WO2017203852A1 - 光学用ポリカーボネート樹脂組成物及びその製造方法並びにそれを含むメガネレンズ及びカメラレンズ - Google Patents
光学用ポリカーボネート樹脂組成物及びその製造方法並びにそれを含むメガネレンズ及びカメラレンズ Download PDFInfo
- Publication number
- WO2017203852A1 WO2017203852A1 PCT/JP2017/014489 JP2017014489W WO2017203852A1 WO 2017203852 A1 WO2017203852 A1 WO 2017203852A1 JP 2017014489 W JP2017014489 W JP 2017014489W WO 2017203852 A1 WO2017203852 A1 WO 2017203852A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polycarbonate resin
- resin composition
- optical
- lens
- synthesis example
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/04—Aromatic polycarbonates
- C08G64/06—Aromatic polycarbonates not containing aliphatic unsaturation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/22—General preparatory processes using carbonyl halides
- C08G64/24—General preparatory processes using carbonyl halides and phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/30—General preparatory processes using carbonates
- C08G64/307—General preparatory processes using carbonates and phenols
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
Definitions
- the present invention relates to an optical polycarbonate resin composition and a method for producing the same.
- Polycarbonate resin is excellent in transparency, impact resistance, heat resistance, dimensional stability, etc., and is used in various fields as a general-purpose engineering plastic. In particular, it is often used in the optical field by utilizing its excellent transparency.
- General polycarbonate resin is derived from bisphenol A (hereinafter abbreviated as BPA) and has a relatively high refractive index (nD, 1.59), so it is excellent in optical lenses, particularly in impact resistance, especially in North America. Used as a lens for glasses.
- BPA bisphenol A
- nD refractive index
- lenses with a refractive index (ne) of less than 1.60 are treated as medium refractive lenses with a large lens thickness. It has been desired to increase added value as a lens.
- Patent Document 1 polycarbonate derived from 1,1-bis (4-hydroxyphenyl) -1-phenylethane
- An object of the present invention is to provide an optical polycarbonate resin composition that can be an impact-resistant and inexpensive lens material, a manufacturing method thereof, and various lenses using the resin composition.
- the present inventors mixed a BPAP homopolycarbonate having a specific intrinsic viscosity and a BPA homopolycarbonate having a specific intrinsic viscosity at a specific mixing ratio.
- the present inventors have found an optical polycarbonate resin composition that can be an impact-resistant and inexpensive lens material.
- the present invention relates to an optical polycarbonate resin composition, a method for producing the same, and a lens using the resin composition.
- An eyeglass lens comprising the optical polycarbonate resin composition according to any one of 1) to 5).
- a camera lens comprising the optical polycarbonate resin composition according to any one of 1) to 5).
- the optical polycarbonate resin composition of the present invention can be an impact-resistant and inexpensive lens material. Furthermore, it can be easily processed into an eyeglass lens or a camera lens by injection molding or the like.
- the optical polycarbonate resin composition of the present invention can be used as various lens materials such as an f ⁇ lens and a Fresnel lens, an optical film such as a retardation film, and a sheet material in addition to a spectacle lens and a camera lens.
- the polycarbonate resin constituting the optical polycarbonate resin composition of the present invention can be obtained by a known method, for example, a direct reaction between bisphenols and phosgene (phosgene method), or an ester exchange reaction between bisphenols and bisaryl carbonate (transesterification method). ) And the like.
- BPAP for deriving the polycarbonate resin (B) containing the structural unit represented by the structural formula (2) Are each reacted with a carbonate-forming compound.
- Examples of the carbonic acid ester forming compound include phosgene, bisallyl carbonate such as diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate, and dinaphthyl carbonate. Two or more of these compounds may be used in combination. From the viewpoints of flowability, price, purity, etc., phosgene or diphenyl carbonate is preferably used.
- BPA and BPAP are each reacted with phosgene, usually in the presence of an acid binder and a solvent.
- the acid binder include pyridine and alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
- examples of the solvent include methylene chloride and chloroform.
- a catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt is used to accelerate the polycondensation reaction, and phenol, pt-butylphenol, p-cumylphenol are used to adjust the degree of polymerization.
- a monofunctional compound such as a long-chain alkyl-substituted phenol.
- a small amount of an antioxidant such as sodium sulfite or hydrosulfite, or a branching agent such as phloroglucin or isatin bisphenol may be added.
- the reaction temperature is usually in the range of 0 to 150 ° C, preferably 5 to 40 ° C. While the reaction time depends on the reaction temperature, it is generally 0.5 min-10 hr, preferably 1 min-2 hr. Further, during the reaction, it is desirable to maintain the pH of the reaction system at 10 or more.
- BPA and BPAP are mixed with bisaryl carbonate and reacted at high temperature under reduced pressure.
- the reaction is usually carried out at a temperature in the range of 150 to 350 ° C., preferably 200 to 300 ° C., and the degree of vacuum is finally preferably 133 Pa or less, and the phenols derived from the bisaryl carbonate produced by the transesterification reaction Is distilled out of the system.
- the reaction time depends on the reaction temperature and the degree of reduced pressure, but is usually about 1 to 24 hours.
- the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon. Moreover, you may react by adding a molecular weight regulator, antioxidant, and a branching agent as needed.
- the intrinsic viscosity of the polycarbonate resin (A) containing the unit structure represented by the structural formula (1) is in the range of 0.320 to 0.630 dL / g, preferably 0.330 to The range is 0.560 dL / g. In such a range, the fluidity and mechanical strength necessary for lens molding can be maintained.
- the intrinsic viscosity of the polycarbonate resin (B) containing the unit structure represented by the structural formula (2) is in the range of 0.320 to 0.600 dL / g, preferably 0.350 to The range is 0.590 dL / g. In such a range, the fluidity and mechanical strength necessary for lens molding can be maintained.
- the ratio of the polycarbonate resin (B) in the polycarbonate resin composition is in the range of 45 to 75% by mass, preferably 46 to 63% by mass, more preferably 50%. It is in the range of ⁇ 63 mass%.
- an optical polycarbonate resin composition having a refractive index (ne) at e-line (546.1 nm) of preferably 1.600 or more that is, molding obtained by molding the optical polycarbonate resin composition of the present invention by injection molding.
- the refractive index of the body is preferably 1.600 or more, more preferably 1.601 to 1.608, and the Abbe number is preferably 28.0 or more, more preferably 28. An optical property of 3 to 29.2 can be maintained.
- the refractive index (ne) is less than 1.600, the added value as a lens is low, and when the Abbe number is less than 28.0, it is easy to feel chromatic aberration in high myopia and hyperopia lenses.
- the refractive index of the body (nd (sometimes referred to as the nd line)) is 1.595 or more, preferably 1.596 to 1.604, from the practical viewpoint.
- the ratio of the polycarbonate resin (A) and the polycarbonate resin (B) is preferably 90% by mass or more, more preferably 95% by mass or more, 99 More preferably, it is mass%.
- the refractive index represents a value obtained by rounding off the fourth digit of the decimal point
- the Abbe number represents a value obtained by rounding up the second digit of the decimal point.
- the molding fluidity of the optical polycarbonate resin composition of the present invention has a fluidity index Q value measured under the conditions of 280 ° C., 15.69 MPa, orifice diameter 1 mm ⁇ length 10 mm using a Koka type flow tester, It is preferably 2.0 ⁇ 10 ⁇ 2 cm 3 / sec or more. More preferably, it is 2.0 ⁇ 10 ⁇ 2 to 11.1 ⁇ 10 ⁇ 2 cm 3 / sec.
- the molding fluidity required for lens molding can be obtained at 2.0 ⁇ 10 ⁇ 2 cm 3 / sec or more.
- the optical polycarbonate resin composition of the present invention is produced by mixing a polycarbonate resin (A) and a polycarbonate resin (B) solid, a polycarbonate resin (A) solution, and a polycarbonate resin (B) solution. There is a way to mix.
- the former is a method of obtaining a pellet-shaped resin composition using a single-screw or twin-screw extruder after mixing polycarbonate resin (A) and polycarbonate resin (B) powder or pellets with a mechanical blender or the like.
- mixing is easy, there is a case where pellets which are not sufficiently mixed and become cloudy are obtained by one-time extrusion. In that case, it is necessary to repeat blending and extruding twice or more until it becomes transparent.
- the screw which improved mixing performance such as a dalmage screw and the screw which has a kneading disc segment, in order to accelerate
- the latter is a method in which the polycarbonate resin (A) and the polycarbonate resin (B) are dissolved and mixed in a solvent, that is, a resin solution containing the polycarbonate resin (A) and the polycarbonate resin (B) is mixed in a solution state, Thereafter, the solvent is removed to obtain a resin composition in the form of powder or pellets.
- a solvent that is, a resin solution containing the polycarbonate resin (A) and the polycarbonate resin (B) is mixed in a solution state, Thereafter, the solvent is removed to obtain a resin composition in the form of powder or pellets.
- the polycarbonate resin (A) and the polycarbonate resin (B) are dissolved in another solvent, and then the respective resin solutions are mixed.
- the polycarbonate resin (A) and the polycarbonate resin (B) may be dissolved in the same solvent and then mixed. Since it is easy to adjust the mixing ratio of the polycarbonate resin (A) and the polycarbonate resin (B) as appropriate, after the polycarbonate resin (A) and the polycarbonate resin (B) are dissolved in another solvent, the respective resin solutions are mixed. Is preferred.
- Examples of the solvent for mixing the optical polycarbonate resin composition of the present invention in a solution state include, for example, dichloromethane, chloroform, 1,2-dichloroethylene, tetrachloroethane, chlorobenzene and the like as halogen-based organic solvents, and non-halogen-based organic solvents.
- Examples of the solvent include aromatic hydrocarbons such as toluene and xylene, cyclic ketones such as cyclohexanone, cyclopentanone and isophorone, cyclic ethers such as tetrahydrofuran and dioxane, dimethylformamide and dimethyl sulfoxide.
- a solvent may be used independently or may be used with 2 or more types of mixed solvents.
- additives such as various antioxidants and ultraviolet absorbers can be mixed at the same time.
- the optical polycarbonate resin composition of the present invention includes, as desired, a mold release agent necessary for lens molding, an antioxidant that suppresses coloring during molding, an antioxidant that suppresses environmental degradation after molding, and ultraviolet absorption. It is preferable to add an agent, a bluing agent for changing the color tone, and various dyes. Furthermore, various physical property improvers such as a flow modifier and an impact resistance improver may be added within a range that maintains the properties of the present polycarbonate resin composition for optics.
- the lens obtained from the optical polycarbonate resin composition of the present invention has an impact resistance of almost the same class as conventional polycarbonate. It retains at least the impact resistance that is not destroyed in the ASTM D256 compliant Izod impact test (no notch).
- the optical polycarbonate resin composition of the present invention can be processed into a lens by a known molding method such as wet color molding, compression molding, extrusion molding or injection molding. In particular, it is suitable for injection molding like a conventional polycarbonate lens.
- the lens can be polished and cut by a known method, and can be applied to a spectacle lens, a camera lens, etc. with high design.
- the refractive index (nF ′) at the F ′ line (488 nm) and the refractive index (nC ′) at the C ′ line (643.9 nm) were measured, and the Abbe number ( ⁇ e) was calculated from the following formula (3).
- Total light transmittance> Based on JIS K7136, the total light transmittance of a 3 mm-thick injection-molded product was measured using a Nippon Denshoku haze meter.
- Synthesis example 1 To a 100 liter reaction vessel, 34 liters of 8.0 mass / mass% sodium hydroxide aqueous solution was added, and BPAP 5.8 kg (Honshu Chemical Co., Ltd., 20 mol) and hydrosulfite 10 g were added and dissolved. To this was added 22 liters of dichloromethane, and 2.6 kg of phosgene was blown in over 30 minutes while stirring at 15 ° C.
- the reaction solution is emulsified by vigorously stirring for 1 minute, 100 g of p-tert-butylphenol (hereinafter abbreviated as PTBP, 0.67 mol) is added, and after further stirring for 10 minutes, 20 ml of triethylamine is added, and another 50 minutes Stirring was continued to polymerize.
- PTBP p-tert-butylphenol
- the polymerization solution was separated into an aqueous phase and an organic phase, the organic phase was neutralized with phosphoric acid, and washing with water was repeated until the conductivity of the washing solution was 10 ⁇ S / cm or less to obtain a purified polymer resin solution.
- the obtained resin liquid concentration was diluted with dichloromethane and adjusted to 10.0% by mass.
- Synthesis example 2 Polymerization and purification were performed in the same manner as in Synthesis Example 1 except that PTBP was changed to 140 g (0.93 mol).
- the intrinsic viscosity of the obtained resin (AP-PC) was 0.355 dL / g.
- the obtained resin solution was diluted with dichloromethane to adjust the concentration to 10% by mass.
- Synthesis example 3 Polymerization and purification were performed in the same manner as in Synthesis Example 1 except that PTBP was changed to 64 g (0.43 mol).
- the intrinsic viscosity of the obtained resin (AP-PC) was 0.581 dL / g.
- the obtained resin solution was diluted with dichloromethane to adjust the concentration to 10% by mass. 5 kg of the obtained resin solution was dropped into warm water kept at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder.
- Synthesis example 4 Polymerization and purification were performed in the same manner as in Synthesis Example 1 except that PTBP was changed to 260 g (1.73 mol).
- the intrinsic viscosity of the obtained resin (AP-PC) was 0.254 dL / g.
- the obtained resin solution was diluted with dichloromethane to adjust the concentration to 10% by mass.
- Synthesis example 5 Polymerization and purification similar to those of Synthesis Example 1 were performed except that PTBP was changed to 60 g (0.40 mol).
- the intrinsic viscosity of the obtained resin (AP-PC) was 0.619 dL / g.
- the obtained resin solution was diluted with dichloromethane to adjust the concentration to 10% by mass.
- Synthesis Example 6 Polymerization and purification were performed in the same manner as in Synthesis Example 1, except that BPAP was changed to 4.56 kg (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., 20 mol), and PTBP was changed to 124 g (0.83 mol).
- the intrinsic viscosity of the obtained resin (BPA-PC) was 0.444 dL / g.
- the obtained resin solution was diluted with dichloromethane to adjust the concentration to 10% by mass. 5 kg of the obtained resin solution was dropped into warm water kept at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder.
- Synthesis example 7 Polymerization and purification were performed in the same manner as in Synthesis Example 1 except that BPAP was changed to 4.56 kg (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., 20 mol) and PTBP was changed to 187 g (1.25 mol).
- the intrinsic viscosity of the obtained resin (BPA-PC) was 0.339 dL / g.
- the obtained resin solution was diluted with dichloromethane to adjust the concentration to 10% by mass. 5 kg of the obtained resin solution was dropped into warm water kept at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder.
- Synthesis example 8 Polymerization and purification similar to those of Synthesis Example 1 were performed except that BPAP was changed to 4.56 kg of BPA (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., 20 mol) and PTBP was changed to 90 g (0.6 mol).
- the intrinsic viscosity of the obtained resin (BPA-PC) was 0.554 dL / g.
- the obtained resin solution was diluted with dichloromethane to adjust the concentration to 10% by mass.
- Synthesis Example 9 Polymerization and purification were performed in the same manner as in Synthesis Example 1 except that BPAP was changed to 4.56 kg (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., 20 mol) and PTBP was changed to 333 g (2.22 mol).
- the intrinsic viscosity of the obtained resin (BPA-PC) was 0.247 dL / g.
- the obtained resin solution was diluted with dichloromethane to adjust the concentration to 10% by mass.
- Synthesis Example 10 Polymerization and purification similar to those of Synthesis Example 1 were performed except that BPAP was changed to 4.56 kg BPA (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., 20 mol) and PTBP was changed to 90 g (0.44 mol).
- the intrinsic viscosity of the obtained resin (BPA-PC) was 0.653 dL / g.
- the obtained resin solution was diluted with dichloromethane to adjust the concentration to 10% by mass.
- Example 1 5.35 kg of the BPA-PC resin solution of Synthesis Example 6 and 4.65 kg of the AP-PC resin solution of Synthesis Example 1 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder.
- pellets were injection molded with a small injection molding machine at 320 ° C., a circular injection molded product having a diameter of 28 mm and a thickness of 3 mm, and an ASTM compliant Izod impact piece (63.5 ⁇ 3.0 ⁇ 12.7 mm). Obtained. Q value, total light transmittance, refractive index, Abbe number, and Izod impact value were measured using the obtained pellets and injection molded products.
- Example 2 3.70 kg of the BPA-PC resin solution of Synthesis Example 7 and 6.30 kg of the AP-PC resin solution of Synthesis Example 1 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended with the obtained powder in the same manner as in Example 1, and extrusion, injection molding, and various analyzes were performed.
- Example 3 5.50 kg of the BPA-PC resin solution of Synthesis Example 8 and 4.50 kg of the AP-PC resin solution of Synthesis Example 2 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended with the obtained powder in the same manner as in Example 1, and extrusion, injection molding, and various analyzes were performed.
- Example 4 3.88 kg of the BPA-PC resin solution of Synthesis Example 7 and 6.12 kg of the AP-PC resin solution of Synthesis Example 1 were placed in a 20-liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended with the obtained powder in the same manner as in Example 1, and extrusion, injection molding, and various analyzes were performed.
- Example 5 5.00 kg of the BPA-PC resin solution of Synthesis Example 6 and 5.00 kg of the AP-PC resin solution of Synthesis Example 2 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended with the obtained powder in the same manner as in Example 1, and extrusion, injection molding, and various analyzes were performed.
- Example 6 4.50 kg of the BPA-PC resin solution of Synthesis Example 7 and 5.50 kg of the AP-PC resin solution of Synthesis Example 2 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended with the obtained powder in the same manner as in Example 1, and extrusion, injection molding, and various analyzes were performed.
- Example 7 2.50 kg of the BPA-PC resin solution of Synthesis Example 7 and 7.50 kg of the AP-PC resin solution of Synthesis Example 1 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended with the obtained powder in the same manner as in Example 1, and extrusion, injection molding, and various analyzes were performed.
- Example 8 275 g of the BPA-PC resin powder of Synthesis Example 7 and 225 g of the AP-PC resin powder of Synthesis Example 3 were placed in a blender, and various additives were added, mixed and extruded in the same manner as in Example 1. Since some turbidity was observed in the extruded pellets, the obtained pellets were mixed with a blender and then extruded again, and then injection molding and various analyzes were performed.
- Comparative Example 1 The BPA-PC resin powder of Synthesis Example 6 was charged into a blender, and various additives were blended in the same manner as in Example 1 to perform extrusion, injection molding, and various analyses.
- Comparative Example 2 The blended AP-PC resin powder of Synthesis Example 1 was blended, and various additives were blended as in Example 1. Extrusion and injection molding were performed, but the resin was clogged near the gate, and various tests could be performed. No piece was obtained.
- Comparative Example 3 2.00 kg of the BPA-PC resin solution of Synthesis Example 7 and 8.00 kg of the AP-PC resin solution of Synthesis Example 1 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended into the obtained powder in the same manner as in Example 1, and extrusion and injection molding were performed. However, only an injection molded product with insufficient filling was obtained, and cutting out a test piece for refractive index measurement was performed. Although possible, total light transmission and Izod impact tests could not be performed.
- Comparative Example 4 6.00 kg of the BPA-PC resin solution of Synthesis Example 7 and 4.00 kg of the AP-PC resin solution of Synthesis Example 1 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended with the obtained powder in the same manner as in Example 1, and extrusion, injection molding, and various analyzes were performed.
- Comparative Example 5 5.00 kg of the BPA-PC resin solution of Synthesis Example 7 and 5.00 kg of the AP-PC resin solution of Synthesis Example 4 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended with the obtained powder in the same manner as in Example 1, and extrusion, injection molding, and various analyzes were performed.
- Comparative Example 6 5.00 kg of the BPA-PC resin solution of Synthesis Example 9 and 5.00 kg of the AP-PC resin solution of Synthesis Example 4 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended into the obtained powder in the same manner as in Example 1, and extrusion, injection molding, and various analyzes were performed. However, the strength was weak, and the injection molded product was damaged when taken out from the mold. Although it was possible to cut out a test piece for refractive index measurement, the total light transmittance and Izod impact test could not be performed.
- Comparative Example 7 5.00 kg of the BPA-PC resin solution of Synthesis Example 10 and 5.00 kg of the AP-PC resin solution of Synthesis Example 5 were placed in a 20 liter container and mixed uniformly with a stirrer. The obtained mixed resin liquid was dropped into warm water maintained at 45 ° C., and the solvent was removed by evaporation to obtain a white powdery precipitate. The resulting precipitate was filtered and dried at 120 ° C. for 24 hours to obtain a polymer powder. Various additives were blended into the obtained powder in the same manner as in Example 1, and extrusion and injection molding were carried out. Extruded pellets were highly colored, and injection molding was blocked because the resin did not flow during injection. I could not do it.
- the optical polycarbonate resin composition of the present invention can be used as various lens materials such as an f ⁇ lens and a Fresnel lens, an optical film such as a retardation film, and a sheet material in addition to a spectacle lens and a camera lens.
- it can be applied to sports glasses, protective glasses, and in-vehicle lenses that take advantage of impact resistance.
- the Abbe number is relatively low, the characteristics as a flint lens are excellent, and it is also suitable as a constituent lens for a compact camera or a camera for a portable terminal.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Eyeglasses (AREA)
Abstract
Description
1) 下記式(1)で表される構成単位を含み、極限粘度が0.320~0.630dL/gのポリカーボネート樹脂(A)と、下記式(2)で表される構成単位を含み、極限粘度が0.320~0.600dL/gポリカーボネート樹脂(B)を含む樹脂組成物であって、
ポリカーボネート樹脂(B)を、45~75質量%含有する光学用ポリカーボネート樹脂組成物。
2) 屈折率(ne)が1.600以上である1)に記載の光学用ポリカーボネート樹脂組成物。
3) 屈折率(nd)が1.595以上である1)又は2)のいずれかに記載の光学用ポリカーボネート樹脂組成物。
4) アッベ数(νe)が28.0以上である前記1)~3)のいずれか一項に記載の光学用ポリカーボネート樹脂組成物。
5) 高化式フローテスターを用い、温度280℃、圧力15.69MPa、直径1mm×長さ10mmのノズル穴より流出する溶融樹脂量であるQ値が、2.0×10-2cm3/秒以上である前記1)~4)のいずれか一項に記載の光学用ポリカーボネート樹脂組成物。
6) 前記1)~5)のいずれか一項に記載の光学用ポリカーボネート樹脂組成物を含むメガネレンズ。
7) 前記1)~5)のいずれか一項に記載の光学用ポリカーボネート樹脂組成物を含むカメラレンズ。
8) ポリカーボネート樹脂(A)、ポリカーボネート樹脂(B)及び溶剤を含む樹脂溶液から溶剤を除去することを特徴とする、1)~5)のいずれかに記載の光学用ポリカーボネート樹脂組成物の製造方法。
さらには、d線(587.6nm)における屈折率(nd)が好ましくは1.595以上である光学用ポリカーボネート樹脂組成物、即ち、本発明の光学用ポリカーボネート樹脂組成物を射出成形により成形した成形体の屈折率(nd(nd線と称することもある))が、1.595以上、好ましくは1.596~1.604であることが実用面から好ましい。
また、本願発明の光学用ポリカーボネート樹脂組成物中、ポリカーボネート樹脂(A)及びポリカーボネート樹脂(B)の割合は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%であることがさらに好ましい。
ここで、屈折率は小数点4桁目を四捨五入、アッベ数は小数点2桁目を四捨五入した値を表す。
一方、後者は、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)を溶剤に溶解して混合する方法、即ち、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)を含む樹脂溶液を溶液状態で混合し、その後脱溶媒することで、粉体またはペレット状の樹脂組成物を得る方法である。
前者と後者を比較した場合、均一混合が容易である上、透明性が高くなることから、樹脂溶液を混合する方法がより好ましい。
さらに、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)を溶剤に溶解して混合する方法では、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)を別の溶剤に溶解した後、各々の樹脂溶液を混合してもよいし、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)を同じ溶剤に溶解した後、混合してもよい。ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)の混合比を適宜調整し易いことから、ポリカーボネート樹脂(A)とポリカーボネート樹脂(B)を別の溶剤に溶解した後、各々の樹脂溶液を混合する方が好ましい。
株式会社アタゴ製のアッベ屈折計を用い、20℃において、ASTM D256準拠アイゾット衝撃試験用射出成形品から切り出した試験片(9×3×6mm)のe線(546.1nm)における屈折率(ne)、d線(587.6nm)における屈折率(nd)を測定した。また、F’線(488nm)における屈折率(nF’)、C’線(643.9nm)における屈折率(nC’)を測定し、下記式(3)よりアッベ数(νe)を計算した。
高化式フローテスター(株式会社島津製作所製)を使用して、温度280℃、圧力15.69MPaで、直径1mm×長さ10mmのノズル穴(オリフィス)より流出する溶融樹脂量(単位:×10-2cm3/秒)を測定した。
ポリカーボネート樹脂のジクロロメタン0.5質量/体積%溶液を20℃、ハギンズ定数0.45にて、ウベローデ粘度管を用いて求めた。
小型射出成形機((株)新興セルビック製C.Mobile)を用いて、射出圧283MPa、射出速度20mm/秒、樹脂温度320℃、金型温度100℃、にてASTM D256準拠アイゾット衝撃試験片(63.5×3.0×12.7mm、ノッチ無し)と直径28mm、厚さ3mmの円形試験片の射出成形を行った。
JIS K7136に準拠し、日本電色工業製のヘーズメーターを用い、3mm厚射出成形品の全光線透過率を測定した。
ASTM D256に準拠し、東洋精機株式会社製衝撃試験機を用い、2Jハンマー、25℃下でアイゾット試験片(ノッチ無し)の衝撃試験を行った。
100リットル反応容器に、8.0質量/質量%の水酸化ナトリウム水溶液34リットルを加え、BPAP5.8kg(本州化学工業株式会社製、20mol)とハイドロサルファイト10gを加え溶解した。これにジクロロメタン22リットルを加え、15℃に保ちながら撹拌しつつ、ホスゲン2.6kgを30分かけて吹き込んだ。
吹き込み終了後、1分間激しく撹拌して反応液を乳化させ、p-ターシャルブチルフェノール100g(以下PTBPと略称、0.67mol)を加え、さらに10分間撹拌後、20mlのトリエチルアミンを加え、さらに50分撹拌を継続し重合させた。
重合液を水相と有機相に分離し、有機相をリン酸で中和し、洗液の導電率が10μS/cm以下になるまで水洗を繰り返し、精製した重合樹脂液を得た。得られた樹脂液濃度をジクロロメタンで希釈し10.0質量/質量%に調整した。得られた樹脂液の内、5kgを45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。
得られた樹脂(AP-PC)の極限粘度は0.423dL/gであった。
PTBPを140g(0.93mol)に変更した以外は、合成例1と同様の重合、精製を行った。得られた樹脂(AP-PC)の極限粘度は0.355dL/gであった。得られた樹脂液は、ジクロロメタンで希釈し濃度を10質量/質量%に調整した。
PTBPを64g(0.43mol)に変更した以外は、合成例1と同様の重合、精製を行った。得られた樹脂(AP-PC)の極限粘度は0.581dL/gであった。得られた樹脂液は、ジクロロメタンで希釈し濃度を10質量/質量%に調整した。得られた樹脂液の内、5kgを45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。
PTBPを260g(1.73mol)に変更した以外は、合成例1と同様の重合、精製を行った。得られた樹脂(AP-PC)の極限粘度は0.254dL/gであった。得られた樹脂液は、ジクロロメタンで希釈し濃度を10質量/質量%に調整した。
PTBPを60g(0.40mol)に変更した以外は、合成例1と同様の重合、精製を行った。得られた樹脂(AP-PC)の極限粘度は0.619dL/gであった。得られた樹脂液は、ジクロロメタンで希釈し濃度を10質量/質量%に調整した。
BPAPをBPA4.56kg(新日鉄住金化学株式会社製、20mol)に変更し、PTBPを124g(0.83mol)に変更した以外は、合成例1と同様の重合、精製を行った。得られた樹脂(BPA-PC)の極限粘度は0.444dL/gであった。得られた樹脂液は、ジクロロメタンで希釈し濃度を10質量/質量%に調整した。得られた樹脂液の内、5kgを45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。
BPAPをBPA4.56kg(新日鉄住金化学株式会社製、20mol)に変更し、PTBPを187g(1.25mol)に変更した以外は、合成例1と同様の重合、精製を行った。得られた樹脂(BPA-PC)の極限粘度は0.339dL/gであった。得られた樹脂液は、ジクロロメタンで希釈し濃度を10質量/質量%に調整した。得られた樹脂液の内、5kgを45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。
BPAPをBPA4.56kg(新日鉄住金化学株式会社製、20mol)に変更し、PTBPを90g(0.6mol)に変更した以外は、合成例1と同様の重合、精製を行った。得られた樹脂(BPA-PC)の極限粘度は0.554dL/gであった。得られた樹脂液は、ジクロロメタンで希釈し濃度を10質量/質量%に調整した。
BPAPをBPA4.56kg(新日鉄住金化学株式会社製、20mol)に変更し、PTBPを333g(2.22mol)に変更した以外は、合成例1と同様の重合、精製を行った。得られた樹脂(BPA-PC)の極限粘度は0.247dL/gであった。得られた樹脂液は、ジクロロメタンで希釈し濃度を10質量/質量%に調整した。
BPAPをBPA4.56kg(新日鉄住金化学株式会社製、20mol)に変更し、PTBPを90g(0.44mol)に変更した以外は、合成例1と同様の重合、精製を行った。得られた樹脂(BPA-PC)の極限粘度は0.653dL/gであった。得られた樹脂液は、ジクロロメタンで希釈し濃度を10質量/質量%に調整した。
合成例6のBPA-PC樹脂溶液5.35kgと合成例1のAP-PC樹脂溶液4.65kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。
得られた粉体に、離型剤ステアリン酸モノグリセリド(理研ビタミン株式会社製;商標名S-100A)を0.05質量%、ベンゾトリアゾール系紫外線吸収剤(株式会社ADEKA製;商標名LA-31)を0.15質量%、ホスファイト系酸化防止剤(株式会社ADEKA製;商標名アデカスタブPEP-36)を0.03質量%、アントラキノン系青色染料(ランクセス株式会社製;商標名マクロレックスブルーRR)を0.0001質量%加え、ブレンダーにて混合した。
得られた樹脂組成物をベント付き単軸20mm押出機(L/D34.5フルフライトスクリュー)にて300℃にて押出、ペレットを得た。得られたペレットを小型射出成形機にて320℃で、直径28mm、厚さ3mmの円形射出成形品とASTM準拠アイゾット衝撃片(63.5×3.0×12.7mm)を射出成形にて得た。得られたペレットおよび射出成形品を用いて、Q値、全光線透過率、屈折率、アッベ数、アイゾット衝撃値の測定を行った。
合成例7のBPA-PC樹脂溶液3.70kgと合成例1のAP-PC樹脂溶液6.30kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行った。
合成例8のBPA-PC樹脂溶液5.50kgと合成例2のAP-PC樹脂溶液4.50kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行った。
合成例7のBPA-PC樹脂溶液3.88kgと合成例1のAP-PC樹脂溶液6.12kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行った。
合成例6のBPA-PC樹脂溶液5.00kgと合成例2のAP-PC樹脂溶液5.00kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行った。
合成例7のBPA-PC樹脂溶液4.50kgと合成例2のAP-PC樹脂溶液5.50kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行った。
合成例7のBPA-PC樹脂溶液2.50kgと合成例1のAP-PC樹脂溶液7.50kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行った。
合成例7のBPA-PC樹脂粉末275gと合成例3のAP-PC樹脂粉末225gをブレンダーに入れ、実施例1と同様に各種添加剤を添加し混合し、押出を行った。押出したペレットに一部白濁が認められたため、得られたペレットをブレンダーで混合後再度押出を行った後、射出成形、各種分析を行った。
合成例6のBPA-PC樹脂粉末をブレンダーに仕込み、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行った。
合成例1のAP-PC樹脂粉末をブレンダーに仕込み、実施例1と同様に各種添加剤をブレンドし、押出、射出成形を行ったが、ゲート付近で樹脂が詰まってしまい、各種試験が行える試験片は得られなかった。
合成例7のBPA-PC樹脂溶液2.00kgと合成例1のAP-PC樹脂溶液8.00kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形を行ったが、充填不足の射出成形品しか得られず、屈折率測定用の試験片の切り出しは可能だったが、全光線透過率とアイゾット衝撃試験は実施できなかった。
合成例7のBPA-PC樹脂溶液6.00kgと合成例1のAP-PC樹脂溶液4.00kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行った。
合成例7のBPA-PC樹脂溶液5.00kgと合成例4のAP-PC樹脂溶液5.00kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行った。
合成例9のBPA-PC樹脂溶液5.00kgと合成例4のAP-PC樹脂溶液5.00kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形、各種分析を行ったが、強度が弱く、射出成形品を金型から取り出す際に破損するため、屈折率測定用の試験片の切り出しは可能だったが、全光線透過率とアイゾット衝撃試験は実施できなかった。
合成例10のBPA-PC樹脂溶液5.00kgと合成例5のAP-PC樹脂溶液5.00kgを20リットル容器に入れ、撹拌機にて均一に混合した。得られた混合樹脂液を45℃に保った温水に滴下し、溶媒を蒸発除去して白色粉末状沈殿物を得た。得られた沈殿物を濾過し、120℃、24時間乾燥して、重合体粉末を得た。得られた粉体に、実施例1と同様に各種添加剤をブレンドし、押出、射出成形を行ったが、押出ペレットの着色が大きく、また射出成形は射出時に樹脂が流れず閉塞し、成形出来なかった。
Claims (8)
- 屈折率(ne)が1.600以上である請求項1に記載の光学用ポリカーボネート樹脂組成物。
- 屈折率(nd)が1.595以上である請求項1又は2に記載の光学用ポリカーボネート樹脂組成物。
- アッベ数(νe)が28.0以上である請求項1~3のいずれか一項に記載の光学用ポリカーボネート樹脂組成物。
- 高化式フローテスターを用い、温度280℃、圧力15.69MPa、直径1mm×長さ10mmのノズル穴より流出する溶融樹脂量であるQ値が、2.0×10-2cm3/秒以上である請求項1~4のいずれか一項に記載の光学用ポリカーボネート樹脂組成物。
- 請求項1~5のいずれか一項に記載の光学用ポリカーボネート樹脂組成物を含むメガネレンズ。
- 請求項1~5のいずれか一項に記載の光学用ポリカーボネート樹脂組成物を含むカメラレンズ。
- ポリカーボネート樹脂(A)、ポリカーボネート樹脂(B)及び溶剤を含む樹脂溶液から溶剤を除去することを特徴とする、請求項1~5のいずれか一項に記載の光学用ポリカーボネート樹脂組成物の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217031774A KR20210122916A (ko) | 2016-05-27 | 2017-04-07 | 광학용 폴리카보네이트 수지 조성물 및 그 제조 방법 그리고 그것을 함유하는 안경 렌즈 및 카메라 렌즈 |
CN201780031634.5A CN109153845B (zh) | 2016-05-27 | 2017-04-07 | 光学用聚碳酸酯树脂组合物及其制造方法和包含该组合物的眼镜镜片和相机透镜 |
JP2018519126A JP7382137B2 (ja) | 2016-05-27 | 2017-04-07 | 光学用ポリカーボネート樹脂組成物及びその製造方法並びにそれを含むメガネレンズ及びカメラレンズ |
EP17802453.5A EP3467030B1 (en) | 2016-05-27 | 2017-04-07 | Optical use polycarbonate resin composition, method for producing same, and spectacle lens and camera lens containing same |
US16/302,409 US10711099B2 (en) | 2016-05-27 | 2017-04-07 | Optical use polycarbonate resin composition method for producing same, and spectacle lens and camera lens containing same |
KR1020187031318A KR20190013722A (ko) | 2016-05-27 | 2017-04-07 | 광학용 폴리카보네이트 수지 조성물 및 그 제조 방법 그리고 그것을 함유하는 안경 렌즈 및 카메라 렌즈 |
JP2021182014A JP7255656B2 (ja) | 2016-05-27 | 2021-11-08 | 光学用ポリカーボネート樹脂組成物及びその製造方法並びにそれを含むメガネレンズ及びカメラレンズ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-105856 | 2016-05-27 | ||
JP2016105856 | 2016-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017203852A1 true WO2017203852A1 (ja) | 2017-11-30 |
Family
ID=60411806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014489 WO2017203852A1 (ja) | 2016-05-27 | 2017-04-07 | 光学用ポリカーボネート樹脂組成物及びその製造方法並びにそれを含むメガネレンズ及びカメラレンズ |
Country Status (7)
Country | Link |
---|---|
US (1) | US10711099B2 (ja) |
EP (1) | EP3467030B1 (ja) |
JP (2) | JP7382137B2 (ja) |
KR (2) | KR20210122916A (ja) |
CN (1) | CN109153845B (ja) |
TW (1) | TWI740928B (ja) |
WO (1) | WO2017203852A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020162420A1 (ja) * | 2019-02-06 | 2020-08-13 | 三菱瓦斯化学株式会社 | 樹脂組成物および成形品 |
WO2020162419A1 (ja) * | 2019-02-06 | 2020-08-13 | 三菱瓦斯化学株式会社 | 樹脂組成物および成形品 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS608356A (ja) * | 1983-06-27 | 1985-01-17 | Sumitomo Chem Co Ltd | 樹脂組成物 |
JPS6443558A (en) * | 1987-08-10 | 1989-02-15 | Daicel Chem | Resin composition excellent in compatibility |
JPH01318065A (ja) * | 1988-06-20 | 1989-12-22 | Mitsubishi Gas Chem Co Inc | ポリカーボネート樹脂組成物 |
JPH0218501A (ja) | 1988-07-07 | 1990-01-22 | Mitsubishi Gas Chem Co Inc | 高屈折率の光学用レンズ |
JPH10310692A (ja) * | 1997-05-13 | 1998-11-24 | Mitsubishi Chem Corp | 芳香族ポリカーボネート樹脂組成物およびそれからなる光学製品部材 |
JP2000147202A (ja) * | 1997-11-28 | 2000-05-26 | Mitsubishi Chemicals Corp | 透明樹脂製光学用シート及び光学部品 |
JP2005309108A (ja) | 2004-04-22 | 2005-11-04 | Fuji Photo Film Co Ltd | プラスチック製レンズを用いた光学ユニット |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3835203A1 (de) | 1988-10-15 | 1990-04-19 | Bayer Ag | Formmassen aus polycarbonat-mischungen hoher disperser loeslichkeit |
JPH05179096A (ja) * | 1991-12-27 | 1993-07-20 | Sumitomo Dow Ltd | 芳香族ポリカーボネート樹脂組成物 |
JPH10109950A (ja) * | 1996-10-03 | 1998-04-28 | Mitsui Petrochem Ind Ltd | 光学部品 |
US6217995B1 (en) * | 1997-11-28 | 2001-04-17 | Mitsubishi Chemical Corporation | Optical sheet and optical part made of transparent resin, and method of fabricating thereof |
JP2000353339A (ja) * | 1999-06-10 | 2000-12-19 | Mitsubishi Engineering Plastics Corp | 光ディスク基板 |
JP2002060527A (ja) | 2000-08-11 | 2002-02-26 | Teijin Chem Ltd | ポリカーボネート樹脂組成物成形体 |
JP2004315747A (ja) * | 2003-04-18 | 2004-11-11 | Mitsubishi Gas Chem Co Inc | 芳香族−脂肪族共重合ポリカーボネート樹脂 |
JP5808959B2 (ja) | 2011-06-20 | 2015-11-10 | 帝人株式会社 | 高屈折率ポリカーボネート共重合体及び光学レンズ |
EP3150671B1 (en) | 2012-11-28 | 2019-04-24 | Mitsubishi Gas Chemical Company, Inc. | Aromatic polycarbonate resin composition, method for producing same, and molded article formed from aromatic polycarbonate resin composition |
-
2017
- 2017-04-07 WO PCT/JP2017/014489 patent/WO2017203852A1/ja unknown
- 2017-04-07 EP EP17802453.5A patent/EP3467030B1/en active Active
- 2017-04-07 KR KR1020217031774A patent/KR20210122916A/ko not_active Application Discontinuation
- 2017-04-07 JP JP2018519126A patent/JP7382137B2/ja active Active
- 2017-04-07 US US16/302,409 patent/US10711099B2/en active Active
- 2017-04-07 CN CN201780031634.5A patent/CN109153845B/zh active Active
- 2017-04-07 TW TW106111777A patent/TWI740928B/zh active
- 2017-04-07 KR KR1020187031318A patent/KR20190013722A/ko not_active IP Right Cessation
-
2021
- 2021-11-08 JP JP2021182014A patent/JP7255656B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS608356A (ja) * | 1983-06-27 | 1985-01-17 | Sumitomo Chem Co Ltd | 樹脂組成物 |
JPS6443558A (en) * | 1987-08-10 | 1989-02-15 | Daicel Chem | Resin composition excellent in compatibility |
JPH01318065A (ja) * | 1988-06-20 | 1989-12-22 | Mitsubishi Gas Chem Co Inc | ポリカーボネート樹脂組成物 |
JPH0218501A (ja) | 1988-07-07 | 1990-01-22 | Mitsubishi Gas Chem Co Inc | 高屈折率の光学用レンズ |
JPH10310692A (ja) * | 1997-05-13 | 1998-11-24 | Mitsubishi Chem Corp | 芳香族ポリカーボネート樹脂組成物およびそれからなる光学製品部材 |
JP2000147202A (ja) * | 1997-11-28 | 2000-05-26 | Mitsubishi Chemicals Corp | 透明樹脂製光学用シート及び光学部品 |
JP2005309108A (ja) | 2004-04-22 | 2005-11-04 | Fuji Photo Film Co Ltd | プラスチック製レンズを用いた光学ユニット |
Non-Patent Citations (1)
Title |
---|
"Polycarbonate Resin Handbook", 28 August 1992, NIKKAN KOGYO SHIMBUN, LTD., pages: 124 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020162420A1 (ja) * | 2019-02-06 | 2020-08-13 | 三菱瓦斯化学株式会社 | 樹脂組成物および成形品 |
WO2020162419A1 (ja) * | 2019-02-06 | 2020-08-13 | 三菱瓦斯化学株式会社 | 樹脂組成物および成形品 |
JP6777269B1 (ja) * | 2019-02-06 | 2020-10-28 | 三菱瓦斯化学株式会社 | 樹脂組成物および成形品 |
JP6806286B1 (ja) * | 2019-02-06 | 2021-01-06 | 三菱瓦斯化学株式会社 | 樹脂組成物および成形品 |
KR20210111317A (ko) * | 2019-02-06 | 2021-09-10 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 수지 조성물 및 성형품 |
KR20210111318A (ko) * | 2019-02-06 | 2021-09-10 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 수지 조성물 및 성형품 |
KR102377581B1 (ko) | 2019-02-06 | 2022-03-22 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 수지 조성물 및 성형품 |
KR102398728B1 (ko) * | 2019-02-06 | 2022-05-16 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 수지 조성물 및 성형품 |
Also Published As
Publication number | Publication date |
---|---|
TW201815959A (zh) | 2018-05-01 |
EP3467030A4 (en) | 2019-06-12 |
US10711099B2 (en) | 2020-07-14 |
EP3467030B1 (en) | 2022-02-23 |
EP3467030A1 (en) | 2019-04-10 |
JPWO2017203852A1 (ja) | 2019-03-28 |
KR20210122916A (ko) | 2021-10-12 |
JP2022028757A (ja) | 2022-02-16 |
JP7255656B2 (ja) | 2023-04-11 |
KR20190013722A (ko) | 2019-02-11 |
JP7382137B2 (ja) | 2023-11-16 |
CN109153845A (zh) | 2019-01-04 |
TWI740928B (zh) | 2021-10-01 |
CN109153845B (zh) | 2021-02-26 |
US20190276596A1 (en) | 2019-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6175555B2 (ja) | ポリカーボネートおよびそれを含む光学部材 | |
JP2020045492A (ja) | 重縮合で製造された樹脂および樹脂組成物 | |
US9982129B2 (en) | Polycarbonate resin composition, and optical material and optical lens each manufactured using same | |
CN108350260B (zh) | 热塑性树脂组合物及其成型体 | |
CN113072694B (zh) | 一种耐温变光学部件用聚碳酸酯树脂及其制备方法和应用 | |
JP7255656B2 (ja) | 光学用ポリカーボネート樹脂組成物及びその製造方法並びにそれを含むメガネレンズ及びカメラレンズ | |
JP6860806B2 (ja) | 光学用ポリカーボネート樹脂 | |
TWI592714B (zh) | Special polycarbonate polarized glasses | |
WO2020166408A1 (ja) | ポリカーボネート系樹脂組成物または共重合体、および光学フィルム | |
JP4911120B2 (ja) | 眼鏡レンズ | |
US9321887B2 (en) | Polyformal resin copolymer and method for producing the same | |
JP2003160660A (ja) | ポリカーボネート樹脂共重合体およびプラスチックレンズ | |
WO2011019047A1 (ja) | ポリカーボネート樹脂組成物 | |
JP2005068256A (ja) | 防眩性材料 | |
JP2006016498A (ja) | レンズ成形体、レンズ成形体用コーティング材及びコーティング層を有するレンズ成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187031318 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018519126 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17802453 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017802453 Country of ref document: EP Effective date: 20190102 |