WO2020184414A1 - 電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置 - Google Patents

電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置 Download PDF

Info

Publication number
WO2020184414A1
WO2020184414A1 PCT/JP2020/009584 JP2020009584W WO2020184414A1 WO 2020184414 A1 WO2020184414 A1 WO 2020184414A1 JP 2020009584 W JP2020009584 W JP 2020009584W WO 2020184414 A1 WO2020184414 A1 WO 2020184414A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
electric resistance
welding
welded steel
determination
Prior art date
Application number
PCT/JP2020/009584
Other languages
English (en)
French (fr)
Inventor
長谷川 昇
隆 宮川
通誠 向
深見 俊介
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP20770017.0A priority Critical patent/EP3939736A4/en
Priority to US17/422,542 priority patent/US20220097163A1/en
Priority to JP2021505010A priority patent/JP7081718B2/ja
Publication of WO2020184414A1 publication Critical patent/WO2020184414A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/087Seam welding not restricted to one of the preceding subgroups for rectilinear seams
    • B23K11/0873Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/36Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes

Definitions

  • the present invention relates to a method for monitoring welded steel pipes, a method for manufacturing steel pipes, a method for monitoring welded steel pipes, and a device for manufacturing steel pipes.
  • This application has priority based on Japanese Patent Application No. 2019-045372 filed in Japan on March 13, 2019 and Japanese Patent Application No. 2019-045373 filed in Japan on March 13, 2019. Insist and use these contents here.
  • electric pipes are manufactured by electric sewing welding.
  • the electric sewing welding phenomenon differs depending on the input power (heat input amount).
  • the electric sewing welding phenomenon can be classified into a cold contact region, a type 1 region, a type 2 region, and an overheat region.
  • the type 2 region was thought to provide stable welding quality under a wide heat input condition.
  • the type 2 region is further subdivided into three regions. As shown in FIG. 21, these three regions can be defined as a second type region, a transition region, and a second'type region in a narrow sense in order from the one with the lowest heat input amount.
  • the first type region is a phenomenon in which the edge of the steel material to be welded linearly converges on the welding point to form a V convergence point, and a welding slit does not occur.
  • the type 2 region has the same steel edge state as in the case of the type 1 region, but a welding slit grows between the V convergence point and the welding point, and an arc is generated during this characteristic.
  • the actual abutting point (physical abutting point) is located downstream of the V convergence point of the steel edge.
  • Patent Document 1 and Patent Document 2 disclose a system that controls the welding conditions to an appropriate level by measuring the length of the welding slit.
  • Patent Document 3 a technique for performing melting certification and heat input control by automatically detecting a two-stage convergence type type 2 welding phenomenon, a welding point position, and a squeeze roll center (hereinafter referred to as an SQ roll center) are provided. Also disclosed is a technique (Patent Document 3 etc.) for monitoring the upper limit of heat input by measuring the distance between the two.
  • the "type 1 region capable of melt welding” is a narrow region located between the "type 2 region” on the high heat input side and the "type 1 region with cold contact” on the low heat input side. Only this region can be welded without spattering and cold contact.
  • a method is known in which the boundary between the "type 1 region where melt welding is possible” and the "type 2 region” on the high heat input side is determined by utilizing the fact that arcing occurs frequently in the welding slit. There is.
  • the boundary between the "type 1 region where melt welding is possible” and the "type 1 region with cold contact” on the low heat input side is such that the V convergence point position is slightly downstream as the heat input decreases.
  • a method of making a judgment using shifting is known. That is, by setting a threshold value (most downstream position) at the absolute position of the V convergence point, the boundary between the "first-class region where melt welding is possible” and the cold contact limit is determined.
  • the boundary between the type 1 region and the type 2 region on the high heat input side can be detected by utilizing the generation of an arc in the grown welding slit.
  • it has been difficult to determine the boundary between the type 1 region and the cold contact generation limit on the low heat input side because there is no remarkable change in phenomena such as arc generation and two-stage convergence. Therefore, it is necessary to set the threshold value on the downstream side of the V convergence point in consideration of the amount of fluctuation of the V convergence point position due to the upset force, and the operation is performed with a relatively higher heat input than the original boundary.
  • the "first-class region that can be melt-welded" is a very narrow region. Therefore, the operation on the high heat input side was not preferable in order to avoid entering the type 2 region. For this reason, it has been desired to operate while monitoring the boundary between the "first-class region where melt welding is possible" and the cold contact limit.
  • the present invention has been made in view of the above circumstances, and is an electro-sewn steel pipe welding monitoring method and electric power that enable detection of cold welding in order to appropriately perform a welding operation in a type 1 region where melt welding is possible.
  • An object of the present invention is to provide a welded steel pipe welding monitoring device.
  • a further object of the present invention is to provide an electric pipe manufacturing method using the electric resistance welded steel pipe welding monitoring method and an electric pipe manufacturing apparatus provided with the electric resistance welded steel pipe welding monitoring apparatus.
  • the electrosewn steel pipe welding monitoring method is An image acquisition process for obtaining a photographed image by photographing the V-converging portion and the V-converging point including the edge detection region and the welded portion including the molten steel discharge start position and the bead from the inside of the wall thickness at the time of welding the electric resistance pipe.
  • the melting length may be acquired as the determination information.
  • the high-luminance region may be extracted by performing labeling processing on the region downstream of the V convergence point, and then the melting length may be acquired.
  • the wall thickness of the electric resistance pipe is 4.0 mm to 6.0 mm;
  • the determination step whether or not the melting length is 1.5 mm or more is used as the determination threshold.
  • the determination threshold value of the determination step may be provided for each type of the electric resistance welded steel pipe.
  • the melting width may be acquired as the determination information.
  • the melting width may be acquired after extracting a high-luminance region by performing labeling processing on a region downstream of the V convergence point.
  • the wall thickness of the electric resistance pipe is 4.0 mm to 6.0 mm;
  • the determination step whether or not the melting width is 0.3 mm or more is used as the determination threshold.
  • the determination threshold value of the determination step may be provided for each type of the electric resistance welded steel pipe.
  • the method for manufacturing an electrosewn steel pipe according to one aspect of the present invention is It is a method of manufacturing an electrosewn steel pipe by welding a pair of butt end faces while forming an open pipe while feeding a strip-shaped steel plate in the longitudinal direction.
  • the heat input upper limit operating condition that does not generate a welding slit on the downstream side of the V convergence point, and The welding is performed between the two.
  • a marking step of marking a position corresponding to the cold contact in the electric resistance welded steel pipe may be further provided.
  • the electric resistance welded steel pipe welding monitoring device is An imaging means for obtaining a photographed image by photographing the V-converging portion including the edge and the V-converging point, the molten steel discharge start position from the inside of the wall thickness, and the welded portion including the bead when welding the electric resistance pipe.
  • a determination information acquisition means that performs image processing on the captured image and acquires at least one of the melt length from the V convergence point to the molten steel discharge start position and the melt width of the welded portion as determination information; As a determination means for determining whether or not cold contact is performed by comparing the determination information with a determination threshold value set in advance for each wall thickness of the electric resistance welded steel pipe. To be equipped.
  • the determination information may be the melting length.
  • the melting length may be acquired after the determination information acquisition means extracts a high-luminance region by labeling a region downstream of the V convergence point.
  • the wall thickness of the electric resistance pipe is 4.0 mm to 6.0 mm;
  • the determination means uses as the determination threshold whether or not the melting length is 1.5 mm or more.
  • the determination means may have the determination threshold value for each type of the electric resistance welded steel pipe.
  • the determination information may be the melting width.
  • the melting width may be acquired after the determination information acquisition means extracts a high-luminance region by labeling a region downstream of the V convergence point.
  • the wall thickness of the electric resistance pipe is 4.0 mm to 6.0 mm;
  • the determination means uses as the determination threshold whether or not the melting width is 0.3 mm or more.
  • the determination means may have the determination threshold value for each type of the electric resistance welded steel pipe.
  • the electric resistance pipe manufacturing apparatus is It is a device for manufacturing an electrosewn steel pipe by welding between a pair of butt end faces while forming a strip-shaped steel plate into an open pipe while feeding it in the longitudinal direction.
  • the electric resistance welded steel pipe welding monitoring device according to any one of (12) to (20) above;
  • a control device that limits the amount of heat input during welding between the heat input lower limit operating condition that does not reach the cold contact and the heat input upper limit operating condition that does not generate a welding slit on the downstream side of the V convergence point. To be equipped.
  • the marking means may further provide a marking at a position corresponding to the cold contact in the electric resistance welded steel pipe.
  • an electric resistance welded steel pipe welding monitoring method and an electric resistance welded steel pipe welding monitoring device capable of detecting cold contact in order to appropriately perform a welding operation in a type 1 region where melt welding is possible. Can be provided. Further, according to each of the above aspects of the present invention, it is also possible to provide an electric pipe manufacturing method using this electric pipe welding monitoring method and an electric pipe manufacturing apparatus provided with an electric pipe welding monitoring device.
  • FIG. 1 shows 1st Embodiment of this invention, and is the perspective view of the electric pipe manufacturing apparatus provided with the electric resistance welded steel pipe welding monitoring apparatus. It is a perspective view which shows that it melts from the corner part of an edge when welding is performed in the type 1 region where melt welding is possible. It is an image diagram which shows the distance from the V convergence point to the molten steel discharge start position when the edge is seen from the inside, and is the AA arrow view of FIG. (A) shows the state of the type 1 region where melt welding is possible, and (b) shows the state of cold welding. It is a discharge image figure of molten steel when the welded part is seen in the cross section perpendicular to the axis of the electric resistance steel pipe.
  • (A) shows the state of the type 1 region where melt welding is possible, and (b) shows the state of cold welding.
  • This is an example of an image of the welded part taken from above.
  • (A) shows the state of the type 1 region where melt welding is possible, and (b) shows the state of cold welding.
  • It is a flowchart which shows the algorithm of the image processing in 1st Embodiment. It is an image showing an example of an approximate straight line and a V convergence point. This is an image example showing the detection of the distance from the V convergence point to the molten steel discharge start position.
  • (A) represents a state in which the heat input amount is the reference heat input amount
  • (b) represents a state in which the heat input amount is the reference heat input amount ⁇ 8% (cold contact).
  • an arc is generated at the point indicated by the white arrow.
  • the state of the type 1 region where melt welding is possible is shown, and (b) shows the state of cold welding. It is a figure which shows the example of the angle dependence of the emissivity. It is a flowchart which shows the algorithm of the image processing in 2nd Embodiment. It is a graph which shows the detection example of the melting width.
  • (A) represents a state in which the heat input amount is the reference heat input amount
  • (b) represents a state in which the heat input amount is the reference heat input amount ⁇ 8% (cold contact).
  • the electric resistance welded steel pipe welding monitoring method of the present embodiment in the electric resistance welded steel pipe welding, the welded portion including the V convergence and V convergence point of the welded portion, the molten steel discharge start position from the inside of the wall thickness, and the edge detection region is photographed from above. To do. Then, the captured image of the edge detection region is processed to calculate the distance from the V convergence point to the molten steel discharge start position. Further, by comparing this distance information with the determination threshold value, it is determined whether or not the contact is cold. Therefore, in the electric resistance pipe manufacturing process manufactured by the small diameter electric pipe mill for manufacturing small diameter steel pipes for automobiles, machines and structures in which spatter generation contributes to defects, cold welding of the first type region capable of melt welding is performed. It is possible to provide a welding monitoring method for detecting.
  • the "type 1 region where melt welding is possible” is a part of the type 1 region where a welding slit does not occur, and the V convergence point and the joint point match.
  • the "type 1 region capable of melt welding” is a narrow region located between the "type 2 region” on the high heat input side and the "type 1 region with cold contact” on the low heat input side. In this "first-class region where melt welding is possible", welding can be performed without generating spatter and cold welding.
  • the boundary between the "type 1 region where melt welding is possible” and the "type 2 region” on the high heat input side utilizes whether or not a welding slit is generated, or the arcing that occurs in this welding slit. It can be used and judged.
  • the electrosewn steel pipe manufacturing method of the present embodiment is a method of manufacturing an electrosewn steel pipe by welding a pair of butt end faces while forming a strip-shaped steel plate into an open pipe while feeding it in the longitudinal direction.
  • the welding is performed between the heat input lower limit operating condition that does not lead to cold contact and the heat input upper limit operating condition that does not generate a welding slit on the downstream side of the V convergence point obtained by the welding monitoring method.
  • this electrosewn steel pipe manufacturing method it becomes possible to manufacture a small-diameter electrosewn steel pipe having a sound welded portion without cold contact or dents.
  • the V converging portion and the V converging point including the edge detection portion, and the welded portion including the molten steel discharge position and the bead from the inside of the plate thickness A means for photographing from above them, a means for processing the photographed image to measure the distance information from the V convergence point to the molten steel discharge start position, and whether or not the welding is cold by comparing this distance information with the judgment threshold value. It has a means for determining whether or not.
  • the electrosewn steel pipe manufacturing apparatus of the present embodiment is an apparatus for manufacturing an electrosewn steel pipe by welding between a pair of butt end faces while forming a strip-shaped steel plate into an open pipe while feeding it in the longitudinal direction.
  • a control device that limits the amount of heat input during welding between the lower heat input operating condition that does not reach cold contact and the upper upper heat input operating condition that does not generate a welding slit on the downstream side of the V convergence point. Be prepared.
  • this electric pipe manufacturing apparatus it is possible to manufacture a small-diameter electric pipe having a sound welded portion without cold contact or dents.
  • FIG. 1 An example of this electric resistance welded steel pipe manufacturing apparatus is shown in FIG.
  • X indicates a transport direction of the strip-shaped steel plate
  • Z indicates a height direction orthogonal to the transport direction X
  • Y is orthogonal to both the transport direction X and the height direction Z
  • E2 indicate the direction in which they butt each other (butting direction).
  • the electric pipe manufacturing apparatus of this embodiment includes a roll group (not shown except for the SQ roll r described later), a heating means (not shown), an electric resistance welded steel pipe welding monitoring device 10, and a control device 20.
  • the roll group includes a plurality of rolls that form a tubular open pipe OP while feeding the strip-shaped steel plate in the transport direction X.
  • These rolls include a squeeze roll r (hereinafter referred to as an SQ roll r) that applies an upset force that presses the abutting end faces e1 and e2 against each other at the welding position.
  • the heating means includes a work coil that performs induction heating, and heats a part of the open tube OP in the longitudinal direction.
  • the open pipe OP is welded by pressing the butt end faces e1 and e2 against each other by receiving the upsetting force by the SQ roll r in a state of being heated by the heating means.
  • the electric resistance welded steel pipe welding monitoring device 10 monitors the welded portion W between the pair of butt end faces e1 and e2 formed on the open pipe OP while photographing the welded portion W from above with the camera 11. More specifically, the presence / absence of cold contact and the presence / absence of welding slits are determined by processing the captured image of the camera 11.
  • the control device 20 controls the heating means based on the information from the electric resistance welded steel pipe welding monitoring device 10. More specifically, the control device 20 controls the amount of heat input, that is, the power input to the welded portion W (voltage ⁇ current) based on the above information.
  • the central position in the wall thickness direction may be pressed down before melting and cold welding (Cold Weld) may occur.
  • Cold contact occurs when the amount of heat input is too low in the type 1 region, and when viewed in a cross section perpendicular to the axis of the electrosewn steel pipe, the total thickness along the wall thickness direction melts at the welded portion. It refers to a welded state in which unmelted parts remain partially.
  • the formation position of the unmelted portion is not limited to the center position in the wall thickness direction of the welded surface, and may be formed outside the pipe radial direction or inside the pipe radial direction from the center position in the wall thickness direction.
  • the welded surfaces (butted end faces e1 and e2) of the open pipe OP are heated and melted from both corners as shown in FIG. 4A. Will be done. Then, when these pair of welded surfaces approach each other, the molten region expands toward the center of the wall thickness due to the proximity effect.
  • each welded surface has a shape in which the thick center portion thereof protrudes.
  • the molten steel melts from the center of the wall thickness, and as a result of being pressed by the SQ roll r, molten steel is discharged from the center of the wall thickness toward the inner and outer surfaces of the open pipe OP.
  • the molten steel is discharged only from the inner surface of the steel pipe and the outer surface of the steel pipe, if the melting does not proceed to the center of the wall thickness as shown in FIG. 4 (b), the molten steel is more than in the case of FIG. 4 (a).
  • FIG. 6 shows the algorithm of the present embodiment finally calculating the “V convergence point v1-distance l1 between the discharge start positions i1”.
  • FIG. 7 is an image example in which the V convergence point v1 is detected from the approximate lines of the butt end faces (welded surface edges) e1 and e2.
  • a camera 11 takes a picture to obtain a captured image.
  • the red component is extracted from the captured image.
  • a green component or a blue component may be used instead of the red component.
  • the green component is preferable to the blue component because of the high light receiving sensitivity.
  • the red component is preferable to the green component. Therefore, the red component is the most preferable as the extraction component.
  • the approximate straight lines of the butt end faces (pair of welded face edges) e1 and e2 are detected.
  • the edge detection region is predetermined so as not to be affected by the low-luminance portion on the upstream side and the vicinity of the V convergence point v1.
  • 20% each of the upstream end and the downstream end of the wedge-shaped region surrounded by the butt end faces e1 and e2 are excluded, and a pair of approximate straight lines are formed on the wedge-shaped region.
  • step S04 the intersection of the pair of approximation lines obtained in step S03 is detected as the V convergence point v1.
  • the rebinarization region is set on the downstream side of the V convergence point v1.
  • a rectangular range of 2 mm in the circumferential direction (vertical direction on the paper surface of the image) and 10 mm in the longitudinal direction is set as a region to be rebinarized.
  • step S06 the area set in step S05 is rebinarized.
  • the threshold value for performing this rebinarization will be described with reference to FIGS. 9A and 9B.
  • the horizontal axis indicates the brightness level in the image
  • the vertical axis indicates the frequency.
  • the number of pixels in the image is counted for each luminance level to obtain the appearance frequency as a luminance histogram, and then smoothing is applied to eliminate noise. Obtained at.
  • FIG. 9A shows the case of proper heat input conditions
  • FIG. 9B shows the case of cold contact conditions.
  • the frequency of the luminance level has two peaks regardless of the amount of heat input.
  • the peak of the large peak on the relatively low brightness side is the light of the molten steel in which the butt end faces e1 and e2 are melted.
  • the peak of the small peak on the relatively high brightness side is the light of molten steel emitted toward the outer surface of the open tube OP.
  • the brightness level between the two mountains more specifically, the brightness level at the starting position of the climbing position of the mountain with a small peak on the relatively high brightness level side can be used as the threshold value.
  • the threshold value for the temperature difference, but since the temperatures of molten steel are close to each other, it is not suitable for the threshold value of the binarization process. Therefore, as a result of diligently examining the parameter of the binarization process instead of the temperature, the present inventors have found that the brightness is suitable as the parameter of the binarization process for the above-mentioned reason.
  • the high-luminance region is extracted by performing labeling processing on the region rebinarized in step S06.
  • the blobs white regions in FIGS. 8A and 8B detected as a mass by the labeling process
  • the distance (maximum length) l1 from the V convergence point v1 to the molten steel discharge start position i1 is calculated.
  • the distance l1 obtained in step S09 is compared with the determination threshold value described later to determine whether it is normal or cold contact.
  • step S11 when the distance l1 is equal to or greater than the determination threshold value (Yes), the process proceeds to step S11 and is determined to be “normal”. On the other hand, when the distance l1 is less than the determination threshold value (No), the process proceeds to step S12 and the determination is made as “cold contact”. The control flow after passing through steps S11 and S12 returns to step S01, and each of the above steps is repeated again.
  • a re-binarization region is set on the downstream side of the V convergence point v1, a high-luminance region is extracted by labeling, and then the molten steel discharge start position is started from the V convergence point v1. It is preferable to calculate the distance l1 to i1 and compare this distance l1 with the determination threshold value for determination. Further, in order to enable this step, the captured image processing means sets a re-binarization region on the downstream side of the V convergence point v1, extracts a high-luminance region by labeling processing, and then V-converges. It is preferable to have a function of calculating the distance l1 from the point v1 to the molten steel discharge start position i1 and comparing this distance l1 with the determination threshold value for determination.
  • FIG. 8A shows an example of the treatment result in the normal state (reference heat input)
  • FIG. 8B shows an example of the treatment result in the cold contact state (reference heat input ⁇ 8%).
  • the wall thickness of the electrosewn steel pipe is in the range of 4.0 mm to 6.0 mm. It can be seen that the distance between the V convergence point and the molten steel discharge start point, which was about 4 mm in the treatment result example of FIG. 8 (a), is shortened to 1 mm or less in the treatment result example of FIG. 8 (b).
  • FIG. 10 A graph showing the change in the distance l1 when the amount of heat input is changed and the result of polishing and etching the cross section perpendicular to the longitudinal direction of the electrosewn steel pipe and observing the presence or absence of cold contact under a microscope are shown in FIG. , Good consistency was seen between the two.
  • the horizontal axis represents the increase / decrease (%) of the heat input amount with respect to the reference heat input amount
  • the vertical axis represents the V convergence point-molten steel discharge start point distance l1 (mm).
  • the welding speed was different between the triangle mark and the circle mark, but there was no difference in the tendency between them.
  • 1.5 mm can be set as the threshold value in step S10 of FIG.
  • the electric resistance welded steel pipe welding monitoring device 10 determines whether or not the distance l1 from the V convergence point v1 to the molten steel discharge start position i1 is 1.5 mm or more in determining the presence or absence of cold contact. It is preferable to have a function of performing based on.
  • the lower limit (cold contact limit) of the type 1 region where melt welding is possible it is possible to detect the lower limit (cold contact limit) of the type 1 region where melt welding is possible.
  • the upper limit of the amount of heat input corresponds to the lower limit of the type 2 region, and the frequency of arcs generated in the grown welding slits increases (FIG. 11). Therefore, the "upper limit of the type 1 region capable of melt welding" can be detected by a technique known as "a method for measuring the arc frequency of a welding slit".
  • the electric resistance welded steel pipe welding monitoring device 10 which has obtained the information regarding the range of the type 1 region where melt welding is possible in this way transmits the information to the control device 20.
  • the control device 20 controls the amount of heat input when welding the open pipe OP, that is, the input power (voltage ⁇ current) to the welded portion W, based on the information received from the welded steel pipe welding monitoring device 10. Specifically, welding is performed so as to fall between the lower limit (cold contact limit) of the type 1 region where melt welding is possible and the value 3% lower than the lower limit heat input amount (lower limit input power) of the type 2 region.
  • the input power (voltage x current) to the unit W is controlled.
  • the pipe making line may be equipped with a pipe transmission distance meter (not shown) to measure the pipe transmission length.
  • the control device 20 upper computer such as a process computer
  • the control device 20 stores the determination threshold value for each product type so that the pipe length can be tracked based on the image, it is possible to determine the cold contact that causes welding failure.
  • the position where cold welding occurs can also be specified. This makes it possible to manage the cold contact position and instruct the operator to exclude defective parts. Alternatively, it is possible to mark the defective part downstream from the welded part by spraying or the like.
  • the electric resistance welded steel pipe welding monitoring device 10 stores the distance l1 from the V convergence point v1 to the molten steel discharge start position i1 in the control device 20 for each type of determination. It is preferable to have a function of making a judgment by comparing with a threshold value.
  • the electric resistance welded steel pipe manufacturing apparatus is provided with a function of marking the welded defective portion at a position downstream of the welded portion with respect to the electric resistance welded steel pipe determined to be poorly welded based on the determination result. Is preferable. For the distance l1 from the V convergence point v1 to the molten steel discharge start position i1, it is preferable to continuously measure the entire length excluding the middle joint point and the like for quality assurance. [Example]
  • the welded portion W including the molten steel discharge start position and the edge detection region from the inside of the wall thickness is photographed with an imaging resolution of 25 ⁇ m (a camera with a 2K pixel in the longitudinal direction and a field of view of 50 mm), and the welded portion is photographed at intervals of 25 milliseconds.
  • the welding condition was monitored while photographing the entire length and processing the image.
  • the target pipe was a real tube of ⁇ 100 mm ⁇ 5 mmt, the setting of the camera used for imaging was 40 frames / sec, and the exposure time was 1/10000 sec.
  • the heat input was intentionally changed, and the result of tracking and cross-sectional inspection to confirm the presence or absence of a bond was compared with the part judged to be cold-contacted.
  • FIG. 12 is an example of data collected by applying this method online.
  • the image processing device has a function of taking in the PLG signal mounted on the line and measuring the length from the relay point, and the image and the actual length are tracked.
  • the position where the cold contact is determined to have occurred can be transmitted to the process computer, and the process computer can specify the exclusion site to the operator. Alternatively, it is possible to mark defective parts by spraying or the like downstream of welding.
  • the location where the distance l1 between the V convergence point and the molten steel discharge position was confirmed to be 1.5 mm or less was cracked in a flat test after exclusion, confirming that the contact was cold.
  • the portion where cold contact has occurred can be automatically detected and the defective portion can be removed, so that the soundness of the product welded portion can be confirmed.
  • the embodiment for carrying out the present invention is shown below. Since the configuration of the electric resistance welded steel pipe manufacturing apparatus is the same as that of the first embodiment, the same reference numerals are used for each component, and the differences will be mainly described.
  • the welded steel pipe welding monitoring method of the present embodiment includes a V-converging portion and a V-converging point v1 including an edge detection region, and a welded portion W including a molten steel discharge start position and a bead from the inside of the wall thickness in the welded pipe welding. Is photographed from above the weld. Then, the captured image in the edge detection region is processed to calculate the melting width w1.
  • the melting width w1 is compared with a determination threshold value set in advance based on the data for each wall thickness to determine whether or not the contact is cold. Therefore, as described above, melt welding is possible in the electric resistance pipe manufacturing process manufactured by the small diameter electric pipe mill for manufacturing small diameter steel pipes for automobiles, machines and structures in which spatter generation contributes to defects. It is possible to provide a welding monitoring method for detecting cold contact in a type 1 region.
  • the electric resistance welded steel pipe welding monitoring device includes a V-converging portion and a V-converging point v1 including an edge detection region, and a welded portion W including a molten steel discharge position and a bead from the inside of the wall thickness.
  • the melt width w1 differs between the normal state and the cold contact state, as shown in FIG.
  • the butt end faces e1 and e2 of the open pipe OP are heated and melted from both corners in the wall thickness direction.
  • the distance between the butt end faces e1 and e2 becomes short, the melting region expands toward the center of the wall thickness due to the proximity effect.
  • both corners of the butt end faces e1 and e2 in the wall thickness direction also melt, so that the melting width differs depending on the amount of heat input.
  • FIG. 13B which is obtained by photographing this phenomenon from above with the camera 11, it can be seen that the brightness of the region showing the melting width w1 is high.
  • the present inventors examined whether or not the angle dependence that the radiance changes depending on the viewing direction can be utilized.
  • FIG. an example of angle dependence is shown in FIG.
  • the angle ⁇ from the normal of the plate surface is large, that is, the brightness tends to be higher at an angle shallower than the plate surface.
  • the brightness from a portion (edge corner, near the welded surface) at a shallow angle when the cross section shown in FIGS. 14 (a) and 14 (b) is viewed from the position of the camera 11 above. was thought to be higher.
  • the maximum width dimension of the high-luminance region on the downstream side of the V convergence point v1 is set as the melting width w1, and this melting width w1 is measured.
  • FIG. 16 is a processing example of the algorithm of the present embodiment, and finally measures the “melt width”.
  • 17 (a) and 17 (b) show an example of an image in which the V convergence point v1 is detected from the approximate lines of the pair of butted end faces e1 and e2.
  • step S01A an image is taken by the camera 11 to obtain an captured image.
  • step S02A the red component is extracted from the captured image.
  • the extraction component a green component or a blue component may be used instead of the red component.
  • the green component is preferable to the blue component because of the high light receiving sensitivity.
  • the red component is preferable to the green component. Therefore, the red component is the most preferable as the extraction component.
  • step S03A the approximate straight lines of the butt end faces (pair of welded face edges) e1 and e2 are detected.
  • the edge detection region is predetermined so that it is not easily affected by the low-luminance portion on the upstream side and the vicinity of the V convergence point.
  • 20% each of the upstream end portion and the downstream side end portion of the wedge-shaped region surrounded by the butt end faces e1 and e2 is excluded. Detect a pair of approximate straight lines above. In the following step S04, the intersection of the pair of approximation lines obtained in step S03 is detected as the V convergence point v1.
  • the rebinarization region is set on the downstream side of the V convergence point v1.
  • a rectangular range of 2 mm in the circumferential direction (vertical direction of the paper surface of the image) and 10 mm in the longitudinal direction is set as a region to be rebinarized from now on.
  • step S06A the area set in step S05A is rebinarized. Since the setting of the threshold value and the like at the time of this rebinarization have already been described in the first embodiment, they will be omitted here.
  • a high-luminance region is extracted by performing labeling processing on the region rebinarized in step S06A.
  • the blobs white areas in FIGS. 17A and 17B, which are detected as a mass by the labeling process
  • the melting width in this high-luminance region is measured.
  • step S09A the melting width obtained in step S08A is compared with the determination threshold value described later to determine whether it is normal or cold contact. That is, when the melting width is equal to or greater than the determination threshold value (Yes), the process proceeds to step S10A and is determined to be "normal". On the other hand, when the distance is less than the determination threshold value (No), the process proceeds to step S11A and the determination is made as “cold contact”. The control flow after passing through steps S10A and 11A returns to step S01A, and each of the above steps is repeated again.
  • FIG. 17A shows an example of the treatment result in the normal state (reference heat input)
  • FIG. 17B shows an example of the treatment result in the cold contact state (reference heat input ⁇ 8%).
  • the wall thickness of the electrosewn steel pipe is in the range of 4.0 mm to 6.0 mm. It can be seen that the melting width, which was about 0.4 mm in the treatment result example of FIG. 17 (a), is narrowed to 0.06 mm in the treatment result example of FIG. 17 (b).
  • the change in the melt width w1 when the amount of heat input is changed and the result of polishing and etching the cross section perpendicular to the longitudinal direction of the electrosewn steel pipe and observing the presence or absence of cold contact under a microscope are shown in FIG. In addition, good consistency was found between the two.
  • the horizontal axis represents the increase / decrease (%) of the heat input amount with respect to the reference heat input amount
  • the vertical axis represents the melting width w1 (mm).
  • the welding slit is generated as the second type region.
  • the upper limit of the melting width w1 is not particularly specified, when the amount of heat input is increased, the melting width w1 enters the second type region before it becomes wide. Therefore, in principle, the bead width (about 3 mm in the example of FIG. 17A) cannot be exceeded, so that the upper limit of the melting width w1 may be 3 mm.
  • the above values are for the case where the wall thickness of the electric resistance pipe is 4.0 mm to 6.0 mm.
  • the rebinarization region is set on the downstream side of the V convergence point v1, the high-luminance region is extracted by the labeling process, and then the melting width w1 is calculated. Then, it is preferable to compare and determine the melting width w1 with a determination threshold value set in advance based on the data for each wall thickness. That is, when the wall thickness of the electrosewn steel pipe is 4.0 mm to 6.0 mm, it is preferable to make a judgment based on whether or not the melt width w1 is 0.3 mm or more.
  • the captured image processing means sets a rebinarization region on the downstream side of the V convergence point v1, extracts a high-luminance region by labeling, and then extracts the high-luminance region. It is preferable to have a function of calculating the melt width w1 and comparing the melt width w1 with a determination threshold value set in advance based on the data for each wall thickness. That is, when the wall thickness of the electrosewn steel pipe is 4.0 mm to 6.0 mm, it is preferable to have a function of determining whether or not the melt width w1 is 0.3 mm or more.
  • the lower limit (cold contact limit) of the type 1 region where melt welding is possible can be detected.
  • the upper limit of the amount of heat input corresponds to the lower limit of the type 2 region, and it is known that the frequency of arcs generated between the grown welding slits increases (see FIG. 11 of the first embodiment). Therefore, the "upper limit of the type 1 region where melt welding is possible" can be detected by a technique known as "a method for measuring the arc frequency between welding slits".
  • the electric resistance welded steel pipe welding monitoring device 10 which has obtained the information regarding the range of the type 1 region where melt welding is possible in this way transmits the information to the control device 20.
  • the control device 20 controls the amount of heat input when welding the open pipe OP, that is, the input power (voltage ⁇ current) to the welded portion W, based on the information received from the welded steel pipe welding monitoring device 10. Specifically, welding is performed so as to fall between the lower limit (cold contact limit) of the type 1 region where melt welding is possible and the value 3% lower than the lower limit heat input amount (lower limit input power) of the type 2 region.
  • the input power (voltage x current) to the unit W is controlled.
  • the pipe making line may be equipped with a pipe transmission distance meter (not shown) to measure the pipe transmission length.
  • the control device 20 upper computer such as a process computer
  • the control device 20 stores the determination threshold value for each product type so that the pipe length can be tracked based on the image, it is possible to determine the cold contact that causes welding failure.
  • the position where cold welding occurs can also be specified. This makes it possible to manage the cold contact position and instruct the operator of the exclusion site. Alternatively, it is possible to mark the actual product by spraying or the like downstream of welding.
  • the electric resistance welded steel pipe welding monitoring device 10 has a function of comparing the melt width w1 with the determination threshold value for each product type stored in the control device 20. preferable.
  • the electric resistance welded steel pipe manufacturing apparatus is provided with a function of marking the welded defective portion at a position downstream of the welded portion with respect to the electric resistance welded steel pipe determined to be poorly welded based on the determination result. Is preferable.
  • the measurement of the melting width w1 it is preferable to continuously measure the entire length excluding the middle joint point and the like for quality assurance.
  • the welded portion W including the molten steel discharge position and the edge detection area from the inside of the wall thickness is photographed with an imaging resolution of 25 ⁇ m (a camera with 2 K pixels in the longitudinal direction and a field of view of 50 mm), and the welded portion W is photographed continuously at intervals of 25 milliseconds.
  • Welding condition was monitored while taking pictures and processing images.
  • the target pipe was a real tube of ⁇ 100 mm ⁇ 5 mmt, the camera used for imaging was 40 frames / sec, and the exposure time was 1/10000 sec.
  • the heat input was intentionally changed, and the result of tracking and cross-sectional inspection to confirm the presence or absence of a bond was compared with the part judged to be cold-contacted.
  • FIG. 19 is an example of data collected by applying this method online.
  • the melting width w1 was 0.3 mm or less around 1 minute from the start, and it was determined that cold contact had occurred.
  • the image processing device has a function of taking in the PLG signal mounted on the line and measuring the length from the relay point, and the image and the actual length are tracked.
  • the position where the cold contact is determined to have occurred can be transmitted to the process computer, and the process computer can specify the exclusion site to the operator.
  • the portion where cold contact has occurred can be automatically detected and the defective portion can be removed, so that the soundness of the product welded portion can be confirmed.
  • the presence or absence of cold contact is comprehensively determined by using the algorithm of FIG. 6 described in the first embodiment and the algorithm of FIG. 16 described in the second embodiment in combination. That is, in the present embodiment, both the determination of the presence or absence of cold contact based on the distance l1 from the V convergence point v1 to the molten steel discharge start position i1 and the determination of the presence or absence of cold contact based on the melting width w1 are performed. Then, if these two determination results match, it is determined that the presence or absence of cold contact has been correctly determined. On the other hand, if these two determination results do not match, it is determined that the presence or absence of cold contact is not correctly determined. A specific example thereof will be described below using the algorithm shown in FIG.
  • step S01C the V-convergence and V-convergence points v1 and the welded portion W including the molten steel discharge start position i1 from the inside of the wall thickness and the edge detection region are photographed by the camera 11 and captured images.
  • step S02C the red component is extracted from the captured image.
  • the red component is extracted from the captured image.
  • a green component or a blue component may be used instead of the red component.
  • the green component is preferable to the blue component because of the high light receiving sensitivity.
  • the red component is preferable to the green component. Therefore, the red component is the most preferable as the extraction component.
  • step S03C the approximate straight lines of the butt end faces (pair of welded face edges) e1 and e2 are detected.
  • the edge detection region is predetermined so that it is not easily affected by the low-luminance portion on the upstream side and the vicinity of the V convergence point.
  • 20% each of the upstream end portion and the downstream side end portion of the wedge-shaped region surrounded by the butt end faces e1 and e2 is excluded. Detect a pair of approximate straight lines above.
  • the intersection of the pair of approximation lines obtained in step S03C is detected as the V convergence point v1.
  • the rebinarization region is set on the downstream side of the V convergence point v1.
  • the rectangular range of 2 mm in the circumferential direction (vertical direction on the paper surface of the image) and 10 mm in the longitudinal direction will be rebinarized from now on. Can be set as an area.
  • step S06C the area set in step S05C is rebinarized.
  • the threshold value for performing this rebinarization is as described with reference to FIGS. 9A and 9B in the first embodiment.
  • the first process of performing steps S08C to S12C via step S07C and the second process of performing steps S13C to S16C via step S07C are performed in parallel.
  • a high-luminance region is extracted by performing a labeling process on the region rebinarized in step S06C.
  • a blob (white region shown in FIGS. 8A and 8B in the above first embodiment) is extracted in contact with the left end of the rebinarization region.
  • the distance l1 from the V convergence point v1 to the molten steel discharge start position (the most downstream coordinates of the blob) i1 is calculated.
  • the distance l1 obtained in step S09C is compared with the determination threshold value to determine whether it is normal or cold contact.
  • a high-luminance region is extracted by performing a labeling process on the region rebinarized in step S06C.
  • a blob that touches the left end of the rebinarization region in order to obtain an accurate target region (the white region of FIGS. 17A and 17B detected as a lump in the labeling process in the second embodiment).
  • the melting width w1 in this high-luminance region is measured.
  • step S17C The result of the primary determination and the result of the secondary determination described above are introduced in step S17C, and if both determination results match (Yes), the process proceeds to step S18C and it is determined that there is no determination abnormality. On the other hand, if the determination results of both do not match (No), the process proceeds to step S19C and it is determined that "there is a determination abnormality". In this case, it can be determined that some inconvenience (for example, cooling water has been applied to the photographing range, foreign matter has entered, etc.) has occurred and the reliability of the determination result has been impaired.
  • the control flow after passing through steps S18C and S19C returns to step S01C, and each of the above steps is repeated again. If it is determined in step S19C that "there is an abnormality in the determination", this may be saved and used for the reliability determination later, or an alarm is displayed to notify the operator. You may.
  • the electrosewn steel pipe welding monitoring method according to each embodiment of the present invention is An image obtained by photographing the V-converging portion including the edge detection region and the V-converging point v1 and the molten steel discharge start position i1 from the inside of the wall thickness and the welded portion W including the bead during welding of the electric resistance pipe.
  • the melting length l1 may be acquired as the determination information.
  • the high-luminance region may be extracted by labeling the region downstream of the V convergence point v1 to acquire the melt length l1.
  • the wall thickness of the electric resistance pipe is 4.0 mm to 6.0 mm;
  • the determination step whether or not the melt length l1 is 1.5 mm or more is used as the determination threshold.
  • the determination threshold value of the determination step may be provided for each type of the electric resistance welded steel pipe.
  • the melting width w1 may be acquired as the determination information.
  • the melting width w1 may be acquired after extracting the high-luminance region by performing labeling processing on the region downstream of the V convergence point v1.
  • the wall thickness of the electric resistance pipe is 4.0 mm to 6.0 mm;
  • the determination step whether or not the melting width w1 is 0.3 mm or more is used as the determination threshold.
  • the determination threshold value of the determination step may be provided for each type of the electric resistance welded steel pipe.
  • the method for manufacturing an electrosewn steel pipe according to one aspect of the present invention is A method of manufacturing an electrosewn steel pipe by welding a pair of butt end faces e1 and e2 while forming a strip-shaped steel plate into an open pipe OP while feeding it in the longitudinal direction.
  • the heat input upper limit operating condition that does not generate a welding slit on the downstream side of the V convergence point, and The welding is performed between the two.
  • a marking step of marking a position corresponding to the cold contact in the electric resistance welded steel pipe may be further provided.
  • the electric resistance welded steel pipe welding monitoring device 10 is When welding an electrosewn steel pipe, an image is taken to obtain a photographed image by photographing the V converging portion including the edge detection region and the V converging point v1, the molten steel discharge start position i1 from the inside of the wall thickness, and the welded portion W including the bead.
  • Means and; A determination information acquisition means that performs image processing on the captured image and acquires at least one of the melt length l1 from the V convergence point v1 to the molten steel discharge start position i1 and the melt width w1 of the welded portion W as determination information. ;
  • As a determination means for determining whether or not cold contact is performed by comparing the determination information with a determination threshold value set in advance for each wall thickness of the electric resistance welded steel pipe. To be equipped.
  • the determination information may be the melting length l1.
  • the determination information acquisition means may acquire the melt length l1 after extracting the high-luminance region by labeling the region downstream of the V convergence point v1.
  • the wall thickness of the electric resistance pipe is 4.0 mm to 6.0 mm;
  • the determination means uses as the determination threshold whether or not the melt length l1 is 1.5 mm or more.
  • the determination means may have the determination threshold value for each type of the electric resistance welded steel pipe.
  • the determination information may be the melting width w1.
  • the determination information acquisition means may acquire the melting width w1 after extracting the high-luminance region by labeling the region downstream of the V convergence point v1.
  • the wall thickness of the electric resistance pipe is 4.0 mm to 6.0 mm;
  • the determination means uses as the determination threshold whether or not the melting width w1 is 0.3 mm or more.
  • the determination means may have the determination threshold value for each type of the electric resistance welded steel pipe.
  • the electric resistance pipe manufacturing apparatus is A device for manufacturing an electrosewn steel pipe by welding a pair of butt end faces e1 and e2 while forming an open pipe while feeding a strip-shaped steel plate in the longitudinal direction.
  • a control device 20 that limits the amount of heat input during welding between the heat input lower limit operating condition that does not reach the cold contact and the heat input upper limit operating condition that does not generate a welding slit on the downstream side of the V convergence point v1. ; To be equipped.
  • the marking means may further provide a marking at a position corresponding to the cold contact in the electric resistance welded steel pipe.
  • an electric resistance welded steel pipe welding monitoring method and an electric resistance welded steel pipe welding monitoring device that can detect cold contact in order to appropriately perform a welding operation in a type 1 region where melt welding is possible. Further, according to the present invention, it is also possible to provide a power-sewn steel pipe manufacturing method using this power-stitched steel pipe welding monitoring method and a power-stitched steel pipe manufacturing device including a power-stitched steel pipe welding monitoring device.

Abstract

本発明の電縫鋼管溶接監視方法は、電縫鋼管の溶接時に、エッジ検出領域を含むV収束部およびV収束点と、肉厚内部からの溶鋼排出開始位置及びビードを含む溶接部と、を撮影して撮影画像を得る画像取得工程と;前記撮影画像を画像処理して、前記V収束点から前記溶鋼排出開始位置までの溶融長さ、及び、前記溶接部の溶融幅、の少なくとも一方を判定情報として取得する判定情報取得工程と;前記判定情報を、前記電縫鋼管の肉厚ごとに予め設定した判定用閾値と比較して、冷接であるか否かを判定する判定工程と;を有する。

Description

電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置
 本発明は、電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置に関する。
 本願は、2019年3月13日に日本国に出願された特願2019-045372号と、2019年3月13日に日本国に出願された特願2019-045373号と、に基づき優先権を主張し、これらの内容をここに援用する。
 従来、電縫溶接により電縫鋼管を製造することが行われている。電縫溶接においては、投入電力(入熱量)によって電縫溶接現象が異なる。電縫溶接現象は、冷接領域、第1種領域、第2種領域、過入熱領域に分類できる。これらのうち、第2種領域は、広い入熱条件で安定した溶接品質が得られると考えられていた。しかしながら、溶接欠陥に着目した品質と、溶接現象の詳細な観察とを対比させた結果、第2種領域がさらに3つの領域に細分化されることが分かった。この3つの領域は、図21に示すように、入熱量の低い方から順に、狭義の第2種領域、遷移領域、そして第2’種領域と定義できる。
 図22に示すように、溶接部をその上方から観察すると、電縫溶接現象毎に異なる現象が見られる。第1種領域は、溶接する鋼材エッジが溶接点に直線的に収束してV収束点を形成する現象であり、溶接スリットは発生しない。狭義の第2種領域は、鋼材エッジの状態が第1種領域の場合と同じであるが、V収束点と溶接点との間に溶接スリットが成長しており、この間にアークが発生する特徴がある。第2’種領域は、鋼材エッジのV収束点よりも実際の衝合点(物理的衝合点)が下流側に位置する。
 一対の鋼材エッジが互いに近付くと近接効果によってこれら鋼材エッジの溶融が進む。そして、一対の鋼材エッジが2段階に収束する現象(2段収束)を伴うことで、物理的な衝合点がシフトする。さらに、狭義の第2種領域と第2’種領域との間に挟まれた入熱条件として、遷移領域がある。この遷移領域では、一対の鋼材エッジそれぞれが直線的に収束する状態と、2段収束する状態とが不規則に発現するため、溶接欠陥が増える可能性が高い。なお、溶接スリットは、第2種領域以上の入熱条件で発生する。
 本発明者らは、第2’種領域における2段収束によって全厚溶融が得られることを見出し、第2’種領域での現象が発現する入熱状態に制御するためのシステムを構築及び導入してきた。例えば特許文献1及び特許文献2では、溶接スリットの長さを測定することで適切な溶接条件に制御するシステムを開示した。また、特許文献3では、2段収束型第2種溶接現象を自動検出することによって溶融証明及び入熱制御を行う技術や、溶接点位置及びスクイズロールセンター(以下、SQロールセンターと称する)間の距離を測定することで入熱上限を監視する技術(特許文献3等)なども開示した。
 これまでは、溶接スリットの発生や2段収束現象に注目し、主に第2種以上の入熱領域の溶接状態に着目した研究を行ってきた。
 一方、例えば、自動車、機械及び構造用として用いられる、外径がφ114.3mm(4-1/2インチ)以下の小径鋼管を製造する小径電縫鋼管ミルでは、スパッタの発生が鋼管の内外表面欠陥の一因になっていた。スパッタが飛んで鋼管表面に付着した場合、このスパッタがロールで押されると鋼管表面に凹み傷が生じる。このような凹み傷の発生は、特に疲労耐久性が求められる自動車用鋼管では好ましくない。
 この理由より、スパッタが不可避的に発生する第2種領域よりも低入熱側で溶接操業を行う必要があり、「溶融溶接可能な第1種領域」を得るための溶接条件を的確に把握する必要が生じていた。
 「溶融溶接可能な第1種領域」は、高入熱側の「第2種領域」と、低入熱側の「冷接を伴う第1種領域」との間に位置する狭い領域であり、この領域だけが、スパッタおよび冷接を発生させずに溶接できる。「溶融溶接可能な第1種領域」と高入熱側の「第2種領域」との境界は、溶接スリット内に高い頻度でアーキングが発生することを利用して判定する手法が知られている。また、「溶融溶接可能な第1種領域」と、低入熱側の「冷接を伴う第1種領域」との境界は、入熱低下に伴って僅かながらV収束点位置が下流側にシフトすることを利用して判定する手法が知られている。すなわち、V収束点の絶対位置に閾値(最下流位置)を設定することによって、「溶融溶接可能な第1種領域」と冷接限界との境界を判定する。
 ところが、低入熱側を判定する後者の判定方法では、SQロールが溶接面を圧下するアプセット力によってV収束点の絶対位置が変動することが分かった。これは、溶接により加熱及び溶融して高温になった軟化部位が、アプセット力の変化を受けて変形量が変化するためであった。
 上述の通り、第1種領域と高入熱側の第2種領域との境界は、成長した溶接スリット内にアークが発生することを利用して検出できる。一方、第1種領域と低入熱側の冷接発生限界との境界は、アーク発生や2段収束などの顕著な現象変化がないことから、これまでは見極めることが難しかった。そのため、アプセット力によるV収束点位置の変動量を見込んでV収束点の下流側閾値を設定せねばならず、本来の境界よりも比較的高入熱で操業することになっていた。
 しかしながら、上述したように、「溶融溶接可能な第1種領域」はとても狭い領域である。そのため、高入熱側での操業は、第2種領域への入り込みを避ける上で好ましいものではなかった。このような理由により、「溶融溶接可能な第1種領域」と冷接限界との境界を正しく判定する監視を行いながら操業することが望まれていた。
日本国特許第5014837号公報 国際公開第11/118560号 日本国特許第5510615号公報
 本発明は、上記事情に鑑みてなされたものであって、溶融溶接可能な第1種領域での溶接操業を適切に行うために冷接を検出可能とする、電縫鋼管溶接監視方法及び電縫鋼管溶接監視装置の提供を目的とする。さらに、本発明は、この電縫鋼管溶接監視方法を用いた電縫鋼管製造方法と、電縫鋼管溶接監視装置を備えた電縫鋼管製造装置の提供も目的とする。
 上記課題を解決して係る目的を達成するために、本発明は、以下の手段を採用した。
(1)本発明の一態様に係る電縫鋼管溶接監視方法は、
 電縫鋼管の溶接時に、エッジ検出領域を含むV収束部およびV収束点と、肉厚内部からの溶鋼排出開始位置及びビードを含む溶接部と、を撮影して撮影画像を得る画像取得工程と;
 前記撮影画像を画像処理して、前記V収束点から前記溶鋼排出開始位置までの溶融長さ、及び、前記溶接部の溶融幅、の少なくとも一方を判定情報として取得する判定情報取得工程と;
 前記判定情報を、前記電縫鋼管の肉厚ごとに予め設定した判定用閾値と比較して、冷接であるか否かを判定する判定工程と;
を有する。
(2)上記(1)に記載の電縫鋼管溶接監視方法において、
 前記判定情報取得工程で、前記判定情報として前記溶融長さを取得してもよい。
(3)上記(2)に記載の電縫鋼管溶接監視方法において、
 前記判定情報取得工程における前記画像処理で、前記V収束点よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、前記溶融長さを取得してもよい。
(4)上記(2)または(3)に記載の電縫鋼管溶接監視方法において、以下のようにしてもよい:
 前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
 前記判定工程で、前記溶融長さが1.5mm以上か否かを前記判定用閾値として用いる。
(5)上記(2)~(4)の何れか1項に記載の電縫鋼管溶接監視方法において、
 前記判定工程の前記判定用閾値を、前記電縫鋼管の品種毎に有してもよい。
(6)上記(1)に記載の電縫鋼管溶接監視方法において、
 前記判定情報取得工程で、前記判定情報として前記溶融幅を取得してもよい。
(7)上記(6)に記載の電縫鋼管溶接監視方法において、
 前記判定情報取得工程における前記画像処理は、前記V収束点よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、前記溶融幅を取得してもよい。
(8)上記(6)または(7)に記載の電縫鋼管溶接監視方法において、以下のようにしてもよい:
 前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
 前記判定工程で、前記溶融幅が0.3mm以上か否かを前記判定用閾値として用いる。
(9)上記(6)~(8)の何れか1項に記載の電縫鋼管溶接監視方法において、
 前記判定工程の前記判定用閾値を、前記電縫鋼管の品種毎に有してもよい。
(10)本発明の一態様に係る電縫鋼管製造方法は、
 帯状鋼板を長手方向に送り出しながらオープン管に成形しつつ、一対の突合せ端面間を溶接して電縫鋼管を製造する方法であって、
 上記(1)~(9)の何れか1項に記載の電縫鋼管溶接監視方法により得た、前記冷接に至らない入熱下限操業条件と、
 前記V収束点の下流側に溶接スリットを生じない入熱上限操業条件と、
の間で前記溶接を行う。
(11)上記(10)に記載の電縫管製造方法において、
 前記判定工程で前記冷接が生じたと判定された場合に、前記電縫鋼管のうちで前記冷接に対応した位置にマーキングを付すマーキング工程をさらに有してもよい。
(12)本発明の一態様に係る電縫鋼管溶接監視装置は、
 電縫鋼管の溶接時に、エッジを含むV収束部およびV収束点と、肉厚内部からの溶鋼排出開始位置及びビードを含む溶接部と、を撮影して撮影画像を得る撮像手段と;
 前記撮影画像を画像処理して、前記V収束点から前記溶鋼排出開始位置までの溶融長さ、及び、前記溶接部の溶融幅、の少なくとも一方を判定情報として取得する判定情報取得手段と;
 前記判定情報を、前記電縫鋼管の肉厚ごとに予め設定した判定用閾値と比較して、冷接であるか否かを判定する判定手段と;
を備える。
(13)上記(12)に記載の電縫鋼管溶接監視装置において、
 前記判定情報が、前記溶融長さであってもよい。
(14)上記(13)に記載の電縫鋼管溶接監視装置において、
 前記判定情報取得手段が、前記V収束点よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、前記溶融長さを取得してもよい。
(15)上記(13)または(14)に記載の電縫鋼管溶接監視装置において、以下のようにしてもよい:
 前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
 前記判定手段が、前記溶融長さが1.5mm以上か否かを前記判定用閾値として用いる。
(16)上記(13)~(15)の何れか1項に記載の電縫鋼管溶接監視装置において、
 前記判定手段が、前記判定用閾値を前記電縫鋼管の品種毎に有してもよい。
(17)上記(12)に記載の電縫鋼管溶接監視装置において、
 前記判定情報が、前記溶融幅であってもよい。
(18)上記(17)に記載の電縫鋼管溶接監視装置において、
 前記判定情報取得手段が、前記V収束点よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、前記溶融幅を取得してもよい。
(19)上記(17)または(18)に記載の電縫鋼管溶接監視装置において、以下のようにしてもよい:
 前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
 前記判定手段が、前記溶融幅が0.3mm以上であるか否かを前記判定用閾値として用いる。
(20)上記(17)~(19)の何れか1項に記載の電縫鋼管溶接監視装置において、
 前記判定手段が、前記判定用閾値を前記電縫鋼管の品種毎に有してもよい。
(21)本発明の一態様に係る電縫鋼管製造装置は、
 帯状鋼板を長手方向に送り出しながらオープン管に成形しつつ、一対の突合せ端面間を溶接して電縫鋼管を製造する装置であって、
 上記(12)~(20)の何れか1項に記載の電縫鋼管溶接監視装置と;
 前記溶接時の入熱量を、前記冷接に至らない入熱下限操業条件と、前記V収束点の下流側に溶接スリットを生じない入熱上限操業条件と、の間に制限する制御装置と;
を備える。
(22)上記(21)に記載の電縫鋼管製造装置において、
 前記判定手段が、前記冷接が生じたと判定した場合に、前記電縫鋼管のうちで前記冷接に対応した位置にマーキングを付すマーキング手段をさらに備えてもよい。
 本発明の上記各態様によれば、溶融溶接可能な第1種領域での溶接操業を適切に行うために冷接を検出可能とする、電縫鋼管溶接監視方法及び電縫鋼管溶接監視装置を提供できる。さらに、本発明の上記各態様によれば、この電縫鋼管溶接監視方法を用いた電縫鋼管製造方法と、電縫鋼管溶接監視装置を備えた電縫鋼管製造装置も提供できる。
本発明の第1実施形態を示す図であって、電縫鋼管溶接監視装置を備えた電縫鋼管製造装置の斜視図である。 溶融溶接可能な第1種領域で溶接を行った際に、エッジの角部から溶融していくことを表す斜視図である。 エッジを内側方から見た場合のV収束点から溶鋼排出開始位置までの距離を表すイメージ図であり、図2のA-A矢視図である。(a)は溶融溶接可能な第1種領域の状態を示し、(b)は冷接の状態を示す。 溶接部を電縫鋼管の軸線に垂直な断面で見た場合の、溶鋼の排出イメージ図である。(a)は溶融溶接可能な第1種領域の状態を示し、(b)は冷接の状態を示す。 溶接部をその上方から撮影した画像例である。(a)は溶融溶接可能な第1種領域の状態を示し、(b)は冷接の状態を示す。 第1実施形態における画像処理のアルゴリズムを表すフローチャートである。 近似直線とV収束点の一例を表す画像である。 V収束点から溶鋼排出開始位置までの距離の検出を表す画像例である。(a)は入熱量が基準入熱量である状態を表し、(b)は入熱量が基準入熱量-8%(冷接)の状態を表す。 再二値化処理の際に閾値を求めるために用いる輝度のヒストグラムであり、横軸が輝度レベルを示し、縦軸が頻度を示す。(a)は溶融溶接可能な第1種領域の状態を示し、(b)は冷接の状態を示す。 基準入熱量に対する入熱量の増減を%で示した数値(横軸)と、V収束点-溶鋼排出位置距離(V収束点から溶鋼排出開始位置までの距離(mm))(縦軸)と、の関係を表すグラフである。 第2種領域の入熱を加えた場合の溶接部を、その上方から撮影した画像例である。図中、白矢印が指している箇所でアークが発生している。 V収束点-溶鋼排出位置距離(V収束点から溶鋼排出開始位置までの距離)の経時変化の一例を表すグラフである。 本発明の第2実施形態を示す図であって、溶接部をその上方から撮影した画像例である。(a)は溶融溶接可能な第1種領域の状態を示し、(b)は冷接の状態を示す。 溶接部を電縫鋼管の軸線に垂直な縦断面で見た場合の、溶融幅のイメージ図である。溶融溶接可能な第1種領域の状態を示し、(b)は冷接の状態を示す。 放射率の角度依存性の例を表す図である。 第2実施形態における画像処理のアルゴリズムを表すフローチャートである。 溶融幅の検出例を表すグラフである。(a)は入熱量が基準入熱量である状態を表し、(b)は入熱量が基準入熱量-8%(冷接)の状態を表す。 基準入熱量に対する入熱量の増減を%で示した数値(横軸)と、溶融幅(mm)(縦軸)と、の関係を表すグラフである。 溶融幅の経時変化を表すグラフである。 本発明の第3実施形態を示す図であって、画像処理アルゴリズムを表すフローチャートである。 入熱量の高低による分類分けを表す図であり、横軸が入熱量を表し、縦軸が欠陥面積率を表す。 第1種領域、狭義の第2種領域、遷移領域、第2’領域のそれぞれにおいて観察される溶接現象の違いを表した図である。
 本発明の第1~第3実施形態を、図面を参照しながら以下に説明する。
[第1実施形態]
 まず、本実施形態の概要について説明する。
 本実施形態では、溶接部を仔細に観察することで溶融状態と溶鋼排出位置との関係を明確にした。すなわち、V収束点と溶鋼排出開始位置との間の距離を高精度に測定することで、より安定した冷接限界の検出を実現した。なお、以下の説明における入熱量は、溶接部への投入電力(電圧×電流)である。
 本実施形態の電縫鋼管溶接監視方法は、電縫鋼管溶接において、溶接部のV収束およびV収束点、肉厚内部からの溶鋼排出開始位置及びエッジ検出領域を含む溶接部をその上方から撮影する。そして、エッジ検出領域の撮影画像を処理してV収束点から溶鋼排出開始位置までの距離を算出する。さらに、この距離情報を、判定閾値と比較することで、冷接であるか否かを判定する。そのため、スパッタ発生が欠陥の一因になる自動車、機械及び構造用の小径鋼管を製造する小径電縫鋼管ミルで製造される電縫鋼管製造プロセスにおいて、溶融溶接可能な第1種領域の冷接を検出する溶接監視方法を提供可能とする。
 ここで、「溶融溶接可能な第1種領域」は、溶接スリットが生じない第1種領域の一部であり、V収束点と接合点とが合致している。「溶融溶接可能な第1種領域」は、高入熱側の「第2種領域」と低入熱側の「冷接を伴う第1種領域」との間に位置する狭い領域である。この「溶融溶接可能な第1種領域」では、スパッタおよび冷接を発生させずに溶接できる。「溶融溶接可能な第1種領域」と高入熱側の「第2種領域」との境界は、溶接スリットが発生するか否かを利用して、または、この溶接スリット内に生じるアーキングを利用して、判定できる。
 本実施形態の電縫鋼管製造方法は、帯状鋼板を長手方向に送り出しながらオープン管に成形しつつ、一対の突合せ端面間を溶接して電縫鋼管を製造する方法であって、上記電縫鋼管溶接監視方法により得た、冷接に至らない入熱下限操業条件と、V収束点の下流側に溶接スリットを生じない入熱上限操業条件と、の間で前記溶接を行う。
 この電縫鋼管製造方法によれば、冷接や凹み傷の無い健全な溶接部を持つ小径の電縫鋼管を製造することが可能になる。
 また、本実施形態の電縫鋼管溶接監視装置は、電縫鋼管溶接において、エッジ検出部を含むV収束部およびV収束点と、板厚内部からの溶鋼排出位置及びビードを含む溶接部とをそれらの上方から撮影する手段と、撮影画像を処理してV収束点から溶鋼排出開始位置までの距離情報を計測する手段と、この距離情報を判定閾値と比較することで冷接であるか否かを判定する手段とを有する。このため、スパッタ発生が欠陥の一因になる自動車、機械及び構造用のミルで製造される電縫鋼管製造プロセスにおいて、溶接工程における溶融溶接が可能な第1種領域の冷接を検出する溶接監視装置を提供することが可能になる。
 本実施形態の電縫鋼管製造装置は、帯状鋼板を長手方向に送り出しながらオープン管に成形しつつ、一対の突合せ端面間を溶接して電縫鋼管を製造する装置であって、上記溶接監視装置と;溶接時の入熱量を、冷接に至らない入熱下限操業条件と、V収束点の下流側に溶接スリットを生じない入熱上限操業条件と、の間に制限する制御装置と;を備える。
 この電縫鋼管製造装置によれば、冷接や凹み傷の無い健全な溶接部を持つ小径の電縫鋼管を製造することが可能になる。
 この電縫鋼管製造装置の一例を、図1に示す。なお、図1において、Xは帯状鋼板の搬送方向を示し、Zは搬送方向Xと直交する高さ方向を示し、Yは、搬送方向Xおよび高さ方向Zの双方と直交し、突合せ端面e1,e2が互いに突合せをする方向(突合せ方向)を示す。
 本実施形態の電縫鋼管製造装置は、ロール群(後述のSQロールrを除き不図示)と、加熱手段(不図示)と、電縫鋼管溶接監視装置10と、制御装置20とを備える。
 前記ロール群は、帯状鋼板を搬送方向Xに向かって送りながら管状のオープン管OPに成形する複数のロールを備える。これらロールには、溶接位置において突き合わせ端面e1,e2同士を相互に押し付け合うアプセット力を加えるスクイズロールr(以下、SQロールrと称する)を含む。
 前記加熱手段は、誘導加熱を行うワークコイルを備え、オープン管OPの長手方向一部を加熱する。オープン管OPは、この加熱手段により加熱された状態で前記SQロールrによるアプセット力を受けることで、突き合わせ端面e1,e2同士が押し付けあって溶接される。
 電縫鋼管溶接監視装置10は、オープン管OPに形成される一対の突き合わせ端面e1,e2間の溶接部Wをその上方からカメラ11により撮像しながら監視する。より具体的に言うと、カメラ11の撮像画像を処理することで、冷接有無と溶接スリット有無を判断する。
 制御装置20は、電縫鋼管溶接監視装置10からの情報に基づいて、前記加熱手段を制御する。より具体的に言うと、制御装置20は、前記情報に基づいて、入熱量、すなわち溶接部Wへの投入電力(電圧×電流)を制御する。
 ここで、電縫溶接を行った際の、突き合わせ端面e1,e2の変化について説明する。図2に示すように、電縫溶接工程では、オープン管OPに成形した帯状鋼板の突き合わせ端面e1,e2のそれぞれにおいて、肉厚方向(上下方向)の両方の角部から溶融が始まる。この溶融は、表皮効果によって高周波電流が角部に集中するために生じる。突き合わせ端面e1,e2間の距離が近くなると、近接効果も影響して溶接面全体に高周波電流が流れる。その結果、理想的な状態では、溶接面の肉厚方向中央位置まで溶融する。その後、SQロールrによって溶接面同士が圧下され、溶接面外に溶鋼が排出されて溶接ビードを形成する。
 しかし、造管速度に対して入熱量が不十分な場合、肉厚方向中央位置が溶融する前に圧下されて冷接(Cold Weld)が発生することがある。冷接は、第1種領域において入熱量が低すぎた場合に生じるものであり、電縫鋼管の軸線に垂直な断面で見た場合に、溶接部において肉厚方向に沿った全厚が溶融しておらず部分的に未溶融部分が残っている溶接状態を言う。未溶融部分の形成位置は、溶接面の肉厚方向中央位置に限らず、肉厚方向中央位置よりも管径方向外側あるいは管径方向内側に形成される可能性もある。
 これまでは、このような溶接不良を起こす冷接条件と、健全な溶接部が得られる溶融溶接可能な第1種領域との間で、V収束点位置が僅かしか違わないと考えられていた。しかし、本発明者らが溶接面を電縫管長手方向に沿った断面で観察したところ、溶融溶接可能な第1種領域の場合と冷接条件の場合とでは、図3に示すように、V収束点v1から溶鋼排出開始位置i1までの距離l1(V収束点v1-溶鋼排出開始位置i1間の距離l1)が異なることを見出した。すなわち、溶融溶接可能な第1種領域の場合よりも、冷接条件の場合の方が、距離l1が短くなることを見出した。
 溶接面をC方向断面(円周方向断面)から見ると、オープン管OPの溶接面(突き合わせ端面e1,e2)は、図4(a)に示すように、その両方の角部から加熱、溶融される。そして、これら一対の溶接面が近づくと近接効果で肉厚中心方向まで溶融領域が広がっていく。
 一方、図4(a),(b)に示すように、各溶接面はそれらの肉厚中心部分が張り出た形状になっている。これにより、肉厚中心部分から溶融するため、SQロールrによる圧下を受けた結果、肉厚中心からオープン管OPの内外表面に向かって溶鋼が排出される。この時、溶鋼の排出が鋼管内表面及び鋼管外表面のみからになるため、図4(b)に示すように肉厚中心まで溶融が進んでいないと、図4(a)の場合よりも溶鋼の排出タイミングが早くなることを見出した。
 すなわち、図4(a)に示す溶融溶接可能な第1種領域の場合に比べて、図4(b)に示す冷接条件の場合の方が、溶鋼がオープン管OPの内外表面に至るまでの距離が短くなる。そのため、冷接条件の場合では、溶鋼の排出タイミングが早くなる。この現象を溶接部Wの上方から観察すると、図5(a),(b)に示すように、V収束点v1から溶鋼排出開始位置i1までの距離l1や肉厚内部の溶鋼の湧き出し方が異なることが分かる。
 そこで、本発明者らは、上記知見に基づいて冷接有無をオンラインで連続的に検出するためのアルゴリズムを構築し、システムとして完成させた。図6は、本実施形態のアルゴリズムで、最終的に「V収束点v1-排出開始位置i1間の距離l1」を算出するものである。図7は、突き合わせ端面(溶接面エッジ)e1,e2の近似線からV収束点v1を検出した画像例である。
 図6のアルゴリズムについて説明する。
 この処理においては、まずステップS01においてカメラ11で撮影を行って撮像画像を得る。
 続くステップS02において、前記撮影画像から赤色成分を抽出する。なお、抽出成分としては赤色成分の代わりに、緑色成分あるいは青色成分を用いてもよい。ただし、受光感度の高さより、青色成分よりも緑色成分の方が好ましい。また、緑色成分よりも赤色成分の方が好ましい。よって、赤色成分が抽出成分としては最も好ましい。
 続くステップS03において、突き合わせ端面(一対の溶接面エッジ)e1,e2の近似直線を検出する。この時、上流側の低輝度部分やV収束点v1近傍の影響を受けにくいよう、エッジ検出領域を予め決めている。本例では、図7に示すように、突き合わせ端面e1,e2に囲まれたくさび型領域の上流側端部及び下流側端部のそれぞれ20%ずつを除外し、その上で一対の近似直線を検出する。
 続くステップS04において、ステップS03で得られた一対の近似線の交点を、V収束点v1として検出する。
 続くステップS05において、V収束点v1よりも下流側に、再二値化領域を設定する。図8(a),(b)に示す例では、周方向(画像の紙面上下方向)2mm、長手方向10mmの長方形範囲を、これから再二値化を行う領域と設定する。
 続くステップS06において、ステップS05で設定した領域を再二値化する。この再二値化を行う際の閾値について、図9(a),(b)を用いて説明する。図9(a),(b)は、それぞれ横軸が画像内の輝度レベルを示し、縦軸が頻度を示している。これら図9(a),(b)は、輝度レベル毎に画像内の画素数をカウントして出現頻度を得た結果を、輝度のヒストグラムとして得た後、ノイズを消すためにスムージングをかけることで得られる。図9(a)が適正入熱条件の場合を示し、また図9(b)が冷接条件の場合を示している。
 これら図9(a),(b)から分かるように、輝度レベルの頻度は入熱量にかかわらず2つのピークを持つ。2つのピークのうち、相対的に低輝度側にある大きなピークの山は、突き合わせ端面e1,e2が溶けた溶鋼の光である。また、2つのピークのうち、相対的に高輝度側にある小さなピークの山は、オープン管OPの外表面に向かって排出され溶鋼の光である。カメラ11から見た場合、突き合わせ端面e1,e2内にある溶鋼が放つ光の方向と、オープン管OPの外表面にある溶鋼が放つ光の方向との間には差がある。これら光の方向の差は、放射率の差として現れる。すなわち、突き合わせ端面e1,e2の向きとオープン管OPの外表面の向きとをカメラ11より見た場合の差が、放射率の差、さらには輝度差として現れることが、図9(a),(b)に示す輝度のヒストグラムに現れている。
 したがって、2つの山の間の輝度レベル、より具体的には相対的に高輝度レベル側にある小さなピークの山の、登り始め位置の輝度レベルをもって閾値とすることができる。再二値化を行う場合、通常であれば温度差に閾値を設定することも考えられるが、溶鋼の温度はどこも近いため、二値化処理の閾値には適さない。そこで、本発明者らは、温度に代わる二値化処理のパラメータを鋭意検討した結果、上述の理由により、輝度が二値化処理のパラメータとして適していることを見出した。
 再び図6に戻り、ステップS07,S08において、ステップS06で再二値化した領域にラベリング処理をすることで高輝度領域を抽出する。この時、正確な対象領域にするために再二値化領域の左端に接するブロッブ(ラベリング処理で一塊として検出された図8(a),(b)の白色領域)を抽出する。
 続くステップS09において、V収束点v1から溶鋼排出開始位置i1(ブロッブの最下流座標)までの距離(最大長さ)l1を算出する。
 続くステップS10において、ステップS09で求めた距離l1を、後述の判定閾値と比較することで正常か冷接かを判定する。すなわち、距離l1が判定閾値以上(Yes)の場合には、ステップS11に進んで「正常」と判定される。一方、距離l1が判定閾値未満(No)の場合には、ステップS12に進んで「冷接」と判定される。
 ステップS11,12を経た後の制御フローは、ステップS01に戻り、上記各ステップを再び繰り返す。
 上述のように、撮影画像の処理は、V収束点v1より下流側に再二値化領域を設定し、ラベリング処理することで高輝度領域を抽出した後、V収束点v1から溶鋼排出開始位置i1までの距離l1を算出し、この距離l1を判定閾値と比較して判定することが好ましい。また、この工程を可能とするために、撮影画像の処理手段は、V収束点v1より下流側に再二値化領域を設定し、ラベリング処理することで高輝度領域を抽出した後、V収束点v1から溶鋼排出開始位置i1までの距離l1を算出し、この距離l1を判定閾値と比較して判定する機能を有することが好ましい。
 図8(a)に正常状態(基準入熱)の処理結果例を示し、図8(b)に冷接状態(基準入熱-8%)の処理結果例を示す。なお、電縫鋼管の肉厚は、共に、4.0mm~6.0mmの範囲内である。
 図8(a)の処理結果例では4mm程度あったV収束点-溶鋼排出開始点距離が、図8(b)の処理結果例では1mm以下まで短縮する様子が分かる。入熱量を変化させた場合における距離l1の変化と、電縫鋼管の長手方向に垂直な断面を研磨及びエッチングして冷接有無を顕微鏡観察した結果とをグラフ化すると、図10に示すように、両者にはよい整合性が見られた。図10において、横軸が基準入熱量に対する入熱量の増減分(%)を示し、縦軸がV収束点-溶鋼排出開始点距離l1(mm)を示す。なお、同図のプロットにおいて三角印と丸印とでは溶接速度が異なるが、両者に傾向の差異は見られなかった。
 図10において、横軸=0%である基準入熱量は、第2種領域に入る入熱量から3%低い値に設定している。横軸=-5%を冷接限界として、冷接有無が分かれている。すなわち、横軸=-5%未満の領域では冷接が生じており、この領域が冷接領域となる。また、横軸=3%を超えた領域は、溶接スリットが生じる第2種領域となる。したがって、横軸が-5%以上3%以下の領域が、溶接可能な第1種領域となる。そして、図中のプロットに引いた近似線と冷接限界である横軸=-5%の縦線との交点における距離を求めた結果、1.5mmと求まった。この距離=1.5mmを冷接限界の閾値として用いることで、溶接可能な第1種領域における電縫鋼管製造が可能になる。すなわち、図6のステップS10における閾値として1.5mmを設定することができる。なお、上記閾値(=1.5mm)は一例であり、電縫鋼管の肉厚により増減する。上記閾値(=1.5mm)は、電縫鋼管の肉厚が4.0mm~6.0mmの範囲内において適用可能である。
 このように、冷接有無の判定は、V収束点v1から溶鋼排出開始位置i1までの距離l1が1.5mm以上か否かを基準に行うことが好ましい。また、このようなことを可能とするため、電縫鋼管溶接監視装置10は、冷接有無の判定において、V収束点v1から溶鋼排出開始位置i1までの距離l1が1.5mm以上か否かを基準に行う機能を有することが好ましい。
 上記内容により、溶融溶接可能な第1種領域の下限(冷接限界)検出が実現できる。一方、入熱量の上限は第2種領域の下限に該当しており、成長した溶接スリットに発生するアーク頻度が高くなることが分かっている(図11)。したがって、「溶融溶接可能な第1種領域の上限」は、「溶接スリットのアーク頻度を計測する手法」として知られた技術によって検出できる。
 このようにして溶融溶接可能な第1種領域の範囲に関する情報を得た電縫鋼管溶接監視装置10は、同情報を制御装置20に送信する。制御装置20は、電縫鋼管溶接監視装置10から受け取った情報に基づいて、オープン管OPを溶接する際の入熱量、すなわち溶接部Wへの投入電力(電圧×電流)を制御する。具体的には、溶融溶接可能な第1種領域の下限(冷接限界)と、第2種領域の下限入熱量(下限投入電力)よりも3%低い値との間に収まるように、溶接部Wへの投入電力(電圧×電流)を制御する。
 なお、本実施形態の電縫鋼管製造装置において、造管ラインに送管距離計(不図示)を装備して送管長さを測定してもよい。この場合、画像に基づいて送管長さがトラッキングできるように、前記制御装置20(プロセスコンピュータなどの上位計算機)に品種ごとの判定閾値を記憶させておけば、溶接不良となる冷接判定ができる上に、冷接の発生位置も特定できる。これにより、冷接位置の管理やオペレータへの不良部位除外指示が可能となる。あるいは、溶接部より下流で不良部位へのスプレーなどによるマーキングも可能となる。
 このように、V収束点v1から溶鋼排出開始位置i1までの距離l1を、制御装置20(上位計算機)に記憶させている品種ごとの判定閾値と比較して判定することが好ましい。また、このようなことを可能とするために、電縫鋼管溶接監視装置10は、V収束点v1から溶鋼排出開始位置i1までの距離l1を、制御装置20に記憶させている品種ごとの判定閾値と比較して判定する機能を有することが好ましい。
 また、判定結果に基づき、溶接不良と判定された電縫鋼管について、溶接部よりも下流位置で電縫鋼管の溶接不良箇所にマーキングすることが好ましい。このようなことを可能とするために、電縫鋼管製造装置に、判定結果に基づき、溶接不良と判定された電縫鋼管について、溶接部よりも下流位置で溶接不良箇所にマーキングする機能を備えることが好ましい。なお、V収束点v1から溶鋼排出開始位置i1までの距離l1は、品質保証上、中継ぎ点などを除く全長を連続計測することが好ましい。
[実施例]
 実際の製造ラインにおいて、撮影分解能25μm(長手方向2K画素で視野50mmのカメラ)で肉厚内部からの溶鋼排出開始位置及びエッジ検出領域を含む溶接部Wを撮影し、25ミリ秒間隔で溶接部全長の撮影と画像処理を行いながら溶接状態を監視した。対象としたパイプは、φ100mm×5mmtの実管であり、撮像に用いたカメラの設定は、40フレーム/秒、露光時間は1/10000秒とした。入熱を意図的に変化させ、トラッキングして断面検鏡してボンドの有無を確認した結果と冷接判定した部位とを突き合わせた。
 図12は、本手法をオンライン適用して採取したデータ例である。開始から2.4分付近でV収束点-溶鋼排出位置の距離l1が1.5mm以下になっており、冷接が発生したと判定された。画像処理装置には、ラインに装着されたPLG信号を取り込んで中継ぎ点からの長さを測定する機能があり、画像と実長がトラッキングされている。冷接が発生したと判定された位置をプロセスコンピュータに送信し、プロセスコンピュータからオペレータに除外部位を指定することができる。あるいは溶接より下流でスプレーなどによる不良箇所へのマーキングも可能である。本実施例では、V収束点-溶鋼排出位置の距離l1が1.5mm以下と確認された箇所について、除外後に扁平試験すると割れたことから、冷接であったことが確認された。
 以上説明の本実施形態によれば、冷接が発生した部位を自動検出することができ、不良部を除去することができるため、製品溶接部の健全性の確認が可能となる。
[第2実施形態]
 まず、本実施形態の概要について説明する。
 本実施形態では、溶接面角部の溶融幅と溶融状態との関係を明確化し、溶融幅を高精度に測定することで、より安定した冷接限界の検出を実現した。
 以下に、本発明を実施するための形態を示す。なお、電縫鋼管製造装置の構成は上記第1実施形態と同じであるため、各構成要素には同一符号を用い、主に相違点を中心に説明する。
 本実施形態の電縫鋼管溶接監視方法は、電縫管溶接において、エッジ検出領域を含むV収束部およびV収束点v1と、肉厚内部からの溶鋼排出開始位置及びビードを含む溶接部Wとを溶接部上方から撮影する。そして、エッジ検出領域の撮影画像を処理して溶融幅w1を算出する。さらに、この溶融幅w1を、予め肉厚ごとのデータに基づいて設定した判定用閾値と比較して、冷接であるか否かを判定する。このため、前述のようにスパッタ発生が欠陥の一因になる自動車、機械及び構造用の小径鋼管を製造する小径電縫鋼管ミルで製造される電縫鋼管製造プロセスにおいて、溶融溶接が可能な第1種領域の冷接を検出する溶接監視方法を提供することが可能となる。
 また、電縫鋼管溶接監視装置は、電縫鋼管溶接において、エッジ検出領域を含むV収束部およびV収束点v1と、肉厚内部からの溶鋼排出位置及びビードを含む溶接部Wとをそれらの上方から撮影する手段と;撮影画像を処理して溶融幅w1を計測する手段と;溶融幅の情報を、予め肉厚ごとのデータに基づいて設定した判定用閾値と比較して冷接であるか否かを判定する手段と;を有する。このため、スパッタ発生が欠陥の一因になる自動車、機械及び構造用のミルで製造される電縫鋼管製造プロセスにおいて、溶融溶接が可能な第1種領域の冷接を検出することが可能になる。
 本発明者らが溶接部Wをその上方から撮影した画像を精緻に吟味したところ、図13に示すように、正常状態と冷接状態とで溶融幅w1が異なることが分かった。
 オープン管OPの突き合わせ端面e1,e2は、上記第1実施形態の図2に示したように、肉厚方向の両方の角部から加熱、溶融されていく。そして、突き合わせ端面e1,e2間の距離が近くなると近接効果で肉厚中心方向まで溶融領域が広がる。これに伴って突き合わせ端面e1,e2それぞれの肉厚方向の両角部の溶融も進むため、入熱量によって溶融幅が異なる。特に冷接時には、溶融が肉厚中心まで至らないため、図13(b)に示すように、角部間の溶融幅が著しく狭くなると推察される。この現象をカメラ11で上方から撮影した図13(b)では、溶融幅w1を示す領域の輝度が高いことが分かる。
 本発明者らは、この現象を推測するために、放射輝度が見る方向によって変化する角度依存性を活用できないかについて検討した。冷延鋼板ではあるが、角度依存性の例を図15に示す。この例では、板面の法線からの角度θが大きい、即ち板面から浅い角度の方が高輝度になる傾向が示されている。溶鋼も同じ傾向を持つとすると、図14(a),(b)に示す断面を上方のカメラ11の位置から見た場合に浅い角度になる部位(エッジ角部、溶接面近傍)からの輝度が高くなると考えられた。この点に着目することで、図13(a),(b)に示すようにV収束点v1より下流側の高輝度領域の最大幅寸法を溶融幅w1とし、この溶融幅w1を計測することで冷接限界を判定する手法を構築するに至った。
 また、溶融幅をオンラインで連続的に検出するためのアルゴリズムを構築し、システムとして完成させた。図16は、本実施形態のアルゴリズムの処理例で、最終的に「溶融幅」を計測する。図17(a),(b)に、一対の突き合わせ端面e1,e2の近似線からV収束点v1を検出した画像例が示されている。
 図16のアルゴリズムについて説明する。
 この処理においては、まずステップS01Aにおいてカメラ11で撮影を行って撮像画像を得る。
 続くステップS02Aにおいて、前記撮影画像から赤色成分を抽出する。なお、抽出成分としては赤色成分の代わりに、緑色成分あるいは青色成分を用いてもよい。ただし、受光感度の高さより、青色成分よりも緑色成分の方が好ましい。また、緑色成分よりも赤色成分の方が好ましい。よって、赤色成分が抽出成分としては最も好ましい。
 続くステップS03Aにおいて、突き合わせ端面(一対の溶接面エッジ)e1,e2の近似直線を検出する。この時、上流側の低輝度部分やV収束点近傍の影響を受けにくいよう、エッジ検出領域を予め決めている。本例では、上記第1実施形態の図7でも示したように、突き合わせ端面e1,e2に囲まれたくさび型領域の上流側端部及び下流側端部のそれぞれ20%ずつを除外し、その上で一対の近似直線を検出する。
 続くステップS04において、ステップS03で得られた一対の近似線の交点を、V収束点v1として検出する。
 続くステップS05Aにおいて、V収束点v1よりも下流側に、再二値化領域を設定する。図17(a),(b)に示す例では、周方向(画像の紙面上下方向)2mm、長手方向10mmの長方形範囲を、これから再二値化を行う領域と設定する。
 続くステップS06Aにおいて、ステップS05Aで設定した領域を再二値化する。この再二値化に際しての閾値の設定等については、上記第1実施形態で説明済みであるため、ここでは省略する。
 ステップS07A,S08Aにおいて、ステップS06Aで再二値化した領域にラベリング処理をすることで高輝度領域を抽出する。この時、正確な対象領域にするために再二値化領域の左端に接するブロッブ(ラベリング処理で一塊として検出された図17(a),(b)の白色領域)を抽出する。そして、この高輝度領域の溶融幅を測定する。
 続くステップS09Aにおいて、ステップS08Aで求めた溶融幅を、後述の判定閾値と比較することで正常か冷接かを判定する。すなわち、溶融幅が判定閾値以上(Yes)の場合には、ステップS10Aに進んで「正常」と判定される。一方、距離が判定閾値未満(No)の場合には、ステップS11Aに進んで「冷接」と判定される。
 ステップS10A,11Aを経た後の制御フローは、ステップS01Aに戻り、上記各ステップを再び繰り返す。
 図17(a)に正常状態(基準入熱)の処理結果例を示し、図17(b)に冷接状態(基準入熱-8%)の処理結果例を示す。なお、電縫鋼管の肉厚は、共に、4.0mm~6.0mmの範囲内である。
 図17(a)の処理結果例では0.4mm程度あった溶融幅が、図17(b)の処理結果例では0.06mmまで狭くなることが分かる。入熱量を変化させた場合における溶融幅w1の変化と、電縫鋼管の長手方向に垂直な断面を研磨及びエッチングして冷接有無を顕微鏡観察した結果とをグラフ化すると、図18に示すように、両者にはよい整合性が見られた。図18において、横軸が基準入熱量に対する入熱量の増減分(%)を示し、縦軸が溶融幅w1(mm)を示す。
 図18において、横軸=0%である基準入熱量は、第2種領域に入る入熱量から3%低い値に設定している。
 図18の結果では、横軸が-4%以上では冷接無しとなり、横軸が-6%以下では冷接有りとなった。このように、横軸=-5%を冷接限界として、冷接有無が分かれている。すなわち、横軸=-5%未満の領域では冷接が生じており、この領域が冷接領域となる。また、横軸=3%を超えた領域では溶接スリットが生じる第2種領域となる。したがって、横軸が-5%以上3%以下の領域が、溶接可能な第1種領域となる。そして、図中のプロットに引いた近似線と冷接限界である横軸=-5%の縦線との交点における溶融幅w1を求めた結果、0.3mmと求まった。この溶融幅w1=0.3mmを冷接限界の閾値として用いることで、溶接可能な第1種領域における電縫鋼管製造が可能になる。すなわち、図16のステップS09Aにおける閾値として0.3mmを設定することができる。
 尚、溶融幅w1の上限は特に規定しないが、入熱量を上げると溶融幅w1が広くなる前に第2種領域に入る。このため、原理的にビード幅(図17(a)の例では約3mm)以上になることはないので、溶融幅w1の上限値は3mmとしてもよい。尚、上記数値は、電縫鋼管の肉厚が4.0mm~6.0mmの場合である。
 このように、冷接有無の判定は、まず、V収束点v1より下流側に再二値化領域を設定し、ラベリング処理することで高輝度領域を抽出した後、溶融幅w1を算出する。そして、この溶融幅w1を、予め肉厚ごとのデータに基づいて設定した判定用閾値であると比較して判定することが好ましい。すなわち、電縫鋼管の肉厚が4.0mm~6.0mmの場合、溶融幅w1が0.3mm以上か否かを基準に判定することが好ましい。
 また、このようなことを可能とするために、撮影画像の処理手段は、V収束点v1より下流側に再二値化領域を設定し、ラベリング処理することで高輝度領域を抽出した後、溶融幅w1を算出し、この溶融幅w1を、予め肉厚ごとのデータに基づいて設定した判定用閾値と比較して判定する機能を有することが好ましい。すなわち、電縫鋼管の肉厚が4.0mm~6.0mmの場合、溶融幅w1が0.3mm以上か否かを基準に判定する機能を有することが好ましい。
 上記内容により、溶融溶接可能な第1種領域の下限(冷接限界)を検出できる。一方、入熱量の上限は第2種領域の下限に該当しており、成長した溶接スリット間に発生するアーク頻度が高くなることが分かっている(上記第1実施形態の図11参照)。したがって、「溶融溶接可能な第1種領域の上限」は、「溶接スリット間のアーク頻度を計測する手法」として知られた技術によって検出できる。
 このようにして溶融溶接可能な第1種領域の範囲に関する情報を得た電縫鋼管溶接監視装置10は、同情報を制御装置20に送信する。制御装置20は、電縫鋼管溶接監視装置10から受け取った情報に基づいて、オープン管OPを溶接する際の入熱量、すなわち溶接部Wへの投入電力(電圧×電流)を制御する。具体的には、溶融溶接可能な第1種領域の下限(冷接限界)と、第2種領域の下限入熱量(下限投入電力)よりも3%低い値との間に収まるように、溶接部Wへの投入電力(電圧×電流)を制御する。
 なお、本実施形態の電縫鋼管製造装置において、造管ラインに送管距離計(不図示)を装備して送管長さを測定してもよい。この場合、画像に基づいて送管長さがトラッキングできるように、前記制御装置20(プロセスコンピュータなどの上位計算機)に品種ごとの判定閾値を記憶させておけば、溶接不良となる冷接判定ができる上に、冷接の発生位置も特定できる。これにより、冷接位置の管理やオペレータへの除外部位指示が可能となる。あるいは、溶接より下流でスプレーなどによる実物へのマーキングも可能となる。
 このように、溶融幅w1を、制御装置20(上位計算機)に記憶させている品種ごとの判定用閾値と比較して判定することが好ましい。また、このようなことを可能とするため、電縫鋼管溶接監視装置10は、溶融幅w1を、制御装置20に記憶させている品種ごとの判定閾値と比較して判定する機能を有することが好ましい。
 また、判定結果に基づき、溶接不良と判定された電縫鋼管について、溶接部Wよりも下流位置で電縫鋼管の溶接不良箇所にマーキングすることが好ましい。このようなことを可能とするために、電縫鋼管製造装置に、判定結果に基づき、溶接不良と判定された電縫鋼管について、溶接部よりも下流位置で溶接不良箇所にマーキングする機能を備えることが好ましい。なお、溶融幅w1の計測は、品質保証上、中継ぎ点などを除く全長を連続計測することが好ましい。
[実施例]
 実際の製造ラインにおいて、撮影分解能が25μm(長手方向2K画素で視野50mmのカメラ)で肉厚内部からの溶鋼排出位置及びエッジ検出領域を含む溶接部Wを撮影し、25ミリ秒間隔で連続的に撮影と画像処理を行いながら溶接状態を監視した。対象としたパイプは、φ100mm×5mmtの実管であり、撮像に用いたカメラは、40フレーム/秒、露光時間は1/10000秒とした。入熱を意図的に変化させ、トラッキングして断面検鏡してボンドの有無を確認した結果と冷接判定した部位とを突き合わせた。
 図19は、本手法をオンライン適用して採取したデータ例である。開始から1分付近で溶融幅w1が0.3mm以下になっており、冷接が発生したと判定された。画像処理装置にはラインに装着されたPLG信号を取り込んで中継ぎ点からの長さを測定する機能があり、画像と実長がトラッキングされている。冷接が発生したと判定された位置をプロセスコンピュータに送信し、プロセスコンピュータからオペレータに除外部位を指定することができる。あるいは、溶接部Wよりも下流でスプレーなどによる実物へのマーキングも可能である。実施例では、溶融幅w1が0.3mm以下になった箇所について、除外後に扁平試験すると割れたことから、冷接であったことが確認された。
 以上説明の本実施形態によれば、冷接が発生した部位を自動検出することができ、不良部を除去することができるため、製品溶接部の健全性の確認が可能となる。
[第3実施形態]
 本実施形態は、上記第1実施形態で説明した図6のアルゴリズムと、上記第2実施形態で説明した図16のアルゴリズムとを併用して、冷接有無を総合的に判断する。すなわち、本実施形態では、V収束点v1から溶鋼排出開始位置i1までの距離l1に基づく冷接有無の判定と、溶融幅w1に基づく冷接有無の判定との両方を行う。そして、これら2つの判定結果が共に一致すれば、正しく冷接有無が判定されたと判断する。一方、これら2つの判定結果が一致しない場合は、正しく冷接有無が判定されていないと判断する。その具体例を、図20に示すアルゴリズムを用いて以下に説明する。
 この処理においては、まずステップS01Cにおいて、V収束およびV収束点v1と、肉厚内部からの溶鋼排出開始位i1置及びエッジ検出領域を含む溶接部Wとを、カメラ11で撮影して撮影画像を得る。
 続くステップS02Cにおいて、前記撮影画像から赤色成分を抽出する。前記撮影画像から赤色成分を抽出する。なお、抽出成分としては赤色成分の代わりに、緑色成分あるいは青色成分を用いてもよい。ただし、受光感度の高さより、青色成分よりも緑色成分の方が好ましい。また、緑色成分よりも赤色成分の方が好ましい。よって、赤色成分が抽出成分として最も好ましい。
 続くステップS03Cにおいて、突き合わせ端面(一対の溶接面エッジ)e1,e2の近似直線を検出する。この時、上流側の低輝度部分やV収束点近傍の影響を受けにくいよう、エッジ検出領域を予め決めている。本例では、上記第1実施形態の図7で示したように、突き合わせ端面e1,e2に囲まれたくさび型領域の上流側端部及び下流側端部のそれぞれ20%ずつを除外し、その上で一対の近似直線を検出する。
 続くステップS04Cにおいて、ステップS03Cで得られた一対の近似線の交点を、V収束点v1として検出する。
 続くステップS05Cにおいて、V収束点v1よりも下流側に、再二値化領域を設定する。例えば上記第1実施形態の図8(a),(b)に示した例のように、周方向(画像の紙面上下方向)2mm、長手方向10mmの長方形範囲を、これから再二値化を行う領域と設定することができる。
 続くステップS06Cにおいて、ステップS05Cで設定した領域を再二値化する。この再二値化を行う際の閾値については、上記第1実施形態において図9(a),(b)を用いて説明した通りである。
 このステップS06Cの後、ステップS07Cを経てステップS08C~S12Cを行う第1の処理と、ステップS07Cを経てステップS13C~ステップS16Cを行う第2の処理とが、並列的に行われる。
 まず、第1の処理では、ステップS07C,S08Cにおいて、ステップS06Cで再二値化した領域にラベリング処理をすることで高輝度領域を抽出する。この時、正確な対象領域にするために再二値化領域の左端に接するブロッブ(上記第1実施形態において図8(a),(b)に示した白色領域)を抽出する。
 続くステップS09Cにおいて、V収束点v1から溶鋼排出開始位置(ブロッブの最下流座標)i1までの距離l1を算出する。
 続くステップS10Cにおいて、ステップS09Cで求めた距離l1を、判定閾値と比較することで正常か冷接かを判定する。すなわち、距離l1が判定閾値以上(Yes)の場合には、ステップS11Cに進んで「一次判定=冷接無し」と判定される。一方、距離が判定閾値未満(No)の場合には、ステップS12Cに進んで「一次判定=冷接有り」と判定される。
 続いて、第2の処理では、ステップS07C,S13Cにおいて、ステップS06Cで再二値化した領域にラベリング処理をすることで高輝度領域を抽出する。この時、正確な対象領域にするために再二値化領域の左端に接するブロッブ(上記第2実施形態において、ラベリング処理で一塊として検出された図17(a),(b)の白色領域)を抽出する。そして、この高輝度領域の溶融幅w1を測定する。
 続くステップS14Cにおいて、ステップS13Cで求めた溶融幅w1を、判定閾値と比較することで正常か冷接かを判定する。すなわち、溶融幅w1が判定閾値以上(Yes)の場合には、ステップS15Cに進んで「二次判定=冷接無し」と判定される。一方、溶融幅w1が判定閾値未満(No)の場合には、ステップS16Cに進んで「二次判定=冷接有り」と判定される。
 以上説明の一次判定の結果と二次判定の結果とがステップS17Cに導入され、両者の判定結果が一致する(Yes)の場合にはステップS18Cに進んで「判定異常なし」と判断される。一方、両者の判定結果が一致しない(No)の場合にはステップS19Cに進んで「判定異常有り」と判断される。この場合、何らかの不都合(例えば、撮影範囲に冷却水がかかった、異物が入り込んだ等)が生じて判定結果の信頼性が損なわれたと判断できる。
 ステップS18C,S19Cを経た後の制御フローは、ステップS01Cに戻り、上記各ステップを再び繰り返す。なお、ステップS19Cに進んで「判定異常有り」と判断された場合には、これを保存しておいて、後々の信頼性判断に用いてもよいし、または、アラームを表示してオペレータに報知してもよい。
 以上、本発明の第1実施形態~第3実施形態を図面に基づいて詳細に説明したが、本発明はこれらの形態のみに限定されない。本発明の骨子は、以下の通りである。
(1)本発明の各実施形態に係る電縫鋼管溶接監視方法は、
 電縫鋼管の溶接時に、エッジ検出領域を含むV収束部及びV収束点v1と、肉厚内部からの溶鋼排出開始位置i1及びビードを含む溶接部Wと、を撮影して撮影画像を得る画像取得工程と;
 前記撮影画像を画像処理して、V収束点v1から溶鋼排出開始位置i1までの溶融長さl1、及び、溶接部Wの溶融幅w1、の少なくとも一方を判定情報として取得する判定情報取得工程と;
 前記判定情報を、電縫鋼管の肉厚ごとに予め設定した判定用閾値と比較して、冷接であるか否かを判定する判定工程と;
を有する。
(2)上記(1)に記載の電縫鋼管溶接監視方法において、
 前記判定情報取得工程で、前記判定情報として溶融長さl1を取得してもよい。
(3)上記(2)に記載の電縫鋼管溶接監視方法において、
 前記判定情報取得工程における前記画像処理で、V収束点v1よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、溶融長さl1を取得してもよい。
(4)上記(2)または(3)に記載の電縫鋼管溶接監視方法において、以下のようにしてもよい:
 前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
 前記判定工程で、溶融長さl1が1.5mm以上か否かを前記判定用閾値として用いる。
(5)上記(2)~(4)の何れか1項に記載の電縫鋼管溶接監視方法において、
 前記判定工程の前記判定用閾値を、前記電縫鋼管の品種毎に有してもよい。
(6)上記(1)に記載の電縫鋼管溶接監視方法において、
 前記判定情報取得工程で、前記判定情報として溶融幅w1を取得してもよい。
(7)上記(6)に記載の電縫鋼管溶接監視方法において、
 前記判定情報取得工程における前記画像処理は、V収束点v1よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、溶融幅w1を取得してもよい。
(8)上記(6)または(7)に記載の電縫鋼管溶接監視方法において、以下のようにしてもよい:
 前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
 前記判定工程で、溶融幅w1が0.3mm以上か否かを前記判定用閾値として用いる。
(9)上記(6)~(8)の何れか1項に記載の電縫鋼管溶接監視方法において、
 前記判定工程の前記判定用閾値を、前記電縫鋼管の品種毎に有してもよい。
(10)本発明の一態様に係る電縫鋼管製造方法は、
 帯状鋼板を長手方向に送り出しながらオープン管OPに成形しつつ、一対の突合せ端面e1,e2間を溶接して電縫鋼管を製造する方法であって、
 上記(1)~(9)の何れか1項に記載の電縫鋼管溶接監視方法により得た、前記冷接に至らない入熱下限操業条件と、
 前記V収束点の下流側に溶接スリットを生じない入熱上限操業条件と、
の間で前記溶接を行う。
(11)上記(10)に記載の電縫管製造方法において、
 前記判定工程で前記冷接が生じたと判定された場合に、前記電縫鋼管のうちで前記冷接に対応した位置にマーキングを付すマーキング工程をさらに有してもよい。
(12)本発明の一態様に係る電縫鋼管溶接監視装置10は、
 電縫鋼管の溶接時に、エッジ検出領域を含むV収束部およびV収束点v1と、肉厚内部からの溶鋼排出開始位置i1及びビードを含む溶接部Wと、を撮影して撮影画像を得る撮像手段と;
 前記撮影画像を画像処理して、V収束点v1から溶鋼排出開始位置i1までの溶融長さl1、及び、溶接部Wの溶融幅w1、の少なくとも一方を判定情報として取得する判定情報取得手段と;
 前記判定情報を、前記電縫鋼管の肉厚ごとに予め設定した判定用閾値と比較して、冷接であるか否かを判定する判定手段と;
を備える。
(13)上記(12)に記載の電縫鋼管溶接監視装置10において、
 前記判定情報が、溶融長さl1であってもよい。
(14)上記(13)に記載の電縫鋼管溶接監視装置10において、
 前記判定情報取得手段が、V収束点v1よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、溶融長さl1を取得してもよい。
(15)上記(13)または(14)に記載の電縫鋼管溶接監視装置10において、以下のようにしてもよい:
 前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
 前記判定手段が、溶融長さl1が1.5mm以上か否かを前記判定用閾値として用いる。
(16)上記(13)~(15)の何れか1項に記載の電縫鋼管溶接監視装置10において、
 前記判定手段が、前記判定用閾値を前記電縫鋼管の品種毎に有してもよい。
(17)上記(12)に記載の電縫鋼管溶接監視装置10において、
 前記判定情報が、溶融幅w1であってもよい。
(18)上記(17)に記載の電縫鋼管溶接監視装置10において、
 前記判定情報取得手段が、V収束点v1よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、溶融幅w1を取得してもよい。
(19)上記(17)または(18)に記載の電縫鋼管溶接監視装置10において、以下のようにしてもよい:
 前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
 前記判定手段が、溶融幅w1が0.3mm以上であるか否かを前記判定用閾値として用いる。
(20)上記(17)~(19)の何れか1項に記載の電縫鋼管溶接監視装置において、
 前記判定手段が、前記判定用閾値を前記電縫鋼管の品種毎に有してもよい。
(21)本発明の一態様に係る電縫鋼管製造装置は、
 帯状鋼板を長手方向に送り出しながらオープン管に成形しつつ、一対の突合せ端面間e1,e2を溶接して電縫鋼管を製造する装置であって、
 上記(12)~(20)の何れか1項に記載の電縫鋼管溶接監視装置10と;
 前記溶接時の入熱量を、前記冷接に至らない入熱下限操業条件と、V収束点v1の下流側に溶接スリットを生じない入熱上限操業条件と、の間に制限する制御装置20と;
を備える。
(22)上記(21)に記載の電縫鋼管製造装置において、
 前記判定手段が、前記冷接が生じたと判定した場合に、前記電縫鋼管のうちで前記冷接に対応した位置にマーキングを付すマーキング手段をさらに備えてもよい。
 本発明によれば、溶融溶接可能な第1種領域での溶接操業を適切に行うために冷接を検出可能とする、電縫鋼管溶接監視方法及び電縫鋼管溶接監視装置を提供できる。さらに、本発明によれば、この電縫鋼管溶接監視方法を用いた電縫鋼管製造方法と、電縫鋼管溶接監視装置を備えた電縫鋼管製造装置も提供できる。
 10 電縫鋼管溶接監視装置
 11 カメラ(撮像手段)
 20 制御装置
 e1,e2 一対の突合せ端面
 i1 溶鋼排出開始位置
 l1 溶融長さ
 OP オープン管
 v1 V収束点
 W 溶接部
 w1 溶融幅

Claims (22)

  1.  電縫鋼管の溶接時に、エッジ検出領域を含むV収束部およびV収束点と、肉厚内部からの溶鋼排出開始位置及びビードを含む溶接部と、を撮影して撮影画像を得る画像取得工程と;
     前記撮影画像を画像処理して、前記V収束点から前記溶鋼排出開始位置までの溶融長さ、及び、前記溶接部の溶融幅、の少なくとも一方を判定情報として取得する判定情報取得工程と;
     前記判定情報を、前記電縫鋼管の肉厚ごとに予め設定した判定用閾値と比較して、冷接であるか否かを判定する判定工程と;
    を有することを特徴とする電縫鋼管溶接監視方法。
  2.  前記判定情報取得工程で、前記判定情報として前記溶融長さを取得する
    ことを特徴とする請求項1に記載の電縫鋼管溶接監視方法。
  3.  前記判定情報取得工程における前記画像処理では、前記V収束点よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、前記溶融長さを取得する
    ことを特徴とする請求項2に記載の電縫鋼管溶接監視方法。
  4.  前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
     前記判定工程で、前記溶融長さが1.5mm以上か否かを前記判定用閾値として用いる;
    ことを特徴とする請求項2または3に記載の電縫鋼管溶接監視方法。
  5.  前記判定工程の前記判定用閾値を、前記電縫鋼管の品種毎に有する
    ことを特徴とする請求項2~4の何れか1項に記載の電縫鋼管溶接監視方法。
  6.  前記判定情報取得工程で、前記判定情報として前記溶融幅を取得する
    ことを特徴とする請求項1に記載の電縫鋼管溶接監視方法。
  7.  前記判定情報取得工程における前記画像処理は、前記V収束点よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、前記溶融幅を取得する
    ことを特徴とする請求項6に記載の電縫鋼管溶接監視方法。
  8.  前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
     前記判定工程で、前記溶融幅が0.3mm以上か否かを前記判定用閾値として用いる;
    ことを特徴とする請求項6または7に記載の電縫鋼管溶接監視方法。
  9.  前記判定工程の前記判定用閾値を、前記電縫鋼管の品種毎に有する
    ことを特徴とする請求項6~8の何れか1項に記載の電縫鋼管溶接監視方法。
  10.  帯状鋼板を長手方向に送り出しながらオープン管に成形しつつ、一対の突合せ端面間を溶接して電縫鋼管を製造する方法であって、
     請求項1~9の何れか1項に記載の電縫鋼管溶接監視方法により得た、前記冷接に至らない入熱下限操業条件と、
     前記V収束点の下流側に溶接スリットを生じない入熱上限操業条件と、
    の間で前記溶接を行う
    ことを特徴とする電縫鋼管製造方法。
  11.  前記判定工程で前記冷接が生じたと判定された場合に、前記電縫鋼管のうちで前記冷接に対応した位置にマーキングを付すマーキング工程をさらに有する
    ことを特徴とする請求項10に記載の電縫鋼管製造方法。
  12.  電縫鋼管の溶接時に、エッジ検出領域を含むV収束部およびV収束点と、肉厚内部からの溶鋼排出開始位置及びビードを含む溶接部と、を撮影して撮影画像を得る撮像手段と;
     前記撮影画像を画像処理して、前記V収束点から前記溶鋼排出開始位置までの溶融長さ、及び、前記溶接部の溶融幅、の少なくとも一方を判定情報として取得する判定情報取得手段と;
     前記判定情報を、前記電縫鋼管の肉厚ごとに予め設定した判定用閾値と比較して、冷接であるか否かを判定する判定手段と;
    を備えることを特徴とする電縫鋼管溶接監視装置。
  13.  前記判定情報が、前記溶融長さである
    ことを特徴とする請求項12に記載の電縫鋼管溶接監視装置。
  14.  前記判定情報取得手段が、前記V収束点よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、前記溶融長さを取得する
    ことを特徴とする請求項13に記載の電縫鋼管溶接監視装置。
  15.  前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
     前記判定手段が、前記溶融長さが1.5mm以上か否かを前記判定用閾値として用いる;
    ことを特徴とする請求項13または14に記載の電縫鋼管溶接監視装置。
  16.  前記判定手段が、前記判定用閾値を前記電縫鋼管の品種毎に有する
    ことを特徴とする請求項13~15の何れか1項に記載の電縫鋼管溶接監視装置。
  17.  前記判定情報が、前記溶融幅である
    ことを特徴とする請求項12に記載の電縫鋼管溶接監視装置。
  18.  前記判定情報取得手段が、前記V収束点よりも下流側の領域にラベリング処理をすることで高輝度領域を抽出した後に、前記溶融幅を取得する
    ことを特徴とする請求項17に記載の電縫鋼管溶接監視装置。
  19.  前記電縫鋼管の肉厚が4.0mm~6.0mmであり;
     前記判定手段が、前記溶融幅が0.3mm以上であるか否かを前記判定用閾値として用いる;
    ことを特徴とする請求項17または18に記載の電縫鋼管溶接監視装置。
  20.  前記判定手段が、前記判定用閾値を前記電縫鋼管の品種毎に有する
    ことを特徴とする請求項17~19の何れか1項に記載の電縫鋼管溶接監視装置。
  21.  帯状鋼板を長手方向に送り出しながらオープン管に成形しつつ、一対の突合せ端面間を溶接して電縫鋼管を製造する装置であって、
     請求項12~20の何れか1項に記載の電縫鋼管溶接監視装置と;
     前記溶接時の入熱量を、前記冷接に至らない入熱下限操業条件と、前記V収束点の下流側に溶接スリットを生じない入熱上限操業条件と、の間に制限する制御装置と;
    を備えることを特徴とする電縫鋼管製造装置。
  22.  前記判定手段が、前記冷接が生じたと判定した場合に、前記電縫鋼管のうちで前記冷接に対応した位置にマーキングを付すマーキング手段をさらに備える
    ことを特徴とする請求項21に記載の電縫鋼管製造装置。
PCT/JP2020/009584 2019-03-13 2020-03-06 電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置 WO2020184414A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20770017.0A EP3939736A4 (en) 2019-03-13 2020-03-06 WELDING MONITORING METHOD OF ELECTRICAL RESISTANCE WELDED STEEL PIPE, ELECTRICAL RESISTANCE WELDED STEEL PIPE MANUFACTURING METHOD, ELECTRICAL RESISTANCE WELDED STEEL PIPE WELDING MONITORING DEVICE, AND PIPE MANUFACTURING DEVICE ELECTRICAL RESISTANCE WELDED STEEL
US17/422,542 US20220097163A1 (en) 2019-03-13 2020-03-06 Method for monitoring welding of electric resistance welded steel pipe, method for manufacturing electric resistance welded steel pipe, device for monitoring welding of electric resistance welded steel pipe, and device for manufacturing electric resistance welded steel pipe
JP2021505010A JP7081718B2 (ja) 2019-03-13 2020-03-06 電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019045373 2019-03-13
JP2019-045372 2019-03-13
JP2019045372 2019-03-13
JP2019-045373 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020184414A1 true WO2020184414A1 (ja) 2020-09-17

Family

ID=72427492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009584 WO2020184414A1 (ja) 2019-03-13 2020-03-06 電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置

Country Status (4)

Country Link
US (1) US20220097163A1 (ja)
EP (1) EP3939736A4 (ja)
JP (1) JP7081718B2 (ja)
WO (1) WO2020184414A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014837B1 (ja) 1969-05-01 1975-05-30
JPS5332287B2 (ja) * 1975-09-12 1978-09-07
JPS5510615B2 (ja) 1971-09-24 1980-03-18
JPS5549963B2 (ja) * 1977-11-15 1980-12-15
JPS6221013B2 (ja) * 1977-07-28 1987-05-11 Basf Ag
JPS6323293B2 (ja) * 1980-02-12 1988-05-16 Gunze Kk
WO2011118560A1 (ja) 2010-03-23 2011-09-29 新日本製鐵株式会社 高周波抵抗溶接及び誘導加熱溶接の操業管理装置、操業管理方法及び操業管理プログラム
WO2018092492A1 (ja) * 2016-11-15 2018-05-24 新日鐵住金株式会社 電縫鋼管の高周波抵抗溶接及び誘導加熱溶接の操業監視装置、方法及びプログラム
JP2019045372A (ja) 2017-09-05 2019-03-22 株式会社ミツトヨ 表面性状測定装置の制御方法
JP2019045373A (ja) 2017-09-05 2019-03-22 コニカミノルタ株式会社 記録材判別用センサーおよび画像形成装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014837A (ja) * 2003-06-27 2005-01-20 Inoac Corp マッドガード
JP2005079929A (ja) * 2003-09-01 2005-03-24 Canon Inc 通信装置、通信装置の制御方法、および通信装置の制御プログラム
JP4532977B2 (ja) * 2004-05-06 2010-08-25 新日本製鐵株式会社 溶接品質に優れた電縫鋼管の溶接方法
JP2005332287A (ja) * 2004-05-21 2005-12-02 Canon Inc 温度調節装置およびデバイス製造装置
JP2006323293A (ja) * 2005-05-20 2006-11-30 Ricoh Co Ltd 画像形成装置
JP5014837B2 (ja) 2007-03-01 2012-08-29 新日本製鐵株式会社 電縫鋼管の製造方法
JP5332287B2 (ja) 2008-04-17 2013-11-06 Jfeスチール株式会社 電縫溶接システム
JP5549963B2 (ja) * 2011-11-09 2014-07-16 新日鐵住金株式会社 電縫溶接操業の監視装置、方法、プログラム、及び記憶媒体
JP6028765B2 (ja) * 2014-05-19 2016-11-16 Jfeスチール株式会社 電縫溶接の監視方法および監視装置
JP6323293B2 (ja) 2014-10-14 2018-05-16 新日鐵住金株式会社 電縫溶接操業管理装置および電縫溶接操業管理方法
WO2018087818A1 (ja) * 2016-11-08 2018-05-17 新日鐵住金株式会社 溶接監視装置及び溶接監視方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014837B1 (ja) 1969-05-01 1975-05-30
JPS5510615B2 (ja) 1971-09-24 1980-03-18
JPS5332287B2 (ja) * 1975-09-12 1978-09-07
JPS6221013B2 (ja) * 1977-07-28 1987-05-11 Basf Ag
JPS5549963B2 (ja) * 1977-11-15 1980-12-15
JPS6323293B2 (ja) * 1980-02-12 1988-05-16 Gunze Kk
WO2011118560A1 (ja) 2010-03-23 2011-09-29 新日本製鐵株式会社 高周波抵抗溶接及び誘導加熱溶接の操業管理装置、操業管理方法及び操業管理プログラム
JP5079929B2 (ja) * 2010-03-23 2012-11-21 新日本製鐵株式会社 高周波抵抗溶接及び誘導加熱溶接の操業管理装置、操業管理方法及び操業管理プログラム
WO2018092492A1 (ja) * 2016-11-15 2018-05-24 新日鐵住金株式会社 電縫鋼管の高周波抵抗溶接及び誘導加熱溶接の操業監視装置、方法及びプログラム
JP2019045372A (ja) 2017-09-05 2019-03-22 株式会社ミツトヨ 表面性状測定装置の制御方法
JP2019045373A (ja) 2017-09-05 2019-03-22 コニカミノルタ株式会社 記録材判別用センサーおよび画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3939736A4

Also Published As

Publication number Publication date
EP3939736A4 (en) 2022-11-30
JPWO2020184414A1 (ja) 2021-10-14
US20220097163A1 (en) 2022-03-31
EP3939736A1 (en) 2022-01-19
JP7081718B2 (ja) 2022-06-07

Similar Documents

Publication Publication Date Title
JP4705692B2 (ja) 溶接状態監視装置及び方法
US20240082900A1 (en) Welding monitoring apparatus and welding monitoring method
US20200038929A1 (en) Apparatus, method, and program for monitoring operation of high frequency resistance welding and induction heating welding of electric resistance welded steel pipe
JP5549963B2 (ja) 電縫溶接操業の監視装置、方法、プログラム、及び記憶媒体
JP6762163B2 (ja) 電縫鋼管の溶接工程の溶接監視方法及び溶接監視装置
JP6323293B2 (ja) 電縫溶接操業管理装置および電縫溶接操業管理方法
WO2020184414A1 (ja) 電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置
JP5909872B2 (ja) 溶接欠陥検出方法及びシステム及び電縫鋼管の製造方法並びに溶接製品の製造方法
JP5625292B2 (ja) 電縫溶接部の監視システム
JP3423034B2 (ja) 高周波電縫溶接工程における圧接量検出装置
JP4532977B2 (ja) 溶接品質に優れた電縫鋼管の溶接方法
JP5881942B2 (ja) 溶接欠陥検出システム及び電縫鋼管の製造方法並びに溶接製品の製造方法
JP7435930B1 (ja) 電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム
JP6699116B2 (ja) 電縫溶接工程におけるアプセット制御装置及び制御方法
JP2023007638A (ja) 電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム
JP2023182081A (ja) 電縫鋼管の溶接管理装置、溶接管理システム、電縫鋼管の溶接管理方法、および電縫鋼管の製造方法
JP5601015B2 (ja) 低炭素低合金鋼電縫管の入熱制御システム
JP6745655B2 (ja) 電縫鋼管の溶接監視装置及び溶接監視方法
JPH05318142A (ja) 電縫管溶接の監視方法およびその装置および電縫管溶接制御装置
JP5440014B2 (ja) 電縫溶接部の監視方法
WO2021111545A1 (ja) 溶接異常診断装置
JP2020011259A (ja) 電縫小径管の溶接操業管理方法及び溶接方法
KR20030017016A (ko) 고주파 전기 저항 용접의 용접품질 판정 방법 및 장치
JPH02263581A (ja) 電縫管の溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020770017

Country of ref document: EP

Effective date: 20211013