WO2020184478A1 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
WO2020184478A1
WO2020184478A1 PCT/JP2020/009837 JP2020009837W WO2020184478A1 WO 2020184478 A1 WO2020184478 A1 WO 2020184478A1 JP 2020009837 W JP2020009837 W JP 2020009837W WO 2020184478 A1 WO2020184478 A1 WO 2020184478A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor
wiring
circuit
solid
Prior art date
Application number
PCT/JP2020/009837
Other languages
English (en)
French (fr)
Inventor
裕太 西岡
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/435,286 priority Critical patent/US20220149102A1/en
Publication of WO2020184478A1 publication Critical patent/WO2020184478A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked

Definitions

  • This disclosure relates to a solid-state image sensor.
  • Patent Document 1 when a plurality of semiconductor substrates are laminated on a pixel substrate, there is a concern that problems such as crosstalk may occur because the wiring connecting the semiconductor substrates is close to the wiring in the pixel circuit. ..
  • the solid-state imaging device includes a first semiconductor substrate having a first semiconductor circuit on a first surface, a second semiconductor substrate having a second semiconductor circuit on a second surface, and a pixel circuit.
  • the first semiconductor substrate, the second semiconductor substrate, and the pixel substrate include a pixel substrate having one surface, and the first surface and the second semiconductor of the first semiconductor substrate are provided.
  • the second surface of the substrate and the one surface of the pixel substrate are joined to each other so as to face each other, and the first semiconductor circuit and the second semiconductor circuit face the pixel substrate. It is connected on the first surface side and the second surface side opposite to the side.
  • FIG. 1 is a schematic view showing a part of the solid-state image sensor 1 according to the first embodiment of the present disclosure.
  • FIG. 1A is a cross-sectional view showing a part of the solid-state image sensor 1 according to the first embodiment
  • FIG. 1B is a view from the support substrate 40 side showing a part of the solid-state image sensor 1 according to the first embodiment. It is a plan view. However, in FIG. 1B, the support substrate 40 is omitted.
  • the solid-state image sensor 1 includes a logic substrate 10 as a first semiconductor substrate, a memory substrate 20 as a second semiconductor substrate, and a pixel substrate 30.
  • the surface 1A as the first surface of the logic substrate 10 and the surface 2A as the second surface of the memory substrate 20 and the surface 3A as one surface of the pixel substrate 30 are arranged so as to face each other.
  • the memory substrate 20, and the pixel substrate 30 are joined by the joining surfaces JS13 and JS23 on the side facing each other.
  • a support substrate 40 is further bonded to the side of the logic substrate 10 and the memory substrate 20 opposite to the side facing the pixel substrate 30.
  • the logic substrate 10, the memory substrate 20, the pixel substrate 30, and the support substrate 40 are, for example, silicon substrates and the like.
  • the pixel board 30 has a pixel circuit 31 including wirings D31 and D32, a pixel transistor (not shown), and the like on a surface 3A facing the logic board 10 and the memory board 20.
  • the pixel circuit 31 is laminated in the insulating layer 33 on the pixel substrate 30.
  • Wiring D31 and D32 are, for example, Cu wiring and the like.
  • the pixel substrate 30 has a photoelectric conversion element (not shown) in the substrate.
  • the pixel substrate 30 has a color filter CF and an on-chip lens OCL on the surface 3B opposite to the surface 3A.
  • the on-chip lens OCL collects the irradiated light, and the collected light is guided to the photoelectric conversion element via the color filter CF.
  • the photoelectric conversion element converts the received light into an electric signal according to the amount of received light by photoelectric conversion.
  • the pixel circuit 31 reads an electric signal from the photoelectric conversion element and outputs it to the logic board 10 side.
  • the logic board 10 has a logic circuit 11 as a first semiconductor circuit including wirings D11, D12, logic elements (not shown), and the like on the surface 1A facing the pixel board 30.
  • the logic circuit 11 is laminated in the insulating layer 13 on the logic substrate 10.
  • Wiring D11 and D12 are, for example, Cu wiring and the like.
  • the logic circuit 11 processes the electric signal output from the pixel substrate 30.
  • the logic circuit 11 is electrically connected to the pixel circuit 31 by an electrode pad P3 connected to the wiring D32 included in the pixel circuit 31 and an electrode pad P1 connected to the wiring D12 included in the logic circuit 11.
  • the electrode pads P1 and P3 are made of, for example, Cu or the like.
  • the memory substrate 20 has a memory circuit 21 as a second semiconductor circuit including wirings D21, D22, a storage element (not shown), and the like on the surface 2A facing the pixel substrate 30.
  • the memory circuit 21 is laminated in the insulating layer 23 on the memory substrate 20.
  • Wiring D21 and D22 are, for example, Cu wiring and the like.
  • the memory circuit 21 holds various data necessary for the function of the solid-state image sensor 1.
  • the memory circuit 21 is electrically connected to the pixel circuit 31 by an electrode pad P3 connected to the wiring D32 included in the pixel circuit 31 and an electrode pad P2 connected to the wiring D22 included in the memory circuit 21.
  • the electrode pad P2 is made of, for example, Cu or the like.
  • the logic circuit 11 and the memory circuit 21 are connected on the surfaces 1B and 2B on the side opposite to the side facing the pixel board 30. More specifically, the logic board 10 and the memory board 20 are a via 12 as a first via penetrating the logic board 10, a via 22 as a second via penetrating the memory board 20, and a via 12, It is connected by the wiring DD in the wiring layer connecting 22.
  • the vias 12 and 22 and the wiring DD are made of, for example, Cu or the like.
  • the vias 12 and 22 are TSVs (Through Silicon Vias) provided so as to penetrate the logic board 10 and the memory board 20, respectively.
  • the vias 12 and 22 have a reverse taper shape in which the diameter increases from the surfaces 1A and 2A to the surfaces 1B and 2B, for example.
  • the wiring layer on which the wiring DD is arranged is, for example, a rewiring layer (RDL: Redistribution Layer) formed by a plating technique.
  • the wiring DD is arranged on the surface 1B of the logic board 10, the surface 2B of the memory board 20, and the insulating layer 53 that fills the space between the logic board 10 and the memory board 20.
  • the logic board 10 and the memory board 20 may be connected by a plurality of wiring DDs.
  • the plurality of wiring DDs may be arranged in parallel with each other, for example.
  • the support substrate 40 has a surface 1B of the logic substrate 10, a surface 4A facing the surface 2B of the memory substrate 20, and a surface 4B opposite to the surface 4A.
  • the support substrate 40 is bonded to the logic substrate 10 and the memory substrate 20 at the bonding surfaces JS14 and JS24 via the insulating layer 43.
  • FIGS. 2 to 7. are flow charts showing an example of a procedure for manufacturing the solid-state image sensor 1 according to the first embodiment of the present disclosure.
  • the memory circuit 21 forms the memory substrate 20 laminated in the insulating layer 23.
  • the memory substrate 20 is ground and thinned after the wirings D21, D22, electrode pads P2, and the like are formed.
  • the logic circuit 11 forms the logic substrate 10 laminated in the insulating layer 13.
  • the logic substrate 10 is ground and thinned after the wirings D11, D12, electrode pads P1 and the like are formed.
  • the pixel circuit 31 forms the pixel substrate 30 laminated in the insulating layer 33.
  • Wiring D31, D32, electrode pad P3, and the like are formed on the pixel substrate 30.
  • the pixel substrate 30 may also be ground and thinned.
  • the order of formation of the logic board 10, the memory board 20, and the pixel board 30 does not matter.
  • the logic board 10 and the memory board 20 are placed on the pixel board 30 so that the surface 1A of the logic board 10 and the surface 2A of the memory board 20 and the surface 3A of the pixel board 30 face each other. to paste together.
  • the logic substrate 10 is bonded to the pixel substrate 30 on the bonding surface JS13 by the electrode pads P1 and P3 as described above. Further, the memory substrate 20 is bonded to the pixel substrate 30 on the bonding surface JS23 by the electrode pads P2 and P3.
  • the electrode pads P1 and P3 and the electrode pads P2 and P3 are, for example, Cu-Cu bonded.
  • an insulating layer 53 that fills the space between the logic substrate 10 and the memory substrate 20 is formed by a CVD (Chemical Vapor Deposition) method, and the insulating layer 53 is flattened by, for example, a CMP (Chemical Mechanical Polishing) method.
  • CVD Chemical Vapor Deposition
  • CMP Chemical Mechanical Polishing
  • a through hole H12 is formed which penetrates the logic substrate 10 from the surface 1B side and reaches, for example, the wiring D11.
  • a through hole H22 is formed which penetrates the memory substrate 20 from the surface 2B side and reaches, for example, the wiring D21.
  • These through holes 12 and 22 tend to have a tapered shape in which the diameter decreases from the surfaces 1B and 2B to the surfaces 1A and 2A.
  • the through hole H12 is filled with a conductive material such as Cu to penetrate the logic substrate 10 and form a via 12 connected to, for example, the wiring D11.
  • the through hole H22 is filled with a conductive material such as Cu to penetrate the memory substrate 20 and form a via 22 connected to, for example, the wiring D21.
  • the vias 12 and 22 are formed from the surfaces 1B and 2B by having a tapered shape in which the diameter decreases from the surfaces 1B and 2B to the surfaces 1A and 2A.
  • the resin 60 is formed on the surface 1B of the logic substrate 10 and the surface 2B of the memory substrate 20.
  • the resin 60 has a groove pattern 60 tr in a region including the via 12 of the logic substrate 10 and the via 22 of the memory substrate 20.
  • the groove pattern 60tr of the resin 60 is filled with a conductive material such as Cu by, for example, a plating method to form a wiring DD.
  • the resin 60 is peeled off.
  • the wiring DD in the rewiring layer is formed.
  • an insulating layer having a groove pattern or the like can be used instead of the resin 60 having the groove pattern 60tr.
  • the insulating layer 43 is formed on the surface 1B of the logic substrate 10 and the surface 2B of the memory substrate 20 so as to cover the wiring DD.
  • the logic board 10 and the memory board 20 are placed on the support board 40 so that the surface 1B of the logic board 10 and the surface 2B of the memory board 20 and the surface 4A of the support board 40 face each other. to paste together.
  • the logic substrate 10 is bonded to the support substrate 40 at the bonding surface JS14 via the insulating layer 43 as described above. Further, the memory substrate 20 is bonded to the support substrate 40 at the bonding surface JS24 via the insulating layer 43.
  • a color filter CF and an on-chip lens OCL are formed on the surface 3B of the pixel substrate 30.
  • FIG. 7 shows the overall flow of the manufacturing process of the solid-state image sensor 1 of the first embodiment.
  • FIG. 7 is a flow chart showing the entire manufacturing process of the solid-state image sensor 1 according to the first embodiment of the present disclosure.
  • the pixel circuit 31, the logic circuit 11, and the memory circuit 21 are formed by the surface processes of the pixel board 30, the logic board 10, and the memory board 20, respectively. After that, the back surfaces of the logic substrate 10 and the memory substrate 20, that is, the surfaces 1B and 2B are ground.
  • the logic board 10 and the memory board 20 are attached to the pixel board 30.
  • vias 12 and 22 as TSVs are formed on the logic board 10 and the memory board 20, respectively, and further, in the rewiring layer connecting these vias 12 and 22.
  • Wiring DD is formed.
  • the logic board 10 and the memory board 20 that have been bonded to the pixel board 30 are bonded to the support board 40.
  • the color filter CF and the on-chip lens OCL are formed on the pixel substrate 30 by the back surface process of the pixel substrate 30.
  • the logic substrate 10' having the logic circuit 11'and the memory substrate 20' having the memory circuit 21' are the pixel substrate 30'having the pixel circuit 31'. It is joined to. These substrates 10', 20', and 30'are further supported by the support substrate 40'.
  • the logic circuit 11'and the memory circuit 21' are electrically connected by electrode pads P1', P3', wiring DD', and electrode pads P3', P2'on the junction surface side with the pixel substrate 30'. There is.
  • the wiring DD' is formed on the pixel substrate 30'side.
  • the distance X'between the wiring DD'and the wiring D31'of the pixel substrate 30' may be close to each other, and crosstalk may occur. Due to such crosstalk, noise may be generated in the pixel circuit 31'and the characteristics of the solid-state image sensor may be deteriorated. Further, since the wiring DD'is formed in the region of the logic circuit 11', the layout in the wiring design is restricted. When the wiring DD'is shielded to suppress crosstalk, the layout restrictions become even stricter.
  • the logic circuit 11 and the memory circuit 21 are connected on the surfaces 1B and 2B opposite to the side facing the pixel substrate 30.
  • the distance between the wiring DD connecting the logic circuit 11 and the memory circuit 21 and the wiring D31 or the like of the pixel board 30 is separated by a distance equal to or greater than the thickness of the logic board 10 and the memory board 20. Therefore, crosstalk between the wiring DD and the wiring D31 can be suppressed, and noise in the pixel circuit 31 can be reduced.
  • the wiring DD is arranged on the surface 1B side of the logic substrate 10 and the surface 2B side of the memory substrate 20. As a result, it is not necessary to connect the logic circuit 11 and the memory circuit 21 using the area of the logic circuit 11, and the degree of freedom in layout in the wiring design is increased.
  • the wiring layer in which the wiring DD connecting the logic circuit 11 and the memory circuit 21 is arranged is, for example, a rewiring layer formed by a plating technique.
  • the wiring DD can be formed by a simple and inexpensive method.
  • the memory circuit 21 forms the memory substrate 20 laminated in the insulating layer 23.
  • the memory substrate 20 is not ground at this stage.
  • the memory substrate 20 is provided with vias 22a that reach halfway through the thick substrate.
  • the via 22a is formed from the surface 2A side of the memory substrate 20 (surface process), and the wiring D21 is subsequently formed so as to connect to the upper surface of the via 22a.
  • the logic circuit 11 forms the logic substrate 10 laminated in the insulating layer 13.
  • the logic substrate 10 is not ground at this stage.
  • the logic substrate 10 is provided with a via 12a that reaches halfway through the thick substrate.
  • the via 12a is formed from the surface 1A side of the logic substrate 10 (surface process), and the wiring D11 is subsequently formed so as to connect to the upper surface of the via 12a.
  • the pixel circuit 31 forms the pixel substrate 30 laminated in the insulating layer 33.
  • the formation order of the logic board 10, the memory board 20, and the pixel board 30 does not matter.
  • the logic board 10 and the memory board 20 are placed on the pixel board 30 so that the surface 1A of the logic board 10 and the surface 2A of the memory board 20 and the surface 3A of the pixel board 30 face each other. to paste together.
  • the insulating layer 53 that fills the space between the logic substrate 10 and the memory substrate 20 is formed by the CVD method, and the insulating layer 53 is flattened by, for example, the CMP method.
  • the logic board 10, the memory board 20, and the insulating layer 50 between them are ground, and the logic board 10 and the memory board 20 are thinned until the ends of the vias 12a and 22a on the surfaces 1B and 2B are exposed. ..
  • a rewiring method is used to form a wiring DD connected to the ends of the vias 12a and 22a on the surfaces 1B and 2B.
  • the logic substrate 10 to which the pixel substrate 30 is bonded and the memory substrate 20 are bonded to the support substrate 40, and the color filter CF and the on-chip lens OCL are formed on the pixel substrate 30. To do.
  • the manufacturing process of the solid-state image sensor of the first modification is completed.
  • the via 12a as the first via formed from the surface 1A side has a tapered shape whose diameter decreases from the surface 1A side to the surface 1B side, for example.
  • the via 22a as the second via formed from the surface 2A side has a tapered shape whose diameter decreases from the surface 2A side to the surface 2B side, for example.
  • the solid-state image sensor 1b of the second modification is different from the above-described first embodiment in that the wiring layer on which the wiring DDb is arranged is not a rewiring layer.
  • the solid-state imaging device 1b has a wiring DDb laminated in the insulating layer 43. More specifically, the wiring DDb has two via portions VI and one cross-linking portion CR. One end of the via portion VI is connected to the end portion of the logic substrate 10 on the surface 1B side of the via 12, and the other end is connected to one end of the bridge portion CR. One end of the other via portion VI is connected to the end portion of the memory substrate 20 on the surface 2B side of the via 22, and the other end is connected to the other end of the bridge portion CR.
  • the wiring DDb having such a structure is formed by, for example, a damascene method using a photolithography technique and a dry etching technique.
  • the wiring DDb is formed by, for example, a photolithography technique and a dry etching technique. As a result, finer wiring DDb can be formed with high accuracy, and the wiring DDb can be highly integrated.
  • the solid-state imaging device 1c of the modification 3 of the first embodiment will be described with reference to FIGS. 12 to 14.
  • the solid-state imaging device 1c of the third modification further includes a shield SSc to which the wiring DDb forming method is applied.
  • the shield SSc arranged in the shield layer as the conductive layer is arranged between the junction surfaces JS13 and JS23 of the pixel substrate 30 with the logic substrate 10 and the memory substrate 20 and the wiring DDb.
  • the shield SSc is also laminated in the insulating layer 43 like the wiring DDb. More specifically, the shield SSc has two via portions VIc and one cross-linked portion CRc. One end of the via portion VIc is connected to the surface 1B of the logic substrate 10, and the other end is connected to one end of the bridge portion CRc. One end of the other via portion VIc is connected to the surface 2B of the memory substrate 20, and the other end is connected to the other end of the bridge portion CRc. Similar to the wiring DDb, the shield SSc having such a structure is formed by, for example, a damascene method using a photolithography technique and a dry etching technique.
  • the wiring DDb and the shield SSc can be formed by using, for example, the dual damascene method shown in FIGS. 13 and 14.
  • the flow shown in FIGS. 13 and 14 is a replacement for the flow of FIG. 4 of the above-described first embodiment.
  • FIGS. 13 and 14 the vicinity of the end portion of the logic board 10 on the surface 1B side of the via 12 and the vicinity of the end portion of the memory substrate 20 on the surface 2B side of the via 22 is enlarged and shown.
  • the insulating layer 43 is formed on the surface 1B of the logic substrate 10, the insulating layer 53, and the surface 2B of the memory substrate 20. At this time, the insulating layer 43 is formed thinner than the final thickness.
  • the hole HLc that penetrates the insulating layer 43 and reaches the surface 1B of the logic substrate 10 and the surface 2B of the memory substrate 20, respectively. And both ends form a groove TRc connected to the hole HLc, respectively.
  • the inside of the hole HLc and the inside of the groove TRc are filled with a conductive material such as Cu by a CVD method, and the excess conductive material is removed by a CMP method or the like to remove the excess conductive material from the via portion VIc and the crosslinked portion.
  • a shield SSc having a CRc is formed.
  • an insulating layer 43 is further formed so as to cover the shield SSc.
  • the hole HLb which penetrates the insulating layer 43 and reaches the via 12 of the logic substrate 10 and the via 22 of the memory substrate 20, respectively, using, for example, photolithography technology and dry etching technology. And both ends form a groove TRb connected to the hole HLb, respectively.
  • the inside of the hole HLb and the inside of the groove TRb are filled with a conductive material such as Cu by a CVD method, and the excess conductive material is removed by a CMP method or the like to remove the via portion VI and the crosslinked portion.
  • a wiring DDb having a CR is formed.
  • the wiring DDb and the shield SSc are formed.
  • the dual damascene method in which the via portion and the crosslinked portion are formed collectively is used, but the single damascene method in which the via portion and the crosslinked portion are formed separately may be used.
  • the shield SSc is arranged on the pixel substrate 30 side of the wiring DDb.
  • the wiring DDb is shielded from the wiring D31 and the like of the pixel substrate 30, crosstalk between the wiring DDb and the wiring D31 can be further suppressed, and noise in the pixel circuit 31 can be reduced.
  • the wiring DDda and DDdb that connect the logic board 10 and the memory board 20 intersect each other.
  • one wiring DDdb is formed to be bulky with respect to the other wiring DDda, and the two wiring DDda and DDdb are three-dimensionally intersected with each other. Obtainable.
  • wirings DDda and DDdb can be easily formed by photolithography technology and dry etching technology, for example, as in the above-mentioned modifications 2 and 3.
  • the wiring layer on which one of the wiring DDda is arranged may be a rewiring layer using the plating technique as in the first embodiment.
  • both of the wiring layers in which the vias are further superposed on the vias 12 and 22 and the wiring DDda and DDdb are arranged may be used as a rewiring layer using a plating technique.
  • two logic boards 10 and 10e are bonded to the pixel board 30.
  • the logic circuits of the two logic boards 10 and 10e are electrically connected to each other by the via 12 of the logic board 10, the via 12e of the logic board 10e, and the wiring DDe connecting these vias 12 and 12e.
  • two memory substrates 20 and 20f are attached to the pixel substrate 30.
  • the memory circuits of the two memory boards 20 and 20f are electrically connected to each other by the via 22 of the memory board 20, the via 22f of the memory board 20f, and the wiring DDf connecting these vias 22 and 22f.
  • one logic substrate 10 and two memory substrates 20ga and 20gb are attached to the pixel substrate 30.
  • the logic circuit of the logic board 10 and the memory circuit of the memory board 20ga are electrically connected by the via 12 of the logic board 10, the via 22ga of the memory board 20ga, and the wiring DDga connecting these vias 12 and 22ga. ..
  • the logic circuit of the logic board 10 and the memory circuit of the memory board 20 gb are electrically connected by the via 12 of the logic board 10, the via 22 gb of the memory board 20 gb, and the wiring DDgb connecting these vias 12, 22 gb. ..
  • the memory circuits of the memory board 20ga and the memory board 20gb are electrically connected to each other by a via 22ga of the memory board 20ga, a via 22gb of the memory board 20gb, and a wiring DDgab connecting these vias 22ga and 22gb.
  • the solid-state image sensor of the modified example 5 may have a configuration in which various substrates other than the above are bonded to an arbitrary number of pixel substrates 30.
  • the solid-state imaging device of the modified example 5 may have a shield layer in addition to the wiring layer.
  • the solid-state image sensor 2 of the second embodiment is different from the first embodiment in that the wiring DDh is provided on the surface 4B side of the support substrate 40.
  • FIG. 17 is a schematic view showing a part of the solid-state image sensor 2 according to the second embodiment of the present disclosure.
  • the solid-state imaging device 2 includes a support substrate 40 that is directly bonded to the logic substrate 10 and the memory substrate 20. That is, the surface 1B of the logic substrate 20 and the surface 2B of the memory substrate 20 are bonded surfaces JS14h and JS24h, respectively, and are bonded to the surface 4A of the support substrate 40.
  • the logic circuit 11 and the memory circuit 21 include a via 12h as a first via penetrating the support board 40 and the logic board 10, a via 22h as a second via penetrating the support board 40 and the memory board 20, and these. It is electrically connected by the wiring DDh connecting the vias 12h and 22h.
  • the wiring DDh is arranged on the surface 4B of the support board 40 on the side opposite to the logic board 10 side and the memory board 20 side.
  • An insulating layer 73 is arranged on the surface 4B of the support substrate 40 so as to cover the wiring DDh.
  • FIGS. 18 to 22 are flow charts showing an example of a procedure for manufacturing the solid-state image sensor 2 according to the second embodiment of the present disclosure.
  • a pixel board 30 is formed in which a logic board 10 and a memory board 20 are bonded together. Up to this point, the process is the same as that of the above-described first embodiment up to FIG. 3A.
  • the surface 4A of the support substrate 40 is attached to the surface 1B of the logic substrate 10 and the surface 2B of the memory substrate 20 attached to the pixel substrate 30.
  • a through hole H12h is formed which penetrates the support substrate 40 and the logic substrate 10 from the surface 4B side of the support substrate 40 and reaches, for example, the wiring DD11. Further, from the surface 4B side of the support substrate 40, a through hole H22h is formed which penetrates the support substrate 40 and the memory substrate 20 and reaches, for example, the wiring DD21.
  • the through hole H12h is filled with a conductive material such as Cu to penetrate the support substrate 40 and the logic substrate 10 to form a via 12h connected to, for example, the wiring D11.
  • the through hole H22h is filled with a conductive material such as Cu to penetrate the support substrate 40 and the memory substrate 20 to form a via 22h connected to, for example, the wiring D21.
  • the vias 12h and 22h formed from the surface 4B side of the support substrate 40 have a taper whose diameter is reduced from, for example, the surface 4B side of the support substrate 40 to the surface 1A side of the logic substrate 10 and the surface 2A side of the memory substrate 20. It becomes a shape.
  • a resin 60h having a groove pattern 60htr is formed on the surface 4B of the support substrate 40 in a region including vias 12h and 22h. Then, the groove pattern 60 htr is filled with a conductive material such as Cu by a plating method, for example, to form the wiring DDh.
  • the insulating layer 73 is formed on the surface 4B of the support substrate 40 so as to cover the wiring DDh.
  • the laminated support substrate 40, logic substrate 10, memory substrate 20, and pixel substrate 30 are inverted so that the support substrate 40 faces downward and the pixel substrate 30 faces upward. To do.
  • a color filter CF and an on-chip lens OCL are formed on the surface 3B of the pixel substrate 30.
  • FIG. 22 shows the overall flow of the manufacturing process of the solid-state image sensor 2 of the second embodiment.
  • FIG. 22 is a flow chart showing the entire manufacturing process of the solid-state image sensor 2 according to the second embodiment of the present disclosure.
  • the process is the same as that of the above-described first embodiment up to the point where the logic board 10 and the memory board 20 are bonded to the pixel board 30.
  • the support substrate 40 is joined to the logic substrate 10 and the memory substrate 20 bonded to the pixel substrate 30.
  • vias 12h and 22h as TSVs are formed on the support substrate 40, the logic substrate 10, and the memory substrate 20, respectively, and further, a rewiring layer connecting these vias 12h and 22h.
  • the wiring DDh in the above is formed on the support substrate 40.
  • the color filter CF and the on-chip lens OCL are formed on the pixel substrate 30 by the back surface process of the pixel substrate 30.
  • the logic circuit 11 and the memory circuit 21 are connected on the surface 4B side of the support substrate 40.
  • the distance between the wiring DDh connecting the logic circuit 11 and the memory circuit 21 and the wiring D31 and the like of the pixel board 30 is determined by the thickness of the support board 40 in addition to the thickness of the logic board 10 and the memory board 20. It will be separated by more than that. Therefore, the crosstalk between the wiring DD and the wiring D31 can be further suppressed, and the noise in the pixel circuit 31 can be further reduced.
  • the solid-state image pickup device 2i of the first modification includes a wiring DDi formed by a photolithography technique and a dry etching technique.
  • FIG. 23 is a schematic view showing a part of the solid-state image sensor 2i according to the first modification of the second embodiment of the present disclosure.
  • the solid-state imaging device 2i includes a wiring DDi having two via portions and one cross-linked portion, as in the second modification of the first embodiment described above.
  • the wiring DDi is laminated in the insulating layer 73.
  • the wiring DDi is formed by, for example, a photolithography technique, a dry etching technique, or the like.
  • finer wiring DDi can be formed with high accuracy by, for example, photolithography technology and dry etching technology, and the wiring DDi can be highly integrated.
  • the solid-state imaging device 2j of the second modification of the second embodiment will be described with reference to FIG. 24.
  • the solid-state imaging device 2j of the second modification further includes a shield SSj arranged in the shield layer as the conductive layer to which the method for forming the wiring DDi is applied.
  • FIG. 24 is a schematic view showing a part of the solid-state image sensor 2j according to the second modification of the second embodiment of the present disclosure.
  • the solid-state imaging device 2j includes a shield SSj arranged in a shield layer having two via portions and one cross-linking portion, as in the third modification of the first embodiment described above.
  • the shield SSj is also laminated in the insulating layer 73.
  • the shield SSj is formed by, for example, a photolithography technique, a dry etching technique, or the like, similarly to the wiring DDi.
  • the shield SSc arranged on the pixel substrate 30 side of the wiring DDi further suppresses the crosstalk between the wiring DDb and the wiring D31, and further reduces the noise in the pixel circuit 31. be able to.
  • Modification 3 Even in a configuration having a wiring layer on a support substrate 40 like the solid-state image sensor of the second embodiment, there are various types such as a plurality of logic substrates, a plurality of memory substrates, and the like as in the configuration of the fifth modification of the first embodiment. Any number of substrates can be attached to the pixel substrate 30.
  • the solid-state image sensor of Modification 3 may have a shield layer in addition to the wiring layer on the support substrate 40.
  • the present technology can also have the following configurations.
  • the first semiconductor substrate, the second semiconductor substrate, and the pixel substrate are The first surface of the first semiconductor substrate, the second surface of the second semiconductor substrate, and the one surface of the pixel substrate are joined to each other so as to face each other.
  • the first semiconductor circuit and the second semiconductor circuit are connected on the first surface side and the second surface side opposite to the side facing the pixel substrate.
  • the first semiconductor circuit and the second semiconductor circuit are It is connected by a first via penetrating the first semiconductor substrate, a second via penetrating the second semiconductor substrate, and a wiring connecting the first via and the second via.
  • a shield is arranged between the joint surface of the pixel substrate with the first semiconductor substrate and the second semiconductor substrate and the wiring.
  • the wiring is Arranged on the first semiconductor substrate and on the second semiconductor substrate, The solid-state image sensor according to (2) or (3) above.
  • a support substrate to be joined to the side of the first semiconductor substrate and the second semiconductor substrate opposite to the side facing the pixel substrate is provided. The first via and the second via each penetrate the support substrate.
  • the wiring is It is arranged on the support substrate on the surface side opposite to the first semiconductor substrate and the second semiconductor substrate.
  • the wiring layer on which the wiring is arranged is a rewiring layer formed by a plating technique.
  • the wiring layer on which the wiring is arranged is a wiring layer formed by a photolithography technique and a dry etching technique.
  • the first semiconductor substrate is a logic substrate having a logic circuit as the first semiconductor circuit.
  • the second semiconductor substrate is a memory substrate having a memory circuit as the second semiconductor circuit.
  • the first semiconductor substrate is a first logic substrate having a first logic circuit as the first semiconductor circuit.
  • the second semiconductor substrate is a second logic substrate having a second logic circuit as the second semiconductor circuit.
  • the solid-state image sensor according to any one of (1) to (7).
  • the first semiconductor substrate is a first memory substrate having a first memory circuit as the first semiconductor circuit.
  • the second semiconductor substrate is a second memory substrate having a second memory circuit as the second semiconductor circuit.
  • the solid-state image sensor according to any one of (1) to (7).
  • a third semiconductor substrate having a third semiconductor circuit on the third surface is provided.
  • the third semiconductor substrate and the pixel substrate are The third surface of the third semiconductor substrate and the one surface of the pixel substrate are joined to each other so as to face each other.
  • the first semiconductor circuit and the third semiconductor circuit are connected on the first surface side and the third surface side opposite to the side facing the pixel substrate.
  • the second semiconductor circuit and the third semiconductor circuit are connected on the second surface side and the third surface side opposite to the side facing the pixel substrate.
  • the solid-state image sensor according to any one of (1) to (7).
  • (12) The first wiring that connects the first semiconductor circuit and the third semiconductor circuit, and A second wiring for connecting the second semiconductor circuit and the third semiconductor circuit is provided.
  • the first wiring is Arranged on the first semiconductor substrate and on the third semiconductor substrate,
  • the second wiring is Arranged on the second semiconductor substrate and on the third semiconductor substrate,
  • the first semiconductor substrate is a logic substrate having a logic circuit as the first semiconductor circuit.
  • the second semiconductor substrate is a first memory substrate having a first memory circuit as the second semiconductor circuit.
  • the third semiconductor substrate is a second memory substrate having a second memory circuit as the third semiconductor circuit.
  • (14) A third semiconductor substrate having a third semiconductor circuit on the third surface, A first wiring for connecting the first semiconductor circuit and the third semiconductor circuit on the first surface side and the third surface side opposite to the side facing the pixel substrate.
  • Prepare, The third surface of the third semiconductor substrate and the one surface of the pixel substrate are joined to each other so as to face each other.
  • the first wiring and the second wiring are It is arranged on the support substrate and on the surface side opposite to the third semiconductor substrate.
  • Solid-state image sensor 10 Logic board 11 Logic circuit 12, 12a, 12h Via 20 Memory board 21 Memory circuit 22, 22a, 22h Via 30 Pixel board 31 Pixel circuit DD, DDb, DD, DDh, DDi wiring SSc, SSj shield

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本開示にかかる固体撮像素子(1)は、第1の半導体回路(11)を第1の面(1A)に有する第1の半導体基板(10)と、第2の半導体回路(21)を第2の面(2A)に有する第2の半導体基板(20)と、画素回路(31)を一方の面に有する画素基板(30)と、を備え、第1の半導体基板(10)、第2の半導体基板(20)、及び画素基板(30)は、第1の半導体基板(10)の第1の面(1A)および第2の半導体基板(20)の第2の面(2A)と、画素基板(30)の一方の面とが対向するよう互いに接合されており、第1の半導体回路(11)と第2の半導体回路(21)とは、画素基板(30)に対向する側とは反対の第1の面(1A)側および第2の面(2A)側で接続される。

Description

固体撮像素子
 本開示は、固体撮像素子に関する。
 複数の半導体基板を積層する3次元実装技術がある。例えば固体撮像素子においては、画素回路が形成された画素基板と、ロジック回路等の半導体回路が形成された半導体基板とが積層される構成が知られている(例えば特許文献1参照)。
特開2010-245506号公報
 特許文献1が開示する構造において、複数の半導体基板を画素基板に積層する場合、半導体基板間を接続する配線が画素回路内の配線に近接することで、クロストーク等の課題が生じる懸念がある。
 そこで、本開示では、配線間のクロストークを抑制し、画素基板におけるノイズを低下させることができる固体撮像素子を提案する。
 本開示にかかる固体撮像素子は、第1の半導体回路を第1の面に有する第1の半導体基板と、第2の半導体回路を第2の面に有する第2の半導体基板と、画素回路を一方の面に有する画素基板と、を備え、前記第1の半導体基板、前記第2の半導体基板、及び前記画素基板は、前記第1の半導体基板の前記第1の面および前記第2の半導体基板の前記第2の面と、前記画素基板の前記一方の面とが対向するよう互いに接合されており、前記第1の半導体回路と前記第2の半導体回路とは、前記画素基板に対向する側とは反対の前記第1の面側および前記第2の面側で接続される。
本開示の実施形態1にかかる固体撮像素子の一部を示す模式図である。 本開示の実施形態1にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態1にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態1にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態1にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態1にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態1にかかる固体撮像素子の製造処理の全体を示すフロー図である。 本開示の比較例にかかる固体撮像素子の一部を示す模式図である。 本開示の実施形態1の変形例1にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態1の変形例1にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態1の変形例2にかかる固体撮像素子の一部を示す模式図である。 本開示の実施形態1の変形例3にかかる固体撮像素子の一部を示す模式図である。 本開示の実施形態1の変形例3にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態1の変形例3にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態1の変形例4にかかる固体撮像素子の一部を示す模式図である。 本開示の実施形態1の変形例5にかかる固体撮像素子の一部を示す模式図である。 本開示の実施形態2にかかる固体撮像素子の一部を示す模式図である。 本開示の実施形態2にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態2にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態2にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態2にかかる固体撮像素子の製造処理の手順の一例を示すフロー図である。 本開示の実施形態2にかかる固体撮像素子の製造処理の全体を示すフロー図である。 本開示の実施形態2の変形例1にかかる固体撮像素子の一部を示す模式図である。 本開示の実施形態2の変形例2にかかる固体撮像素子の一部を示す模式図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
[実施形態1]
 図1~図16を用いて、実施形態1の固体撮像素子について説明する。
(固体撮像素子の構成例)
 図1は、本開示の実施形態1にかかる固体撮像素子1の一部を示す模式図である。図1(a)は、実施形態1にかかる固体撮像素子1の一部を示す断面図であり、(b)は実施形態1にかかる固体撮像素子1の一部を示す支持基板40側から見た平面図である。ただし、図1(b)において、支持基板40は省略されている。
 図1に示すように、固体撮像素子1は、第1の半導体基板としてのロジック基板10、第2の半導体基板としてのメモリ基板20、および画素基板30を備える。ロジック基板10の第1の面としての面1A及びメモリ基板20の第2の面としての面2Aと、画素基板30の一方の面としての面3Aとは対向するように配置され、ロジック基板10、メモリ基板20、及び画素基板30は、互いに対向する面側の接合面JS13,JS23で接合されている。ロジック基板10及びメモリ基板20の画素基板30に対向する側とは反対側には、さらに支持基板40が接合されている。これらのロジック基板10、メモリ基板20、画素基板30、及び支持基板40は、例えばシリコン基板等である。
 画素基板30は、ロジック基板10及びメモリ基板20と対向する面3Aに、配線D31,D32、図示しない画素トランジスタ等を含む画素回路31を有する。画素回路31は、画素基板30上の絶縁層33中に積層されている。配線D31,D32は例えばCu配線等である。画素基板30は、基板中に図示しない光電変換素子を有する。画素基板30は、面3Aとは反対側の面3Bに、カラーフィルタCF及びオンチップレンズOCLを有する。オンチップレンズOCLは照射された光を集光し、集光された光はカラーフィルタCFを介して光電変換素子へと導かれる。光電変換素子は、光電変換により、受光した光を受光した光量に応じた電気信号に変換する。画素回路31は、光電変換素子からの電気信号を読み出してロジック基板10側へ出力する。
 ロジック基板10は、画素基板30と対向する面1Aに、配線D11,D12、図示しない論理素子等を含む第1の半導体回路としてのロジック回路11を有する。ロジック回路11は、ロジック基板10上の絶縁層13中に積層されている。配線D11,D12は例えばCu配線等である。ロジック回路11は、画素基板30から出力された電気信号を処理する。ロジック回路11は、画素回路31が備える配線D32に接続される電極パッドP3と、ロジック回路11が備える配線D12に接続される電極パッドP1とにより、画素回路31に電気的に接続される。電極パッドP1,P3は例えばCu等により構成される。
 メモリ基板20は、画素基板30と対向する面2Aに、配線D21,D22、図示しない記憶素子等を含む第2の半導体回路としてのメモリ回路21を有する。メモリ回路21は、メモリ基板20上の絶縁層23中に積層されている。配線D21,D22は例えばCu配線等である。メモリ回路21は、固体撮像素子1の機能に必要な種々のデータを保持する。メモリ回路21は、画素回路31が備える配線D32に接続される電極パッドP3と、メモリ回路21が備える配線D22に接続される電極パッドP2とにより、画素回路31に電気的に接続される。電極パッドP2は例えばCu等により構成される。
 ロジック回路11とメモリ回路21とは、画素基板30に対向する側とは反対側の面1B,2B側で接続される。より具体的には、ロジック基板10とメモリ基板20とは、ロジック基板10を貫通する第1のビアとしてのビア12、メモリ基板20を貫通する第2のビアとしてのビア22、及びビア12,22を接続する配線層中の配線DDによって接続される。ビア12,22及び配線DDは、例えばCu等により構成される。ビア12,22は、それぞれロジック基板10及びメモリ基板20を貫通して設けられるTSV(Through Silicon Via)である。ビア12,22は、例えば面1A,2A側から面1B,2B側へと径が拡大していく逆テーパ形状を有する。配線DDが配置される配線層は、後述するように、例えばめっき技術により形成される再配線層(RDL:Redistribution Layer)である。配線DDは、ロジック基板10の面1B上と、メモリ基板20の面2B上と、ロジック基板10及びメモリ基板20の間を埋める絶縁層53上とに配置される。
 図1(b)に示すように、ロジック基板10とメモリ基板20とは複数の配線DDによって接続されてよい。複数の配線DDは、例えば互いに並行に配列されていてよい。
 支持基板40は、ロジック基板10の面1B及びメモリ基板20の面2Bに対向する面4A、及び面4Aとは反対側の面4Bを有する。支持基板40は、絶縁層43を介して、ロジック基板10及びメモリ基板20に接合面JS14,JS24で接合されている。
(固体撮像素子の製造処理の例)
 次に、図2~図7を用いて、実施形態1の固体撮像素子1の製造処理の例について説明する。図2~図6は、本開示の実施形態1にかかる固体撮像素子1の製造処理の手順の一例を示すフロー図である。
 図2(a)に示すように、メモリ回路21が絶縁層23中に積層されたメモリ基板20を形成する。メモリ基板20は、配線D21,D22,電極パッドP2等の形成後、研削され薄化されている。
 図2(b)に示すように、ロジック回路11が絶縁層13中に積層されたロジック基板10を形成する。ロジック基板10は、配線D11,D12,電極パッドP1等の形成後、研削され薄化されている。
 図2(c)に示すように、画素回路31が絶縁層33中に積層された画素基板30を形成する。画素基板30には、配線D31,D32,電極パッドP3等が形成されている。画素基板30も研削され薄化されていてもよい。
 なお、ロジック基板10、メモリ基板20、及び画素基板30の形成順は問わない。
 図2(d)に示すように、ロジック基板10の面1A及びメモリ基板20の面2Aと、画素基板30の面3Aとが対向するように、ロジック基板10及びメモリ基板20を画素基板30に貼り合わせる。
 図3(a)に示すように、上記により、ロジック基板10が、電極パッドP1,P3により接合面JS13で画素基板30に接合される。また、メモリ基板20が、電極パッドP2,P3により接合面JS23で画素基板30に接合される。電極パッドP1,P3及び電極パッドP2,P3は例えばCu-Cu接合されている。
 例えばCVD(Chemical Vapor Deposition)法により、ロジック基板10とメモリ基板20との間を埋める絶縁層53を形成し、例えばCMP(Chemical Mechanical Polishing)法により絶縁層53を平坦化する。
 図3(b)に示すように、面1B側からロジック基板10を貫通し、例えば配線D11に到達する貫通孔H12を形成する。また、面2B側からメモリ基板20を貫通し、例えば配線D21に到達する貫通孔H22を形成する。これらの貫通孔12,22は、面1B,2B側から面1A,2A側へと径が縮小していくテーパ形状となりやすい。
 図3(c)に示すように、貫通孔H12にCu等の導電材を充填して、ロジック基板10を貫通し、例えば配線D11に接続されるビア12を形成する。また、貫通孔H22にCu等の導電材を充填して、メモリ基板20を貫通し、例えば配線D21に接続されるビア22を形成する。例えば面1B,2B側から面1A,2A側へと径が縮小していくテーパ形状を有することで、ビア12,22が面1B,2B側から形成されたことが判る。
 図4(a)に示すように、ロジック基板10の面1B上およびメモリ基板20の面2B上に樹脂60を形成する。樹脂60は、ロジック基板10のビア12及びメモリ基板20のビア22を含む領域に溝パターン60trを有する。
 図4(b)に示すように、樹脂60が有する溝パターン60tr内に、例えばめっき法によりCu等の導電材を充填し、配線DDを形成する。
 図4(c)に示すように、樹脂60を剥離する。これにより、再配線層における配線DDが形成される。なお、再配線層の形成には、溝パターン60trを有する樹脂60の代わりに、溝パターンを有する絶縁層等を用いることもできる。
 図5(a)に示すように、配線DDを覆うように、ロジック基板10の面1B上およびメモリ基板20の面2B上に絶縁層43を形成する。
 図5(b)に示すように、ロジック基板10の面1B及びメモリ基板20の面2Bと、支持基板40の面4Aとが対向するように、ロジック基板10及びメモリ基板20を支持基板40に貼り合わせる。
 図6(a)に示すように、上記により、ロジック基板10が、絶縁層43を介して接合面JS14で支持基板40に接合される。また、メモリ基板20が、絶縁層43を介して接合面JS24で支持基板40に接合される。
 図6(b)に示すように、画素基板30の面3Bに、カラーフィルタCF及びオンチップレンズOCLを形成する。
 図7に、実施形態1の固体撮像素子1の製造処理の全体のフローを示す。図7は、本開示の実施形態1にかかる固体撮像素子1の製造処理の全体を示すフロー図である。
 図7に示すように、画素基板30、ロジック基板10、及びメモリ基板20の表面プロセスにより、それぞれ画素回路31、ロジック回路11、及びメモリ回路21が形成される。その後、ロジック基板10及びメモリ基板20の裏面、つまり面1B,2Bが研削される。
 次に、画素基板30に対して、ロジック基板10とメモリ基板20とが貼り合わされる。
 次に、ロジック基板10及びメモリ基板20の裏面プロセスにより、ロジック基板10及びメモリ基板20にそれぞれTSVとしてのビア12,22が形成され、さらに、これらのビア12,22を接続する再配線層における配線DDが形成される。
 次に、支持基板40に対して、画素基板30に接合済みのロジック基板10とメモリ基板20とが貼り合わされる。
 次に、画素基板30の裏面プロセスにより、画素基板30にカラーフィルタCF及びオンチップレンズOCLが形成される。
 以上により、実施形態1の固体撮像素子1の製造処理が終了する。
(比較例)
 次に、図8を用いて、比較例の固体撮像素子が有する課題について説明する。図8に示すように、比較例の固体撮像素子は、ロジック回路11’を有するロジック基板10’と、メモリ回路21’を有するメモリ基板20’とが、画素回路31’を有する画素基板30’に接合されている。これらの基板10’,20’,30’は更に支持基板40’により支持されている。ロジック回路11’とメモリ回路21’とは、画素基板30’との接合面側で、電極パッドP1’,P3’、配線DD’、および電極パッドP3’,P2’により電気的に接続されている。配線DD’は画素基板30’側に形成される。
 しかしながら、このような接続手法では、配線DD’と、例えば画素基板30’の配線D31’との距離X’が近接し、クロストークが発生してしまう場合がある。このようなクロストークにより、画素回路31’にノイズが発生し、固体撮像素子の特性が悪化してしまう場合がある。また、配線DD’がロジック回路11’の領域に形成されるため、配線設計におけるレイアウトに制約が生じる。クロストーク抑制のため、配線DD’にシールドを施した場合にはレイアウトの制約はいっそう厳しいものとなる。
 実施形態1の固体撮像素子1によれば、ロジック回路11とメモリ回路21とは、画素基板30に対向する側とは反対の面1B,2B側で接続される。これにより、ロジック回路11とメモリ回路21とを接続する配線DDと、画素基板30の有する配線D31等との距離は、ロジック基板10及びメモリ基板20の厚さ以上の距離隔てられることとなる。よって、配線DD及び配線D31間のクロストークを抑制し、画素回路31におけるノイズを低下させることができる。
 実施形態1の固体撮像素子1によれば、配線DDがロジック基板10の面1B側およびメモリ基板20の面2B側に配置される。これにより、ロジック回路11の領域を用いてロジック回路11とメモリ回路21とを接続する必要が無く配線設計におけるレイアウトの自由度が増す。
 実施形態1の固体撮像素子1によれば、ロジック回路11とメモリ回路21とを接続する配線DDが配置される配線層は、例えばめっき技術により形成される再配線層である。これにより、簡便で安価な手法により配線DDを形成することができる。
(変形例1)
 次に、図9及び図10を用いて、実施形態1の変形例1の固体撮像素子について説明する。変形例1の固体撮像素子は、製造処理の一部手順が上述の実施形態1とは異なる。
 図9(a)に示すように、メモリ回路21が絶縁層23中に積層されたメモリ基板20を形成する。メモリ基板20は、この段階では研削されない。メモリ基板20には、肉厚の基板の途中まで到達するビア22aが設けられている。ビア22aはメモリ基板20の面2A側から形成され(表面プロセス)、配線D21は、その後にビア22aの上面に接続するよう形成される。
 図9(b)に示すように、ロジック回路11が絶縁層13中に積層されたロジック基板10を形成する。ロジック基板10は、この段階では研削されない。ロジック基板10には、肉厚の基板の途中まで到達するビア12aが設けられている。ビア12aはロジック基板10の面1A側から形成され(表面プロセス)、配線D11は、その後にビア12aの上面に接続するよう形成される。
 図9(c)に示すように、画素回路31が絶縁層33中に積層された画素基板30を形成する。ロジック基板10、メモリ基板20、及び画素基板30の形成順は問わない。
 図9(d)に示すように、ロジック基板10の面1A及びメモリ基板20の面2Aと、画素基板30の面3Aとが対向するように、ロジック基板10及びメモリ基板20を画素基板30に貼り合わせる。
 例えばCVD法により、ロジック基板10とメモリ基板20との間を埋める絶縁層53を形成し、例えばCMP法により絶縁層53を平坦化する。
 ロジック基板10、メモリ基板20、及びそれらの間の絶縁層50を研削し、ビア12a,22aの面1B,2B側の端部が露出するまで、ロジック基板10とメモリ基板20とを薄化する。
 これ以降、上述の実施形態1と同様の手順にて変形例1の固体撮像素子を製造する。
 すなわち、図10(a)に示すように、例えば再配線の手法を用いて、ビア12a,22aの面1B,2B側の端部に接続される配線DDを形成する。また、図10(b)に示すように、画素基板30が接合されたロジック基板10とメモリ基板20とを支持基板40に接合し、画素基板30にカラーフィルタCFとオンチップレンズOCLとを形成する。
 以上により、変形例1の固体撮像素子の製造処理が終了する。変形例1の固体撮像素子において、面1A側から形成された第1のビアとしてのビア12aは、例えば面1A側から面1B側へと径が縮小するテーパ形状を有する。また、面2A側から形成された第2のビアとしてのビア22aは、例えば面2A側から面2B側へと径が縮小するテーパ形状を有する。
(変形例2)
 次に、図11を用いて、実施形態1の変形例2の固体撮像素子1bについて説明する。変形例2の固体撮像素子1bは、配線DDbの配置される配線層が再配線層ではない点が上述の実施形態1とは異なる。
 図11に示すように、固体撮像素子1bは、絶縁層43中に積層される配線DDbを有する。より具体的には、配線DDbは、2つのビア部VIと、1つの架橋部CRとを有する。一方のビア部VIの一端はロジック基板10のビア12の面1B側の端部に接続され、他端は架橋部CRの一端に接続される。他方のビア部VIの一端はメモリ基板20のビア22の面2B側の端部に接続され、他端は架橋部CRの他端に接続される。このような構造の配線DDbは、例えばフォトリソグラフィ技術およびドライエッチング技術を用いたダマシン法等により形成される。
 変形例2の固体撮像素子1bによれば、配線DDbは、例えばフォトリソグラフィ技術およびドライエッチング技術により形成される。これにより、より微細な配線DDbを精度よく形成することができ、配線DDbの高集積化が可能となる。
(変形例3)
 次に、図12~図14を用いて、実施形態1の変形例3の固体撮像素子1cについて説明する。変形例3の固体撮像素子1cは、配線DDbに加え、配線DDbの形成手法を適用したシールドSScを更に備える。
 図12に示すように、導電層としてのシールド層中に配置されるシールドSScは、画素基板30のロジック基板10およびメモリ基板20との接合面JS13,JS23と、配線DDbとの間に配置される。シールドSScも、配線DDbと同様、絶縁層43中に積層される。より具体的には、シールドSScは、2つのビア部VIcと、1つの架橋部CRcとを有する。一方のビア部VIcの一端はロジック基板10の面1Bに接続され、他端は架橋部CRcの一端に接続される。他方のビア部VIcの一端はメモリ基板20の面2Bに接続され、他端は架橋部CRcの他端に接続される。このような構造のシールドSScは、配線DDbと同様、例えばフォトリソグラフィ技術およびドライエッチング技術を用いたダマシン法等により形成される。
 配線DDb及びシールドSScは、例えば図13及び図14に示すデュアルダマシン法を用いて形成することができる。図13及び図14に示すフローは、上述の実施形態1の図4のフローの置き換えである。図13及び図14においては、ロジック基板10のビア12の面1B側の端部およびメモリ基板20のビア22の面2B側の端部の付近を拡大して示す。
 図13(a)に示すように、ロジック基板10の面1B上、絶縁層53上、及びメモリ基板20の面2B上に絶縁層43を形成する。このとき、絶縁層43は最終的な厚さよりも薄く形成される。
 図13(b)に示すように、例えばフォトリソグラフィ技術およびドライエッチング技術を用い、絶縁層43を貫通し、それぞれロジック基板10の面1B上およびメモリ基板20の面2B上に到達するホールHLc、及び両端部がそれぞれホールHLcに接続される溝TRcを形成する。
 図13(c)に示すように、例えばCVD法によりホールHLc内および溝TRc内をCu等の導電材で充填し、余分な導電材をCMP法等により除去して、ビア部VIcと架橋部CRcとを有するシールドSScを形成する。
 図14(a)に示すように、シールドSScを覆うように更に絶縁層43を形成する。
 図14(b)に示すように、例えばフォトリソグラフィ技術およびドライエッチング技術を用い、絶縁層43を貫通し、それぞれロジック基板10のビア12上およびメモリ基板20のビア22上に到達するホールHLb、及び両端部がそれぞれホールHLbに接続される溝TRbを形成する。
 図14(c)に示すように、例えばCVD法によりホールHLb内および溝TRb内をCu等の導電材で充填し、余分な導電材をCMP法等により除去して、ビア部VIと架橋部CRとを有する配線DDbを形成する。
 以上により、配線DDb及びシールドSScが形成される。なお、上記の例では、ビア部と架橋部とを一括して形成するデュアルダマシン法を用いたが、ビア部と架橋部とを別々に形成するシングルダマシン法を用いてもよい。
 変形例3の固体撮像素子1cによれば、配線DDbの画素基板30側にシールドSScが配置されている。これにより、画素基板30の配線D31等に対して配線DDbがシールドされ、よりいっそう、配線DDb及び配線D31間のクロストークを抑制し、画素回路31におけるノイズを低下させることができる。
(変形例4)
 次に、図15を用いて、実施形態1の変形例4の固体撮像素子1dについて説明する。変形例4の固体撮像素子1dは、2つの配線DDda,DDdbが交差している点が上述の実施形態1とは異なる。
 図15(a)の平面図に示すように、ロジック基板10とメモリ基板20とを接続する配線DDda,DDdbは互いに交差している。
 図15(b)の斜視図に示すように、このような構成は、一方の配線DDdbを他方の配線DDdaに対して嵩高く形成し、2つの配線DDda,DDdbを立体的に交差させることで得ることができる。
 これらの配線DDda,DDdbは、例えば上述の変形例2,3のように、フォトリソグラフィ技術およびドライエッチング技術により容易に形成することができる。一方の配線DDdaが配置される配線層を実施形態1のようなめっき技術を用いた再配線層としてもよい。または、ビア12,22上に、ビアを更に重ねて形成し、配線DDda,DDdbが配置される配線層の両方を、めっき技術を用いた再配線層としてもよい。
(変形例5)
 上述の実施形態1等では、画素基板30に対し、1つのロジック基板10と、1つのメモリ基板20とを接合することとしたが、これに限られない。以下に、図16を用いて、実施形態1の変形例5の固体撮像素子として、画素基板30に対して、様々に異なる基板を接合した幾つかの例を示す。
 図16(a)に示すように、固体撮像素子1eは、画素基板30に対して、2つのロジック基板10,10eが貼り合わされている。2つのロジック基板10,10eが有するロジック回路同士は、ロジック基板10のビア12と、ロジック基板10eのビア12eと、これらのビア12,12eを繋ぐ配線DDeとにより電気的に接続されている。
 図16(b)に示すように、固体撮像素子1fは、画素基板30に対して、2つのメモリ基板20,20fが貼り合わされている。2つのメモリ基板20,20fが有するメモリ回路同士は、メモリ基板20のビア22と、メモリ基板20fのビア22fと、これらのビア22,22fを繋ぐ配線DDfとにより電気的に接続されている。
 図16(c)に示すように、固体撮像素子1gは、画素基板30に対して、1つのロジック基板10、及び2つのメモリ基板20ga,20gbが貼り合わされている。ロジック基板10のロジック回路およびメモリ基板20gaのメモリ回路は、ロジック基板10のビア12と、メモリ基板20gaのビア22gaと、これらのビア12,22gaを繋ぐ配線DDgaとにより電気的に接続されている。ロジック基板10のロジック回路およびメモリ基板20gbのメモリ回路は、ロジック基板10のビア12と、メモリ基板20gbのビア22gbと、これらのビア12,22gbを繋ぐ配線DDgbとにより電気的に接続されている。メモリ基板20ga及びメモリ基板20gbが有するメモリ回路同士は、メモリ基板20gaのビア22gaと、メモリ基板20gbのビア22gbと、これらのビア22ga,22gbを繋ぐ配線DDgabとにより電気的に接続されている。
 変形例5の固体撮像素子は、上記以外にも種々の基板が任意の数、画素基板30に対して貼り合わされた構成とすることができる。変形例5の固体撮像素子が、配線層に加え、シールド層を有していてもよい。
[実施形態2]
 次に、図17~図24を用いて、実施形態2の固体撮像素子2について説明する。実施形態2の固体撮像素子2は、支持基板40の面4B側に配線DDhを備える点が、上述の実施形態1とは異なる。
(固体撮像素子の構成例)
 図17は、本開示の実施形態2にかかる固体撮像素子2の一部を示す模式図である。図17に示すように、固体撮像素子2は、ロジック基板10およびメモリ基板20に直接的に接合される支持基板40を備える。つまり、ロジック基板20の面1Bと、メモリ基板20の面2Bとは、それぞれ接合面JS14h,JS24hで、支持基板40の面4Aに貼り合わせられている。
 ロジック回路11及びメモリ回路21は、支持基板40及びロジック基板10を貫通する第1のビアとしてのビア12hと、支持基板40及びメモリ基板20を貫通する第2のビアとしてのビア22hと、これらのビア12h,22hを繋ぐ配線DDhにより電気的に接続されている。
 配線DDhは、支持基板40のロジック基板10側およびメモリ基板20側とは反対側の面4B上に配置されている。支持基板40の面4B上には、配線DDhを覆って絶縁層73が配置されている。
(固体撮像素子の製造処理の例)
 次に、図18~図22を用いて、実施形態2の固体撮像素子2の製造処理の例について説明する。図18~図21は、本開示の実施形態2にかかる固体撮像素子2の製造処理の手順の一例を示すフロー図である。
 図18(a)に示すように、ロジック基板10とメモリ基板20とが貼り合わされた画素基板30を形成する。ここまでは、上述の実施形態1の図3(a)までの処理と同様である。
 図18(b)に示すように、画素基板30に貼り合わされたロジック基板10の面1Bとメモリ基板20の面2Bとに、支持基板40の面4Aを貼り合わせる。
 図19(a)に示すように、支持基板40の面4B側から、支持基板40及びロジック基板10を貫通し、例えば配線DD11に到達する貫通孔H12hを形成する。また、支持基板40の面4B側から、支持基板40及びメモリ基板20を貫通し、例えば配線DD21に到達する貫通孔H22hを形成する。
 図19(b)に示すように、貫通孔H12hにCu等の導電材を充填して、支持基板40及びロジック基板10を貫通し、例えば配線D11に接続されるビア12hを形成する。また、貫通孔H22hにCu等の導電材を充填して、支持基板40及びメモリ基板20を貫通し、例えば配線D21に接続されるビア22hを形成する。
 支持基板40の面4B側から形成されたビア12h,22hは、例えば、支持基板40の面4B側から、ロジック基板10の面1A側およびメモリ基板20の面2A側へと径が縮小するテーパ形状となる。
 図20(a)に示すように、支持基板40の面4B上に、ビア12h,22hを含む領域に溝パターン60htrを有する樹脂60hを形成する。そして、溝パターン60htr内に、例えばめっき法によりCu等の導電材を充填し、配線DDhを形成する。
 図20(b)に示すように、樹脂60hを剥離した後、配線DDhを覆うように、支持基板40の面4B上に絶縁層73を形成する。
 図21(a)に示すように、積層された支持基板40、ロジック基板10、メモリ基板20、及び画素基板30を反転させ、支持基板40が下に向き、画素基板30が上に向くよう配置する。
 図21(b)に示すように、画素基板30の面3Bに、カラーフィルタCF及びオンチップレンズOCLを形成する。
 図22に、実施形態2の固体撮像素子2の製造処理の全体のフローを示す。図22は、本開示の実施形態2にかかる固体撮像素子2の製造処理の全体を示すフロー図である。
 図22に示すように、画素基板30に対して、ロジック基板10とメモリ基板20とが貼り合わされるところまでは、上述の実施形態1の処理と同様である。
 次に、画素基板30に貼り合わされたロジック基板10及びメモリ基板20に、支持基板40を接合する。
 次に、支持基板40の裏面プロセスにより、支持基板40、ロジック基板10、及びメモリ基板20にそれぞれTSVとしてのビア12h,22hが形成され、さらに、これらのビア12h,22hを接続する再配線層における配線DDhが支持基板40上に形成される。
 次に、画素基板30の裏面プロセスにより、画素基板30にカラーフィルタCF及びオンチップレンズOCLが形成される。
 以上により、実施形態2の固体撮像素子2の製造処理が終了する。
 実施形態1の固体撮像素子1によれば、ロジック回路11とメモリ回路21とは、支持基板40の面4B側で接続される。これにより、ロジック回路11とメモリ回路21とを接続する配線DDhと、画素基板30の有する配線D31等との距離は、ロジック基板10及びメモリ基板20の厚さに加えて、支持基板40の厚さ以上の距離隔てられることとなる。よって、配線DD及び配線D31間のクロストークをよりいっそう抑制し、画素回路31におけるノイズをよりいっそう低下させることができる。
(変形例1)
 次に、図23を用いて、実施形態2の変形例1の固体撮像素子2iについて説明する。変形例1の固体撮像素子2iは、フォトリソグラフィ技術およびドライエッチング技術により形成された配線DDiを備える。
 図23は、本開示の実施形態2の変形例1にかかる固体撮像素子2iの一部を示す模式図である。図23に示すように、固体撮像素子2iは、上述の実施形態1の変形例2と同様、2つのビア部と1つの架橋部とを有する配線DDiを備える。配線DDiは、絶縁層73中に積層される。配線DDiは、例えばフォトリソグラフィ技術およびドライエッチング技術等により形成される。
 変形例1の固体撮像素子2iによれば、例えばフォトリソグラフィ技術およびドライエッチング技術によって、より微細な配線DDiを精度よく形成することができ、配線DDiの高集積化が可能となる。
(変形例2)
 次に、図24を用いて、実施形態2の変形例2の固体撮像素子2jについて説明する。変形例2の固体撮像素子2jは、配線DDiに加え、配線DDiの形成手法を適用した導電層としてのシールド層中に配置されるシールドSSjを更に備える。
 図24は、本開示の実施形態2の変形例2にかかる固体撮像素子2jの一部を示す模式図である。図24に示すように、固体撮像素子2jは、上述の実施形態1の変形例3と同様、2つのビア部と1つの架橋部とを有するシールド層中に配置されたシールドSSjを備える。シールドSSjもまた、絶縁層73中に積層される。シールドSSjは、配線DDiと同様、例えばフォトリソグラフィ技術およびドライエッチング技術等により形成される。
 変形例2の固体撮像素子2jによれば、配線DDiの画素基板30側に配置されるシールドSScにより、配線DDb及び配線D31間のクロストークを更に抑制し、画素回路31におけるノイズを更に低下させることができる。
(変形例3)
 実施形態2等の固体撮像素子のように、支持基板40上に配線層を有する構成においても、実施形態1の変形例5の構成のように、複数のロジック基板、複数のメモリ基板等、種々の基板が任意の数、画素基板30に対して貼り合わされた構成とすることができる。
 変形例3の固体撮像素子が、支持基板40上の配線層に加え、シールド層を有していてもよい。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があってもよい。
[その他の実施形態]
 なお、本技術は以下のような構成も取ることができる。
(1)
 第1の半導体回路を第1の面に有する第1の半導体基板と、
 第2の半導体回路を第2の面に有する第2の半導体基板と、
 画素回路を一方の面に有する画素基板と、を備え、
 前記第1の半導体基板、前記第2の半導体基板、及び前記画素基板は、
 前記第1の半導体基板の前記第1の面および前記第2の半導体基板の前記第2の面と、前記画素基板の前記一方の面とが対向するよう互いに接合されており、
 前記第1の半導体回路と前記第2の半導体回路とは、前記画素基板に対向する側とは反対の前記第1の面側および前記第2の面側で接続される、
固体撮像素子。
(2)
 前記第1の半導体回路と前記第2の半導体回路とは、
 前記第1の半導体基板を貫通する第1のビア、前記第2の半導体基板を貫通する第2のビア、及び前記第1のビアと前記第2のビアとを接続する配線によって接続される、
前記(1)に記載の固体撮像素子。
(3)
 前記画素基板の前記第1の半導体基板および前記第2の半導体基板との接合面と、前記配線との間にはシールドが配置される、
前記(2)に記載の固体撮像素子。
(4)
 前記配線は、
 前記第1の半導体基板上と前記第2の半導体基板上とに配置される、
前記(2)または(3)に記載の固体撮像素子。
(5)
 前記第1の半導体基板および前記第2の半導体基板の前記画素基板に対向する側とは反対側に接合される支持基板を備え、
 前記第1のビア及び前記第2のビアは、それぞれ前記支持基板を貫通し、
 前記配線は、
 前記支持基板上であって、前記第1の半導体基板および前記第2の半導体基板とは反対の面側に配置される、
前記(2)または(3)に記載の固体撮像素子。
(6)
 前記配線が配置される配線層は、めっき技術により形成される再配線層である、
前記(2)乃至(5)のいずれか1つに記載の固体撮像素子。
(7)
 前記配線が配置される配線層は、フォトリソグラフィ技術およびドライエッチング技術により形成される配線層である、
前記(2)乃至(5)のいずれか1つに記載の固体撮像素子。
(8)
 前記第1の半導体基板は、前記第1の半導体回路としてロジック回路を有するロジック基板であり、
 前記第2の半導体基板は、前記第2の半導体回路としてメモリ回路を有するメモリ基板である、
前記(1)乃至(7)のいずれか1つに記載の固体撮像素子。
(9)
 前記第1の半導体基板は、前記第1の半導体回路として第1のロジック回路を有する第1のロジック基板であり、
 前記第2の半導体基板は、前記第2の半導体回路として第2のロジック回路を有する第2のロジック基板である、
前記(1)乃至(7)のいずれか1つに記載の固体撮像素子。
(10)
 前記第1の半導体基板は、前記第1の半導体回路として第1のメモリ回路を有する第1のメモリ基板であり、
 前記第2の半導体基板は、前記第2の半導体回路として第2のメモリ回路を有する第2のメモリ基板である、
前記(1)乃至(7)のいずれか1つに記載の固体撮像素子。
(11)
 第3の半導体回路を第3の面に有する第3の半導体基板を備え、
 前記第3の半導体基板および前記画素基板は、
 前記第3の半導体基板の前記第3の面と、前記画素基板の前記一方の面とが対向するよう互いに接合されており、
 前記第1の半導体回路と前記第3の半導体回路とは、前記画素基板に対向する側とは反対の前記第1の面側および前記第3の面側で接続され、
 前記第2の半導体回路と前記第3の半導体回路とは、前記画素基板に対向する側とは反対の前記第2の面側および前記第3の面側で接続される、
前記(1)乃至(7)のいずれか1つに記載の固体撮像素子。
(12)
 前記第1の半導体回路と前記第3の半導体回路とを接続する第1の配線と、
 前記第2の半導体回路と前記第3の半導体回路とを接続する第2の配線と、を備え、
 前記第1の配線は、
 前記第1の半導体基板上と前記第3の半導体基板上とに配置され、
 前記第2の配線は、
 前記第2の半導体基板上と前記第3の半導体基板上とに配置される、
前記(11)に記載の固体撮像素子。
(13)
 前記第1の半導体基板は、前記第1の半導体回路としてロジック回路を有するロジック基板であり、
 前記第2の半導体基板は、前記第2の半導体回路として第1のメモリ回路を有する第1のメモリ基板であり、
 前記第3の半導体基板は、前記第3の半導体回路として第2のメモリ回路を有する第2のメモリ基板である、
前記(11)または(12)に記載の固体撮像素子。
(14)
 第3の半導体回路を第3の面に有する第3の半導体基板と、
 前記画素基板に対向する側とは反対の前記第1の面側および前記第3の面側で、前記第1の半導体回路と前記第3の半導体回路とを接続する第1の配線と、
 前記画素基板に対向する側とは反対の前記第2の面側および前記第3の面側で、前記第2の半導体回路と前記第3の半導体回路とを接続する第2の配線と、を備え、
 前記第3の半導体基板の前記第3の面と、前記画素基板の前記一方の面とが対向するよう互いに接合されており、
 前記第1の配線および前記第2の配線は、
 前記支持基板上であって、前記第3の半導体基板とは反対の面側に配置される、
前記(5)に記載の固体撮像素子。
 1,1b,1c,2,2i,2j 固体撮像素子
 10 ロジック基板
 11 ロジック回路
 12,12a,12h ビア
 20 メモリ基板
 21 メモリ回路
 22,22a,22h ビア
 30 画素基板
 31 画素回路
 DD,DDb,DD,DDh,DDi 配線
 SSc,SSj シールド

Claims (14)

  1.  第1の半導体回路を第1の面に有する第1の半導体基板と、
     第2の半導体回路を第2の面に有する第2の半導体基板と、
     画素回路を一方の面に有する画素基板と、を備え、
     前記第1の半導体基板、前記第2の半導体基板、及び前記画素基板は、
     前記第1の半導体基板の前記第1の面および前記第2の半導体基板の前記第2の面と、前記画素基板の前記一方の面とが対向するよう互いに接合されており、
     前記第1の半導体回路と前記第2の半導体回路とは、前記画素基板に対向する側とは反対の前記第1の面側および前記第2の面側で接続される、
    固体撮像素子。
  2.  前記第1の半導体回路と前記第2の半導体回路とは、
     前記第1の半導体基板を貫通する第1のビア、前記第2の半導体基板を貫通する第2のビア、及び前記第1のビアと前記第2のビアとを接続する配線によって接続される、
    請求項1に記載の固体撮像素子。
  3.  前記画素基板の前記第1の半導体基板および前記第2の半導体基板との接合面と、前記配線との間にはシールドが配置される、
    請求項2に記載の固体撮像素子。
  4.  前記配線は、
     前記第1の半導体基板上と前記第2の半導体基板上とに配置される、
    請求項2に記載の固体撮像素子。
  5.  前記第1の半導体基板および前記第2の半導体基板の前記画素基板に対向する側とは反対側に接合される支持基板を備え、
     前記第1のビア及び前記第2のビアは、それぞれ前記支持基板を貫通し、
     前記配線は、
     前記支持基板上であって、前記第1の半導体基板および前記第2の半導体基板とは反対の面側に配置される、
    請求項2に記載の固体撮像素子。
  6.  前記配線が配置される配線層は、めっき技術により形成される再配線層である、
    請求項2に記載の固体撮像素子。
  7.  前記配線が配置される配線層は、フォトリソグラフィ技術およびドライエッチング技術により形成される配線層である、
    請求項2に記載の固体撮像素子。
  8.  前記第1の半導体基板は、前記第1の半導体回路としてロジック回路を有するロジック基板であり、
     前記第2の半導体基板は、前記第2の半導体回路としてメモリ回路を有するメモリ基板である、
    請求項1に記載の固体撮像素子。
  9.  前記第1の半導体基板は、前記第1の半導体回路として第1のロジック回路を有する第1のロジック基板であり、
     前記第2の半導体基板は、前記第2の半導体回路として第2のロジック回路を有する第2のロジック基板である、
    請求項1に記載の固体撮像素子。
  10.  前記第1の半導体基板は、前記第1の半導体回路として第1のメモリ回路を有する第1のメモリ基板であり、
     前記第2の半導体基板は、前記第2の半導体回路として第2のメモリ回路を有する第2のメモリ基板である、
    請求項1に記載の固体撮像素子。
  11.  第3の半導体回路を第3の面に有する第3の半導体基板を備え、
     前記第3の半導体基板および前記画素基板は、
     前記第3の半導体基板の前記第3の面と、前記画素基板の前記一方の面とが対向するよう互いに接合されており、
     前記第1の半導体回路と前記第3の半導体回路とは、前記画素基板に対向する側とは反対の前記第1の面側および前記第3の面側で接続され、
     前記第2の半導体回路と前記第3の半導体回路とは、前記画素基板に対向する側とは反対の前記第2の面側および前記第3の面側で接続される、
    請求項1に記載の固体撮像素子。
  12.  前記第1の半導体回路と前記第3の半導体回路とを接続する第1の配線と、
     前記第2の半導体回路と前記第3の半導体回路とを接続する第2の配線と、を備え、
     前記第1の配線は、
     前記第1の半導体基板上と前記第3の半導体基板上とに配置され、
     前記第2の配線は、
     前記第2の半導体基板上と前記第3の半導体基板上とに配置される、
    請求項11に記載の固体撮像素子。
  13.  前記第1の半導体基板は、前記第1の半導体回路としてロジック回路を有するロジック基板であり、
     前記第2の半導体基板は、前記第2の半導体回路として第1のメモリ回路を有する第1のメモリ基板であり、
     前記第3の半導体基板は、前記第3の半導体回路として第2のメモリ回路を有する第2のメモリ基板である、
    請求項11に記載の固体撮像素子。
  14.  第3の半導体回路を第3の面に有する第3の半導体基板と、
     前記画素基板に対向する側とは反対の前記第1の面側および前記第3の面側で、前記第1の半導体回路と前記第3の半導体回路とを接続する第1の配線と、
     前記画素基板に対向する側とは反対の前記第2の面側および前記第3の面側で、前記第2の半導体回路と前記第3の半導体回路とを接続する第2の配線と、を備え、
     前記第3の半導体基板の前記第3の面と、前記画素基板の前記一方の面とが対向するよう互いに接合されており、
     前記第1の配線および前記第2の配線は、
     前記支持基板上であって、前記第3の半導体基板とは反対の面側に配置される、
    請求項5に記載の固体撮像素子。
PCT/JP2020/009837 2019-03-13 2020-03-06 固体撮像素子 WO2020184478A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/435,286 US20220149102A1 (en) 2019-03-13 2020-03-06 Solid-state imaging element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019045759A JP2020150112A (ja) 2019-03-13 2019-03-13 固体撮像素子
JP2019-045759 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020184478A1 true WO2020184478A1 (ja) 2020-09-17

Family

ID=72427549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009837 WO2020184478A1 (ja) 2019-03-13 2020-03-06 固体撮像素子

Country Status (3)

Country Link
US (1) US20220149102A1 (ja)
JP (1) JP2020150112A (ja)
WO (1) WO2020184478A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020129686A1 (ja) * 2018-12-20 2021-11-04 ソニーセミコンダクタソリューションズ株式会社 裏面照射型の固体撮像装置、および裏面照射型の固体撮像装置の製造方法、撮像装置、並びに電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230395636A1 (en) * 2020-10-26 2023-12-07 Sony Semiconductor Solutions Corporation Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic device
US11910722B2 (en) * 2021-12-06 2024-02-20 International Business Machines Corporation Subtractive top via as a bottom electrode contact for an embedded memory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093313A1 (ja) * 2013-12-16 2015-06-25 ソニー株式会社 半導体素子、半導体素子の製造方法、および電子機器
WO2016098691A1 (ja) * 2014-12-18 2016-06-23 ソニー株式会社 半導体装置、製造方法、電子機器
WO2016152577A1 (ja) * 2015-03-25 2016-09-29 ソニー株式会社 固体撮像装置および電子機器
WO2019021705A1 (ja) * 2017-07-25 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219319A (ja) * 2012-03-16 2013-10-24 Sony Corp 半導体装置、半導体装置の製造方法、半導体ウエハ、及び、電子機器
US10049915B2 (en) * 2015-01-09 2018-08-14 Silicon Genesis Corporation Three dimensional integrated circuit
KR102605618B1 (ko) * 2016-11-14 2023-11-23 삼성전자주식회사 이미지 센서 패키지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093313A1 (ja) * 2013-12-16 2015-06-25 ソニー株式会社 半導体素子、半導体素子の製造方法、および電子機器
WO2016098691A1 (ja) * 2014-12-18 2016-06-23 ソニー株式会社 半導体装置、製造方法、電子機器
WO2016152577A1 (ja) * 2015-03-25 2016-09-29 ソニー株式会社 固体撮像装置および電子機器
WO2019021705A1 (ja) * 2017-07-25 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020129686A1 (ja) * 2018-12-20 2021-11-04 ソニーセミコンダクタソリューションズ株式会社 裏面照射型の固体撮像装置、および裏面照射型の固体撮像装置の製造方法、撮像装置、並びに電子機器

Also Published As

Publication number Publication date
US20220149102A1 (en) 2022-05-12
JP2020150112A (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2020184478A1 (ja) 固体撮像素子
JP6342120B2 (ja) 超薄埋設ダイモジュール及びその製造方法
US8513756B2 (en) Semiconductor package and manufacturing method for a semiconductor package as well as optical module
EP2647046B1 (en) Stacked microelectronic assembly having interposer connecting active chips
US8587126B2 (en) Stacked microelectronic assembly with TSVs formed in stages with plural active chips
WO2005114728A1 (ja) 半導体装置並びに配線基板及びその製造方法
JP2010199129A (ja) 半導体装置及びその製造方法、並びに電子装置
JP2010283035A (ja) 電子部品とその製造方法
JP5147755B2 (ja) 半導体装置及びその製造方法
JP2010140981A (ja) チップ構造、チップ積層構造、半導体パッケージ構造、およびメモリ。
US8350390B2 (en) Wiring substrate and semiconductor device
JP2009117450A (ja) モジュールおよびその製造方法
US7541217B1 (en) Stacked chip structure and fabrication method thereof
US20070054439A1 (en) Multi-chip stack structure
JP2009010260A (ja) 半導体装置
JP6417142B2 (ja) 半導体装置及びその製造方法
JP2008135553A (ja) 基板積層方法及び基板が積層された半導体装置
JPH0338043A (ja) 半導体集積回路装置
US20040256715A1 (en) Wiring board, semiconductor device and process of fabricating wiring board
JP2019067973A (ja) 電子部品内蔵基板及びその製造方法
US9917066B2 (en) Semiconductor device having stacked chips, a re-distribution layer, and penetration electrodes
JP2021530098A (ja) 半導体チップ積層配置、およびそのような半導体チップ積層配置を製造するための半導体チップ
KR101150386B1 (ko) 다층기판 간의 상호 연결 구조 및 그 제조방법
JP6827857B2 (ja) 半導体装置および半導体装置の製造方法
JP2002252309A (ja) 半導体チップのパッケージ構造及びパッケージ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769126

Country of ref document: EP

Kind code of ref document: A1