WO2020162419A1 - 樹脂組成物および成形品 - Google Patents

樹脂組成物および成形品 Download PDF

Info

Publication number
WO2020162419A1
WO2020162419A1 PCT/JP2020/004021 JP2020004021W WO2020162419A1 WO 2020162419 A1 WO2020162419 A1 WO 2020162419A1 JP 2020004021 W JP2020004021 W JP 2020004021W WO 2020162419 A1 WO2020162419 A1 WO 2020162419A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
resin composition
polycarbonate resin
type polycarbonate
resin
Prior art date
Application number
PCT/JP2020/004021
Other languages
English (en)
French (fr)
Inventor
恵介 冨田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2020524927A priority Critical patent/JP6806286B1/ja
Priority to CN202080012554.7A priority patent/CN113396184B/zh
Priority to EP20752018.0A priority patent/EP3922676B1/en
Priority to US17/428,331 priority patent/US20220089865A1/en
Priority to KR1020217027025A priority patent/KR102398728B1/ko
Publication of WO2020162419A1 publication Critical patent/WO2020162419A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a resin composition containing a polycarbonate resin and a molded product using the same.
  • Polycarbonate resin is applied as a molding material for various products.
  • Patent Document 1 an aromatic polycarbonate polymer obtained by carbonate-bonding 2,2-bis-(4-hydroxyphenyl)propane and 4,4-dihydroxy-2,2,2-triphenylethane are disclosed.
  • a resin composition having excellent compatibility which comprises an aromatic polycarbonate polymer obtained by carbonate bonding, is disclosed.
  • the present invention is intended to solve such problems, and is a resin composition containing a bisphenol AP-type polycarbonate resin and a bisphenol A-type polycarbonate resin, which has excellent moldability and is a molded article. It is an object of the present invention to provide a resin composition and a molded article which are excellent in heat resistance and transparency at that time.
  • the present invention has the following solutions.
  • a resin composition comprising a bisphenol A type polycarbonate resin having a viscosity average molecular weight of 25,000 to 35,000,
  • the ratio (W AP /W A ) of the mass of the bisphenol AP type polycarbonate resin (W AP ) and the mass of the bisphenol A type polycarbonate resin (W A ) is 20/80 to 90/10,
  • the difference in intrinsic viscosity bisphenol AP type polycarbonate resin (eta AP) and intrinsic viscosity of bisphenol A type polycarbonate resin ( ⁇ A) is a 0.04 ⁇ 0.18 dL / g , Resin composition.
  • the resin composition according to ⁇ 1> wherein the total content of the bisphenol AP type polycarbonate resin and the bisphenol A type polycarbonate resin is more than 85% by mass of the total amount of the resin components contained in the resin composition. .. ⁇ 3>
  • the resin composition according to ⁇ 1> or ⁇ 2>, wherein a difference between the viscosity average molecular weight of the bisphenol AP type polycarbonate resin and the viscosity average molecular weight of the bisphenol A type polycarbonate resin is 5,000 to 15,000.
  • ⁇ 4> The resin composition according to any one of ⁇ 1> to ⁇ 3>, which has a melt viscosity of 1,000 to 3,500 Pa ⁇ s at 300° C.
  • Resin composition. ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the resin composition has a deflection temperature under load at a load of 1.8 MPa measured according to ISO 75-1 of 140° C. or higher.
  • ⁇ 6> The resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the bisphenol AP-type polycarbonate resin has a glass transition temperature of 172° C. or higher.
  • ⁇ 8> The resin composition according to any one of ⁇ 1> to ⁇ 7>, which has a haze of 5.0% or less when molded into a molded product having a thickness of 4 mm.
  • ⁇ 10> A molded product formed from the resin composition according to any one of ⁇ 1> to ⁇ 9>.
  • ⁇ 11> The molded product according to ⁇ 10>, wherein the molded product is a film.
  • ⁇ 12> The molded product according to ⁇ 10> or ⁇ 11>, wherein the molded product is for a touch panel sensor.
  • the present invention makes it possible to provide a resin composition having excellent moldability, heat resistance and transparency when formed into a molded product, and a molded product using the resin composition.
  • the resin composition of the present invention is a resin containing a bisphenol AP type polycarbonate resin having a viscosity average molecular weight of 18,500 to 23,000 and a bisphenol A type polycarbonate resin having a viscosity average molecular weight of 25,000 to 35,000.
  • the ratio (W AP /W A ) of the mass of the bisphenol AP-type polycarbonate resin (W AP ) and the mass of the bisphenol A-type polycarbonate resin (W A ) is 20/80 to 90/10.
  • ) between the intrinsic viscosity ( ⁇ AP ) of the bisphenol AP type polycarbonate resin and the intrinsic viscosity ( ⁇ A ) of the bisphenol A type polycarbonate resin is 0.04 to 0.18 dL/g. Is characterized in that With such a constitution, it is possible to obtain a resin composition which has excellent moldability and also has excellent heat resistance and transparency when formed into a molded product.
  • the bisphenol AP type polycarbonate resin has excellent heat resistance. However, the bisphenol AP type polycarbonate resin has a high melt viscosity and is inferior in processability.
  • the bisphenol AP type polycarbonate resin refers to a resin having a carbonate unit derived from bisphenol AP and a derivative thereof, and preferably has a structural unit represented by the following formula (A-1).
  • R 1 to R 4 are each independently a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 9 carbon atoms (preferably 1 to 3), or a carbon atom.
  • Aryl group having 6 to 12 (preferably 6 to 10), alkoxy group having 1 to 5 (preferably 1 to 3) carbon atoms, alkenyl group having 2 to 5 (preferably 2 or 3) carbon atoms, or carbon It represents an aralkyl group having 7 to 17 (preferably 7 to 11) atoms.
  • l represents an integer of 0 to 5.
  • m and n each independently represent an integer of 0-4. * Represents a bonding position with the terminal group or another structural unit.
  • the constitutional unit represented by the formula (A-1) is preferably a constitutional unit represented by the following formula (A-2).
  • * represents a bonding position with the terminal group or another structural unit.
  • R 1 , R 2 , R 3 , R 4 , 1, m and n have the same meanings as defined in formula (A-1).
  • the constitutional unit represented by the formula (A-2) is preferably a constitutional unit represented by the following formula (A-3).
  • * represents a bonding position with the terminal group or another structural unit.
  • the content of the structural unit represented by formula (A-1) in the bisphenol AP-type polycarbonate resin is preferably 70 mol% or more, and more preferably 80 mol% or more, in all structural units excluding the terminal group. Is more preferable, and 90 mol% or more is further preferable.
  • the upper limit is not particularly limited, and 100 mol% may be a structural unit represented by the formula (A-1).
  • the constitutional unit derived from bisphenol AP may be composed of only one kind or two or more kinds.
  • the bisphenol AP type polycarbonate resin particularly preferable is a resin in which substantially the entire amount is composed of the structural unit of formula (A-1).
  • substantially all amount means specifically 99.0 mol% or more of all the constituent units excluding the terminal group, preferably 99.5 mol% or more, and 99.9 mol%.
  • the above is more preferable.
  • the bisphenol AP type polycarbonate resin may have another structural unit different from the carbonate unit derived from bisphenol AP and its derivative. Examples of the dihydroxy compound that constitutes such another structural unit include the aromatic dihydroxy compounds described in paragraph 0014 of JP-A-2018-154819, the contents of which are incorporated herein. ..
  • the method for producing the bisphenol AP type polycarbonate resin is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid-state transesterification method of a prepolymer.
  • the viscosity average molecular weight of the bisphenol AP type polycarbonate resin is 18,500 to 23,000.
  • the lower limit value is more preferably 19,000 or more, more preferably 19,500 or more, still more preferably 20,000 or more.
  • the upper limit is preferably 22,000 or less, more preferably 21,000 or less, and further preferably 20,500 or less.
  • the intrinsic viscosity of the bisphenol AP type polycarbonate resin is preferably 0.2 dL/g or more, more preferably 0.3 dL/g or more, and further preferably 0.4 dL/g or more. ..
  • the upper limit is preferably 1.0 dL/g or less, more preferably 0.8 dL/g or less, further preferably 0.6 dL/g or less, and 0.5 dL/g or less. More preferably.
  • the measured value of the mixture is treated as the intrinsic viscosity of the bisphenol AP type polycarbonate resin.
  • the intrinsic viscosity is measured by the method described in Examples below.
  • the glass transition temperature (Tg) of the bisphenol AP type polycarbonate resin is preferably 172° C. or higher, more preferably 175° C. or higher, and further preferably 180° C. or higher.
  • the upper limit is preferably 210°C or lower, more preferably 200°C or lower, and further preferably 190°C or lower.
  • the glass transition temperature (Tg) is measured by the method described in Examples below. When the resin composition has two or more bisphenol AP type polycarbonate resins, the measured value of Tg of the mixture is treated as the Tg of the bisphenol AP type polycarbonate resin.
  • the melt viscosity of the bisphenol AP type polycarbonate resin at 300° C. measured at a shear rate of 122 sec ⁇ 1 is preferably 1,000 Pa ⁇ s or more, more preferably 1,500 Pa ⁇ s or more, More preferably, it is 3,000 Pa ⁇ s or more.
  • the upper limit of the melt viscosity is preferably 8,000 Pa ⁇ s or less, more preferably 7,000 Pa ⁇ s or less, and further preferably 6,500 Pa ⁇ s or less.
  • the resin composition contains two or more bisphenol AP type polycarbonate resins
  • the measured value of the melt viscosity of the mixture is treated as the melt viscosity of the bisphenol AP type polycarbonate resin.
  • the melt viscosity is measured by the method described in Examples below.
  • the content of the bisphenol AP type polycarbonate resin in the resin composition is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 45% by mass or more.
  • the upper limit is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less.
  • the bisphenol AP type polycarbonate resin may be used alone or in combination of two or more. When using 2 or more types, the total amount becomes the said range.
  • the bisphenol A type polycarbonate resin refers to a resin having a carbonate unit derived from bisphenol A and a derivative thereof, and preferably has a structural unit represented by the following formula (B-1).
  • * represents a bonding position with the terminal group or another structural unit.
  • X 1 represents the following structure.
  • R 5 and R 6 are a hydrogen atom or a methyl group, at least one of which is preferably a methyl group, and both of which are more preferably a methyl group.
  • Formula (B-1) is preferably represented by the following formula (B-2).
  • the content of the structural unit represented by formula (B-1) in the bisphenol A-type polycarbonate resin is preferably 70 mol% or more, and more preferably 80 mol% or more, based on all the structural units excluding the terminal group. Is more preferable, and 90 mol% or more is further preferable.
  • the upper limit is not particularly limited, and 100 mol% may be a structural unit represented by the formula (B-1).
  • the bisphenol A-type polycarbonate resin is particularly preferably a resin in which substantially the entire amount is composed of the structural unit of the formula (B-1).
  • substantially all amount means specifically 99.0 mol% or more of all the constituent units excluding the terminal group, preferably 99.5 mol% or more, and 99.9 mol%.
  • the bisphenol A-type polycarbonate resin may have a structural unit other than the carbonate unit derived from bisphenol A and its derivative.
  • Examples of the dihydroxy compound that constitutes such another structural unit include the aromatic dihydroxy compound described in paragraph 0014 of JP-A-2018-154819, the contents of which are incorporated herein. ..
  • the method for producing the bisphenol A type polycarbonate resin is not particularly limited, and any method can be adopted. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid-state transesterification method of a prepolymer.
  • the viscosity average molecular weight of the bisphenol A type polycarbonate resin is 25,000 to 35,000.
  • the lower limit value is preferably 26,000 or more, more preferably 26,500 or more, and further preferably 26,800 or more.
  • the upper limit is preferably 34,000 or less, more preferably 30,000 or less, and further preferably 28,000 or less.
  • the intrinsic viscosity of the bisphenol A type polycarbonate resin is preferably 0.35 dL/g or more, more preferably 0.4 dL/g or more, and further preferably 0.45 dL/g or more. , 0.5 dL/g or more is more preferable.
  • the upper limit is preferably 1.0 dL/g or less, more preferably 0.8 dL/g or less, and further preferably 0.6 dL/g or less.
  • the glass transition temperature (Tg) of the bisphenol A type polycarbonate resin is preferably 140° C. or higher, more preferably 145° C. or higher, and further preferably 150° C. or higher.
  • the upper limit is preferably 170° C. or lower. The higher the upper limit, the more preferable. However, for example, 160° C. or lower, and even 155° C. or lower sufficiently satisfies the performance requirement.
  • the resin composition contains two or more bisphenol A type polycarbonate resins
  • the measured value of Tg of the mixture is treated as the Tg of the bisphenol A type polycarbonate resin.
  • the glass transition temperature (Tg) is measured by the method described in Examples below.
  • the melt viscosity of the bisphenol A type polycarbonate resin at 300° C. measured at a shear rate of 122 sec ⁇ 1 is preferably 100 Pa ⁇ s or more, more preferably 500 Pa ⁇ s or more, and more preferably 800 Pa ⁇ s or more. Is more preferable.
  • the upper limit of the melt viscosity is preferably 2,000 Pa ⁇ s or less, more preferably 1,700 Pa ⁇ s or less, and further preferably 1,500 Pa ⁇ s or less.
  • the content of the bisphenol A type polycarbonate resin in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more.
  • the upper limit is preferably 70% by mass or less, more preferably 60% by mass or less, and further preferably 55% by mass or less.
  • the bisphenol A type polycarbonate resin may be used alone or in combination of two or more. When using 2 or more types, the total amount becomes the said range.
  • the ratio of the mass of bisphenol AP type polycarbonate resin of weight (W AP) and bisphenol A type polycarbonate resin (W A) is 20 / 80-90 / It is 10. Is preferably 30/70 or more as the lower limit of the ratio (W AP / W A), more preferably 40/60 or more, still more preferably 45/55 or more, 51/49 or more May be The upper limit of the ratio (W AP / W A), preferably 80/20 or less, more preferably 75/25 or less, further preferably 72/28 or less. If the upper limit value of the ratio (W AP / W A), heat resistance of the resin composition lowers. On the other hand, when it is less than the above lower limit, the melt viscosity of the resin composition increases and the moldability decreases.
  • ) between the intrinsic viscosity ( ⁇ AP ) of the bisphenol AP type polycarbonate resin and the intrinsic viscosity ( ⁇ A ) of the bisphenol A type polycarbonate resin is 0.04. It is about 0.18 dL/g.
  • ) is preferably 0.06 dL/g or more, more preferably 0.07 dL/g or more, and 0.08 dL /G or more is more preferable, and 0.09 dL/g or more is more preferable.
  • the upper limit is preferably 0.16 dL/g or less, more preferably 0.14 dL/g or less, further preferably 0.13 dL/g or less, and 0.12 dL/g or less. More preferably, Moreover, it is preferable that the intrinsic viscosity ( ⁇ A )>the intrinsic viscosity ( ⁇ AP ).
  • the difference between the viscosity average molecular weight of bisphenol AP type polycarbonate resin (Mv AP) and viscosity average molecular weight of bisphenol A type polycarbonate resin (Mv A) is 5,000 or more Is preferable, it is more preferably 5,500 or more, still more preferably 6,000 or more, and further preferably 6,500 or more.
  • the upper limit value is preferably 15,000 or less, more preferably 13,000 or less, further preferably 11,000 or less, further preferably 9,000 or less, It is even more preferably 000 or less, and even more preferably 7,500 or less.
  • the resin composition contains two or more bisphenol AP type polycarbonate resins or bisphenol A type polycarbonate resins, the measured value of the mixture is treated as the viscosity average molecular weight.
  • the total content of the bisphenol AP type polycarbonate resin and the bisphenol A type polycarbonate resin is preferably more than 85% by mass and 90% by mass with respect to the total amount of the resin components contained in the resin composition. More preferably, it is more preferably 92% by mass or more, further preferably 95% by mass or more, further preferably 97% by mass or more, still more preferably 99% by mass or more. Even more preferred. There is no particular upper limit, and the entire amount (100% by mass) may be composed of bisphenol AP type polycarbonate resin and bisphenol A type polycarbonate resin. When the content is within the above range, both heat resistance and toughness can be achieved.
  • the resin composition of the present invention preferably contains an antioxidant.
  • the antioxidant include a phenol-based antioxidant, an amine-based antioxidant, a phosphorus-based antioxidant, a thioether-based antioxidant and the like.
  • phosphorus-based antioxidants and phenol-based antioxidants are preferred in the present invention.
  • Phosphorus antioxidants are particularly preferable because they are excellent in the hue of the molded product.
  • a phosphite compound represented by the following formula (1) or (2) is preferable.
  • R 11 and R 12 each independently represent an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • R 13 to R 17 each independently represent a hydrogen atom, an aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms.
  • the alkyl groups represented by R 11 and R 12 are preferably each independently a linear or branched alkyl group having 1 to 10 carbon atoms.
  • R 11 and R 12 are aryl groups, an aryl group represented by any of the following formulas (1-a), (1-b), or (1-c) is preferable.
  • * represents a bonding position with another site.
  • R A's each independently represent an alkyl group having 1 to 10 carbon atoms.
  • R B's each independently have 1 to 10 carbon atoms. Represents the alkyl group of 10.
  • the content of the antioxidant is preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more, and 0.05 parts by mass or more with respect to 100 parts by mass of the polycarbonate resin. Is more preferable.
  • the upper limit of the content of the antioxidant is preferably 0.4 parts by mass or less, more preferably 0.3 parts by mass or less, and even more preferably 0.2 parts by mass or less with respect to 100 parts by mass of the polycarbonate resin. It is more preferably 0.15 parts by mass or less.
  • the content of the antioxidant is not more than the above upper limit value, it is possible to obtain a molded article having good wet heat stability without deteriorating the heat discoloration resistance.
  • the resin composition contains 100 parts by mass of the polycarbonate resin. It is preferable to contain the phosphorus-based antioxidant in the range of 0.001 to 0.2 parts by mass and the phenol-based antioxidant in the range of 0.001 to 0.2 parts by mass.
  • the antioxidant may be used alone or in combination of two or more. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin composition of the present invention preferably contains a release agent.
  • the release agent By including the release agent, the winding property at the time of winding the film-shaped or sheet-shaped molded product can be improved.
  • the type of the releasing agent is not particularly limited, and examples thereof include aliphatic carboxylic acids, esters of aliphatic carboxylic acids and alcohols, aliphatic hydrocarbon compounds having a number average molecular weight of 200 to 15,000, and number average molecular weights of 100 to Examples include 5000 polyether and polysiloxane silicone oil.
  • the content of the release agent is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, and 0.007 parts by mass or more with respect to 100 parts by mass of the polycarbonate resin. Is more preferable.
  • the upper limit is preferably 0.5 parts by mass or less, more preferably 0.3 parts by mass or less, and further preferably 0.1 parts by mass or less. Only one type of release agent may be used, or two or more types may be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin composition of the present invention is a polycarbonate resin other than bisphenol A type polycarbonate resin and bisphenol AP type polycarbonate resin, thermoplastic resin other than polycarbonate resin, ultraviolet absorber, heat stabilizer, flame retardant, flame retardant.
  • These components may be used alone or in combination of two or more.
  • the content of the above components, if contained, is preferably 0.1 to 5 mass% in total.
  • polycarbonate resin other than the bisphenol A-type polycarbonate resin and the bisphenol AP-type polycarbonate resin examples include bisphenol C-type polycarbonate resin.
  • the resin composition of the present invention may be configured so as not to substantially contain the bisphenol C type polycarbonate resin.
  • substantially free means that the content of the bisphenol C-type polycarbonate resin is less than 1% by mass in the resin components contained in the resin composition.
  • the melt viscosity of the resin composition of the present invention is preferably adjusted to an appropriate range, and good moldability can be obtained.
  • the resin composition of the present invention has a melt viscosity at 300° C. measured at a shear rate of 122 sec ⁇ 1 of preferably 3,500 Pa ⁇ s or less, more preferably 3,000 Pa ⁇ s or less. , 2,500 Pa ⁇ s or less, more preferably 2,000 Pa ⁇ s or less.
  • the lower limit value is preferably 1,000 Pa ⁇ s or more from the viewpoint of moldability, more preferably 1,200 Pa ⁇ s or more, and may be 1,500 Pa ⁇ s or more.
  • As the melt viscosity a value measured based on the method described in Examples described later is adopted.
  • the resin composition of the present invention is preferably transparent when formed into a molded article, and more preferably has high light transmittance.
  • the resin composition of the present invention has a total light transmittance of preferably 80% or more, more preferably 85% or more, and more preferably 88% or more when molded into a molded product having a thickness of 4 mm. Is more preferable.
  • the upper limit is not particularly limited, but 99% or less, and even 95% or less sufficiently satisfies the performance requirement.
  • the total light transmittance a value measured based on a method described in Examples described later is adopted.
  • the resin composition of the present invention preferably has no fog when formed into a molded product, and preferably has a haze of 5.0% or less when molded into a molded product having a thickness of 4 mm. It is more preferably 0% or less, further preferably 3.0% or less, further preferably 2.5% or less, and may be 2.0% or less.
  • the lower limit is not particularly limited, but 0.1% or more, and even 0.5% or more sufficiently satisfies the performance requirement.
  • the haze adopts a value measured based on the method described in Examples described later.
  • the resin composition of the present invention has a deflection temperature under load at a load of 1.8 MPa measured according to ISO75-1 of preferably 140° C. or higher, more preferably 143° C. or higher, and even more preferably 145° C. or higher. More preferable. The higher the upper limit, the more preferable, but for example, even at 200° C. or lower, and even 160° C. or lower, the performance requirement is sufficiently satisfied.
  • the deflection temperature under load adopts a value measured based on a method described in Examples described later.
  • Method for producing resin composition There is no limitation on the method for producing the resin composition of the present invention, a well-known method for producing a resin composition can be widely adopted, and the above-mentioned polycarbonate resin and other components to be blended as necessary, such as a tumbler or a Henschel mixer. Examples of the method include premixing using various mixers such as, and then melt-kneading with a mixer such as a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, and kneader.
  • a mixer such as a Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, and kneader.
  • the temperature of melt kneading is not particularly limited, but is usually in the range of 240 to 360°C.
  • the melt-kneaded resin composition is obtained by, for example, strand cutting to obtain pellets.
  • a film extruder By extruding the thus obtained pellets with, for example, a film extruder, a film-shaped or sheet-shaped molded article can be manufactured.
  • a molded product having an arbitrary shape can be manufactured by injection molding with an injection molding machine.
  • the molded article of the present invention is molded from the resin composition of the present invention.
  • the molded article of the present invention is suitably used for electric and electronic equipment, office automation equipment, portable information terminals, mechanical parts, home electric appliances, vehicle parts, various containers, parts such as lighting equipment and the like.
  • the molded product of the present invention is suitable for a touch panel sensor.
  • a film is illustrated as one embodiment of the molded article of the present invention, and is particularly preferably used as a transparent film for high heat resistance applications. More specifically, it can be used as a film for a transparent electrode substrate.
  • the transparent electrode is one in which a transparent electrode layer is arranged on one or both surfaces of the transparent substrate. Additional layers may be present between the transparent substrate and the transparent electrode layer.
  • the transparent film of the present invention can be used as the transparent substrate in this transparent electrode. Further, it can be suitably used as a protective film for protecting products for high heat resistance applications.
  • the thickness of the film formed from the resin composition of the present invention is not particularly limited, but is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, may be 50 ⁇ m or more, and further 80 ⁇ m or more May be
  • the upper limit value is preferably 5 mm or less, more preferably 3 mm or less, and further preferably 1 mm or less.
  • Aromatic polycarbonate resin obtained by an interfacial polymerization method using bisphenol AP as a starting material (FPC-0220 manufactured by Mitsubishi Gas Chemical Co., Inc., viscosity average molecular weight: 20,200, intrinsic viscosity 0.44 dL/g, Tg: 184°C, melt viscosity: 6,400Pa ⁇ s)
  • A2 Aromatic polycarbonate resin obtained by an interfacial polymerization method using bisphenol AP as a starting material (FPC-0210, manufactured by Mitsubishi Gas Chemical Co., Inc., viscosity average molecular weight: 11,500, intrinsic viscosity: 0.27 dL/g, Tg: 170°C, melt viscosity: 1,300 Pa ⁇ s)
  • ⁇ Bisphenol A type polycarbonate resin (B1) Aromatic polycarbonate resin obtained by an interfacial polymerization method using bisphenol A as a starting material (E-2000F, manufactured by Mitsubishi Engineering Plastics, viscosity average molecular weight 27,000, intrinsic viscosity 0.54 dL/g, Tg: 151°C, melt viscosity: 1,050 Pa ⁇ s) (B2) Aromatic polycarbonate resin obtained by an interfacial polymerization method using bisphenol A as a starting material (E-1000F, manufactured by Mitsubishi Engineering Plastics, viscosity average molecular weight: 32,500, intrinsic viscosity 0.64 dL/g, Tg 154° C., melt viscosity: 1,800 Pa ⁇ s) (B3) Aromatic polycarbonate resin obtained by an interfacial polymerization method using bisphenol A as a starting material (S-3000F, manufactured by Mitsubishi Engineering Plastics, viscosity average molecular weight: 21,000, intrinsic viscosity 0.43 dL
  • C ⁇ Antioxidant (C) (C1) Bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite (phosphorus antioxidant, ADEKA, ADK STAB PEP-36) (C2) Tris(2,4-di-tert-butylphenyl)phosphite (phosphorus antioxidant ADEKA, ADK STAB 2112) (C3) Pentaerythritol tetrakis[3-3,5-di-tert-butyl-4-hydroxyphenyl]propionate (phenolic antioxidant, BASF Corporation, Irganox 1010)
  • ⁇ Release agent (D) (D1) Glycerin monostearate (Rikemar S-100A, manufactured by Riken Vitamin Co., Ltd.)
  • Examples 1 to 3 and Comparative Examples 1 to 5 The respective components described above were weighed so that the blending amounts shown in Table 1 were obtained. Then, after mixing for 15 minutes with a tumbler, it was melt-kneaded at a cylinder temperature of 320° C. by a vented twin-screw extruder, and pellets were obtained by strand cutting.
  • twin-screw extruder "TEX30 ⁇ " manufactured by Japan Steel Works, Ltd. having a screw diameter of 32 mm was used.
  • the intrinsic viscosity [ ⁇ ] (unit dL/g) of the resin was measured by using methylene chloride as a solvent. The temperature was set to 25°C.
  • the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g/dL) was measured with an Ubbelohde viscometer. The intrinsic viscosity was calculated from the obtained specific viscosity value and concentration by the following formula.
  • Tg glass transition temperature
  • HM-150 trade name
  • the deflection temperature under load (unit: °C) was measured under the condition of a load of 1.80 MPa (method A) using the above-mentioned ISO multipurpose test piece and an HDT tester according to ISO75-1.
  • As the HDT (deflection temperature under load) tester “3M-2” (trade name) manufactured by Toyo Seiki Seisaku-sho, Ltd. was used.
  • the obtained film was cut into a size of 75 ⁇ 25 mm, and a bending resistance test was performed in accordance with JIS C5016 using an FPC bending tester with a bending surface having a radius of curvature of 3 mm.
  • a bending resistance test was performed in accordance with JIS C5016 using an FPC bending tester with a bending surface having a radius of curvature of 3 mm.
  • B Crack generation As the FPC bending tester, "No. 306 FPC bending tester" (trade name) manufactured by Yasuda Seiki Seisaku-sho, Ltd. was used.
  • a molded product obtained by using a bisphenol AP-type polycarbonate resin and a bisphenol A-type polycarbonate resin having a predetermined viscosity average molecular weight in a predetermined content ratio and a predetermined intrinsic viscosity difference was excellent in transparency, high total light transmittance, small haze, excellent moldability, high deflection temperature and excellent heat resistance (Examples 1 to 3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

成形性に優れ、かつ、成形品にしたときの耐熱性および透明性に優れた樹脂組成物、ならびに、樹脂組成物を用いた成形品の提供。粘度平均分子量が18,500~23,000である、ビスフェノールAP型ポリカーボネート樹脂と、粘度平均分子量が25,000~35,000である、ビスフェノールA型ポリカーボネート樹脂とを含む樹脂組成物であって、ビスフェノールAP型ポリカーボネート樹脂の質量(WAP)とビスフェノールA型ポリカーボネート樹脂の質量(WA)との比率(WAP/WA)が、20/80~90/10であり、ビスフェノールAP型ポリカーボネート樹脂の極限粘度(ηAP)とビスフェノールA型ポリカーボネート樹脂の極限粘度(ηA)との差(|ηA―ηAP|)が0.04~0.18dL/gである、樹脂組成物。

Description

樹脂組成物および成形品
 本発明は、ポリカーボネート樹脂を含む樹脂組成物およびこれを用いた成形品に関する。
 ポリカーボネート樹脂は、様々な製品の成形材料として適用されている。
 例えば、特許文献1には、2,2-ビス-(4-ヒドロキシフェニル)プロパンをカーボネート結合して得られる芳香族ポリカーボネート重合体と4,4-ジヒドロキシ-2,2,2-トリフェニルエタンをカーボネート結合して得られる芳香族ポリカーボネート重合体からなる相溶性に優れた樹脂組成物が開示されている。
特開昭64-043558号公報
 上記特許文献1に記載のとおり、2,2-ビス-(4-ヒドロキシフェニル)プロパンをカーボネート結合して得られる芳香族ポリカーボネート重合体等のビスフェノールA型ポリカーボネート樹脂に耐熱性を付与するために、4,4-ジヒドロキシ-2,2,2-トリフェニルエタンをカーボネート結合して得られる芳香族ポリカーボネート重合体等のビスフェノールAP型ポリカーボネート樹脂を配合することが考えられる。しかしながら、ビスフェノールA型ポリカーボネート樹脂とビスフェノールAP型ポリカーボネート樹脂をブレンドすると加工性に劣る場合があることが分かった。さらに、得られる樹脂組成物や成形品が白濁してしまう場合があることが分かった。
 本発明はかかる課題を解決することを目的とするものであって、ビスフェノールAP型ポリカーボネート樹脂とビスフェノールA型ポリカーボネート樹脂とを含む樹脂組成物であって、成形性に優れ、かつ、成形品にしたときの耐熱性および透明性に優れる樹脂組成物および成形品を提供することを目的とする。
 上記の課題のもと、本発明者が検討を行った結果、ビスフェノールAP型ポリカーボネート樹脂およびビスフェノールA型ポリカーボネート樹脂について、それぞれの粘度平均分子量と両樹脂の含量の比率を特定の範囲とし、かつ、両樹脂の極限粘度の差を特定の範囲とすることにより、上記の課題を解決し得ることを見出した。
 すなわち、本発明は以下の解決手段を有する。
<1>粘度平均分子量が18,500~23,000であるビスフェノールAP型ポリカーボネート樹脂と、
 粘度平均分子量が25,000~35,000であるビスフェノールA型ポリカーボネート樹脂と
を含む樹脂組成物であって、
 前記ビスフェノールAP型ポリカーボネート樹脂の質量(WAP)とビスフェノールA型ポリカーボネート樹脂の質量(W)との比率(WAP/W)が、20/80~90/10であり、
 前記ビスフェノールAP型ポリカーボネート樹脂の極限粘度(ηAP)とビスフェノールA型ポリカーボネート樹脂の極限粘度(η)との差(|ηAP-η|)が0.04~0.18dL/gである、
 樹脂組成物。
<2>前記ビスフェノールAP型ポリカーボネート樹脂とビスフェノールA型ポリカーボネート樹脂の合計含有量が、前記樹脂組成物に含まれる樹脂成分の合計量の85質量%超である、<1>に記載の樹脂組成物。
<3>前記ビスフェノールAP型ポリカーボネート樹脂の粘度平均分子量とビスフェノールA型ポリカーボネート樹脂の粘度平均分子量の差が5,000~15,000である、<1>または<2>に記載の樹脂組成物。
<4>前記樹脂組成物の、せん断速度122sec-1で測定した300℃における溶融粘度が1,000~3,500Pa・sである、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>前記樹脂組成物の、ISO75-1に従って測定した1.8MPaの荷重における荷重たわみ温度が140℃以上である、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>前記ビスフェノールAP型ポリカーボネート樹脂のガラス転移温度が172℃以上である、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記樹脂組成物を4mm厚さの成形品に成形したときの全光線透過率が80%以上である、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>前記樹脂組成物を4mm厚さの成形品に成形したときのヘイズが5.0%以下である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>さらに、酸化防止剤および離型剤の少なくとも1種を含む、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10><1>~<9>のいずれか1つに記載の樹脂組成物から形成された成形品。
<11>前記成形品がフィルムである、<10>に記載の成形品。
<12>前記成形品がタッチパネルのセンサー用である、<10>または<11>に記載の成形品。
 本発明により、成形性に優れ、かつ、成形品にしたときの耐熱性および透明性に優れた樹脂組成物、ならびに、前記樹脂組成物を用いた成形品を提供可能になった。
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 なお、本明細書における「質量部」とは成分の相対量を示し、「質量%」とは成分の絶対量を示す。
 「フィルム」および「シート」とは、それぞれ、長さと幅に対して、厚さが薄く、概ね、平らな成形体をいう。また、本明細書における「フィルム」は、単層であっても多層であってもよい。
 本発明の樹脂組成物は、粘度平均分子量が18,500~23,000であるビスフェノールAP型ポリカーボネート樹脂と、粘度平均分子量が25,000~35,000であるビスフェノールA型ポリカーボネート樹脂とを含む樹脂組成物であって、前記ビスフェノールAP型ポリカーボネート樹脂の質量(WAP)とビスフェノールA型ポリカーボネート樹脂の質量(W)との比率(WAP/W)が、20/80~90/10であり、前記ビスフェノールAP型ポリカーボネート樹脂の極限粘度(ηAP)とビスフェノールA型ポリカーボネート樹脂の極限粘度(η)との差(|ηAP-η|)が0.04~0.18dL/gであることを特徴とする。このような構成とすることにより、成形性に優れ、かつ、成形品にしたときの耐熱性および透明性に優れた樹脂組成物が得られる。
 ビスフェノールAP型ポリカーボネート樹脂は、耐熱性に優れる。しかしながら、ビスフェノールAP型ポリカーボネート樹脂は、溶融粘度が高く、加工性に劣るものであった。また、加工性を向上させるために、汎用品であるビスフェノールA型ポリカーボネート樹脂を配合すると、白濁してしまうことが分かった。本発明では、ビスフェノールAP型ポリカーボネート樹脂として、粘度平均分子量が高く、かつ、ビスフェノールA型ポリカーボネート樹脂との極限粘度差が特定の範囲となるビスフェノールA型ポリカーボネート樹脂をブレンドすることにより、成形性に優れ、耐熱性に優れ、透明性に優れた成形品を提供可能であることを見出した。
<ビスフェノールAP型ポリカーボネート樹脂(A)>
 ビスフェノールAP型ポリカーボネート樹脂は、ビスフェノールAPおよびその誘導体由来のカーボネート単位を有する樹脂をいい、下記式(A-1)で表される構成単位を有していることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(A-1)中、R~Rは、それぞれ独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素原子数1~9(好ましくは1~3)のアルキル基、炭素原子数6~12(好ましくは6~10)のアリール基、炭素原子数1~5(好ましくは1~3)のアルコキシ基、炭素原子数2~5(好ましくは2または3)のアルケニル基または炭素原子数7~17(好ましくは7~11)のアラルキル基を表す。lは0~5の整数を表す。mおよびnはそれぞれ独立に0~4の整数を表す。*は末端基または他の構成単位との結合位置を表す。
 式(A-1)で表される構成単位は、下記式(A-2)で表される構成単位であることが好ましい。式中の*は末端基または他の構成単位との結合位置を表す。
Figure JPOXMLDOC01-appb-C000002
 R、R、R、R、l、m、nは、式(A-1)で定義したものと同義である。
 式(A-2)で表される構成単位は、下記式(A-3)で表される構成単位であることが好ましい。式中の*は末端基または他の構成単位との結合位置を表す。
Figure JPOXMLDOC01-appb-C000003
 ビスフェノールAP型ポリカーボネート樹脂における、式(A-1)で表される構成単位の含有量は、末端基を除く全構成単位中、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。上限値は特に限定されず、100モル%が式(A-1)で表される構成単位であってもよい。ビスフェノールAP由来の構成単位は1種のみでも、2種以上で構成されていてもよい。ビスフェノールAP型ポリカーボネート樹脂として特に好ましくは、実質的に全量が式(A-1)の構成単位で構成された樹脂が挙げられる。ここでの実質的に全量とは、具体的には、末端基を除く全構成単位の99.0モル%以上であることを意味し、99.5モル%以上が好ましく、99.9モル%以上がより好ましい。
 ビスフェノールAP型ポリカーボネート樹脂は、ビスフェノールAPおよびその誘導体由来のカーボネート単位とは異なる他の構成単位を有していてもよい。このような他の構成単位を構成するジヒドロキシ化合物としては、例えば、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物を挙げることができ、これらの内容は本明細書に組み込まれる。
 ビスフェノールAP型ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
 本発明において、ビスフェノールAP型ポリカーボネート樹脂の粘度平均分子量は18,500~23,000である。下限値としては、さらに19,000以上であることが好ましく、19,500以上であることがより好ましく、20,000以上であることがさらに好ましい。上限としては、22,000以下であることが好ましく、21,000以下であることがより好ましく、20,500以下であることがさらに好ましい。上記粘度平均分子量とすることにより、ビスフェノールA型ポリカーボネート樹脂との相溶性をより向上させることができる。
 なお、樹脂組成物中に、ビスフェノールAP型ポリカーボネート樹脂を2種以上有する場合には、その混合物の粘度平均分子量の測定値をビスフェノールAP型ポリカーボネート樹脂の粘度平均分子量として扱う。
 粘度平均分子量は後述する実施例に記載の方法で測定される。
 本発明において、ビスフェノールAP型ポリカーボネート樹脂の極限粘度は0.2dL/g以上であることが好ましく、0.3dL/g以上であることがより好ましく、0.4dL/g以上であることがさらに好ましい。上限としては、1.0dL/g以下であることが好ましく、0.8dL/g以下であることがより好ましく、0.6dL/g以下であることがさらに好ましく、0.5dL/g以下であることが一層好ましい。
 なお、樹脂組成物中に、ビスフェノールAP型ポリカーボネート樹脂を2種以上有する場合には、その混合物の測定値をビスフェノールAP型ポリカーボネート樹脂の極限粘度として扱う。
 極限粘度は後述する実施例に記載の方法で測定される。
 ビスフェノールAP型ポリカーボネート樹脂のガラス転移温度(Tg)は、172℃以上であることが好ましく、175℃以上であることがより好ましく、180℃以上であることがさらに好ましい。上限としては、210℃以下であることが好ましく、200℃以下であることがより好ましく、190℃以下であることがさらに好ましい。
 ガラス転移温度(Tg)は後述する実施例に記載の方法で測定される。
 なお、樹脂組成物中に、ビスフェノールAP型ポリカーボネート樹脂を2種以上有する場合には、その混合物のTgの測定値をビスフェノールAP型ポリカーボネート樹脂のTgとして扱う。
 本発明において、ビスフェノールAP型ポリカーボネート樹脂のせん断速度122sec-1で測定した300℃における溶融粘度は、1,000Pa・s以上であることが好ましく、1,500Pa・s以上であることがより好ましく、3,000Pa・s以上であることがさらに好ましい。前記溶融粘度の上限値としては、8,000Pa・s以下であることが好ましく、7,000Pa・s以下であることがより好ましく、6,500Pa・s以下であることがさらに好ましい。
 なお、樹脂組成物中に、ビスフェノールAP型ポリカーボネート樹脂を2種以上有する場合には、その混合物の溶融粘度の測定値をビスフェノールAP型ポリカーボネート樹脂の溶融粘度として扱う。
 溶融粘度は後述する実施例に記載の方法で測定される。
 ビスフェノールAP型ポリカーボネート樹脂の含有量は、樹脂組成物中、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、45質量%以上であることがさらに好ましい。上限値としては、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、75質量%以下であることがさらに好ましい。
 ビスフェノールAP型ポリカーボネート樹脂は1種を用いても2種以上を用いてもよい。2種以上を用いる場合はその合計量が上記範囲となる。
<ビスフェノールA型ポリカーボネート樹脂(B)>
 ビスフェノールA型ポリカーボネート樹脂は、ビスフェノールAおよびその誘導体由来のカーボネート単位を有する樹脂をいい、下記式(B-1)で表される構成単位を有していることが好ましい。式中の*は末端基または他の構成単位との結合位置を表す。
Figure JPOXMLDOC01-appb-C000004
 式(B-1)中、Xは下記構造を表す。
Figure JPOXMLDOC01-appb-C000005
 RおよびRは、水素原子またはメチル基であり、少なくとも一方がメチル基であることが好ましく、両方がメチル基であることがより好ましい。
 式(B-1)は下記式(B-2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 ビスフェノールA型ポリカーボネート樹脂における、式(B-1)で表される構成単位の含有量は、末端基を除く全構成単位中、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることがさらに好ましい。上限値は特に限定されず、100モル%が式(B-1)で表される構成単位であってもよい。ビスフェノールA型ポリカーボネート樹脂として特に好ましくは実質的に全量が式(B-1)の構成単位で構成された樹脂である。ここでの実質的に全量とは、具体的には、末端基を除く全構成単位の99.0モル%以上であることを意味し、99.5モル%以上が好ましく、99.9モル%以上がより好ましい。
 ビスフェノールA型ポリカーボネート樹脂は、ビスフェノールAおよびその誘導体由来のカーボネート単位以外の他の構成単位を有していてもよい。このような他の構成単位を構成するジヒドロキシ化合物としては、例えば、特開2018-154819号公報の段落0014に記載の芳香族ジヒドロキシ化合物を挙げることができ、これらの内容は本明細書に組み込まれる。
 ビスフェノールA型ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
 本発明において、ビスフェノールA型ポリカーボネート樹脂の粘度平均分子量は25,000~35,000である。下限値としては、さらに26,000以上であることが好ましく、26,500以上であることがより好ましく、26,800以上であることがさらに好ましい。上限としては、34,000以下であることが好ましく、30,000以下であることがより好ましく、28,000以下であることがさらに好ましい。上記粘度平均分子量とすることにより、ビスフェノールAP型ポリカーボネート樹脂との相溶性をより向上させることができる。
 なお、樹脂組成物中に、ビスフェノールA型ポリカーボネート樹脂を2種以上有する場合には、その混合物の粘度平均分子量の測定値をビスフェノールA型ポリカーボネート樹脂の粘度平均分子量として扱う。
 粘度平均分子量は後述する実施例に記載の方法で測定される。
 本発明において、ビスフェノールA型ポリカーボネート樹脂の極限粘度は0.35dL/g以上であることが好ましく、0.4dL/g以上であることがより好ましく、0.45dL/g以上であることがさらに好ましく、0.5dL/g以上であることが一層好ましい。上限としては、1.0dL/g以下であることが好ましく、0.8dL/g以下であることがより好ましく、0.6dL/g以下であることがさらに好ましい。
 なお、樹脂組成物中に、ビスフェノールA型ポリカーボネート樹脂を2種以上有する場合には、その混合物の極限粘度の測定値をビスフェノールA型ポリカーボネート樹脂の極限粘度として扱う。
 極限粘度は後述する実施例に記載の方法で測定される。
 ビスフェノールA型ポリカーボネート樹脂のガラス転移温度(Tg)は、140℃以上であることが好ましく、145℃以上であることがより好ましく、150℃以上であることがさらに好ましい。上限としては、170℃以下であることが好ましい。上限は高いほど好ましいが、例えば、160℃以下、さらには155℃以下であっても十分に性能要求を満たすものである。
 なお、樹脂組成物中に、ビスフェノールA型ポリカーボネート樹脂を2種以上有する場合には、その混合物のTgの測定値をビスフェノールA型ポリカーボネート樹脂のTgとして扱う。
 ガラス転移温度(Tg)は後述する実施例に記載の方法で測定される。
 本発明において、ビスフェノールA型ポリカーボネート樹脂のせん断速度122sec-1で測定した300℃における溶融粘度は、100Pa・s以上であることが好ましく、500Pa・s以上であることがより好ましく、800Pa・s以上であることがさらに好ましい。前記溶融粘度の上限値としては、2,000Pa・s以下であることが好ましく、1,700Pa・s以下であることがより好ましく、1,500Pa・s以下であることがさらに好ましい。
 なお、樹脂組成物中に、ビスフェノールA型ポリカーボネート樹脂を2種以上有する場合には、その混合物の溶融粘度の測定値をビスフェノールA型ポリカーボネート樹脂の溶融粘度として扱う。
 溶融粘度は後述する実施例に記載の方法で測定される。
 ビスフェノールA型ポリカーボネート樹脂の含有量は、樹脂組成物中、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることがさらに好ましい。上限値としては、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、55質量%以下であることがさらに好ましい。
 ビスフェノールA型ポリカーボネート樹脂は1種を用いても2種以上を用いてもよい。2種以上を用いる場合はその合計量が上記範囲となる。
<樹脂のブレンド形態>
 本発明の樹脂組成物においては、ビスフェノールAP型ポリカーボネート樹脂の質量(WAP)とビスフェノールA型ポリカーボネート樹脂の質量(W)との比率(WAP/W)が、20/80~90/10である。前記比率(WAP/W)の下限値としては30/70以上であることが好ましく、40/60以上であることがより好ましく、45/55以上であることがさらに好ましく、51/49以上であってもよい。前記比率(WAP/W)の上限値としては、80/20以下であることが好ましく、75/25以下であることがより好ましく、72/28以下であることがさらに好ましい。
 前記比率(WAP/W)の上限値を超えると、樹脂組成物の耐熱性が低下する。他方、上記下限値を下回ると、樹脂組成物の溶融粘度が増加し、成形性が低下する。
 本発明の樹脂組成物においては、ビスフェノールAP型ポリカーボネート樹脂の極限粘度(ηAP)とビスフェノールA型ポリカーボネート樹脂の極限粘度(η)との差(|ηAP―η|)が0.04~0.18dL/gである。両樹脂の極限粘度の差を上記範囲とすることにより、樹脂組成物の溶融粘度を適切に調整しつつ、成形品において良好な透明性と耐熱性を高いレベルで達成することが可能になる。両樹脂の極限粘度の差が上記範囲外となると、それらの樹脂の相溶性が低下し、得られる成形体の透明性が失われる。
 かかる観点から、上記極限粘度差(|ηAP-η|)の下限値は、0.06dL/g以上であることが好ましく、0.07dL/g以上であることがより好ましく、0.08dL/g以上であることがさらに好ましく、0.09dL/g以上であることが一層好ましい。上限値としては、0.16dL/g以下であることが好ましく、0.14dL/g以下であることがより好ましく、0.13dL/g以下であることがさらに好ましく、0.12dL/g以下であることが一層好ましい。
 また、好ましくは、極限粘度(η)>極限粘度(ηAP)である。
 本発明においては、ビスフェノールAP型ポリカーボネート樹脂の粘度平均分子量(MvAP)とビスフェノールA型ポリカーボネート樹脂の粘度平均分子量(Mv)との差(|MvAP-Mv|)は、5,000以上であることが好ましく、5,500以上であることがより好ましく、6,000以上であることがさらに好ましく、6,500以上であることが一層好ましい。上限値としては、15,000以下であることが好ましく、13,000以下であることがより好ましく、11,000以下であることがさらに好ましく、9,000以下であることが一層好ましく、8,000以下であることがより一層好ましく、7,500以下であることがさらに一層好ましい。
 なお、樹脂組成物中に、ビスフェノールAP型ポリカーボネート樹脂ないしビスフェノールA型ポリカーボネート樹脂を2種以上有する場合には、その混合物における測定値を粘度平均分子量として扱う。
 本発明において、前記ビスフェノールAP型ポリカーボネート樹脂とビスフェノールA型ポリカーボネート樹脂との合計含有量は、樹脂組成物に含まれる樹脂成分の合計量に対し、85質量%超であることが好ましく、90質量%以上であることがより好ましく、92質量%以上であることがさらに好ましく、95質量%以上であることが一層好ましく、97質量%以上であることがより一層好ましく、99質量%以上であることがさらに一層好ましい。上限値は特になく全量(100質量%)がビスフェノールAP型ポリカーボネート樹脂およびビスフェノールA型ポリカーボネート樹脂で構成されていてもよい。前記範囲とすることにより、耐熱性と靭性を両立することが可能となる。
<酸化防止剤(C)>
 本発明の樹脂組成物は、酸化防止剤を含有することが好ましい。
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤などが挙げられる。中でも本発明においては、リン系酸化防止剤およびフェノール系酸化防止剤(より好ましくはヒンダードフェノール系酸化防止剤)が好ましい。リン系酸化防止剤は、成形品の色相に優れることから特に好ましい。
 リン系酸化防止剤としての好ましいホスファイト系安定剤としては、以下の式(1)または(2)で表されるホスファイト化合物が好ましい。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、R11およびR12はそれぞれ独立に、炭素原子数1~30のアルキル基または炭素原子数6~30のアリール基を表す。)
Figure JPOXMLDOC01-appb-C000008
(式(2)中、R13~R17は、それぞれ独立に、水素原子、炭素原子数6~20のアリール基または炭素原子数1~20のアルキル基を表す。)
 上記式(1)中、R11、R12で表されるアルキル基は、それぞれ独立に、炭素原子数1~10の直鎖または分岐のアルキル基であることが好ましい。R11、R12がアリール基である場合、以下の式(1-a)、(1-b)、または(1-c)のいずれかで表されるアリール基が好ましい。式中の*は他の部位との結合位置を表す。
Figure JPOXMLDOC01-appb-C000009
(式(1-a)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。式(1-b)中、Rは、それぞれ独立に、炭素原子数1~10のアルキル基を表す。)
 ヒンダードフェノール系酸化防止剤としては、特開2018-090677号公報の段落0063、特開2018-188496号公報の段落0076の記載を参照でき、この内容は本明細書に組み込まれる。
 酸化防止剤は、上記の他、特開2017-031313号公報の段落0057~0061の記載を参酌でき、この内容は本明細書に組み込まれる。
 酸化防止剤の含有量は、ポリカーボネート樹脂100質量部に対して、0.01質量部以上であることが好ましく、0.03質量部以上であることがより好ましく、0.05質量部以上であることがさらに好ましい。また、酸化防止剤の含有量の上限値としては、ポリカーボネート樹脂100質量部に対して、0.4質量部以下が好ましく、0.3質量部以下がより好ましく、0.2質量部以下がさらに好ましく、0.15質量部以下であることが一層好ましい。
 酸化防止剤の含有量を上記の下限値以上とすることにより、色相、耐熱変色性がより良好な成形品を得ることができる。また、酸化防止剤の含有量を上記上限値以下とすることにより、耐熱変色性を悪化させることなく、湿熱安定性が良好な成形品を得ることができる。
 また、酸化防止剤として、リン系酸化防止剤とフェノール系酸化防止剤(好ましくはヒンダードフェノール系酸化防止剤)を組み合わせて使用する場合、樹脂組成物は、ポリカーボネート樹脂100質量部に対して、リン系酸化防止剤を0.001~0.2質量部、フェノール系酸化防止剤を0.001~0.2質量部の範囲で含有することが好ましい。
 酸化防止剤は、1種のみ用いても、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
<離型剤(D)>
 本発明の樹脂組成物は、離型剤を含むことが好ましい。
 離型剤を含むことにより、フィルム状またはシート状の成形品を巻き取る際の巻取性を向上させることができる。また、立体的な形状をもつ成形品については、金型を用いて成形する場合の離型をより容易にすることができる。
 離型剤の種類は特に定めるものではないが、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200~15,000の脂肪族炭化水素化合物、数平均分子量100~5000のポリエーテル、ポリシロキサン系シリコーンオイル等が挙げられる。
 離型剤の詳細は、国際公開第2015/190162号の段落0035~0039の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 離型剤の含有量は、ポリカーボネート樹脂100質量部に対して、0.001質量部以上であることが好ましく、0.005質量部以上であることがより好ましく、0.007質量部以上であることがさらに好ましい。上限値としては、0.5質量部以下であることが好ましく、0.3質量部以下であることがより好ましく、0.1質量部以下であることがさらに好ましい。
 離型剤は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
<その他の成分>
 本発明の樹脂組成物は、上記成分の他、ビスフェノールA型ポリカーボネート樹脂およびビスフェノールAP型ポリカーボネート樹脂以外のポリカーボネート樹脂、ポリカーボネート樹脂以外の熱可塑性樹脂、紫外線吸収剤、熱安定剤、難燃剤、難燃助剤、着色剤、帯電防止剤、蛍光増白剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤、アンチブロッキング剤、衝撃改良剤、摺動改良剤、色相改良剤、酸トラップ剤等を含んでいてもよい。これらの成分は、1種を用いてもよいし、2種以上を併用してもよい。
 上記成分の含有量は、含有する場合、合計で0.1~5質量%であることが好ましい。
 ビスフェノールA型ポリカーボネート樹脂およびビスフェノールAP型ポリカーボネート樹脂以外のポリカーボネート樹脂としては、ビスフェノールC型ポリカーボネート樹脂が例示される。また、本発明の樹脂組成物は、ビスフェノールC型ポリカーボネート樹脂を実質的に含まない構成とすることもできる。実質的に含まないとは、樹脂組成物に含まれる樹脂成分のうち、ビスフェノールC型ポリカーボネート樹脂の含有量が1質量%未満であることをいう。
<各物性>
 本発明の樹脂組成物は、溶融粘度が適切な範囲に調整され、良好な成形性が得られることが好ましい。具体的に、本発明の樹脂組成物は、せん断速度122sec-1で測定した300℃における溶融粘度は3,500Pa・s以下であることが好ましく、3,000Pa・s以下であることがより好ましく、2,500Pa・s以下であることがさらに好ましく、2,000Pa・s以下であってもよい。下限値は、1,000Pa・s以上であることが成形性の観点から好ましく、1,200Pa・s以上であることがより好ましく、1,500Pa・s以上であってもよい。
 なお、前記溶融粘度は、後述する実施例に記載の方法に基づき測定した値を採用する。
 本発明の樹脂組成物は、成形品としたときに透明であることが好ましく、また、光の透過性が高いことがより好ましい。
 本発明の樹脂組成物は、4mmの厚さの成形品に成形したときの全光線透過率が、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。上限値としては、特に制限されないが、99%以下、さらには、95%以下であっても十分に性能要求を満たすものである。
 なお、本明細書において全光線透過率は、後述する実施例に記載の方法に基づき測定した値を採用する。
 また、本発明の樹脂組成物は、成形品としたときに曇りがないことが好ましく、4mmの厚さの成形品に成形したときのヘイズが5.0%以下であることが好ましく、4.0%以下であることがより好ましく、3.0%以下であることがさらに好ましく、2.5%以下であることが一層好ましく、2.0%以下であってもよい。下限値は特に制限されないが、0.1%以上、さらには、0.5%以上でも、十分に性能要求を満たすものである。
 なお、本明細書においてヘイズは、後述する実施例に記載の方法に基づき測定した値を採用する。
 本発明の樹脂組成物は、ISO75-1に従って測定した1.8MPaの荷重における荷重たわみ温度が140℃以上であることが好ましく、143℃以上であることがより好ましく、145℃以上であることがさらに好ましい。上限は高いほど好ましいが、例えば、200℃以下、さらには160℃以下であっても十分に性能要求を満たすものである。
 なお、本明細書において荷重たわみ温度は、後述する実施例に記載の方法に基づき測定した値を採用する。
<樹脂組成物の製造方法>
 本発明の樹脂組成物の製造方法に制限はなく、公知の樹脂組成物の製造方法を広く採用でき、上記ポリカーボネート樹脂、および、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
 なお、溶融混練の温度は特に制限されないが、通常240~360℃の範囲である。
 上記溶融混練した樹脂組成物は、例えば、ストランドカットによりペレットを得る。こうして得られたペレットを、例えばフィルム押出機により押出成形することにより、フィルム状またはシート状の成形品を製造することができる。また、射出成形機により射出成形することにより、任意の形状の成形品を製造することができる。
<成形品>
 本発明の成形品は、本発明の樹脂組成物から成形される。本発明の成形品は、電気電子機器、OA機器、携帯情報末端、機械部品、家電製品、車輌部品、各種容器、照明機器等の部品等に好適に用いられる。これらの中でも、特に、電気電子機器、OA機器、情報端末機器および家電製品の筐体、照明機器および車輌部品(特に、車輌内装部品)、スマートフォンやタッチパネル等の表層フィルム、光学材料、光学ディスクに好適に用いられる。特に、本発明の成形品は、タッチパネルのセンサー用として適している。
 本発明の成形品の一実施形態として、フィルムが例示され、特に高耐熱用途の透明フィルムとして好適に使用される。より具体的には、透明電極基材用フィルムとして使用することができる。ここで、透明電極とは、透明基材の一方または両方の面に透明電極層が配置されたものである。透明基材と透明電極層との間には、さらなる層が存在していてもよい。この透明電極における透明基材として、本発明の透明フィルムを使用することができる。また、高耐熱用途の製品を保護するための保護フィルムとしても好適に使用することができる。
 本発明の樹脂組成物から形成されたフィルムの厚さは特に限定されないが、30μm以上であることが好ましく、40μm以上であることがより好ましく、50μm以上であってもよく、さらには、80μm以上であってもよい。上限値としては、5mm以下であることが好ましく、3mm以下であることがより好ましく、1mm以下であることがさらに好ましい。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明がこれにより限定して解釈されるものではない。
<原材料>
・ビスフェノールAP型ポリカーボネート樹脂(A)
(A1)ビスフェノールAPを出発原料とする界面重合法により得られた芳香族ポリカーボネート樹脂(三菱ガス化学社製、FPC-0220、粘度平均分子量:20,200、極限粘度0.44dL/g、Tg:184℃、溶融粘度:6,400Pa・s)
(A2)ビスフェノールAPを出発原料とする界面重合法により得られた芳香族ポリカーボネート樹脂(三菱ガス化学社製、FPC-0210、粘度平均分子量:11,500、極限粘度0.27dL/g、Tg:170℃、溶融粘度:1,300Pa・s)
・ビスフェノールA型ポリカーボネート樹脂(B)
(B1)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、E-2000F、粘度平均分子量27,000、極限粘度0.54dL/g、Tg:151℃、溶融粘度:1,050Pa・s)
(B2)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、E-1000F、粘度平均分子量:32,500、極限粘度0.64dL/g、Tg:154℃、溶融粘度:1,800Pa・s)
(B3)ビスフェノールAを出発原料とする界面重合法により得られた芳香族ポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、S-3000F、粘度平均分子量:21,000、極限粘度0.43dL/g、Tg:148℃、溶融粘度:300Pa・s)
・酸化防止剤(C)
(C1)ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト(リン系酸化防止剤、ADEKA社製、アデカスタブPEP-36)
(C2)トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト(リン系酸化防止剤 ADEKA社製、アデカスタブ2112)
(C3)ペンタエリスリトールテトラキス[3-3,5-ジ-tert-ブチル-4-ヒドロキシフェニル]プロピオネート(フェノール系酸化防止剤、BASF社製、イルガノックス1010)
・離型剤(D)
(D1)グリセリンモノステアレート(理研ビタミン株式会社製、リケマールS-100A)
実施例1~3、比較例1~5
 上記に記載した各成分を、それぞれ表1に記載の配合量となるように計量した。その後、タンブラーにて15分間混合した後、ベント付二軸押出機により、シリンダー温度320℃で溶融混練し、ストランドカットによりペレットを得た。
 二軸押出機としては、スクリュー径32mmの日本製鋼所社製「TEX30α」を用いた。
<極限粘度および粘度平均分子量の測定方法>
 樹脂の極限粘度[η](単位dL/g)は、溶媒としてメチレンクロライドを使用して測定した。温度は25℃条件とした。ウベローデ粘度計にて、各溶液濃度[C](g/dL)での比粘度[ηsp]を測定した。得られた比粘度の値と濃度から下記式により極限粘度を算出した。
Figure JPOXMLDOC01-appb-M000010
 粘度平均分子量[Mv]は、Schnellの粘度式、すなわち、η=1.23×10-4Mv0.83から算出した。
<ガラス転移温度(Tg)の測定方法>
 示差走査熱量計(EXSTAR DSC7020、エスアイアイ・ナノテクノロジー社製)を用いて、試料約5~10mgを20℃/分の昇温速度で40℃から280℃まで加熱した。5分間温度を保持した後、40℃まで40℃/分の速度で冷却した。40℃で10分保持し、再び280℃まで10℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、中間点ガラス転移温度をガラス転移温度(Tg)とした。
<溶融粘度の測定>
 得られたペレットを120℃で5時間乾燥した。その後、キャピラリーレオメーターを用いて、300℃にて、長さ10mm×直径1.0mmのノズル穴(オリフィス)から樹脂を押し出した。このときの、せん断速度122sec-1におけるせん断粘度(単位:Pa・s)を測定し、溶融粘度とした。
 キャピラリーレオメーターとしては、東洋精機製作所社製「キャピログラフ1B」(商品名)を用いた。
<全光線透過率およびヘイズの測定>
 得られたペレットを、120℃で5時間、熱風循環式乾燥機により乾燥した。その後、射出成形機により、シリンダー温度300℃、金型温度80℃、成形サイクル45秒の条件にて平板状試験片(60mm×60mm×4mm)を成形した。
 射出成形機としては、日本製鋼所社製「J110AD」(商品名)を用いた。
 ヘイズメーターを用いて、JIS-K-7361およびJIS-K-7136に準拠して、D65光源10°視野の条件にて、射出成形にて得られた板状試験片の全光線透過率(%)およびヘイズ(%)を測定した。
 ヘイズメーターとしては、村上色彩技術研究所社製「HM-150」(商品名)を用いた。
<荷重たわみ温度(HDT)の測定>
 得られたペレットを120℃で5時間、熱風循環式乾燥機により乾燥した。
 その後、射出成形機により、シリンダー温度300℃、金型温度80℃、成形サイクル45秒の条件にて、JIS-K7139に準拠したISO多目的試験片(タイプA1、4mm厚)を成形した。
 射出成形機としては、日本製鋼所社製「J110AD」(商品名)を用いた。
 上記ISO多目的試験片を用い、ISO75ー1に従い、HDT試験装置を用いて、荷重1.80MPaの条件(A法)にて荷重たわみ温度(単位:℃)を測定した。
 HDT(荷重たわみ温度)試験装置としては、東洋精機製作所社製「3M-2」(商品名)を用いた。
<耐屈曲性試験方法>
 得られたペレットをスクリュー径28mmのTダイリップの付いたベント付き二軸フィルム押出機(東芝機械社製「TEM26DS」)によりシリンダー温度300℃にて溶融させ、130℃の剛体鏡面ロールにて押し出すことにより、50μm厚のフィルムを作製した。
 得られたフィルムを75×25mmのサイズに切り出し、JIS C5016に準拠して、FPC屈曲試験機を用いて、折曲げ面の曲率半径を3mmとする耐屈曲試験を行った。今回の耐屈曲試験では、20万回の屈曲終了後の試験サンプルのクラック発生の有無を、目視にて、下記の基準で評価判定した。
 A:クラック発生なし
 B:クラック発生あり
 FPC屈曲試験機としては、安田精機製作所社製「No.306FPC屈曲試験機」(商品名)を用いた。
Figure JPOXMLDOC01-appb-T000011
 表1から分かるとおり、ビスフェノールAP型ポリカーボネート樹脂とビスフェノールA型ポリカーボネート樹脂について、所定の粘度平均分子量のものを用い、所定の含量比とし、所定の極限粘度の差とすることにより、得られる成形品が透明性に優れ、全光線透過率が高く、ヘイズが小さく、さらに、成形性に富み、たわみ温度が高く耐熱性に優れていた(実施例1~3)。
 これに対して、ビスフェノールA型ポリカーボネート樹脂の粘度平均分子量が小さく、ビスフェノールAP型ポリカーボネート樹脂との極限粘度の差が小さい場合、全光線透過率が低く、ヘイズが高かった(比較例1)。
 また、ビスフェノールAP型ポリカーボネート樹脂を配合しない場合、荷重たわみ温度が低く耐熱性に劣っていた(比較例2)。
 一方、ビスフェノールA型ポリカーボネート樹脂を配合しない場合、樹脂組成物の溶融粘度が高く、成形できなかった(比較例3)。
 また、ビスフェノールAP型ポリカーボネート樹脂の粘度平均分子量が小さく、ビスフェノールA型ポリカーボネート樹脂との極限粘度の差が大きい場合、得られる樹脂組成物の耐熱性が劣っていた。(比較例4)。
 さらに、ビスフェノールA型ポリカーボネート樹脂の粘度平均分子量が大きく、ビスフェノールAP型ポリカーボネート樹脂との極限粘度の差が大きい場合、樹脂組成物の溶融粘度が高く、成形できなかった(比較例5)。

Claims (12)

  1.  粘度平均分子量が18,500~23,000であるビスフェノールAP型ポリカーボネート樹脂と、
     粘度平均分子量が25,000~35,000であるビスフェノールA型ポリカーボネート樹脂と
    を含む樹脂組成物であって、
     前記ビスフェノールAP型ポリカーボネート樹脂の質量(WAP)とビスフェノールA型ポリカーボネート樹脂の質量(W)との比率(WAP/W)が、20/80~90/10であり、
     前記ビスフェノールAP型ポリカーボネート樹脂の極限粘度(ηAP)とビスフェノールA型ポリカーボネート樹脂の極限粘度(η)との差(|ηAP-η|)が0.04~0.18dL/gである、
     樹脂組成物。
  2.  前記ビスフェノールAP型ポリカーボネート樹脂とビスフェノールA型ポリカーボネート樹脂の合計含有量が、前記樹脂組成物に含まれる樹脂成分の合計量の85質量%超である、請求項1に記載の樹脂組成物。
  3.  前記ビスフェノールAP型ポリカーボネート樹脂の粘度平均分子量とビスフェノールA型ポリカーボネート樹脂の粘度平均分子量の差が5,000~15,000である、請求項1または2に記載の樹脂組成物。
  4.  前記樹脂組成物の、せん断速度122sec-1で測定した300℃における溶融粘度が1,000~3,500Pa・sである、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記樹脂組成物の、ISO75-1に従って測定した1.8MPaの荷重における荷重たわみ温度が140℃以上である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記ビスフェノールAP型ポリカーボネート樹脂のガラス転移温度が172℃以上である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記樹脂組成物を4mm厚さの成形品に成形したときの全光線透過率が80%以上である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  前記樹脂組成物を4mm厚さの成形品に成形したときのヘイズが5.0%以下である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  さらに、酸化防止剤および離型剤の少なくとも1種を含む、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  請求項1~9のいずれか1項に記載の樹脂組成物から形成された成形品。
  11.  前記成形品がフィルムである、請求項10に記載の成形品。
  12.  前記成形品がタッチパネルのセンサー用である、請求項10または11に記載の成形品。
PCT/JP2020/004021 2019-02-06 2020-02-04 樹脂組成物および成形品 WO2020162419A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020524927A JP6806286B1 (ja) 2019-02-06 2020-02-04 樹脂組成物および成形品
CN202080012554.7A CN113396184B (zh) 2019-02-06 2020-02-04 树脂组合物和成型品
EP20752018.0A EP3922676B1 (en) 2019-02-06 2020-02-04 Resin composition and formed article
US17/428,331 US20220089865A1 (en) 2019-02-06 2020-02-04 Resin composition and formed article
KR1020217027025A KR102398728B1 (ko) 2019-02-06 2020-02-04 수지 조성물 및 성형품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-019462 2019-02-06
JP2019019462 2019-02-06

Publications (1)

Publication Number Publication Date
WO2020162419A1 true WO2020162419A1 (ja) 2020-08-13

Family

ID=71947750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004021 WO2020162419A1 (ja) 2019-02-06 2020-02-04 樹脂組成物および成形品

Country Status (6)

Country Link
US (1) US20220089865A1 (ja)
EP (1) EP3922676B1 (ja)
JP (1) JP6806286B1 (ja)
KR (1) KR102398728B1 (ja)
CN (1) CN113396184B (ja)
WO (1) WO2020162419A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443558A (en) 1987-08-10 1989-02-15 Daicel Chem Resin composition excellent in compatibility
JPH02272060A (ja) * 1989-03-11 1990-11-06 Bayer Ag ポリカーボネート混合物
JPH05179096A (ja) * 1991-12-27 1993-07-20 Sumitomo Dow Ltd 芳香族ポリカーボネート樹脂組成物
WO2015190162A1 (ja) 2014-06-11 2015-12-17 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物、その成形品および製造方法
JP2017031313A (ja) 2015-07-31 2017-02-09 三菱瓦斯化学株式会社 樹脂組成物及びその成形体
WO2017203852A1 (ja) * 2016-05-27 2017-11-30 三菱瓦斯化学株式会社 光学用ポリカーボネート樹脂組成物及びその製造方法並びにそれを含むメガネレンズ及びカメラレンズ
JP2017210569A (ja) * 2016-05-27 2017-11-30 三菱瓦斯化学株式会社 光学用ポリカーボネート樹脂
JP2018090677A (ja) 2016-11-30 2018-06-14 三菱瓦斯化学株式会社 芳香族ポリカーボネート樹脂シート又はフィルム
JP2018154819A (ja) 2017-03-15 2018-10-04 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物および成形品
JP2018188496A (ja) 2017-04-28 2018-11-29 三菱エンジニアリングプラスチックス株式会社 炭素繊維/ポリカーボネート樹脂複合ペレット及びその製造方法
JP2019156942A (ja) * 2018-03-12 2019-09-19 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物および成形品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209119A (ja) * 1991-10-11 1993-08-20 Unitika Ltd 樹脂組成物
US9255200B2 (en) * 2012-08-31 2016-02-09 Sabic Global Technologies B.V. Heat resistance in polycarbonate compositions
US9127119B2 (en) * 2013-01-11 2015-09-08 Sabic Global Technologies B.V. Polycarbonate compositions having improved thermal dimensional stability and high refractive index

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443558A (en) 1987-08-10 1989-02-15 Daicel Chem Resin composition excellent in compatibility
JPH02272060A (ja) * 1989-03-11 1990-11-06 Bayer Ag ポリカーボネート混合物
JPH05179096A (ja) * 1991-12-27 1993-07-20 Sumitomo Dow Ltd 芳香族ポリカーボネート樹脂組成物
WO2015190162A1 (ja) 2014-06-11 2015-12-17 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物、その成形品および製造方法
JP2017031313A (ja) 2015-07-31 2017-02-09 三菱瓦斯化学株式会社 樹脂組成物及びその成形体
WO2017203852A1 (ja) * 2016-05-27 2017-11-30 三菱瓦斯化学株式会社 光学用ポリカーボネート樹脂組成物及びその製造方法並びにそれを含むメガネレンズ及びカメラレンズ
JP2017210569A (ja) * 2016-05-27 2017-11-30 三菱瓦斯化学株式会社 光学用ポリカーボネート樹脂
JP2018090677A (ja) 2016-11-30 2018-06-14 三菱瓦斯化学株式会社 芳香族ポリカーボネート樹脂シート又はフィルム
JP2018154819A (ja) 2017-03-15 2018-10-04 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物および成形品
JP2018188496A (ja) 2017-04-28 2018-11-29 三菱エンジニアリングプラスチックス株式会社 炭素繊維/ポリカーボネート樹脂複合ペレット及びその製造方法
JP2019156942A (ja) * 2018-03-12 2019-09-19 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物および成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922676A4

Also Published As

Publication number Publication date
KR20210111317A (ko) 2021-09-10
EP3922676B1 (en) 2024-06-19
EP3922676A1 (en) 2021-12-15
US20220089865A1 (en) 2022-03-24
CN113396184A (zh) 2021-09-14
JPWO2020162419A1 (ja) 2021-02-18
JP6806286B1 (ja) 2021-01-06
EP3922676A4 (en) 2022-03-23
KR102398728B1 (ko) 2022-05-16
CN113396184B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
JP5863350B2 (ja) ポリカーボネート樹脂組成物
JP2008274007A (ja) ポリカーボネート樹脂組成物
KR102564588B1 (ko) 난연 폴리카보네이트 수지 조성물, 그것을 이용한 시트 및 필름, 및 그들의 제조 방법
JP7559754B2 (ja) 組成物、平板状成形体、および、平板状成形体の製造方法
KR101557567B1 (ko) 폴리카보네이트 수지 조성물
KR102172566B1 (ko) 아이소소바이드 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
JP6806286B1 (ja) 樹脂組成物および成形品
JP6777269B1 (ja) 樹脂組成物および成形品
JP6879444B1 (ja) フィルムおよびフィルムの製造方法
JP6795128B1 (ja) 組成物、フィルム、およびフィルムの製造方法
JP6835298B1 (ja) フィルムおよびフィルムの製造方法
JP4050575B2 (ja) ポリカーボネート樹脂組成物及びその成形品
JP6825755B1 (ja) 組成物、フィルムおよびフィルムの製造方法
WO2020241672A1 (ja) 組成物、フィルム、およびフィルムの製造方法
KR100583064B1 (ko) 향상된 충격강도와 내화학성을 가지는 투명폴리카보네이트/폴리에스테르 수지 조성물
JP2023101080A (ja) 樹脂組成物、フィルム、多層体および透明導電性フィルム
CN115895223A (zh) 树脂组合物、膜和多层膜
CN115895222A (zh) 树脂组合物、膜和多层膜
JP6524629B2 (ja) 樹脂組成物、及び樹脂成形体
JP2011127037A (ja) 低光弾性成形体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020524927

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217027025

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020752018

Country of ref document: EP

Effective date: 20210906