WO2022149612A1 - ペプチドの製造方法 - Google Patents

ペプチドの製造方法 Download PDF

Info

Publication number
WO2022149612A1
WO2022149612A1 PCT/JP2022/000431 JP2022000431W WO2022149612A1 WO 2022149612 A1 WO2022149612 A1 WO 2022149612A1 JP 2022000431 W JP2022000431 W JP 2022000431W WO 2022149612 A1 WO2022149612 A1 WO 2022149612A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
formula
production method
added
Prior art date
Application number
PCT/JP2022/000431
Other languages
English (en)
French (fr)
Inventor
恭寛 林田
和也 涌井
優太 寺嶋
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2022149612A1 publication Critical patent/WO2022149612A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a peptide.
  • the acetate of the peptide represented by the formula (1) is useful as a therapeutic agent for acute attacks of hereditary angioedema (HAE) (Patent Document 1).
  • Patent Document 2 As a method for producing the compound (1), a plurality of solid-phase synthesis methods are known (for example, Patent Document 2), and a liquid phase synthesis method using three fragments is also known (Patent Document 1). .. Further, a synthetic method is known in which a peptide free of C-terminal carboxylic acid can be obtained after forming a peptide bond (Patent Document 3). Further, a method is known in which a C-terminal carboxylic acid is protected with a 2- (trimethylsilyl) ethyl group and the peptide is extended toward the N-terminal direction (Non-Patent Document 1).
  • the present invention provides a novel method for producing compound (1).
  • the solid-phase synthesis method is unsuitable for industrial production because it uses an excess of reagents and a large amount of solvent. Further, in the liquid phase synthesis method described in Patent Document 1, there are many steps of selectively desorbing the carboxylic acid protecting group on the C-terminal side when synthesizing each fragment, and in those deprotection steps, a heavy metal is used. I'm using some palladium. From the viewpoint of pharmaceutical manufacturing, it is desirable to reduce the amount of heavy metals used. As a result of diligent studies, the present inventors have found a novel method for efficiently producing the compound (1), which reduces the attachment and detachment of the C-terminal carboxylic acid protecting group, and completed the present invention. That is, the present invention relates to the following.
  • Compound (13) (In the formula, P 1 represents a protecting group) Compound (1), which is characterized by advancing a peptide extension reaction toward the N-terminal side using the above as a starting material. Or a method for producing the salt thereof.
  • Compound (13) was added to compound (11) in the presence of a condensing agent.
  • Reaction with compound (14) (In the formula, P 1 represents a protecting group) Guide to Further, after deprotecting the N-terminal protecting group, the compound (16) was present in the presence of a condensing agent.
  • the silylating agent used in step 2) is t-butyldimethylsilyl chloride or N, O-bis (trimethylsilyl) acetamide, and the silylating agent used in steps 5) and 8) is N, O-bis (trimethylsilyl).
  • Compound (11) is the following steps 10) to 12): 10) Compound (9) And the step of mixing the activator; 11) Compound (10) And the step of mixing the silylating agent; 12)
  • the silylating agent is trimethylsilyl chloride, triethylsilyl chloride, t-butyldimethylsilyl chloride, triisopropylsilyl chloride, N, O-bis (trimethylsilyl) acetamide, triisopropylsilyltriflate or N- (t-butyldimethylsilyl) -N-.
  • the production method according to [11], wherein the silylating agent is N, O-bis (trimethylsilyl) acetamide.
  • the condensing agent is a carbodiimide-based condensing agent or a uronium-based condensing agent.
  • the condensing agent is (1-cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylamino-morpholino-carbenium hexafluorophosphate or N, N'-dicyclohexylcarbodiimide, [2] to [13].
  • the manufacturing method according to any one.
  • the activator is isobutyl chloroformate, chloride isostearate, bromide isostearate, 2,2-dimethylbutyryl chloride, 1-adamantane carbonyl chloride or 1,1'-carbonyldiimidazole, [5] to [15].
  • the manufacturing method according to any one.
  • [17] The production method according to any one of [5] to [15], wherein the activator is isostearic acid chloride or 2,2-dimethylbutyryl chloride.
  • P 2 is a t-butyl group.
  • P 1 is a Pbf group.
  • n- is normal, "s-” is secondary, “t-” and “tert-” are tertiary, “i-” is iso, “o-” is ortho, and “m-” is. Meta, “p-” is para, “Trt” is triphenylmethyl (trityl), “Ms” is methanesulfonyl, "Bn” is benzyl, “Bu” is butyl, “Pr” is propyl, “Ph” is phenyl , “Fmoc” is 9-fluorenylmethyloxycarbonyl, “TIPS” is triisopropylsilyl, “TBS” is t-butyldimethylsilyl, “Pbf” is 2,2,4,6,7-pentamethyldihydrobenzofuran. -5-sulfonyl, "Cbz” means benzyloxycarbonyl, “TMSE” means 2- (trimethylsilyl) e
  • C-terminal in the present specification is the terminal on the side terminated by the carboxy group of the amino acid or peptide.
  • N-terminal in the present specification is the terminal on the side terminated by the amino group of the amino acid or peptide.
  • the base used herein is not particularly limited as long as it does not interfere with the reaction, but examples thereof include aliphatic amines (eg, piperidine, triethylamine, N, N-diisopropylethylamine, N-methylmorpholine, diethylamine, 1). , 8-diazabicyclo [5.4.0] -7-undecene), aromatic amines (eg, pyridine, imidazole, N, N-dimethyl-4-aminopyridine) and the like.
  • aliphatic amines eg, piperidine, triethylamine, N, N-diisopropylethylamine, N-methylmorpholine, diethylamine, 1).
  • 8-diazabicyclo [5.4.0] -7-undecene aromatic amines
  • aromatic amines eg, pyridine, imidazole, N, N-dimethyl-4-aminopyridine
  • cation scavenger means a substance that reacts with a free cation formed by the reaction and thereby removes the free cation.
  • cationic scavengers are silyl hydrides such as triethylsilane, triphenylsilane, triisopropylsilane, thiols such as ethanedithiol, thiophenols such as methoxythiophenol, phenols, and sulfides such as thioanisole.
  • “Proceeding with the peptide extension reaction toward the N-terminal side” means that the N-terminal amino group is condensed with the amino acid or the carboxy group of the peptide, and the same operation is repeated for the N-terminal amino group of the obtained peptide. do.
  • the organic solvents used in the present invention are aliphatic hydrocarbons (hexane, heptane, etc.), aromatic hydrocarbons (benzene, toluene, xylene, etc.), ethers (4-methyltetrahydropyran, diisopropyl ether, tetrahydrofuran, etc.), 1 , 4-dioxane, t-butylmethyl ether, cyclopentylmethyl ether, etc.), halogenated aliphatic hydrocarbons (methylene chloride, chloroform, dichloroethane, etc.), nitriles (acetohydrate, propionitrile, etc.), amides (N- Represents methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, etc.), sulfoxides (dimethylsulfoxide, etc.), alcohols (methanol, ethanol, etc.), esters (ethyl acetate, etc.) or mixtures thereof.
  • the activator used in the present invention is not particularly limited as long as it can form an asymmetric acid anhydride.
  • Specific examples include isobutyl chloroformate, chloride isostearate, bromide isostearate, 2,2-dimethylbutyryl chloride, 1-adamantane carbonyl chloride, 1,1'-carbonyldiimidazole and the like.
  • the silylating agent used in the present invention is particularly limited as long as it can protect the carboxy group and / or the hydroxyl group, and selectively deprotect the protecting group of the carboxy group by hydrolysis (for example, liquid separation operation using water). Not done. Specific examples include trimethylsilyl chloride, triethylsilyl chloride, t-butyldimethylsilyl chloride, triisopropylsilyl chloride, N, O-bis (trimethylsilyl) acetamide, triisopropylsilyltriflate, N- (t-butyldimethylsilyl) -N. -Methyltrifluoroacetamide and the like can be mentioned. Hydrolysis is not particularly limited, but is preferably acid hydrolysis.
  • the condensing agent used in the present invention is not particularly limited.
  • Carbodiimide-based condensing agents eg, N, N'-dicyclohexylcarbodiimide, N, N'-diisopropylcarbodiimide, 1-ethyl-3-dimethylaminopropylcarbodiimide hydrochloride
  • chloroformate-based condensing agents eg, ethyl chloroformate, Isobutyl chlorogeate
  • imidazole-based condensing agent for example, 1,1'-carbonyldiimidazole
  • phosphonium-based condensing agent for example, (benzotriazole-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate (PyBOP (registered trademark))
  • Bromotripyrrolidinophosphonium hexafluorophosphate PyBrop (registered trademark)
  • the additives used herein are not particularly limited as long as they do not interfere with the reaction, and are, for example, N, N-dimethyl-4-aminopyridine (DMAP), 1-hydroxybenzotriazole (HOBt), 1-hydroxy-.
  • DMAP N, N-dimethyl-4-aminopyridine
  • HOBt 1-hydroxybenzotriazole
  • Examples thereof include 1H-1,2,3-triazole-5-carboxylic acid ethyl ester (HOCt), 1-hydroxy-7-azabenzotriazole (HOAt), (hydroxyimino) ethyl cyanoacetate (OxymaPure) and the like.
  • salt means a compound in which an acid-derived anion (anion) and a base-derived cation (cation) are ionically bonded, preferably a hydrochloride, a phosphate, a sulfate, or a bird. Fluoroacetate, acetate, more preferably acetate.
  • a method for producing a salt of compound (1) a method well known to those skilled in the art can be used using compound (1) as a raw material.
  • the salt of the compound (1) can be obtained by mixing the compound (1) and the acid in a solvent and purifying the compound (1) as necessary.
  • an acetate can be obtained by the method described in Patent Document 1. Therefore, those skilled in the art can also produce a salt of compound (1) if compound (1) can be produced.
  • the method for producing compound (1) is a concept equivalent to the method for producing compound (1) and a salt thereof for those skilled in the art. The same applies to the raw material compound and the intermediate compound of the compound (1) disclosed in the present specification.
  • protecting groups represented by "P 1 ", “P 1a “, “P 1b “, “P 2 “, and “P 3 " in the present specification are protecting groups generally used in technical fields such as peptide chemistry. (See, for example, TW Greene “Greene's Protective Groups in Organic Synthesis", John Willy & Sons (2006), etc.).
  • the protection and deprotection of a functional group in the production method of the present invention is a protection / deprotection reaction generally used in a technical field such as peptide chemistry (for example, TW Greene "Greene's Protective Groups in Organic Synthesis in Organic Synthesis”. , John Willy & Sons (2006), etc.).
  • the invention is represented by the following scheme.
  • P 1 , P 2 , P 1a , P 1b represent a protecting group
  • P 3 represents a protecting group or a hydrogen atom
  • P 4 represents an Fmoc group or a Cbz group.
  • amino acids may be described by three-letter abbreviations. These three-letter abbreviations are well known to those of skill in the art, and for example, the description of the case where the side chain of an amino acid is protected by a protecting group is also well known to those skilled in the art. Examples of three-letter abbreviations include: Pro: Proline Gly: Glycin Arg: Arginine Ser: Serin Hyp: Hydroxyproline Thi: Thienylalanine Tic: 1,2,3,4-Tetrahydroisoquinolin-3-carboxylic acid Oic: (3aS, 7aS) -Octahydroin drill- 2-Carboxylic acid In the present specification, amino acids mean L-form amino acids unless otherwise specified.
  • D- when D- is added before the abbreviation (for example, D-Arg), it means a D-form amino acid. It is also well known to those skilled in the art to describe the structure of a peptide by connecting three-letter abbreviations with a hyphen. Specific examples are given below for reference.
  • the present invention is a method for producing a compound (1), which comprises protecting the C-terminal of arginine with a C-terminal protecting group characteristic of the present invention.
  • the present invention is characterized in that a compound in which the C-terminal of arginine is protected with a C-terminal protecting group characteristic of the present invention is used as a starting material, and a peptide extension reaction is promoted toward the N-terminal side.
  • the manufacturing method of (1) is a method for producing a compound (1), which comprises using the compound (13) as a starting material and advancing a peptide extension reaction toward the N-terminal side.
  • the present invention is a method for producing a compound (1), which comprises using the compound (13) as a starting material and advancing a peptide extension reaction a plurality of times toward the N-terminal side.
  • compound (25) is produced by repeating peptide elongation toward the N-terminal side.
  • Compound (25) has the same amino acid sequence as compound (1), and its C-terminal is protected by a C-terminal protecting group characteristic of the present invention.
  • the compound (26), which is a pharmaceutical product, is produced by producing the compound (25), deprotecting the protecting group at the C-terminal, and chlorinating the compound (25).
  • compound (25) can be said to be the core production intermediate of compound (1).
  • the present invention is a method for producing compound (25). Further, as one embodiment, the present invention is a method for producing the compound (1) via the compound (25).
  • Compound (1) is the free acid of compound (26).
  • Compound (26) is an acetate of compound (1).
  • Compound (1) has the same amino acid sequence as compound (26), and compound (1) is produced and chloride to produce compound (26), which is a pharmaceutical product.
  • compound (1) can be said to be the core production intermediate of compound (26).
  • the present invention is a method for producing compound (1).
  • the present invention is a method for producing the compound (26) via the compound (1).
  • the compound (26) which is a pharmaceutical product, exerts its pharmacological action as the compound (1) after being administered in vivo as a pharmaceutical product.
  • compound (1) can be said to be an equivalent of compound (26).
  • the present invention is a method for producing a salt or a solvate of compound (1).
  • the peptide extension reaction toward the N-terminal side is composed of the following steps I) and II).
  • Step I) Condensation step A step of condensing a compound protected with a C-terminal protecting group characteristic of the present invention and a compound having an N-terminal protected with a protecting group in the presence of a condensing agent.
  • Step II) Deprotection step The step of deprotecting the N-terminal protecting group of the product of step I).
  • the product of step II) is a compound in which the C-terminal is protected by the C-terminal protecting group characteristic of the present invention and the N-terminal is free. Therefore, the product of step II) is a compound that can be a raw material for the next peptide extension reaction toward the N-terminal side, and the N-terminal extension reaction can be advanced by repeating step I) and step II).
  • the C-terminal protecting group-protected compound characteristic of the present invention is not limited as long as it is protected by the protecting group and can be an intermediate in the production of the compound (1) or (26), but is preferably the present invention.
  • step I) is a step (G), (I), (K), (M), (O) described later. Preferred conditions for each step will be described later. More specifically, the compound as a starting material for the step I) is the compound (13), (15), (18), (20), (22).
  • step II) is a step (F), (H), (J), (L), (N), (P) described later. Preferred conditions for each step will be described later. More specifically, the compound as a starting material for step II) is compound (27), (14), (17), (19), (21), (24).
  • Compound (8) can be produced by going through steps (A) to (C).
  • Step i) After adding an organic solvent and a base to the compound (2), the mixture is cooled to ⁇ 10 to 0 ° C. and induced into an asymmetric acid anhydride by an activator.
  • P4 is a protecting group, preferably an Fmoc group or a Cbz group, and more preferably an Fmoc group.
  • Step ii) The compound (3) is mixed with an organic solvent and a silylating agent to protect carboxy groups and / or hydroxyl groups. Bases may be added as needed.
  • Step iii) The product obtained in step i) is reacted with the product obtained in step ii) to synthesize a peptide.
  • Step iv) After completion of the reaction, the compound (4) is obtained by deprotecting only the silyl protecting group of the carboxy group by a liquid separation operation using water or an acidic aqueous solution.
  • P 3 is a protecting group, it is not particularly limited, but is preferably a t-butyldimethylsilyl group.
  • the organic solvent used in this step is not particularly limited as long as it does not interfere with the reaction, but is preferably acetonitrile, tetrahydrofuran or 4-methyltetrahydropyran.
  • the base used in this step is not particularly limited as long as it does not interfere with the reaction, but is preferably N, N-diisopropylethylamine.
  • the activator used in this step is preferably isostearic acid chloride.
  • the silylating agent used in this step is preferably N, O-bis (trimethylsilyl) acetamide or t-butyldimethylsilyl chloride.
  • Preferred examples of the organic solvent and base used in this step are the same as in step (A).
  • the activator used in this step is preferably 2,2-dimethylbutyryl chloride.
  • the silylating agent used in this step is preferably N, O-bis (trimethylsilyl) acetamide.
  • organic solvent, base, activator and silylating agent used in this step are the same as in step (B).
  • Compound (11) can be produced by going through step (D).
  • Preferred examples of the organic solvent, base and activator used in this step are the same as in step (A), and preferred examples of the silylating agent are the same as in step (B).
  • Compound (13) can be produced by going through steps (E) and (F).
  • P 1 is preferably a Pbf group, but is not limited to this.
  • the organic solvent used in this step is particularly preferably methylene chloride or cyclopentyl methyl ether.
  • the base used in this step is more preferably diethylamine.
  • the equivalent amount of the compound (13) used in this step is not particularly limited, but is preferably 1.0 to 2.0 times, more preferably 1.15 times, that of the compound (11).
  • the organic solvent used in this step is particularly preferably methylene chloride.
  • the base used in this step is not particularly limited as long as it does not interfere with the reaction, but is preferably N, N-diisopropylethylamine.
  • the condensing agent used in this step is particularly preferably (1-cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylamino-morpholino-carbenium hexafluorophosphate.
  • Step (H) The compound (15) is obtained by replacing the compound (27) in the step (F) with the compound (14) and performing the same operation as in the step (F).
  • the organic solvent and base used in this step are the same as in step (F).
  • P 2 is preferably a t-butyl group, but is not limited thereto.
  • the organic solvent used in this step is preferably N-methyl-2-pyrrolidone.
  • the condensing agent used in this step is preferably N, N'-dicyclohexylcarbodiimide.
  • the organic solvent used in this step is preferably trifluoroethanol.
  • the palladium carbon used in this step is not particularly limited as long as the reaction proceeds, but is preferably 10% palladium carbon (PE type: NE Chemcat).
  • the amount of palladium carbon used in this step is not particularly limited as long as the reaction proceeds, but is preferably 0.001 to 1 mass times, more preferably 0.01 to 0.5 mass times, that of the compound (17). It is particularly preferably 0.05 to 0.2 mass times.
  • the organic solvent, base, and condensing agent used in this step are the same as in step (G).
  • the organic solvent used in this step is preferably dimethylformamide.
  • the base used in this step is preferably piperidine.
  • the organic solvent, base, and condensing agent used in this step are the same as in step (G).
  • the organic solvent and base used in this step are the same as in step (L).
  • the organic solvent, base, and condensing agent used in this step are the same as in step (G).
  • Step (P) The compound (25) is obtained by replacing the compound (19) in the step (L) with the compound (24) and performing the same operation as in the step (L).
  • the organic solvent and base used in this step are the same as in step (L).
  • the cationic scavenger used in this step is preferably thioanisole, dithiothreitol, or triisopropylsilane.
  • the poor solvent used in this step is not particularly limited as long as it does not interfere with the precipitation of solids, but is preferably aliphatic hydrocarbons (hexane, heptane, etc.), aromatic hydrocarbons (benzene, toluene, xylene, etc.), ethers.
  • the recovered fraction is diluted with water until the concentration of acetonitrile becomes 5% or less, and the solution is passed through ODS silica gel.
  • a 10 mM ammonium acetate aqueous solution and an acetic acid aqueous solution are passed to obtain an acetate.
  • the solid is eluted with acetonitrile containing acetic acid and water, and the compound (26) is obtained by lyophilization.
  • Prior art documents can be referred to for purification by HPLC fractionation and acetic acid chlorination method.
  • Reference synthesis example 2 Synthesis of bromide isostearate 6.9 g of triphenylphosphine was added to 25 mL of methylene chloride and mixed. The mixture was cooled to 0 ° C. under a nitrogen atmosphere, and 4.2 g of bromine was added dropwise. After stirring for 10 minutes, a solution of 5.0 g of isostearic acid in 25 mL of methylene chloride was added dropwise. After the dropping, the temperature was raised to room temperature, and the mixture was stirred for 1 hour and 45 minutes. Then, it was concentrated and concentrated with full vacuum for a certain period of time. 50 mL of n-hexane was added and the insoluble material was filtered under a nitrogen atmosphere.
  • the filtrate was washed with 50 mL of n-hexane, and the obtained filtrate was concentrated to make 6.0 g. To this was added 6.0 g of toluene to prepare a 50 mass% bromide isostearate-toluene solution.
  • the obtained organic layer was washed 3 times with 5% aqueous ammonia and a saturated aqueous solution of ammonium chloride and water in that order. After concentrating the organic layer, it was concentrated with full vacuum for a certain period of time. Then, acetonitrile and n-heptane were added and the liquid was separated. The obtained acetonitrile layer was washed with n-heptane and concentrated to make 0.79 g. 0.58 g of this was weighed, ethyl acetate and a 10% aqueous potassium dihydrogen phosphate solution were added, and the liquid was separated. The obtained organic layer was washed with 10% aqueous potassium dihydrogen phosphate solution and water and concentrated. The title compound was obtained under 0.51 g, a mass yield of 100%, and an HPLC relative purity of 94.6% ⁇ Analysis Condition 3>.
  • Synthesis example 1 Synthesis of Fmoc-Pro-Hyp (TBS) -Gly-Thi-OH 1) After adding 100.1 g of acetonitrile and 15.3 g of N, N-diisopropylethylamine to 5.44 g of H-Hyp-OH, 14.8 g of t-butyldimethylsilyl chloride was added and mixed. The temperature was raised to 60 to 65 ° C., the mixture was stirred for 7 hours, and then cooled to 0 ° C.
  • 167.4 g of 5% aqueous ammonia and 50.2 g of saturated brine were added to the organic layer and the layers were separated.
  • 167.4 g of 5% aqueous ammonia, 50.2 g of saturated brine, and 0.8 g of acetonitrile were added to the organic layer for liquid separation.
  • 167.4 g of 5% aqueous ammonia, 50.2 g of saturated brine, and 0.9 g of acetonitrile were added to the organic layer for liquid separation.
  • 167.4 g of 5% aqueous ammonia, 50.2 g of saturated brine, and 0.9 g of acetonitrile were added to the organic layer for liquid separation.
  • the mixture was cooled to 0 ° C., 3.1 mL of 2,2-dimethylbutyryl chloride was added at 0 to 10 ° C., and the mixture was stirred for 3 hours. Then, the reaction solution of H-Thi-OH was added dropwise, and the mixture was stirred for 1 hour and 30 minutes. The temperature was raised to room temperature, and after stirring for 7 hours, 12.5 g of 5% aqueous ammonia was added, and then 125.0 g of 5% potassium hydrogen carbonate and 251.0 g of isopropyl acetate were added to separate the liquids. The obtained organic layer was washed with 5% potassium hydrogencarbonate, 5% potassium sulfate aqueous layer, and water.
  • Synthesis example 2 Synthesis of Fmoc-Pro-Hyp (tBu) -OH 2.5 g of acetonitrile and 0.8 mL of N, O-bis (trimethylsilyl) acetamide were added to 0.31 g of H-Hyp (tBu) -OH and mixed. The temperature was raised to 55 ° C., the mixture was stirred for 2 hours, and then cooled to 0 ° C. In a separate container, 2.5 g of acetonitrile and 0.2 g of N, N-diisopropylethylamine were added to 0.5 g of Fmoc-Pro-OH and mixed.
  • Synthesis example 3 Synthesis of compound (11) To 0.30 g of compound (10), 2.6 g of acetonitrile and 0.5 mL of N, O-bis (trimethylsilyl) acetamide were added and mixed. The temperature was raised to 55 ° C., the mixture was stirred for 2 hours, and then cooled to 5 ° C. In a separate container, 2.7 g of acetonitrile and 0.3 g of N, N-diisopropylethylamine were added to 0.5 g of compound (9) and mixed.
  • the mixture was cooled to 0 ° C., 0.82 g of a 50 mass% isostearic chloride-toluene solution was added, and the mixture was stirred for 2 hours and 30 minutes. Then, the reaction solution of compound (10) was added dropwise, and the mixture was stirred for 1 hour and 30 minutes. After adding 5.5 g of 5% aqueous ammonia, 10.3 g of ethyl acetate was added to separate the liquids. The obtained organic layer was washed with 5% ammonia water and 5% potassium hydrogensulfate aqueous solution twice in order with 10% saline solution, and then the organic layer was concentrated and concentrated with full vacuum for a certain period of time.
  • Synthesis example 4 Synthesis of H-Arg (Pbf) -OTMSE 1) 3.0 g of Fmoc-Arg (Pbf) -OH and 45.1 g of methylene chloride were mixed and cooled to 0 ° C. Then, 1.8 mL of thionyl chloride was added dropwise. The temperature was raised to room temperature, the mixture was stirred for 2 hours, and then concentrated under reduced pressure at 40 ° C. or lower. Then, 45.2 g of methylene chloride was added, and the mixture was concentrated under reduced pressure at 40 ° C. or lower. Then, 46.9 g of methylene chloride was added, and the mixture was concentrated under reduced pressure at 40 ° C. or lower.
  • Synthesis example 5 Synthesis of H-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE 1) 30.0 g of acetonitrile and 6.6 mL of N, O-bis (trimethylsilyl) acetamide were added to 2.9 g of compound (10) and mixed. After stirring at 40 to 45 ° C. for 3 hours, the mixture was cooled to 0 ° C. In a separate container, 30.0 g of acetonitrile and 2.9 g of N, N-diisopropylethylamine were added to 6.0 g of compound (9) and mixed.
  • the obtained acetonitrile layer was washed twice with 30.0 g of n-heptane, and then 60.1 g of a 5% potassium hydrogensulfate aqueous solution and 120.9 g of isopropyl acetate were added to separate the layers.
  • the obtained organic layer was separated twice with a 5% aqueous potassium hydrogen carbonate solution with saturated brine.
  • the organic layer was concentrated under reduced pressure to obtain 10.0 g of compound (11) as a white solid.
  • the obtained organic layer was washed twice with 5% potassium hydrogen carbonate with saturated brine. After concentrating the organic layer under reduced pressure, 82.7 g of acetonitrile was added and the mixture was cooled to 0 ° C. 0.9 g of a 50 mass% isostearic chloride-toluene solution was added, and the mixture was stirred for 1 hour. Then, 41.5 g of n-heptane was added and the liquid was separated. 165.4 g of isopropyl acetate, 5% potassium hydrogencarbonate, was added to the obtained acetonitrile layer and the liquid was separated. The obtained organic layer was washed with water and concentrated under reduced pressure. Fmoc-D-Tic-Oic-Arg (Pbf) -OTMSE was obtained in 22.7 g as a yellow solid.
  • the insoluble material was removed by filtration, and the filtrate was washed with 25.2 g of isopropyl acetate.
  • the obtained filter washing liquid was separated.
  • the obtained organic layer was washed twice with a 5% aqueous potassium hydrogen sulfate solution and a 5% aqueous potassium hydrogen carbonate solution in the order of water.
  • the organic layer was concentrated under reduced pressure to obtain 29.0 g of Fmoc-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE.
  • Synthesis example 6 Synthesis of H-Arg (Pbf) -Pro-Hyp (TBS) -Gly-Th-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE 1) Fmoc-Pro-Hyp (TBS) -Gly-Thi-OH 10.28 g (1.3) in 10.0 g of H-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE synthesized in Synthesis Example 5. (Double molar amount), 150.0 g of methylene chloride and 4.0 g of N, N-diisopropylethylamine were added and mixed.
  • the obtained organic layer was washed twice with 10% potassium carbonate aqueous solution, 10% saline solution, 10% potassium hydrogensulfate aqueous solution and 10% saline solution in order, and then concentrated to concentrate, and Fmoc-Pro-Hyp (TBS)-. 19.5 g of Gly-Thi-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE was obtained.
  • the obtained aqueous layer was extracted with 177.2 g of ethyl acetate. All the organic layers were mixed, and 354.8 g of a 5% potassium hydrogensulfate aqueous solution was added to separate the liquids. The obtained organic layer was washed with 10% saline solution, 10% aqueous potassium hydrogen carbonate solution and 10% saline solution. The organic layer was concentrated at 40 ° C. or lower to obtain 15.5 g of H-Pro-Hyp (TBS) -Gly-Th-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE.
  • the organic layer was concentrated to about 46 g, 7.5 g of NH silica (Fuji Silysia Chemical Ltd.) was added, the mixture was stirred for 30 minutes, and the mixture was filtered. The filtrate was washed with a mixed solution of 644 mL of ethyl acetate and 129 mL of methanol. 7.7 g of NH silica (Fuji Silysia Chemical Ltd.) was added to the obtained lotion, and the mixture was stirred for 30 minutes and filtered. The filtrate was washed with a mixed solution of 750 mL of ethyl acetate and 150 mL of methanol.
  • the obtained lotion was concentrated to obtain 22.4 g of Fmoc-Arg (Pbf) -Pro-Hyp (TBS) -Gly-Th-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE. ..
  • Synthesis example 7 Synthesis of HD-Arg (Pbf) -Arg (Pbf) -Pro-Hyp (TBS) -Gly-Th-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE 1) H-Arg (Pbf) -Pro-Hyp (TBS) -Gly-Th-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE 18.4 g obtained in Synthesis Example 6 and Fmoc-D. -Arg (Pbf) -OH 8.1 g, methylene chloride 279.0 g, and N, N-diisopropylethylamine 3.7 g were added and mixed.
  • Synthesis example 8 Synthesis of compound (1) HD-Arg (Pbf) -Arg (Pbf) -Pro-Hyp (TBS) -Gly-Thi-Ser (tBu) -D-Tic-Oic-Arg (Pbf) -OTMSE14 obtained in Synthesis Example 7.
  • Add 9 g to 150 mL of a solution of trifluoroacetic acid: dithiothreitol; thioanisole: triisopropylsilane: water 82.5: 7.5: 5: 2.5: 2.5 (volume ratio) for 4 hours at room temperature. Stirred. This solution was added dropwise to 300 mL of diisopropyl ether at 7-10 ° C. After stirring at 10 to 19 ° C.
  • Synthesis example 9 Synthesis of compound (26) 200 mg of the compound (1) obtained in Synthesis Example 8 was dissolved in 2 mL of a 50% by volume acetic acid aqueous solution. 400 ⁇ l of this solution was fractionated under the following conditions, and fractions having an HPLC relative purity of 97% or more were recovered.
  • the number of steps in the synthesis of compound (1) has been reduced, the number of times the Pd reagent has been used, and the total mass yield has been improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、化合物(1)の工業的に適した新規な製造方法を提供する。 本発明は、化合物(13)(式中、P1は保護基を表す)を出発物質とし、N末端側にペプチド伸長反応を進めることを特徴とする、化合物(1)又はその塩の製造方法に関する。

Description

ペプチドの製造方法
 本発明は、ペプチドの製造方法に関する。
 式(1)で表されるペプチド(化合物(1))の酢酸塩は、遺伝性血管性浮腫(HAE)の急性発作治療薬として有用である(特許文献1)。
式(1)
Figure JPOXMLDOC01-appb-C000027
 化合物(1)の製造方法としては、複数の固相合成法が知られており(例えば、特許文献2)、さらに3つのフラグメントを用いた液相合成法が知られている(特許文献1)。
 また、ペプチド結合を形成した後、C末端カルボン酸がフリーのペプチドが得られる合成法が知られている(特許文献3)。さらに、C末端カルボン酸を2-(トリメチルシリル)エチル基で保護し、N末端方向にペプチドを伸長させる方法が知られている(非特許文献1)。
国際公開第2018/007930号 米国特許第5648333号 国際公開第2020/189621号
テトラへドロン レターズ、2004年、45巻、3585-3588頁
 本発明は、化合物(1)の新規な製造方法を提供する。
 固相合成法は、過剰の試薬や大量の溶媒を使用するため、工業的な生産には不向きである。また、特許文献1に記載の液相合成法では、各フラグメントを合成する際、C末端側のカルボン酸保護基を選択的に脱離させる工程が多数あり、それらの脱保護工程では、重金属であるパラジウムを使用している。医薬品製造の観点から、重金属の使用量は低減することが望ましい。
 本発明者らは鋭意検討した結果、C末端カルボン酸保護基の着脱を減らした、効率的な化合物(1)の新規製造方法を見出し、本発明を完成させた。すなわち本発明は、以下に関する。
[1]
 化合物(13)
Figure JPOXMLDOC01-appb-C000028

(式中、Pは保護基を表す)
を出発物質とし、N末端側にペプチド伸長反応を進めることを特徴とする、化合物(1)
Figure JPOXMLDOC01-appb-C000029

又はその塩の製造方法。
[2]
 化合物(13)を、縮合剤の存在下、化合物(11)
Figure JPOXMLDOC01-appb-C000030

と反応させ化合物(14)
Figure JPOXMLDOC01-appb-C000031

(式中、Pは保護基を表す)
へ誘導し、
さらにN末端保護基を脱保護した後、縮合剤の存在下、化合物(16)
Figure JPOXMLDOC01-appb-C000032

(式中、Pは保護基を表す)
と反応させ化合物(17)
Figure JPOXMLDOC01-appb-C000033

(式中、P及びPは前記と同様である)
へ誘導し、
さらにN末端保護基を脱保護した後、縮合剤の存在下、化合物(8)
Figure JPOXMLDOC01-appb-C000034

(式中、Pは保護基又は水素原子を表し、PはCbz基又はFmoc基を表す)
と反応させ化合物(19)
Figure JPOXMLDOC01-appb-C000035

(式中、P、P、P及びPは前記と同様である)
へ誘導し、
さらにN末端保護基を脱保護した後、縮合剤の存在下、化合物(12’)
Figure JPOXMLDOC01-appb-C000036

(式中、P1aは保護基を表す)
と反応させ化合物(21)
Figure JPOXMLDOC01-appb-C000037

(式中、P、P1a、P及びPは前記と同様である)
へ誘導し、
さらにN末端保護基を脱保護した後、縮合剤の存在下、化合物(23)
Figure JPOXMLDOC01-appb-C000038

(式中、P1bは保護基を表す)
と反応させ化合物(24)
Figure JPOXMLDOC01-appb-C000039

(式中、P、P1a、P1b、P及びPは前記と同様である)
へ誘導し、
さらに全ての保護基を脱保護する工程を含む、[1]に記載の製造方法。
[3]
 Pがt-ブチルジメチルシリル基又はトリイソプロピルシリル基である、[2]に記載の製造方法。
[4]
 Pがt-ブチルジメチルシリル基である、[2]に記載の製造方法。
[5]
 化合物(8)が下記工程1)乃至9):
1)化合物(2)
Figure JPOXMLDOC01-appb-C000040

(式中、PはCbz基又はFmoc基を表す)と活性化剤を混合する工程;
2)化合物(3)
Figure JPOXMLDOC01-appb-C000041

(式中、Pは保護基又は水素原子を表す)とシリル化剤を混合する工程;
3)工程1)で得られた生成物と工程2)で得られた生成物とを混合し、化合物(4)
Figure JPOXMLDOC01-appb-C000042

(式中、Pは前記と同様であり、Pは保護基又は水素原子を表す)
を得る工程;
4)工程3)で得られた化合物(4)と活性化剤を混合する工程;
5)化合物(5)
Figure JPOXMLDOC01-appb-C000043

とシリル化剤を混合する工程;
6)工程4)で得られた生成物と工程5)で得られた生成物とを混合し、化合物(6)
Figure JPOXMLDOC01-appb-C000044

(式中、P及びPは前記と同様である)
を得る工程;
7)工程6)で得られた化合物(6)と活性化剤を混合する工程;
8)化合物(7)
Figure JPOXMLDOC01-appb-C000045

とシリル化剤を混合する工程;
9)工程7)で得られた生成物と工程8)で得られた生成物とを混合し、化合物(8)を得る工程
で得られる化合物である、[2]に記載の製造方法。
[6]
 化合物(3)におけるPが水素原子である、[5]に記載の製造方法。
[7]
 化合物(4)及び(6)におけるPがt-ブチルジメチルシリル基又はトリイソプロピルシリル基である、[5]に記載の製造方法。
[8]
 化合物(4)及び(6)におけるPがt-ブチルジメチルシリル基である、[5]に記載の製造方法。
[9]
 工程2)、5)及び8)で使用するシリル化剤がトリメチルシリルクロリド、トリエチルシリルクロリド、t-ブチルジメチルシリルクロリド、トリイソプロピルシリルクロリド、N,O-ビス(トリメチルシリル)アセトアミド、トリイソプロピルシリルトリフラート又はN-(t-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミドである、[5]に記載の製造方法。
[10]
 工程2)で使用するシリル化剤がt-ブチルジメチルシリルクロリド又はN,O-ビス(トリメチルシリル)アセトアミドであり、工程5)及び8)で使用するシリル化剤がN,O-ビス(トリメチルシリル)アセトアミドである、[5]に記載の製造方法。
[11]
 化合物(11)が下記工程10)乃至12):
10)化合物(9)
Figure JPOXMLDOC01-appb-C000046

と活性化剤を混合する工程;
11)化合物(10)
Figure JPOXMLDOC01-appb-C000047

とシリル化剤を混合する工程;
12)工程10)で得られた生成物と工程11)で得られた生成物とを混合し、化合物(11)を得る工程
で得られる化合物である、[2]に記載の製造方法。
[12]
 シリル化剤がトリメチルシリルクロリド、トリエチルシリルクロリド、t-ブチルジメチルシリルクロリド、トリイソプロピルシリルクロリド、N,O-ビス(トリメチルシリル)アセトアミド、トリイソプロピルシリルトリフラート又はN-(t-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミドである、[11]に記載の製造方法。
[13]
 シリル化剤がN,O-ビス(トリメチルシリル)アセトアミドである、[11]に記載の製造方法。
[14]
 縮合剤がカルボジイミド系縮合剤又はウロニウム系縮合剤である、[2]乃至[13]の何れか1つに記載の製造方法。
[15]
 縮合剤が(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩又はN,N’-ジシクロヘキシルカルボジイミドである、[2]乃至[13]の何れか1つに記載の製造方法。
[16]
 活性化剤がクロロギ酸イソブチル、イソステアリン酸クロリド、イソステアリン酸ブロミド、2,2-ジメチルブチリルクロリド、1-アダマンタンカルボニルクロリド又は1,1’-カルボニルジイミダゾールである、[5]乃至[15]の何れか1つに記載の製造方法。
[17]
 活性化剤がイソステアリン酸クロリド又は2,2-ジメチルブチリルクロリドである、[5]乃至[15]の何れか1つに記載の製造方法。
[18]
 Pがt-ブチル基である、[2]乃至[17]の何れか1つに記載の製造方法。
[19]
 PがPbf基である、[1]乃至[18]の何れか1つに記載の製造方法。
[20]
 P1aがPbf基である、[2]乃至[19]の何れか1つに記載の製造方法。
[21]
 P1bがPbf基である、[2]乃至[20]の何れか1つに記載の製造方法。
[22]
 下記式
Figure JPOXMLDOC01-appb-C000048

(式中、Pはt-ブチルジメチルシリル基又はトリイソプロピルシリル基であり、PはCbz基又はFmoc基である)で表される化合物又はその塩。
[23]
 PがFmoc基である、[22]に記載の化合物又はその塩。
[24]
 Pがt-ブチルジメチルシリル基である、[22]又は[23]に記載の化合物又はその塩。
[25]
下記式
Figure JPOXMLDOC01-appb-C000049

(式中、PはFmoc基又は水素原子である)で表される化合物又はその塩。
[26]
下記式
Figure JPOXMLDOC01-appb-C000050

(式中、PはCbz基又は水素原子である)で表される化合物又はその塩。
[27]
下記式
Figure JPOXMLDOC01-appb-C000051

(式中、PはFmoc基又は水素原子である)で表される化合物又はその塩。
[28]
下記式
Figure JPOXMLDOC01-appb-C000052

(式中、PはFmoc基又は水素原子である)で表される化合物又はその塩。
[29]
下記式
Figure JPOXMLDOC01-appb-C000053

(式中、PはFmoc基又は水素原子である)で表される化合物又はその塩。
 本発明により、医薬品として有用な化合物(1)を効率的に得ることができる、工業的に適した新規な製造方法を提供することができた。
 以下、本発明について、詳細に説明する。
 本明細書における「n-」はノルマル、「s-」はセカンダリー、「t-」及び「tert-」はターシャリー、「i-」はイソ、「o-」はオルト、「m-」はメタ、「p-」はパラ、「Trt」はトリフェニルメチル(トリチル)、「Ms」はメタンスルホニル、「Bn」はベンジル、「Bu」はブチル、「Pr」はプロピル、「Ph」はフェニル、「Fmoc」は9-フルオレニルメチルオキシカルボニル、「TIPS」はトリイソプロピルシリル、「TBS」はt-ブチルジメチルシリル、「Pbf」は2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル、「Cbz」はベンジルオキシカルボニル、「TMSE」は2-(トリメチルシリル)エチルを意味する。
 本明細書における「%」は、特に記載がない限り質量%を表す。
 本明細書における「C末端」とは、アミノ酸又はペプチドのカルボキシ基で終端している側の末端である。
 本明細書における「N末端」とは、アミノ酸又はペプチドのアミノ基で終端している側の末端である。
 本明細書で使用する塩基は、反応を妨げない限り特に制限は無いが、その例としては、脂肪族アミン(例えば、ピペリジン、トリエチルアミン、N,N-ジイソプロピルエチルアミン、N-メチルモルホリン、ジエチルアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン)、芳香族アミン(例えば、ピリジン、イミダゾール、N,N-ジメチル-4-アミノピリジン)等が挙げられる。
 本明細書における「カチオンスカベンジャー」は、反応で形成される遊離カチオンと反応し、これによって遊離カチオンを除去する物質を意味する。カチオンスカベンジャーの例は、トリエチルシラン、トリフェニルシラン、トリイソプロピルシランなどの水素化シリル、エタンジチオールのようなチオール、メトキシチオフェノールのようなチオフェノール、フェノール、及びチオアニソールなどのスルフィドである。
 本明細書で用いるHPLC相対純度とは高速液体クロマトグラフィー中の検出されたピークの総面積を100%とし、下記で記した計算式(6)を用いて各ピークの比率を計算したものを表す。
HPLC相対純度(%)=目的物のピーク面積/ピークの総面積*100(式6)
 「N末端側にペプチド伸長反応を進める」とは、N末端アミノ基と、アミノ酸又はペプチドのカルボキシ基を縮合させ、得られたペプチドのN末端アミノ基に対して同様の操作を繰り返すことを意味する。
 本発明で使用する有機溶媒は、脂肪族炭化水素類(ヘキサン、ヘプタン等)、芳香族炭化水素類(ベンゼン、トルエン、キシレン等)、エーテル類(4-メチルテトラヒドロピラン、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、t-ブチルメチルエーテル、シクロペンチルメチルエーテル等)、ハロゲン化脂肪族炭化水素類(塩化メチレン、クロロホルム、ジクロロエタン等)、ニトリル類(アセトニトリル、プロピオニトリル等)、アミド類(N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等)、スルホキシド類(ジメチルスルホキシド等)、アルコール類(メタノール、エタノール等)、エステル類(酢酸エチル等)又はこれらの混合物を表す。
 本発明で使用する活性化剤は、非対称酸無水物の形成ができれば特に限定されない。具体例としては、クロロギ酸イソブチル、イソステアリン酸クロリド、イソステアリン酸ブロミド、2,2-ジメチルブチリルクロリド、1-アダマンタンカルボニルクロリド、1,1’-カルボニルジイミダゾール等が挙げられる。
 本発明で使用するシリル化剤は、カルボキシ基及び/又は水酸基の保護、加水分解(例えば、水を用いた分液操作)によるカルボキシ基の保護基の選択的脱保護が可能であれば特に限定されない。具体例としては、トリメチルシリルクロリド、トリエチルシリルクロリド、t-ブチルジメチルシリルクロリド、トリイソプロピルシリルクロリド、N,O-ビス(トリメチルシリル)アセトアミド、トリイソプロピルシリルトリフラート、N-(t-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミド等が挙げられる。加水分解は特に限定されないが、好ましくは酸加水分解である。
 本発明で使用する縮合剤は、特に制限は無い。カルボジイミド系縮合剤(例えば、N,N’-ジシクロヘキシルカルボジイミド、N,N’-ジイソプロピルカルボジイミド、1-エチル-3-ジメチルアミノプロピルカルボジイミド 塩酸塩)、クロロホルメート系縮合剤(例えば、クロロギ酸エチル、クロロギ酸イソブチル)、イミダゾール系縮合剤(例えば、1,1’-カルボニルジイミダゾール)、ホスホニウム系縮合剤(例えば、(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム ヘキサフルオロホスフェート(PyBOP(商標登録))、ブロモトリピロリジノホスホニウム ヘキサフルオロホスフェート(PyBrop(商標登録)))、ウロニウム系縮合剤(例えば、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボレート、1-[ビス(ジメチルアミノ)メチレン]-5-クロロ-1H-ベンゾトリアゾリウム3-オキシド ヘキサフルオロホスフェート、O-ベンゾトリアゾール-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロボレート、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩)等を使用することができる。
 本明細書で使用する添加剤は、反応を妨げない限り特に制限は無いが、例えば、N,N-ジメチル-4-アミノピリジン(DMAP)、1-ヒドロキシベンゾトリアゾール(HOBt)、1-ヒドロキシ-1H-1,2,3-トリアゾール-5-カルボン酸エチルエステル(HOCt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)、(ヒドロキシイミノ)シアノ酢酸エチル(OxymaPure)等が挙げられる。
 本明細書における「塩」とは、酸由来の陰イオン(アニオン)と塩基由来の陽イオン(カチオン)とがイオン結合した化合物を意味し、好ましくは塩酸塩、リン酸塩、硫酸塩、トリフルオロ酢酸塩、酢酸塩であり、より好ましくは酢酸塩である。
 例えば、化合物(1)の塩の製造方法は、化合物(1)を原料とし、当業者に周知の方法を用いることができる。一つの態様として、化合物(1)と酸を溶媒中で混合し、必要に応じ精製することで、化合物(1)の塩を得ることができる。具体例としては、特許文献1に記載の方法により酢酸塩を得ることができる。したがって、化合物(1)を製造することができれば、当業者は化合物(1)の塩も製造できる。一つの態様として、化合物(1)の製造方法は、当業者にとって化合物(1)及びその塩の製造方法に等しい概念である。本明細書に開示された化合物(1)の原料化合物及び中間体化合物も同様である。
 本明細書における「P」、「P1a」、「P1b」、「P」、「P」で表される保護基は、ペプチド化学等の技術分野で一般的に用いられる保護基(例えば、T.W.Greene「Greene’s Protective Groups in Organic Synthesis」、ジョン・ウィリー&ソンズ社(2006年)など参照)を表す。
 本発明の製造方法における、官能基の保護及び脱保護は、ペプチド化学等の技術分野で一般的に用いられる保護・脱保護反応(例えば、T.W.Greene「Greene’s Protective Groups in Organic Synthesis」、ジョン・ウィリー&ソンズ社(2006年)など参照)を行うことにより実施することができる。
 本明細書で用いるすべての技術用語及び科学用語は、本発明が属する技術分野の当業者に一般に理解されるのと同じ意味をもつ。
 以下、本発明の反応について詳細に説明する。
 一つの態様として、本発明は、以下のスキームで表される。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
(式中、P、P、P1a、P1bは保護基を表し、Pは保護基又は水素原子を表し、PはFmoc基又はCbz基を表す。)
 各化合物の一般式の表記は以下の通りである。
化合物(2):P-Pro-OH
化合物(3):H-Hyp(P)-OH
化合物(4):P-Pro-Hyp(P)-OH
化合物(5):H-Gly-OH
化合物(6):P-Pro-Hyp(P)-Gly-OH
化合物(7):H-Thi-OH
化合物(8)(フラグメント1):P-Pro-Hyp(P)-Gly-Thi-OH
化合物(9):Fmoc-D-Tic-OH
化合物(10):H-Oic-OH
化合物(11)(フラグメント2):Fmoc-D-Tic-Oic-OH
化合物(12):Fmoc-Arg(P)-OH
化合物(12’):Fmoc-Arg(P1a)-OH
化合物(13):H-Arg(P)-OTMSE
化合物(14):Fmoc-D-Tic-Oic-Arg(P)-OTMSE
化合物(15):H-D-Tic-Oic-Arg(P)-OTMSE
化合物(16):Cbz-Ser(P)-OH
化合物(17):Cbz-Ser(P)-D-Tic-Oic-Arg(P)-OTMSE
化合物(18):H-Ser(P)-D-Tic-Oic-Arg(P)-OTMSE
化合物(19):Fmoc-Pro-Hyp(P)-Gly-Thi-Ser(P)-D-Tic-Oic-Arg(P)-OTMSE
化合物(20):H-Pro-Hyp(P)-Gly-Thi-Ser(P)-D-Tic-Oic-Arg(P)-OTMSE
化合物(21):Fmoc-Arg(P1a)-Pro-Hyp(P)-Gly-Thi-Ser(P)-D-Tic-Oic-Arg(P)-OTMSE
化合物(22):H-Arg(P1a)-Pro-Hyp(P)-Gly-Thi-Ser(P)-D-Tic-Oic-Arg(P)-OTMSE
化合物(23):Fmoc-D-Arg(P1b)-OH
化合物(24):Fmoc-D-Arg(P1b)-Arg(P1a)-Pro-Hyp(P)-Gly-Thi-Ser(P)-D-Tic-Oic-Arg(P)-OTMSE
化合物(25):H-D-Arg(P)-Arg(P)-Pro-Hyp(P)-Gly-Thi-Ser(P)-D-Tic-Oic-Arg(P)-OTMSE
化合物(1):H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-OH
化合物(27):Fmoc-Arg(P)-OTMSE
 本説明において、各種のアミノ酸を三文字の略号で記載することがある。これら三文字の略号は当業者に良く知られており、例えばアミノ酸の側鎖が保護基で保護されている場合の記載についても当業者に周知である。
 三文字の略号の例としては、以下が挙げられる。
Pro:プロリン
Gly:グリシン
Arg:アルギニン
Ser:セリン
Hyp:ヒドロキシプロリン
Thi:チエニルアラニン
Tic:1,2,3,4-テトラヒドロイソキノリン-3-カルボン酸
Oic:(3aS,7aS)-オクタヒドロインドリル-2-カルボン酸
 なお本明細書において、特に断りのない限り、アミノ酸はL-体のアミノ酸を意味する。一方、略号の前にD-が付されている場合(例えば、D-Arg)、D-体のアミノ酸を意味する。三文字の略号をハイフンでつないでペプチドの構造を記載することも、当業者に良く知られている。参考として具体的な例を以下に挙げる。
Fmoc-Pro-OH:N末端がFmoc基で保護され、C末端がフリーのカルボン酸であるプロリン
-Gly-:分子の部分構造としてのグリシン(-NH-CH-C(=O)-)
-Arg(P)-:分子中の部分構造としてのアルギニン。ただし側鎖が保護基Pで保護されている。
 次に、各化合物の製造方法について説明する。
 一つの態様として、本発明は、アルギニンのC末端を、本発明に特徴的なC末端保護基で保護することを特徴とする化合物(1)の製造方法である。
 一つの態様として、本発明は、アルギニンのC末端を、本発明に特徴的なC末端保護基で保護した化合物を出発原料とし、N末端側にペプチド伸長反応を進めることを特徴とする、化合物(1)の製造方法である。
 一つの態様として、本発明は、化合物(13)を出発物質とし、N末端側にペプチド伸長反応を進めることを特徴とする、化合物(1)の製造方法である。
 一つの態様として、本発明は、化合物(13)を出発物質とし、N末端側に複数回ペプチド伸長反応を進めることを特徴とする、化合物(1)の製造方法である。
 化合物(1)の製造において、N末端側にペプチド伸長を繰り返すことにより、化合物(25)が生成する。化合物(25)は、化合物(1)と同じアミノ酸配列を有し、そのC末端が本発明に特徴的なC末端保護基で保護された化合物である。化合物(25)を製造し、C末端の保護基を脱保護し、塩化することにより医薬品である化合物(26)が製造される。一つの態様として、化合物(25)は、化合物(1)の核心的な製造中間体といえる。一つの態様として、本発明は、化合物(25)の製造方法である。また、一つの態様として、本発明は、化合物(25)を経由することによる、化合物(1)の製造方法である。
 化合物(1)は、化合物(26)の遊離酸である。化合物(26)は、化合物(1)の酢酸塩である。化合物(1)は、化合物(26)と同じアミノ酸配列を有し、化合物(1)を製造し、塩化することにより医薬品である化合物(26)が製造される。一つの態様として、化合物(1)は、化合物(26)の核心的な製造中間体といえる。一つの態様として、本発明は、化合物(1)の製造方法である。また、一つの態様として、本発明は、化合物(1)を経由することによる、化合物(26)の製造方法である。
 また、一つの態様として、医薬品である化合物(26)は、医薬品として生体内に投与されたのち、化合物(1)として、その薬理作用を発揮する。一つの態様として、化合物(1)は、化合物(26)の等価体といえる。化合物(1)は、酢酸塩以外の塩や、溶媒和物などに変換されたとしても、その本質的な効果を発揮しうる。したがって、一つの態様として、本発明は、化合物(1)の塩又は溶媒和物の製造方法である。
 一つの態様として、N末端側へのペプチド伸長反応は、以下の工程I)、工程II)によって構成される。
 工程I)縮合工程
 本発明に特徴的なC末端保護基で保護した化合物と、N末端を保護基で保護した化合物とを、縮合剤の存在下、縮合させる工程。
 工程II)脱保護工程
 工程I)の生成物のN末端の保護基を脱保護する工程。
 工程II)の生成物は、C末端が本発明に特徴的なC末端保護基で保護され、かつN末端がフリーの化合物である。したがって、工程II)の生成物は、次のN末端側へのペプチド伸長反応の原料となりうる化合物であり、工程I)と工程II)を繰り返すことで、N末端伸長反応を進めることができる。
 本発明に特徴的なC末端保護基で保護した化合物とは、当該保護基で保護されており、化合物(1)又は(26)の製造の中間体となりうる限り限定されないが、好ましくは本発明に特徴的なC末端保護基で保護したアミノ酸又はペプチドであり、より好ましくは、化合物(13)乃至(15)、(17)乃至(22)、(24)乃至(25)である。
 工程I)は、より具体的には、後述の工程(G)、(I)、(K)、(M)、(O)である。各工程の好ましい条件については、後述される。工程I)の出発原料となる化合物は、より具体的には、化合物(13)、(15)、(18)、(20)、(22)である。
 工程II)は、より具体的には、後述の工程(F)、(H)、(J)、(L)、(N)、(P)である。各工程の好ましい条件については、後述される。工程II)の出発原料となる化合物は、より具体的には、化合物(27)、(14)、(17)、(19)、(21)、(24)である。
 化合物(8)は、工程(A)乃至(C)を経ることにより製造することができる。
 工程(A):工程i)乃至iv)で構成される。 
工程i)化合物(2)に有機溶媒と塩基を加えた後、-10~0℃へ冷却し、活性化剤により非対称酸無水物へと誘導する。Pは保護基であり、好ましくはFmoc基又はCbz基であり、より好ましくはFmoc基である。
工程ii)化合物(3)に有機溶媒とシリル化剤を混合させてカルボキシ基及び/又は水酸基の保護を行う。必要に応じて塩基を加えてもよい。
工程iii)工程i)で得られた生成物と工程ii)で得られた生成物を反応させ、ペプチドを合成する。
工程iv)反応終了後、水又は酸性水溶液を用いた分液操作により、カルボキシ基のシリル保護基のみを脱保護することで、化合物(4)が得られる。Pが保護基の場合、特に限定されないが、好ましくはt-ブチルジメチルシリル基である。
 本工程で用いる有機溶媒は、反応を妨げない限り特に限定されないが、好ましくはアセトニトリル、テトラヒドロフラン又は4-メチルテトラヒドロピランである。本工程で用いる塩基は、反応を妨げない限り特に限定されないが、好ましくはN,N-ジイソプロピルエチルアミンである。
 本工程で用いる活性化剤は、好ましくはイソステアリン酸クロリドである。
 本工程で用いるシリル化剤は、好ましくはN,O-ビス(トリメチルシリル)アセトアミド又はt-ブチルジメチルシリルクロリドである。
 工程(B):工程(A)における化合物(2)を化合物(4)に、化合物(3)を化合物(5)にそれぞれ置き換え、工程(A)と同様の操作を行うことで、化合物(6)が得られる。
 本工程で用いる有機溶媒及び塩基の好ましい例は、工程(A)と同じである。
 本工程で用いる活性化剤は、好ましくは2,2-ジメチルブチリルクロリドである。
 本工程で用いるシリル化剤は、好ましくはN,O-ビス(トリメチルシリル)アセトアミドである。
 工程(C):工程(A)における化合物(2)を化合物(6)に、化合物(3)を化合物(7)にそれぞれ置き換え、工程(A)と同様の操作を行うことで、化合物(8)が得られる。
 本工程で用いる有機溶媒、塩基、活性化剤及びシリル化剤の好ましい例は、工程(B)と同じである。
 化合物(11)は、工程(D)を経ることにより製造することができる。
 工程(D):工程(A)における化合物(2)を化合物(9)に、化合物(3)を化合物(10)にそれぞれ置き換え、工程(A)と同様の操作を行うことで、化合物(11)が得られる。
 本工程で用いる有機溶媒、塩基及び活性化剤の好ましい例は、工程(A)と同じであり、シリル化剤の好ましい例は、工程(B)と同じである。
 化合物(13)は、工程(E)、(F)を経ることにより製造することができる。
 工程(E):化合物(12)のカルボキシ基の保護反応を行い、化合物(27)を得る工程である。Pは好ましくはPbf基であるが、これに限定されない。
 工程(F):化合物(27)に溶媒、塩基を加え0~40℃で反応させ、化合物(13)を得る工程である。本工程で用いる有機溶媒は、特に好ましくは塩化メチレン又はシクロペンチルメチルエーテルである。本工程で用いる塩基は、より好ましくはジエチルアミンである。
 次に化合物(8)及び化合物(11)を用いた化合物(1)の製造方法について説明する。
 工程(G):化合物(11)と化合物(13)に有機溶媒、塩基を加え、-10~5℃へ冷却した。その後、縮合剤を加えて反応させ、化合物(14)を得る。場合によっては添加剤を添加しても良い。本工程で使用する化合物(13)の当量に特に制限はないが、好ましくは化合物(11)の1.0~2.0倍であり、より好ましくは1.15倍である。本工程で用いる有機溶媒は、特に好ましくは塩化メチレンである。本工程で用いる塩基は反応を妨げない限り特に限定されないが、好ましくはN,N-ジイソプロピルエチルアミンである。
 本工程で使用する縮合剤は、特に好ましいのは(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩である。
 工程(H):工程(F)における化合物(27)を化合物(14)に置き換え、工程(F)と同様の操作を行うことで、化合物(15)が得られる。本工程で用いる有機溶媒、塩基は、工程(F)と同じである。
 工程(I):化合物(15)と化合物(16)(化合物(15)に対し2倍モル量)に有機溶媒を加え、-10~5℃へ冷却した。その後、縮合剤を加えて反応させ、化合物(17)を得る。場合によっては添加剤を添加しても良い。Pは、好ましくはt-ブチル基であるが、これに限定されない。本工程で用いる有機溶媒は、好ましくはN-メチル-2-ピロリドンである。本工程で使用する縮合剤は、好ましくはN,N’-ジシクロヘキシルカルボジイミドである。
 工程(J):化合物(17)に有機溶媒、パラジウム炭素を加え、水素雰囲気下、20~40℃で反応させ、化合物(18)を得る。本工程で用いる有機溶媒は、好ましくはトリフルオロエタノールである。本工程で用いるパラジウム炭素は反応が進行する限り特に限定されないが、好ましくは10%パラジウム炭素(PEタイプ:エヌ・イー ケムキャット社)である。本工程で使用するパラジウム炭素の量は反応が進行する限り特に制限はないが、好ましくは化合物(17)の0.001~1質量倍であり、より好ましくは0.01~0.5質量倍であり、特に好ましくは0.05~0.2質量倍である。
 工程(K):工程(G)における化合物(11)を化合物(8)に、化合物(13)を化合物(18)にそれぞれ置き換え、工程(G)と同様の操作を行うことで、化合物(19)が得られる。本工程で用いる有機溶媒、塩基、縮合剤は、工程(G)と同じである。
 工程(L):化合物(19)に溶媒、塩基を加え-10~30℃で反応させ、化合物(20)を得る。本工程で用いる有機溶媒は、好ましくはジメチルホルムアミドである。本工程で用いる塩基は、好ましくはピペリジンである。
 工程(M):工程(G)における化合物(11)を化合物(12’)に、化合物(13)を化合物(20)にそれぞれ置き換え、工程(G)と同様の操作を行うことで、化合物(21)が得られる。本工程で用いる有機溶媒、塩基、縮合剤は、工程(G)と同じである。
 工程(N):工程(L)における化合物(19)を化合物(21)に置き換え、工程(L)と同様の操作を行うことで、化合物(22)が得られる。本工程で用いる有機溶媒、塩基は、工程(L)と同じである。
 工程(O):工程(G)における化合物(11)を化合物(23)に、化合物(13)を化合物(22)にそれぞれ置き換え、工程(G)と同様の操作を行うことで、化合物(24)が得られる。本工程で用いる有機溶媒、塩基、縮合剤は、工程(G)と同じである
 工程(P):工程(L)における化合物(19)を化合物(24)に置き換え、工程(L)と同様の操作を行うことで、化合物(25)が得られる。本工程で用いる有機溶媒、塩基は、工程(L)と同じである。
 工程(Q):化合物(25)にトリフルオロ酢酸、水、カチオンスカベンジャーの混合液を加え、室温で撹拌し、脱保護反応を行う。反応後、反応液を貧溶媒に滴下し、化合物(1)を固体として得る。カチオンスカベンジャーは複数を組み合わせても良い。本工程で用いるカチオンスカベンジャーは、好ましくはチオアニソール、ジチオトレイトール、トリイソプロピルシランである。本工程で用いるトリフルオロ酢酸、水、カチオンスカベンジャーの比率は反応を妨げない限り特に制限はないが、好ましくはトリフルオロ酢酸:水:ジチオトレイトール;チオアニソール:トリイソプロピルシラン=82.5:7.5:5:2.5:2.5(体積比)である。本工程で用いる貧溶媒は固体の析出を妨げない限り、特に制限はないが、好ましくは脂肪族炭化水素類(ヘキサン、ヘプタン等)、芳香族炭化水素類(ベンゼン、トルエン、キシレン等)、エーテル類(4-メチルテトラヒドロピラン、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、t-ブチルメチルエーテル、シクロペンチルメチルエーテル等)であり、より好ましくはエーテル類である。特に好ましくはジイソプロピルエーテルである。
 工程(R):化合物(1)を50%酢酸水溶液に溶解し、HPLC分取により精製し、HPLC相対純度97%以上のフラクションを回収する。回収したフラクションを水でアセトニトリルの濃度が5%以下になるまで希釈し、ODSシリカゲルに通液する。10mM酢酸アンモニウム水溶液、酢酸水溶液を通液し、酢酸塩とする。その後、酢酸を含むアセトニトリルと水で固体を溶出させ、凍結乾燥により化合物(26)を得る。HPLC分取による精製及び酢酸塩化方法は先行技術文献を参考にできる。
 以下に参考合成例、合成例、比較例を示し、本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 本明細書において、アミノ酸等を略号で表示する場合、各表示は、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものである。
 実施例中、「M」はmol/Lを意味する。
<分析条件1>
高速液体クロマトグラフィー:SHIMADZU製HPLC
カラム:Agilent社製 InfinityLab Poroshell 120 EC-C18(1.9μm、2.1×50mm)
カラムオーブン温度:40℃
溶離液:A:10mM酢酸アンモニウム水溶液
    B:アセトニトリル 
A/B:90/10(0-1分)、90/10-5/95(1-3分)、5/95(3-5分)(体積比)
溶離液速度:0.5mL/分
検出波長:210nm
<分析条件2>
高速液体クロマトグラフィー:SHIMADZU製HPLC
カラム:Waters製Xbrige BEH C18(2.5μm、4.6×100mm)
カラムオーブン温度:40℃
溶離液:A:0.025体積%トリフルオロ酢酸水溶液
B:0.025体積%トリフルオロ酢酸-アセトニトリル
A/B:90/10(0-2分)、90/10-5/95(2-35分)、5/95(35-40分)(体積比)
溶離液速度:1.0mL/分
検出波長:210nm
<分析条件3>
高速液体クロマトグラフィー:SHIMADZU製HPLC
カラム:Waters製Xbrige BEH C18(2.5μm、4.6×100mm)
カラムオーブン温度:40℃
溶離液:A:0.025体積%トリフルオロ酢酸水溶液
B:0.025体積%トリフルオロ酢酸-アセトニトリル
A/B:70/30(0-2分)、70/30-5/95(2-35分)、5/95(35-40分)(体積比)
溶離液速度:1.0mL/分
検出波長:210nm
<分析条件4>
高速液体クロマトグラフィー:SHIMADZU製HPLC
カラム:YMC-Pack Pro C18(3μm、3.0×150mm)
カラムオーブン温度:40℃
溶離液:A:0.025体積%トリフルオロ酢酸水溶液
B:0.025体積%トリフルオロ酢酸-アセトニトリル
A/B:90/10-70/30(0-40分)、70/30-5/95(40.1分)5/95(40.1-50分)(体積比)
溶離液速度:1.0mL/分
検出波長:210nm
参考合成例1
イソステアリン酸クロリドの合成
Figure JPOXMLDOC01-appb-C000057

 イソステアリン酸50.0gにトルエン50.1g、ジメチルホルムアミド0.4g加え、混合した。窒素雰囲気下、塩化チオニル23.0gを室温で35分かけて滴下した。2時間撹拌した後、減圧濃縮し、69.2gとした。トルエン100.4g加え、減圧濃縮し、70.7gとした。トルエン102,1gを加え、減圧濃縮し、73.9gとした。この溶液にトルエンを加え、106.7gとした。これを50質量%イソステアリン酸クロリド-トルエン溶液とした。
参考合成例2
イソステアリン酸ブロミドの合成
Figure JPOXMLDOC01-appb-C000058

 塩化メチレン25mLにトリフェニルホスフィン6.9gを加えて混合した。窒素雰囲気下、0℃へ冷却し、臭素4.2gを滴下した。10分撹拌した後、イソステアリン酸5.0gを塩化メチレン25mLで溶かした溶液を滴下した。滴下後、室温に昇温し、1時間45分撹拌した。その後、濃縮を行い、フルバキュームで一定時間濃縮した。n-ヘキサン50mLを加え、不溶物を窒素雰囲気下、ろ過した。ろ過物をn-ヘキサン50mLで洗浄し、得られたろ洗液を濃縮し、6.0gとした。これにトルエンを6.0g加えたものを、50質量%イソステアリン酸ブロミド-トルエン溶液とした。
参考合成例3
Fmoc-Glu(OtBu)-Tyr(TBS)-OHの合成
Figure JPOXMLDOC01-appb-C000059

 H-Tyr-OH0.28gにアセトニトリル5.0g、N,N-ジイソプロピルエチルアミン1.1g加えた後、t-ブチルジメチルシリルクロリド0.9gを加え混合した。60℃へ昇温し、7時間撹拌した後、45℃へ冷却し、15時間撹拌した。その後、60℃で5時間撹拌し0℃へ冷却した。別容器にてFmoc-Glu(OtBu)-OH0.5gに4-メチルテトラヒドロピラン5.1gを加え、混合した。0℃へ冷却し、N,N-ジイソプロピルエチルアミン0.2gを加えた後、50質量%イソステアリン酸ブロミド-トルエン溶液1.0gを加え、1時間撹拌した。その後、H-Tyr-OHの反応溶液を滴下し、1時間撹拌した。10%リン酸水素カリウム水溶液5.0gを加え分液した。得られた有機層を10%リン酸水素カリウム水溶液、水で洗浄した。有機層を濃縮した後、フルバキュームで一定時間濃縮した。その後、n-ヘプタン5.0g、アセトニトリル5.0gを加え、分液した。得られたアセトニトリル層をn-ヘプタン5.0gで洗浄し、濃縮した。表題化合物を0.8g、質量収率100%、HPLC相対純度97.2%<分析条件3>で得た。
MASS(ESI+)m/z;703(M+H)
参考合成例4
Fmoc-Cys(Trt)-Thr(TBS)-OHの合成
Figure JPOXMLDOC01-appb-C000060

 H-Thr-OH0.15gにアセトニトリル2.5g、N,N-ジイソプロピルエチルアミン0.66g加えた後、t-ブチルジメチルシリルクロリド0.64gを加え混合した。65℃へ昇温し、8時間撹拌した後、25℃へ冷却し、16時間撹拌した。その後、t-ブチルジメチルシリルクロリド21mgを加え、30分撹拌した。別容器にてFmoc-Cys(Trt)-OH0.5gに4-メチルテトラヒドロピラン5.1gを加え、混合した。0℃へ冷却し、N,N-ジイソプロピルエチルアミン0.16gを加えた後、50質量%イソステアリン酸ブロミド-トルエン溶液0.71gを加え、1時間40分撹拌した。その後、H-Thr-OHの反応溶液を滴下し、2時間撹拌した。飽和塩化アンモニウム水溶液5.0gを加え分液した。得られた有機層を5%アンモニア水で3回、飽和塩化アンモニウム水溶液、水で順に洗浄した。有機層を濃縮した後、フルバキュームで一定時間濃縮した。その後、アセトニトリルとn-ヘプタンを加え分液した。得られたアセトニトリル層をn-ヘプタンで洗浄し、濃縮し、0.79gとした。これを0.58g量り取り、酢酸エチルと10%リン酸二水素カリウム水溶液を加え分液した。得られた有機層を10%リン酸二水素カリウム水溶液、水で洗浄し、濃縮した。表題化合物を0.51g、質量収率100%、HPLC相対純度94.6%<分析条件3>で得た。
MASS(ESI+)m/z;799(M-H)
参考合成例5
Fmoc-Pro-Hyp-Gly-Thi-OHの合成
Figure JPOXMLDOC01-appb-C000061

 Fmoc-Pro-Hyp(TBS)-Gly-Thi-OH0.80gにテトラヒドロフラン/水=3.7/1(体積比)8.0gを加えた。4M-塩化水素/1,4-ジオキサン1.5mLを加え、室温で1時間30分撹拌した。その後濃縮を行い、テトラヒドロフランと10%食塩水を加えた。分液を行い、得られた水層をテトラヒドロフランで抽出した。全ての有機層を混合し濃縮を行った。その後、テトラヒドロフランを加え、超音波で処理し、固体を析出させた。ろ過を行い、得られたろ過物をイソプロピルエーテルで洗浄し、30℃で減圧乾燥した。Fmoc-Pro-Hyp-Gly-Thi-OHを343.7mg得た。また、ろ洗液を濃縮した後、テトラヒドロフランを加え、超音波で処理し、固体を析出させた。ろ過を行い、得られたろ過物をイソプロピルエーテルで洗浄し、30℃で減圧乾燥した。Fmoc-Pro-Hyp-Gly-Thi-OHを246.2mg得た。得られたFmoc-Pro-Hyp-Gly-Thi-OHを混合し、589.9mg、質量収率87%で得た。
MASS(ESI+)m/z;661(M+H)
参考合成例6
H-Arg(Pbf)-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEの合成
Figure JPOXMLDOC01-appb-C000062

1)Fmoc-Pro-Hyp-Gly-Thi-OH0.18g、H-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE0.23gにジメチルホルムアミド3.4g、N,N-ジイソプロピルエチルアミン90mgを加え、-13℃へ冷却した。(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩198mgを加えた。2時間撹拌した後、5%アンモニア水溶液2.3g、酢酸イソプロピル2.3gを加え分液した。得られた水層を酢酸イソプルピル2.3gで抽出した。全ての有機層を混合し、5%アンモニア水溶液、10%硫酸水素カリウム水溶液、10%食塩水で洗浄した。その後、10%硫酸水素カリウム水溶液、10%食塩水で2回洗浄した。有機層の濃縮を行い、Fmoc-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEを360mg、質量収率96%で得た。
MASS(ESI+)m/z;1622.7(M+H)
2)Fmoc-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE0.43gにジメチルホルムアミド5.5gを加えた。-12℃に冷却した後、ピペリジン130μlを加え、15時間30分撹拌した。その後、10%硫酸水素カリウム、酢酸エチルを加え、室温で分液した。得られた水層を酢酸エチルで抽出した。全ての有機層を混合し、5%硫酸水素カリウム水溶液、10%食塩水で洗浄した。有機層の濃縮を行い、H-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEを394mgで得た。
MASS(ESI+)m/z;1400.7(M+H)
3)上記2)で得られたH-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE0.35gにFmoc-Arg(Pbf)-OH0.19g、ジメチルホルムアミド5.2g、N,N-ジイソプロピルエチルアミン112mgを加えた。0℃へ冷却し、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩212mgを加えた。2時間30分撹拌した後、5%アンモニア水、酢酸エチルを加え分液した。得られた水層を酢酸エチルで抽出し、全ての有機層を混合した。有機層を10%硫酸水素カリウム、10%食塩水で洗浄した。有機層の濃縮を行い、Fmoc-Arg(Pbf)-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEを538mgで得た。
MASS(ESI+)m/z;2030.9(M+H)
4)上記3)で得られたFmoc-Arg(Pbf)-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE503mgにジメチルホルムアミド7mLを加えた。0℃へ冷却し、ピペリジン122μlを加え1時間撹拌した。10%硫酸水素カリウム5.0g、酢酸エチル7.6gを加えて分液した。水層を酢酸エチル5.0gで抽出し、全ての有機層を混合した。有機層を10%硫酸水素カリウム、10%食塩水で洗浄した。得られた有機層を濃縮し、374mgとした。これにアセトニトリルを加え、溶解させた後、酢酸イソプロピルを加え固体を析出させた。ろ過を行い、ろ過物とろ液に分離した。得られたろ液を濃縮し、酢酸イソプロピルを加え、固体を析出させた。ろ過を行い、ろ過物とろ液に分離し、得られた全てのろ過物を混合し、30℃で減圧乾燥した。表題化合物を232mg、質量収率55%で得た。
MASS(ESI+)m/z;904.9(M+2H)
参考合成例7
H-D-Arg(Pbf)-Arg(Pbf)-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEの合成
Figure JPOXMLDOC01-appb-C000063

 H-Arg(Pbf)-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE218mgにFmoc-D-Arg(Pbf)-OH94mg、ジメチルホルムアミド3.3g、N,N-ジイソプロピルエチルアミン39mgを加え、混合した。5℃へ冷却し、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩104mgを加えた。1時間30分撹拌した後、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩24mgを加えた。30分撹拌した後、5%アンモニア水2.2g、酢酸エチル2.2g、水7mLを加え分液した。得られた水層を酢酸エチルで抽出した。全ての有機層を混合し、10%硫酸水素カリウム、10%食塩水で洗浄した。濃縮を行い、Fmoc-D-Arg(Pbf)-Arg(Pbf)-Pro-Hyp-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEを346mg得た。
MASS(ESI+)m/z;2439.1(M+H)
合成例1
Fmoc-Pro-Hyp(TBS)-Gly-Thi-OHの合成
Figure JPOXMLDOC01-appb-C000064

1)H-Hyp-OH5.44gにアセトニトリル100.1g、N,N-ジイソプロピルエチルアミン15.3g加えた後、t-ブチルジメチルシリルクロリド14.8gを加え混合した。60~65℃へ昇温し、7時間撹拌した後、0℃へ冷却した。別容器にてFmoc-Pro-OH10.0gにアセトニトリル51.0g、N,N-ジイソプロピルエチルアミン5.0gを加え混合した。0℃へ冷却し、50質量%イソステアリン酸クロリド-トルエン溶液21.4gを加え、3時間撹拌した。その後、H-Hyp-OHの反応溶液を滴下し、1時間30分撹拌した。5%アンモニア水10.0gを加えた後、5%硫酸水素カリウム30.3g、n-ヘプタン50.0gを加え分液した。得られたアセトニトリル層をn-ヘプタン50gで4回洗浄した。その後、5%炭酸水素カリウム100.0g、酢酸イソプロピル200.1gを加え分液した。得られた有機層を10%硫酸水素カリウム、水で洗浄した。有機層を減圧濃縮し、Fmoc-Pro-Hyp(TBS)-OHを19.2g得た。質量収率114%。
MASS(ESI+)m/z;565(M+H)
2)化合物(5)3.34gにアセトニトリル83.7gを加え混合した。65℃へ昇温し、N,O-ビス(トリメチルシリル)アセトアミド21.8mL加え、2時間40分撹拌した後、0℃へ冷却した。別容器にて1)で合成したFmoc-Pro-Hyp(TBS)-OH19.2gにアセトニトリル83.7g、N,N-ジイソプロピルエチルアミン5.0gを加え混合した。0℃へ冷却し、2,2-ジメチルブチリルクロリド4.4gを加え、3時間撹拌した。その後、H-Gly-OHの反応溶液を滴下し、1時間30分撹拌した。5%アンモニア水16.7gを加えた後、5%硫酸水素カリウム167.6g、t-ブチルメチルエーテル335.0gを加え分液した。得られた有機層に5%アンモニア水167.4g、飽和食塩水50.7gを加え分液した。有機層に5%アンモニア水167.4g、飽和食塩水50.2gを加えて分液した。有機層に5%アンモニア水167.4g、飽和食塩水50.2g、アセトニトリル0.8gを加えて分液した。有機層に5%アンモニア水167.4g、飽和食塩水50.2g、アセトニトリル0.9gを加えて分液した。有機層に5%アンモニア水167.4g、飽和食塩水50.2g、アセトニトリル0.9gを加えて分液した。有機層に5%アンモニア水169.4g、飽和食塩水50.2g、アセトニトリル0.9gを加えて分液した。有機層に5%アンモニア水167.4g、飽和食塩水50.2g、アセトニトリル0.9gを加えて分液した。得られた有機層を5%硫酸水層カリウム、飽和食塩水で洗浄した。有機層を減圧濃縮し、Fmoc-Pro-Hyp(TBS)-Gly-OHを22.6g得た。質量収率103%(2工程収率)。
MASS(ESI+)m/z;622(M+H)
3)化合物(7)4.5gにテトラヒドロフラン62.5gを加え混合した。40℃へ昇温し、N,O-ビス(トリメチルシリル)アセトアミド16mL加え、2時間30分撹拌した後、室温へ冷却した。別容器にて2)で合成したFmoc-Pro-Hyp(TBS)-Gly-OH12.9gにテトラヒドロフラン62.5g、N,N-ジイソプロピルエチルアミン3.9gを加え混合した。0℃へ冷却し、2,2-ジメチルブチリルクロリドを0~10℃で3.1mL加え、3時間撹拌した。その後、H-Thi-OHの反応溶液を滴下し、1時間30分撹拌した。室温に昇温し、7時間撹拌した後、5%アンモニア水12.5gを加えた後、5%炭酸水素カリウム125.0g、酢酸イソプロピル251.0gを加え分液した。得られた有機層を5%炭酸水素カリウム、5%硫酸水層カリウム、水で洗浄した。有機層を減圧濃縮した後、フルバキュームで一定時間濃縮した。その後、ジイソプロピルエーテル126.2g、n-ヘプタン25.4gを加えて、混合した。析出した固体をろ取し、ろ過物をジイソプロピルエーテル25.1gとn-ヘプタン25.1gの混合液で洗浄した。得られた固体を乾燥し、表題化合物を薄黄色固体として13.1g、質量収率84%(3工程収率)、HPLC相対純度90.7%<分析条件2>で得た。
MASS(ESI+)m/z;775(M+H)
合成例2
Fmoc-Pro-Hyp(tBu)-OHの合成
Figure JPOXMLDOC01-appb-C000065
H-Hyp(tBu)-OH0.31gにアセトニトリル2.5g、N,O-ビス(トリメチルシリル)アセトアミド0.8mL加え混合した。55℃へ昇温し、2時間撹拌した後、0℃へ冷却した。別容器にてFmoc-Pro-OH0.5gにアセトニトリル2.5g、N,N-ジイソプロピルエチルアミン0.2gを加え混合した。0℃へ冷却し、イソステアリン酸クロリド0.5gを加え、4時間撹拌した。その後、H-Hyp(tBu)-OHの反応溶液を滴下し、1時間撹拌した。5%アンモニア水を加えた後、酢酸エチルを加えて分液した。10%硫酸水素カリウム水溶液で洗浄した後、有機層を濃縮し、表題化合物を0.4g得た。
MASS(ESI+)m/z;507(M+H)
合成例3
化合物(11)の合成
Figure JPOXMLDOC01-appb-C000066

 化合物(10)0.30gにアセトニトリル2.6g、N,O-ビス(トリメチルシリル)アセトアミド0.5mL加え混合した。55℃へ昇温し2時間撹拌した後、5℃へ冷却した。別容器にて化合物(9)0.5gにアセトニトリル2.7g、N,N-ジイソプロピルエチルアミン0.3gを加え混合した。0℃へ冷却し、50質量%イソステアリン酸クロリド-トルエン溶液0.82gを加え、2時間30分撹拌した。その後、化合物(10)の反応溶液を滴下し、1時間30分撹拌した。5%アンモニア水5.5gを加えた後、酢酸エチル10.3gを加えて分液した。得られた有機層を5%アンモニア水、5%硫酸水素カリウム水溶液2回、10%食塩水で順に洗浄した後、有機層を濃縮し、フルバキュームで一定時間濃縮した。その後、アセトニトリル5.1g、n-ヘプタン5.0g、水0.5gを加えて分液した。アセトニトリル層をn-ヘプタンで2回洗浄した後、濃縮し、化合物(11)を672mg、質量収率98%、HPLC相対純度95.8%<分析条件1>で得た。
MASS(ESI+)m/z;551(M+H)
合成例4
H-Arg(Pbf)-OTMSEの合成
Figure JPOXMLDOC01-appb-C000067

1)Fmoc-Arg(Pbf)-OH3.0gと塩化メチレン45.1gを混合し、0℃へ冷却した。その後、塩化チオニル1.8mLを滴下した。室温に昇温し、2時間撹拌した後、40℃以下で減圧濃縮した。その後、塩化メチレン45.2gを加えて、40℃以下で減圧濃縮した。その後、塩化メチレン46.9gを加えて、40℃以下で減圧濃縮した。その後、塩化メチレン45.2gを加えて、40℃以下で減圧濃縮した。塩化メチレン45.2gを加えた後、0℃へ冷却し、2-(トリメチルシリル)エタノール2.0mLを加えた。室温に昇温し1時間撹拌した後、10%炭酸水素ナトリウム水溶液60.2gを加えた後、濃縮を行った。有機層を酢酸エチルに置換した後、10%食塩水、10%リン酸二水素カリウム水溶液、10%食塩水の順で洗浄した。得られた有機層を濃縮し、Fmoc-Arg(Pbf)-OTMSE4.1gを質量収率117%、白色固体として得た。
MASS(ESI+)m/z;749(M+H)
2)1)で得られたFmoc-Arg(Pbf)-OTMSE4.1gに塩化メチレン35.1g、ジエチルアミン1.7gを加え、30~40℃で6時間30分撹拌した。その後、10%硫酸水素カリウム35.1gを加え、酢酸エチルに溶媒置換し、分液した。得られた有機層を5%アンモニア水、5%炭酸カリウム水、水で洗浄し、濃縮した。表題化合物を黄色油状物として3.3g、質量収率134%、HPLC相対純度99.3%<分析条件1>で得た。
MASS(ESI+)m/z;527(M+H)
合成例5
H-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEの合成
Figure JPOXMLDOC01-appb-C000068

1)化合物(10)2.9gにアセトニトリル30.0g、N,O-ビス(トリメチルシリル)アセトアミド6.6mL加え混合した。40~45℃で3時間撹拌した後、0℃へ冷却した。別容器にて化合物(9)6.0gにアセトニトリル30.0g、N,N-ジイソプロピルエチルアミン2.9gを加え混合した。0℃へ冷却し、50質量%イソステアリン酸クロリド-トルエン溶液9.95gを加え、4時間撹拌した。その後、化合物(10)の反応溶液を滴下し、1時間30分撹拌した。n-ヘプタン30.1g、5%硫酸水素カリウム水溶液12.1g、水6.0gを加え分液した。得られたアセトニトリル層をn-ヘプタン30.0gで2回洗浄した後、5%硫酸水素カリウム水溶液60.1g、酢酸イソプロピル120.9gを加えて分液した。得られた有機層を5%炭酸水素カリウム水溶液で2回、飽和食塩水で分液した。有機層を減圧濃縮し、化合物(11)を10.0g、白色固体として得た。
2)1)で得られた化合物(11)10.0gに塩化メチレン83.0g、H-Arg(pbf)-OTMSE9.1g、N,N-ジイソプロピルエチルアミン3.9gを加え混合した。0℃へ冷却した後、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩8.4g加え、2時間撹拌した。5%硫酸水素カリウム水溶液82.7gを加え分液した。得られた有機層を5%炭酸水素カリウムで2回、飽和食塩水で洗浄した。有機層を減圧濃縮した後、アセトニトリル82.7gを加え、0℃へ冷却した。50質量%イソステアリン酸クロリド-トルエン溶液0.9gを加え、1時間撹拌した。その後、n-ヘプタン41.5gを加え分液した。得られたアセトニトリル層に酢酸イソプロピル165.4g、5%炭酸水素カリウムを加え分液した。得られた有機層を水で洗浄し、減圧濃縮した。Fmoc-D-Tic-Oic-Arg(Pbf)-OTMSEを22.7g、黄色固体として得た。
3)2)で得られたFmoc-D-Tic-Oic-Arg(Pbf)-OTMSE22.7gにシクロペンチルメチルエーテル160.1g、ジエチルアミン2.8gを加え、混合した。40℃に昇温し、4時間50分撹拌した。5%硫酸水素カリウム水溶液160.0gを加えて分液した。得られた有機層を5%硫酸水素カリウム水溶液、5%アンモニア水で2回、水で順に洗浄した。得られた有機層を減圧濃縮し、H-D-Tic-Oic-Arg(Pbf)-OTMSEを18.4g、固体として得た。
4)3)で得られたH-D-Tic-Oic-Arg(Pbf)-OTMSE18.4gにN-メチル-2-ピロリドン63.4g、Cbz-Ser(tBu)-OH8.9g、シアノ(ヒドロキシイミノ)酢酸エチル6,4g、N,N’-ジシクロヘキシルカルボジイミド9.30gを加え、混合した。45℃へ昇温し、2時間40分撹拌した。その後、5%硫酸水素カリウム水溶液125.9g、酢酸イソプロピル251.9gを加え混合した。不溶物をろ過により除去し、ろ過物を酢酸イソプロピル25.2gで洗浄した。得られたろ洗液を分液した。得られた有機層を5%硫酸水素カリウム水溶液、5%炭酸水素カリウム水溶液で2回、水の順に洗浄した。有機層を減圧濃縮し、Fmoc-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEを29.0g得た。
5)4)で得られたFmoc-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE29.0gにトリフルオロエタノール334.9gを加え混合した。不溶物をろ過により除去し、ろ過物をトリフルオロエタノール81.2gで洗浄した。減圧濃縮を行い、189.2gとした後、10%Pd/C(PEタイプ:エヌ・イー ケムキャット社)を加えた。水素雰囲気下、40℃で6時間撹拌した後、セライトろ過を行った。ろ過物をトリフルオロエタノール50.2gで2回洗浄した。ろ洗液を91.8gまで減圧濃縮した。5%硫酸水素カリウム84.0gを加え、40分撹拌した後、酢酸イソプロピル334.7g、飽和食塩水16.8gを加えて分液した。得られた有機層を5%硫酸水素カリウムで洗浄した後、減圧濃縮し、23.4gの固体を得た。これにt-ブチルメチルエーテル167.5gを加えた後、n-ヘプタン33.5gを加えて30分撹拌した。ろ過を行い、ろ過物をt-ブチルメチルエーテル33.5gとn-ヘプタン33.5gの混合液で2回洗浄した。得られた固体に酢酸イソプロピル167.4g、5%炭酸水素カリウム167.3gを加えて分液した。有機層を飽和食塩水で洗浄し、減圧濃縮した。表題化合物を16.0g、質量収率109%(5工程収率)、HPLC相対純度91.9%<分析条件2>、固体として得た。
MASS(ESI+)m/z;981(M+H)
合成例6
H-Arg(Pbf)-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEの合成
Figure JPOXMLDOC01-appb-C000069

1)合成例5で合成したH-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE10.0gにFmoc-Pro-Hyp(TBS)-Gly-Thi-OH10.28g(1.3倍モル量)、塩化メチレン150.0g、N,N-ジイソプロピルエチルアミン4.0gを加え混合した。-17℃へ冷却し、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩8.8gを加え、-15~-17℃で2時間撹拌した。10%炭酸カリウム水溶液200.0gを加え、室温で撹拌した。40℃以下で濃縮した後、酢酸エチル200.0gを加えて分液した。得られた有機層を10%炭酸カリウム水溶液、10%食塩水、10%硫酸水素カリウム水溶液、10%食塩水で2回と順に洗浄した後、濃縮を行い、Fmoc-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEを19.5g得た。
2)1)で得られてFmoc-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE19.5gにジメチルホルムアミド114mLを加え混合した。ピペリジン4.0mLとジメチルホルムアミド20mLを混合した溶液をー12~-11℃で滴下した。9時間撹拌した後、酢酸エチル354.9g、5%硫酸水素カリウム水溶液354.9g、水177.9gを-12~-4℃で加えた。室温に昇温し、分液を行った。得られた水層を酢酸エチル177.2gで抽出した。全ての有機層を混合し、5%硫酸水素カリウム水溶液354.8gを加えて分液した。得られた有機層を10%食塩水、10%炭酸水素カリウム水溶液、10%食塩水で洗浄した。有機層を40℃以下で濃縮し、H-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEを15.5g得た。
3)2)で得られたH-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE15.5gにFmoc-Arg(Pbf)-OH8.7g、ジメチルホルムアミド130mLを加え混合した。N,N-ジイソプロピルエチルアミン5.4mLを6℃で加えた後、-5℃で(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩8.8gを加えた。-7~-3℃で3時間40分撹拌した後、酢酸エチル309.7g、10%炭酸カリウム水溶液309.7g加えて分液した。得られた水層を酢酸エチル155.6gで抽出した。全ての有機層を混合し、10%炭酸カリウム水溶液309.7gを加え分液した。得られた有機層を10%食塩水、5%硫酸水素カリウム水溶液、10%食塩水で2回、順に洗浄した。有機層を46g程度まで濃縮し、NHシリカ(富士シリシア社)7.5gを加え30分撹拌し、ろ過した。ろ過物を酢酸エチル644mLとメタノール129mLの混合溶液で洗浄した。得られたろ洗液にNHシリカ(富士シリシア社)7.7gを加え30分撹拌し、ろ過した。ろ過物を酢酸エチル750mLとメタノール150mLの混合溶液で洗浄した。得られたろ洗液を濃縮し、Fmoc-Arg(Pbf)-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEを22.4g得た。
4)3)で得られたFmoc-Arg(Pbf)-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE22.4gにジメチルホルムアミド100mLを加え、混合した。-6℃でピペリジン5mLとジメチルホルムアミド24mLを混合した溶液を滴下した。-10~-5℃で4時間撹拌した後、酢酸エチル437.6g、5%硫酸水素カリウム水溶液437.2g、水219.8gを加え、室温に昇温した。分液を行い、得られた水層を酢酸エチル218.1gで抽出した。全ての有機層を混合し、5%硫酸水素カリウム水溶液437.9gを加え、分液した。得られた有機層を10%食塩水、10%炭酸水素カリウム水溶液、10%塩化ナトリウム水溶液で洗浄した。有機層を濃縮し、表題化合物を18.4g、質量収率102%(9工程収率:合成例5、6)
MASS(ESI+)m/z;1923.0(M+H)
合成例7
H-D-Arg(Pbf)-Arg(Pbf)-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEの合成
Figure JPOXMLDOC01-appb-C000070

1)合成例6で得られたH-Arg(Pbf)-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE18.4gにFmoc-D-Arg(Pbf)-OH8.1g、塩化メチレン279.0g、N,N-ジイソプロピルエチルアミン3.7gを加え、混合した。-5℃へ冷却し、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩8.3gを加えた。2時間撹拌した後、Fmoc-D-Arg(Pbf)-OH0.3g、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩0.4gを加えた。2時間撹拌した後、10%炭酸カリウム水溶液372.4gを加えた後、室温に昇温した。酢酸エチルに溶媒置換後、分液を行った。得られた有機層を10%炭酸カリウム水溶液、10%食塩水、10%硫酸水素カリウム水溶液、10%食塩水で2回、順に洗浄した。得られた有機層を濃縮し、Fmoc-D-Arg(Pbf)-Arg(Pbf)-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSEを27.5g得た。
2)1)で得られたFmoc-D-Arg(Pbf)-Arg(Pbf)-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE27.5gにジメチルホルムアミド160mLを加え、-5℃へ冷却した。ピペリジン4.8mLとジメチルホルムアミド27mを混合した溶液をー5~-4℃で滴下した。4時間40分撹拌後、酢酸エチル494.6g、5%硫酸水素カリウム水溶液494.0g、水247.2gを加えて、室温に昇温した。分液を行い、得られた水層を酢酸エチル247.1gで抽出した。全ての有機層を混合し、5%硫酸水素カリウム水溶液494.0gを加え、分液した。得られた有機層を10%食塩水、10%炭酸水素カリウム水溶液、10%食塩水で洗浄した。有機層を濃縮し、21.9gとした。メタノール38mLを加え、混合した。この溶液をジイソプロピルエーテル2Lに滴下し、1時間30分撹拌した。析出した固体をろ過し、得られたろ過物をジイソプロピルエーテル500mLで洗浄した。固体を乾燥し、表題化合物を20.3g、質量収率95%(11工程収率:合成例5、6,7)で得た。
MASS(ESI+)m/z;2353.1(M+Na)
合成例8
化合物(1)の合成
Figure JPOXMLDOC01-appb-C000071

 合成例7で得られたH-D-Arg(Pbf)-Arg(Pbf)-Pro-Hyp(TBS)-Gly-Thi-Ser(tBu)-D-Tic-Oic-Arg(Pbf)-OTMSE14.9gをトリフルオロ酢酸:ジチオトレイトール;チオアニソール:トリイソプロピルシラン:水=82.5:7.5:5:2.5:2.5(体積比)の溶液150mLに加え、室温で4時間撹拌した。この溶液をジイソプロピルエーテル300mLに7~10℃で滴下した。10~19℃で30分撹拌した後、ろ過を行った。得られたろ過物をジイソプロピルエーテル75mLで4回洗浄した。固体を乾燥し、化合物(1)を13.2g得た。
MASS(ESI+)m/z;1304.6(M+H)
合成例9
化合物(26)の合成
Figure JPOXMLDOC01-appb-C000072

 合成例8で得られた化合物(1)200mgを50体積%酢酸水溶液2mLに溶解した。この溶液400μlを下記条件で分取し、HPLC相対純度97%以上のフラクションを回収した。
 高速液体クロマトグラフィー:Agilent InfinityLab シリーズ Infinity II LC
カラム:DAISOPAK (5μm、20×250mm)
溶離液:A:0.1体積%トリフルオロ酢酸水溶液
    B:0.1体積%トリフルオロ酢酸-アセトニトリル
A/B:95/5(0-5分)、95/5-80/20(5-10分)、80/20-75/25(10-60分)(体積比)
溶離液速度:9.4 mL/分
打ち込み量:200μl
検出波長:210nm
 回収したフラクション溶液に水を加え、アセトニトリル濃度を2%以下に調製した。この溶液をBiotage sfar C18D(30μm、6g)に通液した後、10mM酢酸アンモニウム水溶液を6mL/分で30分、水を6mL/分で30分、1%酢酸水溶液 1mL/分で30分通液した。その後、1%アセトニトリル酢酸溶液により抽出したフラクションを凍結乾燥し、化合物(26)(化合物(1)の3酢酸塩)を白色固体として18.4mg、質量収率52%(総収率49%(化合物(9):Fmoc-D-Tic-OHより起算した):工程数14(合成例5、6、7、8、9))、HPLC相対純度99.4%<分析条件4>で得た。
比較例1
 国際公開第2018/007930号から、実験結果を抜粋した。
Pd試薬使用回数4回
フラグメントA質量収率:18.0%(9工程)
フラグメントB質量収率:67.9%(2工程)
フラグメントC質量収率:52.6%(4工程)
総質量収率:2.0%
総工程数:20
 総質量収率は、フラグメントAの製造における出発物質であるBoc-D-Tic-OBnより起算した(フラグメントB、Cの質量収率は含まない)。総工程数は、各フラグメント合成及びその他の工程を含む、全ての工程数である。
 本発明により、化合物(1)の合成における工程数の削減、Pd試薬使用回数の削減及び総質量収率の向上を実現した。
 本発明により、医薬品として有用な化合物(1)を効率的に得ることができる、工業的に適した新規な製造方法を提供することができる。

Claims (29)

  1.  化合物(13)
    Figure JPOXMLDOC01-appb-C000001

    (式中、Pは保護基を表す)
    を出発物質とし、N末端側にペプチド伸長反応を進めることを特徴とする、化合物(1)
    Figure JPOXMLDOC01-appb-C000002

    又はその塩の製造方法。
  2.  化合物(13)を、縮合剤の存在下、化合物(11)
    Figure JPOXMLDOC01-appb-C000003

    と反応させ化合物(14)
    Figure JPOXMLDOC01-appb-C000004

    (式中、Pは保護基を表す)
    へ誘導し、
    さらにN末端保護基を脱保護した後、縮合剤の存在下、化合物(16)
    Figure JPOXMLDOC01-appb-C000005

    (式中、Pは保護基を表す)
    と反応させ化合物(17)
    Figure JPOXMLDOC01-appb-C000006

    (式中、P及びPは前記と同様である)
    へ誘導し、
    さらにN末端保護基を脱保護した後、縮合剤の存在下、化合物(8)
    Figure JPOXMLDOC01-appb-C000007

    (式中、Pは保護基又は水素原子を表し、PはCbz基又はFmoc基を表す)
    と反応させ化合物(19)
    Figure JPOXMLDOC01-appb-C000008

    (式中、P、P、P及びPは前記と同様である)
    へ誘導し、
    さらにN末端保護基を脱保護した後、縮合剤の存在下、化合物(12’)
    Figure JPOXMLDOC01-appb-C000009

    (式中、P1aは保護基を表す)
    と反応させ化合物(21)
    Figure JPOXMLDOC01-appb-C000010

    (式中、P、P1a、P及びPは前記と同様である)
    へ誘導し、
    さらにN末端保護基を脱保護した後、縮合剤の存在下、化合物(23)
    Figure JPOXMLDOC01-appb-C000011

    (式中、P1bは保護基を表す)
    と反応させ化合物(24)
    Figure JPOXMLDOC01-appb-C000012

    (式中、P、P1a、P1b、P及びPは前記と同様である)
    へ誘導し、
    さらに全ての保護基を脱保護する工程を含む、請求項1に記載の製造方法。
  3.  Pがt-ブチルジメチルシリル基又はトリイソプロピルシリル基である、請求項2に記載の製造方法。
  4.  Pがt-ブチルジメチルシリル基である、請求項2に記載の製造方法。
  5.  化合物(8)が下記工程1)乃至9):
    1)化合物(2)
    Figure JPOXMLDOC01-appb-C000013

    (式中、PはCbz基又はFmoc基を表す)と活性化剤を混合する工程;
    2)化合物(3)
    Figure JPOXMLDOC01-appb-C000014

    (式中、Pは保護基又は水素原子を表す)とシリル化剤を混合する工程;
    3)工程1)で得られた生成物と工程2)で得られた生成物とを混合し、化合物(4)
    Figure JPOXMLDOC01-appb-C000015

    (式中、Pは前記と同様であり、Pは保護基又は水素原子を表す)
    を得る工程;
    4)工程3)で得られた化合物(4)と活性化剤を混合する工程;
    5)化合物(5)
    Figure JPOXMLDOC01-appb-C000016

    とシリル化剤を混合する工程;
    6)工程4)で得られた生成物と工程5)で得られた生成物とを混合し、化合物(6)
    Figure JPOXMLDOC01-appb-C000017

    (式中、P及びPは前記と同様である)
    を得る工程;
    7)工程6)で得られた化合物(6)と活性化剤を混合する工程;
    8)化合物(7)
    Figure JPOXMLDOC01-appb-C000018

    とシリル化剤を混合する工程;
    9)工程7)で得られた生成物と工程8)で得られた生成物とを混合し、化合物(8)を得る工程
    で得られる化合物である、請求項2に記載の製造方法。
  6.  化合物(3)におけるPが水素原子である、請求項5に記載の製造方法。
  7.  化合物(4)及び(6)におけるPがt-ブチルジメチルシリル基又はトリイソプロピルシリル基である、請求項5に記載の製造方法。
  8.  化合物(4)及び(6)におけるPがt-ブチルジメチルシリル基である、請求項5に記載の製造方法。
  9.  工程2)、5)及び8)で使用するシリル化剤がトリメチルシリルクロリド、トリエチルシリルクロリド、t-ブチルジメチルシリルクロリド、トリイソプロピルシリルクロリド、N,O-ビス(トリメチルシリル)アセトアミド、トリイソプロピルシリルトリフラート又はN-(t-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミドである、請求項5に記載の製造方法。
  10.  工程2)で使用するシリル化剤がt-ブチルジメチルシリルクロリド又はN,O-ビス(トリメチルシリル)アセトアミドであり、工程5)及び8)で使用するシリル化剤がN,O-ビス(トリメチルシリル)アセトアミドである、請求項5に記載の製造方法。
  11.  化合物(11)が下記工程10)乃至12):
    10)化合物(9)
    Figure JPOXMLDOC01-appb-C000019

    と活性化剤を混合する工程;
    11)化合物(10)
    Figure JPOXMLDOC01-appb-C000020

    とシリル化剤を混合する工程;
    12)工程10)で得られた生成物と工程11)で得られた生成物とを混合し、化合物(11)を得る工程
    で得られる化合物である、請求項2に記載の製造方法。
  12.  シリル化剤がトリメチルシリルクロリド、トリエチルシリルクロリド、t-ブチルジメチルシリルクロリド、トリイソプロピルシリルクロリド、N,O-ビス(トリメチルシリル)アセトアミド、トリイソプロピルシリルトリフラート又はN-(t-ブチルジメチルシリル)-N-メチルトリフルオロアセトアミドである、請求項11に記載の製造方法。
  13.  シリル化剤がN,O-ビス(トリメチルシリル)アセトアミドである、請求項11に記載の製造方法。
  14.  縮合剤がカルボジイミド系縮合剤又はウロニウム系縮合剤である、請求項2乃至13の何れか1項に記載の製造方法。
  15.  縮合剤が(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩又はN,N’-ジシクロヘキシルカルボジイミドである、請求項2乃至13の何れか1項に記載の製造方法。
  16.  活性化剤がクロロギ酸イソブチル、イソステアリン酸クロリド、イソステアリン酸ブロミド、2,2-ジメチルブチリルクロリド、1-アダマンタンカルボニルクロリド又は1,1’-カルボニルジイミダゾールである、請求項5乃至15の何れか1項に記載の製造方法。
  17.  活性化剤がイソステアリン酸クロリド又は2,2-ジメチルブチリルクロリドである、請求項5乃至15の何れか1項に記載の製造方法。
  18.  Pがt-ブチル基である、請求項2乃至17の何れか1項に記載の製造方法。
  19.  PがPbf基である、請求項1乃至18の何れか1項に記載の製造方法。
  20.  P1aがPbf基である、請求項2乃至19の何れか1項に記載の製造方法。
  21.  P1bがPbf基である、請求項2乃至20の何れか1項に記載の製造方法。
  22.  下記式
    Figure JPOXMLDOC01-appb-C000021

    (式中、Pはt-ブチルジメチルシリル基又はトリイソプロピルシリル基であり、PはCbz基又はFmoc基である)で表される化合物又はその塩。
  23.  PがFmoc基である、請求項22に記載の化合物又はその塩。
  24.  Pがt-ブチルジメチルシリル基である、請求項22又は23に記載の化合物又はその塩。
  25. 下記式
    Figure JPOXMLDOC01-appb-C000022

    (式中、PはFmoc基又は水素原子である)で表される化合物又はその塩。
  26. 下記式
    Figure JPOXMLDOC01-appb-C000023

    (式中、PはCbz基又は水素原子である)で表される化合物又はその塩。
  27. 下記式
    Figure JPOXMLDOC01-appb-C000024

    (式中、PはFmoc基又は水素原子である)で表される化合物又はその塩。
  28. 下記式
    Figure JPOXMLDOC01-appb-C000025

    (式中、PはFmoc基又は水素原子である)で表される化合物又はその塩。
  29. 下記式
    Figure JPOXMLDOC01-appb-C000026

    (式中、PはFmoc基又は水素原子である)で表される化合物又はその塩。
PCT/JP2022/000431 2021-01-08 2022-01-07 ペプチドの製造方法 WO2022149612A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021001879A JP2024027198A (ja) 2021-01-08 2021-01-08 ペプチドの製造方法
JP2021-001879 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022149612A1 true WO2022149612A1 (ja) 2022-07-14

Family

ID=82357994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000431 WO2022149612A1 (ja) 2021-01-08 2022-01-07 ペプチドの製造方法

Country Status (2)

Country Link
JP (1) JP2024027198A (ja)
WO (1) WO2022149612A1 (ja)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALBERT ISIDRO-LLOBET, ALVAREZ MERCEDES, ALBERICIO FERNANDO: "Amino Acid-Protecting Groups", CHEMICAL REVIEWS, vol. 109, no. 6, 10 June 2009 (2009-06-10), pages 2455 - 2504, XP055081001, ISSN: 00092665, DOI: 10.1021/cr800323s *
AMBLARD MURIEL; FEHRENTZ JEAN-ALAIN; MARTINEZ JEAN; SUBRA GILLES: "Methods and Protocols of modern solid phase peptide synthesis", MOLECULAR BIOTECHNOLOGY, vol. 33, no. 3, 1 July 2006 (2006-07-01), pages 239 - 254, XP009116689, ISSN: 1073-6085, DOI: 10.1385/MB:33:3:239 *
BORSUK, K. ; VAN DELFT, F.L. ; EGGEN, I.F. ; TEN KORTENAAR, P.B. ; PETERSEN, A. ; RUTJES, F.P.: "Application of substituted 2-(trimethylsilyl)ethyl esters to suppress diketopiperazine formation", TETRAHEDRON LETTERS, vol. 45, no. 18, 26 April 2004 (2004-04-26), pages 3585 - 3588, XP027092766, ISSN: 0040-4039 *
OKADA YOHEI, TAKASAWA RICO, KUBO DAISUKE, IWANAGA NATSUMI, FUJITA SHUJI, SUZUKI KOSUKE, SUZUKI HIDEAKI, KAMIYA HIDEHIRO, CHIBA KAZ: "Improved Tag-Assisted Liquid-Phase Peptide Synthesis: Application to the Synthesis of the Bradykinin Receptor Antagonist Icatibant Acetate", ORGANIC PROCESS RESEARCH & DEVELOPMENT, vol. 23, no. 11, 15 November 2019 (2019-11-15), pages 2576 - 2581, XP055949530, ISSN: 1083-6160, DOI: 10.1021/acs.oprd.9b00397 *

Also Published As

Publication number Publication date
JP2024027198A (ja) 2024-03-01

Similar Documents

Publication Publication Date Title
JP6350632B2 (ja) ペプチドの製造方法
US10407468B2 (en) Methods for synthesizing α4β7 peptide antagonists
JP6011528B2 (ja) ペプチドの製造方法
JP5515738B2 (ja) ジベンゾフルベン誘導体の淘汰方法
WO2017114238A1 (zh) 一种合成Etelcalcetide的方法
WO2016047794A1 (ja) 疎水性ペプチドの製造法
JP6136934B2 (ja) Fmoc基の除去方法
US12024537B2 (en) Compositions and methods for chemical synthesis
JPH0354957B2 (ja)
US8703912B2 (en) Processes for removal of dibenzofulvene
US20160122383A1 (en) Peptide Ligation
CA3029584A1 (en) Process for preparation of icatibant acetate
JP2017203014A (ja) アスパラギン酸残基を含むペプチドの製造方法
WO2022149612A1 (ja) ペプチドの製造方法
WO2020262590A1 (ja) 環状ペプチドの製造方法
KR101889893B1 (ko) 선별적 용해도를 갖는 트리페닐메탄 유도체 및 그의 용도
JP6858950B2 (ja) 液相法によるセレノグルタチオンの製造方法
CN108148113A (zh) 一种nmda受体调控剂四肽衍生物的固相合成方法
WO2021132336A1 (ja) ペプチドの製造方法
WO2013057736A2 (en) Preparation of eptifibatide peptide
JP4016104B2 (ja) 新規セレニルリンカー及びその用途
WO2022196797A1 (ja) アミノ酸又はペプチドの製造方法、保護基形成用試薬、及び、化合物
US20070021349A1 (en) Orthogonally protected bifunctional amino acid
AU2020229118A1 (en) Method for producing amide
CN116724022A (zh) 肽的制造方法、保护基形成用试药及缩合多环化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22736780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP