WO2016152577A1 - 固体撮像装置および電子機器 - Google Patents

固体撮像装置および電子機器 Download PDF

Info

Publication number
WO2016152577A1
WO2016152577A1 PCT/JP2016/057737 JP2016057737W WO2016152577A1 WO 2016152577 A1 WO2016152577 A1 WO 2016152577A1 JP 2016057737 W JP2016057737 W JP 2016057737W WO 2016152577 A1 WO2016152577 A1 WO 2016152577A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
solid
imaging device
state imaging
shield layer
Prior art date
Application number
PCT/JP2016/057737
Other languages
English (en)
French (fr)
Inventor
肇 山岸
田渕 清隆
正喜 岡本
昂志 大井上
石田 実
聖大 日田
一陽 山根
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/559,345 priority Critical patent/US11289525B2/en
Publication of WO2016152577A1 publication Critical patent/WO2016152577A1/ja
Priority to US17/695,481 priority patent/US12046621B2/en
Priority to US18/742,637 priority patent/US20240332335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5225Shielding layers formed together with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/677Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction for reducing the column or line fixed pattern noise
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • the present technology relates to a solid-state imaging device and an electronic device, and particularly to a solid-state imaging device and an electronic device that can improve image quality.
  • mobile terminals such as mobile phones, PDAs (Personal Digital Assistants), notebook PCs (Personal Computers), and tablet PCs
  • an imaging function are also spreading.
  • the solid-state imaging device and the components constituting it have been reduced in size, weight, and thickness.
  • the cost of solid-state imaging devices and parts constituting them is being reduced.
  • a solid-state imaging device for example, a MOS (Metal-Oxide-Semiconductor) type solid-state imaging device
  • a photoelectric conversion unit for example, a MOS (Metal-Oxide-Semiconductor) type solid-state imaging device
  • an amplifier circuit for example, a MOS (Metal-Oxide-Semiconductor) type solid-state imaging device
  • a multilayer wiring layer formed on a light receiving surface side of a silicon substrate, and a color filter or It is configured by forming on-chip microlenses.
  • a cover glass is bonded to the light receiving surface side by a spacer such as an adhesive.
  • a terminal is formed on the opposite side of the light receiving surface.
  • This signal processing device is connected to a signal processing circuit that performs predetermined processing on the output signal.
  • a signal processing circuit that performs predetermined processing on the output signal.
  • Patent Document 1 describes a solid-state imaging device configured by bonding and bonding a first semiconductor substrate including a pixel region and a second semiconductor substrate including a logic circuit. According to such a configuration, a signal can be transmitted at high speed.
  • the pixel region and the logic circuit are formed at a close distance. Therefore, the magnetic field generated in the logic circuit wiring (particularly the power supply line) is applied to the pixel wiring (particularly the signal line) in the pixel region, and an eddy current is generated. As a result, noise is generated in the obtained image.
  • This technology has been made in view of such a situation, and is intended to improve image quality.
  • a solid-state imaging device includes a pixel region in which a plurality of pixels are arranged, a first wiring, a second wiring, and a shield layer, and the second wiring includes the first wiring.
  • the shield layer is formed at least below the first wiring.
  • the shield layer can be made of a material having a relative permeability of 100 or more.
  • the shield layer can be formed between the first wiring and the second wiring.
  • a stacked body in which a first semiconductor substrate and one or more second semiconductor substrates are bonded to each other with the first semiconductor substrate as an uppermost layer is provided, and the first semiconductor substrate includes the pixel region and the The first wiring may be provided, and the second semiconductor substrate may include the second wiring and a logic circuit.
  • the fixed potential can be applied to the shield layer.
  • the shield layer may be formed on the first semiconductor substrate and connected to the GND of the first semiconductor substrate.
  • the shield layer may be formed on the second semiconductor substrate and connected to the GND of the second semiconductor substrate.
  • the first semiconductor substrate has a first electrode connected to the first wiring on a surface on the second semiconductor substrate side, and the second semiconductor substrate is the first semiconductor substrate.
  • a second electrode connected to the second wiring at a position corresponding to the first electrode on the side surface, wherein the first electrode and the second electrode are the first semiconductor.
  • the substrate and the second semiconductor substrate may be electrically connected, and the shield layer may be formed so as to penetrate through the first electrode or the second electrode.
  • the shield layer may be formed in a flat film shape having substantially the same area as the pixel area or a larger area than the pixel area.
  • the shield layer may be formed on the second semiconductor substrate so as to cover the second wiring from above.
  • the shield layer may be formed below the second wiring.
  • the shield layer may be formed so as to be in contact with the lower surface of the second wiring.
  • the shield layer can be divided into a plurality of layers in the same layer.
  • the shield layer may have a hole formed in a part thereof.
  • the shield layer can have an electromagnetic shielding function.
  • An electronic device includes a pixel region in which a plurality of pixels are arranged, a first wiring, a second wiring, and a shield layer, and the second wiring includes the first wiring.
  • the shield layer includes at least a solid-state imaging device formed below the first wiring.
  • a pixel region in which a plurality of pixels are arranged, a first wiring, a second wiring, and a shield layer are provided, and the second wiring is lower than the first wiring.
  • the shield layer is formed at least below the first wiring.
  • FIG. 1 is a block diagram illustrating a configuration example of a solid-state imaging device according to the present technology.
  • the solid-state imaging device 1 is configured as a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the solid-state imaging device 1 includes a pixel region (pixel array) 3 in which a plurality of pixels 2 are regularly arranged in a two-dimensional array on a semiconductor substrate (for example, Si substrate) (not shown), and a peripheral circuit unit.
  • CMOS Complementary Metal Oxide Semiconductor
  • the pixel 2 has a photoelectric conversion unit (for example, a photodiode) and a plurality of pixel transistors (MOS transistors).
  • the plurality of pixel transistors can be constituted by three transistors, for example, a transfer transistor, a reset transistor, and an amplification transistor.
  • the plurality of pixel transistors can be configured by four transistors by adding selection transistors. Since the equivalent circuit of the unit pixel is the same as a general one, detailed description is omitted.
  • the pixel 2 can be configured as one unit pixel or a shared pixel structure.
  • This pixel sharing structure is a structure in which a plurality of photodiodes share transistors other than the floating diffusion and the transfer transistor.
  • the peripheral circuit section has a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, and a control circuit 8.
  • the control circuit 8 receives an input clock and data for instructing an operation mode, and outputs data such as internal information of the solid-state imaging device 1. In addition, the control circuit 8 receives a clock signal and a control signal that serve as a reference for operations of the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6 and the like based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock. Generate. The control circuit 8 inputs these signals to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.
  • the vertical drive circuit 4 is constituted by a shift register, for example.
  • the vertical drive circuit 4 selects a pixel drive wiring, supplies a pulse for driving the pixel to the selected pixel drive wiring, and drives the pixels in units of rows. That is, the vertical drive circuit 4 selectively scans each pixel 2 in the pixel region 3 in the vertical direction sequentially in units of rows.
  • the vertical drive circuit 4 supplies the column signal processing circuit 5 with a pixel signal based on the signal charge generated according to the amount of received light in the photoelectric conversion unit of each pixel 2 through the vertical signal line 9.
  • the column signal processing circuit 5 is arranged for each column of the pixels 2, for example.
  • the column signal processing circuit 5 performs signal processing such as noise removal for each pixel column on the signal output from the pixels 2 for one row.
  • the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) for removing fixed pattern noise unique to the pixel 2, signal amplification, A / D (Analog / Digital) conversion, and the like.
  • CDS Correlated Double Sampling
  • a / D Analog / Digital
  • the horizontal drive circuit 6 is constituted by a shift register, for example.
  • the horizontal drive circuit 6 sequentially selects the column signal processing circuits 5 by sequentially outputting horizontal scanning pulses, and outputs the pixel signals from the column signal processing circuits 5 to the horizontal signal line 10.
  • the output circuit 7 performs signal processing on the signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 10 and outputs the signals.
  • the output circuit 7 may perform only buffering, or may perform black level adjustment, column variation correction, various digital signal processing, and the like.
  • the input / output terminal 12 exchanges signals with the outside.
  • the solid-state imaging device 1 a shown in the upper part of FIG. 2 includes a first semiconductor substrate 21 and a second semiconductor substrate 22.
  • a pixel region 23 and a control circuit 24 are mounted on the first semiconductor substrate 21.
  • a logic circuit 25 including a signal processing circuit is mounted on the second semiconductor substrate 22. Then, the first semiconductor substrate 21 and the second semiconductor substrate 22 are electrically connected to each other, whereby the solid-state imaging device 1a as one semiconductor chip is configured.
  • the solid-state imaging device 1b shown in the middle of FIG. 2 includes a first semiconductor substrate 21 and a second semiconductor substrate 22.
  • a pixel region 23 is mounted on the first semiconductor substrate 21.
  • a control circuit 24 and a logic circuit 25 including a signal processing circuit are mounted on the second semiconductor substrate 22.
  • the first semiconductor substrate 21 and the second semiconductor substrate 22 are electrically connected to each other, whereby the solid-state imaging device 1b as one semiconductor chip is configured.
  • the solid-state imaging device 1c shown in the lower part of FIG. 2 includes a first semiconductor substrate 21 and a second semiconductor substrate 22.
  • a pixel region 23 and a control circuit 24-1 for controlling the pixel region 23 are mounted on the first semiconductor substrate 21.
  • a control circuit 24-2 for controlling the logic circuit 25 and a logic circuit 25 including a signal processing circuit are mounted on the second semiconductor substrate 22.
  • the 1st semiconductor substrate 21 and the 2nd semiconductor substrate 22 are electrically connected mutually, and the solid-state imaging device 1c as one semiconductor chip is comprised.
  • FIG. 3 is a cross-sectional view of the solid-state imaging device 1 according to the first embodiment of the present technology.
  • the solid-state imaging device 1 of the present embodiment shown in FIG. 3 includes a first semiconductor wafer 31 including a pixel region 23 and a logic circuit, like the solid-state imaging device 1a of FIG.
  • the second semiconductor wafer 45 including the first semiconductor wafer 31 is configured as a stacked body bonded with the first semiconductor wafer 31 as an upper layer.
  • the first semiconductor wafer 31 is bonded to the second semiconductor wafer 45 with the back surface facing up. That is, the solid-state imaging device 1 is a stacked back-illuminated solid-state imaging device.
  • the first semiconductor wafer 31 is formed with a multilayer wiring layer 41 composed of a plurality of wirings 40 on the surface side (lower side in the figure).
  • the wiring 40 functions as a signal line that transmits a pixel signal output from each pixel formed in the pixel region 23.
  • the second semiconductor wafer 45 has a multilayer wiring layer 55 formed of a plurality of wirings 53 and wirings 57 having a barrier metal layer 58 on the surface side (upper side in the drawing).
  • the wiring 57 functions as a power supply line connected to the power supply of the second semiconductor wafer 45.
  • first semiconductor wafer 31 and the second semiconductor wafer 45 are bonded together via the adhesive layer 60 so that the multilayer wiring layer 41 and the multilayer wiring layer 55 face each other.
  • first semiconductor wafer 31 and the second semiconductor wafer 45 are electrically connected via a connection conductor 68.
  • connection hole that penetrates the semiconductor well region 32 of the first semiconductor wafer 31 and reaches the required wiring 40 of the multilayer wiring layer 41 is formed.
  • connection conductors 68 whose one ends are connected to each other are embedded in these connection holes. Thereby, the first semiconductor wafer 31 and the second semiconductor wafer 45 are electrically connected.
  • connection conductor 68 The periphery of the connection conductor 68 is covered with an insulating film 67 in order to insulate it from the semiconductor well region 32.
  • the connection conductor 68 is connected to an electrode pad (not shown). Note that the upper portion of the connection conductor 68 may be configured as an electrode pad.
  • a shield layer 81 is formed on the first semiconductor wafer 31 on the surface side (lower side in the figure) of the multilayer wiring layer 41 composed of a plurality of wirings 40.
  • the shield layer 81 is formed of a material having a sufficiently high relative permeability. That is, the shield layer 81 has a magnetic shield function.
  • the shield layer 81 is formed as a single layer film of permalloy (Fe—Ni) having a relative permeability of 100,000.
  • the shield layer 81 may be formed as a laminated film in which permalloy and a Ta-based or Ti-based refractory metal are laminated.
  • the shield layer 81 may be made of a material other than permalloy. Specifically, the shield layer 81 may be formed of a material having a relative permeability of 100 or more, preferably 1,000 or more. For example, as shown in FIG. 4, the shield layer 81 is made of cobalt (relative permeability: 250), nickel (relative permeability: 600), soft iron (relative permeability: 2,000), iron (relative permeability: 5,000). , Silicon steel (relative permeability: 7,000), mu metal (relative permeability: 100,000), pure iron (relative permeability: 200,000), supermalloy (relative permeability: 1,000,000), etc. it can.
  • the shield layer 81 is formed so that its film thickness is 5 nm or more, preferably 20 nm or more. By setting the film thickness of the shield layer 81 to an appropriate film thickness, a shielding performance that can reduce the induced power by about one digit by the function of the magnetic shield can be obtained.
  • the shield layer 81 is formed in a flat film shape that is substantially the same as the pixel region 23 or has a larger area than the pixel region 23. In other words, the shield layer 81 is formed so that the pixel region 23 becomes a shadow when viewed from the second semiconductor wafer 45 side.
  • the shield layer 81 is connected to the GND of the first semiconductor wafer 31.
  • the shield layer 81 is connected to the GND wiring of the first semiconductor wafer 31 through a plurality of vias.
  • the magnetic field generated in the wiring 57 that is the power supply line of the second semiconductor wafer 45 is blocked by the shield layer 81 and applied to the wiring 40 in the pixel region 23 of the first semiconductor wafer 31. Can be prevented. As a result, noise can be avoided in the obtained image, and the image quality can be improved.
  • the first semiconductor wafer 31 that handles analog signals is more susceptible to adverse effects than the logic circuit of the second semiconductor wafer 45. Therefore, by connecting the shield layer 81 to the GND of the first semiconductor wafer 31, the impedance of the GND in the first semiconductor wafer 31 can be lowered. Thereby, the influence from the logic circuit driven with a large current and a high frequency can be further reduced.
  • the shield layer 81 may be connected to the power source of the first semiconductor wafer 31, the power source of the pixel 2 formed in the pixel region 23, or the like.
  • FIG. 5 is a cross-sectional view of the solid-state imaging device 1 according to the second embodiment of the present technology.
  • the solid-state imaging device 1 shown in FIG. 5 basically has the same configuration as the solid-state imaging device 1 shown in FIG. In the solid-state imaging device 1 of FIG. 5, a shield layer 82 is formed on the second semiconductor wafer 45 instead of the shield layer 81 of FIG. 3.
  • a shield layer 82 is formed on the second semiconductor wafer 45 on the surface side (upper side in the drawing) of the multilayer wiring layer 55 composed of a plurality of wirings 53 and wirings 57.
  • the material and film thickness of the shield layer 82 are the same as those of the shield layer 81 of FIG.
  • the shield layer 82 is formed in a flat film shape that is substantially the same as the pixel region 23 or has a larger area than the pixel region 23. In other words, the shield layer 82 is formed so that the pixel region 23 becomes a shadow when viewed from the multilayer wiring layer 55 side.
  • the shield layer 82 is connected to the GND of the third semiconductor wafer 45.
  • the shield layer 82 is connected to the GND wiring of the second semiconductor wafer 45 through a plurality of vias.
  • the magnetic field generated in the wiring 57 that is the power supply line of the second semiconductor wafer 45 is blocked by the shield layer 82 and is prevented from being applied to the multilayer wiring layer 41 of the first semiconductor wafer 31. be able to. As a result, noise can be avoided in the obtained image, and the image quality can be improved.
  • the second semiconductor wafer 45 including the logic circuit has a larger current consumption than the first semiconductor wafer 31.
  • the shield layer 82 to the GND of the second semiconductor wafer 45, the impedance of the GND in the second semiconductor wafer 45 can be lowered.
  • the shield layer 82 may be connected to, for example, the power source of the second semiconductor wafer 45.
  • FIG. 6 is a cross-sectional view of the solid-state imaging device 1 according to the third embodiment of the present technology.
  • the solid-state imaging device 1 shown in FIG. 6 basically has the same configuration as the solid-state imaging device 1 shown in FIG. In the solid-state imaging device 1 of FIG. 6, the shield layer 82 described with reference to FIG. 5 is formed in addition to the configuration of FIG. 3.
  • the magnetic field generated in the wiring 57 that is the power supply line of the second semiconductor wafer 45 is blocked by the shield layers 81 and 82 and applied to the multilayer wiring layer 41 of the first semiconductor wafer 31. Can be prevented. As a result, noise can be avoided in the obtained image, and the image quality can be improved.
  • the number of vias connecting the shield layer 81 and the GND wiring of the first semiconductor wafer 31 is equal to the number of vias connecting the shield layer 82 and the GND wiring of the second semiconductor wafer 45. More than the number of vias to be connected.
  • the number of vias connecting the shield layer 82 and the GND wiring of the second semiconductor wafer 45 is equal to the GND wiring of the shield layer 81 and the first semiconductor wafer 31. More than the number of vias that connect to each other.
  • FIG. 8 is a cross-sectional view of the solid-state imaging device 1 according to the fourth embodiment of the present technology.
  • the solid-state imaging device 1 shown in FIG. 8 basically has the same configuration as the solid-state imaging device 1 shown in FIG. In the solid-state imaging device 1 of FIG. 8, in addition to the configuration of FIG. 3, a Cu electrode 91 is formed on the first semiconductor wafer 31, and a Cu electrode 92 is formed on the second semiconductor wafer 45.
  • the Cu electrode 91 is formed on the surface of the first semiconductor wafer 31 on the second semiconductor wafer 45 side, and is connected to the wiring 40 of the multilayer wiring layer 41.
  • the Cu electrode 92 is formed in the second semiconductor wafer 45 at a position corresponding to the Cu electrode 91 on the surface on the first semiconductor wafer 31 side, and is connected to the wiring 57 of the multilayer wiring layer 55.
  • the Cu electrode 91 and the Cu electrode 92 are electrically connected by bonding the first semiconductor wafer 31 and the second semiconductor wafer 45 together. That is, the Cu electrode 91 and the Cu electrode 92 electrically connect the first semiconductor wafer 31 and the second semiconductor wafer 45.
  • the shield layer 81 is formed so as to penetrate the Cu electrode 91.
  • the shield layer 81 has a plurality of through holes.
  • the shield layer 81 is not connected to the GND of the first semiconductor wafer 31 in the pixel region 23 but is connected to the GND of the first semiconductor wafer 31 outside the pixel region 23.
  • the magnetic field generated in the wiring 57 that is the power supply line of the second semiconductor wafer 45 is blocked by the shield layer 81 and is prevented from being applied to the multilayer wiring layer 41 of the first semiconductor wafer 31. be able to. As a result, noise can be avoided in the obtained image, and the image quality can be improved.
  • the shield layer 81 is not connected to the GND of the first semiconductor wafer 31, thereby suppressing radiation noise generated around the through hole when the GND current flows when connected to the GND. can do.
  • the Cu electrode 91 and the Cu electrode 92 are provided in addition to the configuration of FIG. 3.
  • the Cu electrode 91 and the Cu electrode 92 are provided in addition to the configuration of FIG. It may be.
  • the shield layer 81 and the shield layer 82 are not connected to the GND of the first semiconductor wafer 31 or the second semiconductor wafer 45 in the pixel region 23, and the first semiconductor wafer 31 is outside the pixel region 23. And connected to the GND of the second semiconductor wafer 45.
  • FIG. 9 is a cross-sectional view of the solid-state imaging device 1 according to the fifth embodiment of the present technology.
  • the solid-state imaging device 1 shown in FIG. 9 basically has the same configuration as the solid-state imaging device 1 shown in FIG. In the solid-state imaging device 1 of FIG. 9, a shield layer 101 is formed on the second semiconductor wafer 45 instead of the shield layer 81 of FIG. 3.
  • the shield layer 101 is formed in the second semiconductor wafer 45 so as to cover the wiring 57 from above (from the first semiconductor wafer 31 side).
  • the shield layer 101 is formed so as to be in contact with the wiring 57, but may be formed so as not to be in contact with the wiring 57.
  • the magnetic field generated in the wiring 57 that is the power supply line of the second semiconductor wafer 45 is blocked by the shield layer 101 and is prevented from being applied to the multilayer wiring layer 41 of the first semiconductor wafer 31. be able to. As a result, noise can be avoided in the obtained image, and the image quality can be improved.
  • FIG. 10 is a cross-sectional view of the solid-state imaging device 1 according to the sixth embodiment of the present technology.
  • the solid-state imaging device 1 shown in FIG. 10 basically has the same configuration as the solid-state imaging device 1 shown in FIG. In the solid-state imaging device 1 in FIG. 10, a shield layer 102 is formed on the second semiconductor wafer 45 instead of the shield layer 81 in FIG. 3.
  • the shield layer 102 is formed below the wiring 57 in the second semiconductor wafer 45. Specifically, the shield layer 102 is formed in contact with the lower surface of the wiring 57. In the second semiconductor wafer 45, a barrier metal layer 58 made of a refractory metal such as Ta or Ti is laminated on the shield layer 102.
  • the magnetic field generated in the wiring 57 that is the power supply line of the second semiconductor wafer 45 is weakened by the shield layer 102 and is prevented from being applied to the multilayer wiring layer 41 of the first semiconductor wafer 31. be able to. As a result, noise can be avoided in the obtained image, and the image quality can be improved.
  • FIG. 12 is a cross-sectional view of the solid-state imaging device 1 according to the seventh embodiment of the present technology.
  • the solid-state imaging device 1 shown in FIG. 12 has basically the same configuration as the solid-state imaging device 1 shown in FIG. In the solid-state imaging device 1 of FIG. 12, a shield layer 103 is formed on the second semiconductor wafer 45 instead of the shield layer 81 of FIG.
  • the shield layer 103 is formed below the wiring 57 in the second semiconductor wafer 45. Specifically, the shield layer 103 is formed between the wiring 57 and the wiring 53 so as not to be connected to the wiring 57 (insulated from the wiring 57).
  • the shield layer 103 may be divided into a plurality of parts in the same layer, or may have a hole formed in a part thereof.
  • the magnetic field generated in the wiring 57 that is the power supply line of the second semiconductor wafer 45 is weakened by the shield layer 103 and is prevented from being applied to the multilayer wiring layer 41 of the first semiconductor wafer 31. be able to. As a result, noise can be avoided in the obtained image, and the image quality can be improved.
  • FIG. 13 is a cross-sectional view of the solid-state imaging device 1 according to the eighth embodiment of the present technology.
  • the solid-state imaging device 1 shown in FIG. 13 basically has the same configuration as the solid-state imaging device 1 shown in FIG. In the solid-state imaging device 1 of FIG. 13, a shield layer 104 is formed on the second semiconductor wafer 45 instead of the shield layer 81 of FIG. 3.
  • the shield layer 104 is formed below the wiring 57 in the second semiconductor wafer 45. Specifically, the shield layer 104 is formed on the back side of the semiconductor well region 46.
  • the magnetic field generated in the wiring 57 that is the power supply line of the second semiconductor wafer 45 is weakened by the shield layer 104 and is prevented from being applied to the multilayer wiring layer 41 of the first semiconductor wafer 31. be able to. As a result, noise can be avoided in the obtained image, and the image quality can be improved.
  • the shield layer has a magnetic shield function, but the shield layer may have an electromagnetic shield function.
  • the shield layer is formed of a conductive metal.
  • a first semiconductor substrate is formed.
  • an image sensor in a semi-finished product state that is, a pixel region 23 is formed in each chip portion of a first semiconductor wafer (hereinafter referred to as a first semiconductor substrate) 31.
  • a control circuit 24 is formed.
  • a photodiode (PD) serving as a photoelectric conversion unit of each pixel is formed in a region serving as each chip unit of the first semiconductor substrate 31 formed of a Si substrate.
  • a source / drain region 33 of each pixel transistor is formed in the semiconductor well region 32.
  • the semiconductor well region 32 is formed by introducing a first conductivity type, for example, a p-type impurity, and the source / drain region 33 is formed by introducing a second conductivity type, for example, an n-type impurity.
  • the PD and the source / drain region 33 of each pixel transistor are formed by ion implantation from the substrate surface.
  • PD is formed of an n-type semiconductor region 34 and a p-type semiconductor region 35 on the substrate surface side.
  • a gate electrode 36 is formed on the surface of the substrate constituting the pixel via a gate insulating film.
  • Pixel transistors Tr 1 and Tr 2 are formed by the gate electrode 36 and the pair of source / drain regions 33.
  • a plurality of pixel transistors are represented by two pixel transistors Tr1 and Tr2.
  • the pixel transistor Tr1 adjacent to the PD corresponds to the transfer transistor, and the source / drain region 33 corresponds to the floating diffusion (FD).
  • Each pixel is separated by an element isolation region 38.
  • MOS transistor constituting the control circuit is formed on the first semiconductor substrate 31.
  • the MOS transistors constituting the control circuit 24 are representatively shown as MOS transistors Tr3 and Tr4.
  • Each of the MOS transistors Tr3 and Tr4 is formed by an n-type source / drain region 33 and a gate electrode 36 formed through a gate insulating film.
  • an interlayer insulating film 39 is formed on the surface of the first semiconductor substrate 31. Thereafter, a connection hole is formed in the interlayer insulating film 39, and a connection conductor 44 connected to a predetermined transistor is formed.
  • the connection conductor 44 When forming the connection conductor 44, first, the first insulating thin film 43a is formed on the entire surface including the upper surface of the transistor, for example, with a silicon oxide film. Next, a second insulating thin film 43b serving as an etching stopper is formed and stacked with, for example, a silicon nitride film. Then, an interlayer insulating film 39 is formed on the second insulating thin film 43b.
  • connection holes having different depths are selectively formed in the interlayer insulating film 39 up to the second insulating thin film 43b serving as an etching stopper.
  • the first insulating thin film 43a and the second insulating thin film 43b having the same film thickness are selectively etched in each part so as to be continuous with each connection hole, thereby forming a connection hole.
  • a connection conductor 44 is embedded in each connection hole.
  • a multilayer wiring layer 41 is formed by forming a plurality of layers (three layers in this example) of the wirings 40 so as to be connected to the respective connection conductors 44 through the interlayer insulating film 39.
  • the wiring 40 is formed by, for example, Cu wiring.
  • the pixel transistor of each pixel and the MOS transistor of the control circuit are connected to a required wiring 40 via a connection conductor 44.
  • the wiring 40 is formed of Cu wiring.
  • the wiring 40 may be formed of metal wiring using other metal materials.
  • the shield layer 81 is formed on the multilayer wiring layer 41 so as to cover the pixel region 23.
  • the shield layer 81 is formed as a single layer film of permalloy, for example.
  • Permalloy patterning is performed by combining photolithography and dry etching. Note that wet etching may be used instead of dry etching.
  • the first semiconductor substrate 31 having the semi-finished pixel region 23 and the control circuit 24 is formed through the above steps.
  • a plurality of MOS transistors constituting the logic circuit 25 are formed in the p-type semiconductor well region 46 on the surface side of the second semiconductor substrate 45 so as to be isolated by the element isolation region 50.
  • a plurality of MOS transistors are represented by MOS transistors Tr6, Tr7, Tr8.
  • Each of the MOS transistors Tr6, Tr7, Tr8 is formed having a pair of n-type source / drain regions 47 and a gate electrode 48 formed through a gate insulating film.
  • the logic circuit 25 can be composed of a CMOS transistor.
  • an interlayer insulating film 49 is formed on the surface of the second semiconductor substrate 45. Thereafter, a connection hole is formed in the interlayer insulating film 49, and a connection conductor 54 connected to a predetermined transistor is formed.
  • the first insulating thin film 43a is formed of, for example, a silicon oxide film on the entire surface including the upper surface of the transistor, as described above.
  • a second insulating thin film 43b serving as an etching stopper is formed and stacked with, for example, a silicon nitride film.
  • an interlayer insulating film 49 is formed on the second insulating thin film 43b.
  • connection holes having different depths are selectively formed in the interlayer insulating film 49 up to the second insulating thin film 43b serving as an etching stopper.
  • the first insulating thin film 43a and the second insulating thin film 43b having the same film thickness are selectively etched in each part so as to be continuous with each connection hole, thereby forming a connection hole.
  • a connection conductor 54 is embedded in each connection hole.
  • the formation of the interlayer insulating film 49 and the formation of a plurality of layers of metal wiring are repeated, whereby the multilayer wiring layer 55 is formed.
  • the three-layer wiring 53 and the wiring 57 are formed in the same manner as the step of forming the multilayer wiring layer 41 formed on the first semiconductor substrate 31.
  • the wiring 53 is formed of, for example, Cu wiring
  • the wiring 57 is formed of, for example, Al wiring.
  • a stress correction film 59 is formed on the multilayer wiring layer 55 to reduce stress when the first semiconductor substrate 31 and the second semiconductor substrate 45 are bonded together.
  • the second semiconductor substrate 45 having the semi-finished logic circuit is formed through the above steps.
  • the first semiconductor substrate and the second semiconductor substrate are bonded together.
  • the first semiconductor substrate 31 and the second semiconductor substrate 45 are bonded so that the multilayer wiring layer 41 and the multilayer wiring layer 55 face each other.
  • the bonding is performed with an adhesive, for example.
  • the adhesive layer 60 is formed on one side of the bonding surface of the first semiconductor substrate 31 or the second semiconductor substrate 45. And both are overlapped and bonded via this adhesive layer 60.
  • the first semiconductor substrate 31 in which the pixel region is configured is disposed in the upper layer
  • the second semiconductor substrate 45 is disposed in the lower layer and bonded together.
  • the first semiconductor substrate 31 and the second semiconductor substrate 45 are bonded to each other through the adhesive layer 60.
  • the first semiconductor substrate 31 and the second semiconductor substrate 45 may be bonded by plasma bonding. Good.
  • the first semiconductor substrate 31 and the second semiconductor substrate 45 are laminated and bonded to each other, thereby forming a stacked body including two different substrates.
  • an antireflection film 61, an insulating film 62, and a light shielding film 63 are formed on the back surface of the semiconductor well region 32.
  • connection conductor 68 is formed.
  • connection hole that penetrates the semiconductor well region 32 of the first semiconductor substrate 31 and reaches the required wiring 40 of the multilayer wiring layer 41 is formed.
  • An insulating film 67 is formed in these connection holes.
  • the connection conductor 68 is formed by embedding metal in the connection hole.
  • a waveguide 70 made of a waveguide material film (eg, SiN film) 69 is formed in the region corresponding to the PD of the insulating film 62.
  • a cap film 72 is formed on the upper layer of the connection conductor 68. Further, a planarizing film 71, a color filter 73, and an on-chip microlens 74 are formed.
  • the stacked body formed by stacking the two semiconductor substrates is then diced to be divided into each chip portion, thereby completing the solid-state imaging device of the present embodiment.
  • the shield layer 81 is formed so that the pixel region 23 becomes a shadow when viewed from the second semiconductor wafer 45 side. Therefore, the magnetic field generated in the wiring 57 that is the power supply line of the second semiconductor wafer 45 is blocked by the shield layer 81 and can be prevented from being applied to the multilayer wiring layer 41 of the first semiconductor wafer 31. As a result, noise can be avoided in the obtained image, and the image quality can be improved.
  • the configuration for electrically connecting the first semiconductor substrate and the second semiconductor substrate is not limited to the above-described configuration, and may be another configuration.
  • the second semiconductor substrate including the logic circuit is configured by one layer, but may be configured by two or more layers. That is, the present technology can also be applied to a solid-state imaging device composed of a laminate of three or more layers, with the first semiconductor substrate as the uppermost layer.
  • the imaging apparatus refers to a camera system such as a digital still camera or a digital video camera, or an electronic apparatus having an imaging function such as a mobile phone.
  • a module-like form mounted on an electronic device that is, a camera module is used as an imaging device.
  • the electronic device 200 shown in FIG. 18 includes an optical lens 201, a shutter device 202, a solid-state imaging device 203, a drive circuit 204, and a signal processing circuit 205.
  • FIG. 18 shows an embodiment in which the above-described solid-state imaging device 1 of the present technology is provided in an electronic apparatus (digital still camera) as the solid-state imaging device 203.
  • the optical lens 201 forms image light (incident light) from the subject on the imaging surface of the solid-state imaging device 203. Thereby, the signal charge is accumulated in the solid-state imaging device 203 for a certain period.
  • the shutter device 202 controls the light irradiation period and the light shielding period for the solid-state imaging device 203.
  • the drive circuit 204 supplies drive signals to the shutter device 202 and the solid-state imaging device 203.
  • the drive signal supplied to the shutter device 202 is a signal for controlling the shutter operation of the shutter device 202.
  • the drive signal supplied to the solid-state imaging device 203 is a signal for controlling the signal transfer operation of the solid-state imaging device 203.
  • the solid-state imaging device 203 performs signal transfer using a drive signal (timing signal) supplied from the drive circuit 204.
  • the signal processing circuit 205 performs various signal processing on the signal output from the solid-state imaging device 203.
  • the video signal subjected to the signal processing is stored in a storage medium such as a memory or output to a monitor.
  • the image quality can be improved in the solid-state imaging device 203, and as a result, an electronic device that can obtain a high-quality image can be provided.
  • FIG. 19 is a diagram showing a usage example of the image sensor described above.
  • the image sensor described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows.
  • Devices for taking images for viewing such as digital cameras and mobile devices with camera functions
  • Devices used for traffic such as in-vehicle sensors that capture the back, surroundings, and interiors of vehicles, surveillance cameras that monitor traveling vehicles and roads, and ranging sensors that measure distances between vehicles, etc.
  • Equipment used for home appliances such as TVs, refrigerators, air conditioners, etc. to take pictures and operate the equipment according to the gestures
  • Equipment used for medical and health care
  • Security equipment such as security surveillance cameras and personal authentication cameras
  • Skin measuring instrument for photographing skin and scalp photography Such as a microscope to do beauty Equipment used for sports such as action cameras and wearable cameras for sports applications etc.
  • Equipment used for agriculture such as cameras for monitoring the condition of fields and crops
  • this technique can take the following structures.
  • the first semiconductor substrate includes the pixel region and the first wiring,
  • the shield layer is Formed on the first semiconductor substrate;
  • the shield layer is Formed on the second semiconductor substrate;
  • the first semiconductor substrate has a first electrode connected to the first wiring on a surface on the second semiconductor substrate side,
  • the second semiconductor substrate has a second electrode connected to the second wiring at a position corresponding to the first electrode on the surface of the first semiconductor substrate;
  • the first electrode and the second electrode electrically connect the first semiconductor substrate and the second semiconductor substrate,
  • the solid-state imaging device according to any one of (4) to (7), wherein the shield layer is formed so as to penetrate through the first electrode or the second electrode.
  • the shield layer is formed in a flat film shape that is substantially the same as the pixel region or has a larger area than the pixel region.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Geometry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 本技術は、画質を向上させることができるようにする固体撮像装置および電子機器に関する。 固体撮像装置は、複数の画素が配列された画素領域と、第1の配線と、第2の配線と、シールド層とを備える。第2の配線は、第1の配線より下層に形成され、シールド層は、少なくとも第1の配線より下層に形成される。本技術は、例えばCMOSイメージセンサに適用することができる。

Description

固体撮像装置および電子機器
 本技術は、固体撮像装置および電子機器に関し、特に、画質を向上させることができるようにする固体撮像装置および電子機器に関する。
 近年、デジタルカメラの普及がますます進んでいる。これに伴い、デジタルカメラの中心部品である固体撮像装置(イメージセンサ)の需要がますます高まっている。固体撮像装置の性能面においては、高画質化および高機能化を実現するための技術開発が進められている。
 一方で、撮像機能を有する携帯端末(携帯電話機、PDA(Personal Digital Assistant)、ノートPC(Personal Computer)やタブレットPC等)の普及も進んでいる。これに伴い、これら携帯端末の携帯性を高めるために、固体撮像装置やそれを構成する部品の小型化、軽量化、および薄型化が進められている。さらに、これら携帯端末の普及拡大のために、固体撮像装置やそれを構成する部品の低コスト化も進められている。
 一般的に、固体撮像装置(例えば、MOS(Metal Oxide Semiconductor)型固体撮像装置)は、シリコン基板の受光面側に光電変換部や増幅回路、多層配線層を形成し、その上にカラーフィルタやオンチップマイクロレンズを形成することで構成される。さらに、その受光面側には、接着剤等のスペーサによりカバーガラスが貼り合わせられる。また、その受光面の反対側には、端子が形成される。
 この固体撮像装置には、出力される信号に対して所定の処理を行う信号処理回路が接続される。固体撮像装置の多機能化に伴い、信号処理回路で行われる処理は増える傾向にある。
 このように複数のチップが接続された構成を小型化するために、様々な手段が講じられている。例えば、SiP(System in Package)技術により、複数のチップを1つのパッケージ内に封止することが行われている。これにより、実装面積を小さくすることができ、全体の構成の小型化を実現することができる。しかしながら、SiPでは、チップ間を接続する配線によって伝送距離が長くなり、高速動作が妨げられるおそれがある。
 ところで、例えば特許文献1には、画素領域を含む第1の半導体基板と、ロジック回路を含む第2の半導体基板とを貼り合わせて接合することで構成された固体撮像装置が記載されている。このような構成によれば、信号を高速で伝送することが可能となる。
特開2012-64709号公報
 ところで、特許文献1の固体撮像装置において、第2の半導体基板に設けられたロジック回路の機能向上を図る場合、ロジック回路を大電流、高周波数で駆動させる必要がある。
 しかしながら、特許文献1の固体撮像装置においては、画素領域とロジック回路とが至近距離に形成される。そのため、ロジック回路の配線(特に電源線)で発生する磁界が、画素領域の画素配線(特に信号線)にかかり、渦電流が生じてしまう。その結果、得られる画像にノイズが発生してしまう。
 本技術は、このような状況に鑑みてなされたものであり、画質を向上させるようにするものである。
 本技術の一側面の固体撮像装置は、複数の画素が配列された画素領域と、第1の配線と、第2の配線と、シールド層とを備え、前記第2の配線は、前記第1の配線より下層に形成され、前記シールド層は、少なくとも前記第1の配線より下層に形成される。
 前記シールド層は、比透磁率が100以上の材料により形成されるようにすることができる。
 前記シールド層は、前記第1の配線と前記第2の配線との間に形成されるようにすることができる。
 第1の半導体基板と1以上の第2の半導体基板とが、第1の半導体基板を最上層として貼り合わせられてなる積層体をさらに設け、前記第1の半導体基板は、前記画素領域および前記第1の配線を有し、前記第2の半導体基板は、前記第2の配線およびロジック回路を有するようにすることができる。
 前記シールド層には、固定電位が印加されるようにすることができる。
 前記シールド層は、前記第1の半導体基板に形成され、前記第1の半導体基板のGNDに接続されるようにすることができる。
 前記シールド層は、前記第2の半導体基板に形成され、前記第2の半導体基板のGNDに接続されるようにすることができる。
 前記第1の半導体基板は、前記第2の半導体基板側の面に、前記第1の配線に接続された第1の電極を有し、前記第2の半導体基板は、前記第1の半導体基板側の面の前記第1の電極に対応する位置に、前記第2の配線に接続された第2の電極を有し、前記第1の電極および前記第2の電極は、前記第1の半導体基板と前記第2の半導体基板とを電気的に接続し、前記シールド層は、前記第1の電極または前記第2の電極に貫通されるように形成されるようにすることができる。
 前記シールド層は、前記画素領域とほぼ同じか、前記画素領域より広い面積を有する平坦な膜状に形成されるようにすることができる。
 前記シールド層は、前記第2の半導体基板において、前記第2の配線を上から覆うようにして形成されるようにすることができる。
 前記シールド層は、前記第2の配線より下層に形成されるようにすることができる。
 前記シールド層は、前記第2の配線の下面に接するようにして形成されるようにすることができる。
 前記シールド層は、同一層において、複数に分割されて形成されるようにすることができる。
 前記シールド層は、その一部分に形成された孔を有するようにすることができる。
 前記シールド層は、電磁シールドの機能を有するようにすることができる。
 本技術の一側面の電子機器は、複数の画素が配列された画素領域と、第1の配線と、第2の配線と、シールド層とを有し、前記第2の配線は、前記第1の配線より下層に形成され、前記シールド層は、少なくとも前記第1の配線より下層に形成される固体撮像装置を備える。
 本技術の一側面においては、複数の画素が配列された画素領域と、第1の配線と、第2の配線と、シールド層とが設けられ、第2の配線は、第1の配線より下層に形成され、シールド層は、少なくとも第1の配線より下層に形成される。
 本技術の一側面によれば、画質を向上させることが可能となる。
本技術の固体撮像装置の構成例を示すブロック図である。 固体撮像装置の構造について説明する図である。 第1の実施の形態の固体撮像装置の構成例を示す断面図である。 シールド層の材質について説明するフローチャートである。 第2の実施の形態の固体撮像装置の構成例を示す断面図である。 第3の実施の形態の固体撮像装置の構成例を示す断面図である。 第3の実施の形態の固体撮像装置の他の構成例を示す断面図である。 第4の実施の形態の固体撮像装置の構成例を示す断面図である。 第5の実施の形態の固体撮像装置の構成例を示す断面図である。 第6の実施の形態の固体撮像装置の構成例を示す断面図である。 配線で発生する磁界について説明する図である。 第7の実施の形態の固体撮像装置の構成例を示す断面図である。 第8の実施の形態の固体撮像装置の構成例を示す断面図である。 固体撮像装置の製造工程について説明する図である。 固体撮像装置の製造工程について説明する図である。 固体撮像装置の製造工程について説明する図である。 固体撮像装置の製造工程について説明する図である。 本技術の電子機器の構成例を示すブロック図である。 イメージセンサを使用する使用例を示す図である。
 以下、本技術の実施の形態について図を参照して説明する。
<固体撮像装置の構成>
 図1は、本技術の固体撮像装置の構成例を示すブロック図である。
 固体撮像装置1は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサとして構成される。固体撮像装置1は、図示せぬ半導体基板(例えばSi基板)に複数の画素2が規則的に2次元アレイ状に配列された画素領域(画素アレイ)3と、周辺回路部とを有する。
 画素2は、光電変換部(例えばフォトダイオード)と、複数の画素トランジスタ(MOSトランジスタ)を有する。複数の画素トランジスタは、例えば、転送トランジスタ、リセットトランジスタ、および増幅トランジスタの3つのトランジスタで構成することができる。また、複数の画素トランジスタは、選択トランジスタを追加して4つのトランジスタで構成することもできる。なお、単位画素の等価回路は一般的なものと同様であるので、詳細な説明は省略する。
 また、画素2は、1つの単位画素として構成することもできるし、共有画素構造とすることもできる。この画素共有構造は、複数のフォトダイオードが、フローティングディフュージョン、および転送トランジスタ以外の他のトランジスタを共有する構造である。
 周辺回路部は、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7、および制御回路8を有する。
 制御回路8は、入力クロックと、動作モード等を指令するデータを受け取り、また固体撮像装置1の内部情報等のデータを出力する。また、制御回路8は、垂直同期信号、水平同期信号、およびマスタクロックに基づいて、垂直駆動回路4、カラム信号処理回路5および水平駆動回路6等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、これらの信号を垂直駆動回路4、カラム信号処理回路5、および水平駆動回路6等に入力する。
 垂直駆動回路4は、例えばシフトレジスタによって構成される。垂直駆動回路4は、画素駆動配線を選択し、選択された画素駆動配線に画素を駆動するためのパルスを供給し、行単位で画素を駆動する。すなわち、垂直駆動回路4は、画素領域3の各画素2を行単位で順次垂直方向に選択走査する。そして、垂直駆動回路4は、垂直信号線9を通して各画素2の光電変換部において受光量に応じて生成された信号電荷に基づく画素信号を、カラム信号処理回路5に供給する。
 カラム信号処理回路5は、例えば画素2の列毎に配置される。カラム信号処理回路5は、1行分の画素2から出力される信号に対して画素列毎に、ノイズ除去などの信号処理を行う。具体的には、カラム信号処理回路5は、画素2固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling)や、信号増幅、A/D(Analog/Digital)変換等の信号処理を行う。カラム信号処理回路5の出力段には、水平選択スイッチ(図示せず)が水平信号線10との間に接続されて設けられる。
 水平駆動回路6は、例えばシフトレジスタによって構成される。水平駆動回路6は、水平走査パルスを順次出力することによって、カラム信号処理回路5それぞれを順番に選択し、カラム信号処理回路5それぞれからの画素信号を水平信号線10に出力させる。
 出力回路7は、カラム信号処理回路5の各々から水平信号線10を通して順次に供給される信号に対し、信号処理を行って出力する。出力回路7は、例えば、バッファリングだけ行う場合もあるし、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を行う場合もある。
 入出力端子12は、外部と信号のやりとりをする。
<固体撮像装置の構造>
 次に、本技術が適用される固体撮像装置の構造について説明する。
 第1の例として、図2上段に示される固体撮像装置1aは、第1の半導体基板21と第2の半導体基板22とから構成される。第1の半導体基板21には、画素領域23と制御回路24が搭載される。第2の半導体基板22には、信号処理回路を含むロジック回路25が搭載される。そして、第1の半導体基板21と第2の半導体基板22とが相互に電気的に接続されることで、1つの半導体チップとしての固体撮像装置1aが構成される。
 第2の例として、図2中段に示される固体撮像装置1bは、第1の半導体基板21と第2の半導体基板22とから構成される。第1の半導体基板21には、画素領域23が搭載される。第2の半導体基板22には、制御回路24と、信号処理回路を含むロジック回路25が搭載される。そして、第1の半導体基板21と第2の半導体基板22とが相互に電気的に接続されることで、1つの半導体チップとしての固体撮像装置1bが構成される。
 第3の例として、図2下段に示される固体撮像装置1cは、第1の半導体基板21と第2の半導体基板22とから構成される。第1の半導体基板21には、画素領域23と、画素領域23を制御する制御回路24-1が搭載される。第2の半導体基板22には、ロジック回路25を制御する制御回路24-2と、信号処理回路を含むロジック回路25が搭載される。そして、第1の半導体基板21と第2の半導体基板22とが相互に電気的に接続されることで、1つの半導体チップとしての固体撮像装置1cが構成される。
<第1の実施の形態>
 図3は、本技術の第1の実施の形態の固体撮像装置1の断面図である。
 詳細な説明は後述するが、図3に示される本実施の形態の固体撮像装置1は、図2の固体撮像装置1aのように、画素領域23を含む第1の半導体ウェハ31と、ロジック回路を含む第2の半導体ウェハ45とが、第1の半導体ウェハ31を上層として貼り合わせられた積層体として構成される。
 第1の半導体ウェハ31は、裏面を上にして第2の半導体ウェハ45と貼り合わせられている。すなわち、固体撮像装置1は、積層型の裏面照射型固体撮像装置である。
 第1の半導体ウェハ31には、その表面側(図中下側)に、複数の配線40からなる多層配線層41が形成されている。配線40は、画素領域23に形成される各画素から出力される画素信号を伝送する信号線として機能する。
 第2の半導体ウェハ45には、その表面側(図中上側)に、複数の配線53と、バリアメタル層58を有する配線57とからなる多層配線層55が形成されている。配線57は、第2の半導体ウェハ45の電源に接続される電源線として機能する。
 また、第1の半導体ウェハ31と第2の半導体ウェハ45とは、互いの多層配線層41と多層配線層55が向かい合うようにして、接着剤層60を介して貼り合わせられている。
 さらに、第1の半導体ウェハ31と第2の半導体ウェハ45とは、接続導体68を介して電気的に接続されている。
 具体的には、第1の半導体ウェハ31の半導体ウェル領域32を貫通して、多層配線層41の所要の配線40に達する接続孔が形成される。また、第1の半導体ウェハ31の半導体ウェル領域32および層間絶縁膜39を貫通して、第2の半導体ウェハ45の多層配線層55の所要の配線57に達する接続孔が形成される。そして、これらの接続孔に、一端が互いに連結する接続導体68が埋め込まれる。これにより、第1の半導体ウェハ31と第2の半導体ウェハ45とが電気的に接続される。
 接続導体68の周りは、半導体ウェル領域32と絶縁するために、絶縁膜67で覆われている。接続導体68は、図示せぬ電極パッドに接続される。なお、接続導体68の上部が電極パッドとして構成されるようにしてもよい。
 さらに、第1の半導体ウェハ31には、複数の配線40からなる多層配線層41の表面側(図中下側)に、シールド層81が形成されている。
 シールド層81は、十分高い比透磁率を有する材料により形成される。すなわち、シールド層81は、磁気シールドの機能を有する。例えば、シールド層81は、比透磁率が100,000のパーマロイ(Fe-Ni)の単層膜として形成される。また、シールド層81は、パーマロイと、Ta系やTi系の高融点金属とを積層させた積層膜として形成されるようにしてもよい。
 シールド層81は、パーマロイ以外の材料により形成されるようにしてもよい。具体的には、シールド層81は、比透磁率が100以上の材料、好ましくは1,000以上の材料により形成されればよい。例えば、図4に示されるように、シールド層81は、コバルト(比透磁率:250)、ニッケル(比透磁率:600)、軟鉄(比透磁率:2,000)、鉄(比透磁率:5,000)、ケイ素鋼(比透磁率:7,000)、ミューメタル(比透磁率:100,000)、純鉄(比透磁率:200,000)、スーパーマロイ(比透磁率:1,000,000)等により形成されるようにすることができる。
 また、シールド層81は、その膜厚が5nm以上、好ましくは20nm以上になるように形成される。シールド層81の膜厚を適切な膜厚とすることで、その磁気シールドの機能により誘起電力を1桁程度低下させる程の遮蔽性能が得られる。
 さらに、シールド層81は、画素領域23とほぼ同じか、画素領域23より広い面積を有する平坦な膜状に形成される。言い換えると、シールド層81は、第2の半導体ウェハ45側から見て、画素領域23が影になるように形成される。
 さらにまた、シールド層81には、固定電位が印加されるものとする。例えば、シールド層81は、第1の半導体ウェハ31のGNDに接続されるようにする。具体的には、シールド層81は、複数個のビアを介して、第1の半導体ウェハ31のGND配線と接続されるようにする。
 以上の構成によれば、第2の半導体ウェハ45の電源線である配線57で発生する磁界が、シールド層81で遮断され、第1の半導体ウェハ31の画素領域23における配線40にかかるのを防ぐことができる。これにより、得られる画像にノイズが発生するのを避けることができ、画質を向上させることが可能となる。
 また、GNDレベルが変動した場合、アナログ信号を扱う第1の半導体ウェハ31は、第2の半導体ウェハ45のロジック回路よりも悪影響を受けやすい。そこで、シールド層81を第1の半導体ウェハ31のGNDに接続することで、第1の半導体ウェハ31におけるGNDのインピーダンスを低くすることができる。これにより、大電流、高周波数で駆動するロジック回路からの影響をより小さくすることができる。
 なお、シールド層81には、固定電位が印加されればよい。したがって、シールド層81は、例えば、第1の半導体ウェハ31の電源や、画素領域23に形成される画素2の電源等に接続されるようにしてもよい。
<第2の実施の形態>
 図5は、本技術の第2の実施の形態の固体撮像装置1の断面図である。
 図5に示される固体撮像装置1は、基本的には、図3に示される固体撮像装置1と同様の構成を有する。図5の固体撮像装置1においては、図3のシールド層81に代えて、第2の半導体ウェハ45に、シールド層82が形成されている。
 具体的には、第2の半導体ウェハ45には、複数の配線53と配線57とからなる多層配線層55の表面側(図中上側)に、シールド層82が形成されている。
 なお、シールド層82の材料や膜厚は、図3のシールド層81と同様とされる。
 シールド層82は、画素領域23とほぼ同じか、画素領域23より広い面積を有する平坦な膜状に形成される。言い換えると、シールド層82は、多層配線層55側から見て、画素領域23が影になるように形成される。
 また、シールド層82には、固定電位が印加されるものとする。例えば、シールド層82は、第3の半導体ウェハ45のGNDに接続されるようにする。具体的には、シールド層82は、複数個のビアを介して、第2の半導体ウェハ45のGND配線と接続されるようにする。
 このような構成によれば、第2の半導体ウェハ45の電源線である配線57で発生する磁界が、シールド層82で遮断され、第1の半導体ウェハ31の多層配線層41にかかるのを防ぐことができる。これにより、得られる画像にノイズが発生するのを避けることができ、画質を向上させることが可能となる。
 また、ロジック回路を備える第2の半導体ウェハ45は、第1の半導体ウェハ31よりも消費電流が大きい。そこで、シールド層82を第2の半導体ウェハ45のGNDに接続することで、第2の半導体ウェハ45におけるGNDのインピーダンスを低くすることができる。
 なお、シールド層82には、固定電位が印加されればよい。したがって、シールド層82は、例えば、第2の半導体ウェハ45の電源等に接続されるようにしてもよい。
<第3の実施の形態>
 図6は、本技術の第3の実施の形態の固体撮像装置1の断面図である。
 図6に示される固体撮像装置1は、基本的には、図3に示される固体撮像装置1と同様の構成を有する。図6の固体撮像装置1においては、図3の構成に加えて、図5を参照して説明したシールド層82が形成されている。
 このような構成によれば、第2の半導体ウェハ45の電源線である配線57で発生する磁界が、シールド層81,82で遮断され、第1の半導体ウェハ31の多層配線層41にかかるのを防ぐことができる。これにより、得られる画像にノイズが発生するのを避けることができ、画質を向上させることが可能となる。
 なお、図6の例では、画素領域23において、シールド層81と第1の半導体ウェハ31のGND配線とを接続するビアの数が、シールド層82と第2の半導体ウェハ45のGND配線とを接続するビアの数より多く形成されている。
 これにより、第1の半導体ウェハ31におけるGNDのインピーダンスを低くできる効果をより確実に得ることができる。
 また、図7に示されるように、画素領域23において、シールド層82と第2の半導体ウェハ45のGND配線とを接続するビアの数が、シールド層81と第1の半導体ウェハ31のGND配線とを接続するビアの数より多く形成されるようにしてもよい。
 これにより、第2の半導体ウェハ45におけるGNDのインピーダンスをより低くできる効果をより確実に得ることができる。
<第4の実施の形態>
 図8は、本技術の第4の実施の形態の固体撮像装置1の断面図である。
 図8に示される固体撮像装置1は、基本的には、図3に示される固体撮像装置1と同様の構成を有する。図8の固体撮像装置1においては、図3の構成に加えて、第1の半導体ウェハ31にCu電極91が形成され、第2の半導体ウェハ45にCu電極92が形成されている。
 Cu電極91は、第1の半導体ウェハ31において、第2の半導体ウェハ45側の面に形成され、多層配線層41の配線40に接続されている。
 一方、Cu電極92は、第2の半導体ウェハ45において、第1の半導体ウェハ31側の面のCu電極91に対応する位置に形成され、多層配線層55の配線57に接続されている。
 Cu電極91とCu電極92とは、第1の半導体ウェハ31と第2の半導体ウェハ45が貼り合わせられることで、電気的に接続される。すなわち、Cu電極91とCu電極92とは、第1の半導体ウェハ31と第2の半導体ウェハ45とを電気的に接続する。
 また、図8の構成において、シールド層81は、Cu電極91に貫通されるように形成されている。図8においては、Cu電極91およびCu電極92は、それぞれ1つずつのみ示されているが、実際には複数設けられるものとする。すなわち、シールド層81は、複数の貫通孔を有する。また、図示はしないが、シールド層81は、画素領域23においては第1の半導体ウェハ31のGNDに接続されず、画素領域23の外側において第1の半導体ウェハ31のGNDに接続される。
 このような構成によれば、第2の半導体ウェハ45の電源線である配線57で発生する磁界が、シールド層81で遮断され、第1の半導体ウェハ31の多層配線層41にかかるのを防ぐことができる。これにより、得られる画像にノイズが発生するのを避けることができ、画質を向上させることが可能となる。
 また、画素領域23において、シールド層81を第1の半導体ウェハ31のGNDに接続しないことで、GNDに接続されている場合にGND電流が流れることによって貫通孔の周りで発生する放射ノイズを抑制することができる。
 なお、図8の例では、Cu電極91およびCu電極92が、図3の構成に加えて設けられるものとしたが、図5の構成や、図6または図7の構成に加えて設けられるようにしてもよい。この場合も、シールド層81やシールド層82は、画素領域23においては第1の半導体ウェハ31や第2の半導体ウェハ45のGNDに接続されず、画素領域23の外側において第1の半導体ウェハ31や第2の半導体ウェハ45のGNDに接続されるようにする。
<第5の実施の形態>
 図9は、本技術の第5の実施の形態の固体撮像装置1の断面図である。
 図9に示される固体撮像装置1は、基本的には、図3に示される固体撮像装置1と同様の構成を有する。図9の固体撮像装置1においては、図3のシールド層81に代えて、第2の半導体ウェハ45に、シールド層101が形成されている。
 具体的には、シールド層101は、第2の半導体ウェハ45において、配線57を上から(第1の半導体ウェハ31側から)覆うようにして形成されている。
 なお、シールド層101は、配線57と接するようにして形成されるものとするが、配線57と接しないようにして形成されるようにしてもよい。
 このような構成によれば、第2の半導体ウェハ45の電源線である配線57で発生する磁界が、シールド層101で遮断され、第1の半導体ウェハ31の多層配線層41にかかるのを防ぐことができる。これにより、得られる画像にノイズが発生するのを避けることができ、画質を向上させることが可能となる。
<第6の実施の形態>
 図10は、本技術の第6の実施の形態の固体撮像装置1の断面図である。
 図10に示される固体撮像装置1は、基本的には、図3に示される固体撮像装置1と同様の構成を有する。図10の固体撮像装置1においては、図3のシールド層81に代えて、第2の半導体ウェハ45に、シールド層102が形成されている。
 シールド層102は、第2の半導体ウェハ45において、配線57より下層に形成される。具体的には、シールド層102は、配線57の下面に接するようにして形成されている。第2の半導体ウェハ45において、Ta系やTi系等の高融点金属からなるバリアメタル層58は、シールド層102に積層されて形成される。
 図11のAに示されるように、配線57の下層にシールド層102を設けない場合、配線57で発生する磁界は大きなループを描く。そこで、図11のBに示されるように、配線57の下層にシールド層102を設けることで、配線57で発生する磁界が描くループは小さくなる。
 このような構成によれば、第2の半導体ウェハ45の電源線である配線57で発生する磁界が、シールド層102により弱められ、第1の半導体ウェハ31の多層配線層41にかかるのを防ぐことができる。これにより、得られる画像にノイズが発生するのを避けることができ、画質を向上させることが可能となる。
<第7の実施の形態>
 図12は、本技術の第7の実施の形態の固体撮像装置1の断面図である。
 図12に示される固体撮像装置1は、基本的には、図3に示される固体撮像装置1と同様の構成を有する。図12の固体撮像装置1においては、図3のシールド層81に代えて、第2の半導体ウェハ45に、シールド層103が形成されている。
 シールド層103は、第2の半導体ウェハ45において、配線57より下層に形成される。具体的には、シールド層103は、配線57と配線53との間で、配線57に接続されないようにして(配線57と絶縁されて)形成されている。
 なお、シールド層103は、同一層において、複数に分割されて形成されるようにしてもよいし、その一部分に形成された孔を有するようにしてもよい。
 図12の構成においても、配線57の下層にシールド層103を設けることで、図11の構成と同様に、配線57で発生する磁界が描くループは小さくなる。
 このような構成によれば、第2の半導体ウェハ45の電源線である配線57で発生する磁界が、シールド層103により弱められ、第1の半導体ウェハ31の多層配線層41にかかるのを防ぐことができる。これにより、得られる画像にノイズが発生するのを避けることができ、画質を向上させることが可能となる。
<第8の実施の形態>
 図13は、本技術の第8の実施の形態の固体撮像装置1の断面図である。
 図13に示される固体撮像装置1は、基本的には、図3に示される固体撮像装置1と同様の構成を有する。図13の固体撮像装置1においては、図3のシールド層81に代えて、第2の半導体ウェハ45に、シールド層104が形成されている。
 シールド層104は、第2の半導体ウェハ45において、配線57より下層に形成される。具体的には、シールド層104は、半導体ウェル領域46の裏面側に形成されている。
 図13の構成においても、配線57の下層にシールド層103を設けることで、図11の構成と同様に、配線57で発生する磁界が描くループは小さくなる。
 このような構成によれば、第2の半導体ウェハ45の電源線である配線57で発生する磁界が、シールド層104により弱められ、第1の半導体ウェハ31の多層配線層41にかかるのを防ぐことができる。これにより、得られる画像にノイズが発生するのを避けることができ、画質を向上させることが可能となる。
 なお、上述した実施の形態において、シールド層は、磁気シールドの機能を有するものとしたが、シールド層は、電磁シールドの機能を有するものとしてもよい。この場合、シールド層は、導電性を有する金属により形成される。
<固体撮像装置の製造方法>
 次に、図14乃至図17を用いて、本技術の固体撮像装置1の製造工程について説明する。ここでは、本技術の固体撮像装置1を代表して、第1の実施の形態の固体撮像装置1の製造工程について説明する。
 まず、第1の半導体基板が形成される。
 具体的には、図14に示されるように、第1の半導体ウェハ(以下、第1の半導体基板という)31の各チップ部となる領域に、半製品状態のイメージセンサ、すなわち画素領域23と制御回路24が形成される。
 すなわち、Si基板からなる第1の半導体基板31の各チップ部となる領域に、各画素の光電変換部となるフォトダイオード(PD)が形成される。そして、半導体ウェル領域32に各画素トランジスタのソース/ドレイン領域33が形成される。半導体ウェル領域32は、第1導電型、例えばp型の不純物を導入して形成され、ソース/ドレイン領域33は、第2導電型、例えばn型の不純物を導入して形成される。PDおよび各画素トランジスタのソース/ドレイン領域33は、基板表面からのイオン注入で形成される。
 PDは、n型半導体領域34と基板表面側のp型半導体領域35とから形成される。画素を構成する基板表面上にはゲート絶縁膜を介してゲート電極36が形成される。そのゲート電極36と対のソース/ドレイン領域33により画素トランジスタTr1,Tr2が形成される。図14においては、複数の画素トランジスタが、2つの画素トランジスタTr1,Tr2で代表して示されている。PDに隣接する画素トランジスタTr1が転送トランジスタに相当し、そのソース/ドレイン領域33がフローティングディフュージョン(FD)に相当する。各画素は、素子分離領域38で分離される。
 一方、制御回路24側では、第1の半導体基板31に制御回路を構成するMOSトランジスタが形成される。図14においては、制御回路24を構成するMOSトランジスタが、MOSトランジスタTr3,Tr4で代表して示されている。各MOSトランジスタTr3,Tr4は、n型のソース/ドレイン領域33と、ゲート絶縁膜を介して形成したゲート電極36とにより形成される。
 その後、第1の半導体基板31の表面上に、層間絶縁膜39が形成される。その後、層間絶縁膜39に接続孔が形成されて、所定のトランジスタに接続される接続導体44が形成される。
 接続導体44の形成に際しては、まず、トランジスタ上面を含む全面に第1絶縁薄膜43aが、例えばシリコン酸化膜にて形成される。次に、エッチングストッパとなる第2絶縁薄膜43bが、例えばシリコン窒化膜にて形成されて積層される。そして、第2絶縁薄膜43b上に層間絶縁膜39が形成される。
 その後、深さの異なる接続孔が、層間絶縁膜39において、エッチングストッパとなる第2絶縁薄膜43bまで選択的に形成される。次に、各接続孔に連続するように、各部で同じ膜厚の第1絶縁薄膜43aおよび第2絶縁薄膜43bが選択エッチングされて接続孔が形成される。そして、各接続孔に接続導体44が埋め込まれる。
 さらに、複数層(本例では3層)の配線40が、層間絶縁膜39を介して各接続導体44に接続するように形成されることで多層配線層41が形成される。配線40は、例えばCu配線で形成される。各画素の画素トランジスタおよび制御回路のMOSトランジスタは、接続導体44を介して所要の配線40に接続される。なお、本例では、配線40がCu配線で形成されるものとしたが、その他の金属材料によるメタル配線で形成されるようにしてもよい。
 その後、図15に示されるように、シールド層81が、画素領域23を覆うようにして、多層配線層41の上層に形成される。また上述したように、シールド層81は、例えば、パーマロイの単層膜として形成される。パーマロイのパターニングは、フォトリソグラフィとドライエッチングとを組み合わせることで行われる。なお、ドライエッチングに代えて、ウェットエッチングが用いられるようにしてもよい。
 これまでの工程で、半製品状態の画素領域23および制御回路24を有する第1の半導体基板31が形成される。
 次に、第2の半導体基板が形成される。
 具体的には、図16に示されるように、例えば」Si基板からなる第2の半導体基板(半導体ウェハ)45の各チップ部となる領域に、半製品状態の信号処理するための信号処理回路を含むロジック回路25が形成される。
 すなわち、第2の半導体基板45の表面側のp型の半導体ウェル領域46に、素子分離領域50で分離されるように、ロジック回路25を構成する複数のMOSトランジスタが形成される。ここでは、複数のMOSトランジスタが、MOSトランジスタTr6,Tr7,Tr8で代表して示されている。各MOSトランジスタTr6,Tr7,Tr8は、それぞれ1対のn型のソース/ドレイン領域47と、ゲート絶縁膜を介して形成されたゲート電極48を有して形成される。ロジック回路25は、CMOSトランジスタで構成することができる。
 次に、第2の半導体基板45の表面上に、層間絶縁膜49が形成される。その後、層間絶縁膜49に接続孔が形成され、所定のトランジスタに接続される接続導体54が形成される。
 接続導体54の形成に際しては、上述と同様に、トランジスタ上面を含む全面に第1絶縁薄膜43aが、例えばシリコン酸化膜にて形成される。次に、エッチングストッパとなる第2絶縁薄膜43bが、例えばシリコン窒化膜にて形成され積層される。そして、第2絶縁薄膜43b上に層間絶縁膜49が形成される。
 その後、深さの異なる接続孔が、層間絶縁膜49において、エッチングストッパとなる第2絶縁薄膜43bまで選択的に形成される。次に、各接続孔に連続するように、各部で同じ膜厚の第1絶縁薄膜43aおよび第2絶縁薄膜43bが選択エッチングされて接続孔が形成される。そして、各接続孔に接続導体54が埋め込まれる。
 その後、層間絶縁膜49の形成と複数層のメタル配線の形成が繰り返されることにより、多層配線層55が形成される。本実施の形態では、第1の半導体基板31上に形成した多層配線層41の形成の工程と同様にして3層の配線53および配線57が形成されるものとする。なお、配線53は、例えばCu配線で形成され、配線57は、例えばAl配線で形成される。
 そして、多層配線層55上部には、第1の半導体基板31と第2の半導体基板45の貼り合わせの際にストレスを軽減するためのストレス補正膜59が形成される。
 これまでの工程で、半製品状態のロジック回路を有する第2の半導体基板45が形成される。
 そして、第1の半導体基板と第2の半導体基板とが貼り合わせられる。
 具体的には、図17に示されるように、第1の半導体基板31と第2の半導体基板45とが、互いの多層配線層41および多層配線層55が向かい合うように貼り合わせられる。貼り合わせは、例えば接着剤にて行われる。接着剤にて接合する場合、第1の半導体基板31または第2の半導体基板45の接合面の一方の側に接着剤層60が形成される。そして、両者が、この接着剤層60を介して重ね合わせられて接合される。本実施の形態では、画素領域が構成された第1の半導体基板31が上層に配置され、第2の半導体基板45が下層に配置されて貼り合わせられている。
 また、本実施の形態では、接着剤層60を介して第1の半導体基板31と第2の半導体基板45とが貼り合わせられるものとしたが、その他、プラズマ接合で貼り合わせられるようにしてもよい。
 このように、第1の半導体基板31と第2の半導体基板45とが積層して貼り合わされることにより、2つの異種基板からなる積層体が形成される。
 以降、図示がしないが、第1の半導体基板が薄肉化された後、半導体ウェル領域32の裏面上に、反射防止膜61、絶縁膜62、および遮光膜63が形成される。
 次に、接続導体68が形成される。
 具体的には、第1の半導体基板31の半導体ウェル領域32を貫通して、多層配線層41の所要の配線40に達する接続孔が形成される。次に、第1の半導体基板31の半導体ウェル領域32および多層配線層41を貫通し、第2の半導体基板45の多層配線層55の所要の配線57に達する接続孔が形成される。そして、これらの接続孔には、絶縁膜67が成膜される。その後、接続孔に金属が埋め込まれることで、接続導体68が形成される。
 その後、絶縁膜62のPDに対応する領域には、導波路材料膜(例えばSiN膜等)69による導波路70が形成される。また、接続導体68の上層には、キャップ膜72が形成される。さらに、平坦化膜71、カラーフィルタ73、およびオンチップマイクロレンズ74が形成される。
 そして、2つの半導体基板を積層して形成された積層体は、その後、ダイシング加工されることにより各チップ部に分割され、これにより、本実施の形態の固体撮像装置が完成する。
 以上の処理によれば、シールド層81が、第2の半導体ウェハ45側から見て、画素領域23が影になるように形成される。したがって、第2の半導体ウェハ45の電源線である配線57で発生する磁界が、シールド層81で遮断され、第1の半導体ウェハ31の多層配線層41にかかるのを防ぐことができる。これにより、得られる画像にノイズが発生するのを避けることができ、画質を向上させることが可能となる。
 なお、第1の半導体基板と第2の半導体基板とを電気的に接続する構成は、上述したものに限らず、さらに他の構成であってもよい。
 また、以上においては、ロジック回路を含む第2の半導体基板は1層で構成されるものとしたが、2層以上で構成されるようにしてもよい。すなわち、本技術は、第1の半導体基板を最上層とした、3層以上の積層体からなる固体撮像装置にも適用可能である。
 なお、本技術は、固体撮像装置への適用に限られるものではなく、撮像装置にも適用可能である。ここで、撮像装置とは、デジタルスチルカメラやデジタルビデオカメラ等のカメラシステムや、携帯電話機等の撮像機能を有する電子機器のことをいう。なお、電子機器に搭載されるモジュール状の形態、すなわちカメラモジュールを撮像装置とする場合もある。
<電子機器の構成例>
 ここで、図18を参照して、本技術を適用した電子機器の構成例について説明する。
 図18に示される電子機器200は、光学レンズ201、シャッタ装置202、固体撮像装置203、駆動回路204、および信号処理回路205を備えている。図18においては、固体撮像装置203として、上述した本技術の固体撮像装置1を電子機器(デジタルスチルカメラ)に設けた場合の実施の形態を示す。
 光学レンズ201は、被写体からの像光(入射光)を固体撮像装置203の撮像面上に結像させる。これにより、信号電荷が一定期間、固体撮像装置203内に蓄積される。シャッタ装置202は、固体撮像装置203に対する光照射期間および遮光期間を制御する。
 駆動回路204は、シャッタ装置202および固体撮像装置203に、駆動信号を供給する。シャッタ装置202に供給される駆動信号は、シャッタ装置202のシャッタ動作を制御するための信号である。固体撮像装置203に供給される駆動信号は、固体撮像装置203の信号転送動作を制御するための信号である。固体撮像装置203は、駆動回路204から供給される駆動信号(タイミング信号)により信号転送を行う。信号処理回路205は、固体撮像装置203から出力された信号に対して各種の信号処理を行う。信号処理が行われた映像信号は、メモリなどの記憶媒体に記憶されたり、モニタに出力される。
 本実施の形態の電子機器200においては、固体撮像装置203において、画質を向上させることができるため、結果として、高画質の画像を得ることができる電子機器を提供することが可能となる。
<イメージセンサの使用例>
 最後に、本技術を適用したイメージセンサの使用例について説明する。
 図19は、上述したイメージセンサの使用例を示す図である。
 上述したイメージセンサは、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
 ・デジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 さらに、本技術は以下のような構成をとることができる。
(1)
 複数の画素が配列された画素領域と、
 第1の配線と、
 第2の配線と、
 シールド層と
 を備え、
 前記第2の配線は、前記第1の配線より下層に形成され、
 前記シールド層は、少なくとも前記第1の配線より下層に形成される
 固体撮像装置。
(2)
 前記シールド層は、比透磁率が100以上の材料により形成される
 (1)に記載の固体撮像装置。
(3)
 前記シールド層は、前記第1の配線と前記第2の配線との間に形成される
 (1)または(2)に記載の固体撮像装置。
(4)
 第1の半導体基板と1以上の第2の半導体基板とが、第1の半導体基板を最上層として貼り合わせられてなる積層体をさらに備え、
 前記第1の半導体基板は、前記画素領域および前記第1の配線を有し、
 前記第2の半導体基板は、前記第2の配線およびロジック回路を有する
 (3)に記載の固体撮像装置。
(5)
 前記シールド層には、固定電位が印加される
 (4)に記載の固体撮像装置。
(6)
 前記シールド層は、
  前記第1の半導体基板に形成され、
  前記第1の半導体基板のGNDに接続される
 (4)または(5)に記載の固体撮像装置。
(7)
 前記シールド層は、
  前記第2の半導体基板に形成され、
  前記第2の半導体基板のGNDに接続される
 (4)または(5)に記載の固体撮像装置。
(8)
 前記第1の半導体基板は、前記第2の半導体基板側の面に、前記第1の配線に接続された第1の電極を有し、
 前記第2の半導体基板は、前記第1の半導体基板側の面の前記第1の電極に対応する位置に、前記第2の配線に接続された第2の電極を有し、
 前記第1の電極および前記第2の電極は、前記第1の半導体基板と前記第2の半導体基板とを電気的に接続し、
 前記シールド層は、前記第1の電極または前記第2の電極に貫通されるように形成される
 (4)乃至(7)のいずれかに記載の固体撮像装置。
(9)
 前記シールド層は、前記画素領域とほぼ同じか、前記画素領域より広い面積を有する平坦な膜状に形成される
 (4)乃至(7)のいずれかに記載の固体撮像装置。
(10)
 前記シールド層は、前記第2の半導体基板において、前記第2の配線を上から覆うようにして形成される
 (4)に記載の固体撮像装置。
(11)
 前記シールド層は、前記第2の配線より下層に形成される
 (1)または(2)に記載の固体撮像装置。
(12)
 前記シールド層は、前記第2の配線の下面に接するようにして形成される
 (11)に記載の固体撮像装置。
(13)
 前記シールド層は、同一層において、複数に分割されて形成される
 (11)に記載の固体撮像装置。
(14)
 前記シールド層は、その一部分に形成された孔を有する
 (11)に記載の固体撮像装置。
(15)
 前記シールド層は、電磁シールドの機能を有する
 (1)に記載の固体撮像装置。
(16)
 複数の画素が配列された画素領域と、
 第1の配線と、
 第2の配線と、
 シールド層と
 を有し、
 前記第2の配線は、前記第1の配線より下層に形成され、
 前記シールド層は、少なくとも前記第1の配線より下層に形成される
 固体撮像装置
 を備える電子機器。
 1 固体撮像装置, 31 第1の半導体基板, 40 配線, 41 多層配線層, 45 第2の半導体基板, 53 配線, 55 多層配線層, 57 配線, 81 シールド層,200 電子機器, 203 固体撮像装置

Claims (16)

  1.  複数の画素が配列された画素領域と、
     第1の配線と、
     第2の配線と、
     シールド層と
     を備え、
     前記第2の配線は、前記第1の配線より下層に形成され、
     前記シールド層は、少なくとも前記第1の配線より下層に形成される
     固体撮像装置。
  2.  前記シールド層は、比透磁率が100以上の材料により形成される
     請求項1に記載の固体撮像装置。
  3.  前記シールド層は、前記第1の配線と前記第2の配線との間に形成される
     請求項1に記載の固体撮像装置。
  4.  第1の半導体基板と1以上の第2の半導体基板とが、第1の半導体基板を最上層として貼り合わせられてなる積層体をさらに備え、
     前記第1の半導体基板は、前記画素領域および前記第1の配線を有し、
     前記第2の半導体基板は、前記第2の配線およびロジック回路を有する
     請求項3に記載の固体撮像装置。
  5.  前記シールド層には、固定電位が印加される
     請求項4に記載の固体撮像装置。
  6.  前記シールド層は、
      前記第1の半導体基板に形成され、
      前記第1の半導体基板のGNDに接続される
     請求項5に記載の固体撮像装置。
  7.  前記シールド層は、
      前記第2の半導体基板に形成され、
      前記第2の半導体基板のGNDに接続される
     請求項5に記載の固体撮像装置。
  8.  前記第1の半導体基板は、前記第2の半導体基板側の面に、前記第1の配線に接続された第1の電極を有し、
     前記第2の半導体基板は、前記第1の半導体基板側の面の前記第1の電極に対応する位置に、前記第2の配線に接続された第2の電極を有し、
     前記第1の電極および前記第2の電極は、前記第1の半導体基板と前記第2の半導体基板とを電気的に接続し、
     前記シールド層は、前記第1の電極または前記第2の電極に貫通されるように形成される
     請求項4に記載の固体撮像装置。
  9.  前記シールド層は、前記画素領域とほぼ同じか、前記画素領域より広い面積を有する平坦な膜状に形成される
     請求項4に記載の固体撮像装置。
  10.  前記シールド層は、前記第2の半導体基板において、前記第2の配線を上から覆うようにして形成される
     請求項4に記載の固体撮像装置。
  11.  前記シールド層は、前記第2の配線より下層に形成される
     請求項1に記載の固体撮像装置。
  12.  前記シールド層は、前記第2の配線の下面に接するようにして形成される
     請求項11に記載の固体撮像装置。
  13.  前記シールド層は、同一層において、複数に分割されて形成される
     請求項11に記載の固体撮像装置。
  14.  前記シールド層は、その一部分に形成された孔を有する
     請求項11に記載の固体撮像装置。
  15.  前記シールド層は、電磁シールドの機能を有する
     請求項1に記載の固体撮像装置。
  16.  複数の画素が配列された画素領域と、
     第1の配線と、
     第2の配線と、
     シールド層と
     を有し、
     前記第2の配線は、前記第1の配線より下層に形成され、
     前記シールド層は、少なくとも前記第1の配線より下層に形成される
     固体撮像装置
     を備える電子機器。
PCT/JP2016/057737 2015-03-25 2016-03-11 固体撮像装置および電子機器 WO2016152577A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/559,345 US11289525B2 (en) 2015-03-25 2016-03-11 Solid-state imaging device and electronic apparatus
US17/695,481 US12046621B2 (en) 2015-03-25 2022-03-15 Solid-state imaging device and electronic apparatus to enhance image quality
US18/742,637 US20240332335A1 (en) 2015-03-25 2024-06-13 Solid-state imaging device and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061953 2015-03-25
JP2015061953 2015-03-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/559,345 A-371-Of-International US11289525B2 (en) 2015-03-25 2016-03-11 Solid-state imaging device and electronic apparatus
US17/695,481 Continuation US12046621B2 (en) 2015-03-25 2022-03-15 Solid-state imaging device and electronic apparatus to enhance image quality

Publications (1)

Publication Number Publication Date
WO2016152577A1 true WO2016152577A1 (ja) 2016-09-29

Family

ID=56978841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057737 WO2016152577A1 (ja) 2015-03-25 2016-03-11 固体撮像装置および電子機器

Country Status (3)

Country Link
US (3) US11289525B2 (ja)
TW (1) TW201637190A (ja)
WO (1) WO2016152577A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135384A (ja) * 2016-01-29 2017-08-03 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. 金属ブロックと接合パッド構造
WO2019021852A1 (ja) * 2017-07-27 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 半導体装置および電子機器
WO2020184478A1 (ja) * 2019-03-13 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
JP2021044847A (ja) * 2017-10-30 2021-03-18 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094583B2 (ja) * 2012-06-29 2017-03-15 ソニー株式会社 半導体装置、半導体装置の製造方法、及び、電子機器
TWI692859B (zh) * 2015-05-15 2020-05-01 日商新力股份有限公司 固體攝像裝置及其製造方法、以及電子機器
JP2018133392A (ja) * 2017-02-14 2018-08-23 キヤノン株式会社 光電変換装置
WO2018186198A1 (ja) * 2017-04-04 2018-10-11 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器
JP7184753B2 (ja) 2017-04-04 2022-12-06 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、及び電子機器
US20220052099A1 (en) * 2018-12-27 2022-02-17 C/O Sony Semiconductor Solutions Corporation Semiconductor element
CN111696961B (zh) * 2019-03-11 2022-04-12 联华电子股份有限公司 半导体结构及其制作方法
CN110544700B (zh) * 2019-08-19 2022-01-04 上海集成电路研发中心有限公司 一种集成于图像传感器中的微透镜阵列及其制备方法
KR20220058683A (ko) * 2020-10-29 2022-05-10 삼성전자주식회사 반도체 패키지
KR20220080429A (ko) * 2020-12-07 2022-06-14 에스케이하이닉스 주식회사 이미지 센싱 장치
KR20220127624A (ko) * 2021-03-11 2022-09-20 에스케이하이닉스 주식회사 이미지 센싱 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326587A (ja) * 1996-06-06 1997-12-16 Nec Corp 半導体集積回路の配線構造および形成方法
JP2009283843A (ja) * 2008-05-26 2009-12-03 Renesas Technology Corp 半導体装置及びその製造方法
JP2012094720A (ja) * 2010-10-27 2012-05-17 Sony Corp 固体撮像装置、半導体装置、固体撮像装置の製造方法、半導体装置の製造方法、及び電子機器
JP2014187261A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 固体撮像装置
JP2015056590A (ja) * 2013-09-13 2015-03-23 株式会社東芝 受光素子および光結合型信号絶縁装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760198B2 (en) * 2001-06-27 2004-07-06 International Business Machines Corporation Magnetic multilayered films with reduced magnetostriction
JP2012064709A (ja) 2010-09-15 2012-03-29 Sony Corp 固体撮像装置及び電子機器
JP5696513B2 (ja) * 2011-02-08 2015-04-08 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
CN106449676A (zh) * 2011-07-19 2017-02-22 索尼公司 半导体装置和电子设备
KR102261268B1 (ko) * 2014-12-29 2021-06-09 삼성전자주식회사 이미지 센서
US9755029B1 (en) * 2016-06-22 2017-09-05 Qualcomm Incorporated Switch device performance improvement through multisided biased shielding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326587A (ja) * 1996-06-06 1997-12-16 Nec Corp 半導体集積回路の配線構造および形成方法
JP2009283843A (ja) * 2008-05-26 2009-12-03 Renesas Technology Corp 半導体装置及びその製造方法
JP2012094720A (ja) * 2010-10-27 2012-05-17 Sony Corp 固体撮像装置、半導体装置、固体撮像装置の製造方法、半導体装置の製造方法、及び電子機器
JP2014187261A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 固体撮像装置
JP2015056590A (ja) * 2013-09-13 2015-03-23 株式会社東芝 受光素子および光結合型信号絶縁装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135384A (ja) * 2016-01-29 2017-08-03 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. 金属ブロックと接合パッド構造
CN110915197B (zh) * 2017-07-27 2022-06-10 索尼半导体解决方案公司 半导体设备和电子装置
CN110915197A (zh) * 2017-07-27 2020-03-24 索尼半导体解决方案公司 半导体设备和电子装置
JPWO2019021852A1 (ja) * 2017-07-27 2020-05-28 ソニーセミコンダクタソリューションズ株式会社 半導体装置および電子機器
WO2019021852A1 (ja) * 2017-07-27 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 半導体装置および電子機器
JP7134967B2 (ja) 2017-07-27 2022-09-12 ソニーセミコンダクタソリューションズ株式会社 半導体装置および電子機器
US11616031B2 (en) 2017-07-27 2023-03-28 Sony Semiconductor Solutions Corporation Semiconductor device and electronic apparatus
JP2021044847A (ja) * 2017-10-30 2021-03-18 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
JP7141440B2 (ja) 2017-10-30 2022-09-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
US11490045B2 (en) 2017-10-30 2022-11-01 Sony Semiconductor Solutions Corporation Solid-state imaging device
US11546542B2 (en) 2017-10-30 2023-01-03 Sony Semiconductor Solutions Corporation Solid-state imaging device
US11895422B2 (en) 2017-10-30 2024-02-06 Sony Semiconductor Solutions Corporation Solid-state imaging device
WO2020184478A1 (ja) * 2019-03-13 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子

Also Published As

Publication number Publication date
US20240332335A1 (en) 2024-10-03
TW201637190A (zh) 2016-10-16
US12046621B2 (en) 2024-07-23
US20220278160A1 (en) 2022-09-01
US20180114807A1 (en) 2018-04-26
US11289525B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2016152577A1 (ja) 固体撮像装置および電子機器
KR102550830B1 (ko) 고체 촬상 장치 및 그 제조 방법 및 전자 기기
CN102110700B (zh) 半导体器件、半导体器件制造方法及电子装置
JP6885393B2 (ja) 固体撮像装置、固体撮像装置の製造方法および電子機器
WO2017169755A1 (ja) 固体撮像装置
CN110678984B (zh) 成像器件和电子装置
JP7403993B2 (ja) 固体撮像装置およびその製造方法、並びに電子機器
KR20100105380A (ko) 반도체 장치와 그 제조 방법, 및 전자 기기
KR20140133814A (ko) 촬상 소자, 제조 장치 및 방법, 및, 촬상 장치
CN110741476B (zh) 晶片接合的背照式成像器
WO2013051451A1 (ja) 固体撮像素子および電子機器
WO2017163953A1 (ja) 半導体装置、固体撮像素子、撮像装置、および電子機器
JP2021052210A (ja) 半導体装置、固体撮像装置、撮像装置、および電子機器
US20210210541A1 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
WO2021199665A1 (ja) 固体撮像装置及び固体撮像装置の製造方法、並びに電子機器
US12125867B2 (en) Imaging device and electronic device
WO2024162013A1 (ja) 固体撮像素子および製造方法、並びに電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15559345

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP