WO2018087818A1 - 溶接監視装置及び溶接監視方法 - Google Patents

溶接監視装置及び溶接監視方法 Download PDF

Info

Publication number
WO2018087818A1
WO2018087818A1 PCT/JP2016/083135 JP2016083135W WO2018087818A1 WO 2018087818 A1 WO2018087818 A1 WO 2018087818A1 JP 2016083135 W JP2016083135 W JP 2016083135W WO 2018087818 A1 WO2018087818 A1 WO 2018087818A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
welding
metal plate
welding monitoring
arcing
Prior art date
Application number
PCT/JP2016/083135
Other languages
English (en)
French (fr)
Inventor
長谷川 昇
道俊 谷本
通誠 向
Original Assignee
新日鐵住金株式会社
日鉄住金鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 日鉄住金鋼管株式会社 filed Critical 新日鐵住金株式会社
Priority to PCT/JP2016/083135 priority Critical patent/WO2018087818A1/ja
Priority to EP16921394.9A priority patent/EP3539683B1/en
Priority to CN201680089069.3A priority patent/CN109689237A/zh
Priority to US16/331,067 priority patent/US20190201957A1/en
Priority to MX2019002737A priority patent/MX2019002737A/es
Priority to JP2017515253A priority patent/JP6221013B1/ja
Publication of WO2018087818A1 publication Critical patent/WO2018087818A1/ja
Priority to US18/456,314 priority patent/US20240082900A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0818Manufacture of tubes by drawing of strip material through dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • B23K11/061Resistance welding; Severing by resistance heating using roller electrodes for welding rectilinear seams
    • B23K11/062Resistance welding; Severing by resistance heating using roller electrodes for welding rectilinear seams for welding longitudinal seams of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/087Seam welding not restricted to one of the preceding subgroups for rectilinear seams
    • B23K11/0873Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/01Welding by high-frequency current heating by induction heating
    • B23K13/02Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/08Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Definitions

  • the present invention relates to a welding monitoring device and a welding monitoring method for an ERW steel pipe.
  • ERW steel pipe is manufactured through the following steps. That is, first, a belt-shaped metal plate is continuously formed into a cylindrical shape by a roll group while being conveyed along its longitudinal direction. And while applying upset to the formed cylindrical metal plate by a pair of squeeze rolls from the side, heat input control to both side edges in the circumferential direction of the V-shaped metal plate is performed. However, welding is performed by heating and melting the both side edges by high-frequency resistance welding or induction heating welding. Since the welding process of the ERW steel pipe is an important process that directly affects the quality of the ERW steel pipe, various studies have been made heretofore.
  • Patent Document 1 shows that the shape of the welded portion changes to “first type”, “second type”, “transition zone”, or “second type” depending on the heat input applied during welding. (See FIG. 8). And in this patent document 1, "the welding slit which generate
  • An electric-welding welding operation management device including an arc detection area extracting means for extracting a narrow area including the arc detection area and an arc detection means for detecting an arc generated in the arc detection area is employed. According to this configuration, it is possible to obtain the occurrence frequency of an arc that is steadily generated downstream of the V-shaped convergence point (hereinafter referred to as a steady arc).
  • the arc occurrence frequency measuring means for measuring the occurrence frequency of the arc and the welding phenomenon is determined based on whether the occurrence frequency of the arc is equal to or higher than a predetermined value”. It has a configuration having a welding phenomenon determination means. According to this configuration, the state of the steady arc downstream from the V-shaped convergence point is grasped based on the occurrence frequency of the steady arc, and appropriate heat input control is performed.
  • the welding state downstream of the V-shaped convergence point can be made appropriate, but further improvement is required from the viewpoint of improving the quality of the welded portion.
  • high-frequency electric seam welding is a technology that uses the proximity effect and skin effect of the steel material edge in the welded portion to efficiently concentrate the current on the welding surface, but when performing high-frequency electric seam welding, Since a large current flows through the steel edge, a strong electromagnetic field is formed around the steel edge. Since this electromagnetic field becomes maximum at the welding point (point V), if there is a magnetic body around it, it is easy to jump into the welding point.
  • the material of the ERW steel pipe is often a steel plate with the scale generated during hot rolling still adhered, and the scale is peeled off from the surface layer during the forming process or fin pass roll.
  • a new surface can be formed by scraping the welded surface, while scale and iron powder may be generated.
  • pickling materials with almost no scale attached to the surface layer may similarly generate iron powder. There may occur a phenomenon in which the scale peeled off in this way or the scale powder or iron powder that has been scraped is caught in the weld as a foreign matter.
  • the present invention has been made in view of the above circumstances, and in the welding process of the electric resistance welded steel pipe, it is possible to detect in real time even relatively mild biting defects due to the intrusion of foreign matters such as scale powder and iron powder.
  • An object is to provide a welding monitoring device and a welding monitoring method.
  • FIG. 1A and FIG. 1B are the results of a flat test in which an ERW steel pipe is installed such that the welded portion of the defect occurrence site is at a 90 ° position from the vertical direction and is rolled down in the vertical direction.
  • FIG. 1B shows a secondary electron image taken with an SEM.
  • the target defect is characterized in that an elongated black stripe pattern having a width of several mm or less extending in the thickness direction exists at the center of the crack. Also in the secondary electron image shown in FIG.
  • FIGS. 2A and 2B show SEM analysis results of the black streaks.
  • the black streak component was iron oxide.
  • this defect was caused by iron oxide (scale) being bitten or by iron powder being bitten and oxidized on the welding surface.
  • a belt-shaped metal plate is formed into a cylindrical shape while being conveyed, and further, both side edges of the metal plate are brought into contact with each other while being converged in a V-shape and heated to melt.
  • Is a welding monitoring device that monitors the welding state of the V-shaped convergence region of the metal plate that converges in the V-shape, and images the region including the V-shaped convergence region in time series.
  • the image may be configured as follows: the image captured by the image capturing unit is an RGB image; the image processing unit is configured to convert a red image from the RGB image. And at least one of the blue image is extracted, the red image is subjected to inversion binarization and labeling for the red image, and a high-luminance part in the blue image is detected for the blue image To do.
  • the image capturing unit may be a camera having 200 frames or more per second.
  • the belt-shaped metal plate is formed into a cylindrical shape while being conveyed, and further, both side edges of the metal plate are brought into contact with each other while being converged in a V-shape and heated and melted.
  • an RGB image is used as the image; in the detection step, at least one of a red image and a blue image is extracted from the RGB image; The red image is subjected to inversion binarization and labeling for the red image, and the blue image is detected for a high-luminance part in the blue image.
  • imaging may be performed at a frame rate of 200 frames or more per second in the imaging step.
  • the method may further include a defect presence / absence specifying step of performing an ultrasonic test on the marked part.
  • the method may further include a tracking step of tracking the position of the unsteady arcing in the longitudinal direction of the ERW steel pipe.
  • a camera used in the image photographing means and the photographing step either a monochrome camera or a color camera can be used.
  • a color camera which can be decomposed and discriminate between self-luminous emission from molten steel and unsteady arcing with high contrast.
  • the welding monitoring device and the welding monitoring method it is possible to detect a defect including a relatively minor defect that is generated when a foreign object is caught in the welding surface. And this detection information can be tracked in the manufacturing process of the ERW steel pipe, or can be marked on the steel pipe itself immediately after the defect detection. In this case, the defective part can be accurately removed from the product, and only a normal part having no biting defect can be shipped as a product.
  • FIG. 3 is a perspective view of an ERW steel pipe welding apparatus to which the welding monitoring apparatus and the welding monitoring method are applied.
  • the electric welded steel pipe welding apparatus forms a strip-shaped metal plate 1 into a cylindrical shape while conveying the metal plate 1 along its longitudinal direction, and further has a V-shape when viewed from both sides (edges) 1a, 1b of the metal plate 1 in plan view. It is an apparatus which manufactures an electric-resistance-welded steel pipe by heat-melting each other while converging.
  • V-shaped convergence point 3 is a V-shaped convergence point which the both-sides edges 1a and 1b converged in V shape collide with each other, and are heated and melted.
  • the metal plate (steel plate) 1 travels along the longitudinal direction from the front side of the paper toward the back side of the paper, so when the V-shaped convergence point 3 is used as a reference, the front side of the paper is the upstream side, The back side of the paper is the downstream side.
  • the welding monitoring apparatus of this embodiment monitors the welding state of the V-shaped convergence area
  • Reference numerals 4a and 4b in FIG. 3 are a pair of contact chips arranged so as to be in contact with the vicinity of both side edges 1a and 1b in the circumferential direction of the metal plate 1 toward the V convergence point 3. Further, reference numeral 5 in FIG. 3 is an impeder arranged at the center of the metal plate 1 formed into a cylindrical shape, and reference numeral 6 is a high-frequency power source connected to each of the contact chips 4a and 4b. The high frequency current fed from the contact chips 4a and 4b flows as indicated by arrows along the extending direction of both side edges 1a and 1b in the circumferential direction of the metal plate 1, and the both side edges 1a, 1b is heated and melted.
  • the welding monitoring apparatus of the present embodiment includes an image photographing unit 7 and an image processing unit 8 in order to monitor a biting defect including a mild one that could not be monitored conventionally.
  • this welding monitoring device it is possible to detect unsteady arcing (foreign matter mixed arcing) occurring upstream of the welded part or the welded part, and thereby to identify a defective part in the ERW steel pipe.
  • Unsteady arcing differs from the above-mentioned steady arcing in the following points. That is, steady arcing occurs downstream of the welded portion (V-shaped convergence point 3), while unsteady arcing occurs upstream of the welded portion (V-shaped convergent point 3) and the welded portion (V-shaped convergent point 3). appear.
  • the material of the resulting welded part is equal to the base material of the metal plate 1.
  • the material of the welded part is different from the base material of the metal plate 1.
  • the image capturing means 7 captures a surface image of a region including a V-shaped convergence region where both side edges 1a and 1b of the metal plate 1 converge in a V shape, and a CCD camera, for example, is used.
  • the image capturing device is located above the welded portion (V-shaped convergence point 3) so that a range including the upstream side of the welded portion (V-shaped convergence point 3) and the welded portion (V-shaped convergence point 3) can be captured from above. Is arranged.
  • the image capturing means 7 captures an image of the surface of the metal plate 1 including red light among the radiant light.
  • FIG. 5 An image processing algorithm for automatic detection using the image photographing means 7 and the image processing means 8 is shown in FIG. Examples of processed images are shown in FIGS. 5 (a) to 5 (d). At least one of the red component and the blue component is extracted from the RGB image (see FIG. 5A) photographed in step S1 in FIG. 4 (FIG. 4 illustrates the case where both are extracted).
  • inversion binarization step S3
  • labeling processing step S4 are performed in order to obtain a welding point in a red image, and sandwiched between steel material edges (both side edges 1a and 1b). The most downstream point of the wedge-shaped region is a welding point (step S5; see also FIG. 5B).
  • step S6 the blue image is binarized (step S7; see also (c) in FIG. 5) and a labeling process (step S8) to detect a high-luminance region.
  • step S9. See also (d) of FIG. 5).
  • high luminance refers to, for example, 200 levels or more out of 255 gradations.
  • the high luminance part is labeled (step S8) to derive position information.
  • the labeling process is to extract a specific blob by assigning the same label number to one block (blob) in a binary image, and the position of the blob in the image (the maximum and minimum points of the X coordinate, the Y coordinate) The maximum and minimum points), width, length, area, and the like are extracted. Even if there are a plurality of non-stationary arcing sites, the respective position information can be derived.
  • the position of the welding point thus obtained and the position of the high-intensity part are compared in step S10. If the position of the high-intensity part is not downstream of the welding point (step S10: YES), the occurrence of the unsteady arcing part is determined.
  • step S11 Defect occurrence is determined (step S11), and the process returns to step S1.
  • step S12 If the position of the high-luminance part is downstream of the welding point (step S10: NO), it is determined to be normal (step S12), and then the process returns to step S1.
  • step S12 it is always possible to determine a defect.
  • the blue component image is extracted and processed.
  • the non-stationary arcing portion is saturated even in the red component image with a high probability (255 levels out of 255 gradations). Therefore, only the red component can be detected.
  • the pipe to be monitored for welding is an actual pipe of ⁇ 100 mm ⁇ 4 mmt, and in the camera used for imaging, 200 frames / second and the exposure time were set to 1/10000 seconds.
  • An example of welding monitoring is shown in FIG.
  • FIG. 6 In the image at the time of the defect occurrence shown in FIG. 6, when a pair of welding surfaces (edges) are close to each other, the foreign matter has conductivity such as scale and iron powder, so the welding surfaces are short-circuited, and unsteady arcing is performed. I am waking up. In a place where no foreign matter is attached, it has been confirmed that non-stationary arcing does not occur even in the vicinity and no defect occurs.
  • FIG. 7 (a) shows actual cocoon parts where cracks have occurred after the flattening test and appearance photographs corresponding to each of these cocoon parts. It turns out that the crack generate
  • FIG. 7B shows an image of a part where unsteady arcing has occurred on the welding point or upstream side of the photographed image together with the corresponding part.
  • the image of the marker can also be confirmed, and it can be seen that each occurrence site corresponds to the flat crack site very well. Since the images other than the corresponding region are normal without non-stationary arcing and other abnormalities, it was proved that the defect generation is accompanied by non-stationary arcing.
  • the welding monitoring apparatus of this embodiment forms the strip-shaped metal plate 1 into a cylindrical shape while transporting it along its longitudinal direction, and further converges both side edges 1a and 1b of the metal plate 1 into a V-shape.
  • the welded state of the V-shaped converging region of the metal plate 1 that converges in the V-shape is monitored when the ERW steel pipe is manufactured by being butted against each other while being melted.
  • this welding monitoring apparatus extracts the welding point based on the said image image
  • the welding monitoring apparatus is configured as follows: the image photographed by the image photographing means 7 is an RGB image; the image processing means 8 is the RGB image. At least one of a red image and a blue image is extracted from the red image, the red image is subjected to inversion binarization and labeling, and the blue image has a high luminance in the blue image. Detect the site.
  • the image photographing unit is a camera having 200 frames or more per second.
  • the belt-shaped metal plate 1 is formed into a cylindrical shape while being conveyed along its longitudinal direction, and both side edges 1a and 1b of the metal plate 1 are V-shaped.
  • the electric resistance welded steel pipe is manufactured by being brought into contact with each other while being converged and heated and melted, the welding state of the V-shaped convergence region of the metal plate 1 that converges in the V-shape is monitored.
  • the welding monitoring method includes a photographing step of photographing an image of a region including the V-shaped convergence region in time series; extracting a welding point based on the image photographed in the time series, and the welding point or the welding And a detecting step for detecting the presence and position of non-stationary arcing upstream of the point.
  • the following is performed: using an RGB image as the image; in the detection step, extracting at least one of a red image and a blue image from the RGB image; The red image is subjected to inversion binarization and labeling for the red image, and the blue image is detected for a high-luminance part in the blue image.
  • imaging is performed at a frame rate of 200 frames or more per second in the imaging step.
  • the presence or absence of a biting defect is detected in real time by extracting a welding point and automatically determining whether or not unsteady arcing occurs in the vicinity of the welding point or upstream from the welding point. It can be easily detected. And, by tracking the product based on the information on the presence or absence of unsteady arcing or marking the steel pipe in the vicinity of the squeeze roll 2 immediately after the unsteady arcing is detected, the position of the defect occurrence site is clearly indicated in the refining process. Can be removed. Therefore, only normal parts that do not contain defects can be shipped as products.
  • the welding monitoring apparatus and welding monitoring method which can detect the comparatively slight biting defect by the jump of foreign materials, such as scale powder and iron powder, in real time can be provided in the welding process of ERW steel pipe. .
  • Metal plate 1a, 1b Both side edges of metal plate 2: Squeeze roll 3: Welding point 4a, 4b: Contact tip 5: Impeder 6: High frequency power supply 7: Image photographing means 8: Image processing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Acoustics & Sound (AREA)
  • Textile Engineering (AREA)
  • Quality & Reliability (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

帯状の金属板を搬送しながら円筒状に成形し、さらに前記金属板の両側縁をV字状に収束させながら互いに突き合わせて加熱溶融することによって電縫鋼管を製造する際に、前記金属板の前記V字状に収束するV字収束領域の溶接状態を監視する溶接監視装置である。この溶接監視装置は、前記V字収束領域を含む領域の画像を時系列に撮影する画像撮影手段と;前記時系列に撮影された前記画像に基づいて溶接点を抽出し、前記溶接点或いは前記溶接点の上流側における非定常アーキングの有無及び位置を検出する画像処理手段と;を備える。

Description

溶接監視装置及び溶接監視方法
 本発明は、電縫鋼管の溶接監視装置及び溶接監視方法に関する。
 電縫鋼管は、以下の工程を経て製造される。すなわち、まず帯状の金属板をその長手方向に沿って搬送しながら、ロール群により連続的に円筒状に成形する。そして、成形された円筒状の金属板に対してその側方から一対のスクイズロールによりアプセットを加えながら、かつ、V字状に収束する金属板の周方向の両側縁への入熱制御を行いながら、高周波抵抗溶接または誘導加熱溶接により前記両側縁を加熱溶融させて突き合わせることで溶接する。この電縫鋼管の溶接工程は、電縫鋼管の品質に直接影響する重要な工程であるため、従来から様々な検討がなされてきた。
 例えば特許文献1には、溶接時に与える入熱量により、溶接個所の形態が、「第1種」、「第2種」、「遷移域」、または「第2’種」に変わることが示されている(図8参照)。そして、この特許文献1では、「前記鋼板の衝合する衝合点であるV字収束点(V1)と、鋼板内部からの溶鋼排出が始まる溶接点(W)との間に発生する溶接スリットを含む狭小領域をアーク検出領域として抽出するアーク検出領域抽出手段と、前記アーク検出領域で発生するアークを検出するアーク検出手段と」を備える電縫溶接操業管理装置を採用している。
 この構成によれば、V字収束点よりも下流側において定常的に発生するアーク(以下、定常アークと呼ぶ)の発生頻度を求めることが可能としている。
 さらに、この電縫溶接操業管理装置では、「前記アークの発生頻度を計測するアーク発生頻度計測手段と、前記アークの発生頻度が規定値以上であるか否かに基づいてその溶接現象を判定する溶接現象判定手段を有する」構成を採用している。
 この構成によれば、定常アークの発生頻度に基づいて、V字収束点よりも下流における定常アークの形態を把握し、もって適切な入熱量制御を行うものとしている。
日本国特開2016-78056号公報
 上記特許文献1に記載の技術によれば、V字収束点よりも下流における溶接状態を適切なものとすることができるが、溶接個所の品質向上の観点より更なる改良が求められている。
 例えば、高周波電縫溶接は、溶接部における鋼材エッジの近接効果と表皮効果とを利用し、溶接面に電流を集中させて効率的に溶接する技術であるが、高周波電縫溶接を行う際、鋼材エッジに大電流を流すため、鋼材エッジの周辺には強力な電磁場が形成される。この電磁場は溶接点(V点)で最大となるため、周囲に磁性体があると溶接点に飛び込みやすい。
 電縫鋼管の材料は、しばしば、熱間圧延時に生成したスケールが付着したままの鋼板であり、成形の過程やフィンパスロールでスケールが表層から剥離する。特にフィンパスロールでは溶接面を削ることで新生面を形成できる一方、スケールや鉄粉を生じさせることがある。また表層にスケールが殆ど付着していない酸洗材でも同様に鉄粉を生じさせる可能性がある。このようにして剥離したスケール或いは削られたスケール粉や鉄粉などが異物として溶接部に噛込まれる現象が発生することがある。この場合、異物のサイズがある程度大きいと、アプセットするまでに溶融せず固体のまま溶接面に残留し、排出されずに欠陥となる可能性がある。こうした欠陥発生の頻度は高くないものの、溶接部の靭性を低下させ、加工時の割れ原因となるため、異物サイズの大小に関わらず、造管中に検出することが強く望まれる。
 しかしながら、特許文献1に開示の技術においては、溶接点(V点)よりも下流側における定常アークの発生頻度を求め、溶接の入熱状態を把握するものであるため、異物の噛込みによる欠陥発生については対策が講じられていなかった。
 本発明は、上記事情に鑑みてなされたものであって、電縫鋼管の溶接工程において、スケール粉や鉄粉などの異物の飛び込みによる比較的軽度な噛込み欠陥をもリアルタイムで検出ができる、溶接監視装置及び溶接監視方法の提供を目的とする。
 本発明者らは、上記の課題に応えるために、まず、対象欠陥の分析を行った。図1A及び図1Bは、電縫鋼管を、その欠陥発生部位の溶接部が鉛直方向から90°位置になるよう設置し、そして鉛直方向に圧下する扁平試験を行った結果であり、図1Aが割れた破面の外観写真を示し、図1BがSEMで撮影した二次電子像を示す。図1Aに示すように、対象とする欠陥は、割れの中心位置に、板厚方向に延びた幅数mm以下の細長い黒すじ模様が存在するという特徴がある。図1Bに示す二次電子像でも、黒すじ部と周辺部との境界が顕在化しており、周辺部において低入熱時に特徴的に発生するディンプル破面が確認された。以上の扁平試験結果より、周辺部を抜熱するような、溶接時の溶接面よりも低温の異物が噛込んだことにより欠陥が生じたと推察された。
 さらに、図2A及び図2Bに、前記黒すじ部のSEM分析結果を示す。黒すじ部を拡大した図2A中の部位3をSEMにより成分分析した結果、図2Bに示すように鉄と酸素のピークが顕著である一方、両元素以外はほぼノイズレベルであったことから、黒すじ部の成分が酸化鉄であることが分かった。複数箇所を分析したところ、黒すじ部内にはこのような酸化鉄の微小な塊が散在しており、全体的に高濃度になっていた。従って、本欠陥は、酸化鉄(スケール)を噛込んだか、或いは鉄粉を噛込んで溶接面で酸化したことに起因すると判断された。
 こうした欠陥がどのような噛込み過程を経て発生するのかについては、これまで明確ではなかった。そこで、スケール或いは鉄粉を用いて溶接時の欠陥を人為的に発生させる実験を行った。この時、溶接部上方に設置したカメラで溶接部を周期的に撮影し、扁平試験による割れ(すなわち欠陥発生部位)とのつき合わせを行った。その結果、異物が溶接面に付着したまま溶接点上流側から運ばれてきて噛込まれる可能性があること、さらには異物の噛込み時に溶接面同士(エッジ同士)が近接すると両エッジ間が短絡してアーキング(以下、非定常アーキングと呼ぶ)が発生することを発見した。そこで、本発明者らは、この非定常アーキングが、溶接点或いはそれよりも上流側で発生するという特徴を利用し、これを自動検出する画像処理法を発明した。
 すなわち、本発明は以下の各態様を提供する。
(1)本発明の一態様は、帯状の金属板を搬送しながら円筒状に成形し、さらに前記金属板の両側縁をV字状に収束させながら互いに突き合わせて加熱溶融することによって電縫鋼管を製造する際に、前記金属板の前記V字状に収束するV字収束領域の溶接状態を監視する溶接監視装置であって、前記V字収束領域を含む領域の画像を時系列に撮影する画像撮影手段と;前記時系列に撮影された前記画像に基づいて溶接点を抽出し、前記溶接点或いは前記溶接点の上流側における非定常アーキングの有無及び位置を検出する画像処理手段と;を備える。
(2)上記(1)に記載の態様では、以下のように構成してもよい:前記画像撮影手段が撮影する前記画像がRGB画像であり;前記画像処理手段が、前記RGB画像から赤色画像及び青色画像の少なくとも一方を抽出し、前記赤色画像に対しては、前記赤色画像の反転2値化及びラベリング処理を施し、前記青色画像に対しては、前記青色画像中の高輝度部位を検出する。
(3)上記(1)または(2)に記載の態様では、前記画像撮影手段が、毎秒200フレーム以上のカメラであってもよい。
(4)また、本発明の他の態様は、帯状の金属板を搬送しながら円筒状に成形し、さらに前記金属板の両側縁をV字状に収束させながら互いに突き合わせて加熱溶融することによって電縫鋼管を製造する際に、前記金属板の前記V字状に収束するV字収束領域の溶接状態を監視する溶接監視方法であって、前記V字収束領域を含む領域の画像を時系列に撮影する撮影工程と;前記時系列に撮影された前記画像に基づいて溶接点を抽出し、前記溶接点或いは前記溶接点の上流側における非定常アーキングの有無及び位置を検出する検出工程と;を有する。
(5)上記(4)に記載の態様では、以下のようにしてもよい:前記画像としてRGB画像を用い;前記検出工程で、前記RGB画像から赤色画像及び青色画像の少なくとも一方を抽出し、前記赤色画像に対しては、前記赤色画像の反転2値化及びラベリング処理を施し、前記青色画像に対しては、前記青色画像中の高輝度部位を検出する。
(6)上記(4)または(5)に記載の態様では、前記撮影工程で、毎秒200フレーム以上のフレームレートで撮像してもよい。
(7)上記(4)~(6)の何れか一項に記載の態様で、前記電縫鋼管の、長手方向における前記非定常アーキングの前記位置をマーキングするマーキング工程をさらに有してもよい。
(8)上記(7)に記載の場合、前記マーキングを付した部位に超音波テストを行う不具合有無特定工程をさらに有してもよい。
(9)上記(4)~(6)の何れか一項に記載の態様で、前記電縫鋼管の、長手方向における前記非定常アーキングの前記位置を追跡するトラッキング工程をさらに有してもよい。
 尚、前記画像撮影手段及び前記撮影工程において用いるカメラとしては、モノクロカメラ、カラーカメラいずれも用いることが可能であるが、上記(2)及び上記(5)の態様を採用する場合には、色分解をして溶鋼からの自発光と非定常アーキングとを高コントラストで識別できるカラーカメラを用いることが好ましい。
 本発明の上記各態様に係る溶接監視装置及び溶接監視方法によれば、溶接面に異物が噛込んで発生する欠陥を、比較的軽度なものも含めて検出することが可能になる。そして、この検出情報を、電縫鋼管の製造工程においてトラッキングするか、或いは、欠陥検出直後に鋼管自体にマーキングすることもできる。この場合、欠陥部位を製品から的確に除去し、噛込み欠陥のない正常な部位のみを製品として出荷することが可能となる。
対象欠陥の外観写真を示す写真である。 対象欠陥の二次電子像を示す写真である。 対象欠陥に対してSEMによる定性分析を行った一例を示す図であって、SEM反射電子像の写真である。 対象欠陥に対してSEMによる定性分析を行った一例を示す図であって、図2Aの部位3をSEMにより成分分析した結果を示すグラフである。 本発明の一実施形態に係る溶接監視装置及び溶接監視方法を適用した、電縫鋼管溶接装置を示す斜視図である。 同溶接監視装置及び同溶接監視方法によって欠陥発生を検出する画像処理アルゴリズムのフローチャートである。 欠陥発生を検出する画像処理過程の画像例を示す写真であり、(a)が撮影画像、(b)が溶接点検出、(c)が青色成分検出、(d)が高輝度部位の検出、を示す。 欠陥発生時の溶接部の状態を撮影した写真である。 欠陥発生位置と扁平試験で割れが発生した部位とをつき合せた一例を示す図であって、(a)が扁平試験後に確認した実疵部位とその外観写真を示し、(b)が非定常アーキングが発生した部位と画像とのつき合わせを示す。 従来の溶接監視方法の一例を説明する図であって、溶接個所における、「第1種」、「第2種」、「遷移域」、及び「第2’種」の各溶接現象を示す図である。
 本発明の電縫鋼管の溶接監視装置及び溶接監視方法の一実施形態について、図面を参照しながら以下に説明を行う。
 図3に、同溶接監視装置及び同溶接監視方法を適用した、電縫鋼管溶接装置の斜視図を示す。同電縫鋼管溶接装置は、帯状の金属板1をその長手方向に沿って搬送しながら円筒状に成形し、さらに金属板1の両側縁(エッジ)1a,1bを平面視してV字状に収束させながら互いに突き合わせて加熱溶融することによって電縫鋼管を製造する装置である。なお、図3に示す符合3は、V字状に収束した両側縁1a,1bが互いに突き合わされて加熱溶融するV字収束点である。この図3において、金属板(鋼板)1は紙面手前側より紙面奥側に向かってその長手方向に沿って進行するので、V字収束点3を基準とした場合、紙面手前側が上流側となり、紙面奥側が下流側となる。
 本実施形態の溶接監視装置は、電縫鋼管を製造する際に、金属板1のV字状に収束するV字収束領域の溶接状態を監視する。
 図3における符号4a、4bは、V収束点3に向かう金属板1の周方向の両側縁1a、1bの付近に接触するように配置された一対のコンタクトチップである。また、図3の符号5は、円筒状に成形された金属板1の中心部に配置されたインピーダであり、符号6はコンタクトチップ4a、4bのそれぞれに接続された高周波電源である。コンタクトチップ4a、4bから給電される高周波電流は、金属板1の周方向の両側縁1a、1bの延在方向に沿って矢印のように流れ、そして高周波抵抗により金属板1の両側縁1a、1bを加熱溶融する。この高周波電流により、従来と同様に入熱制御が行われている。加熱溶融された金属板1の両側縁1a、1bは、V収束点3の付近で一対のスクイズロール2,2によるアプセットが加えられ、電縫溶接される。なお、コンタクトチップ4a、4bを用いる高周波抵抗溶接の代りに、誘導コイルを用いて加熱する、誘導加熱方式の溶接も採用可能である。
 このように加熱溶融された金属板1の両側縁1a、1bに、スクイズロール2,2によるアプセットを加えることによって、金属板1の表面の酸化物が溶接面から押出されて排出され、優れた溶接品質が得られる。しかし、前述の通り、溶接面に異物が噛込むと溶接面の強度が低下し、鋼管の加工時や鋼管に内圧がかかったときに割れる可能性が高くなる。
 本実施形態の溶接監視装置は、従来では監視できなかった軽度のものも含む噛込み欠陥をリアルタイムで監視するために、画像撮影手段7と、画像処理手段8とを備える。この溶接監視装置によれば、溶接部あるいは溶接部よりも上流側で生じた非定常アーキング(異物混入アーキング)を検出し、もって電縫鋼管における欠陥部位を特定可能としている。なお、非定常アーキングは、以下の点において前述の定常アーキングとは異なる。すなわち、定常アーキングは溶接部(V字収束点3)よりも下流側で生じる一方、非定常アーキングは溶接部(V字収束点3)及び溶接部(V字収束点3)よりも上流側において発生する。また、定常アーキングは電縫鋼管を形成する際に一対の端縁(エッジ)同士間で発生するためその結果として生じる溶接部位の材質が金属板1の母材質と等しい。これに対し、非定常アーキングの場合は酸化鉄(スケール)や鉄粉等の異物により生じるものであるため、溶接部位の材質が金属板1の母材質と異なる。
 画像撮影手段7は、金属板1の両側縁1a,1bがV字状に収束するV字収束領域を含む領域の表面画像を撮影するものであり、例えばCCDカメラが用いられる。画像撮影装置は、溶接部(V字収束点3)及び溶接部(V字収束点3)よりも上流側を含む範囲をその上方より撮影できるよう、溶接部(V字収束点3)の上方に配置されている。このような上方配置を採用することで、例えば小径ラインに適用した場合であっても、他の設備(窒素パージノズルや冷却水配管など)と干渉せずに無理なく設置可能としている。
 金属板1はその両側縁1a、1bが集中的に加熱溶融されるため、両側縁1a、1b及びそれらの近傍から輻射光を発する。画像撮影手段7は、この輻射光のうち、赤色光を含む金属板1の表面の画像を撮影する。
 画像撮影手段7と画像処理手段8とを用いて自動検出するための画像処理アルゴリズムを図4に示す。また、処理した画像例を図5の(a)~(d)に示す。
 図4のステップS1において撮影したRGB画像(図5の(a)参照)から赤色成分及び青色成分の少なくとも一方を抽出する(図4では双方を抽出する場合を例示している)。
 ステップS2に示す赤色成分抽出においては、赤色画像で溶接点を求めるために反転2値化(ステップS3)とラベリング処理(ステップS4)とを施し、鋼材エッジ(両側縁1a、1b)で挟まれたくさび型の領域の最下流点を溶接点とする(ステップS5。図5の(b)も参照)。
 一方、ステップS6に示す青色成分抽出においては、青色画像に対して2値化(ステップS7。図5の(c)も参照)とラベリング処理(ステップS8)とを施し、高輝度部位を検出する(ステップS9。図5の(d)も参照)。溶鋼の輻射パターンを撮影した本画像では、青色成分のレベルは低いが、非定常アーキングが存在する場合は高輝度となって検出できる。ここで高輝度とは、255階調のうち例えば200レベル以上のことを指す。この高輝度部位をラベリング処理(前記ステップS8)し、位置情報を導出する。尚、ラベリング処理とは、2値画像で一つの固まり(ブロッブ)に同一のラベル番号をつけて特定のブロッブを抽出し、画像内におけるブロッブの位置(X座標の最大点及び最小点、Y座標の最大点及び最小点)や幅、長さ、面積等を抽出する処理を示す。複数の非定常アーキング部位が存在してもそれぞれの位置情報を導出可能である。
 このようにして得られた溶接点と高輝度部位の位置をステップS10で比較し、高輝度部位の位置が溶接点よりも下流側でなければ(ステップS10:YES)、非定常アーキング部位発生として欠陥発生の判定を行い(ステップS11)、ステップS1に戻る。一方、高輝度部位の位置が溶接点よりも下流側であれば(ステップS10:NO)、正常と判定し(ステップS12)、続いて処理をステップS1に戻す。
 以上により、常時、欠陥判定が可能となった。尚、ここでは非定常アーキング部位を高コントラストで検出するために青色成分画像を抽出して処理したが、非定常アーキング部位は高い確率で赤色成分画像でも飽和(255階調のうち255レベル)するため、赤色成分のみでも検出可能である。
 撮影に際しては毎秒200フレーム以上のカメラを用いると、非定常アーキング部位の検出に漏れがないことが実験的に分かっていることから、ステップS1の撮影では、毎秒200フレーム以上のカメラを用いることが好ましい。
 以下に本発明の実施例を示す。
 実際の製造ラインにおいて、溶接部の連続的な撮影と画像処理とを行いながら溶接点位置を測定した。溶接監視対象としたパイプはφ100mm×4mmtの実管であり、撮像に用いたカメラにおいては、200フレーム/秒、露光時間を1/10000秒と設定した。
 溶接監視の一例を、図6に示す。図6に示す欠陥発生時の画像では、一対の溶接面同士(エッジ同士)が近接した時に、前記異物がスケールや鉄粉といった導電性を有するために溶接面間が短絡し、非定常アーキングを起こしている。尚、異物が付着していない場所では、近接時も非定常アーキングが発生せず、欠陥も発生しないことが確認できている。
 この現象と欠陥発生とをつき合わせた一例を図7の(a)及び(b)に示す。
 図7の(a)では、扁平試験後に割れが発生した実疵部位と、これら実疵部位のそれぞれに対応する外観写真とを示す。鋼管先頭から0.24m、1.93m、2.51mの3箇所に割れが発生したことが分かる。尚、1.17m位置にある「切り欠き」は、トラッキングのためのマーカーとして予めエッジに切り欠きを入れた部位を示している。このマーカーは、実管の長手方向に沿った位置特定のための基準位置として用いられる。
 図7の(b)は、撮影画像のうち、溶接点或いはそれよりも上流側で非定常アーキングが発生した部位の画像と、対応する部位とをつき合わせて示したものである。図示はしていないが、前記マーカーの画像も確認できており、それぞれの発生部位は扁平割れ部位と非常によく対応していることが分かる。対応部位以外の画像は非定常アーキングや他の異常もなく正常であることから、欠陥発生には非定常アーキングを伴うことが実証された。
 上述した実施形態に係る溶接監視装置及び溶接監視方法の骨子を以下に纏める。
(1)本実施形態の溶接監視装置は、帯状の金属板1をその長手方向に沿って搬送しながら円筒状に成形し、さらに前記金属板1の両側縁1a,1bをV字状に収束させながら互いに突き合わせて加熱溶融することによって電縫鋼管を製造する際に、前記金属板1の前記V字状に収束するV字収束領域の溶接状態を監視する。そして、この溶接監視装置は、前記V字収束領域を含む領域の画像を時系列に撮影する画像撮影手段7と;前記時系列に撮影された前記画像に基づいて溶接点を抽出し、前記溶接点或いは前記溶接点の上流側における非定常アーキングの有無及び位置を検出する画像処理手段8と;を備える。
(2)上記(1)に記載の溶接監視装置で、以下のように構成されている:前記画像撮影手段7が撮影する前記画像がRGB画像であり;前記画像処理手段8が、前記RGB画像から赤色画像及び青色画像の少なくとも一方を抽出し、前記赤色画像に対しては、前記赤色画像の反転2値化及びラベリング処理を施し、前記青色画像に対しては、前記青色画像中の高輝度部位を検出する。
(3)上記(1)または(2)に記載の態様では、前記画像撮影手段が、毎秒200フレーム以上のカメラである。
(4)また、本実施形態の溶接監視方法は、帯状の金属板1をその長手方向に沿って搬送しながら円筒状に成形し、さらに前記金属板1の両側縁1a,1bをV字状に収束させながら互いに突き合わせて加熱溶融することによって電縫鋼管を製造する際に、前記金属板1の前記V字状に収束するV字収束領域の溶接状態を監視する。この溶接監視方法は、前記V字収束領域を含む領域の画像を時系列に撮影する撮影工程と;前記時系列に撮影された前記画像に基づいて溶接点を抽出し、前記溶接点或いは前記溶接点の上流側における非定常アーキングの有無及び位置を検出する検出工程と;を有する。
(5)上記(4)に記載の溶接監視方法で、以下のことを行う:前記画像としてRGB画像を用い;前記検出工程で、前記RGB画像から赤色画像及び青色画像の少なくとも一方を抽出し、前記赤色画像に対しては、前記赤色画像の反転2値化及びラベリング処理を施し、前記青色画像に対しては、前記青色画像中の高輝度部位を検出する。
(6)上記(4)または(5)に記載の溶接監視方法おいて、前記撮影工程で、毎秒200フレーム以上のフレームレートで撮像する。
 さらに、下記(7)及び(8)、又は、下記(9)に記載の工程を行うことができる。
(7)上記(4)~(6)の何れか一項に記載の溶接監視方法おいて、前記電縫鋼管の、長手方向における前記非定常アーキングの前記位置をマーキングするマーキング工程をさらに有する。
(8)上記(7)に記載の溶接監視方法おいて、前記マーキングを付した部位に超音波テストを行う不具合有無特定工程をさらに有する。
(9)上記(4)~(6)の何れか一項に記載の態様で、前記電縫鋼管の、長手方向における前記非定常アーキングの前記位置を追跡するトラッキング工程をさらに有する。
 以上説明の溶接監視装置及び溶接監視方法によれば、溶接点を抽出し、溶接点近傍或いは溶接点よりも上流側における非定常アーキング発生有無を自動判定することで、噛込み欠陥有無をリアルタイムで容易に検出できる。そして、非定常アーキング発生有無の情報に基づいて製品トラッキングするか或いは非定常アーキング検出直後にスクイズロール2の近傍で鋼管にマーキングすることにより、欠陥発生部位の位置を明示して精製工程で容易に除去できる。そのため、欠陥を含まない正常な部位のみを製品として出荷できる。
 本発明によれば、電縫鋼管の溶接工程において、スケール粉や鉄粉などの異物の飛び込みによる比較的軽度な噛込み欠陥をもリアルタイムで検出ができる、溶接監視装置及び溶接監視方法を提供できる。
 1:金属板
 1a、1b:金属板の両側縁
 2:スクイズロール
 3:溶接点
 4a、4b:コンタクトチップ
 5:インピーダ
 6:高周波電源
 7:画像撮影手段
 8:画像処理手段

Claims (9)

  1.  帯状の金属板を搬送しながら円筒状に成形し、さらに前記金属板の両側縁をV字状に収束させながら互いに突き合わせて加熱溶融することによって電縫鋼管を製造する際に、前記金属板の前記V字状に収束するV字収束領域の溶接状態を監視する溶接監視装置であって、
     前記V字収束領域を含む領域の画像を時系列に撮影する画像撮影手段と;
     前記時系列に撮影された前記画像に基づいて溶接点を抽出し、前記溶接点或いは前記溶接点の上流側における非定常アーキングの有無及び位置を検出する画像処理手段と;
    を備えることを特徴とする溶接監視装置。
  2.  前記画像撮影手段が撮影する前記画像がRGB画像であり;
     前記画像処理手段が、
      前記RGB画像から赤色画像及び青色画像の少なくとも一方を抽出し、
      前記赤色画像に対しては、前記赤色画像の反転2値化及びラベリング処理を施し、
      前記青色画像に対しては、前記青色画像中の高輝度部位を検出する;
    ことを特徴とする請求項1に記載の溶接監視装置。
  3.  前記画像撮影手段が、毎秒200フレーム以上のカメラである
    ことを特徴とする請求項1または2に記載の溶接監視装置。
  4.  帯状の金属板を搬送しながら円筒状に成形し、さらに前記金属板の両側縁をV字状に収束させながら互いに突き合わせて加熱溶融することによって電縫鋼管を製造する際に、前記金属板の前記V字状に収束するV字収束領域の溶接状態を監視する溶接監視方法であって、
     前記V字収束領域を含む領域の画像を時系列に撮影する撮影工程と;
     前記時系列に撮影された前記画像に基づいて溶接点を抽出し、前記溶接点或いは前記溶接点の上流側における非定常アーキングの有無及び位置を検出する検出工程と;
    を有することを特徴とする溶接監視方法。
  5.  前記画像としてRGB画像を用い;
     前記検出工程で、
      前記RGB画像から赤色画像及び青色画像の少なくとも一方を抽出し、
      前記赤色画像に対しては、前記赤色画像の反転2値化及びラベリング処理を施し、
      前記青色画像に対しては、前記青色画像中の高輝度部位を検出する;
    ことを特徴とする請求項4に記載の溶接監視方法。
  6.  前記撮影工程で、毎秒200フレーム以上のフレームレートで撮像する
    ことを特徴とする請求項4または5に記載の溶接監視方法。
  7.  前記電縫鋼管の、長手方向における前記非定常アーキングの前記位置をマーキングするマーキング工程をさらに有する
    ことを特徴とする請求項4~6の何れか一項に記載の溶接監視方法。
  8.  前記マーキングを付した部位に超音波テストを行う不具合有無特定工程をさらに有する
    ことを特徴とする請求項7に記載の溶接監視方法。
  9.  前記電縫鋼管の、長手方向における前記非定常アーキングの前記位置を追跡するトラッキング工程をさらに有する
    ことを特徴とする請求項4~6の何れか一項に記載の溶接監視方法。
PCT/JP2016/083135 2016-11-08 2016-11-08 溶接監視装置及び溶接監視方法 WO2018087818A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2016/083135 WO2018087818A1 (ja) 2016-11-08 2016-11-08 溶接監視装置及び溶接監視方法
EP16921394.9A EP3539683B1 (en) 2016-11-08 2016-11-08 Apparatus for and method of welding monitoring
CN201680089069.3A CN109689237A (zh) 2016-11-08 2016-11-08 焊接监视装置和焊接监视方法
US16/331,067 US20190201957A1 (en) 2016-11-08 2016-11-08 Welding monitoring apparatus and welding monitoring method
MX2019002737A MX2019002737A (es) 2016-11-08 2016-11-08 Aparato de monitoreo de soldadura y metodo de monitoreo de soldadura.
JP2017515253A JP6221013B1 (ja) 2016-11-08 2016-11-08 溶接監視装置及び溶接監視方法
US18/456,314 US20240082900A1 (en) 2016-11-08 2023-08-25 Welding monitoring apparatus and welding monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/083135 WO2018087818A1 (ja) 2016-11-08 2016-11-08 溶接監視装置及び溶接監視方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/331,067 A-371-Of-International US20190201957A1 (en) 2016-11-08 2016-11-08 Welding monitoring apparatus and welding monitoring method
US18/456,314 Division US20240082900A1 (en) 2016-11-08 2023-08-25 Welding monitoring apparatus and welding monitoring method

Publications (1)

Publication Number Publication Date
WO2018087818A1 true WO2018087818A1 (ja) 2018-05-17

Family

ID=60156809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083135 WO2018087818A1 (ja) 2016-11-08 2016-11-08 溶接監視装置及び溶接監視方法

Country Status (6)

Country Link
US (2) US20190201957A1 (ja)
EP (1) EP3539683B1 (ja)
JP (1) JP6221013B1 (ja)
CN (1) CN109689237A (ja)
MX (1) MX2019002737A (ja)
WO (1) WO2018087818A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153436A1 (ja) * 2020-01-29 2021-08-05 住友電装株式会社 バスバー

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295379B1 (ko) * 2018-01-22 2021-08-31 닛폰세이테츠 가부시키가이샤 용접 조업 감시 시스템 및 용접 조업 감시 방법
JP6958423B2 (ja) * 2018-02-23 2021-11-02 日本製鉄株式会社 溶接操業監視システム及び溶接操業監視方法
WO2020184414A1 (ja) * 2019-03-13 2020-09-17 日本製鉄株式会社 電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置
CN113495098B (zh) * 2020-03-20 2024-03-26 觉芯电子(无锡)有限公司 一种电子产品屏蔽盖虚焊检测装置和方法
CN111948132B (zh) * 2020-08-03 2022-10-11 中国第一汽车股份有限公司 一种车身焊点卷边剥离性能测试评价方法
CN114833433B (zh) * 2022-04-28 2024-04-16 江苏格兰环境科技有限公司 一种钢铝翅片管及其高频电阻焊焊接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123948A (en) * 1976-04-10 1977-10-18 Nippon Steel Corp Method of conrolling welding heat input in production of electric welded tubes
JPH09168819A (ja) * 1995-12-20 1997-06-30 Nkk Corp 溶接鋼管の製造方法
JP2009255132A (ja) * 2008-04-17 2009-11-05 Jfe Steel Corp 電縫溶接システム
JP2016078056A (ja) * 2014-10-14 2016-05-16 新日鐵住金株式会社 電縫溶接操業管理装置および電縫溶接操業管理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123874A (ja) * 1991-11-05 1993-05-21 Nippon Steel Corp 電縫溶接における溶接点検出方法
JP3753641B2 (ja) * 2001-09-25 2006-03-08 株式会社日立製作所 非破壊検査方法
JP4532977B2 (ja) * 2004-05-06 2010-08-25 新日本製鐵株式会社 溶接品質に優れた電縫鋼管の溶接方法
JP4998739B2 (ja) * 2007-02-13 2012-08-15 Jfeスチール株式会社 溶接部の靭性が良好な電縫鋼管の製造方法
JP5200469B2 (ja) * 2007-09-18 2013-06-05 Jfeスチール株式会社 溶接のスパーク検出方法及びスパーク検出装置ならびに溶接製品の製造方法
BRPI0818126A2 (pt) * 2007-11-02 2020-10-06 Nippon Steel Corporation sistema e método para monitoramento de estado de soldagem
KR101447793B1 (ko) * 2010-03-23 2014-10-06 신닛테츠스미킨 카부시키카이샤 고주파 저항 용접 및 유도 가열 용접의 조업 관리 장치, 조업 관리 방법 및 조업 관리 프로그램
JP5881942B2 (ja) * 2010-11-18 2016-03-09 Jfeスチール株式会社 溶接欠陥検出システム及び電縫鋼管の製造方法並びに溶接製品の製造方法
KR101476594B1 (ko) * 2011-11-09 2014-12-24 신닛테츠스미킨 카부시키카이샤 전봉 용접 조업의 감시 장치, 방법 및 프로그램을 저장하는 컴퓨터 판독가능한 기억 매체
US9446473B2 (en) * 2012-04-18 2016-09-20 Nippon Steel & Sumitomo Metal Corporation Electric resistance welding operation management device, electric resistance welding operation management method, and computer program
JP5880794B1 (ja) * 2014-04-03 2016-03-09 新日鐵住金株式会社 溶接状態監視システム及び溶接状態監視方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123948A (en) * 1976-04-10 1977-10-18 Nippon Steel Corp Method of conrolling welding heat input in production of electric welded tubes
JPH09168819A (ja) * 1995-12-20 1997-06-30 Nkk Corp 溶接鋼管の製造方法
JP2009255132A (ja) * 2008-04-17 2009-11-05 Jfe Steel Corp 電縫溶接システム
JP2016078056A (ja) * 2014-10-14 2016-05-16 新日鐵住金株式会社 電縫溶接操業管理装置および電縫溶接操業管理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3539683A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153436A1 (ja) * 2020-01-29 2021-08-05 住友電装株式会社 バスバー

Also Published As

Publication number Publication date
MX2019002737A (es) 2019-05-09
JPWO2018087818A1 (ja) 2018-11-15
EP3539683A1 (en) 2019-09-18
US20190201957A1 (en) 2019-07-04
CN109689237A (zh) 2019-04-26
US20240082900A1 (en) 2024-03-14
JP6221013B1 (ja) 2017-10-25
EP3539683B1 (en) 2023-12-20
EP3539683A4 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
JP6221013B1 (ja) 溶接監視装置及び溶接監視方法
EP3542917B1 (en) Apparatus,method, and program for monitoring operation of high-frequency resistance welding and induction heating welding of electric resistance welded steel pipe
EP3045255B1 (en) Device and method for determining laser weld quality
US9199291B2 (en) Operation management device, operation management method, and operation management program for high-frequency resistance welding and induction welding
JP5549963B2 (ja) 電縫溶接操業の監視装置、方法、プログラム、及び記憶媒体
US10262412B2 (en) Welded state monitoring system and welded state monitoring method
JP6323293B2 (ja) 電縫溶接操業管理装置および電縫溶接操業管理方法
JP6762163B2 (ja) 電縫鋼管の溶接工程の溶接監視方法及び溶接監視装置
JP5909872B2 (ja) 溶接欠陥検出方法及びシステム及び電縫鋼管の製造方法並びに溶接製品の製造方法
US11780026B2 (en) Welding operation monitoring system and welding operation monitoring method
JP5625292B2 (ja) 電縫溶接部の監視システム
JP7119561B2 (ja) 電縫溶接の監視方法、監視システム、及び監視プログラム
JPH0740061A (ja) 高周波電縫溶接工程における圧接量検出装置
JP6699116B2 (ja) 電縫溶接工程におけるアプセット制御装置及び制御方法
JP4532977B2 (ja) 溶接品質に優れた電縫鋼管の溶接方法
WO2020184414A1 (ja) 電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置
JP5881942B2 (ja) 溶接欠陥検出システム及び電縫鋼管の製造方法並びに溶接製品の製造方法
JP2017225995A (ja) 電縫鋼管の溶接監視装置及び溶接監視方法
JP5440014B2 (ja) 電縫溶接部の監視方法
JP2011230175A (ja) 電縫管の入熱制御システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017515253

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016921394

Country of ref document: EP

Effective date: 20190611