoc-Val-MePhe-OH in the collected organic layer was 88%.
  • Synthesis Example 60 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.100 g, 0.295 mmol) and N, N-diisopropylethylamine (0.065 mL, 0.38 mmol) were added in tetrahydrofuran (1.0 g). 1-adamantane carbonyl chloride (0.070 g, 0.35 mmol) was added at 0 ° C., and the mixture was stirred for 1 hour.
  • Synthesis Example 61 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.10 g, 0.30 mmol) and N-methylmorpholine (0.071 mL, 0.65 mmol) were added to N, N-dimethylacetamide (5). .9 mL) was mixed, 4-ethyl-2,2-dimethylhexane-3-ylcarbonochloride (0.13 g, 0.59 mmol) was added at 0 ° C., and the mixture was stirred for 2 hours.
  • reaction solution was quenched with methanol (5.0 mL) and N, N-diisopropylethylamine (0.50 mL), diluted with ethyl acetate (30.0 g), and diluted with 10 mass% aqueous citric acid solution (18.0 g). , Washed twice with saturated aqueous salt solution (10.0 g) and saturated aqueous salt solution (6.0 g). The quantitative yield of Fmoc-Val-MePhe-OH in the collected organic layer was 83%.
  • Synthesis Example 62 Synthesis of Fmoc-Val-MePhe-OH Fmoc-Val-OH (0.100 g, 0.295 mmol) and triethylamine (0.053 mL, 0.383 mmol) were mixed with tetrahydrofuran (1.0 g) and 0. 2-Ethylhexanoyl chloride (0.061 mL, 0.354 mmol) was added at ° C., and the mixture was stirred for 1 hour.
  • the ratio of the raw material Cbz-Phe-OH to the product Cbz-Phe-MePhe-Phe-OH was calculated by analysis using high performance liquid chromatography ⁇ Analysis Condition 5>.
  • the reaction mixture is concentrated under reduced pressure, diluted with methanol (300 g), filtered, and the obtained filtrate is diluted again with methanol (300 g), and the operation of filtering is repeated three times, and all the obtained filtrates are collected.
  • the mixture was concentrated, diluted with acetonitrile (100 g) and concentrated again to obtain H-MeOH-Phe-OH (1.35 g, yield 65%) as a white solid.
  • Synthesis Example 67 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (50 mg, 0.17 mmol), tetrahydrofuran (0.5 g) and N-methylmorpholine (20 mg, 0.20 mmol) are mixed and mixed. Isobutyl carbonate chloride (27 mg, 0.20 mmol) was added at 0 ° C., and the mixture was stirred for 3 hours. H-MePhe-Phe-OH (82 mg, 0.25 mmol), N, O-bis (trimethylsilyl) acetoamide (97 mg, 0.48 mmol) and acetonitrile (0.82 g) were separately mixed with this solution and heated to 50 ° C.
  • the obtained reaction solution was diluted with ethyl acetate (2.5 g), separated with a 10 mass% citric acid aqueous solution (1.0 g), and washed twice with a 10 mass% sodium chloride aqueous solution (1.0 g).
  • the quantitative yield of Cbz-Phe-MePhe-Phe-OH of the obtained organic layer was 43%.
  • Synthesis Example 68 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (50 mg, 0.17 mmol), tetrahydrofuran (0.5 g) and triethylamine (20 mg, 0.20 mmol) are mixed and brought to 0 ° C. 2,2-Dimethylbutanoyl chloride (27 mg, 0.20 mmol) was added, and the mixture was stirred for 2 hours. H-MePhe-Phe-OH (82 mg, 0.25 mmol), N, O-bis (trimethylsilyl) acetoamide (97 mg, 0.48 mmol) and acetonitrile (0.82 g) were separately mixed with this solution and heated to 50 ° C.
  • the obtained reaction solution was diluted with ethyl acetate (2.5 g), separated with a 10 mass% citric acid aqueous solution (1.0 g), and washed twice with a 10 mass% sodium chloride aqueous solution (1.0 g).
  • the quantitative yield of Cbz-Phe-MePhe-Phe-OH of the obtained organic layer was 95%.
  • Synthesis Example 69 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (50 mg, 0.17 mmol), tetrahydrofuran (0.5 g) and triethylamine (20 mg, 0.20 mmol) are mixed and brought to 0 ° C. 2-Ethylbutanoyl chloride (27 mg, 0.20 mmol) was added, and the mixture was stirred for 2 hours. H-MePhe-Phe-OH (82 mg, 0.25 mmol), N, O-bis (trimethylsilyl) acetoamide (97 mg, 0.48 mmol) and acetonitrile (0.82 g) were separately mixed with this solution and heated to 50 ° C.
  • the obtained reaction solution was diluted with ethyl acetate (2.5 g), separated with a 10 mass% citric acid aqueous solution (1.0 g), and washed twice with a 10 mass% sodium chloride aqueous solution (1.0 g).
  • the quantitative yield of Cbz-Phe-MePhe-Phe-OH of the obtained organic layer was 102%.
  • Synthesis Example 70 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (50 mg, 0.17 mmol), tetrahydrofuran (0.5 g) and triethylamine (20 mg, 0.20 mmol) are mixed and heated to 25 ° C. 2- (4,4-Dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride in a 50 mass% toluene solution (124 mg, 0.20 mmol) was added, and the mixture was stirred for 9 hours.
  • Synthesis Example 71 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (99 mg, 0.33 mmol), acetonitrile (1.0 g), N, N-diisopropylethylamine (52 mg, 0.40 mmol) are mixed. Then, at room temperature, a 50 mass% toluene solution (250 mg, 0.41 mmol) of 2- (4,4-dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride was added, and the mixture was stirred for 2 hours.
  • Synthesis Example 72 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (50 mg, 0.17 mmol), N, N-dimethylacetamide (0.5 g), N-methylmorpholine (22 mg, 0) .22 mmol) was mixed, 2,2,4-trimethylpentan-3-yl carbonochloridet (39 mg, 0.20 mmol) was added at 0 ° C., and the mixture was stirred for 2 hours.
  • Synthesis Example 73 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (50 mg, 0.17 mmol), N, N-dimethylacetamide (0.5 g), N-methylmorpholine (22 mg, 0.22 mmol) ) was mixed, 2,4-dimethylpentane-3-ylcarbonochloride (39 mg, 0.20 mmol) was added at 0 ° C., and the mixture was stirred for 1.5 hours.
  • Synthesis Example 74 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (50 mg, 0.17 mmol), tetrahydrofuran (0.5 g), N, N-diisopropylethylamine (30 mg, 0.23 mmol) are mixed. Then, 1-adamantane carbonyl chloride (51 mg, 0.26 mmol) was added at 0 ° C., and the mixture was stirred for 1 hour.
  • H-MePhe-Phe-OH 110 mg, 1.0 mmol
  • N, O-bis (trimethylsilyl) acetoamide 129 mg, 0.63 mmol
  • acetonitrile 1.1 g
  • the obtained reaction solution was diluted with ethyl acetate (3.0 g), separated with a 10 mass% citric acid aqueous solution (3.0 g), and washed twice with a saturated aqueous sodium chloride solution (1.0 g).
  • the obtained organic layer was quantified to obtain Cbz-Phe-MePhe-Phe-OH with a quantified yield of 98%.
  • Synthesis Example 75 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (0.050 g, 0.17 mmol), N, N-dimethylacetamide (3.0 mL), N-methylmorpholine (0.040 mL) , 0.37 mmol) was mixed, 4-ethyl-2,2-dimethylhexane-3-ylcarbonochloride (0.074 g, 0.33 mmol) was added at 0 ° C., and the mixture was stirred for 1 and a half hours.
  • Synthesis Example 76 Synthesis of Cbz-Phe-MePhe-Phe-OH Cbz-Phe-OH (50 mg, 0.17 mmol), N, N-dimethylacetamide (0.5 g), N-methylmorpholine (22 mg, 0.22 mmol) ) was mixed, 3,3-dimethylbutane-2-ylcarbonochloride (39 mg, 0.20 mmol) was added at 0 ° C., and the mixture was stirred for 1.5 hours.
  • H-MePhe-Phe-OH (82 mg, 0.25 mmol), N, O-bis (trimethylsilyl) acetoamide (97 mg, 0.48 mmol) and acetonitrile (0.82 g) were separately mixed with this solution and heated to 50 ° C.
  • Boc-Val-OH (128 mg, 0.59 mmol), tetrahydrofuran (1.3 g), N-methylmorpholine (60 mg, 0.59 mmol) were mixed and isobutyl carbonochloridet (72 mg, 0.59 mol) at 0 ° C. ) was added and the mixture was stirred for 2.5 hours.
  • MASS (ESI +) m / z; (M + H) +315.20
  • the ratio of the raw material Boc-Val-OH to the product Boc-Val-Pro-OH was calculated by analysis ⁇ analytical condition 5> using high performance liquid chromatography.
  • Synthesis Example 78 Synthesis of Boc-Val-Pro-OH Boc-Val-OH (128 mg, 0.59 mmol), acetonitrile (1.3 g), N, N-diisopropylethylamine (91 mg, 0.71 mmol) were mixed and 2- (4,4-dimethylpentane) was mixed at 25 ° C. A 50 mass% toluene solution (0.43 g, 0.71 mol) of ⁇ 2-yl) -5,7,7-trimethyloctanoyl chloride was added, and the mixture was stirred for 4 hours.
  • Synthesis Example 79 Synthesis of Boc-Val-Pro-OH Boc-Val-OH (50 mg, 0.23 mmol), N, N-dimethylacetamide (1.0 g), N-methylmorpholine (30 mg, 0.30 mmol) The mixture was mixed, 2,2,4-trimethylpentan-3-yl carbonochloridet (53 mg, 0.28 mmol) was added at 0 ° C., and the mixture was stirred for 2.5 hours. H-Pro-OH (34 mg, 0.77 mmol), N, O-bis (trimethylsilyl) acetoamide (0.80 g, 1.0 mmol) and acetonitrile (0.50 g) were separately mixed with this solution and heated to 50 ° C.
  • the obtained reaction solution was diluted with ethyl acetate (5 mL), separated with a 10 mass% citric acid aqueous solution (2 mL), and washed twice with a 10 mass% sodium chloride aqueous solution (1.0 g).
  • the quantitative yield of Boc-Val-Pro-OH in the obtained organic layer and aqueous layer was 90%.
  • Synthesis Example 80 Synthesis of Boc-Val-Pro-OH Boc-Val-OH (100 mg, 0.46 mmol), tetrahydrofuran (1.0 g), N, N-diisopropylethylamine (77 mg, 0.60 mmol) are mixed and mixed. 2,2-Dimethylbutanoyl chloride (74 mg, 0.55 mol) was added at 0 ° C., and the mixture was stirred for 2 hours. H-Pro-OH (64 mg, 0.55 mmol), N, O-bis (trimethylsilyl) acetoamide (0.18 g, 0.87 mmol) and acetonitrile (1.0 g) were separately mixed with this solution and heated to 50 ° C.
  • the obtained reaction solution was diluted with ethyl acetate (10 mL), separated with water (2 mL) and 10 mass% citric acid aqueous solution (2 mL), and washed twice with 10 mass% sodium chloride aqueous solution (2 mL).
  • the quantitative yield of Boc-Val-Pro-OH in the obtained organic layer was 99%.
  • Synthesis Example 81 Synthesis of Boc-Val-Pro-OH Boc-Val-OH (100 mg, 0.46 mmol), tetrahydrofuran (1.0 g), N, N-diisopropylethylamine (77 mg, 0.60 mmol) are mixed and mixed. 2-Ethylbutanoyl chloride (74 mg, 0.55 mol) was added at 0 ° C., and the mixture was stirred for 2 hours. H-Pro-OH (64 mg, 0.55 mmol), N, O-bis (trimethylsilyl) acetoamide (0.18 g, 0.87 mmol) and acetonitrile (1.0 g) were separately mixed with this solution and heated to 50 ° C.
  • the obtained reaction solution was diluted with ethyl acetate (10 mL), separated with water (2 mL) and 10 mass% citric acid aqueous solution (2 mL), and washed twice with 10 mass% sodium chloride aqueous solution (2 mL).
  • the quantitative yield of Boc-Val-Pro-OH in the obtained organic layer was 99%.
  • Synthesis Example 82 Synthesis of Boc-Val-Pro-OH Boc-Val-OH (100 mg, 0.46 mmol), N, N-dimethylacetamide (1.0 g), N-methylmorpholine (61 mg, 0.60 mmol) The mixture was mixed, 2,4-dimethylpentane-3-ylcarbonochloride (99 mg, 0.55 mol) was added at 0 ° C., and the mixture was stirred for 2.5 hours. H-Pro-OH (64 mg, 0.55 mmol), N, O-bis (trimethylsilyl) acetoamide (0.18 g, 0.88 mmol) and acetonitrile (1.0 g) were separately mixed with this solution and heated to 50 ° C.
  • the obtained reaction solution was diluted with ethyl acetate (5 mL), separated with a 10 mass% citric acid aqueous solution (2 mL), and washed twice with a 10 mass% sodium chloride aqueous solution (1.0 g).
  • the quantitative yield of Boc-Val-Pro-OH in the obtained organic layer and aqueous layer was 89%.
  • the ratio of the raw material Fmoc-Val-OH to the product Fmoc-Val-MeGly-OH was calculated by analysis ⁇ analysis condition 5> using high performance liquid chromatography.
  • Synthesis Example 84 Synthesis of Fmoc-Val-MeGly-OH Fmoc-Val-OH (200 mg, 0.59 mmol), acetonitrile (2.0 g), N, N-diisopropylethylamine (91 mg, 0.71 mmol) are mixed and mixed. Add a 50 mass% toluene solution (0.43 g, 0.71 mol) of 2- (4,5,4-dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride at 25 ° C. and stir for 4 hours. did.
  • Synthesis Example 85 Synthesis of Fmoc-Val-MeGly-OH Fmoc-Val-OH (200 mg, 0.59 mmol), N, N-dimethylacetamide (2.0 g), N-methylmorpholine (78 mg, 0.77 mmol) The mixture was mixed, 2,2,4-trimethylpentane-3-yl carbonochloridet (0.14 g, 0.71 mol) was added at 0 ° C., and the mixture was stirred for 2.5 hours.
  • Synthesis Example 86 Synthesis of Fmoc-Val-MeGly-OH Fmoc-Val-OH (100 mg, 0.29 mmol), tetrahydrofuran (1.0 g), N, N-diisopropylethylamine (50 mg, 0.38 mmol) are mixed and mixed. 2,2-Dimethylbutanoyl chloride (48 mg, 0.35 mol) was added at 0 ° C., and the mixture was stirred for 2 hours.
  • Synthesis Example 87 Synthesis of Fmoc-Val-MeGly-OH Fmoc-Val-OH (100 mg, 0.29 mmol), tetrahydrofuran (1.0 g), N, N-diisopropylethylamine (50 mg, 0.38 mmol) were mixed and mixed. 2-Ethylbutanoyl chloride (48 mg, 0.35 mol) was added at 0 ° C., and the mixture was stirred for 2 hours.
  • Synthesis Example 88 Synthesis of Fmoc-Val-MeGly-OH Fmoc-Val-OH (100 mg, 0.29 mmol), N, N-dimethylacetamide (1.0 g), N-methylmorpholine (39 mg, 0.38 mmol) The mixture was mixed, 2,4-dimethylpentane-3-ylcarbonochloride (63 mg, 0.35 mmol) was added at 0 ° C., and the mixture was stirred for 2 hours.
  • Boc-Cys (Bn) -OH 200 mg, 0.64 mmol
  • chloroform 1.3 mL
  • triethylamine 67 mg, 0.66 mmol
  • pivaloyl chloride 81 mg, 0.67 mol was mixed at ⁇ 20 ° C.
  • H-Pro-OH 96 mg, 0.84 mmol
  • triethylamine 0.16 g, 1.6 mmol
  • trimethylsilyl chloride (0.11 g, 1.0 mmol
  • dichloromethane 1.6 mL
  • N Mix N-dimethylformamide (0.32 mL), stir at 40 ° C.
  • the ratio of the raw material Boc-Cys (Bn) -OH to the product Boc-Cys (Bn) -Pro-OH was calculated by analysis using high performance liquid chromatography ⁇ Analysis Condition 6>. ..
  • Synthesis Example 90 Synthesis of Boc-Cys (Bn) -Pro-OH Boc-Cys (Bn) -OH (100 mg, 0.32 mmol), acetonitrile (1.0 g), N, N-diisopropylethylamine (50 mg, 0. 39 mmol) was mixed, and a 50 mass% toluene solution (231 mg, 0.39 mol) of 2- (4,4-dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride was added at 25 ° C. Stirred for 2 minutes.
  • Synthesis Example 91 Synthesis of Boc-Cys (Bn) -Pro-OH Boc-Cys (Bn) -OH (100 mg, 0.32 mmol), N, N-dimethylacetamide (1.0 g), N-methylmorpholine (42 mg) , 0.42 mmol) was mixed, 2,2,4-trimethylpentane-3-yl carbonochloridete (74 mg, 0.39 mol) was added at 0 ° C., and the mixture was stirred for 2 hours.
  • Synthesis Example 92 Synthesis of Boc-Cys (Bn) -Pro-OH Boc-Cys (Bn) -OH (100 mg, 0.32 mmol), acetonitrile (1.0 g), N, N-diisopropylethylamine (54 mg, 0. 41 mmol) was mixed, 2,2-dimethylbutanoyl chloride (52 mg, 0.38 mol) was added at 0 ° C., and the mixture was stirred for 2 minutes.
  • Synthesis Example 93 Synthesis of Boc-Cys (Bn) -Pro-OH Boc-Cys (Bn) -OH (100 mg, 0.32 mmol), acetonitrile (1.0 g), N, N-diisopropylethylamine (54 mg, 0. 41 mmol) was mixed, 2-ethylbutanoyl chloride (52 mg, 0.38 mol) was added at 0 ° C., and the mixture was stirred for 2 minutes.
  • Synthesis Example 94 Synthesis of Boc-Cys (Bn) -Pro-OH Boc-Cys (Bn) -OH (100 mg, 0.32 mmol), N, N-dimethylacetamide (1.0 g), N-methylmorpholine (42 mg) , 0.42 mmol) was mixed, 2,4-dimethylpentane-3-ylcarbonochloride (69 mg, 0.38 mol) was added at 0 ° C., and the mixture was stirred for 2 hours.
  • the ratio of the raw material Cbz-Phe-Phe-OH to the product Cbz-Phe-Phe-MePhe-OH was calculated by analysis ⁇ analytical condition 7> using high performance liquid chromatography.
  • Synthesis Example 96 Synthesis of Cbz-Phe-Phe-MePhe-OH 2-chlorotrityl chloride resin (200-400 mesh) (0.10 g, 0.13 mmol), dichloromethane (1.0 mL), Fmoc-MePhe-OH ( 0.062 g (0.15 mmol) and N, N-diisopropylethylamine (0.11 mL, 0.61 mmol) were added, and the mixture was stirred overnight. The following solutions were sequentially added to the obtained suspension and filtered each time.
  • the reaction solution was filtered and the resin was washed 10 times with N-methylpyrrolidone. Then, the above condensation / washing operation was carried out again, and after adding 20% piperidine / N-methylpyrrolidone, stirring for 20 minutes and washing with N-methylpyrrolidone were performed 10 times.
  • synthesis examples 1 to 7, 66 and 96 are reference examples relating to the synthesis of the raw materials used in the examples, while synthesis examples 1 and 2 and synthesis examples 3 to 4 relate to the compound of the present application. It is also an embodiment of the invention.
  • Synthesis Examples 8 to 13, 18 to 28, 32 to 35, 38, 41 to 48, 51, 55 to 63, 68 to 76, 78 to 82, 84 to 88, 90 to 95 are methods for producing the peptides of the present application.
  • Examples of the invention according to the present invention, and Synthesis Examples 14 to 17, 29 to 31, 36 to 37, 39 to 40, 49 to 50, 52 to 54, 64 to 65, 67, 77, 83, 89 and 96 are the examples thereof. This is a comparative example.
  • Fmoc-Val-OH (0.102 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL), triethylamine (0.050 mL, 0.36 mmol) and pivaloyl chloride (0.041 mL, 0) at 0 ° C. .33 mmol) was added, and the mixture was stirred at 0 ° C. for 2 hours.
  • H-MeTyr (tBu) -OH (0.090 g, 0.36 mmol), N, O-bis (trimethylsilyl) acetamide (0.19 mL, 0.72 mmol) and acetonitrile (1.5 mL) are separately mixed with this solution.
  • reaction solution was diluted with ethyl acetate (20 mL) and washed successively with saturated aqueous hydrogen carbonate solution (20 mL), water (5 mL) and saturated aqueous sodium chloride solution (5 mL). After concentrating the obtained organic layer, Fmoc-Val-MeTyr (tBu) -OH (0.18 g, yield 106%) was obtained as a pale yellow solid.
  • H-MeTyr (tBu) -OH 0.090 g, 0.36 mmol
  • N, O-bis (trimethylsilyl) acetamide (0.185 mL, 0.72 mmol) and acetonitrile (1.5 mL) are separately mixed with this solution.
  • reaction solution was diluted with ethyl acetate (5 mL), saturated aqueous sodium hydrogen carbonate solution (5 mL) was added, the mixture was stirred for 1 hour, and then washed successively with water (5 mL) and saturated aqueous sodium chloride solution (5 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val-MeTyr (tBu) -OH (0.170 g, yield 99%) as a white solid.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.050 mL, 0.36 mmol), pivaloyl chloride (0.041 mL, 0) at 0 ° C. .33 mmol) was added and the mixture was stirred for 2 hours.
  • H-MeVal-OH (0.047 g, 0.36 mmol), N, O-bis (trimethylsilyl) acetamide (0.19 mL, 0.72 mmol) and acetonitrile (1.5 mL) were separately mixed with this solution, and 50 The mixture was stirred at ° C.
  • reaction solution was diluted with ethyl acetate (5 mL) and washed successively with saturated aqueous hydrogen carbonate solution (5 mL), 10 mass% citric acid aqueous solution (5 mL), water (5 mL) and saturated aqueous sodium chloride solution (5 mL). After concentrating the obtained organic layer, Fmoc-Val-MeVal-OH (0.16 g, yield 116%) was obtained as a pale yellow solid.
  • Synthesis Example 100 Synthesis of Fmoc-Val-MeVal-OH Fmoc-Val-OH (0.068 g, 0.20 mmol) was mixed with tetrahydrofuran (1.0 mL) and triethylamine (0.033 mL, 0. 24 mmol), 2- (4,4-dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride (0.66 g, 0.22 mmol) was added, and the mixture was stirred for 2 hours.
  • reaction solution was diluted with ethyl acetate (5 mL), saturated aqueous hydrogen carbonate solution (5 mL) was added, the mixture was stirred for 1 hour, and then washed successively with water (5 mL) and saturated aqueous sodium chloride solution (5 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val-MeVal-OH (0.092 g, yield 92%) as a white solid.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.050 mL, 0.36 mmol), pivaloyl chloride (0.041 mL, 0) at 0 ° C. .33 mmol) was added and the mixture was stirred for 1 hour.
  • H-MeSer (tBu) -OH (0.063 g, 0.36 mmol), N, O-bis (trimethylsilyl) acetamide (0.19 mL, 0.72 mmol) and acetonitrile (1.5 mL) are separately mixed with this solution. The mixture was stirred at 50 ° C.
  • Synthesis Example 102 Synthesis of Fmoc-Val-MeSer (tBu) -OH Fmoc-Val-OH (0.068 g, 0.20 mmol) was mixed with tetrahydrofuran (1.0 mL), and triethylamine (0.033 mL) was mixed at 0 ° C. , 0.24 mmol), 2- (4,4-dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride (0.66 g, 0.22 mmol) was added and stirred for 2 hours.
  • H-MeSer (tBu) -OH 0.045 g, 0.26 mmol
  • N, O-bis (trimethylsilyl) acetoamide (0.13 mL, 0.52 mmol) and acetonitrile (1.0 mL) are separately mixed with this solution.
  • reaction solution was diluted with ethyl acetate (5 mL), saturated aqueous hydrogen carbonate solution (5 mL) was added, the mixture was stirred for 1 hour, and then washed successively with water (5 mL) and saturated aqueous sodium chloride solution (5 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val-MeSer (tBu) -OH (0.095 g, yield 96%) as a white solid.
  • Fmoc-Val-OH (0.034 g, 0.1 mmol) was mixed with tetrahydrofuran (1.0 mL) and triethylamine (0.017 mL, 0.12 mmol), pivaloyl chloride (0.014 mL, 0) at 0 ° C. .11 mmol) was added and the mixture was stirred for 1 hour.
  • N ⁇ -Boc-N ⁇ -methyl-2,3-diaminopropionic acid H-MeDap (Boc) -OH
  • N, O-bis (trimethylsilyl) acetonitrile 0.62 mL, 0.24 mmol
  • acetonitrile 1.0 mL
  • Synthesis Example 104 Synthesis of Fmoc-Val-MeDap (Boc) -OH Fmoc-Val-OH (0.068 g, 0.20 mmol) was mixed with tetrahydrofuran (1.0 mL), and triethylamine (0.033 mL) was mixed at 0 ° C. , 0.24 mmol), 2- (4,4-dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride (0.66 g, 0.22 mmol) was added and stirred for 2 hours.
  • H-MeDap (Boc) -OH 0.052 g, 0.24 mmol
  • acetonitrile 1.0 mL
  • reaction solution was diluted with ethyl acetate (5 mL), saturated aqueous hydrogen carbonate solution (5 mL) was added, the mixture was stirred for 1 hour, and then washed successively with water (5 mL) and saturated aqueous sodium chloride solution (5 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val-MeDap (Boc) -OH (0.107 g, yield 99%) as a white solid.
  • Fmoc-Val-OH (0.33 g, 0.10 mmol) was mixed with tetrahydrofuran (0.5 mL) and at 0 ° C. triethylamine (0.017 mL, 0.12 mmol), pivaloyl chloride (0.014 mL, 0). .11 mmol) was added and the mixture was stirred for 1 hour.
  • H-MeGln (Trt) -OH (0.048 g, 0.12 mmol), N, O-bis (trimethylsilyl) acetoamide (0.062 mL, 0.24 mmol) and acetonitrile (1.5 mL) are separately mixed with this solution. The mixture was stirred at 50 ° C.
  • Synthesis Example 106 Synthesis of Fmoc-Val-MeGln (Trt) -OH Fmoc-Val-OH (0.068 g, 0.20 mmol) was mixed with tetrahydrofuran (1.0 mL), and triethylamine (0.033 mL) was mixed at 0 ° C. , 0.24 mmol), 2- (4,4-dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride (0.66 g, 0.22 mmol) was added and stirred for 2 hours.
  • reaction solution was diluted with ethyl acetate (5 mL), saturated aqueous hydrogen carbonate solution (5 mL) was added, the mixture was stirred for 1 hour, and then washed successively with water (5 mL) and saturated aqueous sodium chloride solution (5 mL).
  • the obtained organic layer was concentrated and washed with hexane to obtain Fmoc-Val-MeGln (Trt) -OH (0.151 g, yield 104%) as a white solid.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.050 mL, 0.36 mmol), pivaloyl chloride (0.041 mL, 0) at 0 ° C. .33 mmol) was added and the mixture was stirred for 1 hour.
  • H-MeGlu (OtBu) -OH (0.098 g, 0.45 mmol), N, O-bis (trimethylsilyl) acetamide (0.23 mL, 0.90 mmol) and acetonitrile (1.5 mL) are separately mixed with this solution. The mixture was stirred at 50 ° C.
  • reaction solution was diluted with ethyl acetate (5 mL), saturated aqueous hydrogen carbonate solution (5 mL) was added, the mixture was stirred for 1 hour, and then washed successively with water (5 mL) and saturated aqueous sodium chloride solution (5 mL). After concentrating the obtained organic layer, Fmoc-Val-MeGlu (OtBu) -OH (0.16 g, yield 100%) was obtained as a pale yellow solid.
  • H-MeGlu (OtBu) -OH 0.078 g, 0.36 mmol
  • N, O-bis (trimethylsilyl) acetamide (0.185 mL, 0.72 mmol) and acetonitrile (1.5 mL) are separately mixed with this solution.
  • reaction solution was diluted with ethyl acetate (5 mL), saturated aqueous sodium hydrogen carbonate solution (5 mL) was added, the mixture was stirred for 1 hour, and then washed successively with water (5 mL) and saturated aqueous sodium chloride solution (5 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val-MeGlu (OtBu) -OH (0.176 g, yield 109%) as a white solid.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.049 mL, 0.35 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.11 g, 0.32 mmol) was added, and the mixture was stirred for 1 hour.
  • the acetonitrile solution was diluted with ethyl acetate (6.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (5.0 mL). After concentrating the obtained organic layer, Fmoc-Val-EtAla-OH (0.13 g, yield 104%) was obtained as a pale yellow solid.
  • Fmoc-Ala-OH (0.10 g, 0.32 mmol) was mixed with tetrahydrofuran (1.6 mL) and triethylamine (0.054 mL, 0.39 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.13 g, 0.35 mmol) was added, and the mixture was stirred for 1 hour.
  • Fmoc-Ala-OH (0.10 g, 0.32 mmol) was mixed with tetrahydrofuran (1.6 mL) and triethylamine (0.054 mL, 0.39 mmol), pivaloyl chloride (0.44 mL, 0) at 0 ° C. .35 mmol) was added and the mixture was stirred for 1 hour.
  • H-BnAla-OH (0.069 g, 0.39 mmol), N, O-bis (trimethylsilyl) acetamide (0.19 mL, 0.77 mmol) and acetonitrile (1.6 mL) were separately mixed with this solution, and 25 The prepared solution was added by stirring at ° C.
  • reaction solution is concentrated, diluted with ethyl acetate (8.0 mL), and washed successively with saturated aqueous sodium hydrogen carbonate solution (6.0 mL), water (6.0 mL), and saturated aqueous sodium chloride solution (6.0 mL). did.
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Ala-BnAla-OH (0.12 g, 80%) as a white solid.
  • Fmoc-Gly-OH (0.020 g, 0.067 mmol) was mixed with tetrahydrofuran (0.42 mL) and triethylamine (0.011 mL, 0.080 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.026 g, 0.074 mmol) was added, and the mixture was stirred for 1 hour.
  • reaction solution was diluted with ethyl acetate (5.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (5.0 mL), water (5.0 mL) and saturated aqueous sodium chloride solution (5.0 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Gly-EtAla-Phe-OH (0.040 g, yield 109%) as a white solid.
  • Fmoc-Gly-OH (0.025 g, 0.084 mmol) was mixed with tetrahydrofuran (0.42 mL), triethylamine (0.014 mL, 0.10 mmol) and pivaloyl chloride (0.011 mL, 0) at 0 ° C. .092 mmol) was added and the mixture was stirred for 1 hour.
  • H-EtAla-Phe-OH (0.027 g, 0.10 mmol), N, O-bis (trimethylsilyl) acetoamide (0.049 mL, 0.20 mmol) and acetonitrile (0.42 mL) are separately mixed with this solution. , Stirred at 25 ° C.
  • reaction solution was diluted with ethyl acetate (5.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (5.0 mL), water (5.0 mL) and saturated aqueous sodium chloride solution (5.0 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Gly-EtAla-Phe-OH (0.050 g, yield 109%) as a white solid.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.049 mL, 0.35 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.098 g, 0.32 mmol) was added, and the mixture was stirred for 2 hours.
  • the acetonitrile solution was diluted with ethyl acetate (10 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (10 mL), 1 M aqueous hydrochloric acid solution (10 mL), water (10 mL) and saturated aqueous sodium chloride solution (12 mL). After concentrating the obtained organic layer, Fmoc-Val-cHexmGly-OH (0.15 g, yield 104%) was obtained as a white solid.
  • Fmoc-Val-OH (0.030 g, 0.088 mmol) was mixed with tetrahydrofuran (0.44 mL), triethylamine (0.015 mL, 0.11 mmol) and pivaloyl chloride (0.012 mL, 0) at 0 ° C. .097 mmol) was added and the mixture was stirred for 1 hour.
  • H-cHexmGly-OH (0.018 g, 0.11 mmol), N, O-bis (trimethylsilyl) acetoamide (0.052 mL, 0.21 mmol) and acetonitrile (0.44 mL) were separately mixed with this solution, and 50 The mixture was stirred at ° C.
  • reaction solution was concentrated, diluted with ethyl acetate (5.0 mL), saturated aqueous sodium hydrogen carbonate solution (5.0 mL), 1 M hydrochloric acid (5.0 mL), water (6.0 mL), saturated aqueous sodium chloride solution. It was washed sequentially with (6.0 mL). After concentrating the obtained organic layer, Fmoc-Val-cHexmGly-OH (0.048 g, yield 109%) was obtained as a white solid.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL), and triethylamine (0.049 mL, 0.35 mmol), 2,2-dimethylbutanoyl chloride (0.049 mL, 0.35 mmol) at 0 ° C. 0.045 mL (0.32 mmol) was added, and the mixture was stirred for 1 hour.
  • reaction solution was diluted with ethyl acetate (10 mL), saturated aqueous sodium hydrogen carbonate solution (8.0 mL), 10 mass% citric acid aqueous solution (8.0 mL), water (10 mL), saturated aqueous sodium chloride solution (10 mL).
  • ethyl acetate 10 mL
  • saturated aqueous sodium hydrogen carbonate solution 8.0 mL
  • 10 mass% citric acid aqueous solution 8.0 mL
  • water 10 mL
  • saturated aqueous sodium chloride solution 10 mL
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL), and at 0 ° C., triethylamine (0.049 mL, 0.35 mmol), pivaloyl chloride (0.040 mL, 0.32 mmol) was added, and the mixture was stirred for 1 hour.
  • H-Tic-OH (0.063 g, 0.35 mmol), N, O-bis (trimethylsilyl) acetoamide (0.17 mL, 0.71 mmol) and acetonitrile (1.5 mL) were separately mixed with this solution, and 25 The prepared solution was added by stirring at ° C.
  • reaction solution was diluted with ethyl acetate (10 mL), saturated aqueous sodium hydrogen carbonate solution (8.0 mL), 10 mass% citric acid aqueous solution (8.0 mL), water (10 mL), saturated aqueous sodium chloride solution (10 mL). Was washed sequentially with. After concentrating the collected organic layer, Fmoc-Val-Tic-OH (0.14 g, yield 97%) was obtained as a white solid.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.049 mL, 0.35 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl bromide (0.13 g, 0.32 mmol) was added, and the mixture was stirred for 1 hour.
  • H-MeGlu (OtBu) -OH 0.077 g, 0.35 mmol
  • N, O-bis (trimethylsilyl) acetamide (0.17 mL, 0.71 mmol) and acetonitrile (1.5 mL) are separately mixed with this solution.
  • the obtained reaction solution was concentrated, diluted with acetonitrile (8.0 mL), hexane (8.0 mL) was added, and the mixture was washed twice.
  • the acetonitrile solution was diluted with ethyl acetate (8.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (7.0 mL), 1 M aqueous hydrochloric acid (7.0 mL), water (10 mL) and saturated aqueous sodium chloride solution (10 mL). After concentrating the obtained organic layer, Fmoc-Val-MeGlu (OtBu) -OH (0.16 g, yield 98%) was obtained as a white solid.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) is mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.058 mL, 0.41 mmol), 2- (4,4-dimethylpentane) at 0 ° C. ⁇ 2-Il) -5,7,7-trimethyloctanoyl chloride (0.12 g, 0.38 mmol) was added, and the mixture was stirred for 2 hours.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.058 mL, 0.41 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.12 mL, 0.38 mmol) was added, and the mixture was stirred for 2 hours.
  • H-MeGABA-OH hydrochloride (0.063 g, 0.41 mmol), N, O-bis (trimethylsilyl) acetoamide (0.38 mL, 1.5 mmol) and acetonitrile (1.5 mL) are separately mixed with this solution.
  • the obtained reaction solution was diluted with ethyl acetate (4.0 mL), saturated aqueous sodium hydrogen carbonate solution (4.0 mL) was added, and the mixture was stirred at 25 ° C.
  • Fmoc-Val-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL), triethylamine (0.049 mL, 0.35 mmol) and pivaloyl chloride (0.040 mL, 0) at 0 ° C. .32 mmol) was added and the mixture was stirred for 1 hour.
  • H-MeGABA-OH hydrochloride 0.054 g, 0.35 mmol
  • N, O-bis (trimethylsilyl) acetoamide (0.35 mL, 1.4 mmol
  • acetonitrile 1.5 mL
  • Fmoc-Val-OH (0.100 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.049 mL, 0.35 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.12 g, 0.32 mmol) was added, and the mixture was stirred for 1 hour.
  • reaction solution was diluted with ethyl acetate (4.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (3.0 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val- (Me) ⁇ Ala-MePhe-OH (0.18 g, yield 107%) as a white solid.
  • reaction solution was diluted with ethyl acetate (4.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (3.0 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val- (Me) ⁇ Ala-MePhe-OH (0.19 g, yield 109%) as a white solid.
  • Fmoc-Val-OH (0.100 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.049 mL, 0.35 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.12 g, 0.32 mmol) was added, and the mixture was stirred for 1 hour.
  • H-MeGABA-MePhe-OH 0.098 g, 0.35 mmol
  • N, O-bis (trimethylsilyl) acetamide (0.17 mL, 0.71 mmol)
  • acetonitrile 1.5 mL
  • reaction solution was diluted with ethyl acetate (4.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (3.0 mL).
  • the obtained organic layer was concentrated and then washed with hexane to give Fmoc-Val-MeGABA-MePhe-OH (0.18 g, yield 107%) as a white solid.
  • Fmoc-Val-OH (0.100 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.049 mL, 0.35 mmol), pivaloyl chloride (0.040 mL, 0) at 0 ° C. .32 mmol) was added and the mixture was stirred for 1 hour.
  • H-MeGABA-MePhe-OH (0.098 g, 0.35 mmol), N, O-bis (trimethylsilyl) acetamide (0.17 mL, 0.71 mmol) and acetonitrile (1.5 mL) are separately mixed with this solution. , The solution prepared by stirring at 25 ° C.
  • reaction solution was diluted with ethyl acetate (4.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (3.0 mL).
  • the obtained organic layer was concentrated and then washed with hexane to give Fmoc-Val-MeGABA-MePhe-OH (0.19 g, yield 108%) as a white solid.
  • Fmoc-Val-OH (0.030 g, 0.11 mmol) was mixed with tetrahydrofuran (0.44 mL) and triethylamine (0.015 mL, 0.11 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.035 g, 0.097 mmol) was added, and the mixture was stirred for 2 hours.
  • reaction solution was diluted with ethyl acetate (4.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (3.0 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val- (Me) ⁇ homomoTrp (1-Me) -OH (0.056 g, yield 111%) as a white solid.
  • Fmoc-Val-OH (0.070 g, 0.21 mmol) was mixed with tetrahydrofuran (1.0 mL), triethylamine (0.035 mL, 0.11 mmol) and pivaloyl chloride (0.028 mL, 0) at 0 ° C. .23 mmol) was added and the mixture was stirred for 1 hour.
  • reaction solution was diluted with ethyl acetate (4.0 mL), saturated aqueous sodium hydrogen carbonate solution (4.0 mL) was added, and the mixture was stirred at 25 ° C. for 1 hour.
  • the obtained organic layer was washed successively with 10% by mass aqueous citric acid solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (3.0 mL).
  • the collected organic layer was concentrated and then washed with hexane to obtain Fmoc-Val- (Me) ⁇ homomoTrp (1-Me) -OH (0.090 g, 77% yield) as a white solid.
  • Fmoc-Val-OH (0.050 g, 0.15 mmol) was mixed with tetrahydrofuran (0.74 mL) and triethylamine (0.025 mL, 0.18 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.049 g, 0.16 mmol) was added, and the mixture was stirred for 1 hour.
  • H- ⁇ homotropic (1-Me) -OH hydrochloride 0.048 g, 0.18 mmol
  • N, O-bis (trimethylsilyl) acetamide (0.17 mL, 0.71 mmol)
  • acetonitrile (0. 74 mL)
  • reaction solution was diluted with ethyl acetate (4.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (3.0 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val- ⁇ homoTrp (1-Me) -OH (0.11 g, yield 130%) as a white solid.
  • Fmoc-Val-OH (0.050 g, 0.15 mmol) was mixed with tetrahydrofuran (0.74 mL), triethylamine (0.025 mL, 0.18 mmol), pivaloyl chloride (0.020 g, 0) at 0 ° C. .16 mmol) was added and the mixture was stirred for 1 hour.
  • H- ⁇ homotropic (1-Me) -OH hydrochloride (0.048 g, 0.18 mmol), N, O-bis (trimethylsilyl) acetamide (0.17 mL, 0.71 mmol), acetonitrile (0. 74 mL) was mixed, stirred at 50 ° C.
  • reaction solution was diluted with ethyl acetate (4.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (3.0 mL).
  • the obtained organic layer was concentrated and then washed with hexane to obtain Fmoc-Val- ⁇ homoTrp (1-Me) -OH (0.079 g, yield 97%) as a white solid.
  • Fmoc-Val-OH (0.030 g, 0.088 mmol) was mixed with tetrahydrofuran (0.44 mL) and triethylamine (0.015 mL, 0.11 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.035 g, 0.097 mmol) was added, and the mixture was stirred for 2 hours.
  • reaction solution was diluted with ethyl acetate (4.0 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (4.0 mL), water (3.0 mL) and saturated aqueous sodium chloride solution (3.0 mL).
  • the obtained organic layer was concentrated and then washed with a mixed solution of hexane and 10% isopropyl ether / hexane to obtain Fmoc-Val- (Me) ⁇ homoLeu-OH (0.045 g, yield 106%) as a white solid. ..
  • Fmoc-Val-OH (0.070 g, 0.21 mmol) was mixed with tetrahydrofuran (1.0 mL), triethylamine (0.035 mL, 0.25 mmol) and pivaloyl chloride (0.028 mL, 0) at 0 ° C. .23 mmol) was added and the mixture was stirred for 1 hour.
  • H- (Me) ⁇ homoleu-OH hydrochloride (0.048 g, 0.25 mmol), N, O-bis (trimethylsilyl) acetamide (0.24 mL, 0.99 mmol), acetonitrile (1.0 mL) was mixed, stirred at 25 ° C.
  • Fmoc- (Me) ⁇ Ala-OH (1.0 g, 3.1 mmol) is mixed with tetrahydrofuran (15 mL) and triethylamine (0.51 mL, 3.7 mmol), 2- (4,4-dimethylpentane) at 0 ° C. -2-yl) -5,7,7-trimethyloctanoyl chloride (1.2 g, 3.4 mmol) was added, and the mixture was stirred for 1 hour.
  • Fmoc- (Me) ⁇ Ala-OH (0.10 g, 0.31 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.051 mL, 0.37 mmol), pivaloyl chloride (0. 041 mL, 0.34 mmol) was added, and the mixture was stirred for 1 hour.
  • H-MePhe-OH (0.066 g, 0.37 mmol), N, O-bis (trimethylsilyl) acetamide (0.18 mL, 0.74 mmol) and acetonitrile (1.5 mL) were separately mixed with this solution, and 25 The prepared solution was added by stirring at ° C.
  • reaction solution was diluted with ethyl acetate (10 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (8.0 mL), 1 M hydrochloric acid (8.0 mL), water (10 mL) and saturated aqueous sodium chloride solution (10 mL). .. After concentrating the collected organic layer, Fmoc- (Me) ⁇ Ala-MePhe-OH (0.16 g, yield 107%) was obtained as a white solid.
  • Fmoc-MeGABA-OH (1.0 g, 3.0 mmol) was mixed with tetrahydrofuran (15 mL) and triethylamine (0.50 mL, 3.5 mmol), 2- (4,4-dimethylpentane-2-) at 0 ° C. (Il) -5,7,7-trimethyloctanoyl chloride (1.2 g, 3.2 mmol) was added, and the mixture was stirred for 1 hour.
  • Fmoc-MeGABA-OH (0.10 g, 0.30 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.049 mL, 0.35 mmol), pivaloyl chloride (0.040 mL, 0) at 0 ° C. .32 mmol) was added and the mixture was stirred for 1 hour.
  • H-MePhe-OH (0.063 g, 0.35 mmol), N, O-bis (trimethylsilyl) acetamide (0.17 mL, 0.71 mmol) and acetonitrile (1.5 mL) were separately mixed with this solution, and 25 The prepared solution was added by stirring at ° C.
  • reaction solution was diluted with ethyl acetate (10 mL) and washed successively with saturated aqueous sodium hydrogen carbonate solution (8.0 mL), 1 M hydrochloric acid (8.0 mL), water (10 mL) and saturated aqueous sodium chloride solution (10 mL). .. After concentrating the collected organic layer, Fmoc-MeGABA-MePhe-OH (0.15 g, yield 105%) was obtained as a white solid.
  • Fmoc- (2SMe) ⁇ Ala-OH (0.050 g, 0.15 mmol) was mixed with tetrahydrofuran (0.42 mL) and triethylamine (0.026 mL, 0.18 mmol), 2- (4,4-) at 0 ° C.
  • Dimethylpentane-2-yl) -5,7,7-trimethyloctanoyl chloride (0.051 g, 0.17 mmol) was added, and the mixture was stirred for 1 hour.
  • Fmoc-GABA-OH (0.10 g, 0.31 mmol) was mixed with tetrahydrofuran (1.5 mL) and triethylamine (0.051 mL, 0.37 mmol), 2- (4,4-dimethylpentane-) at 0 ° C. 2-Il) -5,7,7-trimethyloctanoyl chloride (0.12 g, 0.34 mmol) was added, and the mixture was stirred for 1 hour.
  • Fmoc-GABA-OH (0.10 g, 0.31 mmol) was mixed with tetrahydrofuran (1.5 mL), triethylamine (0.051 mL, 0.37 mmol) and pivaloyl chloride (0.042 mL, 0) at 0 ° C. .34 mmol) was added and the mixture was stirred for 1 hour.
  • H- (Me) ⁇ Ala-OH hydrochloride 0.052 g, 0.37 mmol
  • N, O-bis (trimethylsilyl) acetamide (0.36 mL, 1.5 mmol
  • acetonitrile 1.5 mL
  • synthesis example 118 is a reference example relating to the synthesis of the raw materials used in the examples.
  • Synthesis Examples 98, 100, 102, 104, 106, 108 to 110, 112, 114, 116, 119, 120, 122, 124, 126, 128, 132, 134, 136, 138 and 140 are the peptides of the present application.
  • Examples of the invention relating to the production method Synthesis Examples 97, 99, 101, 103, 105, 107, 111, 113, 115, 117, 121, 123, 125, 127, 129, 133, 135, 137, 139.
  • And 141 are comparative examples thereof, and synthetic examples 130 and 131 are reference examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、下記工程(1)乃至(3)を含む、N-アルキルアミノ酸を含むペプチドの製造方法を提供する。工程(1):N末端保護アミノ酸またはN末端保護ペプチドをカルボン酸ハロゲン化物またはハロゲン化ギ酸アルキルと混合する工程;工程(2):N末端およびC末端を保護していないアミノ酸またはペプチドをトリアルキルシリル化剤と混合する工程;および工程(1)で得られた生成物と工程(2)で得られた生成物とを混合する工程。

Description

ペプチド化合物の製造方法
 本発明は、N-アルキルアミノ酸を有するペプチドの製造方法に関する。
 近年タンパク質製剤に代わる次世代の薬剤として、比較的低分子量(1,000-3,000)で、非天然型のアミノ酸を含む特殊ペプチドへの期待が高まりつつある。特殊ペプチドの例として、通常のアミノ酸以外のN-アルキルアミノ酸を含むペプチドが挙げられる。N-アルキルアミノ酸を含むペプチドは、通常のペプチドと比較して、構造の自由度が低く標的と強く結合できる、膜透過性を有する、免疫原性が低い、生体内で安定である、といった特徴を有している。そこで、N-アルキルアミノ酸を含むペプチドの効率的な製造方法の開発が強く望まれている(例えば、非特許文献1参照)。
 N-アルキルアミノ酸を含むペプチドの製造方法は、例えば以下の方法が知られている。
(1)生成物のC末端が保護されているペプチド
-N末端保護アミノ酸のC末端を塩化ピバロイルで活性化し、N-メチルアミノ酸のベンジルエステルを反応させる方法(例えば、特許文献1参照)。
(2)生成物のC末端が無保護のペプチド
-N末端保護アミノ酸のC末端をイソブチルクロロホルメートで活性化し、シリル化されたN-メチルグリシン(サルコシン)やプロリンを反応させる方法(例えば、非特許文献2参照)。
-N末端保護ペプチドのC末端を1-[ビス(ジメチルアミノ)メチレン]-1H-1,2,3,-トリアゾロ[4,5-b]ピリジニウム 3-オキシドヘキサフルオロホスファート(HATU)で活性化し、N-メチルアラニンを反応させる方法(例えば、特許文献2参照)。
 また、N-メチルアミノ酸が連続したペプチドの製造方法としては、N-Boc-N-メチルロイシンのC末端を塩化ピバロイルで活性化し、N-メチルフェニルアラニンメチルエステルを反応させる方法が知られている(例えば、非特許文献3参照)。
米国特許第5739104号 国際公開公報第2009/134405号
ファルマシア 2014年, 50巻, 751-755頁 インディアン ジャーナル オブ ケミストリー 2004年、43B巻、1282頁 テトラへドロン 2012年、68巻、7070頁
 本発明者らが確認したところ、非特許文献2に記載の方法を用いてN末端が保護されたアミノ酸のC末端に、N末端にアルキル基を有するアミノ酸を導入する場合、導入するアミノ酸のタイプにより必ずしも十分な転化率で反応が進行せず、特にN-メチルグリシンのような非環状のN-アルキルアミノ酸やペプチドでは原料が大量に残存し、満足のいく収率で目的物を得ることが出来なかった。原料の残存は幾つかのアミノ酸が欠損したペプチドが生成する原因となり、目的とするペプチドと物性が近いことから除去が難しく、品質上の課題となっている。また特許文献2に記載の方法は、縮合剤として爆発性を有するトリアゾール構造を含むHATUを用いており、工業的なペプチドの製造において、必ずしも適用できるものではなかった。
 一方、特許文献1、非特許文献3に記載の方法では、生成するペプチドのC末端が保護されており、C末端が無保護のペプチドを得るには、さらに脱保護工程が必要となる。従って、縮合工程に加えて必ず脱保護工程が発生するため、ペプチドの効率的な製造法として適用できるものではなかった。
 本発明は、N-アルキルアミノ酸を含み、C末端が無保護であるペプチドを製造する方法を提供する。また、本発明は、N-アルキル基を含みN末端およびC末端が保護されていないアミノ酸またはペプチドと、N末端保護アミノ酸またはペプチドを材料として用い、ペプチドを製造する方法を提供する。
 本発明者らは鋭意検討した結果、N-アルキル基を含み、N末端およびC末端が保護されていない無保護アミノ酸またはペプチドをシリル化剤と混合し、さらにN末端保護アミノ酸またはペプチドを特定の構造を有するカルボン酸活性化剤と混合することにより、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下を特徴とするものである。
[1] 下記工程(1)乃至(3):
(1)
式(I)P-A-OH(式中、PはN末端保護基であり、Aは、アミノ酸由来の基、N-C1-6アルキルアミノ酸由来の基(C1-6アルキルは置換基を有していてもよい)またはペプチド由来の基を表す)で表されるN末端保護アミノ酸またはN末端保護ペプチドを
式(II)
Figure JPOXMLDOC01-appb-C000012

(式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級または3級の脂肪族炭化水素基を表すか、あるいは炭素数が4以上であり、置換基を有している1級の脂肪族炭化水素基(ここで、1級の脂肪族炭化水素基の置換基は、カルボニル炭素に結合する炭素原子上に存在する)を表す)で表されるカルボン酸ハロゲン化物、および式(III)
Figure JPOXMLDOC01-appb-C000013

(式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級の脂肪族炭化水素基を表す)で表されるハロゲン化ギ酸アルキルよりなる群から選択される活性化剤と混合する工程;
(2)
 式(IV)H-A-OH(式中、Aは、N-C1-6アルキルアミノ酸由来の基(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸由来の基(4-6員環は、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合していてもよい)、あるいはN末端残基がN-C1-6アルキルアミノ酸(C1-6アルキルは置換基を有していてもよい)または4-6員の環状の2級アミノ酸(4-6員環は、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合していてもよい)であるペプチド由来の基を表す)で表されるアミノ酸またはペプチドをシリル化剤と混合する工程;
(3)
 工程(1)で得られた生成物と工程(2)で得られた生成物とを混合する工程、
を含むペプチドの製造方法。
[2] 下記工程(1)乃至(3):
(1)
 式(I)P-A-OH(式中、PはN末端保護基であり、Aは、アミノ酸由来の基またはN-C1-6アルキルアミノ酸由来の基(C1-6アルキルは置換基を有していてもよい)を表す)で表されるN末端保護アミノ酸を
式(II)
Figure JPOXMLDOC01-appb-C000014

(式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級または3級の脂肪族炭化水素基を表すか、あるいは炭素数が4以上であり、置換基を有している1級の脂肪族炭化水素基(ここで、1級の脂肪族炭化水素基の置換基は、カルボニル炭素に結合する炭素原子上に存在する)を表す)で表されるカルボン酸ハロゲン化物および
式(III)
Figure JPOXMLDOC01-appb-C000015

(式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級の脂肪族炭化水素基を表す)で表されるハロゲン化ギ酸アルキルよりなる群から選択される活性化剤と混合する工程;
(2)
 式(IV)H-A-OH(式中、Aは、N-メチルアミノ酸由来の基、N-C1-6アルキルグリシン由来の基(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸由来の基、あるいはN末端残基がN-メチルアミノ酸、N-C1-6アルキルグリシン(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸であるペプチド由来の基を表す)で表されるアミノ酸またはペプチドをシリル化剤と混合する工程;
(3)
 工程(1)で得られた生成物と工程(2)で得られた生成物とを混合する工程、
を含むペプチドの製造方法。
[3] 下記工程(1)乃至(3):
(1)
 式(V)P-A-OH(式中、PはN末端保護基であり、Aは、ペプチド由来の基を表す)で表されるN末端保護ペプチドを
式(II)
Figure JPOXMLDOC01-appb-C000016

(式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級または3級の脂肪族炭化水素基を表すか、あるいは炭素数が4以上であり、置換基を有している1級の脂肪族炭化水素基(ここで、1級の脂肪族炭化水素基の置換基は、カルボニル炭素に結合する炭素原子上に存在する)を表す)で表されるカルボン酸ハロゲン化物と混合する工程;
(2)
 式(IV')H-A2’-OH(式中、A2’は、N-メチルアミノ酸由来の基、N-C1-6アルキルグリシン由来の基(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸由来の基を表す)で表されるアミノ酸をシリル化剤と混合する工程;
(3)
 工程(1)で得られた生成物と工程(2)で得られた生成物とを混合する工程、
を含むペプチドの製造方法。
[4] 工程(3)で得られたペプチドのN末端の保護基を除去する工程を含む、上記[1]乃至[3]のいずれかに記載のペプチドの製造方法。
[5] さらに下記工程(4)および(5):。
(4)
 工程(3)または(5)で得られたペプチドのN末端の保護基を除去する工程;
(5)
 工程(4)で得られたペプチドのN末端に、N末端保護アミノ酸またはN末端保護ペプチドを反応させる工程、
の繰り返しを1以上含む、上記[1]乃至[3]のいずれかに記載のペプチドの製造方法。
[6] 式(I)P-A-OHまたは式(V)P-A-OH(式中、PはN末端保護基であり、AおよびAは、それぞれペプチド由来の基を表す)で表されるN末端保護ペプチド中のC末端に位置するアミノ酸が、N-C1-6アルキルアミノ酸(C1-6アルキルは置換基を有していてもよい)または4-6員の環状の2級アミノ酸(4-6員環は、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合していてもよい)以外のアミノ酸である、上記[1]または[3]に記載のペプチドの製造方法。
[7] Aが、アミノ酸由来の基である、上記[1]または[2]に記載のペプチドの製造方法。
[8] 式(I)で表されるN末端保護アミノ酸または式(I)で表されるN末端保護ペプチド中のC末端に位置するアミノ酸が、α-アミノ酸、β-アミノ酸またはγ-アミノ酸である、上記[1]または[2]に記載のペプチドの製造方法。
[9] 式(I)で表されるN末端保護アミノ酸又は式(I)で表されるN末端保護ペプチド中のC末端に位置するアミノ酸が、α-アミノ酸である、上記[8]に記載のペプチドの製造方法。
[10] 式(IV)で表されるアミノ酸または式(IV)で表されるペプチド中のN末端に位置するアミノ酸が、N-C1-6アルキル-α-アミノ酸(C1-6アルキルは置換基を有していてもよい)または4-6員の環状の2級-α-アミノ酸である、上記[1]に記載のペプチドの製造方法。
[11] 式(IV)で表されるアミノ酸または式(IV)で表されるペプチド中のN末端に位置するアミノ酸が、N-メチル-α-アミノ酸もしくはN-エチル-α-アミノ酸(N-メチル、N-エチルはそれぞれ置換基を有していてもよい)または4-6員の環状の2級-α-アミノ酸である、上記[1]に記載のペプチドの製造方法。
[12] 活性化剤が式(II)で表されるカルボン酸ハロゲン化物であり、R1の炭素数が5乃至20であり、Xが塩素原子である、上記[1]乃至[11]のいずれかに記載のペプチドの製造方法。
[13] 活性化剤が式(II)で表されるカルボン酸ハロゲン化物であり、下記の化合物群から選択される、上記[1]乃至[12]のいずれかに記載のペプチドの製造方法。
Figure JPOXMLDOC01-appb-C000017
[14] 活性化剤が式(II)で表されるカルボン酸ハロゲン化物であり、下記の化合物群から選択される、上記[1]乃至[12]のいずれかに記載のペプチドの製造方法。
Figure JPOXMLDOC01-appb-C000018
[15]活性化剤が下記の化合物である、上記[13]又は[14]に記載のペプチドの製造方法。
Figure JPOXMLDOC01-appb-C000019
[16] 活性化剤が式(III)で表されるハロゲン化ギ酸アルキルであり、Xが塩素原子である、上記[1]または[2]に記載のペプチドの製造方法。
[17] 活性化剤が式(III)で表されるハロゲン化ギ酸アルキルであり、下記の化合物群から選択される、上記[1]または[2]に記載のペプチドの製造方法。
Figure JPOXMLDOC01-appb-C000020
[18] 活性化剤が式(III)で表されるハロゲン化ギ酸アルキルであり、下記の化合物群から選択される、上記[1]または[2]に記載のペプチドの製造方法。
Figure JPOXMLDOC01-appb-C000021
[19] シリル化剤がトリメチルシリル化剤である上記[1]乃至[18]のいずれかに記載のペプチドの製造方法。
[20] シリル化剤が、N,O-ビス(トリメチルシリル)アセトアミド、N,N′-ビス(トリメチルシリル)尿素またはN,O-ビス(トリメチルシリル)トリフルオロアセトアミドである、上記[1]乃至[19]のいずれかに記載の、ペプチドの製造方法。
[21] シリル化剤が、N,O-ビス(トリメチルシリル)アセトアミドである、上記[1]乃至[20]のいずれかに記載の、ペプチドの製造方法。
[22] 式(IV)で表されるアミノ酸またはペプチドが、それぞれ、プロリン以外のアミノ酸またはN末端残基がプロリン以外のアミノ酸残基であるペプチドである、上記[1]に記載のペプチドの製造方法。
[23] 式(IV’)で表されるアミノ酸が、プロリン以外のアミノ酸である上記[3]に記載のペプチドの製造方法。
[24] 下記式:
Figure JPOXMLDOC01-appb-C000022

で表される化合物。
 本発明により、N-アルキル基を含みN末端およびC末端が保護されていないアミノ酸またはペプチドと、N末端保護アミノ酸またはペプチドを材料として用い、C末端が無保護であるペプチドの新規な製造方法を提供することができた。本発明の製造方法により、工業的に適用可能な試薬を用い、少ない工程で、導入するN-アルキルアミノ酸、さらには導入するペプチドのN末端残基のN-アルキルアミノ酸のタイプによらず、目的とするペプチドを満足のいく収率で得ることができる。
 以下、本発明について、詳細に説明する。
 本明細書における「n-」はノルマル、「s-」はセカンダリー、「t-」および「tert-」はターシャリー、「Me」はメチル、「Et」はエチル、「Pr」はプロピル、「Bu」はブチル、「Ph」はフェニル、「Bn」はベンジル、「Boc」はt-ブトキシカルボニル、「Cbz」はベンジルオキシカルボニル、「Fmoc」は9-フルオレニルメトキシカルボニル、「Trt」はトリチル、「TMS」はトリメチルシリル、「TFA」はトリフルオロ酢酸を意味する。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を意味する。
 本発明において、「アルキル基」は、直鎖または分岐鎖状の、飽和脂肪族炭化水素の1価の基を意味する。「C1-6アルキル基」とは、炭素数が1乃至6個である直鎖または分岐鎖状のアルキル基を意味し、具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、3-ペンチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、1-エチルプロピル基、n-ヘキシル基、3,3-ジメチルブタン-2-イル基などが挙げられる。
 「2級または3級のC5-40アルキル基」とは、炭素数が5乃至40個であり、少なくとも1個の2級または3級の炭素原子を含む飽和脂肪族炭化水素から、該2級または3級の炭素原子上の水素が取り除かれた1価の基を意味し、具体例としては、2-メチルブタン-2-イル基、3-メチルブタン-2-イル基、3,3-ジメチルブタン-2-イル基、3-ペンチル基、2,2,4-トリメチルペンタン-3-イル基、2,4-ジメチルペンタン-3-イル基、4-エチル-2,2-ジメチルヘキサン-3-イル基、3-ヘプチル基、2,2,4,8,10,10-ヘキサメチルウンデカン-5-イル基などが挙げられる。また「2級または3級のC5-20アルキル基」とは、炭素数が5乃至20個である、2級または3級のアルキル基を意味する。
 「1級のC4-40アルキル基」とは、炭素数が4乃至40個である直鎖または分岐鎖状の飽和脂肪族炭化水素から、1級の炭素原子上の水素が取り除かれた1価の基を意味し、n-ブチル基、イソブチル基、n-ペンチル基、2-メチルブチル基または3-メチルブチル基、あるいはn-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-イコシル基、n-トリアコンチル基、n-テトラコンチル基またはそれらの異性体である1級アルキル基などが挙げられる。また「1級のC4-20アルキル基」とは、炭素数が4乃至20個である、1級のアルキル基を意味する。
 本発明において、「アルケニル基」は、直鎖または分岐鎖状の、少なくとも1個の炭素-炭素二重結合を含む、不飽和脂肪族炭化水素の1価の基を意味する。「2級または3級のアルケニル基」は、少なくとも1個の2級または3級の炭素原子と、少なくとも1個の炭素-炭素二重結合を含む、不飽和脂肪族炭化水素から、該2級または3級の炭素原子上の水素が取り除かれた1価の基を意味し、具体例としては、イソプロペニル基、1-メチル-1-プロペニル基などが挙げられる。また「2級または3級のC5-40アルケニル基」とは、炭素数が5乃至40個であり、「2級または3級のC5-20アルケニル基」とは、炭素数が5乃至20個である、2級または3級のアルケニル基を意味する。
 「1級のC4-40アルケニル基」とは、炭素数が4乃至40個である直鎖または分岐鎖状の、少なくとも1個の炭素-炭素二重結合を含む、不飽和脂肪族炭化水素から、該1級の炭素原子上の水素が取り除かれた1価の基を意味し、2-ブテニル基、3-ブテニル基、2-ペンテニル基などが挙げられる。また「1級のC4-20アルケニル基」とは、炭素数が4乃至20個である、1級のアルケニル基を意味する。
 「C6-14アリール基」とは、炭素数が6乃至14個である芳香族炭化水素基を意味し、その具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、ビフェニル基などが挙げられる。また「C6-14アリール環」とは、炭素数が6乃至14個である芳香族炭化水素環を意味する。
 「C6-14ハロアリール基」とは、1つ以上のハロゲン原子で置換された炭素数が6乃至14個である芳香族炭化水素基を意味し、その具体例としては、4-クロロフェニル基、2,4-ジクロロフェニル基、5-フルオロ-1-ナフチル基、6-ブロモ-2-ナフチル基、6,7-ジヨード-1-アントリル基、10-ブロモ-9-アントリル基、4’-クロロ-(1,1’-ビフェニル)-2-イル基などが挙げられる。「C6-14ハロアリール環」とは、1つ以上のハロゲン原子で置換された炭素数が6乃至14個である芳香族炭化水素環を意味する。
 「C6-14アリールオキシ基」とは、炭素数が6乃至14個であるアリールオキシ基を意味し、具体例としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントリルオキシ基、2-アントリオキシ基、9-アントリオキシ基、ビフェニルオキシ基などが挙げられる。
 「5-10員複素環基」とは、環を構成する原子の数が5乃至10個であり、かつ環を構成する原子中に、窒素原子、酸素原子および硫黄原子からなる群より独立して選ばれる1乃至4個のヘテロ原子を含有する単環系または縮合環系の複素環基を意味する。この複素環基は飽和、部分不飽和、不飽和のいずれであってもよく、具体例としては、ピロリジニル基、テトラヒドロフリル基、テトラヒドロチエニル基、ピペリジル基、テトラヒドロピラニル基、テトラヒドロチオピラニル基、ピロール基、フリル基、チエニル基、ピリジル基、ピリミジニル基、ピリダジニル基、アゼパニル基、オキセパニル基、チエパニル基、アゼピニル基、オキセピニル基、チエピニル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基、イミダゾリニル基、ピラジニル基、モルホリニル基、チアジニル基、インドリル基、イソインドリル基、ベンゾイミダゾリル基、プリニル基、キノリル基、イソキノリル基、キノキサリニル基、シンノリニル基、プテリジニル基、クロメニル基、イソクロメニル基などが挙げられる。
 「C1-6アルコキシ基」とは、炭素数が1乃至6個である直鎖または分岐鎖状のアルコキシ基を意味し、具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基などが挙げられる。
 「C3-6シクロアルキル基」とは、炭素数が3乃至6個である環状の飽和脂肪族炭化水素の一価の基を意味し、具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 「C3-8シクロアルキル基」とは、炭素数が3乃至8個であるシクロアルキル基を意味し、具体例としては、前記「C3-6シクロアルキル基」の例に加え、シクロヘプチル基、シクロオクチル基などが挙げられる。また、「C5-8シクロアルキル基」とは、炭素数が5乃至8個であり、「C5-6シクロアルキル基」とは、炭素数が5乃至6個である、シクロアルキル基を意味する。「C3-8シクロアルキル環」とは、炭素数が3乃至8個であるシクロアルキル環を意味する。
 「C3-6シクロアルコキシ基」とは、炭素数が3乃至6個であるシクロアルキルオキシ基を意味し、具体例としては、シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基などが挙げられる。
 「モノC1-6アルキルアミノ基」とは、1個の前記「C1-6アルキル基」がアミノ基に結合した基を意味し、具体例としては、モノメチルアミノ基、モノエチルアミノ基、モノ-n-プロピルアミノ基、モノイソプロピルアミノ基、モノ-n-ブチルアミノ基、モノイソブチルアミノ基、モノ-t-ブチルアミノ基、モノ-n-ペンチルアミノ基、モノ-n-ヘキシルアミノ基などが挙げられる。
 「ジC1-6アルキルアミノ基」とは、同一または異なる2個の前記「C1-6アルキル基」がアミノ基に結合した基を意味し、具体例としては、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジイソプロピルアミノ基、ジ-n-ブチルアミノ基、ジイソブチルアミノ基、ジ-t-ブチルアミノ基、ジ-n-ペンチルアミノ基、ジ-n-ヘキシルアミノ基、N-エチル-N-メチルアミノ基、N-メチル-N-n-プロピルアミノ基、N-イソプロピル-N-メチルアミノ基、N-n-ブチル-N-メチルアミノ基、N-イソブチル-N-メチルアミノ基、N-t-ブチル-N-メチルアミノ基、N-メチル-N-n-ペンチルアミノ基、N-n-ヘキシル-N-メチルアミノ基、N-エチル-N-n-プロピルアミノ基、N-エチル-N-イソプロピルアミノ基、N-n-ブチル-N-エチルアミノ基、N-エチル-N-イソブチルアミノ基、N-t-ブチル-N-エチルアミノ基、N-エチル-N-n-ペンチルアミノ基、N-エチル-N-n-ヘキシルアミノ基などが挙げられる。
 「C1-6アルコキシカルボニル基」とは、炭素数が1乃至6個である直鎖または分岐鎖状のアルコキシカルボニル基を意味し、具体例としては、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、t-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、n-ヘキシルオキシカルボニル基などが挙げられる。
 「トリC1-6アルキルシリル基」とは、同一または異なる3個の前記「C1-6アルキル基」がシリル基に結合した基を意味し、具体例としては、トリメチルシリル(TMS)基、トリエチルシリル基、トリイソプロピルシリル基、t-ブチルジメチルシリル基、ジ-t-ブチルイソブチルシリル基などが挙げられる。
 「トリC1-6アルキルシリルオキシ基」とは、同一または異なる3個の前記「C1-6アルキル基」がシリルオキシ基に結合した基を意味し、具体例としては、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、t-ブチルジメチルシリルオキシ基、ジ-t-ブチルイソブチルシリルオキシ基などが挙げられる。
 「ビシクロアルキル基」とは、2個の橋頭炭素を含み、かつ2個の環を有する飽和脂肪族炭化水素の一価の基を意味し、具体例としては、オクタヒドロインデン-3-イル基、オクタヒドロナフタレン-4-イル基、ビシクロ[2.2.1]ヘプタン-1-イル基またはビシクロ[2.2.1]ヘプタン-2-イル基などが挙げられる。また「C5-10ビシクロアルキル基」とは、炭素数が5乃至10個であり、「C7-10ビシクロアルキル基」とは、炭素数が7乃至10個である、ビシクロアルキル基を意味する。
 「トリシクロアルキル基」とは、少なくとも3個の橋頭炭素を含み、かつ3個の環を有する飽和脂肪族炭化水素の一価の基を意味し、具体例としては、トリシクロ[3.3.1.13,7]デカン-1-イル(アダマンタン-1-イル)基またはトリシクロ[3.3.1.13,7]デカン-2-イル(アダマンタン-2-イル)基などが挙げられる。また「C5-15トリシクロアルキル基」とは、炭素数が5乃至15個であり、「C7-15トリシクロアルキル基」とは、炭素数が7乃至15個である、トリシクロアルキル基を意味する。
 「2級または3級の脂肪族炭化水素基」とは、炭化水素鎖に少なくとも1個の2級または3級の炭素原子を含む、分岐鎖状または環状の、飽和または不飽和の脂肪族炭化水素から、該2級または3級の炭素原子上の水素が取り除かれた1価の基であり、2級または3級のアルキル基、ビシクロアルキル基、トリシクロアルキル基、2級または3級のアルケニル基などが挙げられ、具体例としては、炭素数が5以上の2級または3級のアルキル基、ビシクロアルキル基、トリシクロアルキル基、2級または3級のアルケニル基等が挙げられ、好ましくは2級または3級のC5-40アルキル基、C5-10ビシクロアルキル基、C5-15トリシクロアルキル基、2級または3級のC5-40アルケニル基等が挙げられ、より好ましくは2級または3級のC5-20アルキル基、C7-10ビシクロアルキル基、C7-15トリシクロアルキル基、2級または3級のC5-20アルケニル基等が挙げられる。
 「2級の脂肪族炭化水素基」とは、炭化水素鎖に少なくとも1個の2級の炭素原子を含む、分岐鎖状または環状の、飽和または不飽和の脂肪族炭化水素から、該2級の炭素原子上の水素が取り除かれた1価の基であり、2級のアルキル基、シクロアルキル基、2級のアルケニル基等が挙げられ、具体例としては、炭素数が5以上の2級のアルキル基、シクロアルキル基、2級のアルケニル基等が挙げられ、好ましくは2級のC5-40アルキル基、C3-8シクロアルキル基、2級のC5-40アルケニル基等が挙げられ、より好ましくは2級のC5-20アルキル基、C3-6シクロアルキル基、2級のC5-20アルケニル基等が挙げられる。
 「1級の脂肪族炭化水素基」とは、直鎖状または分岐鎖状の、飽和または不飽和の脂肪族炭化水素から、1級の炭素原子上の水素が取り除かれた1価の基であり、1級のアルキル基、1級のアルケニル基などが挙げられ、具体例としては、炭素数が4以上の1級のアルキル基、1級のアルケニル基等が挙げられ、好ましくは1級のC4-40アルキル基、1級のC4-40アルケニル基等が挙げられ、より好ましくは1級のC4-20アルキル基、1級のC4-20アルケニル基等が挙げられる。
 「置換基を有していてもよい」とは、無置換であるか、または任意の数の任意の置換基で置換されていることを意味する。
 「置換基を有している」とは、任意の数の任意の置換基で置換されていることを意味する。
 上記の「任意の置換基」は、本発明が対象とする反応に悪影響を与えない置換基であれば特に種類は限定されない。
 「C1-6アルキル基は置換基を有していてもよい」場合における「置換基」としては、例えば、C6-14アリール基、C6-14ハロアリール基、C6-14アリールオキシ基、5-10員複素環基、ヒドロキシ基、C1-6アルコキシ基、C3-6シクロアルコキシ基、アセトキシ基、ベンゾイルオキシ基、モノC1-6アルキルアミノ基、N-アセチルアミノ基、ジC1-6アルキルアミノ基、ハロゲン原子、C1-6アルコキシカルボニル基、フェノキシカルボニル基、N-メチルカルバモイル基、N-フェニルカルバモイル基、トリC1-6アルキルシリル基、トリC1-6アルキルシリルオキシ基、C3-8シクロアルキル基、シアノ基、ニトロ基などが挙げられ、好ましくは、C6-14アリール基、C6-14ハロアリール基、C1-6アルコキシ基、ジC1-6アルキルアミノ基、トリC1-6アルキルシリル基、トリC1-6アルキルシリルオキシ基、C3-8シクロアルキル基であり、より好ましくは、C6-14アリール基、C6-14ハロアリール基、C1-6アルコキシ基、トリC1-6アルキルシリル基、C3-8シクロアルキル基であり、更に好ましくはC6-14アリール基またはC3-8シクロアルキル基であり、特に好ましくは、フェニル基又はシクロヘキシル基である。
 「置換基を有していてもよい2級または3級の脂肪族炭化水素基」または「置換基を有している1級の脂肪族炭化水素基」における「置換基」としては、例えば、C6-14アリール基、C6-14ハロアリール基、C6-14アリールオキシ基、5-10員複素環基、ヒドロキシ基、C1-6アルコキシ基、C3-6シクロアルコキシ基、アセトキシ基、ベンゾイルオキシ基、モノC1-6アルキルアミノ基、N-アセチルアミノ基、ジC1-6アルキルアミノ基、ハロゲン原子、C1-6アルコキシカルボニル基、フェノキシカルボニル基、N-メチルカルバモイル基、N-フェニルカルバモイル基、トリC1-6アルキルシリル基、トリC1-6アルキルシリルオキシ基、C3-8シクロアルキル基、シアノ基、ニトロ基などが挙げられ、好ましくは、C6-14アリール基、C6-14ハロアリール基、C1-6アルコキシ基、ジC1-6アルキルアミノ基、トリC1-6アルキルシリル基、トリC1-6アルキルシリルオキシ基、C3-8シクロアルキル基であり、より好ましくは、C6-14アリール基、C6-14ハロアリール基、C1-6アルコキシ基、トリC1-6アルキルシリル基、C3-8シクロアルキル基であり、更に好ましくはC6-14アリール基またはC3-8シクロアルキル基である。なお、式(II)で表されるカルボン酸ハロゲン化物のRとしての「置換基を有している1級の脂肪族炭化水素基」における「置換基」は、カルボニル炭素に結合する1級の炭素原子上の水素原子と置き換えられる。
 「N末端保護アミノ酸」および「N末端保護ペプチド」とは、それぞれ、N末端のアミノ基が保護されており、C末端のカルボキシ基が保護されていないアミノ酸およびペプチドを意味する。また「C末端保護アミノ酸」および「C末端保護ペプチド」とは、それぞれ、C末端のカルボキシ基が保護されており、N末端のアミノ基が保護されていないアミノ酸およびペプチドを意味する。
 「N末端およびC末端が保護されていないアミノ酸」および「N末端およびC末端が保護されていないペプチド」とは、それぞれ、N末端のアミノ基およびC末端のカルボキシ基が保護されていないアミノ酸およびペプチドを意味する。なお、N末端およびC末端が保護されていないアミノ酸において、側鎖等ペプチドの形成に関与しない反応性官能基が存在する場合、該官能基は保護されていてもよく、保護されていなくともよい。好ましくは側鎖保護アミノ酸である。
 本発明で使用されるアミノ酸は、アミノ基とカルボキシ基の両方の官能基を持つ有機化合物であり、天然および非天然のアミノ酸を意味する。好ましくはα-、β-またはγ-アミノ酸、あるいはホモアミノ酸であり、より好ましくはα-アミノ酸である。またこれらのアミノ酸に2以上のアミノ基が存在する場合(例えば、アルギニン、リシン、2,3-ジアミノプロピオン酸(Dap)等)、2以上のカルボキシ基が存在する場合(例えば、グルタミン酸、アスパラギン酸等)、または反応性官能基が存在する場合(例えば、システイン、セリン、チロシン、グルタミン、ヒスチジン、トリプトファン等)、本発明で使用されるアミノ酸は、ペプチドの形成に関与しないアミノ基、カルボキシ基および/または反応性官能基が、保護および/または修飾されたアミノ酸も含む。
 本発明で使用される「4-6員の環状の2級アミノ酸」は、アミノ基の窒素原子と、アミノ基に結合する2つのアルキル基が一緒になって4-6員環を形成するアミノ酸を意味し、具体例としてはプロリンが挙げられる。4-6員環が、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合している場合、好ましい環状化合物はC6-14アリール環であり、より好ましくはベンゼンである。したがって4-6員の環状の2級アミノ酸が環状化合物と縮合している場合の具体例としては1,2,3,4-テトラヒドロイソキノリン-3-カルボン酸(Tic)が挙げられる。
 本発明で使用されるN-C1-6アルキルアミノ酸は、アミノ酸のアミノ基が、置換基を有していてもよいC1-6アルキル基で置換されたアミノ酸であり、好ましくはアミノ酸のアミノ基が、C6-14アリール基、C6-14ハロアリール基、C1-6アルコキシ基、ジC1-6アルキルアミノ基、トリC1-6アルキルシリル基、トリC1-6アルキルシリルオキシ基、またはC3-8シクロアルキル基を有していてもよいC1-6アルキル基で置換されたアミノ酸であり、より好ましくはアミノ酸のアミノ基が、C6-14アリール基、C6-14ハロアリール基、C1-6アルコキシ基、トリC1-6アルキルシリル基、またはC3-8シクロアルキル基を有していてもよいC1-6アルキル基で置換されたアミノ酸であり、更に好ましくはアミノ酸のアミノ基が、メチル基、エチル基、プロピル基、ブチル基、ベンジル基またはシクロヘキシルメチル基で置換されたアミノ酸であり、より更に好ましくはアミノ酸のアミノ基が、メチル基またはエチル基で置換されたアミノ酸であり、特に好ましくはアミノ酸のアミノ基が、メチル基で置換されたアミノ酸である。
 本発明で使用される「アミノ酸由来の基」、「N-C1-6アルキルアミノ酸由来の基」は、アミノ酸のアミノ基またはN-C1-6アルキルアミノ酸のN-C1-6アルキルアミノ基の窒素原子上から水素原子が除かれ、且つカルボキシ基からヒドロキシ基が除かれた2価の基を意味する。同様に、「N-メチルアミノ酸由来の基」は、N-メチルアミノ酸のN-メチルアミノ基の窒素原子上から水素原子が除かれ、且つカルボキシ基からヒドロキシ基が除かれた2価の基、「N-C1-6アルキルグリシン由来の基」は、N-C1-6アルキルグリシンのN-C1-6アルキルアミノ基の窒素原子上から水素原子が除かれ、且つカルボキシ基からヒドロキシ基が除かれた2価の基、「環状の2級アミノ酸由来の基」は、環状の2級アミノ酸の2級アミノ基の窒素原子上から水素原子が除かれ、且つカルボキシ基からヒドロキシ基が除かれた2価の基、「4-6員の環状の2級アミノ酸由来の基」は、4-6員の環状の2級アミノ酸の2級アミノ基の窒素原子上から水素原子が除かれ、且つカルボキシ基からヒドロキシ基が除かれた2価の基を意味する。
 本発明で使用されるペプチドを構成するアミノ酸は、上述のアミノ酸である。
 本発明で使用される「ペプチド由来の基」は、N末端を構成する各種アミノ酸の1級または2級アミノ基から水素原子が除かれ、且つC末端を構成するアミノ酸のカルボキシ基からヒドロキシ基が除かれた2価の基を意味する。
 アミノ酸の立体構造は特に限定されないが、好ましくはL体である。
 本発明で使用され、例えば、式(I)および(V)においてPで表される「N末端保護基」とは、ペプチド伸長反応(アミド化反応)を行う際のN末端側の保護基であり、公知の保護基を用いることができる。その具体例としては、カルバメート系保護基(9-フルオレニルメトキシカルボニル基、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、アリルオキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、2-(p-ビフェニル)イソプロピルオキシカルボニル基等)、アミド系保護基(アセチル基、トリフルオロアセチル基等)、イミド系保護基(フタロイル基等)、スルホンアミド系保護基(p-トルエンスルホニル基、2-ニトロベンゼンスルホニル基等)、ベンジル基等であるが、好ましくは9-フルオレニルメトキシカルボニル基、t-ブトキシカルボニル基、ベンジルオキシカルボニル基が挙げられる。
 本明細書で用いるすべての技術用語および科学用語は、本発明が属する技術分野の当業者に一般に理解されるのと同じ意味をもつ。本明細書に記載されたものと同様または同等の任意の方法および材料は、本発明の実施または試験において使用することができるが、好ましい方法および材料を以下に記載する。本明細書で言及したすべての刊行物および特許は、例えば、記載された発明に関連して使用されうる刊行物に記載されている、構築物および方法論を記載および開示する目的で、参照として本明細書に組み入れられる。
(本発明のペプチドの製造法の具体的な説明)
 以下に本発明のペプチドの製造法の各工程(1)乃至(5)について説明する。
 一つの態様として、本発明のペプチドの製造は、以下の工程(1)乃至(5)として記載されるそれぞれの単位工程により構成される。
 一つの態様として、本発明のペプチドの製造は、以下の工程(1)乃至(5)として記載される単位工程を、すべてまたは適宜組み合わせることで行うことができる。
 なお、本具体的な説明は以下に基づき説明される。
(a)工程(1)乃至(5)の記載におけるRおよびRは、上記と同義である。
(b)反応の具体的な条件は、本発明のペプチドの製造が達成される限りにおいて特に制限されない。各反応における好ましい条件は適宜詳述される。
(c)各反応で記載される溶媒は、単独で用いても、2種類以上を混合して用いても良い。
工程(1)
 本工程は、N末端保護アミノ酸またはN末端保護ペプチドをカルボン酸ハロゲン化物またはハロゲン化ギ酸アルキルと混合する工程である。本工程は、N末端保護アミノ酸またはN末端保護ペプチドのC末端をカルボン酸ハロゲン化物またはハロゲン化ギ酸アルキルで活性化する工程である。本発明の一態様では、式(I)P-A-OH(式中、PはN末端保護基であり、Aは、アミノ酸由来の基、N-C1-6アルキルアミノ酸由来の基(C1-6アルキルは置換基を有していてもよい)またはペプチド由来の基を表す。)で表されるN末端保護アミノ酸またはN末端保護ペプチドを、カルボン酸ハロゲン化物またはハロゲン化ギ酸アルキルと混合する工程である。また本発明の別の一態様では、式(V)P-A-OH(式中、PはN末端保護基であり、Aは、ペプチド由来の基を表す。)で表されるN末端保護ペプチドを、カルボン酸ハロゲン化物と混合する工程である。
 N末端保護アミノ酸またはN末端保護ペプチドは、N末端保護された上述のアミノ酸またはペプチドであり、具体的には、N末端保護されたアミノ酸、N末端保護されたN-C1-6アルキルアミノ酸(C1-6アルキルは置換基を有していてもよい)またはN末端保護されたペプチドである。なお本工程のN末端保護ペプチドは、好ましくは、そのC末端のアミノ酸が、N-C1-6アルキルアミノ酸(C1-6アルキルは置換基を有していてもよい)または4-6員の環状の2級アミノ酸(4-6員環は、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合していてもよい)以外のアミノ酸である、N末端保護ペプチドである。
 カルボン酸ハロゲン化物は、下記式(II)で表される。
Figure JPOXMLDOC01-appb-C000023

(式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級または3級の脂肪族炭化水素基を表すか、または炭素数が4以上であり、置換基を有している1級の脂肪族炭化水素基(ここで、1級の脂肪族炭化水素基の置換基は、カルボニル炭素に結合する炭素原子上に存在する)を表す。)
 式(II)で表されるカルボン酸ハロゲン化物は、好ましくは、Rが置換基を有していてもよい2級または3級のC5-40アルキル基、置換基を有していてもよいC5-10ビシクロアルキル基、置換基を有していてもよいC5-15トリシクロアルキル基、置換基を有していてもよい2級または3級のC5-40アルケニル基、あるいは置換基を有している1級のC4-40アルキル基または置換基を有している1級のC4-40アルケニル基(ここで、1級のC4-40アルキル基または1級のC4-40アルケニル基の置換基は、カルボニル炭素に結合する炭素原子上に存在する)であるカルボン酸ハロゲン化物であり、より好ましくは、Rが置換基を有していてもよい2級または3級のC5-20アルキル基、置換基を有していてもよいC7-10ビシクロアルキル基、置換基を有していてもよいC7-15トリシクロアルキル基、置換基を有していてもよい2級または3級のC5-20アルケニル基、あるいは置換基を有している1級のC4-20アルキル基または置換基を有している1級のC4-20アルケニル基(ここで、1級のC4-20アルキル基または1級のC4-20アルケニル基の置換基は、カルボニル炭素に結合する炭素原子上に存在する)であるカルボン酸ハロゲン化物であり、更に好ましくは、Rが置換基を有していてもよい2級または3級のC5-20アルキル基、置換基を有していてもよいC7-10ビシクロアルキル基、置換基を有していてもよいC7-15トリシクロアルキル基、置換基を有していてもよい2級または3級のC5-20アルケニル基、あるいは置換基を有しているイソブチル基であるカルボン酸クロリドであり、更に好ましくは下記の化合物群から選択される。
Figure JPOXMLDOC01-appb-C000024
特に好ましくは下記の化合物群から選択される。
Figure JPOXMLDOC01-appb-C000025
 ハロゲン化ギ酸アルキルは、下記式(III)で表される。
Figure JPOXMLDOC01-appb-C000026

(式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級の脂肪族炭化水素基を表す。)
 式(III)で表されるハロゲン化ギ酸アルキルは、好ましくは、Rが置換基を有していてもよい2級のC5-40アルキル基、置換基を有していてもよいC5-8シクロアルキル基、置換基を有していてもよい2級のC5-40アルケニル基であるハロゲン化ギ酸アルキルであり、より好ましくは、Rが置換基を有していてもよい2級のC5-20アルキル基、置換基を有していてもよいC5-6シクロアルキル基、置換基を有していてもよい2級のC5-20アルケニル基であるハロゲン化ギ酸アルキルであり、更に好ましくは、Rが置換基を有していてもよい2級のC5-20アルキル基、置換基を有していてもよいC5-6シクロアルキル基、置換基を有していてもよい2級のC5-20アルケニル基であるクロロギ酸アルキルであり、特に好ましくは下記の化合物群から選択される。
Figure JPOXMLDOC01-appb-C000027
 RまたはRにおける炭素数は、RまたはRがそれぞれ有する炭素原子数の合計であり、RまたはRが置換基を有している場合は、その置換基中の炭素原子数も含まれる。
 カルボン酸ハロゲン化物またはハロゲン化ギ酸アルキルと、N末端保護アミノ酸またはN末端保護ペプチドとの混合(活性化反応)は、必要に応じて、塩基および/または溶媒の存在下で実施することができる。
 本工程で使用する塩基は、特に制限は無いが、その例としては、脂肪族アミン(例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン、N-メチルモルホリン)、芳香族アミン(例えば、ピリジン、イミダゾール、N,N-ジメチル-4-アミノピリジン)、アミジン(例えば、ジアザビシクロウンデセン)、アルカリ金属塩(例えば、炭酸水素ナトリウム、炭酸カリウム)等が挙げられる。好ましくは、脂肪族アミンであり、より好ましくはN,N-ジイソプロピルエチルアミン、トリエチルアミンまたはN-メチルモルホリンである。
 本工程で使用するカルボン酸ハロゲン化物またはハロゲン化ギ酸アルキルの使用量は、N末端保護アミノ酸またはN末端保護ペプチドに対して、好ましくは0.2当量乃至50当量、より好ましくは0.5当量乃至20当量、さらに好ましくは0.8当量乃至5当量である。
 本工程で使用する塩基の使用量は、カルボン酸ハロゲン化物またはハロゲン化ギ酸アルキルに対して、好ましくは0.2当量乃至50当量、より好ましくは0.5当量乃至20当量、さらに好ましくは0.8当量乃至5当量である。
 本工程で使用する溶媒は、活性化反応を妨げない限り特に限定されないが、その例としては、含ハロゲン炭化水素溶媒(例えば、ジクロロメタン、クロロホルム)、芳香族炭化水素溶媒(例えば、トルエン、キシレン)、エーテル溶媒(例えば、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル、メチル-t-ブチルエーテル)、アミド溶媒(例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド)、ニトリル溶媒(例えば、アセトニトリル)、ケトン溶媒(例えば、アセトン、メチルエチルケトン)、脂肪族炭化水素溶媒(例えばヘキサン、ヘプタン、シクロヘキサン)、エステル溶媒(例えば、酢酸エチル)等が挙げられる。好ましくはニトリル溶媒、アミド溶媒、またはエーテル溶媒であり、より好ましくはアセトニトリル、テトラヒドロフラン、またはN,N-ジメチルアセトアミドである。
 本工程で使用する溶媒の使用量は、カルボン酸ハロゲン化物またはハロゲン化ギ酸アルキルに対して、好ましくは100質量倍以下であり、より好ましくは1質量倍乃至50質量倍であり、さらに好ましくは3質量倍乃至20質量倍である。
 このようにして、必要に応じて、溶媒および/または塩基の存在下に、N末端保護アミノ酸またはN末端保護ペプチドを、カルボン酸ハロゲン化物またはハロゲン化ギ酸アルキルと混合する。得られた混合物は、必要に応じて、油浴や冷却浴を用いて温度を制御する。混合物の温度は、特に制限は無いが、-40℃から混合物の還流温度までが好ましく、より好ましくは-20℃乃至50℃であり、さらに好ましくは-10℃乃至30℃である。
 本工程により、C末端が活性化されたN末端保護アミノ酸またはN末端保護ペプチドが形成される。したがって、本工程により得られる生成物は、C末端が活性化されたN末端保護アミノ酸またはN末端保護ペプチド、あるいはそれらのいずれかを含む混合物を意味する。このようにして得られたC末端が活性化されたN末端保護アミノ酸またはN末端保護ペプチドは、精製工程を経ることなく、反応液のまま、または(粗)精製物として単離して、続く工程(3)に使用してもよい。
工程(2)
 本工程は、N-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドをシリル化剤と混合する工程である。なお、本工程において、「N-アルキルアミノ酸」は、N末端のアミノ基およびC末端のカルボキシ基が保護されていないN-アルキルアミノ酸を意味し、「N末端にN-アルキルアミノ酸を有するペプチド」は、N末端にN-アルキルアミノ酸を有しN末端のアミノ基およびC末端のカルボキシ基が保護されていないペプチドを意味する。本工程は、N-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドをシリル化剤と反応させることにより、当該アミノ酸またはペプチドのC末端、N末端および/または(存在する場合には)ヒドロキシ基等の官能基の少なくとも一部が、トリアルキルシリル化されたN-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチド(以下、「トリアルキルシリル化されたアミノ酸またはペプチド」ともいう)を得る工程である。本発明の一態様では、式(IV)H-A-OH[式中、Aは、N-C1-6アルキルアミノ酸由来の基(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸由来の基(4-6員環は、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合していてもよい)、あるいはN末端残基がN-C1-6アルキルアミノ酸(C1-6アルキルは置換基を有していてもよい)または4-6員の環状の2級アミノ酸(4-6員環は、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合していてもよい)であるペプチド由来の基を表す]で表されるN末端のアミド基およびC末端のカルボキシ基が保護されていないアミノ酸またはN末端のアミド基およびC末端のカルボキシ基が保護されていないペプチドをシリル化剤と混合する工程である。また本発明の別の一態様では、式(IV')H-A2’-OH[式中、A2’は、N-メチルアミノ酸由来の基、N-C1-6アルキルグリシン由来の基(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸由来の基を表す]で表されるN末端のアミノ基およびC末端のカルボキシ基が保護されていないアミノ酸をシリル化剤と混合する工程である。
 また、本工程のN-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドにおけるN末端のアミノ酸は、好ましくはN-C1-6アルキルアミノ酸(C1-6アルキルはシクロヘキシルまたはフェニルで置換されていてもよい)であり、より好ましくはN-メチルアミノ酸、N-エチルアミノ酸、N-プロピルアミノ酸、N-ブチルアミノ酸、N-ペンチルアミノ酸、N-シクロヘキシルメチルアミノ酸またはN-ベンジルアミノ酸であり、さらに好ましくはN-メチルアミノ酸またはN-エチルアミノ酸であり、特に好ましくはN-メチルアミノ酸である。
 本工程のシリル化剤としては、特に制限は無いが、その例としては、トリメチルシリルクロリド、トリメチルシリルシアニド、1,1,1,3,3,3-ヘキサメチルジシラザン、N-トリメチルシリルアセトアミド、N,N′-ビス(トリメチルシリル)尿素、N-メチル-N-トリメチルシリルトリフルオロアセトアミド、N,O-ビス(トリメチルシリル)アセトアミド、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド等のトリメチルシリル化剤、N-(tert-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミド等が挙げられる。好ましくは、トリメチルシリルクロリド、N,O-ビス(トリメチルシリル)アセトアミド、N,N′-ビス(トリメチルシリル)尿素またはN,O-ビス(トリメチルシリル)トリフルオロアセトアミドであり、より好ましくは、N,O-ビス(トリメチルシリル)アセトアミドである。
 使用するシリル化剤の使用量は、N-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドに対して、好ましくは0.01当量乃至50当量、より好ましくは0.1当量乃至20当量、さらに好ましくは0.2当量乃至5当量である。
 N-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドと、シリル化剤との混合(シリル化反応)は、必要に応じて、塩基および/または溶媒の存在下で実施することができる。
 使用する塩基は、特に制限は無いが、その例としては、脂肪族アミン(例えば、ジシクロヘキシルアミン、ピペリジン、トリエチルアミン、N,N-ジイソプロピルエチルアミン、N-メチルモルホリン)、芳香族アミン(例えば、ピリジン、イミダゾール、N,N-ジメチル-4-アミノピリジン)、アルカリ金属塩(例えば、炭酸水素ナトリウム、炭酸カリウム)等が挙げられる。好ましくは、脂肪族アミンであり、より好ましくはトリエチルアミン、N,N-ジイソプロピルエチルアミンである。
 使用する塩基の使用量は、N-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドに対して、好ましくは0.01当量乃至50当量、より好ましくは0.1当量乃至20当量、さらに好ましくは0.2当量乃至5当量である。
 本工程で使用する溶媒は、シリル化反応を妨げない限り特に限定されないが、その例としては、含ハロゲン炭化水素溶媒(例えば、ジクロロメタン、クロロホルム)、芳香族炭化水素溶媒(例えば、トルエン、キシレン)、エーテル溶媒(例えば、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル、メチル-t-ブチルエーテル)、アミド溶媒(例えば、N,N-ジメチルホルムアミド)、ニトリル溶媒(例えば、アセトニトリル)等が挙げられる。好ましくはニトリル溶媒、アミド溶媒、またはエーテル溶媒であり、より好ましくはアセトニトリル、テトラヒドロフラン、またはN,N-ジメチルアセトアミドである。
 本工程で使用する溶媒の使用量は、N-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドに対して、好ましくは100質量倍以下であり、より好ましくは1質量倍乃至50質量倍であり、さらに好ましくは3質量倍乃至20質量倍である。
 このようにして、必要に応じて、溶媒および/または塩基の存在下に、N-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドを、シリル化剤と混合する。得られた混合物は、必要に応じて、油浴や冷却浴を用いて温度を制御する。混合物の温度は、特に制限は無いが、0℃から混合物の還流温度までが好ましく、より好ましくは10℃乃至100℃であり、さらに好ましくは20℃乃至80℃である。また混合物は、マイクロ波照射に付されてもよい。
 本工程により、トリアルキルシリル化されたN-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドが形成される。したがって、本工程により得られる生成物は、トリアルキルシリル化されたN-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドを含む混合物を意味する。このようにして得られたトリアルキルシリル化されたアミノ酸またはペプチドは、精製工程を経ることなく、反応液のまま、または(粗)精製物として単離して、続く工程(3)に使用してもよい。また、トリアルキルシリル化されたN-アルキルアミノ酸またはN末端にN-アルキルアミノ酸を有するペプチドは、NMR等の分析機器により、解析することもできる。
工程(3)
 本工程は、工程(1)で得られた生成物と工程(2)で得られた生成物とを混合する工程である。本工程は、工程(1)で得られたC末端が活性化されたN末端保護アミノ酸またはN末端保護ペプチドと、工程(2)で得られたトリアルキルシリル化されたアミノ酸またはペプチドを反応させるペプチド伸長工程であり、好ましくは、工程(1)で得られた反応液と、工程(2)で得られた反応液とを混合、撹拌することにより実施することができる。本発明の一態様では、工程(1)で得られたC末端が活性化されたN末端保護アミノ酸と、工程(2)で得られたトリアルキルシリル化されたアミノ酸またはペプチドを反応させるペプチド伸長工程である。本発明の別の一態様では、工程(1)で得られたC末端が活性化されたN末端保護ペプチドと、工程(2)で得られたトリアルキルシリル化されたアミノ酸を反応させるペプチド伸長工程である。
 得られた混合物は、必要に応じて、油浴や冷却浴を用いて温度を制御する。混合物の温度は、特に制限は無いが、-40℃から反応混合物の還流温度までが好ましく、より好ましくは-20℃乃至50℃であり、さらに好ましくは-10℃乃至30℃である。
 また、本発明のペプチドの製造方法において、工程(3)で得られたペプチドに対して、下記工程(4)乃至(5)を所望の回数繰返すことにより、ペプチド鎖をさらに伸長することができる。
(4)工程(3)または(5)で得られたペプチドのN末端の保護基を除去する工程。
(5)工程(4)で得られたペプチドのN末端に、N末端保護アミノ酸またはN末端保護ペプチドを反応させる工程。
 工程(5)は、上記工程(1)、(2)および(3)と同様の操作、または一般的なペプチド合成反応により実施することができる。
 本発明のペプチドの製造方法においては、次工程の反応に影響を及ぼさない範囲で工程(1)乃至(5)の精製工程を適宜省略することも可能である。
工程(4):N末端の脱保護工程
 本工程は、上記工程(3)または(5)で得られたペプチドから、N末端の保護基を除去し、N末端及びC末端が無保護のペプチドを得る工程である。
 本工程で使用する脱保護試薬は、使用する保護基に応じて適宜選択される。その例としては、酸(例えば、トリフルオロ酢酸、塩酸、ルイス酸)、2級または3級アミン(例えば、ピロリジン、ピペリジン、モルホリン、トリエチルアミン)、加水素分解(例えば、パラジウム触媒/水素添加)等が挙げられる。
 本工程で使用する脱保護条件は、N末端保護基の種類により適宜選択されるが、例えば、9-フルオレニルメトキシカルボニル基の場合は、塩基で処理することにより行なわれ、t-ブトキシカルボニル基の場合は、酸で処理することにより行われ、ベンジルオキシカルボニル基やアリルオキシカルボニル基の場合は、中性で、例えば金属触媒の存在下、水素添加することにより行われる。
 各反応において、反応基質がヒドロキシ基、メルカプト基、アミノ基、カルボキシ基またはカルボニル基を有する場合(特にアミノ酸またはペプチドの側鎖に官能基を有する場合)、これらの基にペプチド化学等で一般的に用いられるような保護基が導入されていてもよく、反応後に必要に応じて保護基を除去することにより目的化合物を得ることができる。
 保護および脱保護は、一般的に知られている保護基を用いて、保護・脱保護反応(例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第4版(Protective Group in Organic Synthesis, Fourth edition)、グリーン(T.W.Greene)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(John Wiley & Sons Inc.)(2006年)など参照)を行うことにより実施することができる。
 工程(1)で使用されるN末端保護アミノ酸またはN末端保護ペプチドにおけるN末端アミノ酸(以下、アミノ酸A)と、工程(2)で使用されるアミノ酸またはペプチドにおけるN末端アミノ酸(以下、アミノ酸B)の組み合わせについては、特に限定はされないが、好ましくは、アミノ酸A、Bがそれぞれ、α-、β-またはγ-アミノ酸であり、より好ましくは、アミノ酸Aまたはアミノ酸Bのいずれかがα-アミノ酸であり、更に好ましくは、アミノ酸Aがα-アミノ酸であり、アミノ酸Bがα-アミノ酸、β-アミノ酸またはγ-アミノ酸であるか、またはアミノ酸Aがα-アミノ酸、β-アミノ酸またはγ-アミノ酸であり、アミノ酸Bがα-アミノ酸であり、特に好ましくは、アミノ酸Aがα-アミノ酸であり、アミノ酸Bがα-アミノ酸、β-アミノ酸またはγ-アミノ酸である。
 また、工程(2)で使用されるペプチドにおけるN末端アミノ酸は、α-アミノ酸が好ましい。
 以下に参考例、比較例および実施例としての合成例を示し、本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 本明細書において、アミノ酸等を略号で表示する場合、各表示は、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものである。
 なお、合成例中、「(v/v)」は(体積/体積)を、「M」はmol/Lを意味する。
 以下の合成例において、マイクロ波反応装置は、Initiator+(Biotage製)を用いた。
 合成例のプロトン核磁気共鳴(H-NMR)は、特に記述が無い場合は、日本電子(JEOL)社製JNM-ECP300、または日本電子(JEOL)社製JNM-ECX300、またはブルカー(Bruker)社製AscendTM500を用いて重クロロホルムまたは重ジメチルスルホキシド溶媒中で測定し、化学シフトは、テトラメチルシランを内部標準(0.0ppm)としたときのδ値(ppm)で示した。
 NMRスペクトルの記載において、「s」はシングレット、「d」はダブレット、「t」はトリプレット、「q」はカルテット、「dd」はダブレット オブ ダブレット、「dt」はダブレット オブ トリプレット、「sept」はセプテット、「m」はマルチプレット、「br」はブロード、「J」はカップリング定数、「Hz」はヘルツ、「CDCl」は重クロロホルム、「DMSO-d」は重ジメチルスルホキシドを意味する。
 高速液体クロマトグラフィー/質量分析は、特に記載が無い場合は、Waters社製ACQUITY UPLC H-Class/QDa、Waters社製ACQUITY UPLC H-Class/SQD2、またはShimadzu社製LC-20AD/Triple Tof5600のいずれかを用いて測定した。
 高速液体クロマトグラフィー/質量分析の記載において、ESI+はエレクトロスプレーイオン化法のポジティブモードであり、M+Hはプロトン付加体、M+Naはナトリウム付加体を意味する。
 高速液体クロマトグラフィー/質量分析の記載において、ESI-はエレクトロスプレーイオン化法のネガティブモードであり、M-Hはプロトン欠損体を意味する。
 原料と生成物の比は、合成例8乃至50においては、高速液体クロマトグラフィーを用いた分析<分析条件1>乃至<分析条件3>のいずれかによって算出した。
<分析条件1>
高速液体クロマトグラフィー:Waters製 ACQUITY UPLD H-Class/SQD2
カラム:Phenomenex 社製 Kinetex EVO C18 (1.7μm, 2.1 x 50 mm)
カラムオーブン温度:60℃
溶離液:アセトニトリル:0.025 vol%トリフルオロ酢酸水溶液
5:95(0-2.1分)、95:5(2.1-2.84分)(v/v)
溶離液速度:0.6 mL/分
検出波長:220 nm
<分析条件2>
高速液体クロマトグラフィー:Waters製 ACQUITY UPLD H-Class/SQD2
カラム:Waters社製 ACQUITY BEH C18 (1.7μm, 2.1 x 100 mm)
カラムオーブン温度:60℃
溶離液:アセトニトリル:0.025 vol% トリフルオロ酢酸水溶液
5:95(0-3.7分)、95:5(3.7-4.81分)(v/v)
溶離液速度:0.6 mL/分
検出波長:220 nm
<分析条件3>
高速液体クロマトグラフィー:Waters製 ACQUITY UPLD H-Class/SQD2
カラム:Waters社製 ACQUITY BEH C18 (1.7μm, 2.1 x 100 mm)
カラムオーブン温度:40℃
溶離液:アセトニトリル:0.025 vol% トリフルオロ酢酸水溶液
5:95(0-5.56分)、95:5(5.56-7.22分)(v/v)
溶離液速度:0.4 mL/分
検出波長:220 nm
 シリカゲルカラムクロマトグラフィーでの精製は、特に記述がない場合は、山善製Hi-Flashカラム、バイオタージ製SNAP Ultra Silica Cartridge、メルク製シリカゲル60または富士シリシア化学製PSQ60Bのいずれかを用いた。
 以下、特に記載がない場合、N,O-ビス(トリメチルシリル)アセトアミドは純度98%の市販品を使用した。
 なお、以下の実施例において収率または定量収率が100%を超える場合がある。これらは、いずれも測定誤差、原料または生成物の純度の影響、もしくはその他の技術常識に基づく要因により100%を超えたものである。以下の実施例においては、収率が100%を超えた場合の原因について、個別に言及はしないが、当業者であれば、これらの実施例の科学的妥当性を十分に理解しうる。
合成例1:4-エチル-2,2-ジメチルヘキサン-3-オールの合成
Figure JPOXMLDOC01-appb-C000028
 2-エチルブチルアルデヒド(3.69g、36.8mmol)をシクロペンチルメチルエーテル(40mL)と混合させ、-78℃にてtert-ブチルリチウムペンタン溶液(1.53M、26.5mL、40.5mmol)を加え5分撹拌した。得られた反応液を25℃まで昇温した後、エタノール(1.0mL)を加え、20質量%塩化アンモニウム水溶液(25mL)、飽和塩化ナトリウム水溶液(25mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、4-エチル-2,2-ジメチルヘキサン-3-オール(5.22g、収率90%)を無色透明液体として得た。
H-NMR(CDCl
δppm:0.88-0.94(9H+4H, m), 1.06-1.16(1H, m),1.27(1H,d,J=6.0Hz),1.29-1.38(2H,m),1.40-1.48(1H,m),1.52-1.58(1H,m),3.24(1H,d,J=6.0Hz).
合成例2:4-エチル-2,2-ジメチルヘキサン-3-イルカルボノクロリデートの合成
Figure JPOXMLDOC01-appb-C000029
 4-エチル-2,2-ジメチルヘキサン-3-オール(5.21g、32.9mmol)、ピリジン(2.99g、37.9mmol)を四塩化炭素(50mL)と混合させ、0℃に冷却した。この溶液に、別途トリホスゲン(4.00g、13.5mmol)、四塩化炭素(10mL)を混合した溶液を加え、さらに60℃に加熱して8時間撹拌した。得られた反応液を水(50mL)で二回、飽和塩化ナトリウム水溶液(50mL)で順次洗浄した。得られた有機層を濃縮し、4-エチル-2,2-ジメチルヘキサン-3-イルカルボノクロリデート(6.56g、収率90%)を無色透明液体として得た。本化合物はこれ以上精製せずに次工程で用いた。
H-NMR(CDCl
δppm:0.90-0.94(6H,m),0.97(9H,s),1.10-1.20(1H,m),1.25-1.35(1H,m),1.45-1.53(2H,m),1.59-1.67(1H,m),4.72(1H,d,J=2.0Hz).
合成例3:2,2,4-トリメチルペンタン-3-オールの合成
Figure JPOXMLDOC01-appb-C000030
 イソブチルアルデヒド(3.61g、50.0mmol)をシクロペンチルメチルエーテル(50mL)と混合させ、-78℃にてtert-ブチルリチウムペンタン溶液(1.52M、36.2mL、55.0mmol)を加え5分間撹拌した。得られた反応液を25℃まで昇温した後、エタノール(1.0mL)を加え、20質量%塩化アンモニウム水溶液(25mL)、飽和塩化ナトリウム水溶液(25mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、2,2,4-トリメチルペンタン-3-オール(5.25g、収率81%)を無色透明液体として得た。
H-NMR(CDCl
δppm:0.91(3H,d,J=7.0Hz),0.94(9H,s),1.01 (3H,d,J=7.0Hz),1.32(1H,d,J=6.5Hz),1.91-1.99(1H,m),3.11(1H,dd,J=6.5Hz,2.0Hz).
合成例4:2,2,4-トリメチルペンタン-3-イルカルボノクロリデートの合成
Figure JPOXMLDOC01-appb-C000031
 2,2,4-トリメチルペンタン-3-オール(5.25g、40.3mmol)、ピリジン(3.67g、46.3mmol)を四塩化炭素(40mL)と混合させ、0℃に冷却した。この溶液に、別途トリホスゲン(4.90g、16.5mmol)、四塩化炭素(20mL)を混合した溶液を加え、さらに60℃に加熱して8時間撹拌した。得られた反応液を水(50mL)で二回、飽和塩化ナトリウム水溶液(50mL)で順次洗浄した。得られた有機層を濃縮し、2,2,4-トリメチルペンタン-3-イルカルボノクロリデート(6.06g、収率78%)を無色透明液体として得た。本化合物はこれ以上精製せずに次工程で用いた。
H-NMR(CDCl
δppm:0.97(3H,d,J=7.0Hz),0.99(9H,s),1.02 (3H,d,J=7.0Hz),2.04-2.13(1H,m),4.58(1H,d,J=3.0Hz). 
合成例5:3,3-ジメチルブタン-2-イルカルボノクロリデートの合成
Figure JPOXMLDOC01-appb-C000032
 3,3-ジメチルブタン-2-オール(3.36g、32.9mmol)、ピリジン(2.99g、37.8mmol)を四塩化炭素(40mL)と混合させ、0℃に冷却した。この溶液に、別途トリホスゲン(4.00g、13.5mmol)、四塩化炭素(15mL)を混合した溶液を加え、さらに60℃に加熱して8時間撹拌した。得られた反応液を水(50mL)で二回、飽和塩化ナトリウム水溶液(50mL)で順次洗浄した。得られた有機層を濃縮し、3,3-ジメチルブタン-2-イルカルボノクロリデート(4.50g、収率83%)を無色透明液体として得た。本化合物はこれ以上精製せずに次工程で用いた。
H-NMR(CDCl
δppm:0.96(9H,s),1.29(3H,d,J=6.5Hz),4.74 (1H,q,J=6.5Hz).
合成例6:2,4-ジメチルペンタン-3-イルカルボノクロリデートの合成
Figure JPOXMLDOC01-appb-C000033
 2,4-ジメチルペンタン-3-オール(3.49g、30.0mmol)、ピリジン(2.73g、34.5mmol)を四塩化炭素(40mL)と混合させ、0℃に冷却した。この溶液に、別途トリホスゲン(3.65g、12.3mmol)、四塩化炭素(15mL)を混合した溶液を加え、さらに60℃に加熱して8時間撹拌した。得られた反応液を水(50mL)で二回、飽和塩化ナトリウム水溶液(50mL)で順次洗浄した。得られた有機層を濃縮し、2,4-ジメチルペンタン-3-イルカルボノクロリデート(5.10g、収率95%)を無色透明液体として得た。本化合物はこれ以上精製せずに次工程で用いた。
H-NMR(CDCl
δppm:0.94(6H,d,J=2.5Hz),0.95(6H,d,J=2.5Hz),1.94-2.04(2H,m)4.60(1H,t,J=6.0Hz). 
合成例7:3-メチルブタン-2-イルカルボノクロリデートの合成
Figure JPOXMLDOC01-appb-C000034

 3-メチルブタン-2-オール(3.97g、45.0mmol)、ピリジン(4.09 g、51.8mmol)を四塩化炭素(40mL)と混合させ、0℃に冷却した。この溶液に、別途トリホスゲン(5.47g、18.5mmol)、四塩化炭素(20mL)を混合した溶液を加え、さらに60℃に加熱して8時間撹拌した。得られた反応液を水(50mL)で二回、飽和塩化ナトリウム水溶液(50mL)で順次洗浄した。得られた有機層を濃縮し、3-メチルブタン-2-イルカルボノクロリデート(5.10g、収率95%)を無色透明液体として得た。本化合物はこれ以上精製せずに次工程で用いた。
H-NMR(CDCl
δppm:0.95(3H,d,J=4.0Hz),0.97(3H,d,J=4.0Hz),1.31(3H,d,J=6.5Hz),1.87-1.94(1H,m),4.80(1H,sept,J=6.5Hz).
合成例8:Boc-Phe-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000035
 Boc-Phe-OH(0.066g、0.25mmol)、トリエチルアミン(0.033g、0.32mmol)をテトラヒドロフラン(5mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.040g、0.30mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.067g、0.38mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.161g、0.750mmol)、アセトニトリル(4mL)を混合させ、マイクロ波照射下で75℃にて3分間撹拌して調製した溶液を加え0℃にて2時間撹拌し、さらに25℃にて16時間撹拌した(原料:目的物=1:70(分析条件3))。得られた反応液を濃縮後、酢酸エチル(20mL)で希釈し、10質量%クエン酸水溶液(10mL)を2回、5質量%塩化ナトリウム水溶液(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を濃縮し、Boc-Phe-MePhe-OH(0.125g、収率117%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+427.3
合成例9:Fmoc-Phe-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000036
 Fmoc-Phe-OH(0.097g、0.25mmol)、N-メチルモルホリン(0.033g、0.33mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて4-エチル-2,2-ジメチルヘキサン-3-イルカルボノクロリデート(0.066g、0.30mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.058g、0.33mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.141g、0.67mmol)、アセトニトリル(4.0mL)を混合させ、75℃にて20分間撹拌して調製した溶液を加え、さらに25℃にて5時間撹拌した(原料:目的物=1:13(分析条件3))。得られた反応液を酢酸エチル(20mL)で希釈し、10質量%クエン酸水溶液(20mL)、10質量%塩化ナトリウム水溶液(20mL)、飽和塩化ナトリウム水溶液(20mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Fmoc-Phe-MePhe-OH(0.137g、収率100%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+549.3
合成例10:Fmoc-Phe-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000037
 Fmoc-Phe-OH(0.097g、0.25mmol)、N-メチルモルホリン(0.033g、0.33mmol)をN,N-ジメチルアセトアミド(5.0mL)と混合させ、0℃にて4-エチル-2,2-ジメチルヘキサン-3-イルカルボノクロリデート(0.066g、0.30mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.058g、0.33mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.141g、0.67mmol)、アセトニトリル(4.0mL)を混合させ、75℃にて20分間撹拌して調製した溶液を加え、さらに25℃にて5時間撹拌した(原料:目的物=1:31(分析条件3))。得られた反応液を酢酸エチル(30mL)で希釈し、10質量%クエン酸水溶液(50mL)、10質量%塩化ナトリウム水溶液(20mL)、飽和塩化ナトリウム水溶液(20mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Fmoc-Phe-MePhe-OH(0.137g、収率100%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+549.3
合成例11:Fmoc-Phe-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000038
 Fmoc-Phe-OH(0.194g、0.500mmol)、トリエチルアミン(0.0607g、0.60mmol)をテトラヒドロフラン(10mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.074g、0.550mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.108g、0.600mmol)、N,N′-ビス(トリメチルシリル)尿素(0.250g、1.20mmol)、アセトニトリル(4.0mL)を混合させ、マイクロ波照射下で75℃にて60分間撹拌して調製した溶液を加え、さらに25℃にて67時間撹拌した(原料:目的物=1:20(分析条件2))。得られた反応液を濃縮後、酢酸エチル(80mL)で希釈し、10質量%クエン酸水溶液(50mL)、5質量%塩化ナトリウム水溶液(50mL)、飽和塩化ナトリウム水溶液(50mL)で順次洗浄した。得られた有機層を濃縮し、Fmoc-Phe-MePhe-OH(0.322g、収率117%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+549.4
合成例12:Fmoc-Phe-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000039
 Fmoc-Phe-OH(0.097g、0.250mmol)、トリエチルアミン(0.0304g、0.300mmol)をテトラヒドロフラン(5mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.0371g、0.275mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.0538g、0.300mmol)、N,O-ビス(トリメチルシリル)トリフルオロアセトアミド(0.155g、0.601mmol)、アセトニトリル(4.0mL)を混合させ、75℃にて30分間撹拌して調製した溶液を加え、さらに25℃にて16時間撹拌した(原料:目的物=4.4:95.6(分析条件1;但し4時間攪拌時点))。得られた反応液を濃縮後、酢酸エチル(20mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液(20mL)、飽和塩化ナトリウム水溶液(20mL)で順次洗浄した。得られた有機層を濃縮し、Fmoc-Phe-MePhe-OH(0.135g、収率98%)を白色固体として得た。
 MASS(ESI+)m/z;(M+H)+549.4
合成例13:Boc-MePhe-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000040
 Boc-MePhe-OH(0.070g、0.250mmol)、トリエチルアミン(0.033g、0.32mmol)をテトラヒドロフラン(5mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.040g、0.30mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.067g、0.38mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.161g、0.774mmol)、アセトニトリル(4.0mL)を混合させ、75℃にて3分間撹拌して調製した溶液を加え、さらに25℃にて16時間撹拌した(原料:目的物=7:93(分析条件1))。得られた反応液を濃縮後、酢酸エチル(20mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液(20mL)、飽和塩化ナトリウム水溶液(20mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-MePhe-MePhe-OH(0.127g、収率116%)を無色オイルとして得た。
MASS(ESI+)m/z;(M+H)+441.4
合成例14:Boc-MePhe-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000041
 Boc-MePhe-OH(1.40g、5.00mmol)、N-メチルモルホリン(0.556g、5.50mmol)をテトラヒドロフラン(50mL)と混合させ、0℃にてクロロギ酸イソプロピル(0.643g、5.25mmol)を加え15分間撹拌した。この溶液に、別途H-Phe-OH(0.991g、6.00mmol)、N,O-ビス(トリメチルシリル)アセトアミド(2.57g、12.4mmol)、アセトニトリル(15mL)をマイクロ波照射下で75℃にて60分間撹拌して混合させ、調製した溶液を加え、0℃のまま30分間撹拌し、さらに25℃にて1.5時間攪拌した(原料:目的物=0:100(分析条件1))。得られた反応液を酢酸エチル(200mL)で希釈し、10質量%クエン酸水溶液(75mL)、5質量%塩化ナトリウム水溶液(75mL)、飽和塩化ナトリウム水溶液(75mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-MePhe-Phe-OH(2.20g、収率103%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+427.3
合成例15:Fmoc-MePhe-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000042
 Fmoc-MePhe-OH(2.00g、5.00mmol)、N-メチルモルホリン(0.556g、5.50mmol)をテトラヒドロフラン(30mL)と混合させ、0℃にてクロロギ酸イソプロピル(0.663g、5.25mmol)を加え30分間撹拌した。この溶液に、別途H-Phe-OH(0.991g、6.00mmol)、N,O-ビス(トリメチルシリル)アセトアミド(2.68g、12.9mmol)、アセトニトリル(15mL)を混合させ、75℃にて30分間撹拌して調製した溶液を加え、0℃のまま50分撹拌し、さらに25℃にて1時間攪拌した(原料:目的物=3:97(分析条件1))。得られた反応液を酢酸エチル(75mL)で希釈し、10質量%クエン酸水溶液(50mL)、5質量%塩化ナトリウム水溶液(50mL)、飽和塩化ナトリウム水溶液(50mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Fmoc-MePhe-Phe-OH(2.85g、収率98%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+549.4
合成例16:H-MePhe-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000043
 Fmoc-MePhe-Phe-OH(0.137g、0.250mmol)、トリエチルアミン(0.505g、4.99mmol)をアセトニトリル(4.4mL)と混合させ、80℃にて60分間撹拌した。得られた反応液を濃縮し、テトラヒドロフラン(1.0mL)、ジイソプロピルエーテル(3.0mL)を加えて懸濁し、生成した固体を桐山ロートにてろ取した。ジイソプロピルエーテル(5mL)で洗浄、乾燥し、H-MePhe-Phe-OH(0.071g、収率87%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+327.3
合成例17:H-MePhe-Phe-OH・HClの合成
Figure JPOXMLDOC01-appb-C000044
 Boc-MePhe-Phe-OH(0.213g、0.500mmol)を4M-HCl/酢酸エチル(10mL)と混合させ、25℃にて1時間撹拌した。得られた反応液を濃縮し、ジイソプロピルエーテルを加えて懸濁し、生成した固体を桐山ロートにてろ取、乾燥し、H-MePhe-Phe-OH・HCl(0.164g、収率91%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+327.3
合成例18:Boc-MePhe-MePhe-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000045
溶液A
 Boc-MePhe-OH(0.280g、1.00mmol)、N-メチルモルホリン(0.112g、1.10mmol)をテトラヒドロフラン(10mL)と混合させ、0℃にて2,2,4-トリメチルペンタン-3-イルカルボノクロリデート(0.203g、1.05mmol)を加え1時間撹拌した。
溶液B
 Boc-MePhe-Phe-OH(0.449g、1.05mmol)を4M-HCl/シクロペンチルメチルエーテル(5mL)と混合させ、25℃にて30分撹拌した。得られた反応液を濃縮し、酢酸エチル(20mL)を加えて濃縮し、N,N-ジイソプロピルエチルアミン(1.30g、10.0mmol)とアセトニトリル(8mL)を加えて濃縮した。得られた残渣にアセトニトリル(10mL)、N,O-ビス(トリメチルシリル)アセトアミド(0.644g、3.11mmol)を混合させ、25℃にて20分間撹拌して無色透明溶液を得た。
縮合工程
 溶液Aを0℃に冷却したまま溶液Bを混合し、さらに25℃のまま18時間撹拌した(原料:目的物=1:21(分析条件3))。得られた反応液を酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-Phe-MePhe-MePhe-MePhe-OH(0.532g、収率90%)を白色固体として得た。MASS(ESI+)m/z;(M+H)+588.4
合成例19:Boc-Phe-MePhe-MePhe-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000046
溶液A
 Boc-Phe-OH(0.177g、0.669mmol)、N-メチルモルホリン(0.744g、0.736mmol)をテトラヒドロフラン(10mL)と混合させ、0℃にて2,2,4-トリメチルペンタン-3-イルカルボノクロリデート(0.135g、0.702mmol)を加え1時間撹拌した。
溶液B
 Boc-MePhe-MePhe-Phe-OH(0.413g、0.702mmol)を4M-HCl/シクロペンチルメチルエーテル(10mL)と混合させ、25℃にて1時間撹拌した。得られた反応液を濃縮し、酢酸エチル(20mL)を加えて濃縮し、N,N-ジイソプロピルエチルアミン(0.865g、6.69mmol)とアセトニトリル(8mL)を加えて濃縮した。得られた残渣にアセトニトリル(10mL)、N,O-ビス(トリメチルシリル)アセトアミド(0.430g、2.07mmol)を混合させ、25℃にて20分間撹拌して無色透明溶液を得た。
縮合工程
 溶液Aを0℃に冷却したまま溶液Bを混合し、さらに25℃のまま18時間撹拌した(原料:目的物=0:100(分析条件3))。得られた反応液を酢酸エチル(20mL)で希釈し、10質量%クエン酸水溶液(20mL)、10質量%塩化ナトリウム水溶液(20mL)、飽和塩化ナトリウム水溶液(20mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-Phe-MePhe-MePhe-Phe-OH(0.453g、収率92%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+735.5
合成例20:Boc-MePhe-MePhe-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000047
溶液A
 Boc-MePhe-OH(0.324g、1.16mmol)、トリエチルアミン(0.141g、1.39mmol)をテトラヒドロフラン(10mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.172g、1.28mmol)を加え1時間撹拌した。
溶液B
 Boc-MePhe-Phe-OH(0.544g、1.28mmol)を4M-HCl/シクロペンチルメチルエーテル(20mL)と混合させ、25℃にて1時間撹拌した。得られた反応液を濃縮し、シクロペンチルメチルエーテル(20mL)を加えて濃縮し、N,N-ジイソプロピルエチルアミン(1.50g、11.6mmol)とアセトニトリル(8mL)を加えて濃縮した。得られた残渣にアセトニトリル(10mL)、N,O-ビス(トリメチルシリル)アセトアミド(0.621g、2.99mmol)を混合させ、25℃にて20分間撹拌して無色透明溶液を得た。
縮合工程
 溶液Aを0℃に冷却したまま溶液Bを混合し、さらに25℃のまま48時間撹拌した(原料:目的物=1:37(分析条件3))。得られた反応液を酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-MePhe-MePhe-Phe-OH(0.701g、収率103%)を褐色固体として得た。
MASS(ESI+)m/z;(M+H)+588.4
合成例21:Boc-MePhe-Pro-OHの合成
Figure JPOXMLDOC01-appb-C000048
 Boc-MePhe-OH(1.40g、5.00mmol)、N-メチルモルホリン(0.556g、5.50mmol)をテトラヒドロフラン(30mL)と混合させ、0℃にて3,3-ジメチルブタン-2-イルカルボノクロリデート(0.864g、5.25mmol)を加え1時間撹拌した。この溶液に、別途H-Pro-OH(0.691g、6.00mmol)、N,O-ビス(トリメチルシリル)アセトアミド(3.85g、18.6mmol)、アセトニトリル(12mL)を混合させ、70℃にて10分間撹拌して調製した溶液を加え、さらに0℃にて15分間撹拌した(原料:目的物=0:100(分析条件3))。得られた反応液を酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-MePhe-Pro-OH(1.94g、収率94%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+377.3
合成例22:Boc-MePhe-MePhe-Pro-OHの合成
Figure JPOXMLDOC01-appb-C000049
溶液A
 Boc-MePhe-OH(0.838g、3.00mmol)、トリエチルアミン(0.364g、3.60mmol)をテトラヒドロフラン(60mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.444g、3.30mmol)を加え30分撹拌した。
溶液B
 Boc-MePhe-Pro-OH(1.24g、3.30mmol)を4M-HCl/シクロペンチルメチルエーテル(20mL)と混合させ、25℃にて1時間撹拌した。得られた反応液を濃縮し、アセトニトリル(20mL)を加えて濃縮し、N,N-ジイソプロピルエチルアミン(0.865g、6.69mmol)とアセトニトリル(20mL)を加えて濃縮した。得られた残渣にアセトニトリル(20mL)、N,O-ビス(トリメチルシリル)アセトアミド(2.31g、11.1mmol)を混合させ、25℃にて20分間撹拌して無色透明溶液を得た。
縮合工程
 溶液Aを0℃に冷却したまま溶液Bを混合し、さらに25℃のまま48時間撹拌した(原料:目的物=1:24(分析条件3))。得られた反応液を酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-MePhe-MePhe-Pro-OH(1.71g、収率90%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+538.5
合成例23:H-MePhe-MePhe-Pro-OH・HClの合成
Figure JPOXMLDOC01-appb-C000050
 Boc-MePhe-MePhe-Pro-OH(1.61g、3.00mmol)を4M-HCl/酢酸エチル(15mL)と混合させ、25℃にて90分間撹拌した。得られた反応液を濃縮し、酢酸エチル(5mL)、ジイソプロピルエーテル(20mL)を加えて懸濁し、生成した固体を桐山ロートにてろ取した。ジイソプロピルエーテル(10mL)で洗浄、乾燥し、H-MePhe-MePhe-Pro-OH・HCl(1.30g、収率91%)を白色固体として得た。得られた固体を次の工程に利用した。
合成例24:Boc-Tyr-MePhe-MePhe-Pro-OHの合成
Figure JPOXMLDOC01-appb-C000051
溶液A
 Boc-Tyr-OH(0.282g、1.00mmol)、トリエチルアミン(0.122g、1.20mmol)をテトラヒドロフラン(10mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.148g、1.10mmol)を加え1時間撹拌した。
溶液B
 H-MePhe-MePhe-Pro-OH・HCl(0.482g、1.02mmol)をN,N-ジイソプロピルエチルアミン(2mL)と混合させ、25℃にて2分撹拌した。得られた反応液を濃縮した。得られた残渣にアセトニトリル(6mL)、N,O-ビス(トリメチルシリル)アセトアミド(0.773g、3.74mmol)を混合させ、25℃にて20分間撹拌して無色透明溶液を得た。
縮合工程
 溶液Aを0℃に冷却したまま溶液Bを混合し、さらに25℃のまま1時間撹拌した。得られた反応液を酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-Tyr-MePhe-MePhe-Pro-OH(0.698g、収率99%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+701.5
合成例25:Boc-MePhe-MeAla-Tyr-OHの合成
Figure JPOXMLDOC01-appb-C000052
溶液A
 Boc-MePhe-OH(0.894g、3.20mmol)、トリエチルアミン(0.389g、3.84mmol)をテトラヒドロフラン(25mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.474g、3.52mmol)を加え45分撹拌した。
溶液B
 H-MeAla-Tyr-OH(0.937g、3.52mmol)にアセトニトリル(10mL)、N,O-ビス(トリメチルシリル)アセトアミド(2.28g、10.9mmol)を混合させ、25℃にて15分間撹拌して無色透明溶液を得た。
縮合工程
 溶液Aを0℃に冷却したまま溶液Bを混合し、さらに25℃のまま2時間撹拌した(原料:目的物=0:100(分析条件1))。得られた反応液を濃縮後、酢酸エチル(30mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液(20mL)、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-MePhe-MeAla-Tyr-OH(1.67g、収率94%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+528.3
合成例26:H-MePhe-MeAla-Tyr-OHの合成
Figure JPOXMLDOC01-appb-C000053
 Boc-MePhe-MeAla-Tyr-OH(0.474g、0.898mmol)を4M-HCl/酢酸エチル(5mL)と混合させ、25℃にて60分間撹拌した。得られた反応液を濃縮し、アセトニトリル(5mL)、N,N-ジイソプロピルエチルアミン(1.74g、13.5mmol)を加えて懸濁し、生成した固体を桐山ロートにてろ取した。N,N-ジイソプロピルエチルアミン(1.74g、13.5mmol)とジイソプロピルエーテル(5mL)の溶液で洗浄、乾燥し、H-MePhe-MeAla-Tyr-OH(0.370g、収率96%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+428.8
合成例27:Boc-Phe-MePhe-MeAla-Tyr-OHの合成
Figure JPOXMLDOC01-appb-C000054
 Boc-Phe-OH(0.125g、0.470mmol)、トリエチルアミン(0.057g、0.564mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.070g、0.52mmol)を加え45分撹拌した。この溶液に、別途H-MePhe-MeAla-Tyr-OH(0.221g、0.517mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.332g、1.60mmol)、アセトニトリル(5.0mL)を混合させ、25℃にて15分間撹拌して調製した溶液を加え、さらに25℃のまま2時間撹拌した(原料:目的物=1:80(分析条件2))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-Phe-MePhe-MeAla-Tyr-OH(0.295g、収率93%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+675.5
合成例28:H-Phe-MePhe-MeAla-Tyr-OHの合成
Figure JPOXMLDOC01-appb-C000055
 Boc-Phe-MePhe-MeAla-Tyr-OH(0.317g、0.470mmol)をトリフルオロ酢酸(1.45mL)と混合させ、25℃にて15分間撹拌した。得られた反応液を濃縮し、アセトニトリル(7mL)、トリエチルアミン(0.476g、4.70mmol)を加えて懸濁し、生成した固体を桐山ロートにてろ取した。酢酸エチル(2mL)、ジイソプロピルエーテル(8mL)で洗浄、乾燥し、H-Phe-MePhe-MeAla-Tyr-OH(0.268g、収率99%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+575.4
合成例29:Boc-MePhe-Phe-MePhe-MeAla-Tyr-OHの合成
Figure JPOXMLDOC01-appb-C000056
Boc-MePhe-OH(0.092g、0.33mmol)、トリエチルアミン(0.040g、0.396mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.0489g、0.363mmol)を加え45分撹拌した。この溶液に、別途H-Phe-MePhe-MeAla-Tyr-OH(0.209g、0.363mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.233g、1.12mmol)、アセトニトリル(5.0mL)を混合させ、25℃にて15分間撹拌して調製した溶液を加え、さらに25℃のまま1時間撹拌した(原料:目的物=0:100(分析条件2))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-MePhe-Phe-MePhe-MeAla-Tyr-OH(0.282g、収率87%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+836.5
合成例30:Cbz-MeAla-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000057
 Cbz-MeAla-OH(1.19g、5.00mmol)、トリエチルアミン(0.607g、6.00mmol)をテトラヒドロフラン(50mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.740g、5.50mmol)を加え45分間撹拌した。この溶液に、別途H-Phe-OH(0.991g、6.00mmol)、N,O-ビス(トリメチルシリル)アセトアミド(2.57g、12.4mmol)、アセトニトリル(17mL)を混合させ、マイクロ波照射下で75℃にて60分間撹拌して調製した溶液を加え、さらに0℃のまま1時間撹拌した(原料:目的物=1:62(分析条件1))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、飽和炭酸水素ナトリウム水溶液(60mL)、水(60mL)、飽和塩化ナトリウム水溶液(30mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液(30mL)、飽和塩化ナトリウム水溶液(30mL)で順次洗浄した。得られた有機層を濃縮し、Cbz-MeAla-Phe-OH(1.76g、収率91%)を無色透明シロップとして得た。
MASS(ESI+)m/z;(M+H)+385.3
合成例31:H-MeAla-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000058
 Cbz-MeAla-Phe-OH(1.76g、4.57mmol)、トリエチルアミン(0.023g、0.229mmol)、ギ酸アンモニウム(1.44g、22.9mmol)、10質量%パラジウム-カーボン(0.486g)をメタノール(50mL)と混合させ、60℃にて1時間撹拌した。反応溶液をセライトろ過し、メタノール(20mL)で三回洗浄した。得られた濾液を濃縮し、H-MeAla-Phe-OH(1.03g、90%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+251.2
合成例32:Boc-MePhe-MeAla-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000059
 Boc-MePhe-OH(0.559g、2.00mmol)、トリエチルアミン(0.243g、2.40mmol)をテトラヒドロフラン(30mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.296g、2.20mmol)を加え45分間撹拌した。この溶液に、別途H-MeAla-Phe-OH(0.601g、2.40mmol)、N,O-ビス(トリメチルシリル)アセトアミド(1.03g、4.95mmol)、アセトニトリル(20mL)を混合させ、25℃にて40分間撹拌して調製した溶液を加え、さらに0℃のまま2時間撹拌した(原料:目的物=1:55(分析条件1))。得られた反応液を濃縮後、酢酸エチル(20mL)で希釈し、飽和炭酸水素ナトリウム水溶液(30mL)、水(30mL)、飽和塩化ナトリウム水溶液(15mL)で2回ずつ順次洗浄した。得られた有機層を10質量%クエン酸水溶液(20mL)、飽和塩化ナトリウム水溶液(20mL)で順次洗浄した。得られた有機層を濃縮し、Boc-MePhe-MeAla-Phe-OH(1.08g、収率105%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+512.3
合成例33:H-MePhe-MeAla-Phe-OH・HClの合成
Figure JPOXMLDOC01-appb-C000060
 Boc-MePhe-MeAla-Phe-OH(1.06g、2.08mmol)を4M-HCl/酢酸エチル(20mL)と混合させ、25℃にて60分間撹拌した。得られた反応液を濃縮し、ジイソプロピルエーテル(20mL)を加えて懸濁し、生成した固体を桐山ロートにてろ取した。ジイソプロピルエーテル(10mL)で洗浄、乾燥し、H-MePhe-MeAla-Phe-OH・HCl(0.886g、収率95%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+411.5
合成例34:Fmoc-Trp(Boc)-MePhe-MeAla-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000061
 Fmoc-Trp(Boc)-OH(0.439g、0.833mmol)、トリエチルアミン(0.101g、1.00mmol)をテトラヒドロフラン(30mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.123g、0.917mmol)を加え45分間撹拌した。この溶液に、別途H-MePhe-MeAla-Phe-OH・HCl(0.448g、1.00mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.428g、2.06mmol)、N,N-ジイソプロピルエチルアミン(1.08g、8.33mmol)、アセトニトリル(20mL)を混合させ、25℃にて40分間撹拌して調製した溶液を加え、さらに25℃のまま3時間撹拌した(原料:目的物=1:12(分析条件1))。得られた反応液を濃縮後、酢酸エチル(20mL)で希釈し、飽和炭酸水素ナトリウム水溶液(30mL)、水(30mL)、飽和塩化ナトリウム水溶液(12mL)で2回ずつ順次洗浄した。得られた有機層を10質量%クエン酸水溶液(20mL)、飽和塩化ナトリウム水溶液(20mL)で順次洗浄した。得られた有機層を濃縮し、残渣を酢酸エチル(5.0mL)に溶解してヘキサン(95mL)に注いだ。析出した固体をろ取し、Fmoc-Trp(Boc)-MePhe-MeAla-Phe-OH(0.657g、収率86%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+920.5
合成例35:Fmoc-Gln(Trt)-MePhe-MeAla-Tyr-OHの合成
Figure JPOXMLDOC01-appb-C000062
溶液A
 Fmoc-Gln(Trt)-OH(0.204g、0.333mmol)、トリエチルアミン(0.040g、0.40mmol)をテトラヒドロフラン(20mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.049g、0.37 mmol)を加え45分間撹拌した。
溶液B
 H-MePhe-MeAla-Tyr-OH(0.171g、0.400mmol)、N,N-ジイソプロピルエチルアミン(0.431g、3.33mmol)、アセトニトリル(20mL)を混合させ、溶液を濃縮して溶媒を除去した。得られた残渣にアセトニトリル(10mL)、N,O-ビス(トリメチルシリル)アセトアミド(0.343g、1.65mmol)を混合させ、25℃にて40分間撹拌して無色透明溶液を得た。
縮合工程
 溶液Aを0℃に冷却したまま溶液Bを混合し、さらに25℃のまま23時間撹拌した(原料:目的物=1:5(分析条件1))。得られた反応液を濃縮後、酢酸エチル(20mL)で希釈し、飽和炭酸水素ナトリウム水溶液(15mL)、水(15mL)、飽和塩化ナトリウム水溶液(7.5mL)で2回ずつ順次洗浄した。得られた有機層を10質量%クエン酸水溶液(20mL)、飽和塩化ナトリウム水溶液(20mL)で順次洗浄した。得られた有機層を濃縮し、Fmoc-Gln(Trt)-MePhe-MeAla-Tyr-OH(0.209g、収率62%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+1020.6
合成例36:Fmoc-BnGly-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000063
 Fmoc-BnGly-OH(0.387g、1.00mmol)、N-メチルモルホリン(0.111g、1.10mmol)をテトラヒドロフラン(20mL)と混合させ、0℃にてクロロギ酸イソプロピル(0.129g、1.05mmol)を加え5分撹拌した。この溶液に、別途H-Phe-OH(0.198g、1.20mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.519g、2.48mmol)、アセトニトリル(5mL)を混合させ、マイクロ波照射下で75℃にて60分間撹拌して調製した溶液を加え、0℃のまま15分間撹拌し、さらに25℃にて20時間撹拌した(原料:目的物=1:55(分析条件1))。得られた反応液を濃縮後、酢酸エチル(80mL)で希釈し、10質量%クエン酸水溶液(50mL)、10質量%塩化ナトリウム水溶液(50mL)、飽和塩化ナトリウム水溶液(50mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Fmoc-BnGly-Phe-OH(0.570g、収率107%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+535.3
合成例37:H-BnGly-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000064
 Fmoc-BnGly-Phe-OH(0.535g、1.00mmol)、トリエチルアミン(2.02g、20.0mmol)をアセトニトリル(20mL)と混合させ、60℃にて60分間撹拌した。得られた反応液を濃縮し、ジイソプロピルエーテル(50mL)を加えて懸濁し、生成した固体を桐山ロートにてろ取した。ジイソプロピルエーテルで洗浄、乾燥し、H-BnGly-Phe-OH(0.293g、収率94%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+313.2
合成例38:Boc-Phe-BnGly-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000065
 Boc-Phe-OH(0.066g、0.25mmol)、トリエチルアミン(0.030g、0.30mmol)をテトラヒドロフラン(5mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.037g、0.28mmol)を加え45分間撹拌した。この溶液に、別途H-BnGly-Phe-OH(0.093g、0.30mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.129g、0.616mmol)、アセトニトリル(4mL)を混合させ、25℃にて20分間撹拌して調製した溶液を加え、さらに25℃のまま14時間撹拌した(原料:目的物=1:93(分析条件3))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液(20mL)で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-Phe-BnGly-Phe-OH(0.139g、収率100%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+560.4
合成例39:Fmoc-n-PrGly-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000066
 Fmoc-n-PrGly-OH(0.339g、1.00mmol)、トリエチルアミン(0.121g、1.20mmol)をテトラヒドロフラン(15mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.148g、1.10mmol)を加え45分間撹拌した。この溶液に、別途H-Phe-OH(0.198g、1.20mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.519g、2.48mmol)、アセトニトリル(4.5mL)を混合させ、マイクロ波照射下で75℃にて60分間撹拌して調製した溶液を加え、さらに0℃のまま1時間撹拌した(原料:目的物=1:32(分析条件1))。得られた反応液を濃縮後、酢酸エチル(20mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液(20mL)、飽和塩化ナトリウム水溶液(20mL)で2回ずつ順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Fmoc-n-PrGly-Phe-OH(0.538g、収率111%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+487.3
合成例40:H-n-PrGly-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000067
 Fmoc-n-PrGly-Phe-OH(0.487g、1.00mmol)、トリエチルアミン(2.02g、20.0mmol)をアセトニトリル(20mL)と混合させ、60℃にて60分間撹拌した。得られた反応液を濃縮し、ジイソプロピルエーテル(50mL)を加えて懸濁し、生成した固体を桐山ロートにてろ取した。ジイソプロピルエーテルで洗浄、乾燥し、H-n-PrGly-Phe-OH(0.245g、収率93%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+265.2
合成例41:Boc-Phe-n-PrGly-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000068
 Boc-Phe-OH(0.066g、0.25mmol)、トリエチルアミン(0.030g、0.300mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.037g、0.27mmol)を加え45分時間撹拌した。この溶液に、別途H-n-PrGly-Phe-OH(0.066g、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.118g、0.564mmol)、アセトニトリル(4.0mL)を混合させ、25℃にて30分間撹拌して調製した溶液を加え、さらに25℃のまま1時間以上撹拌した(原料:目的物=1:85(分析条件3))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-Phe-n-PrGly-Phe-OH(0.125g、収率98%)を白色固体として得た。 
MASS(ESI+)m/z;(M+H)+512.4
合成例42:Fmoc-MePhe-n-PrGly-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000069
 Fmoc-MePhe-OH(0.080g、0.20mmol)、トリエチルアミン(0.024g、0.24mmol)をテトラヒドロフラン(5mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.030g、0.22mmol)を加え45分間撹拌した。この溶液に、別途H-n-PrGly-Phe-OH(0.063g、0.24mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.104g、0.50mmol)、アセトニトリル(2mL)を混合させ、0℃にて30分間撹拌して調製した溶液を加え、さらに25℃のまま2時間撹拌した(原料:目的物=1:18(分析条件1))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液(30mL)、5質量%塩化ナトリウム水溶液(30mL)、飽和塩化ナトリウム水溶液(30mL)で順次洗浄した。得られた有機層を濃縮し、Fmoc-MePhe-n-PrGly-Phe-OH(0.153g、収率118%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+648.4
合成例43:Boc-MePhe-MePhe-MeAla-Tyr-OHの合成
Figure JPOXMLDOC01-appb-C000070
 Boc-MePhe-OH(0.084g、0.30mmol)、トリエチルアミン(0.036g、0.36mmol)をテトラヒドロフラン(6.0mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.044g、0.331mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-MeAla-Tyr-OH(0.141g、0.305mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.215g、1.023mmol)、N,N-ジイソプロピルエチルアミン(0.086g、0.662mmol)、アセトニトリル(5.0mL)を混合させ、0℃にて60分間撹拌して調製した溶液を加え、さらに25℃のまま16時間撹拌した(原料:目的物=1:59(分析条件3))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-MePhe-MePhe-MeAla-Tyr-OH(0.177g、収率85%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+689.5
合成例44:Fmoc-Glu(tBu)-MePhe-MePhe-MeAla-Tyr-OHの合成
Figure JPOXMLDOC01-appb-C000071
溶液A
 Fmoc-Glu(tBu)-OH(0.091g、0.21mmol)、トリエチルアミン(0.026g、0.257mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.032g、0.24mmol)を加え1時間撹拌した。
溶液B
 Boc-MePhe-MePhe-MeAla-Tyr-OH(0.177g、0.257mmol)、トリフルオロ酢酸(3.0mL)を混合させ、さらに25℃のまま30分間撹拌した。溶液を濃縮してトリフルオロ酢酸を除去し、アセトニトリル(20mL)を混合させ濃縮した。得られた残渣にアセトニトリル(8.0mL)、トリエチルアミン(0.026g、0.257mmol)を加え、溶液を濃縮して溶媒とトリエチルアミンを除去した。得られた残渣にアセトニトリル(5.0mL)、N,O-ビス(トリメチルシリル)アセトアミド(0.167g、0.80mmol)を混合させ、25℃にて5分間撹拌して無色透明溶液を得た。
縮合工程
 溶液Aを0℃に冷却したまま溶液Bを混合し、さらに25℃のまま17時間撹拌した(原料:目的物=1:5(分析条件3))。得られた反応液を濃縮後、酢酸エチル(30mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を濃縮し、Fmoc-Glu(tBu)-MePhe-MePhe-MeAla-Tyr-OH(0.192g、収率90%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+730.4,+996.5
合成例45:Fmoc-Cys(Trt)-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000072
Fmoc-Cys(Trt)-OH(0.147g、0.251mmol)、トリエチルアミン(0.031g、0.30mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.037g、0.28mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.054g、0.30mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.130g、0.62mmol)、アセトニトリル(4.0mL)を混合させ、75℃にて20分間撹拌して調製した溶液を加え、さらに0℃のまま1時間撹拌した(原料:目的物=1:28(分析条件3))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、水、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Fmoc-Cys(Trt)-MePhe-OH(0.187g、収率100%)を白色固体として得た。
 MASS(ESI+)m/z;(M+H)+243.2(トリチルカチオン)、+747.2
合成例46:Boc-Arg(Cbz) -MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000073
 Boc-Arg(Cbz)-OH(0.136g、0.250mmol)、トリエチルアミン(0.030g、0.30mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.037g、0.28mmol)を加え45分間撹拌した。この溶液に、別途H-MePhe-OH(0.054g、0.30mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.128g、0.62mmol)、アセトニトリル(4.0mL)を混合させ、75℃にて10分間撹拌して調製した溶液を加え、さらに25℃のまま1時間以上撹拌した(原料:目的物=1:25(分析条件2))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-Arg(Cbz)-MePhe-OH(0.175g、収率99%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+704.5
合成例47:Boc-Arg(Cbz) -MeAla-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000074
 Boc-Arg(Cbz)-OH(0.136g、0.251mmol)、トリエチルアミン(0.030g、0.30mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.037g、0.28mmol)を加え1時間撹拌した。この溶液に、別途H-MeAla-Phe-OH(0.075g、0.30mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.130g、0.621mmol)、アセトニトリル(4.0mL)を混合させ、25℃にて20分間撹拌して調製した溶液を加え、さらに25℃のまま14時間撹拌した(原料:目的物=1:13(分析条件2))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、飽和炭酸水素ナトリウム水溶液(20mL)、水(20mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Boc-Arg(Cbz)-MeAla-Phe-OH(0.192g、収率99%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+775.5
合成例48:Fmoc-His(Boc)-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000075
Fmoc-His(Boc)-OH(0.120g、0.251mmol)、N-メチルモルホリン(0.033g、0.33mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて4-エチル-2,2-ジメチルヘキサン-3-イルカルボノクロリデート(0.067g、0.30mmol)を加え2時間撹拌した。この溶液に、別途H-MePhe-OH(0.058g、0.33mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.141g、0.679mmol)、アセトニトリル(4mL)を混合させ、75℃にて20分間撹拌して調製した溶液を加え、さらに25℃にて13時間撹拌した(原料:目的物=1:6(分析条件2))。得られた反応液を酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Fmoc-His(Boc)-MePhe-OH(0.131g、収率82%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+539.6,+639.4
合成例49:Fmoc-MeHis(Trt)-Leu-OHの合成
Figure JPOXMLDOC01-appb-C000076
溶液A
 Fmoc-MeHis(Trt)-OH(1.27g、2.00mmol)、N,N-ジメチルホルムアミド(0.015g、0.20mmol)をテトラヒドロフラン(30mL)と混合させ、0℃にて塩化チオニル(1.19g、10.0mmol)を加え25℃で1時間撹拌した。溶液を濃縮して塩化チオニルと溶媒を除去し、テトラヒドロフラン(10mL)を混合させ濃縮した。得られた残渣にテトラヒドロフラン(10mL)を加え、淡黄色透明の酸塩化物溶液を得た。
溶液B
 Leu-OH(0.315g、2.40mmol)、N,O-ビス(トリメチルシリル)アセトアミド(1.30g、6.26mmol)、アセトニトリル(5mL)を混合させ、80℃にて1時間撹拌して無色透明溶液を得た。
縮合工程
 溶液Aを0℃に冷却したまま溶液Bを混合し、さらに0℃のまま1時間撹拌した(原料:目的物=1:25(分析条件3))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。得られた有機層を濃縮後、シリカゲルカラムクロマトグラフィーで精製し、Fmoc-MeHis(Trt)-Leu-OH(1.37g、収率92%)を淡黄色固体として得た。
MASS(ESI+)m/z;(M+H)+747.4
合成例50:H-MeHis(Trt)-Leu-OHの合成
Figure JPOXMLDOC01-appb-C000077
 Fmoc-His(Trt)-Leu-OH(0.202g、0.270mmol)、トリエチルアミン(0.564g、5.40mmol)をアセトニトリル(4.0mL)、テトラヒドロフラン(4.0mL)と混合させ、80℃にて60分間撹拌した。得られた反応液を濃縮し、テトラヒドロフラン(3.0mL)、ジイソプロピルエーテル(9.0mL)を加えて懸濁し、生成した固体を桐山ロートにてろ取した。ジイソプロピルエーテル(10mL)で洗浄、乾燥し、H-MeHis(Trt)-Leu-OH(0.130g、収率92%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+525.8
合成例51:Fmoc-Phe-MeHis(Trt)-Leu-OHの合成
Figure JPOXMLDOC01-appb-C000078
 Fmoc-Phe-OH(0.078g、0.20mmol)、トリエチルアミン(0.024g、0.24mmol)をテトラヒドロフラン(5.0mL)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.030g、0.22mmol)を加え1時間撹拌した。この溶液に、別途H-MeHis(Trt)-Leu-OH(0.116g、0.221mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.096g、0.46mmol)、アセトニトリル(4.0mL)を混合させ、25℃にて30分間撹拌して調製した溶液を加え、さらに25℃のまま5時間撹拌した(原料:目的物=1:5(分析条件2))。得られた反応液を濃縮後、酢酸エチル(40mL)で希釈し、10質量%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、水、飽和塩化ナトリウム水溶液、で順次洗浄した。得られた有機層を濃縮し、Fmoc-Phe-MeHis(Trt)-Leu-OH(0.154g、収率86%)を白色固体として得た。
MASS(ESI+)m/z;(M+H)+894.5
合成例52:Fmoc-Val-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000079
 Fmoc-Val-OH(0.101g、0.298mmol)、トリエチルアミン(0.053mL、0.383mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にてピバロイルクロリド(0.043mL、0.354mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.080g、0.446mmol)、トリメチルシリルクロリド(0.070mL、0.554mmol)、トリエチルアミン(0.082mL、0.592mmol)、アセトニトリル(0.80g)を混合させ、50℃にて1.5時間撹拌して調製した溶液を加え、さらに0℃のまま70時間撹拌した(原料:目的物=3.5:1)。得られた反応液を酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(3.0g)および飽和食塩水溶液(2.0g)で2回洗浄した。得られた有機層を用いてHPLC分析した結果、定量収率は11%であった。
 以下、特に記載がない場合、原料Fmoc-Val-OHと生成物Fmoc-Val-MePhe-OHの比は、高速液体クロマトグラフィーを用いた分析<分析条件4>によって算出した。
<分析条件4>
高速液体クロマトグラフィー:SHIMADZU製 HPLC LC-20A
カラム:Agilent製Poroshell 120EC-C18(2.7μm、3.0×100 mm)
カラムオーブン温度:40℃
溶離液:アセトニトリル:0.05 vol% リン酸水溶液
50:50(0-15分)、50:50-95:5(15-18分)、95:5(18-22分)(v/v)
溶離液速度:0.7 mL/分
検出波長:210 nm
 以下、特に記載がない場合、Fmoc-Val-MePhe-OHの定量収率は、<分析条件4>による定量分析法で算出した。
標準物質:合成例57に記載の方法で得られたFmoc-Val-MePhe-OHをシリカゲルクロマトグラフィーにて精製し標準物質とした。
MASS(ESI+)m/z;(M+H)+501.22
定量方法:絶対検量法
合成例53:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、トリエチルアミン(0.053mL、0.38mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にてピバロイルクロリド(0.043mL、0.35mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.079g、0.44mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.135mL、0.552mmol)、アセトニトリル(0.81g)を混合させ、50℃にて1.5時間撹拌して調製した溶液を加え、さらに0℃のまま70時間撹拌した(原料:目的物=1:7)。得られた反応液を酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(2.0g)および飽和食塩水溶液(1.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は79%であった。
合成例54:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、N-メチルモルホリン(0.042mL、0.383mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にてイソブチルカルボノクロリデート(0.046mL、0.35mmol)を加え5分間撹拌した。この溶液に、別途H-MePhe-OH(0.079g、0.44mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.135mL、0.552mmol)、アセトニトリル(0.79g)を混合させ、50℃にて1時間撹拌して調製した溶液を加え、さらに0℃のまま21時間撹拌した(原料:目的物=3.5:1)。得られた反応液を酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(2.0g)および飽和食塩水溶液(1.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は18%であった。
合成例55:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、トリエチルアミン(0.053mL、0.38mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にて2-エチルブタノイルクロリド(0.048mL、0.35mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.079g、0.44mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.135mL、0.552mmol)、アセトニトリル(0.79g)を混合させ、50℃にて1時間撹拌して調製した溶液を加え、さらに0℃のまま110時間撹拌した(原料:目的物=1:13)。得られた反応液を酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(2.0g)および飽和食塩水溶液(1.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は87%であった。
合成例56:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、トリエチルアミン(0.053mL、0.38mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にて2,2-ジメチルブタノイルクロリド(0.049mL、0.35mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.079g、0.44mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.135mL、0.552mmol)、アセトニトリル(0.79g)を混合させ、50℃にて1時間撹拌して調製した溶液を加え、さらに0℃のまま95時間撹拌した(原料:目的物=1:18)。得られた反応液を酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(2.0g)および飽和食塩水溶液(1.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は89%であった。
合成例57:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、N,N-ジイソプロピルエチルアミン(0.058mL、0.32mmol)をアセトニトリル(1.0g)と混合させ、0℃にて2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリドの50質量%トルエン溶液(0.107g、0.354mmol)を加え2時間撹拌した。この溶液に、別途H-MePhe-OH(0.079g、0.442mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.135mL、0.552mmol)、アセトニトリル(0.79g)を混合させ、50℃にて1時間撹拌して調製した溶液を加え、さらに0℃のまま67時間、20℃で7時間撹拌した(原料:目的物=1:35)。得られた反応液をメタノール(0.5mL)、N,N-ジイソプロピルエチルアミン(0.05mL)でクエンチ後、酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(2.0g)および飽和食塩水溶液(1.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は96%であった。
 2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリドは特許第3406093号を参考にして合成した。
合成例58:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、N-メチルモルホリン(0.071mL、0.648mmol)をN,N-ジメチルアセトアミド(5.9mL)と混合させ、0℃にて2,4-ジメチルペンタン-3-イルカルボノクロリデート(0.105g、0.589mmol)を加え2時間撹拌した。この溶液に、別途H-MePhe-OH(0.106g、0.589mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.288mL、1.179mmol)、アセトニトリル(7.9mL)を混合させ、75℃にて15分間撹拌して調製した溶液を加え、さらに0℃のまま114時間、20℃で4時間撹拌した(原料:目的物=1:11)。得られた反応液をメタノール(5.0mL)、N,N-ジイソプロピルエチルアミン(0.50mL)でクエンチ後、酢酸エチル(30.0g)で希釈し、10質量%クエン酸水溶液(18.0g)および飽和食塩水溶液(6.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は85%であった。
合成例59:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、N-メチルモルホリン(0.071mL、0.648mmol)をN,N-ジメチルアセトアミド(5.9mL)と混合させ、0℃にて2,2,4-トリチルペンタン-3-イルカルボノクロリデート(0.114g、0.589mmol)を加え2時間撹拌した。この溶液に、別途H-MePhe-OH(0.106g、0.589mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.288mL、1.179mmol)、アセトニトリル(7.9mL)を混合させ、75℃にて15分間撹拌して調製した溶液を加え、さらに0℃のまま91時間、20℃で7時間撹拌した(原料:目的物=1:10)。得られた反応液をメタノール(5.0mL)、N,N-ジイソプロピルエチルアミン(0.50mL)でクエンチ後、酢酸エチル(30.0g)で希釈し、10質量%クエン酸水溶液(18.0g)および飽和食塩水溶液(6.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は88%であった。
合成例60:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、N,N-ジイソプロピルエチルアミン(0.065mL、0.38mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にて1-アダマンタンカルボニルクロリド(0.070g、0.35mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.079g、0.44mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.135mL、0.552mmol)、アセトニトリル(0.79g)を混合させ、50℃にて1時間撹拌して調製した溶液を加え、さらに0℃のまま96時間撹拌した(原料:目的物=1:10)。得られた反応液を酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(2.0g)および飽和食塩水溶液(1.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は90%であった。
合成例61:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.10g、0.30mmol)、N-メチルモルホリン(0.071mL、0.65mmol)をN,N-ジメチルアセトアミド(5.9mL)と混合させ、0℃にて4-エチル-2,2-ジメチルヘキサン-3-イルカルボノクロリデート(0.13g、0.59mmol)を加え2時間撹拌した。この溶液に、別途H-MePhe-OH(0.106g、0.59mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.29mL、1.18mmol)、アセトニトリル(7.9mL)を混合させ、75℃にて15分間撹拌して調製した溶液を加え、さらに0℃のまま164時間撹拌した(原料:目的物=1:9)。得られた反応液をメタノール(5.0mL)、N,N-ジイソプロピルエチルアミン(0.50mL)でクエンチ後、酢酸エチル(30.0g)で希釈し、10質量%クエン酸水溶液(18.0g)、飽和食塩水溶液(10.0g)および飽和食塩水溶液(6.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は83%であった。
合成例62:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、トリエチルアミン(0.053mL、0.383mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にて2-エチルヘキサノイルクロリド(0.061mL、0.354mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.079g、0.442mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.135mL、0.552mmol)、アセトニトリル(0.79g)を混合させ、50℃にて1時間撹拌して調製した溶液を加え、さらに0℃のまま111時間撹拌した(原料:目的物=1:11)。得られた反応液を酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(2.0g)および飽和食塩水溶液(1.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は90%であった。
合成例63:Fmoc-Val-MePhe-OHの合成
 Fmoc-Val-OH(0.100g、0.295mmol)、トリエチルアミン(0.053mL、0.383mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にて2-(4-クロロフェニル)-3-メチルブタノイルクロリド(0.070mL、0.354mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.079g、0.442mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.135mL、0.552mmol)、アセトニトリル(0.79g)を混合させ、50℃にて1時間撹拌して調製した溶液を加え、さらに0℃のまま66時間撹拌した(原料:目的物=1:10)。得られた反応液を酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(2.0g)および飽和食塩水溶液(1.0g)で2回洗浄した。集めた有機層のFmoc-Val-MePhe-OHの定量収率は84%であった。
合成例64:Fmoc-Val-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000080
 Fmoc-Val-OH(0.100g、0.295mmol)、トリエチルアミン(0.053mL、0.383mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にて3,5,5-トリメチルヘキサノイルクロリド(0.067mL、0.354mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.079g、0.442mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.135mL、0.552mmol)、アセトニトリル(0.79g)を混合させ、50℃にて1時間撹拌して調製した溶液を加え、さらに0℃のまま68時間撹拌した(原料:目的物=16:1)。
合成例65:Cbz-Phe-MePhe-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000081
 Cbz-Phe-OH(50mg、0.17mmol)、テトラヒドロフラン(0.5g)、トリエチルアミン(20mg、0.20mmol)を混合させ、0℃にてピバロイルクロリド(24mg、0.20mmol)を加え2時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(82mg、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(97mg、0.48mmol)、アセトニトリル(0.82g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃に昇温し3時間攪拌した(原料:目的物=1:10(分析条件5))。得られた反応液を酢酸エチル(2.5g)で希釈し、10質量%クエン酸水溶液(1.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層のCbz-Phe-MePhe-Phe-OHの定量収率は77%(分析条件5)であった。
MASS(ESI+)m/z;(M+H)+608.44
 以下、特に記載のない場合、原料Cbz-Phe-OHと生成物Cbz-Phe-MePhe-Phe-OHの比は、高速液体クロマトグラフィーを用いた分析<分析条件5>によって算出した。
<分析条件5>
高速液体クロマトグラフィー:SHIMADZU製 HPLC -20A
カラム:Agilent製Poroshell 120EC-C18(2.7 μm、3.0×100 mm)
カラムオ-ブン温度:50℃
溶離液:0.2vоl%リン酸 アセトニトリル溶液:0.2vоl% リン酸水溶液
12:88-95:5(0-15分)、95:5(15-19分)、(v/v)
溶離液速度:0.7 mL/分
検出波長:214 nm
 以下、特に記載のない場合、Cbz-Phe-MePhe-Phe-OHの定量収率は、<分析条件5>による定量分析法で算出した。
標準物質:合成例71に記載の方法にて合成したCbz-Phe-MePhe-Phe-OHをシリカゲルクロマトグラフィーにて精製し、標準物質とした。
標準物質のNMRおよびMASSを示す。
H NMR(300MHz,DMSO-d):
δppm:2.64(3H,s),2.67-3.33(6H,m),4.27-4.45(3H,m),4.89(2H,s),5.21(1H,m),7.04-7.33(20H,m)
MASS(ESI+)m/z;(M+H)+608.44
定量方法:絶対検量法
合成例66:H-MePhe-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000082
 Cbz-MePhe-OH(2.0g、6.38mmol)、塩化メチレン(20.0 g)、N,N-ジイソプロピルエチルアミン(2.9g、22.3mmol)、H-Phe-OBn(2.2g、7.66mmоl)を混合させ、22℃にてN-[1-(シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ(モルホリノ)]ウロニウム ヘキサフルオロホスフェート(3.28g、7.66mmol)を加え1時間半攪拌した。得られた反応液に、10質量%塩酸(16g)、水(16g)を加えて分液後、有機層を2回水洗した。その後、10質量%炭酸水素カリウム水溶液(16g)、水(16g)を加えて2回分液後、有機層を水洗した。得られた有機層を減圧濃縮してシリカゲルカラムクロマトグラフィーにて精製し、トリフルオロエタノール(40g)にて希釈した。得られた溶液に、10質量%Pd-C(0.4g)を加えた後、水素ガス雰囲気下、室温で14時間半撹拌した。反応液を減圧濃縮してメタノール(300g)にて希釈し、ろ過後、得られたろ物に再度メタノール(300 g)にて希釈し、ろ過を行う作業を3回繰り返し、得られたろ液をすべて濃縮し、アセトニトリル(100g)にて希釈して再度濃縮し、白色固体としてH-MePhe-Phe-OH(1.35g、収率65%)を得た。
MASS(ESI+)m/z;(M+H)+327.2
合成例67:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(50mg、0.17mmol)、テトラヒドロフラン(0.5g)、N-メチルモルホリン(20mg、0.20mmol)を混合させ、0℃にてイソブチルカルボノクロリデート(27mg、0.20mmol)を加え3時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(82mg、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(97mg、0.48mmol)、アセトニトリル(0.82g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃に昇温し3時間攪拌した(原料:目的物=1:1.6)。得られた反応液を酢酸エチル(2.5g)で希釈し、10質量%クエン酸水溶液(1.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層のCbz-Phe-MePhe-Phe-OHの定量収率は43%であった。
合成例68:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(50mg、0.17mmol)、テトラヒドロフラン(0.5g)、トリエチルアミン(20mg、0.20mmol)を混合させ、0℃にて2,2-ジメチルブタノイルクロリド(27mg、0.20mmol)を加え2時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(82mg、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(97mg、0.48mmol)、アセトニトリル(0.82g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃に昇温し21時間攪拌した(原料:目的物=1:24)。得られた反応液を酢酸エチル(2.5g)で希釈し、10質量%クエン酸水溶液(1.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層のCbz-Phe-MePhe-Phe-OHの定量収率は95%であった。
合成例69:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(50mg、0.17mmol)、テトラヒドロフラン(0.5g)、トリエチルアミン(20mg、0.20mmol)を混合させ、0℃にて2-エチルブタノイルクロリド(27mg、0.20mmol)を加え2時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(82mg、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(97mg、0.48mmol)、アセトニトリル(0.82g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃に昇温し27時間攪拌した(原料:目的物=1:30)。得られた反応液を酢酸エチル(2.5g)で希釈し、10質量%クエン酸水溶液(1.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層のCbz-Phe-MePhe-Phe-OHの定量収率は102%であった。
合成例70:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(50mg、0.17mmol)、テトラヒドロフラン(0.5g)、トリエチルアミン(20mg、0.20mmol)を混合させ、25℃にて2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリドの50質量%トルエン溶液(124mg、0.20mmol)を加え9時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(82mg、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(97mg、0.48mmol)、アセトニトリル(0.82g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃に昇温し14時間攪拌した(原料:目的物=1:80)。得られた反応液を酢酸エチル(2.5g)で希釈し、10質量%クエン酸水溶液(1.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層のCbz-Phe-MePhe-Phe-OHの定量収率は100%であった。
合成例71:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(99mg、0.33mmol)、アセトニトリル(1.0g)、N,N-ジイソプロピルエチルアミン(52mg、0.40mmol)を混合させ、室温にて2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリドの50質量%トルエン溶液(250mg、0.41mmol)を加え2時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(164mg、0.50mmol)、N,O-ビス(トリメチルシリル)アセトアミド(195mg、0.96mmol)、アセトニトリル(1.6g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃で21時間攪拌した(原料:目的物=1:335)。得られた反応液を酢酸エチル(5.0g)で希釈し、10質量%クエン酸水溶液(3.0g)で分液後、飽和塩化ナトリウム水溶液(2.0g)で2回洗浄した。得られた有機層のCbz-Phe-MePhe-Phe-OHの定量収率は100%であった。
合成例72:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(50mg、0.17mmol)、N,N-ジメチルアセトアミド(0.5 g)、N-メチルモルホリン(22 mg、0.22 mmol)を混合させ、0℃にて2,2,4-トリメチルペンタン-3-イルカルボノクロリデート(39mg、0.20mmol)を加え2時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(82mg、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(97mg、0.48mmol)、アセトニトリル(0.82g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃に昇温し3時間攪拌した(原料:目的物=1:32)。得られた反応液を酢酸エチル(2.5g)で希釈し、10質量%クエン酸水溶液(1.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層のCbz-Phe-MePhe-Phe-OHの定量収率は99%であった。
合成例73:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(50mg、0.17mmol)、N,N-ジメチルアセトアミド(0.5g)、N-メチルモルホリン(22mg、0.22mmol)を混合させ、0℃にて2,4-ジメチルペンタン-3-イルカルボノクロリデート(39mg、0.20mmol)を加え1.5時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(82mg、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(97mg、0.48mmol)、アセトニトリル(0.82g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃に昇温し29時間攪拌した(原料:目的物=1:15)。得られた反応液を酢酸エチル(2.5g)で希釈し、10質量%クエン酸水溶液(1.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層のCbz-Phe-MePhe-Phe-OHの定量収率は83%であった。
合成例74:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(50mg、0.17mmol)、テトラヒドロフラン(0.5g)、N,N-ジイソプロピルエチルアミン(30mg、0.23mmol)を混合させ、0℃にて1-アダマンタンカルボニルクロリド(51mg、0.26mmol)を加え1時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(110mg、1.0mmol)、N,O-ビス(トリメチルシリル)アセトアミド(129mg、0.63mmol)、アセトニトリル(1.1g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、0℃で28時間攪拌した(原料:目的物=1:58)。得られた反応液を酢酸エチル(3.0g)で希釈し、10質量%クエン酸水溶液(3.0g)で分液後、飽和塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層を定量し、定量収率98%でCbz-Phe-MePhe-Phe-OHを得た。
合成例75:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(0.050g、0.17mmol)、N,N-ジメチルアセトアミド(3.0mL)、N-メチルモルホリン(0.040mL、0.37mmol)を混合させ、0℃にて4-エチル-2,2-ジメチルヘキサン-3-イルカルボノクロリデート(0.074g、0.33mmol)を加え1時間半攪拌した。この溶液に、別途H-MePhe-Phe-OH(0.109g、0.334mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.16mL、0.67mmol)、アセトニトリル(4.0mL)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、室温に昇温し21時間攪拌した(原料:目的物=1:43)。得られた反応液を酢酸エチル(15g)で希釈し、10質量%クエン酸水溶液(9.0g)および飽和食塩水溶液(5.0g)で分液後、飽和食塩水溶液(3.0g)で2回洗浄した。得られた有機層のCbz-Phe-MePhe-Phe-OHの定量収率は92%であった。
合成例76:Cbz-Phe-MePhe-Phe-OHの合成
 Cbz-Phe-OH(50mg、0.17mmol)、N,N-ジメチルアセトアミド(0.5g)、N-メチルモルホリン(22mg、0.22mmol)を混合させ、0℃にて3,3-ジメチルブタン-2-イルカルボノクロリデート(39mg、0.20mmol)を加え1.5時間攪拌した。この溶液に、別途H-MePhe-Phe-OH(82mg、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(97mg、0.48mmol)、アセトニトリル(0.82g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃に昇温し16時間攪拌した(原料:目的物=1:1.2)。
合成例77:Boc-Val-Pro-OHの合成
Figure JPOXMLDOC01-appb-C000083
 Boc-Val-OH(128mg、0.59mmol)、テトラヒドロフラン(1.3g)、N-メチルモルホリン(60mg、0.59mmol)を混合させ、0℃にてイソブチルカルボノクロリデート(72mg、0.59mol)を加え2.5時間攪拌した。この溶液に、別途H-Pro-OH(71mg、0.62mmol)、N,N-ジイソプロピルエチルアミン(0.16g、1.2mmol)、トリメチルシリルクロリド(0.13g、1.2mmol)、ジクロロメタン(3mL)を混合させ、40℃にて2時間攪拌して調製した溶液を加え、0℃のまま15時間攪拌し、Boc-Val-Pro-OHを得た(原料:目的物=1:15)。
MASS(ESI+)m/z;(M+H)+315.20
 以下、特に記載のない場合、原料Boc-Val-OHと生成物Boc-Val-Pro-OHの比は、高速液体クロマトグラフィーを用いた分析<分析条件5>によって算出した。
合成例78:Boc-Val-Pro-OHの合成 
 Boc-Val-OH(128mg、0.59mmol)、アセトニトリル(1.3g)、N,N-ジイソプロピルエチルアミン(91mg、0.71mmol)を混合させ、25℃にて2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリドの50質量%トルエン溶液(0.43g、0.71mol)を加え、4時間攪拌した。この溶液に、別途H-Pro-OH(71mg、0.62mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.22g、1.1mmol)、アセトニトリル(1.3g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃のまま15時間攪拌した(原料:目的物=1:731)。得られた反応液を酢酸エチル(10mL)で希釈し、水(2mL)、10質量%クエン酸水溶液(2mL)で分液後、5質量%塩化ナトリウム水溶液(5mL)、水(5mL)で順次洗浄した。得られた有機層のBoc-Val-Pro-OHの定量収率は94%であった。
 以下、特に記載のない場合、Boc-Val-Pro-OHの定量収率は、<分析条件5>による定量分析法で算出した。
標準物質:インディアン ジャーナル オブ ケミストリー 2004年、43B巻、1282頁を参考に別途単離精製したBoc-Val-Pro-OHを標準物質とした。
標準物質のMASSを示す。
MASS(ESI+)m/z;(M+H)+315.20
定量方法:絶対検量法
合成例79:Boc-Val-Pro-OHの合成
 Boc-Val-OH(50mg、0.23mmol)、N,N-ジメチルアセトアミド(1.0g)、N-メチルモルホリン(30mg、0.30mmol)を混合させ、0℃にて2,2,4-トリメチルペンタン-3-イルカルボノクロリデート(53mg、0.28mmol)を加え2.5時間攪拌した。この溶液に、別途H-Pro-OH(34mg、0.77mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.80g、1.0mmol)、アセトニトリル(0.50g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、0℃のまま15時間攪拌した(原料:目的物=1:99)。得られた反応液を酢酸エチル(5mL)で希釈し、10質量%クエン酸水溶液(2mL)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層および水層のBoc-Val-Pro-OHの定量収率は90%であった。
合成例80:Boc-Val-Pro-OHの合成
 Boc-Val-OH(100mg、0.46mmol)、テトラヒドロフラン(1.0g)、N,N-ジイソプロピルエチルアミン(77mg、0.60mmol)を混合させ、0℃にて2,2-ジメチルブタノイルクロリド(74mg、0.55mol)を加え、2時間攪拌した。この溶液に、別途H-Pro-OH(64mg、0.55mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.18g、0.87mmol)、アセトニトリル(1.0g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、0℃のまま21時間攪拌した(原料:目的物=1:520)。得られた反応液を酢酸エチル(10mL)で希釈し、水(2mL)、10質量%クエン酸水溶液(2mL)で分液後、10質量%塩化ナトリウム水溶液(2mL)にて2回洗浄した。得られた有機層のBoc-Val-Pro-OHの定量収率は99%であった。
合成例81:Boc-Val-Pro-OHの合成
 Boc-Val-OH(100mg、0.46mmol)、テトラヒドロフラン(1.0g)、N,N-ジイソプロピルエチルアミン(77mg、0.60mmol)を混合させ、0℃にて2-エチルブタノイルクロリド(74mg、0.55mol)を加え、2時間攪拌した。この溶液に、別途H-Pro-OH(64mg、0.55mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.18g、0.87mmol)、アセトニトリル(1.0g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、0℃のまま21時間攪拌した(原料:目的物=1:248)。得られた反応液を酢酸エチル(10mL)で希釈し、水(2mL)、10質量%クエン酸水溶液(2mL)で分液後、10質量%塩化ナトリウム水溶液(2mL)にて2回洗浄した。得られた有機層のBoc-Val-Pro-OHの定量収率は99%であった。
合成例82:Boc-Val-Pro-OHの合成
 Boc-Val-OH(100mg、0.46mmol)、N,N-ジメチルアセトアミド(1.0g)、N-メチルモルホリン(61mg、0.60mmol)を混合させ、0℃にて2,4-ジメチルペンタン-3-イルカルボノクロリデート(99mg、0.55mol)を加え2.5時間攪拌した。この溶液に、別途H-Pro-OH(64mg、0.55mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.18g、0.88mmol)、アセトニトリル(1.0g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、0℃のまま21時間攪拌した(原料:目的物=1:179)。得られた反応液を酢酸エチル(5mL)で希釈し、10質量%クエン酸水溶液(2mL)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層および水層のBoc-Val-Pro-OHの定量収率は89%であった。
合成例83:Fmoc-Val-MeGly-OHの合成
Figure JPOXMLDOC01-appb-C000084
 Fmoc-Val-OH(200mg、0.59mmol)、テトラヒドロフラン(2.0g)、N-メチルモルホリン(60mg、0.59mmol)を混合させ、0℃にてイソブチルカルボノクロリデート(72mg、0.59mmol)を加え2.5時間攪拌した。この溶液に、別途H-MeGly-OH(55mg、0.62mmol)、N,N-ジイソプロピルエチルアミン(0.16g、1.2mmol)、トリメチルシリルクロリド(0.13g、1.2mmol)、ジクロロメタン(3mL)を混合させ、40℃にて2時間攪拌して調製した溶液を加え、0℃のまま15時間攪拌し、Fmoc-Val-MeGly-OHを得た(原料:目的物=1:1.9)。
MASS(ESI+)m/z;(M+H)+411.28
 以下、特に記載のない場合、原料Fmoc-Val-OHと生成物Fmoc-Val-MeGly-OHの比は、高速液体クロマトグラフィーを用いた分析<分析条件5>によって算出した。
合成例84:Fmoc-Val-MeGly-OHの合成
 Fmoc-Val-OH(200mg、0.59mmol)、アセトニトリル(2.0g)、N,N-ジイソプロピルエチルアミン(91mg、0.71mmol)を混合させ、25℃にて2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリドの50質量%トルエン溶液(0.43g、0.71mol)を加え、4時間攪拌した。この溶液に、別途H-MeGly-OH(79mg、0.88mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.22g、1.1mmol)、アセトニトリル(2.0g)を混合させ、75℃にて1時間攪拌して調製した溶液を加え、25℃のまま15時間攪拌した(原料:目的物=1:61)。得られた反応液を酢酸エチル(3.0g)で希釈し、10質量%クエン酸水溶液(2.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層のFmoc-Val-MeGly-OHの定量収率は97%であった。
 以下、特に記載のない場合、Fmoc-Val-MeGly-OHの定量収率は、<分析条件5>による定量分析法で算出した。
標準物質:インディアン ジャーナル オブ ケミストリー 2004年、43B巻、1282頁を参考に別途単離精製したFmoc-Val-MeGly-OHを標準物質とした。
標準物質のMASSを示す。
MASS(ESI+)m/z;(M+H)+411.28
定量方法:絶対検量法
合成例85:Fmoc-Val-MeGly-OHの合成
 Fmoc-Val-OH(200mg、0.59mmol)、N,N-ジメチルアセトアミド(2.0g)、N-メチルモルホリン(78mg、0.77mmol)を混合させ、0℃にて2,2,4-トリメチルペンタン-3-イルカルボノクロリデート(0.14g、0.71mol)を加え2.5時間攪拌した。この溶液に、別途H-MeGly-OH(79mg、0.88mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.22g、1.1mmol)、アセトニトリル(2.0g)を混合させ、75℃にて1時間攪拌して調製した溶液を加え、0℃のまま15時間攪拌した(原料:目的物=1:64)。得られた反応液を酢酸エチル(10mL)で希釈し、水(5mL)、10質量%クエン酸水溶液(5mL)で分液後、水層を酢酸エチル(10mL)で抽出した。有機層を混合し、10質量%塩化ナトリウム水溶液で洗浄した。得られた有機層のFmoc-Val-MeGly-OHの定量収率は97%であった。
合成例86:Fmoc-Val-MeGly-OHの合成
 Fmoc-Val-OH(100mg、0.29mmol)、テトラヒドロフラン(1.0g)、N,N-ジイソプロピルエチルアミン(50mg、0.38mmol)を混合させ、0℃にて2,2-ジメチルブタノイルクロリド(48mg、0.35mol)を加え、2時間攪拌した。この溶液に、別途H-MeGly-OH(32mg、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.11g、0.55mmol)、アセトニトリル(1.0g)を混合させ、75℃にて1時間攪拌して調製した溶液を加え、0℃のまま20時間攪拌した(原料:目的物=1:48)。得られた反応液を酢酸エチル(5.0mL)で希釈し、10質量%クエン酸水溶液(2.0mL)で分液後、10質量%塩化ナトリウム水溶液(2.0mL)で2回洗浄した。得られた有機層のFmoc-Val-MeGly-OHの定量収率は95%であった。
合成例87:Fmoc-Val-MeGly-OHの合成
 Fmoc-Val-OH(100mg、0.29mmol)、テトラヒドロフラン(1.0g)、N,N-ジイソプロピルエチルアミン(50mg、0.38mmol)を混合させ、0℃にて2-エチルブタノイルクロリド(48mg、0.35mol)を加え、2時間攪拌した。この溶液に、別途H-MeGly-OH(32mg、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.11g、0.55mmol)、アセトニトリル(1.0g)を混合させ、75℃にて1時間攪拌して調製した溶液を加え、0℃のまま20時間攪拌した(原料:目的物=1:20)。得られた反応液を酢酸エチル(5.0mL)で希釈し、10質量%クエン酸水溶液(2.0mL)で分液後、10質量%塩化ナトリウム水溶液(2.0mL)で2回洗浄した。得られた有機層のFmoc-Val-MeGly-OHの定量収率は92%であった。
合成例88:Fmoc-Val-MeGly-OHの合成
 Fmoc-Val-OH(100mg、0.29mmol)、N,N-ジメチルアセトアミド(1.0g)、N-メチルモルホリン(39mg、0.38mmol)を混合させ、0℃にて2,4-ジメチルペンタン-3-イルカルボノクロリデート(63mg、0.35mmol)を加え2時間攪拌した。この溶液に、別途H-MeGly-OH(32mg、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.11g、0.55mmol)、アセトニトリル(1.0g)を混合させ、75℃にて1時間攪拌して調製した溶液を加え、0℃のまま20時間攪拌した(原料:目的物=1:33)。得られた反応液を酢酸エチル(5.0mL)で希釈し、10質量%クエン酸水溶液(2.0mL)で分液後、10質量%塩化ナトリウム水溶液(2.0mL)で2回洗浄した。得られた有機層および水層のFmoc-Val-MeGly-OHの定量収率は88%であった。
合成例89:Boc-Cys(Bn)-Pro-OHの合成
Figure JPOXMLDOC01-appb-C000085
 Boc-Cys(Bn)-OH(200mg、0.64mmol)、クロロホルム(1.3mL)、トリエチルアミン(67mg、0.66mmol)を混合させ、-20℃にてピバロイルクロリド(81mg、0.67mol)を加え1間攪拌した。この溶液に、別途H-Pro-OH(96mg、0.84mmol)、トリエチルアミン(0.16g、1.6mmol)、トリメチルシリルクロリド(0.11g、1.0mmol)、ジクロロメタン(1.6mL)、N,N-ジメチルホルムアミド(0.32mL)を混合させ、40℃にて2時間攪拌して調製した溶液を加え、-20℃のまま3時間攪拌し、Boc-Cys(Bn)-Pro-OHを得た(原料:目的物=1:2.2)。
MASS(ESI+)m/z;(M+H)+409.26
 以下、特に記載のない場合、原料Boc-Cys(Bn)-OHと生成物Boc-Cys(Bn)-Pro-OHの比は、高速液体クロマトグラフィーを用いた分析<分析条件6>によって算出した。
<分析条件6>
高速液体クロマトグラフィー:SHIMADZU製 HPLC -20A
カラム:Agilent製Poroshell 120EC-C18(2.7μm、3.0×100mm)
カラムオ-ブン温度:50℃
溶離液:0.2vоl%リン酸 アセトニトリル溶液:0.2vоl% リン酸水溶液
35:65(7分)、35:65-95:5(7-14分)、95:5(14-18分)、(v/v)
溶離液速度:0.7mL/分
検出波長:214nm
合成例90:Boc-Cys(Bn)-Pro-OHの合成
 Boc-Cys(Bn)-OH(100mg、0.32mmol)、アセトニトリル(1.0g)、N,N-ジイソプロピルエチルアミン(50mg、0.39mmol)を混合させ、25℃にて2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリドの50質量%トルエン溶液(231mg、0.39mol)を加え2間攪拌した。この溶液に、別途H-Pro-OH(48mg、0.42mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.12g、0.59mmol)、アセトニトリル(1.0g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、25℃のまま23時間攪拌した(原料:目的物=1:265)。得られた反応液を酢酸エチル(3.0g)で希釈し、10質量%クエン酸水溶液(2.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層および水層を定量し、定量収率97%でBoc-Cys(Bn)-Pro-OHを得た。
 以下、特に記載のない場合、Boc-Cys(Bn)-Pro-OHの定量収率は、<分析条件6>による定量分析法で算出した。
標準物質:ケミストリー オブ ネイチャーコンパウンズ 1992年、28巻、344頁を参考に別途単離精製したBoc-Cys(Bn)-Pro-OHを標準物質とした。
標準物質のMASSを示す。
MASS(ESI+)m/z;(M+H)+409.26
定量方法:絶対検量法
合成例91:Boc-Cys(Bn)-Pro-OHの合成
 Boc-Cys(Bn)-OH(100mg、0.32mmol)、N,N-ジメチルアセトアミド(1.0g)、N-メチルモルホリン(42mg、0.42mmol)を混合させ、0℃にて2、2、4-トリメチルペンタン-3-イルカルボノクロリデート(74mg、0.39mol)を加え2時間攪拌した。この溶液に、別途H-Pro-OH(48mg、0.42mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.12g、0.59mmol)、アセトニトリル(1.0g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、0℃のまま15時間攪拌した(原料:目的物=1:461)。得られた反応液を酢酸エチル(3.0g)で希釈し、10質量%クエン酸水溶液(2.0g)で分液後、10質量%塩化ナトリウム水溶液(1.0g)で2回洗浄した。得られた有機層および水層を定量し、定量収率96%でBoc-Cys(Bn)-Pro-OHを得た。
合成例92:Boc-Cys(Bn)-Pro-OHの合成
 Boc-Cys(Bn)-OH(100mg、0.32mmol)、アセトニトリル(1.0g)、N,N-ジイソプロピルエチルアミン(54mg、0.41mmol)を混合させ、0℃にて2,2-ジメチルブタノイルクロリド(52mg、0.38mol)を加え2間攪拌した。この溶液に、別途H-Pro-OH(44mg、0.38mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.12g、0.61mmol)、アセトニトリル(1.0g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、0℃のまま19時間攪拌した(原料:目的物=1:31)。得られた反応液を酢酸エチル(5.0mL)で希釈し、10質量%クエン酸水溶液(2.0mL)で分液後、10質量%塩化ナトリウム水溶液(2.0mL)で2回洗浄した。得られた有機層を定量し、定量収率97%でBoc-Cys(Bn)-Pro-OHを得た。
合成例93:Boc-Cys(Bn)-Pro-OHの合成
 Boc-Cys(Bn)-OH(100mg、0.32mmol)、アセトニトリル(1.0g)、N,N-ジイソプロピルエチルアミン(54mg、0.41mmol)を混合させ、0℃にて2-エチルブタノイルクロリド(52mg、0.38mol)を加え2間攪拌した。この溶液に、別途H-Pro-OH(44mg、0.38mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.12g、0.61mmol)、アセトニトリル(1.0g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、0℃のまま19時間攪拌した(原料:目的物=1:30)。得られた反応液を酢酸エチル(5.0mL)で希釈し、10質量%クエン酸水溶液(2.0mL)で分液後、10質量%塩化ナトリウム水溶液(2.0mL)で2回洗浄した。得られた有機層を定量し、定量収率97%でBoc-Cys(Bn)-Pro-OHを得た。
合成例94:Boc-Cys(Bn)-Pro-OHの合成
 Boc-Cys(Bn)-OH(100mg、0.32mmol)、N、N-ジメチルアセトアミド(1.0g)、N-メチルモルホリン(42mg、0.42mmol)を混合させ、0℃にて2,4-ジメチルペンタン-3-イルカルボノクロリデート(69mg、0.38mol)を加え2時間攪拌した。この溶液に、別途H-Pro-OH(48mg、0.42mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.12g、0.59mmol)、アセトニトリル(1.0g)を混合させ、50℃にて1時間攪拌して調製した溶液を加え、0℃のまま19時間攪拌した(原料:目的物=1:60)。得られた反応液を酢酸エチル(5.0mL)で希釈し、10質量%クエン酸水溶液(2.0mL)で分液後、10質量%塩化ナトリウム水溶液(2.0g)で2回洗浄した。得られた有機層を定量し、定量収率98%でBoc-Cys(Bn)-Pro-OHを得た。
合成例95:Cbz-Phe-Phe-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000086
 Cbz-Phe-Phe-OH(0.100g、0.224mmol)、N,N-ジイソプロピルエチルアミン(0.050mL、0.291mmol)をテトラヒドロフラン(1.0g)と混合させ、0℃にて1-アダマンタンカルボニルクロリド(0.0534g、0.269mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.060g、0.336mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.103mL、0.420mmol)、アセトニトリル(0.60g)を混合させ、50℃にて1時間撹拌して調製した溶液を加え、さらに0℃のまま22時間撹拌した(原料:目的物=1:32)。得られた反応液を2%n-プロピルアミン/アセトニトリル溶液でクエンチし、酢酸エチル(5.0g)で希釈後、10質量%クエン酸水溶液(2.0g)および飽和食塩水溶液(1.0g)で2回洗浄した。集めた有機層のCbz-Phe-Phe-MePhe-OHの定量収率は89%であった。
 原料Cbz-Phe-Phe-OHと生成物Cbz-Phe-Phe-MePhe-OHの比は、高速液体クロマトグラフィーを用いた分析<分析条件7>によって算出した。
<分析条件7>
高速液体クロマトグラフィー:SHIMADZU製 HPLC LC-20A
カラム:Agilent製Poroshell120EC-C18(2.7μm、3.0×100mm)
カラムオーブン温度:50℃
溶離液:0.2vоl%TFA/アセトニトリル:メタノール=1:1
0.2vоl%TFA水溶液
55:45(0-20分)、55:45-95:5(20-20.1分)、95:5(20.1-24分)Post time5分(v/v)
溶離液速度:0.7mL/分
検出波長:214nm
 Cbz-Phe-Phe-MePhe-OHの定量収率は、<分析条件7>による定量分析法で算出した。
標準物質:合成例96にて合成したCbz-Phe-Phe-MePhe-OHを標準物質とした。
標準物質のMASSを示す。
MASS(ESI+)m/z;(M+H)+608.4
定量方法:絶対検量法
合成例96:Cbz-Phe-Phe-MePhe-OHの合成
 2-クロロトリチルクロリドレジン(200-400メッシュ)(0.10g、0.13mmol)にジクロロメタン(1.0mL)、Fmoc-MePhe-OH(0.062g、0.15mmol)、N,N-ジイソプロピルエチルアミン(0.11mL、0.61mmol)を加えて終夜撹拌した。得られた懸濁液に下記溶液を順次加え、都度ろ過した。(1)(ジクロロメタン/メタノール/N,N-ジイソプロピルエチルアミン=17/2/1)の混合溶液を3回、(2)ジクロロメタンを3回、(3)N-メチルピロリドンを2回、(4)ジクロロメタンを2回、(5)メタノールを5回。ろ過後のレジンが十分浸かるようにN-メチルピロリドンを加え、15分撹拌した。その後ろ過を行い、レジンが十分浸かるように20%ピペリジン/N-メチルピロリドン溶液を加え20分撹拌した。続いてろ過を実施し、レジンをN-メチルピロリドンで10回洗浄した。得られたレジン(0.10g、0.050mmol)に0.5M エチルシアノ(ヒドロキシイミノ)アセテート/N-メチルピロリドン溶液を0.80mL、Fmoc-Phe-OH(0.078mg、0.20mmol)、N-[1-(シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ(モルホリノ)]ウロニウム ヘキサフルオロホスフェート(0.086g、0.20mmol)、N,N-ジイソプロピルエチルアミン(0.085mL、0.50mmol)を加えて2時間撹拌した。反応溶液をろ過し、レジンをN-メチルピロリドンで10回洗浄した。その後、上記縮合・洗浄操作を再度実施し、20%ピペリジン/N-メチルピロリドンを添加後20分の撹拌とN-メチルピロリドンでの洗浄を10回行った。得られたレジンに0.5M エチルシアノ(ヒドロキシイミノ)アセテート/N-メチルピロリドン溶液を0.400mL、Cbz-Phe-OH(0.060mg、0.20mmol)、N,N-ジイソプロピルカルボジイミド(0.032mL、0.20mmol)を加えて終夜撹拌した。反応液をろ過後、N-メチルピロリドンで10回、メタノールで10回洗浄し、30%ヘキサフルオロイソプロパノールをレジンが十分浸るように加え、10分撹拌後ろ過の操作を5回実施した。集めた溶液を減圧濃縮した結果、Cbz-Phe-Phe-MePhe-OH(0.031g、100%)を得た。
MASS(ESI+)m/z;(M+H)+608.4
 上記合成例において、合成例1乃至7、66および96は、実施例で使用した原料の合成に係る参考例であるが、合成例1乃至2および合成例3乃至4は、本願の化合物に係る発明の実施例でもある。また合成例8乃至13、18乃至28、32乃至35、38、41乃至48、51、55乃至63、68乃至76、78乃至82、84乃至88、90乃至95は、本願のペプチドの製造方法に係る発明の実施例であり、合成例14乃至17、29乃至31、36乃至37、39乃至40、49乃至50、52乃至54、64乃至65、67、77、83、89および96はその比較例である。
合成例97:Fmoc-Val-MeTyr(tBu)-OHの合成
Figure JPOXMLDOC01-appb-C000087
 Fmoc-Val-OH(0.102g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.050mL、0.36mmol)、ピバロイルクロリド(0.041mL、0.33mmol)を加え0℃にて2時間撹拌した。この溶液に、別途H-MeTyr(tBu)-OH(0.090g、0.36mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.19mL、0.72mmol)、アセトニトリル(1.5mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて20時間撹拌した(原料:目的物=1:7(分析条件3))。得られた反応液を酢酸エチル(20mL)で希釈し、飽和炭酸水素水溶液(20mL)、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-Val-MeTyr(tBu)-OH(0.18g、収率106%)を淡黄色固体として得た。
合成例98:Fmoc-Val-MeTyr(tBu)-OHの合成
 Fmoc-Val-OH(0.068g、0.20mmol)をテトラヒドロフラン(1.0mL)と混合させ、0℃にてトリエチルアミン(0.033mL、0.24mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.66g、0.22mmol)を加え2時間撹拌した。この溶液に、別途H-MeTyr(tBu)-OH(0.090g、0.36mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.185mL、0.72mmol)、アセトニトリル(1.5mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて24時間撹拌した(原料:目的物=1:20(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、飽和炭酸水素ナトリウム水溶液(5mL)を加え、1時間攪拌したのちに、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeTyr(tBu)-OH(0.170g、収率99%)を白色固体として得た。
合成例99:Fmoc-Val-MeVal-OHの合成
Figure JPOXMLDOC01-appb-C000088
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.050mL、0.36mmol)、ピバロイルクロリド(0.041mL、0.33mmol)を加え2時間撹拌した。この溶液に、別途H-MeVal-OH(0.047g、0.36mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.19mL、0.72mmol)、アセトニトリル(1.5mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて15時間撹拌した(原料:目的物=2.4:1(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、飽和炭酸水素水溶液(5mL)、10質量%クエン酸水溶液(5mL)、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-Val-MeVal-OH(0.16g、収率116%)を淡黄色固体として得た。
合成例100:Fmoc-Val-MeVal-OHの合成
 Fmoc-Val-OH(0.068g、0.20mmol)をテトラヒドロフラン(1.0mL)と混合させ、0℃にてトリエチルアミン(0.033mL、0.24mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.66g、0.22mmol)を加え2時間撹拌した。この溶液に、別途H-MeVal-OH(0.032g、0.24mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.12mL、0.48mmol)、アセトニトリル(1.0mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて2時間攪拌したのちに、25℃にて36時間撹拌した(原料:目的物=1:16(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、飽和炭酸水素水溶液(5mL)を加え、1時間攪拌したのちに、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeVal-OH(0.092g、収率92%)を白色固体として得た。
合成例101:Fmoc-Val-MeSer(tBu)-OHの合成
Figure JPOXMLDOC01-appb-C000089
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.050mL、0.36mmol)、ピバロイルクロリド(0.041mL、0.33mmol)を加え1時間撹拌した。この溶液に、別途H-MeSer(tBu)-OH(0.063g、0.36mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.19mL、0.72mmol)、アセトニトリル(1.5mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて15時間攪拌した。(原料:目的物=1:19(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-Val-MeSer(tBu)-OH(0.14g、収率94%)を淡黄色固体として得た。
合成例102:Fmoc-Val-MeSer(tBu)-OHの合成
 Fmoc-Val-OH(0.068g、0.20mmol)をテトラヒドロフラン(1.0mL)と混合させ、0℃にてトリエチルアミン(0.033mL、0.24mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.66g、0.22mmol)を加え2時間撹拌した。この溶液に、別途H-MeSer(tBu)-OH(0.045g、0.26mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.13mL、0.52mmol)、アセトニトリル(1.0mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて15時間撹拌した(原料:目的物=1:25(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、飽和炭酸水素水溶液(5mL)を加え、1時間攪拌したのちに、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeSer(tBu)-OH(0.095g、収率96%)を白色固体として得た。
合成例103:Fmoc-Val-MeDap(Boc)-OHの合成
Figure JPOXMLDOC01-appb-C000090
 Fmoc-Val-OH(0.034g、0.1mmol)をテトラヒドロフラン(1.0mL)と混合させ、0℃にてトリエチルアミン(0.017mL、0.12mmol)、ピバロイルクロリド(0.014mL、0.11mmol)を加え1時間撹拌した。この溶液に、別途Nα-Boc-Nβ-メチル-2,3-ジアミノプロピオン酸(H-MeDap(Boc)-OH)(0.026g、0.12mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.62mL、0.24mmol)、アセトニトリル(1.0mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて24時間撹拌した。(原料:目的物=1:2.4(分析条件3))。
合成例104:Fmoc-Val-MeDap(Boc)-OHの合成
 Fmoc-Val-OH(0.068g、0.20mmol)をテトラヒドロフラン(1.0mL)と混合させ、0℃にてトリエチルアミン(0.033mL、0.24mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.66g、0.22mmol)を加え2時間撹拌した。この溶液に、別途H-MeDap(Boc)-OH(0.052g、0.24mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.12mL、0.48mmol)、アセトニトリル(1.0mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて36時間撹拌した(原料:目的物=1:20(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、飽和炭酸水素水溶液(5mL)を加え、1時間攪拌したのちに、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeDap(Boc)-OH(0.107g、収率99%)を白色固体として得た。
合成例105:Fmoc-Val-MeGln(Trt)-OHの合成
Figure JPOXMLDOC01-appb-C000091
 Fmoc-Val-OH(0.33g、0.10mmol)をテトラヒドロフラン(0.5mL)と混合させ、0℃にてトリエチルアミン(0.017mL、0.12mmol)、ピバロイルクロリド(0.014mL、0.11mmol)を加え1時間撹拌した。この溶液に、別途H-MeGln(Trt)-OH(0.048g、0.12mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.062mL、0.24mmol)、アセトニトリル(1.5mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて30分間攪拌したのちに、25℃にて24時間撹拌した(原料:目的物=1:8(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、飽和炭酸水素水溶液(5mL)を加え1時間攪拌したのちに、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-Val-MeGln(Trt)-OH(0.75g、収率105%)を淡黄色固体として得た。
合成例106:Fmoc-Val-MeGln(Trt)-OHの合成
 Fmoc-Val-OH(0.068g、0.20mmol)をテトラヒドロフラン(1.0mL)と混合させ、0℃にてトリエチルアミン(0.033mL、0.24mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.66g、0.22mmol)を加え2時間撹拌した。この溶液に、別途H-MeGln(Trt)-OH(0.097g、0.24mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.12mL、0.48mmol)、アセトニトリル(1.0mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて44時間撹拌した(原料:目的物=1:21(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、飽和炭酸水素水溶液(5mL)を加え、1時間攪拌したのちに、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeGln(Trt)-OH(0.151g、収率104%)を白色固体として得た。
合成例107:Fmoc-Val-MeGlu(OtBu)-OHの合成
Figure JPOXMLDOC01-appb-C000092
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.050mL、0.36mmol)、ピバロイルクロリド(0.041mL、0.33mmol)を加え1時間撹拌した。この溶液に、別途H-MeGlu(OtBu)-OH(0.098g、0.45mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.23mL、0.90mmol)、アセトニトリル(1.5mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて30分間攪拌したのちに、25℃にて18時間撹拌した(原料:目的物=1:18(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、飽和炭酸水素水溶液(5mL)を加え、1時間攪拌したのちに、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-Val-MeGlu(OtBu)-OH(0.16g、収率100%)を淡黄色固体として得た。
合成例108:Fmoc-Val-MeGlu(OtBu)-OHの合成
 Fmoc-Val-OH(0.068g、0.20mmol)をテトラヒドロフラン(1.0mL)と混合させ、0℃にてトリエチルアミン(0.033mL、0.24mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.66g、0.22mmol)を加え2時間撹拌した。この溶液に、別途H-MeGlu(OtBu)-OH(0.078g、0.36mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.185mL、0.72mmol)、アセトニトリル(1.5mL)を混合させ、50℃にて1時間撹拌して、調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて24時間撹拌した(原料:目的物=1:25(分析条件3))。得られた反応液を酢酸エチル(5mL)で希釈し、飽和炭酸水素ナトリウム水溶液(5mL)を加え、1時間攪拌したのちに、水(5mL)、飽和塩化ナトリウム水溶液(5mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeGlu(OtBu)-OH(0.176g、収率109%)を白色固体として得た。
合成例109:Fmoc-Val-EtAla-OHの合成
Figure JPOXMLDOC01-appb-C000093
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.11g、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-EtAla-OH(0.041g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して、調製した溶液を加え、さらに25℃にて22時間撹拌した(原料:目的物=1:19(分析条件3))。得られた反応液を濃縮し、アセトニトリル(2.0mL)で希釈した後、ヘキサン(2.0mL)を加え洗浄した。アセトニトリル溶液を酢酸エチル(6.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(5.0mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-Val-EtAla-OH(0.13g、収率104%)を淡黄色固体として得た。
合成例110:Fmoc-Ala-BnAla-OHの合成
Figure JPOXMLDOC01-appb-C000094
 Fmoc-Ala-OH(0.10g、0.32mmol)をテトラヒドロフラン(1.6mL)と混合させ、0℃にてトリエチルアミン(0.054mL、0.39mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.13g、0.35mmol)を加え1時間撹拌した。この溶液に、別途H-BnAla-OH(0.069g、0.39mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.19mL、0.77mmol)、アセトニトリル(1.6mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに25℃にて12時間撹拌した(原料:目的物=1:1(分析条件3))。得られた反応液を濃縮し、酢酸エチル(8.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(6.0mL)、水(6.0mL)、飽和塩化ナトリウム水溶液(6.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Ala-BnAla-OH(0.13g、収率82%)を白色固体として得た。
合成例111:Fmoc-Ala-BnAla-OHの合成
Figure JPOXMLDOC01-appb-C000095
 Fmoc-Ala-OH(0.10g、0.32mmol)をテトラヒドロフラン(1.6mL)と混合させ、0℃にてトリエチルアミン(0.054mL、0.39mmol)、ピバロイルクロリド(0.44mL、0.35mmol)を加え1時間撹拌した。この溶液に、別途H-BnAla-OH(0.069g、0.39mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.19mL、0.77mmol)、アセトニトリル(1.6mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに25℃にて12時間撹拌した(原料:目的物=3:1(分析条件3))。得られた反応液を濃縮し、酢酸エチル(8.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(6.0mL)、水(6.0mL)、飽和塩化ナトリウム水溶液(6.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Ala-BnAla-OH(0.12g、80%)を白色固体として得た。
合成例112:Fmoc-Gly-EtAla-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000096
 Fmoc-Gly-OH(0.020g、0.067mmol)をテトラヒドロフラン(0.42mL)と混合させ、0℃にてトリエチルアミン(0.011mL、0.080mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.026g、0.074mmol)を加え1時間撹拌した。この溶液に、別途H-EtAla-Phe-OH(0.022g、0.080mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.039mL、0.16mmol)、アセトニトリル(0.84mL)を混合させ、25℃にて60分間撹拌して、調製した溶液を加え、さらに25℃にて6時間撹拌した(原料:目的物=1:33(分析条件3))。得られた反応液を酢酸エチル(5.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(5.0mL)、水(5.0mL)、飽和塩化ナトリウム水溶液(5.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Gly-EtAla-Phe-OH(0.040g、収率109%)を白色固体として得た。
合成例113:Fmoc-Gly-EtAla-Phe-OHの合成
Figure JPOXMLDOC01-appb-C000097
 Fmoc-Gly-OH(0.025g、0.084mmol)をテトラヒドロフラン(0.42mL)と混合させ、0℃にてトリエチルアミン(0.014mL、0.10mmol)、ピバロイルクロリド(0.011mL、0.092mmol)を加え1時間撹拌した。この溶液に、別途H-EtAla-Phe-OH(0.027g、0.10mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.049mL、0.20mmol)、アセトニトリル(0.42mL)を混合させ、25℃にて60分間撹拌して、調製した溶液を加え、さらに25℃にて6時間撹拌した(原料:目的物=1:9(分析条件3))。得られた反応液を酢酸エチル(5.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(5.0mL)、水(5.0mL)、飽和塩化ナトリウム水溶液(5.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Gly-EtAla-Phe-OH(0.050g、収率109%)を白色固体として得た。
合成例114:Fmoc-Val-cHexmGly-OHの合成
Figure JPOXMLDOC01-appb-C000098
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.098g、0.32mmol)を加え2時間撹拌した。この溶液に、別途N-(シクロヘキシルメチル)グリシン(H-cHexmGly-OH)(0.061g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.18mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、50℃にて60分間撹拌して、調製した溶液を加え、さらに25℃にて15時間撹拌した(原料:目的物=1:32(分析条件3))。得られた反応液を濃縮し、アセトニトリル(6.0mL)で希釈した後、ヘキサン(11mL)を加え洗浄した。アセトニトリル溶液を酢酸エチル(10mL)で希釈し、飽和炭酸水素ナトリウム水溶液(10mL)、1M塩酸(10mL)、水(10mL)、飽和塩化ナトリウム水溶液(12mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-Val-cHexmGly-OH(0.15g、収率104%)を白色固体として得た。
合成例115:Fmoc-Val-cHexmGly-OHの合成
Figure JPOXMLDOC01-appb-C000099
 Fmoc-Val-OH(0.030g、0.088mmol)をテトラヒドロフラン(0.44mL)と混合させ、0℃にてトリエチルアミン(0.015mL、0.11mmol)、ピバロイルクロリド(0.012mL、0.097mmol)を加え1時間撹拌した。この溶液に、別途H-cHexmGly-OH(0.018g、0.11mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.052mL、0.21mmol)、アセトニトリル(0.44mL)を混合させ、50℃にて60分間撹拌して、調製した溶液を加え、さらに0℃にて15時間撹拌した(原料:目的物=1:3(分析条件3))。得られた反応液を濃縮し、酢酸エチル(5.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(5.0mL)、1M塩酸(5.0mL)、水(6.0mL)、飽和塩化ナトリウム水溶液(6.0mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-Val-cHexmGly-OH(0.048g、収率109%)を白色固体として得た。
合成例116:Fmoc-Val-Tic-OHの合成
Figure JPOXMLDOC01-appb-C000100
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5 mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、2,2-ジメチルブタノイルクロリド(0.045mL、0.32mmol)を加え1時間撹拌した。この溶液に、別途1,2,3,4-テトラヒドロイソキノリン-3-カルボン酸(H-Tic-OH)(0.063g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて4時間撹拌した(原料:目的物=1:99(分析条件3))。得られた反応液を酢酸エチル(10mL)で希釈し、飽和炭酸水素ナトリウム水溶液(8.0mL)、10質量%クエン酸水溶液(8.0mL)、水(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。集めた有機層を濃縮後、Fmoc-Val-Tic-OH(0.15g、収率100%)を白色固体として得た。
合成例117:Fmoc-Val-Tic-OHの合成
Figure JPOXMLDOC01-appb-C000101
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5 mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、ピバロイルクロリド(0.040mL、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-Tic-OH(0.063g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて4時間撹拌した(原料:目的物=1:32(分析条件3))。得られた反応液を酢酸エチル(10mL)で希釈し、飽和炭酸水素ナトリウム水溶液(8.0mL)、10質量%クエン酸水溶液(8.0mL)、水(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。集めた有機層を濃縮後、Fmoc-Val-Tic-OH(0.14g、収率97%)を白色固体として得た。
合成例118:2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルブロミドの合成
Figure JPOXMLDOC01-appb-C000102
 2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタン酸(3.0g、10.6mmol)と三臭化リン(0.94g、3.48mmol)を混合し、50℃で24時間撹拌した。得られた混合物をヘキサン(30mL)で希釈し、水(20mL)で洗浄した。有機層を濃縮後、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルブロミド(3.7g、10.6mmol)を無色液体として得た。
合成例119:Fmoc-Val-MeGlu(OtBu)-OHの合成
Figure JPOXMLDOC01-appb-C000103
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルブロミド(0.13g、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-MeGlu(OtBu)-OH(0.077g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、50℃にて60分間撹拌して、調製した溶液を加え、さらに25℃にて20時間撹拌した(原料:目的物=<1:99(分析条件3))。得られた反応液を濃縮し、アセトニトリル(8.0mL)で希釈した後、ヘキサン(8.0mL)を加え2回洗浄した。アセトニトリル溶液を酢酸エチル(8.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(7.0mL)、1M塩酸(7.0mL)、水(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-Val-MeGlu(OtBu)-OH(0.16g、収率98%)を白色固体として得た。
合成例120:Fmoc-Val-(Me)βAla-OHの合成
Figure JPOXMLDOC01-appb-C000104
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5 mL)と混合させ、0℃にてトリエチルアミン(0.058mL、0.41mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.12g、0.38mmol)を加え2時間撹拌した。この溶液に、別途H-(Me)βAla-OH塩酸塩(0.058g、0.41mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.40mL、1.6mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて7時間撹拌した(原料:目的物=1:24(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)を加え25℃で1時間撹拌した。得られた有機層を10質量%クエン酸水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。集めた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-(Me)βAla-OH(0.125g、収率94%)を白色固体として得た。
合成例121:Fmoc-Val-(Me)βAla-OHの合成
Figure JPOXMLDOC01-appb-C000105
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、ピバロイルクロリド(0.040mL、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-(Me)βAla-OH塩酸塩(0.049g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.35mL、1.4mmol)、アセトニトリル(1.4mL)を混合させ、25℃にて60分間撹拌して、調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて1時間撹拌した(原料:目的物=1:1(分析条件3))。得られた反応液を酢酸エチル(3.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)を加え、25℃で1時間撹拌した。得られた有機層を10質量%クエン酸水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。集めた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-(Me)βAla-OH(0.13g、収率102%)を白色固体として得た。
合成例122:Fmoc-Val-MeGABA-OHの合成
Figure JPOXMLDOC01-appb-C000106
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.058mL、0.41mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.12mL、0.38mmol)を加え2時間撹拌した。この溶液に、別途H-MeGABA-OH塩酸塩(0.063g、0.41mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.38mL、1.5mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して、調製した溶液を加え、さらに0℃にて7時間攪拌したのちに、10℃にて12時間撹拌した(原料:目的物=1:19(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)を加え25℃で1時間撹拌した。得られた有機層を10質量%クエン酸水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。集めた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeGABA-OH(0.135g、収率104%)を白色固体として得た。
合成例123:Fmoc-Val-MeGABA-OHの合成
Figure JPOXMLDOC01-appb-C000107
 Fmoc-Val-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、ピバロイルクロリド(0.040mL、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-MeGABA-OH塩酸塩(0.054g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.35mL、1.4mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて1時間攪拌したのちに、25℃にて1時間撹拌した(原料:目的物=1:4(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)を加え25℃で1時間撹拌した。得られた有機層を10質量%クエン酸水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。集めた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeGABA-OH(0.125g、収率97%)を白色固体として得た。
合成例124:Fmoc-Val-(Me)βAla-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000108
Fmoc-Val-OH(0.100g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.12g、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-(Me)βAla-MePhe-OH(0.093g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、0℃で2時間撹拌した(原料:目的物=1:48(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-(Me)βAla-MePhe-OH(0.18g、収率107%)を白色固体として得た。
合成例125:Fmoc-Val-(Me)βAla-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000109
 Fmoc-Val-OH(0.100g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、ピバロイルクロリド(0.040mL、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-(Me)βAla-MePhe-OH(0.093g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、0℃で2時間撹拌した(原料:目的物=1:24(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-(Me)βAla-MePhe-OH(0.19g、収率109%)を白色固体として得た。
合成例126:Fmoc-Val-MeGABA-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000110
 Fmoc-Val-OH(0.100g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.12g、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-MeGABA-MePhe-OH(0.098g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、0℃で2時間撹拌した(原料:目的物=1:16(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeGABA-MePhe-OH(0.18g、収率107%)を白色固体として得た。
合成例127:Fmoc-Val-MeGABA-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000111
 Fmoc-Val-OH(0.100g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、ピバロイルクロリド(0.040mL、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-MeGABA-MePhe-OH(0.098g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、0℃で2時間撹拌した(原料:目的物=1:3(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-MeGABA-MePhe-OH(0.19g、収率108%)を白色固体として得た。
合成例128:Fmoc-Val-(Me)βhomoTrp(1-Me)-OHの合成
Figure JPOXMLDOC01-appb-C000112
 Fmoc-Val-OH(0.030g、0.11mmol)をテトラヒドロフラン(0.44mL)と混合させ、0℃にてトリエチルアミン(0.015mL、0.11mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.035g、0.097mmol)を加え2時間撹拌した。この溶液に、別途H-(Me)βhomoTrp(1-Me)-OH塩酸塩(0.030g、0.11mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.10mL、0.42mmol)、アセトニトリル(0.44mL)を混合させ、25℃にて60分間撹拌して、調製した溶液を加え、25℃で15時間撹拌した(原料:目的物=1:24(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-(Me)βhomoTrp(1-Me)-OH(0.056g、収率111%)を白色固体として得た。
合成例129:Fmoc-Val-(Me)βhomoTrp(1-Me)-OHの合成
Figure JPOXMLDOC01-appb-C000113
 Fmoc-Val-OH(0.070g、0.21mmol)をテトラヒドロフラン(1.0mL)と混合させ、0℃にてトリエチルアミン(0.035mL、0.11mmol)、ピバロイルクロリド(0.028mL、0.23mmol)を加え1時間撹拌した。この溶液に、別途H-(Me)βhomoTrp(1-Me)-OH塩酸塩(0.070g、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.24mL、0.99mmol)、アセトニトリル(1.0mL)を混合させ、25℃にて60分間撹拌して、調製した溶液を加え、0℃で15時間撹拌した後、更に25℃で4時間撹拌した(原料:目的物=1:8(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)を加え、25℃で1時間撹拌した。得られた有機層を10質量%クエン酸水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。集めた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-(Me)βhomoTrp(1-Me)-OH(0.090g、収率77%)を白色固体として得た。
合成例130:Fmoc-Val-βhomoTrp(1-Me)-OHの合成
Figure JPOXMLDOC01-appb-C000114
 Fmoc-Val-OH(0.050g、0.15mmol)をテトラヒドロフラン(0.74mL)と混合させ、0℃にてトリエチルアミン(0.025mL、0.18mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.049g、0.16mmol)を加え1時間撹拌した。この溶液に、別途H-βhomoTrp(1-Me)-OH塩酸塩(0.048g、0.18mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(0.74mL)を混合させ、50℃にて60分間撹拌して、調製した溶液を加え、25℃で15時間撹拌した(原料:目的物=1:99(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-βhomoTrp(1-Me)-OH(0.11g、収率130%)を白色固体として得た。
合成例131:Fmoc-Val-βhomoTrp(1-Me)-OHの合成
Figure JPOXMLDOC01-appb-C000115
 Fmoc-Val-OH(0.050g、0.15mmol)をテトラヒドロフラン(0.74mL)と混合させ、0℃にてトリエチルアミン(0.025mL、0.18mmol)、ピバロイルクロリド(0.020g、0.16mmol)を加え1時間撹拌した。この溶液に、別途H-βhomoTrp(1-Me)-OH塩酸塩(0.048g、0.18mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(0.74mL)を混合させ、50℃にて60分間撹拌して、調製した溶液を加え、25℃で15時間撹拌した(原料:目的物=1:19(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-βhomoTrp(1-Me)-OH(0.079g、収率97%)を白色固体として得た。
合成例132:Fmoc-Val-(Me)βhomoLeu-OHの合成
Figure JPOXMLDOC01-appb-C000116
 Fmoc-Val-OH(0.030g、0.088mmol)をテトラヒドロフラン(0.44mL)と混合させ、0℃にてトリエチルアミン(0.015mL、0.11mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.035g、0.097mmol)を加え2時間撹拌した。この溶液に、別途H-(Me)βhomoLeu-OH塩酸塩(0.021g、0.11mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.10mL、0.42mmol)、アセトニトリル(0.44mL)を混合させ、25℃にて60分間撹拌して、調製した溶液を加え、さらに25℃にて15時間撹拌した(原料:目的物=1:24(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。得られた有機層を濃縮後、ヘキサンと10%イソプロピルエーテル/ヘキサンの混合溶液で洗浄し、Fmoc-Val-(Me)βhomoLeu-OH(0.045g、収率106%)を白色固体として得た。
合成例133:Fmoc-Val-(Me)βhomoLeu-OHの合成
Figure JPOXMLDOC01-appb-C000117
 Fmoc-Val-OH(0.070g、0.21mmol)をテトラヒドロフラン(1.0mL)と混合させ、0℃にてトリエチルアミン(0.035mL、0.25mmol)、ピバロイルクロリド(0.028mL、0.23mmol)を加え1時間撹拌した。この溶液に、別途H-(Me)βhomoLeu-OH塩酸塩(0.048g、0.25mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.24mL、0.99mmol)、アセトニトリル(1.0mL)を混合させ、25℃にて60分間撹拌して、調製した溶液を加え、0℃にて15時間撹拌した後に、更に25℃にて2時間撹拌した(原料:目的物=1:5(分析条件3))。得られた反応液を酢酸エチル(4.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(4.0mL)、水(3.0mL)を加えた後、25℃で1時間撹拌した。得られた有機層を10質量%クエン酸水溶液(4mL)、水(3.0mL)、飽和塩化ナトリウム水溶液(3.0mL)で順次洗浄した。集めた有機層を濃縮後、ヘキサンで洗浄し、Fmoc-Val-(Me)βhomoLeu-OH(0.095g、収率96%)を白色固体として得た。
合成例134:Fmoc-(Me)βAla-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000118
 Fmoc-(Me)βAla-OH(1.0g、3.1mmol)をテトラヒドロフラン(15mL)と混合させ、0℃にてトリエチルアミン(0.51mL、3.7mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(1.2g、3.4mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.66g、3.7mmol)、N,O-ビス(トリメチルシリル)アセトアミド(1.8mL、7.4mmol)、アセトニトリル(15mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて3時間撹拌した(原料:目的物=1:48(分析条件3))。得られた反応液を酢酸エチル(40mL)で希釈し、水(15mL)、飽和塩化ナトリウム水溶液(15mL)で順次洗浄した。集めた有機層を濃縮後、カラムクロマトグラフィーにより精製し、Fmoc-(Me)βAla-MePhe-OH(1.3g、収率85%)を白色固体として得た。
合成例135:Fmoc-(Me)βAla-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000119
 Fmoc-(Me)βAla-OH(0.10g、0.31mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.051mL、0.37mmol)、ピバロイルクロリド(0.041mL、0.34mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.066g、0.37mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.18mL、0.74mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて6時間撹拌した(原料:目的物=1:33(分析条件3))。得られた反応液を酢酸エチル(10mL)で希釈し、飽和炭酸水素ナトリウム水溶液(8.0mL)、1M塩酸(8.0mL)、水(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。集めた有機層を濃縮後、Fmoc-(Me)βAla-MePhe-OH(0.16g、収率107%)を白色固体として得た。
合成例136:Fmoc-MeGABA-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000120
 Fmoc-MeGABA-OH(1.0g、3.0mmol)をテトラヒドロフラン(15mL)と混合させ、0℃にてトリエチルアミン(0.50mL、3.5mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(1.2g、3.2mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.63g、3.5mmol)、N,O-ビス(トリメチルシリル)アセトアミド(1.7mL、7.1mmol)、アセトニトリル(15mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて3時間撹拌した(原料:目的物=1:48(分析条件3))。得られた反応液を酢酸エチル(40mL)で希釈し、水(15mL)、飽和塩化ナトリウム水溶液(15mL)で順次洗浄した。集めた有機層を濃縮後、カラムクロマトグラフィーにより精製し、Fmoc-MeGABA-MePhe-OH(1.3g、収率88%)を白色固体として得た。
合成例137:Fmoc-MeGABA-MePhe-OHの合成
Figure JPOXMLDOC01-appb-C000121
 Fmoc-MeGABA-OH(0.10g、0.30mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.049mL、0.35mmol)、ピバロイルクロリド(0.040mL、0.32mmol)を加え1時間撹拌した。この溶液に、別途H-MePhe-OH(0.063g、0.35mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.17mL、0.71mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて6時間撹拌した(原料:目的物=1:12(分析条件3))。得られた反応液を酢酸エチル(10mL)で希釈し、飽和炭酸水素ナトリウム水溶液(8.0mL)、1M塩酸(8.0mL)、水(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。集めた有機層を濃縮後、Fmoc-MeGABA-MePhe-OH(0.15g、収率105%)を白色固体として得た。
合成例138:Fmoc-(2SMe)βAla-(Me)βAla-OHの合
Figure JPOXMLDOC01-appb-C000122
 Fmoc-(2SMe)βAla-OH(0.050g、0.15mmol)をテトラヒドロフラン(0.42mL)と混合させ、0℃にてトリエチルアミン(0.026mL、0.18mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.051g、0.17mmol)を加え1時間撹拌した。この溶液に、別途H-(Me)βAla-OH塩酸塩(0.026g、0.18mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.18mL、0.74mmol)、アセトニトリル(0.84mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに25℃にて2時間撹拌した(原料:目的物=1:7(分析条件3))。得られた反応液をアセトニトリル(6.0mL)で希釈し、ヘキサン(8.0mL)で洗浄した。得られたアセトニトリル溶液を酢酸エチル(8.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(8.0mL)、10%クエン酸水溶液(8.0mL)、水(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-(2SMe)βAla-(Me)βAla-OH(0.069g、収率109%)を無色油状物質として得た。
合成例139:Fmoc-(2SMe)βAla-(Me)βAla-OHの合成
Figure JPOXMLDOC01-appb-C000123
 Fmoc-(2SMe)βAla-OH(0.050g、0.15mmol)をテトラヒドロフラン(0.42mL)と混合させ、0℃にてトリエチルアミン(0.026mL、0.18mmol)、ピバロイルクロリド(0.021mL、0.17mmol)を加え1時間撹拌した。この溶液に、別途H-(Me)βAla-OH塩酸塩(0.026g、0.18mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.18mL、0.74mmol)、アセトニトリル(0.84mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに25℃にて2時間撹拌した(原料:目的物=1:3(分析条件3))。得られた反応液をアセトニトリル(6.0mL)で希釈し、ヘキサン(8.0mL)で洗浄した。得られたアセトニトリル溶液を酢酸エチル(8.0mL)で希釈し、飽和炭酸水素ナトリウム水溶液(8.0mL)、10%クエン酸水溶液(8.0mL)、水(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-(2SMe)βAla-(Me)βAla-OH(0.070g、収率110%)を無色油状物質として得た。
合成例140:Fmoc-GABA-(Me)βAla-OHの合成
Figure JPOXMLDOC01-appb-C000124
 Fmoc-GABA-OH(0.10g、0.31mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.051mL、0.37mmol)、2-(4,4-ジメチルペンタン-2-イル)-5,7,7-トリメチルオクタノイルクロリド(0.12g、0.34mmol)を加え1時間撹拌した。この溶液に、別途H-(Me)βAla-OH塩酸塩(0.052g、0.37mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.36mL、1.5mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて15時間撹拌した(原料:目的物=1:99(分析条件3))。得られた反応液をアセトニトリル(6.0mL)で希釈し、ヘキサン(10mL)で洗浄した。得られたアセトニトリル溶液を酢酸エチル(10mL)で希釈し、1M塩酸(8.0mL)、水(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-GABA-(Me)βAla-OH(0.14g、収率108%)を無色油状物質として得た。
合成例141:Fmoc-GABA-(Me)βAla-OHの合成
Figure JPOXMLDOC01-appb-C000125
 Fmoc-GABA-OH(0.10g、0.31mmol)をテトラヒドロフラン(1.5mL)と混合させ、0℃にてトリエチルアミン(0.051mL、0.37mmol)、ピバロイルクロリド(0.042mL、0.34mmol)を加え1時間撹拌した。この溶液に、別途H-(Me)βAla-OH塩酸塩(0.052g、0.37mmol)、N,O-ビス(トリメチルシリル)アセトアミド(0.36mL、1.5mmol)、アセトニトリル(1.5mL)を混合させ、25℃にて60分間撹拌して調製した溶液を加え、さらに0℃にて15時間撹拌した(原料:目的物=1:49(分析条件3))。得られた反応液をアセトニトリル(8.0mL)で希釈し、ヘキサン(15mL)で洗浄した。得られたアセトニトリル溶液を酢酸エチル(10mL)で希釈し、1M塩酸(8.0mL)、水(10mL)、飽和塩化ナトリウム水溶液(10mL)で順次洗浄した。得られた有機層を濃縮後、Fmoc-GABA-(Me)βAla-OH(0.13g、収率104%)を無色油状物質として得た。
 上記合成例において、合成例118は、実施例で使用した原料の合成に係る参考例である。また合成例98、100、102、104、106、108乃至110、112、114、116、119、120、122、124、126、128、132、134、136、138および140は、本願のペプチドの製造方法に係る発明の実施例であり、合成例97、99、101、103、105、107、111、113、115、117、121、123、125、127、129、133、135、137、139および141はその比較例であり、合成例130および131は参考例である。

Claims (24)

  1.  下記工程(1)乃至(3):
    (1)
    式(I)P-A-OH(式中、PはN末端保護基であり、Aは、アミノ酸由来の基、N-C1-6アルキルアミノ酸由来の基(C1-6アルキルは置換基を有していてもよい)またはペプチド由来の基を表す)で表されるN末端保護アミノ酸またはN末端保護ペプチドを
    式(II)
    Figure JPOXMLDOC01-appb-C000001

    (式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級または3級の脂肪族炭化水素基を表すか、あるいは炭素数が4以上であり、置換基を有している1級の脂肪族炭化水素基(ここで、1級の脂肪族炭化水素基の置換基は、カルボニル炭素に結合する炭素原子上に存在する)を表す)で表されるカルボン酸ハロゲン化物、および式(III)
    Figure JPOXMLDOC01-appb-C000002

    (式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級の脂肪族炭化水素基を表す)で表されるハロゲン化ギ酸アルキルよりなる群から選択される活性化剤と混合する工程;
    (2)
     式(IV)H-A-OH(式中、Aは、N-C1-6アルキルアミノ酸由来の基(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸由来の基(4-6員環は、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合していてもよい)、あるいはN末端残基がN-C1-6アルキルアミノ酸(C1-6アルキルは置換基を有していてもよい)または4-6員の環状の2級アミノ酸(4-6員環は、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合していてもよい)であるペプチド由来の基を表す)で表されるアミノ酸またはペプチドをシリル化剤と混合する工程;
    (3)
     工程(1)で得られた生成物と工程(2)で得られた生成物とを混合する工程、
    を含むペプチドの製造方法。
  2.  下記工程(1)乃至(3):
    (1)
     式(I)P-A-OH(式中、PはN末端保護基であり、Aは、アミノ酸由来の基またはN-C1-6アルキルアミノ酸由来の基(C1-6アルキルは置換基を有していてもよい)を表す)で表されるN末端保護アミノ酸を
    式(II)
    Figure JPOXMLDOC01-appb-C000003

    (式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級または3級の脂肪族炭化水素基を表すか、あるいは炭素数が4以上であり、置換基を有している1級の脂肪族炭化水素基(ここで、1級の脂肪族炭化水素基の置換基は、カルボニル炭素に結合する炭素原子上に存在する)を表す)で表されるカルボン酸ハロゲン化物および
    式(III)
    Figure JPOXMLDOC01-appb-C000004

    (式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級の脂肪族炭化水素基を表す)で表されるハロゲン化ギ酸アルキルよりなる群から選択される活性化剤と混合する工程;
    (2)
     式(IV)H-A-OH(式中、Aは、N-メチルアミノ酸由来の基、N-C1-6アルキルグリシン由来の基(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸由来の基、あるいはN末端残基がN-メチルアミノ酸、N-C1-6アルキルグリシン(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸であるペプチド由来の基を表す)で表されるアミノ酸またはペプチドをシリル化剤と混合する工程;
    (3)
     工程(1)で得られた生成物と工程(2)で得られた生成物とを混合する工程、
    を含むペプチドの製造方法。
  3.  下記工程(1)乃至(3):
    (1)
     式(V)P-A-OH(式中、PはN末端保護基であり、Aは、ペプチド由来の基を表す)で表されるN末端保護ペプチドを
    式(II)
    Figure JPOXMLDOC01-appb-C000005

    (式中、Xはハロゲン原子を表し、Rは炭素数が5以上であり、置換基を有していてもよい2級または3級の脂肪族炭化水素基を表すか、あるいは炭素数が4以上であり、置換基を有している1級の脂肪族炭化水素基(ここで、1級の脂肪族炭化水素基の置換基は、カルボニル炭素に結合する炭素原子上に存在する)を表す)で表されるカルボン酸ハロゲン化物と混合する工程;
    (2)
     式(IV')H-A2’-OH(式中、A2’は、N-メチルアミノ酸由来の基、N-C1-6アルキルグリシン由来の基(C1-6アルキルは置換基を有していてもよい)、または4-6員の環状の2級アミノ酸由来の基を表す)で表されるアミノ酸をシリル化剤と混合する工程;
    (3)
     工程(1)で得られた生成物と工程(2)で得られた生成物とを混合する工程、
    を含むペプチドの製造方法。
  4.  工程(3)で得られたペプチドのN末端の保護基を除去する工程を含む、請求項1乃至3のいずれか一項に記載のペプチドの製造方法。
  5.  さらに下記工程(4)および(5):。
    (4)
     工程(3)または(5)で得られたペプチドのN末端の保護基を除去する工程;
    (5)
     工程(4)で得られたペプチドのN末端に、N末端保護アミノ酸またはN末端保護ペプチドを反応させる工程、
    の繰り返しを1以上含む、請求項1乃至3のいずれか一項に記載のペプチドの製造方法。
  6.  式(I)P-A-OHまたは式(V)P-A-OH(式中、PはN末端保護基であり、AおよびAは、それぞれペプチド由来の基を表す)で表されるN末端保護ペプチド中のC末端に位置するアミノ酸が、N-C1-6アルキルアミノ酸(C1-6アルキルは置換基を有していてもよい)または4-6員の環状の2級アミノ酸(4-6員環は、C6-14アリール環、C6-14ハロアリール環およびC3-8シクロアルキル環からなる群から選ばれる環状化合物と縮合していてもよい)以外のアミノ酸である、請求項1または3に記載のペプチドの製造方法。
  7.  Aが、アミノ酸由来の基である、請求項1または2に記載のペプチドの製造方法。
  8.  式(I)で表されるN末端保護アミノ酸または式(I)で表されるN末端保護ペプチド中のC末端に位置するアミノ酸が、α-アミノ酸、β-アミノ酸またはγ-アミノ酸である、請求項1または2に記載のペプチドの製造方法。
  9.  式(I)で表されるN末端保護アミノ酸又は式(I)で表されるN末端保護ペプチド中のC末端に位置するアミノ酸が、α-アミノ酸である、請求項8に記載のペプチドの製造方法。
  10.  式(IV)で表されるアミノ酸または式(IV)で表されるペプチド中のN末端に位置するアミノ酸が、N-C1-6アルキル-α-アミノ酸(C1-6アルキルは置換基を有していてもよい)または4-6員の環状の2級-α-アミノ酸である、請求項1に記載のペプチドの製造方法。
  11.  式(IV)で表されるアミノ酸または式(IV)で表されるペプチド中のN末端に位置するアミノ酸が、N-メチル-α-アミノ酸もしくはN-エチル-α-アミノ酸(N-メチル、N-エチルはそれぞれ置換基を有していてもよい)または4-6員の環状の2級-α-アミノ酸である、請求項1に記載のペプチドの製造方法。
  12.  活性化剤が式(II)で表されるカルボン酸ハロゲン化物であり、R1の炭素数が5乃至20であり、Xが塩素原子である、請求項1乃至11のいずれか一項に記載のペプチドの製造方法。
  13.  活性化剤が式(II)で表されるカルボン酸ハロゲン化物であり、下記の化合物群から選択される、請求項1乃至12のいずれか一項に記載のペプチドの製造方法。
    Figure JPOXMLDOC01-appb-C000006
  14.  活性化剤が式(II)で表されるカルボン酸ハロゲン化物であり、下記の化合物群から選択される、請求項1乃至12のいずれか一項に記載のペプチドの製造方法。
    Figure JPOXMLDOC01-appb-C000007
  15.  活性化剤が下記の化合物である、請求項13又は14に記載のペプチドの製造方法。
    Figure JPOXMLDOC01-appb-C000008
  16.  活性化剤が式(III)で表されるハロゲン化ギ酸アルキルであり、Xが塩素原子である、請求項1または2に記載のペプチドの製造方法。
  17.  活性化剤が式(III)で表されるハロゲン化ギ酸アルキルであり、下記の化合物群から選択される、請求項1または2に記載のペプチドの製造方法。
    Figure JPOXMLDOC01-appb-C000009
  18.  活性化剤が式(III)で表されるハロゲン化ギ酸アルキルであり、下記の化合物群から選択される、請求項1または2に記載のペプチドの製造方法。
    Figure JPOXMLDOC01-appb-C000010
  19.  シリル化剤がトリメチルシリル化剤である請求項1乃至18のいずれか1項に記載のペプチドの製造方法。
  20.  シリル化剤が、N,O-ビス(トリメチルシリル)アセトアミド、N,N′-ビス(トリメチルシリル)尿素またはN,O-ビス(トリメチルシリル)トリフルオロアセトアミドである、請求項1乃至19のいずれか1項に記載の、ペプチドの製造方法。
  21.  シリル化剤が、N,O-ビス(トリメチルシリル)アセトアミドである、請求項1乃至20のいずれか1項に記載の、ペプチドの製造方法。
  22.  式(IV)で表されるアミノ酸またはペプチドが、それぞれ、プロリン以外のアミノ酸またはN末端残基がプロリン以外のアミノ酸残基であるペプチドである、請求項1に記載のペプチドの製造方法。
  23.  式(IV’)で表されるアミノ酸が、プロリン以外のアミノ酸である請求項3に記載のペプチドの製造方法。
  24.  下記式:
    Figure JPOXMLDOC01-appb-C000011

    で表される化合物。
PCT/JP2020/011420 2019-03-15 2020-03-16 ペプチド化合物の製造方法 WO2020189621A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20773236.3A EP3939959A4 (en) 2019-03-15 2020-03-16 METHOD OF PREPARING A GLYCOSIDE COMPOUND
US17/439,601 US20220153777A1 (en) 2019-03-15 2020-03-16 Method for producing peptide compound
CA3133805A CA3133805A1 (en) 2019-03-15 2020-03-16 Method for producing peptide compound
JP2021507338A JPWO2020189621A1 (ja) 2019-03-15 2020-03-16
CN202080020354.6A CN113614061A (zh) 2019-03-15 2020-03-16 肽化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048930 2019-03-15
JP2019-048930 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189621A1 true WO2020189621A1 (ja) 2020-09-24

Family

ID=72520118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011420 WO2020189621A1 (ja) 2019-03-15 2020-03-16 ペプチド化合物の製造方法

Country Status (7)

Country Link
US (1) US20220153777A1 (ja)
EP (1) EP3939959A4 (ja)
JP (1) JPWO2020189621A1 (ja)
CN (1) CN113614061A (ja)
CA (1) CA3133805A1 (ja)
TW (1) TW202104242A (ja)
WO (1) WO2020189621A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218412A1 (ja) * 2019-04-25 2020-10-29 日産化学株式会社 ペプチド化合物の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739104A (en) 1994-05-04 1998-04-14 Schering Corporation Anti-fungal agents
JP3406093B2 (ja) 1994-10-07 2003-05-12 富士写真フイルム株式会社 ハロゲン化銀感光材料
WO2009134405A2 (en) 2008-04-30 2009-11-05 Siemens Medical Solutions Usa, Inc. Novel substrate based pet imaging agents
JP2011503223A (ja) * 2007-11-19 2011-01-27 ソルヴェイ(ソシエテ アノニム) ペルシリル化ペプチドを製造する方法
JP2011504175A (ja) * 2007-11-21 2011-02-03 ソルヴェイ(ソシエテ アノニム) ペプチドの製造方法および精製方法
JP2013028536A (ja) * 2009-11-11 2013-02-07 Dainippon Sumitomo Pharma Co Ltd 環状アミン−1−カルボン酸エステル誘導体およびそれを含有する医薬組成物
JP2014513663A (ja) * 2010-12-22 2014-06-05 オニックス ファーマシューティカルズ,インコーポレイティド 効率的なペプチドカップリングおよびシクロペンタ[g]キナゾリン3ナトリウム塩の合成および単離でのそれらの使用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313476A (ja) * 1988-06-13 1989-12-18 Kao Corp 3−o−アシル−5,6−o−ベンジリデンアスコルビン酸
US8921599B2 (en) * 2010-10-27 2014-12-30 Emory University Processes for forming amide bonds and compositions related thereto

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739104A (en) 1994-05-04 1998-04-14 Schering Corporation Anti-fungal agents
JP3406093B2 (ja) 1994-10-07 2003-05-12 富士写真フイルム株式会社 ハロゲン化銀感光材料
JP2011503223A (ja) * 2007-11-19 2011-01-27 ソルヴェイ(ソシエテ アノニム) ペルシリル化ペプチドを製造する方法
JP2011504175A (ja) * 2007-11-21 2011-02-03 ソルヴェイ(ソシエテ アノニム) ペプチドの製造方法および精製方法
WO2009134405A2 (en) 2008-04-30 2009-11-05 Siemens Medical Solutions Usa, Inc. Novel substrate based pet imaging agents
JP2013028536A (ja) * 2009-11-11 2013-02-07 Dainippon Sumitomo Pharma Co Ltd 環状アミン−1−カルボン酸エステル誘導体およびそれを含有する医薬組成物
JP2014513663A (ja) * 2010-12-22 2014-06-05 オニックス ファーマシューティカルズ,インコーポレイティド 効率的なペプチドカップリングおよびシクロペンタ[g]キナゾリン3ナトリウム塩の合成および単離でのそれらの使用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BIBI, D. ET AL.: "Design and Comparative Evaluation of the Anticonvulsant Profile, Carbonic-Anhydrate Inhibition and Teratogenicity of Novel Carbamate Derivatives of Branched Aliphatic Carboxylic Acids with 4- Aminobenzensulfonamide", NEUROCHEMICAL RESEARCH, vol. 42, no. 7, 2017, pages 1972 - 1982, XP036273349, DOI: 10.1007/s11064-017-2216-x *
CHEMISTRY OF NATURE COMPOUNDS, vol. 28, 1992, pages 344
INDIAN JOURNAL OF CHEMISTRY, vol. 43B, 2004, pages 1282
PHARMACIA, vol. 50, 2014, pages 751 - 755
See also references of EP3939959A4
T. W. GREENE: "Protective Group in Organic Synthesis", 2006, JOHN WILEY & SONS INC.
TETRAHEDRON, vol. 68, 2012, pages 7070

Also Published As

Publication number Publication date
US20220153777A1 (en) 2022-05-19
JPWO2020189621A1 (ja) 2020-09-24
CN113614061A (zh) 2021-11-05
CA3133805A1 (en) 2020-09-24
EP3939959A4 (en) 2022-11-23
EP3939959A1 (en) 2022-01-19
TW202104242A (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
JP6350632B2 (ja) ペプチドの製造方法
JP2021059580A (ja) Wt1抗原ペプチドコンジュゲートワクチン
JP4803352B2 (ja) アミノ酸−n−カルボキシ無水物の製造方法
JP7196087B2 (ja) ペプチド化合物の製造方法
JP6011528B2 (ja) ペプチドの製造方法
KR102593509B1 (ko) 질소 머스타드 유도체의 제조 방법
JPWO2016047794A1 (ja) 疎水性ペプチドの製造法
WO2010131962A2 (en) Lysine compounds and their use in site- and chemoselective modification of peptides and proteins
WO2020189621A1 (ja) ペプチド化合物の製造方法
EP3004134B1 (en) Peptide ligation
WO2021039901A1 (ja) ペプチド化合物の製造方法
WO2020262259A1 (ja) ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物
JP2001505578A (ja) スルホニル保護基を用いるペプチド合成
WO2021060048A1 (ja) ペプチド化合物の製造方法
Aussedat et al. ‘Bis-ornithine’(2, 2-bis (aminopropyl) glycine): a new tetravalent template for assembling different functional peptides
WO2020162393A1 (ja) ペプチド化合物の製造方法
WO2020218412A1 (ja) ペプチド化合物の製造方法
JP7163916B2 (ja) ベンジル化合物
JP4016104B2 (ja) 新規セレニルリンカー及びその用途
JP2019167317A (ja) L−カルノシン誘導体及びl−カルノシンの製造方法
WO2021132336A1 (ja) ペプチドの製造方法
JP4214229B2 (ja) 新規なn−スルフェニルアミノ酸エステル化合物とその製造方法
WO2022149612A1 (ja) ペプチドの製造方法
WO2023127869A1 (ja) N-アルキルアミノ酸、およびn-アルキルアミノ酸を含むペプチドの製造方法
TW202233574A (zh) 肽之製造方法、保護基形成用試藥及縮合多環化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507338

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3133805

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020773236

Country of ref document: EP