JP7435930B1 - 電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム - Google Patents

電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム Download PDF

Info

Publication number
JP7435930B1
JP7435930B1 JP2023569745A JP2023569745A JP7435930B1 JP 7435930 B1 JP7435930 B1 JP 7435930B1 JP 2023569745 A JP2023569745 A JP 2023569745A JP 2023569745 A JP2023569745 A JP 2023569745A JP 7435930 B1 JP7435930 B1 JP 7435930B1
Authority
JP
Japan
Prior art keywords
welding
temperature
electric resistance
edge
edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023569745A
Other languages
English (en)
Inventor
昌士 松本
稜 仲澤
有希 角田
龍郎 勝村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority claimed from PCT/JP2023/032693 external-priority patent/WO2024090051A1/ja
Application granted granted Critical
Publication of JP7435930B1 publication Critical patent/JP7435930B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

溶接欠陥を抑止できる技術の提供。電縫溶接前において、オープン管の少なくとも片側のエッジ部の肉厚方向の温度分布の情報に基づいて、エッジ部の外表面温度T0、内表面温度Tiおよび肉厚中心温度Tcを検出する電縫溶接前エッジ温度検出部122と、外表面温度T0と内表面温度Tiとの温度差ΔTを算出するエッジ温度差算出部125と、オープン管の両エッジ部と溶接点とを含む領域の画像情報に基づいて、エッジ部に沿って収束する2つの直線を抽出して、2つの直線の交点であるV収束点を抽出するV収束点抽出部133と、V収束角度θを算出するV収束角度算出部134と、V収束点から溶接点までの距離を狭間隙長さLとして算出する狭間隙長さ算出部135と、ΔT、Tc、θおよびLの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定部141とを備える電縫鋼管の溶接管理装置100。

Description

本発明は、電縫鋼管の電縫溶接直前におけるオープン管のエッジ部について画像解析を行うことで溶接欠陥を抑止することを可能にする電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システムに関する。
電縫鋼管は、ロール成形を用いて、鋼板又は鋼帯に対して周方向に連続的な曲げ加工を施し、両端部を突き合わせて円形断面の空筒にした管形のオープン管とし、その後突き合わせたオープン管両エッジ部を連続的に電縫溶接して製造される。
電縫溶接時において、上記両エッジ部をコンタクトチップによる直接通電もしくは誘導コイルによる誘導電流で融点以上に加熱し、その直後に溶接ロール(スクイズロール)で両エッジの接合部を衝合(アプセット)する。その際、鋼板又は鋼帯の溶融加熱過程で発生する酸化物(ペネトレータ)をアプセットにより管の内外面に流出させ、余盛(ビード)と称する不要部分に排出させて溶接欠陥の発生を抑止している。電縫溶接後、余盛部は切削工具等により管から切削除去される。
溶接欠陥を抑制するために、ペネトレータの発生や、溶接されるまでのペネトレータ同士の凝集を極力抑制することが重要である。そのためには、上記溶融加熱過程から両エッジ部の接合開始までの時間が過大にならないように溶接条件を調整する必要がある。また、アプセットの工程でペネトレータをビードへ滞りなく排出することも重要である。そのためには、接合開始までのエッジ部の肉厚方向の温度分布の偏差を小さくし、アプセット中の溶融エッジ部の凝固によるペネトレータの排出不良を抑制する必要がある。
上記問題を解決する方法として、電縫鋼管の製造における溶接欠陥抑止には種々の技術が開示されており、例えば、電縫溶接現象を映像化し、かつ、溶融加熱過程におけるエッジ部の温度を測定した溶接工程の溶接管理システムが提案されている。
特許文献1では、衝合前のオープン管の両エッジの外面および内面の角部位置の座標を、撮影した画像から検出すると共に両エッジの外面および内面の角部の温度分布を算出し、検出した座標と算出した温度分布とを照合してその検出座標におけるエッジの温度を求めて両エッジの加熱条件を制御する溶接温度測定方法が提案されている。
特許文献2では、電縫溶接の画像を取得し、衝合前のオープン管の両エッジがV字状に収束するV収束部位を含む領域の画像を取得し、前記画像において両エッジの衝合部、及び両エッジが幾何学的になす収束点のいずれかにおいて、肉厚内部における溶融部が表面へ排出し始める領域の温度を輝度レベルで温度変換し、その温度が閾値以上であるか否かを判定する電縫溶接の操業上の監視装置が提案されている。
特許文献3では、電縫溶接の画像を取得し、衝合前のオープン管の両エッジがV字状に収束するV収束部位を含む領域の画像を取得し、前記両エッジが幾何学的に交わる第一のV収束点と、前記金属板の前記両エッジ部の衝合点である第二のV収束点との距離L、および、この第一のV収束点でのV収束角θを測定し、前記距離LとV収束角θがあらかじめ明らかにしていた許容範囲内を満たすか否かを判定する操業上の監視装置が提案されている。
特開平11-33621号公報 特許第5549963号公報 特許第5079929号公報
特許文献1では、接合端面の内外面における角(コーナー)部の温度を測定しているため、衝合前の両端面同士のラップ状態の影響を監視することはできる。一方で、電縫溶接の高周波加熱で最も加熱されにくい肉厚中央部の温度情報を得ることができないため、肉厚中央部の加熱不足が原因で十分な溶接部特性を得られないという問題がある。
特許文献2では、両エッジの衝合部、及び両エッジが幾何学的になす収束点のいずれかにおいて、外表面あるいは内表面の温度に対して、下限値を設定して溶接条件の良否判定を行っているが、こちらも特許文献1と同様に、肉厚中央部の温度情報を得ることができないため、十分な溶接部特性を得られないという問題がある。
特許文献3では、電縫溶接の管外面側から撮影した画像を解析して得られる数値データを用いて溶接条件の良否判定を行っているが、実際の電縫溶接は両エッジの端面が平行に向かい合うI形の突合せだけではなく、溶接前における両エッジのエッジフォーミングによって、端部近傍の曲率分布が変化するため、V字形あるいは逆V字形の突合せにもなる。このような場合、電縫溶接の見た目は管外面側と管内面側では変化し、管外面側の画像では両エッジ部の突合せ状態が判別できず、十分な溶接部特性が得られないという問題がある。
本発明はかかる事情に鑑みてなされたものであり、溶接欠陥を抑止することを可能にする電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システムを提供することを目的とする。
本発明者らは、上記した目的を達成するためには、電縫溶接における両エッジ部端面の肉厚方向の温度情報、特に管厚中央と、管外表面および管内表面の温度差とを管理することに着目した。
さらに、電縫溶接において、両エッジ部に沿って収束する2つの直線が幾何学的に成す角度(V収束角度θ)、および上記2つの直線の交点をV収束点としたとき、両エッジが接合して溶接を開始する溶接点とV収束点との間の距離である狭間隙長さLの関係に着目した。そして、本発明者らは、V収束角度θおよび狭間隙長さLが、スクイズロールによるアプセット後の溶接部に残存する酸化物(ペネトレータ)の形態および溶接部特性に及ぼす影響について鋭意研究を行った。その結果、以下のことが明らかになった。
ここでは、電縫溶接の流れについて、図3および図4に示す電縫溶接の加熱から溶接までの一例をもって説明する。
従来、電縫溶接では、直接通電加熱方式、あるいは誘導加熱方式による高周波電流を用いた加熱を行っている。このとき、高周波加熱特有の加熱現象で、加熱の初期段階に表皮効果が発現する。そのため、肉厚中央部に比べて先にエッジ部の外表面および内表面側の温度が高温になる。このエッジ部の熱伝導により肉厚中央部への熱の移動が発生する。
次いで、加熱過程が進行すると、端面同士の距離が近くなるため、近接効果が発現して肉厚中央部の昇温速度が増加する。そして、エッジ部の管厚全体の極表層部を融点まで加熱しながら、スクイズロールによるアプセットを経て衝合部で電縫溶接が成される。このとき、エッジ部の溶融金属は表面に分布していたペネトレータとともに、管外部に排出されて溶接ビード203を形成する。
前述しているように、電縫溶接では肉厚中央部の温度は、エッジ部の内面および外面よりも加熱が遅延するため、相対的に温度が低くなりやすい。エッジ部の肉厚中央部の加熱が不十分であると、加熱過程において、肉厚中央部で発生したペネトレータを溶接ビード203へ排出するための十分な溶接金属量が得られないという問題がある。
この問題に対して、加熱過程において、肉厚中央部の近接効果を早期に発現させる必要がある。そのためには、V収束角度を調整することや、ワークコイルとスクイズロールとの距離を短くするといった対策を講じること等が必要になる。
また、加熱過程において、エッジ部の内面および外面の温度偏差は接合する両エッジの突合せ状態によって変化する。すなわち、電縫溶接において、管の円筒断面を正面(管軸方向正面)からみたときの両エッジの突合せが傾かず、両エッジ面が真正面から接合されるI形突合せが理想的であり、このときの両エッジ部の内面および外面の温度偏差はほぼ無く、スクイズロールによるアプセットにおいて管の内面側および外面側の外部へペネトレータが滞りなく排出される。
一方、両エッジの突合せが傾くと、エッジ部の接合面に均等な近接効果が発生せず、両エッジ間距離が短い箇所に加熱が偏ってしまう。例えば、円筒断面を正面からみたときの両エッジの突合せがV形突合せであればエッジ部の内面側、逆V形突合せであればエッジ部の外面側の温度上昇が顕著になり、両エッジ間距離が長くなった部位では加熱が不十分になってしまう。その結果、スクイズロールのアプセットにおいて、加熱が不十分であった側のペネトレータの排出が阻害され、溶接部品質の悪化の原因となる。
そのため、電縫溶接ではスクイズロールによるアプセットを行うまでの加熱工程において肉厚中央部の加熱の遅延と、エッジ部の内面および外面の温度偏差を抑制できる溶接条件を確立することが溶接部品質を確保するうえで重要である。
本発明は上記知見に基づくものであり、その要旨は以下の通りである。
[1]鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管の両エッジ部に対してアプセットする電縫溶接により製造する電縫鋼管の溶接管理装置であって、
電縫溶接前において、オープン管の少なくとも片側のエッジ部の肉厚方向の温度分布の情報に基づいて、前記エッジ部の外表面温度T、内表面温度Tおよび肉厚中心温度Tcを検出する電縫溶接前エッジ温度検出部と、
前記外表面温度Tと前記内表面温度Tとの温度差ΔTを算出するエッジ温度差算出部と、
前記オープン管の両エッジ部と、前記オープン管の両エッジ部が接合して溶接を開始する溶接点とを含む領域の画像情報に基づいて、
前記エッジ部に沿って収束する2つの直線を抽出して、前記2つの直線の交点であるV収束点を抽出するV収束点抽出部と、
前記2つの直線が成すV収束角度θを算出するV収束角度算出部と、
前記V収束点から前記溶接点までの距離を狭間隙長さLとして算出する狭間隙長さ算出部と、
前記肉厚中心温度Tcに対する前記温度差ΔTの割合:ΔT/Tc、前記V収束角度θおよび前記狭間隙長さLの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定部と、
を備える、電縫鋼管の溶接管理装置。
[2]前記溶接状態判定部は、
前記狭間隙長さLが、前記肉厚中心温度Tcに対する前記温度差ΔTの割合:ΔT/Tcおよび前記V収束角度θの値に応じて予め設定された上限値以下である場合に電縫溶接条件が良好であると判定する、前記[1]に記載の電縫鋼管の溶接管理装置。
[3]前記溶接状態判定部は、
前記肉厚中心温度Tcに対する前記温度差ΔTの割合:ΔT/Tcが、前記V収束角度θの値および前記Lの値に応じて予め設定された範囲内であるか否かで電縫溶接条件の良否を判定する、前記[1]または[2]に記載の電縫鋼管の溶接管理装置。
[4]鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管の両エッジ部に対してアプセットする電縫溶接により製造する電縫鋼管の溶接管理方法であって、
電縫溶接前において、オープン管の少なくとも片側のエッジ部の温度分布の情報に基づいて、前記エッジ部の外表面温度T、内表面温度Tおよび肉厚中心温度Tcを検出する電縫溶接前エッジ温度検出工程と、
前記外表面温度Tと前記内表面温度Tとの温度差ΔTを算出するエッジ温度差算出工程と、
前記オープン管の両エッジ部と、前記オープン管の両エッジ部が接合して溶接を開始する溶接点とを含む領域の画像情報に基づいて、
前記エッジ部に沿って収束する2つの直線を抽出して、前記2つの直線の交点であるV収束点を抽出するV収束点抽出工程と、
前記2つの直線が成すV収束角度θを算出するV収束角度算出工程と、
前記V収束点から前記溶接点までの距離を狭間隙長さLとして算出する狭間隙長さ算出工程と、
前記肉厚中心温度Tcに対する前記温度差ΔTの割合:ΔT/Tc、前記V収束角度θおよび前記狭間隙長さLの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定工程と、
を含む、電縫鋼管の溶接管理方法。
[5]鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管の両エッジ部に対してアプセットする電縫溶接により製造する電縫鋼管の製造方法であって、
前記電縫溶接の際、前記[4]に記載の電縫鋼管の溶接管理方法により溶接管理を行う、電縫鋼管の製造方法。
[6]前記[1]~[3]のいずれかに記載の電縫鋼管の溶接管理装置と、
電縫溶接前において、オープン管の少なくとも片側のエッジ部の温度分布の情報を取得するエッジ温度情報取得装置と、
電縫溶接前において、オープン管の両エッジ部および該両エッジ部が収束して形成される溶接点を撮影する溶接部撮影装置と、
を備える、電縫鋼管の溶接管理システム。
本発明によれば、溶接欠陥を抑止することができる。
本発明を実施するための溶接管理装置およびそれを含めた溶接管理システムを説明するための説明図である。 本実施の形態の溶接管理装置の処理手順を示すフローチャートである。 電縫溶接の溶接部画像の各部位の説明図である。 電縫溶接でのエッジ部加熱およびアプセットによるビードの形成を説明するための図である。 電縫溶接のエッジ部の管内外表面温度差と肉厚中心部の温度との比(ΔT/Tc)および狭間隙長さLの値に応じた電縫溶接品質の良否結果(へん平高さ試験結果)を示すグラフである。 V収束角度θ1~θ3それぞれにおいて、狭間隙長さLとΔT/Tcの値に応じた電縫溶接の良否結果を説明するための概念図である。 実施例における電縫溶接の許容範囲を説明するためのグラフである。
以下、図面を参照して、本発明の一実施形態である溶接管理装置および溶接管理システムを詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
まず、図1を参照して、本実施の形態の対象とする処理の流れと、溶接管理システムおよび該システムが有する溶接管理装置の概略構成について説明する。図1は、本発明を実施するための形態の1例を示す溶接管理装置およびそれを含めた溶接管理システムを説明するための図である。
鋼板(又は鋼帯)は、ロール成形によって連続的に円筒形状へと成形された後、図中の矢印方向(溶接方向)を進行方向として進みながら、フィンパスロール2によって円筒形状の安定性が確保されつつ、両エッジ部の突き合わせ位置がセンタリングされながらオープン管1へと成形される。その後、オープン管1の両エッジ部は、高周波発振装置3から一対のコンタクトチップ31a、31bを介して高周波電流が供給されて、溶融するまで加熱される。コンタクトチップの代わりに誘導加熱のワークコイルを用いることも可能である。
次に、オープン管1は、スクイズロール41a、41b、トップロール42a、42bからなるロール群で囲まれた溶接スタンド40を通過しながら両エッジ部が圧接され、溶鋼が外部(管状の鋼板の外周面および内周面)に排出されながら溶接(電縫溶接)される。
電縫溶接においては、スクイズロール41a、41bよりも上流側(溶接方向の反対方向側)でオープン管1の両エッジ部が近接し、接合が開始される位置を溶接点とする。この溶接点は、溶接速度と電縫溶接の投入電力との大小関係によって位置が溶接方向の前後に移動する。
また、投入電力が大きい場合は、オープン管1の両エッジ部が成す直線の幾何学的な交点(V収束点(両エッジ部に沿って収束する2つの直線の交点))と、溶接点とが一致しない状態が発生する。これは、スクイズロール41a、41bより上流側において、オープン管1の両エッジ部が近接する速度より、両エッジ部に通電された電流により発生した電磁力で、エッジ部端面にできた溶融部が外部へ排出される速度の方が大きいために発生する現象である。
溶接管理システム10は、電縫溶接前において、オープン管の少なくとも片側のエッジ部の温度分布の情報を取得するエッジ温度情報取得装置11と、電縫溶接前において、オープン管の両エッジ部および該両エッジ部が収束して形成される溶接点を撮影する溶接部撮影装置12と、溶接管理装置100と、を有する。以下、エッジ温度情報取得装置11、溶接部撮影装置12、溶接管理装置100について順に説明する。
エッジ温度情報取得装置11は、例えば、サーモグラフィのように温度分布を2次元画像に基づいて計測可能な温度計を有する。また、エッジ温度情報取得装置11は、エッジ温度分布を取得するために、エッジ部を撮影する撮影機(カメラ)を有する。
この撮影機によりコンタクトチップ31a、31bと溶接スタンド40の間に位置するオープン管1のエッジ部の所定領域を肉厚方向に全厚撮影できるように、エッジ温度情報取得装置11は設置され、位置調整がなされる。エッジ温度情報取得装置11の撮影機は、少なくとも向い合う一方のエッジ部において管外面から管内面まで加熱された表面を撮影する。このとき、上記温度計としては放射温度計や、二色温度計などが挙げられるが、温度分布を取得できる温度計であればいずれでもよい。また、エッジ温度情報取得装置11は、光学系の調整のためのズームレンズや露光調整器などの調整器も有する。上記調整器は、撮影視野は100mm×40mmとし、分解能としては500μm/画素もしくはそれよりも高い分解能を確保することが好ましい。分解能は、100μm/画素もしくはそれよりも高い分解能であることがより好ましい。
このとき、撮影機(カメラ)の画素数は1920×1080以上であることが好ましい。分解能が500μm/画素よりも低い分解能であるとエッジ部温度の検出精度が悪化する場合がある。
溶接部撮影装置12は、例えば、カメラを有しており、このカメラを用いて、溶接方向に対して溶接スタンド40の下流側が撮影可能となるように設置され、オープン管1の両エッジ部(溶接部)が加熱されて溶融し圧接される様子を撮影する。この溶接部撮影装置12により撮影される撮影画像に、後述する接合点(V収束点)、およびスクイズロール41a、41bのロールセンターが含まれるように、溶接部撮影装置12の位置調整を行う。このとき、カメラはカラー画像撮影用、モノクロ画像撮影用のいずれのカメラでもよい。
また、溶接部撮影装置12には、光学系の調整のためのズームレンズや露光調整器などの調整器も含まれる。上記調整器は、撮影視野は100mm×40mmとし、分解能としては100μm/画素もしくはそれよりも高い分解能を確保することが好ましい。分解能は、50μm/画素もしくはそれよりも高い分解能であることがより好ましい。このとき、カメラの画素数は1920×1080以上であることが好ましい。分解能が100μm/画素よりも低い分解能であると、V収束点や溶接点の検出精度が悪化する場合がある。また、電縫溶接の溶接速度は、100m/minを超える速度で溶接される場合があり、撮影視野100mmの領域以内で、任意の撮影点を1回以上撮影するためにはフレーム速度を20fps(frames per second)以上に設定することが好ましい。フレーム速度が20fps未満の場合、電縫管の溶接部には溶接の画像解析が実施できていない領域が発生し、溶接欠陥を見逃す可能性がある。
溶接管理装置100は、鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管の両エッジ部に対してアプセットする電縫溶接により製造する電縫鋼管の溶接管理装置であって、電縫溶接前において、オープン管の少なくとも片側のエッジ部の肉厚方向の温度分布の情報に基づいて、エッジ部の外表面温度T、内表面温度Tおよび肉厚中心温度Tcを検出する電縫溶接前エッジ温度検出部122と、外表面温度Tと内表面温度Tとの温度差ΔTを算出するエッジ温度差算出部125と、オープン管の両エッジ部と、オープン管の両エッジ部が接合して溶接を開始する溶接点とを含む領域の画像情報に基づいて、エッジ部に沿って収束する2つの直線を抽出して、2つの直線の交点であるV収束点を抽出するV収束点抽出部133と、2つの直線が成すV収束角度θを算出するV収束角度算出部134と、V収束点から溶接点までの距離を狭間隙長さLとして算出する狭間隙長さ算出部135と、肉厚中心温度Tcに対する温度差ΔTの割合:ΔT/Tc、V収束角度θおよび狭間隙長さLの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定部141と、を有する。
また、溶接管理装置100は、溶接状態判定部141による判定結果を出力する出力部142を有してもよい。
溶接管理装置100は、例えば、入力部110として、エッジ温度分布データ入力部111および溶接部撮影データ入力部112を有することができる。溶接管理装置100は、エッジ温度分布データ入力部111による入力操作により、エッジ温度情報取得装置11で取得したエッジ温度分布情報を取得する。また、溶接管理装置100は、溶接部撮影データ入力部112による入力操作により、溶接部撮影装置12で撮像された溶接部の画像情報を取得する。
溶接管理装置100は、ワークステーションやパソコン等の汎用コンピュータで構成され、CPU等による演算処理機能、GPU等による画像処理機能、後述の記憶部143の一例としてのROMやRAM等の各種メモリ機能を有する。また、溶接管理装置100は、その他、データ通信端子で接続されたハードディスク等の記録媒体、グラフィックへの表示装置やアラーム装置等の出力部を備える。
溶接管理装置100では、処理プログラム等を記憶したメモリおよび処理プログラムを実行するCPU等を用いて、エッジ温度分布処理部121において、エッジ部の外表面温度Tと内表面温度Tの差ΔTの算出を行い、また、肉厚中心温度Tcを検出する。また、溶接管理装置100では、溶接画像処理部131において、V収束角度θの算出および狭間隙長さLの算出も行う。これらのΔT、Tc、θ、Lの情報に基づいて、溶接状態判定部141において電縫溶接条件の良否を判定する。
溶接管理装置100の構成およびその機能についてより詳細に説明する。
エッジ温度分布処理部121は、電縫溶接前エッジ温度検出部122、エッジ温度差算出部125を有する。
まず、電縫溶接前エッジ温度検出部122では、高周波電流によって加熱された少なくとも一方のエッジ部の管外面から管内面までの肉厚方向の温度分布を検出する。
電縫溶接前エッジ温度検出部122は、空間座標算出部123(温度検出範囲の空間座標算出部123)と肉厚方向温度分布検出部124(指定位置肉厚方向温度分布検出部124)とを有していてよい。
空間座標算出部123では、温度分布の情報を得るための所定領域のエッジ部における、温度分布情報が含まれた画素情報に基づいて、3次元の空間の座標を算出する。
特に限定されないが、空間座標算出部123は、2次元座標として表示し得る画像データに基づいて空間座標を算出することができる。空間座標算出部123は、2次元の画像データ内の画像そのものに対してX座標およびY座標を設定し、さらに、画像の奥行方向にZ座標を設定し、画像データを3次元データとして扱うことができる。
また、肉厚方向温度分布検出部(指定位置肉厚方向温度分布検出部)124では、管長手方向の予め設定された位置における温度分布の検出を行う。肉厚方向温度分布検出部124は、少なくとも、エッジ部の外表面温度T、内表面温度Tを検出する。また、肉厚方向温度分布検出部124は、肉厚中心温度Tcも検出する。
エッジ温度差算出部125では、予め設定された位置(指定位置)におけるオープン管エッジ部の外表面温度Tと内表面温度Tとの温度差ΔTを算出する。
溶接管理装置100は、エッジ温度分布処理部121において、上記のような一連の処理を行う。
溶接画像処理部131は、管エッジ画像検出部132、V収束点抽出部133、V収束角度算出部134および狭間隙長さ算出部135を有する。
エッジ温度分布処理部121における上記の処理と並行して、まず、管エッジ画像検出部132では、溶接画像の情報に基づいて、V収束点周辺の赤熱したエッジ部の両端を検出する。
V収束点抽出部133では、オープン管の両エッジ部と、オープン管の両エッジ部が接合して溶接を開始する溶接点とを含む領域の画像情報に基づいて、エッジ部に沿って収束する2つの直線を生成して、2つの直線の交点であるV収束点を抽出する。上記の画像情報は、溶接部撮影装置12が撮影することで得られる画像情報である。
V収束角度算出部134により、上記の2つの直線が成すV収束角度θを算出する。
狭間隙長さ算出部135では、V収束点から溶接点までの距離を狭間隙長さLとして算出する。
溶接管理装置100は、溶接画像処理部131において、上記のような一連の処理を行う。
さらに、溶接管理装置100では、上記の温度差ΔT、V収束角度θおよび狭間隙長さLに基づく溶接状態判定部141による溶接判定、および出力部142による判定結果の出力等を行い、溶接管理処理を実行する。
ここで、図2のフローチャートを参照して、溶接管理装置100による溶接管理処理手順について説明する。図2は、本実施の形態の溶接管理装置の処理手順を示すフローチャートである。図2のフローチャートでは、例えば、操作者によりエッジ温度分布データ入力部111への溶接管理処理開始の指示入力があったタイミングで、ステップS1の処理に進む。ステップS1~S5は、エッジ温度分布処理ステップとも記す。また、操作者により溶接部撮影データ入力部112への溶接管理処理開始の指示入力があったタイミングで、ステップS6の処理に進む。ステップS6~S9は、溶接部画像処理ステップとも記す。ステップS1からの処理(エッジ温度分布処理ステップ)およびステップS6からの処理(溶接部画像処理ステップ)は同時並行に進んでもよい。
ステップS1の処理では、高周波加熱によって加熱されたオープン管1の両エッジ部の少なくとも一方に対し、エッジ温度分布処理部121が、エッジ温度情報取得装置11から、溶接前の予め設定される長手方向の位置において、エッジ部の全厚にわたる2次元の温度分布の情報を取得する。
エッジ温度分布処理部121は、撮像された画像情報を含む温度分布の情報のうち、エッジ部の接合面上の2次元の温度分布の情報、すなわち、管長手方向と肉厚方向の2次元の温度分布の情報を検出する。
これにより、ステップS1の処理は完了し、溶接管理処理はステップS2の処理に進む。
ステップS2の処理では、ステップS1の処理で取得(撮像)した2次元の温度分布の情報、あるいは、エッジ温度情報取得装置11に付属しているカメラ(CCDカメラ)によって撮影された画像情報から、電縫溶接前エッジ温度検出部122に含まれる空間座標算出部123(温度検出範囲の空間座標算出部123)が、複数の座標標準点を検出し、画素から長さの単位へと空間座標変換を行う。
ここでいう座標標準点は、座標位置あるいは各々の標準点間距離が予め自明なマーカーであることが好ましいが、この限りではない。空間座標算出部123により、任意の2点の標準点間距離を検出し、該標準点間距離の実空間距離を入力することで、温度分布の情報の画像情報内の空間座標変換を行う。空間座標算出部123では、同時に上記温度分布の情報の画像情報において、任意の位置に2次元座標の原点の設定を行う。また、空間座標算出部123では、画素から長さの単位へ座標変換するために必要な演算式を、前もって導出しておいてもよい。これにより、ステップS2の処理は完了し、溶接管理処理はステップS3の処理に進む。
ステップS3の処理では、電縫溶接前エッジ温度検出部122に含まれる肉厚方向温度分布検出部(指定位置肉厚方向温度分布検出部)124が、上記の空間座標変換処理後の温度分布の情報から、管の長手方向の任意の位置における、エッジ部の肉厚方向の温度分布を座標値とともに検出する。
管の長手方向の任意の位置については、特に限定されないが、スクイズロール41a、41bのロール中央部に対して溶接方向の反対方向へ3mmの位置から、スクイズロール41a、41bのロール中央部と、コンタクトチップ31あるいはワークコイル(図示せず)との中間位置までにおける任意の位置であることが好ましい。
肉厚方向温度分布検出部124が温度分布を検出する範囲は、指定した管の長手位置に対して±0.5mmの長手方向の領域を含み、肉厚方向温度分布検出部124はエッジ部の全厚の領域を検出する。
エッジ部の外表面および内表面に該当する角部は、高周波加熱特有の表皮効果によって、角部以外の平坦部などに比べ加熱されやすい傾向を示す。
そのため、肉厚方向の温度分布は、エッジ部の外面および内面の角部位置を頂点(ピーク)とした温度分布となる。この特徴より、全厚領域の判定として、肉厚方向の温度分布に基づいて、エッジ部の外面および内面位置に検出されたピーク間の距離を、管の肉厚と判定する。そして、その判定した管の肉厚(管肉厚判定値)と、予め設定していた管の肉厚(実肉厚)との誤差が±3%以内であれば、温度分布測定結果は十分な精度が得られていると判断する。
上記誤差が±3%以内の範囲になければ、エッジ温度分布情報取得装置11の視野調整を行い、再度、ステップS1~S3の処理を行い、上記誤差が±3%以内になるまで繰り返す。これにより、ステップS3の処理は完了し、溶接管理処理はステップS4の処理に進む。
ステップS4の処理では、電縫溶接前エッジ温度検出部122が、オープン管の少なくとも片側のエッジ部の温度分布の情報に基づいて、エッジ部の外表面温度Tおよび内表面温度Tを検出する。
具体的には、上記の検出した肉厚方向の温度分布の情報を用いて、電縫溶接前エッジ温度検出部122(肉厚方向温度分布検出部124)が、エッジ部の管外表面および管内表面位置における温度情報のピーク中央位置(ピークの頂点位置)の温度をそれぞれ、外表面温度T、内表面温度Tとして検出する。
また、電縫溶接前エッジ温度検出部122(肉厚方向温度分布検出部124)は、管エッジ部の外表面および内表面位置における温度のピーク間の中央部位置の温度を検出し、これを肉厚中央部の温度Tcとする。
これにより、ステップS4の処理は完了し、溶接管理処理はステップS5の処理に進む。
ステップS5の処理では、エッジ温度差算出部125が、上記の検出したエッジ部の外表面温度Tおよび内表面温度Tの温度差ΔTを算出する。ここでは、エッジ温度差算出部125は、内表面温度Tから外表面温度Tを差し引く計算を行い、差分値に正負の符号が付いたまま記憶部143に記憶させておくことができる。これにより、ステップS5の処理は完了し、溶接管理処理はステップS10の処理に進む。
上記のステップS1~S5と並行して行われるステップS6の処理では、高周波加熱によって赤熱に加熱されているエッジ部について、溶接部撮影装置12により撮像された画像情報に基づいて、溶接画像処理部131の管エッジ画像検出部132がそのエッジ検出を行う。ここでは、エッジ検出方法については微分法を用いるが、これに限らない。具体的に図3および図4を示しながら説明する。
図3は、電縫溶接の溶接部画像の各部位の説明図である。図4は、電縫溶接でのエッジ部加熱およびアプセットによるビードの形成を説明するための図である。
まず、管エッジ画像検出部132は、撮像された画像を用いて加熱部201周辺の輝度の変化から、溶接部のエッジ検出画像20を得る。また、同時に画像の画素数から長さ単位へ換算処理を行う。ここでは、エッジ検出画像20の左下の端部を原点としたXYの2軸の座標系とし、長さをミリメートルとして扱うが、この限りではない。画素数から長さ単位への換算処理においてはあらかじめ、ゲージなどの標準試料を同一の視野で撮影することで、100mmあたりの画素数を検出し、画素数から長さへの換算処理を行う。以上により、ステップS6の処理は完了し、溶接管理処理はステップS7の処理に進む。
ステップS7の処理では、V収束点抽出部133が、溶接部のエッジ検出画像(オープン管の両エッジ部と、オープン管の両エッジ部が接合して溶接を開始する溶接点とを含む領域の画像)の情報に基づいて、エッジ部に沿って収束する2つの直線を生成し、2つの直線の交点であるV収束点を抽出する。
具体的には、例えば、まず、V収束点抽出部133は、上記の溶接部のエッジ検出画像20において、両エッジ部同士が接合していない状態の開口部202から、鉛直方向(溶接方向に対して垂直な方向(管周方向))に画像処理を行い、最初にエッジを検出した位置を各エッジ部上の点とする。V収束点抽出部133は、この処理を開口部202の長手方向の全長のうちの数点(例えば、3~10点)で同様の処理を行う。そして、V収束点抽出部133は、各エッジ部上に検出された複数の点から最小二乗法によって、オープン管の両エッジ端面を近似した直線La、Lbを生成する。ここでは、開口部202は、両エッジの加熱部201に挟まれた領域であり、各エッジ部上の点を検出する前に予め、開口部202に含まれる位置を手動で指定することなどがあるが、これに限らない。
V収束点抽出部133は、直線La、Lbの交点をV収束点204として抽出する。
これにより、ステップS7の処理は完了し、溶接管理処理はステップS8の処理に進む。
ステップS8の処理では、V収束角度算出部134が、上記のオープン管両エッジの検出により算出された直線La、Lbを用いてV収束角度θを算出し、抽出する。溶接部のエッジ検出画像におけるV収束角度θはLa、Lbの2直線が成す角度であり、開口部202側の鋭角の角度とする。
溶接部のエッジ検出画像におけるV収束点204はLa、Lbの2直線が成す交点である。検出されたV収束角度θについては、V収束角度算出部134が、幾何学的な式を用いて算出することができる。また、V収束点204については、V収束点抽出部133が、それぞれ幾何学的な式を用いて算出し、数値化および座標データ化を行うことができる。これにより、ステップS8の処理は完了し、溶接管理処理はステップS9の処理に進む。
ステップS9の処理では、狭間隙長さ算出部135が、V収束点204と実際にオープン管両エッジ端面202a、202bが物理的に接合する点(以降、溶接点205とする(図3参照))との距離である狭間隙長さLを算出し、抽出する。ここでは狭間隙長さ算出部135がまず、溶接点205の位置検出を行う。
狭間隙長さ算出部135は、V収束点204の位置よりも下流側(溶接方向側)に開口部202の有無を判定する。このとき、狭間隙長さ算出部135は、V収束点204よりも下流側において所定の閾値よりも小さい輝度を有する画素が溶接方向に連続的に存在する場合を開口部202有りと判定する。この開口部202の有無の判定は一定時間の間におけるエッジ検出画像20で繰り返し行い、狭間隙長さ算出部135は、開口部202有りと判定された最下流位置を溶接点205とみなし、溶接点205の座標データとして検出する。判定に要する時間はスクイズロール(SQロール)1周期以上であることが好ましい。
なお、V収束点204の位置と溶接点205の位置との鉛直方向側のずれについては、電縫鋼管の製造中に生じるねじれ(管の周方向の回転)により発生する可能性があるが、必要に応じて位置補正により調整することができる。しかしながら、上述した溶接点205の位置検出において、この鉛直方向側のずれは発生しても検出結果に影響しない範囲内である。
狭間隙長さ算出部135は、溶接点の座標データのうち、水平成分の位置座標から前記V収束点204の座標データのうち、水平成分の位置座標を差し引いた数値を狭間隙長さLとして算出を行う。ここで、V収束点204の位置よりも下流側(溶接方向側)に開口部202が無いと判定される場合は、狭間隙長さ算出部135は、前記狭間隙長さLは0であるとして算出を行う。これにより、ステップS9の処理は完了し、溶接管理処理はステップS10の処理に進む。
ステップS10の処理では、ステップS5とステップS9の処理が完了した後に、溶接状態判定部141が、上記記肉厚中心温度Tcに対する上記指定位置の管エッジ表面の外表面温度Tおよび内表面温度Tの温度差ΔTの割合:ΔT/Tcと、上記V収束角度θと、上記狭間隙長さLとに基づいて電縫溶接条件の良否判定を行う。
この良否判定について、溶接状態判定部141は、狭間隙長さLが、肉厚中心温度Tcに対する上記温度差ΔTの割合:ΔT/TcおよびV収束角度θの値に応じて予め設定された上限値以下である場合に電縫溶接条件が良好であると判定してもよい。
また、溶接状態判定部は、肉厚中心温度Tcに対する前記温度差ΔTの割合:ΔT/Tcが、V収束角度θの値および前記Lの値に応じて予め設定された範囲内であるか否かで電縫溶接条件の良否を判定してもよい。
電縫溶接条件の良否の判定方法の具体例としては、種々の溶接条件により得られた鋼管を用いて、オフラインで溶接部の評価試験を行う。そして、得られた溶接部の特性と、指定位置の肉厚中央部の温度Tcと、指定位置の管エッジ表面の外表面温度Toと内表面温度Tとの温度差ΔTと、V収束角度θと、狭間隙長さLと、溶接部の評価試験結果との関係性を予め明らかにしておく。より具体的には、上記指定位置における肉厚中央部Tcと、上記指定位置の管エッジ表面の外表面温度Tおよび内表面温度Tの温度差ΔTとの比ΔT/Tcの許容範囲の上下限を設定しておく。
ΔT/Tcは正負の値を取り得る。ΔT/Tcの絶対値が大きい場合、すなわち、ΔTが過度に大きい、あるいはTcが過度に小さい場合、管外部へのペネトレータの排出が阻害されやすい。よって、ΔT/Tcについては、正負の許容範囲の上下限内であれば、ペネトレータの排出が阻害されていない溶接条件であることを示している。
上記許容範囲の設定においては、上記狭間隙長さLと、上記V収束角度θとをパラメーターとして扱う。オフラインでの溶接部の評価試験はへん平試験、溶接部中の酸化物を検知する超音波探傷試験(JIS G 0583『鋼管の自動渦電流探傷検査方法』に準じる)、溶接部から試験片を切出したシャルピー衝撃試験(JIS Z 2242『金属材料のシャルピー衝撃試験方法』に準じる)等があるが、所望の特性に合わせて試験方法を選定する。
上記指定位置の肉厚中央部Tcと上記指定位置の管エッジ表面の外表面と内表面との温度差分ΔTとの比ΔT/Tcの許容範囲の上下限の設定方法例を図5および図6に示しながら以下に説明するが、この限りではない。
まず、種々の溶接条件において上記指定位置における肉厚中央部Tcと上記指定位置の管エッジ表面の外表面と内表面との温度差ΔTの測定位置は任意であるが、スクイズロール41a、41b(図1再参照)よりも成形機側、すなわち、上流側(溶接方向の反対方向側)の位置でエッジ温度情報取得装置11により温度測定を行う。さらに、エッジ温度情報取得装置11は、上記肉厚中央部Tcの温度と管の素材の融点との差が所定値以下となる位置で温度測定を行う。
例えば、上記肉厚中央部Tcの温度と管の素材の融点との差(該融点(℃)-Tc(℃))が300℃以下となる位置で温度測定が行われる。
上記肉厚中央部Tcが融点よりも300℃を超えて低くなった場合、すなわち、上記管の素材の融点(℃)-Tc(℃)が300℃超となる場合、溶接するまでの両エッジの加熱過程が不明確になり、上記狭間隙長さLと両エッジ端面の温度分布の関係性が認められにくくなる。
上記の温度測定において、管の素材の融点(℃)-Tc(℃)は、200℃以下であることが好ましく、100℃以下であることがより好ましい。
次に、任意の上記V収束角度θを一定とし、溶接の投入電力を変化させながら電縫溶接を行う。このときエッジ温度情報取得装置11、および溶接部撮影装置12から得られた情報に基づいて、溶接管理装置100が、管エッジの端面温度分布からそれぞれ、上記指定位置の肉厚中央部Tc、上記指定位置の管エッジ表面の外表面温度Tおよび内表面温度Tとの温度差ΔT、および上記狭間隙長さLを測定し、それらの平均値を算出する。平均化は100点の画像データから算出を行う。
上記個々の電縫溶接で得られた電縫管に対して、長さ100mmのサンプルを任意に5本採取し、JIS G3478:2015に記載のへん平試験を行う。管の外径D、へん平試験において溶接部に割れが発生し始めるときの平板間の距離Hを用いて、へん平率H/Dを求めて、その中でへん平率H/Dの最大値を用いる。上記へん平率H/Dの最大値から所望のへん平率H/Dを満たす溶接条件を抽出する。
図5は、電縫溶接のエッジ部の管内外表面温度差と肉厚中心部の温度との比(ΔT/Tc)および狭間隙長さLの値に応じた電縫溶接品質の良否結果(へん平高さ試験結果)を示すグラフを示す。
図5に示す例では、溶接部のへん平率H/D(へん平率H/Dの最大値)が0.5以下を合格として〇と表記し、0.5超で不合格として×と表記する。溶接状態判定部141は、この合否判定の境界を定め、任意の上記狭間隙長さLにおける温度比ΔT/Tcの上下限を設定する。溶接部品質の合否の境界については、狭間隙長さLを関数として境界曲線を設定して記憶部143に記録する方法や、任意の狭間隙長さLに対して、温度比ΔT/Tcの上下限をあらかじめ設定して記憶部143に記録する方法などがあるがこの限りではない。
溶接状態判定部141は、上記のような任意の上記狭間隙長さLにおける温度比ΔT/Tcの上下限の設定について、V収束角度θを変更して、同様の合否判定の境界を定める。
また、溶接状態判定部141は、狭間隙長さLについて、ΔT/Tcに応じて上限値を設定し、V収束角度θを変更して、合否判定の境界を定めることもできる。
V収束角度θは、スクイズロールよりも上流側に存在するフィンパススタンド群のうち最も溶接機側に配置される最終フィンパススタンドのフィンロールのフィン幅を変更することで調整することができるが、この限りではない。
上記のようにして、各V収束角度θ毎に、狭間隙長さLにおける温度比ΔT/Tcの上下限が得られる。
図6は、V収束角度θ1~θ3それぞれにおいて、狭間隙長さLとΔT/Tcの値に応じた電縫溶接の良否結果を説明するための概念図である。図6では、狭間隙長さLと温度比ΔT/Tcの関係およびそれぞれの許容範囲(へん平高さ合格範囲)を縦に並べた概念図を示す。
任意のV収束角度θ2の条件から得られた任意の狭間隙長さLにおける温度比ΔT/Tcの許容範囲(へん平高さ合格範囲)を内挿計算から算出する。
この算出方法の具体例については、例えば、まず、変数を角度θとし、合格判定の領域R(L,ΔT/Tc)はθの関数とする。既知の領域R1とR3から想定している角度θ2の合格判定領域R2をθの一次関数で計算する。
図6を参照しながら説明すると、θ1とθ3の合格判定領域R1とR3が分かっているとき、例えば、各領域における同一の狭間隙長さLに対するΔT/Tcの下限|ΔT/Tc|1、|ΔT/Tc|3を求める。
次に、これら2点(θ1、L、|ΔT/Tc|1)と(θ3、L、|ΔT/Tc|3)を結ぶ直線を引く。これにより、|ΔT/Tc|はθの一次関数として表すことができるため、任意の角度θ2において、狭間隙長さLにおける下限|ΔT/Tc|2が求められる。これを繰り返し行い、合格領域全体を導出する。
これらの境界条件を用いて、V収束角度θに応じて、任意の溶接条件における上記狭間隙長さLにおける温度比ΔT/Tcが、上記溶接部の合格範囲内にあるとき、溶接状態判定部141は、電縫溶接条件を良好と判定し、満たせない場合は不適と判定する。また、溶接状態判定部141は、狭間隙長さLが、ΔT/TcおよびV収束角度θの値に応じて予め設定された上限値以下である場合に電縫溶接条件が良好であると判定し、一方で、満たせない場合は不適と判定してもよい。
なお、この処理で得られた結果については、記憶部143に記録しておくことができる。これにより、ステップS10の処理は完了し、溶接管理処理はステップS11の処理に進む。
ステップS11の処理では、出力部142が、ステップS10で得られた溶接条件の良否判定を外部へ出力する。外部への出力にはオペレータが判定結果を認知する必要があるため、溶接管理装置100に備えらえたグラフィック装置やアラーム装置等へ出力することが好ましい。これにより、ステップS11の処理は完了し、一連の溶接管理処理を終了させる。
以上、本発明の実施形態として、電縫鋼管の溶接管理装置について説明した。
本発明では、上述した溶接管理装置に用いた溶接管理方法、この溶接管理方法を含む電縫鋼管の製造方法、さらには溶接管理装置を有する溶接管理システムも提供される。
電縫鋼管の製造方法は、鋼板又は鋼帯に対して周方向に連続的な曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管の両エッジ部に対して、連続的にアプセットする電縫溶接により製造する電縫鋼管の製造方法であって、電縫溶接の際、前述した溶接システムにより行われる処理(溶接管理方法)により溶接管理を行う。
このように、本発明によれば、電縫溶接時の端面の加熱分布や狭間隙長さを精度高く測定し、溶接後の排出溶鋼量も考慮することで、溶接欠陥を抑制することができる。
より具体的には、電縫溶接時の肉厚方向の温度分布を小さくし、入熱調整の精度を向上させることで、溶接欠陥を抑止することができる。
また、上述した本発明の実施の形態について、これら実施の形態は本発明を実施するための一例に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内であれば、当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。
管厚4mmで鋼管外径がφ100mmの種々の電縫溶接管に対して、まず、溶接条件の許容範囲を導出するために、狭間隙長さLにおける温度比ΔT/Tcの上下限を導出した。ここでは、エッジ肉厚中央部の温度Tcおよび上記指定位置の管エッジ表面の外表面と内表面との温度差ΔTを測定する位置を溶接スタンドのスクイズロールの軸直下から上流側(溶接方向の反対方向側)へ5mm離れた位置とし、成形中のエッジベンド成形を調整して、溶接速度を40m/minとして電縫溶接を行った。
このとき、フィンパススタンドの最終スタンドのフィンロールのフィン幅を変更してV収束角度θを3~5°まで0.5°ピッチで変更した。
そして、各V収束角度θ条件における、任意の狭間隙長さLに対する温度比ΔT/Tcの上下限を導出した。ここで、ΔTは測定位置における管エッジの内表面温度Tから外表面温度Tを引いた値である。
種々の電縫溶接において、二色式温度計カメラを用いて、フレームレートを20fpsとし、管長手方向の画素数を1920画素とし、管肉厚方向の画素数を1080画素とし、管長手方向の視野を50mmとして溶接前の温度分布の2次元画像を取得した。また、種々の電縫溶接においてCCDカメラを用いて、フレームレート20fps、管長手方向の画素数を1920画素、管長手方向の視野を60mmとして、溶接中の溶接部前後の画像を取得した。これら取得した画像から、各フレームの指定位置の肉厚中央部の温度Tcと、指定位置の管エッジ表面の外表面温度Tおよび内表面温度Tの温度差ΔTと、狭間隙長さLと、前記V収束角度θを算出した。これら、各々の算出したデータの内、100データを平均化し、各溶接条件における操業データとした。
また、電縫溶接によって得られた鋼管を100mm長さに切り出し、JIS G3478:2015に基づいて溶接部のへん平試験を行い、へん平率H/Dを測定した。このようにして得られたへん平率H/Dを5回測定した結果の最大値を、各溶接条件における溶接部の品質データとした。前記操業データと溶接部の品質データを用いて、狭間隙長さLと温度比ΔT/Tcの関係を示すマップ上へ反映させ、各溶接条件においてへん平率H/Dの最大値が0.5以下であった鋼管が得られる条件を合格、0.5超であった鋼管が得られる条件を不合格として、合否判定の境界を設定した。
本実施例において、予め測定できていない狭間隙長さLにおける温度比ΔT/Tcの上下限の値は、その前後で明らかになっている狭間隙長さLにおける温度比ΔT/Tcの上下限の値を用いた。上記明らかになっている狭間隙長さLを関数にした一次関数式を用いて、内挿計算を行い、測定できていない狭間隙長さLにおける温度比ΔT/Tcの上下限の値を得た。
同様に、本実施例において、予め測定できていないV収束角度θの条件における温度比ΔT/Tcの上下限の値は、その前後で明らかになっている一定の狭間隙長さLにおける温度比ΔT/Tcの上下限の値を用いた。上記V収束角度θを関数にした一次関数式を用いて、内挿計算を行い、予め測定できていないV収束角度θの条件における温度比ΔT/Tcの上下限の値を得た。
以上のことから溶接条件の許容範囲を導出した。
次いで、管厚4mmで鋼管外径がφ100mmの電縫溶接管の製造にあたって、V収束角度θを3°とし、溶接速度を40m/minとして電縫溶接を行った。
ここでは、エッジ肉厚中央部の温度Tcおよび上記指定位置の管エッジ表面の外表面と内表面との温度差ΔTの測定条件や狭間隙長さLと、前記V収束角度θを測定する方法は前記共用範囲の導出の条件と同じである。図7に上記条件であらかじめ導出していた溶接条件の許容範囲例を示す。また、得られた鋼管を100mm長さに切り出し、JIS G3478:2015に基づいて溶接部のへん平試験を行い、へん平率を測定した。へん平試験を10回行い、いずれにおいても、9回以上のへん平率H/Dが0.5以下であった条件を合格とした。
表1に、合格した発明例と不合格である比較例の狭間隙長さL、温度比ΔT/Tcおよび鋼管のへん平率の合格判定結果を示す。
発明例1は、成形条件一定のもと許容範囲の狭間隙長さL、温度比ΔT/Tcの関係を満たすように電縫溶接の投入電力を調整した。
発明例2は、投入電力一定のもと許容範囲の狭間隙長さL、温度比ΔT/Tcの関係を満たすように成形中のエッジベンドを調整した。
これに対して、比較例1、2は、電縫溶接時の溶接管理を行わず、溶接電力を調整し、排出溶鋼の状態を目視のみで確認した。
発明例3は、成形条件一定のもと許容範囲の狭間隙長さL、温度比ΔT/Tcの関係を満たすように電縫溶接の投入電力を調整した。これに対して比較例3は、発明例3の条件から、ワークコイル-スクイズロール間距離を長くし、かつ、電縫溶接時の溶接管理を行わず、エッジ部の内外面の温度差T-Tが発明例3と同等になるように投入電力を調整した。
発明例4は、成形条件一定のもと許容範囲の狭間隙長さL、温度比ΔT/Tcの関係を満たすように電縫溶接の投入電力を調整した。これに対して比較例4は、発明例4の条件から、エッジベンド量を大きくし、かつ、電縫溶接時の溶接管理を行わず、エッジ部の肉厚中央部の温度Tcが発明例4と同等になるように投入電力を調整した。
得られた電縫鋼管から切り出した100mm長さのサンプル100本に対して、JIS G3478:2015に基づいて溶接部のへん平試験を行い、へん平率を測定した。へん平率の合格判定は0.5以下を満たした鋼管の本数が占める割合が90%以上であった場合に合格としている。発明例1、2、3、4では鋼管へん平率が合格値を満たしているのに対し、比較例1、2、3、4ではそれを下回っていることが分かる。
Figure 0007435930000001
以上説明したとおり、本発明に記載した溶接管理装置を使用することにより、電縫溶接部の品質に優れた電縫鋼管を提供することができる。
1 オープン管
2 フィンパスロール
3 高周波発振装置
31、31a、31b コンタクトチップ
40 溶接スタンド
41a、41b スクイズロール
42a、42b トップロール
10 溶接管理システム
11 エッジ温度情報取得装置
12 溶接部撮影装置
100 溶接管理装置
110 入力部
111 エッジ温度分布データ入力部
112 溶接部撮影データ入力部
121 エッジ温度分布処理部
122 電縫溶接前エッジ温度検出部
123 空間座標算出部
124 肉厚方向温度分布検出部
125 エッジ温度差算出部
131 溶接画像処理部
132 管エッジ画像検出部
133 V収束点抽出部
134 V収束角度算出部
135 狭間隙長さ算出部
141 溶接状態判定部
142 出力部
143 記憶部
20 溶接部画像のエッジ検出画像
201 加熱部
202 開口部
202a、202b オープン管の両エッジ端面
La、Lb 直線
θ V収束角度
203 溶接ビード
204 V収束点(接合点)
205 溶接点
L 狭間隙長さ

Claims (7)

  1. 鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管の両エッジ部に対してアプセットする電縫溶接により製造する電縫鋼管の溶接管理装置であって、
    電縫溶接前において、オープン管の少なくとも片側のエッジ部の肉厚方向の温度分布の情報に基づいて、前記エッジ部の外表面温度T、内表面温度Tおよび肉厚中心温度Tcを検出する電縫溶接前エッジ温度検出部と、
    前記外表面温度Tと前記内表面温度Tとの温度差ΔTを算出するエッジ温度差算出部と、
    前記オープン管の両エッジ部と、前記オープン管の両エッジ部が接合して溶接を開始する溶接点とを含む領域の画像情報に基づいて、
    前記エッジ部に沿って収束する2つの直線を抽出して、前記2つの直線の交点であるV収束点を抽出するV収束点抽出部と、
    前記2つの直線が成すV収束角度θを算出するV収束角度算出部と、
    前記V収束点から前記溶接点までの距離を狭間隙長さLとして算出する狭間隙長さ算出部と、
    前記肉厚中心温度Tcに対する前記温度差ΔTの割合:ΔT/Tc、前記V収束角度θおよび前記狭間隙長さLの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定部と、
    を備える、電縫鋼管の溶接管理装置。
  2. 前記溶接状態判定部は、
    前記狭間隙長さLが、前記肉厚中心温度Tcに対する前記温度差ΔTの割合:ΔT/Tcおよび前記V収束角度θの値に応じて予め設定された上限値以下である場合に電縫溶接条件が良好であると判定する、請求項1に記載の電縫鋼管の溶接管理装置。
  3. 前記溶接状態判定部は、
    前記肉厚中心温度Tcに対する前記温度差ΔTの割合:ΔT/Tcが、前記V収束角度θの値および前記Lの値に応じて予め設定された範囲内であるか否かで電縫溶接条件の良否を判定する、請求項1または2に記載の電縫鋼管の溶接管理装置。
  4. 鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管の両エッジ部に対してアプセットする電縫溶接により製造する電縫鋼管の溶接管理方法であって、
    電縫溶接前において、オープン管の少なくとも片側のエッジ部の肉厚方向の温度分布の情報に基づいて、前記エッジ部の外表面温度T、内表面温度Tおよび肉厚中心温度Tcを検出する電縫溶接前エッジ温度検出工程と、
    前記外表面温度Tと前記内表面温度Tとの温度差ΔTを算出するエッジ温度差算出工程と、
    前記オープン管の両エッジ部と、前記オープン管の両エッジ部が接合して溶接を開始する溶接点とを含む領域の画像情報に基づいて、
    前記エッジ部に沿って収束する2つの直線を抽出して、前記2つの直線の交点であるV収束点を抽出するV収束点抽出工程と、
    前記2つの直線が成すV収束角度θを算出するV収束角度算出工程と、
    前記V収束点から前記溶接点までの距離を狭間隙長さLとして算出する狭間隙長さ算出工程と、
    前記肉厚中心温度Tcに対する前記温度差ΔTの割合:ΔT/Tc、前記V収束角度θおよび前記狭間隙長さLの情報に基づいて、電縫溶接条件の良否を判定する溶接状態判定工程と、
    を含む、電縫鋼管の溶接管理方法。
  5. 鋼板又は鋼帯に対して周方向に曲げ加工を施し、両エッジ部を突き合わせてオープン管とし、その後突き合わせたオープン管の両エッジ部に対してアプセットする電縫溶接により製造する電縫鋼管の製造方法であって、
    前記電縫溶接の際、請求項4に記載の電縫鋼管の溶接管理方法により溶接管理を行う、電縫鋼管の製造方法。
  6. 請求項1または2に記載の電縫鋼管の溶接管理装置と、
    電縫溶接前において、オープン管の少なくとも片側のエッジ部の温度分布の情報を取得するエッジ温度情報取得装置と、
    電縫溶接前において、オープン管の両エッジ部および該両エッジ部が収束して形成される溶接点を撮影する溶接部撮影装置と、
    を備える、電縫鋼管の溶接管理システム。
  7. 請求項3に記載の電縫鋼管の溶接管理装置と、
    電縫溶接前において、オープン管の少なくとも片側のエッジ部の温度分布の情報を取得するエッジ温度情報取得装置と、
    電縫溶接前において、オープン管の両エッジ部および該両エッジ部が収束して形成される溶接点を撮影する溶接部撮影装置と、
    を備える、電縫鋼管の溶接管理システム。
JP2023569745A 2022-10-27 2023-09-07 電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム Active JP7435930B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022172109 2022-10-27
JP2022172109 2022-10-27
PCT/JP2023/032693 WO2024090051A1 (ja) 2022-10-27 2023-09-07 電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム

Publications (1)

Publication Number Publication Date
JP7435930B1 true JP7435930B1 (ja) 2024-02-21

Family

ID=89906004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023569745A Active JP7435930B1 (ja) 2022-10-27 2023-09-07 電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム

Country Status (1)

Country Link
JP (1) JP7435930B1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157422A1 (ja) 2012-04-18 2013-10-24 新日鐵住金株式会社 電縫溶接操業管理装置、電縫溶接操業管理方法、及びコンピュータプログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157422A1 (ja) 2012-04-18 2013-10-24 新日鐵住金株式会社 電縫溶接操業管理装置、電縫溶接操業管理方法、及びコンピュータプログラム

Similar Documents

Publication Publication Date Title
CN102791418B (zh) 高频电阻焊接以及感应加热焊接的操作管理装置、操作管理方法及操作管理程序
JP5549963B2 (ja) 電縫溶接操業の監視装置、方法、プログラム、及び記憶媒体
JPWO2018092492A1 (ja) 電縫鋼管の高周波抵抗溶接及び誘導加熱溶接の操業監視装置、方法及びプログラム
JP2009255132A (ja) 電縫溶接システム
JP7435930B1 (ja) 電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム
JP2018020356A (ja) 電縫鋼管の溶接工程の溶接監視方法及び溶接監視装置
Lv et al. Study on arc characteristics of different defects in pulsed micro-plasma arc welding
WO2024090051A1 (ja) 電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム
JP2008212961A (ja) 電縫鋼管の製造方法
JP2515460B2 (ja) 電縫溶接管の製造方法
JP3423034B2 (ja) 高周波電縫溶接工程における圧接量検出装置
JP2023182081A (ja) 電縫鋼管の溶接管理装置、溶接管理システム、電縫鋼管の溶接管理方法、および電縫鋼管の製造方法
JP2023007638A (ja) 電縫鋼管の溶接管理装置、電縫鋼管の溶接管理方法、電縫鋼管の製造方法および電縫鋼管の溶接管理システム
JP7119561B2 (ja) 電縫溶接の監視方法、監視システム、及び監視プログラム
JP2000015474A (ja) 溶接管の溶接部検査方法
JP2803928B2 (ja) 電縫溶接造管のスクイズ量計測演算方法および制御方法
JPH10193148A (ja) 溶接位置の決定方法及び装置並びに溶接管の製造方法及び装置
JPH0871638A (ja) 電縫管の入熱制御方法
JP7010138B2 (ja) 金属管の製造方法、管理システム、及びプログラム
JP7081718B2 (ja) 電縫鋼管溶接監視方法、電縫鋼管製造方法、電縫鋼管溶接監視装置、及び電縫鋼管製造装置
JP6699116B2 (ja) 電縫溶接工程におけるアプセット制御装置及び制御方法
JP7188270B2 (ja) 金属管の製造方法、金属管の製造装置及びプログラム
JP2000271743A (ja) 溶接部検査方法並びに検査装置及び配管用溶接管
CN116423046B (zh) 激光视觉焊接控制系统及激光焊接方法
Hasegawa et al. Development of a New Optical Monitoring System of Welding Conditions for Producing HF-ERW Line Pipes With High Weld Seam Toughness: Advanced Welding Process of HF-ERW 2

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231120

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7435930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150