WO2020156453A1 - 作为c-Met抑制剂的含嘧啶基团的三并环类化合物 - Google Patents

作为c-Met抑制剂的含嘧啶基团的三并环类化合物 Download PDF

Info

Publication number
WO2020156453A1
WO2020156453A1 PCT/CN2020/073842 CN2020073842W WO2020156453A1 WO 2020156453 A1 WO2020156453 A1 WO 2020156453A1 CN 2020073842 W CN2020073842 W CN 2020073842W WO 2020156453 A1 WO2020156453 A1 WO 2020156453A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
lcms
esi
mmol
400mhz
Prior art date
Application number
PCT/CN2020/073842
Other languages
English (en)
French (fr)
Inventor
刘希乐
丁照中
陈曙辉
胡利红
万海文
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to EP20748406.4A priority Critical patent/EP3919492A4/en
Priority to KR1020217028054A priority patent/KR102660608B1/ko
Priority to JP2021544884A priority patent/JP7214879B2/ja
Priority to US17/427,185 priority patent/US20230056559A1/en
Priority to CN202080012066.6A priority patent/CN113365997B/zh
Publication of WO2020156453A1 publication Critical patent/WO2020156453A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • the present invention relates to a class of triacyl compounds containing pyrimidine groups as c-Met inhibitors, and their application in drugs for treating cancer. Specifically, it relates to the compound represented by formula (I), its pharmaceutically acceptable salt or its isomer.
  • the receptor tyrosine kinase c-Met also known as the hepatocyte growth factor (hypatocyte growth factor, HGF) receptor, is a transmembrane receptor with autonomous phosphorylation activity encoded by the MET gene. It is a receptor tyrosine kinase ( Receptor tyrosine kinases (RTKs) family is a unique subfamily, mainly produced in epithelial cells. HGF is the only high-affinity ligand of c-Met, which is widely present in various human tissues and organs.
  • HGF hepatocyte growth factor
  • RTKs receptor tyrosine kinases
  • c-Met binds to HGF secreted by mesenchymal cells, triggers c-Met dimerization, and then undergoes metastatic phosphorylation at the two catalytic sites of the c-Met activation loop (A-loop), Tyr1234 and Tyr1235, leading to its C-terminus Tyr1349 and Tyr1356 in the multifunctional docking zone undergo autophosphorylation, thereby recruiting a variety of cellular effectors, such as GAB1, GRB2, PLC, and SRC.
  • GAB1 continues to recruit downstream effectors, such as SHP2, PI3K, CRKL, etc., to form multi-protein signaling complexes and activate a series of downstream signaling pathways, including RAS-MAPK, PI3K-AKT and STATs pathways.
  • c-Met/HGF has a variety of biological functions, activates downstream signal pathways, and plays a very important role in tumor occurrence, development, metastasis and angiogenesis.
  • c-Met is highly expressed in many tumor cells, such as hepatocellular carcinoma, gastric cancer, ovarian cancer, non-small cell lung cancer, kidney cancer and other cancer cells. Overexpression is closely related to the formation and prognosis of many tumors. Excessive activation of the HGF/c-Met pathway will cause the activation of downstream signaling pathways, thereby inducing cancer. In addition, the overexpression of HGF and c-Met can also lead to the resistance of EGFR, RAS-RAF-MEK and Akt-mTOR signaling pathways to related inhibitors, which is an important mechanism for tumor cell escape.
  • HGF phosphorylation of c-Met, which activates the downstream PI3K-Akt pathway, leading to resistance to EGFR inhibitors.
  • the up-regulation and secretion of HGF in the tumor microenvironment can lead to cell resistance to RAS inhibitors.
  • tumor cells After blocking the abnormally activated HGF/c-Met signaling pathway in tumor cells, tumor cells will undergo a series of changes such as changes in cell morphology, slowed proliferation, reduced tumorigenicity, and reduced invasion ability. Therefore, the development of a highly active c-Met inhibitor can provide an effective treatment method for a variety of primary c-Met signaling pathway abnormalities and drug-resistant c-Met abnormal expression tumors.
  • the current interventional therapies for the c-Met pathway mainly include the following: 1Therapeutic antibodies: bind to HGF or c-Met, and inhibit the c-Met pathway by interfering with the interaction between HGF and c-Met; 2Small molecule tyrosine Kinase inhibitors: inhibit the activity of c-Met kinase or other kinases that play an important role in cancer progression; 3 molecules similar to HS90 inhibitors: block the c-Met pathway by affecting the stability or expression of c-Met protein; 4 A functional molecule that interferes with downstream effectors of the c-Met pathway.
  • Type I c-Met inhibitors For c-Met small molecule inhibitors, according to the different binding modes of molecules and c-Met protein, they can be divided into two types: type I (type Ia and type Ib) and type II.
  • Type I c-Met inhibitor is a type of ATP-competitive inhibitor. It binds to the ATP binding pocket in a U-shaped conformation around Met1211, and forms hydrogen bonds with Met1160 and Asp1222 in the main chain of c-Met. Tyr1230 on -loop forms ⁇ - ⁇ stacking.
  • Most type I c-Met inhibitors preferentially bind to kinase targets in an inactive conformation and have good selectivity.
  • Type II c-Met inhibitor is a multi-target c-Met inhibitor, which not only occupies the ATP binding site, but also enters the hydrophobic pocket formed by the inactive "DFG-out" conformation through the Gatekeeper, so that the inhibitor can be better Binding to the target site.
  • the A-loop must make room, which requires the type II c-Met inhibitor to have a higher relative molecular mass and a stronger lipophilicity.
  • C-Met small molecule inhibitors currently under clinical research mainly include Crizotinib, Tepotinib (EMD1214063), Capmatinib, Volitinib, Cabozantinib (XL-184), and ARQ-197. Although these drugs have shown good therapeutic effects in the clinic, some drugs have the disadvantages of high molecular clinical administration doses, large clinical side effects, and low drug stability. Therefore, the development of a new type of c-Met inhibitor with high activity, high selectivity and good drug-like properties is still an unmet clinical need.
  • the present invention provides a compound represented by formula (I), a pharmaceutically acceptable salt or isomer thereof,
  • R a and R b are each independently H, F or -CH 3 ;
  • R c is each independently H or -CH 3 ;
  • Each T 2 is independently N or CR d ;
  • Each R d is independently H or F;
  • T 3 is -CH 2 -or
  • Each T 4 is independently N or CR e ;
  • R e is H, F, Cl or -CH 3 ;
  • R 1 and R 2 are each independently H, -CH 3 , -CF 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 or -CH 2 (CH 3 ) 2 ;
  • R 3 and R 5 are each independently H, F, Cl, -CN, -OH or C 1-3 alkoxy;
  • R f is H, -CH 3 or -CH 2 CH 3 ;
  • n 0, 1 or 2;
  • R 4 is optionally substituted with 1,2, or 3 R g substituted 6-12 membered heterocycloalkyl, optionally substituted with 1,2, or 3 R g azetidinyl substituted or optionally substituted with 1 , 2 or 3 cyclohexyl substituted by R g ;
  • Each R g is independently H, F, Cl, -OH, -CN, C 1-3 alkoxy, C 1-3 alkylamino, C 3-4 cycloalkyl, 4-6 membered heterocycloalkyl or Optional 1, 2 or 3 independently selected from F, Cl, -OH, -CN, C 1-5 alkyl substituted by C 1-3 alkylamino and -OCH 3 substituents;
  • the 6-12 membered heterocycloalkyl group and the 4-6 membered heterocycloalkyl group respectively contain 1, 2, 3, or 4 heteroatoms independently selected from N, -O- and -S-.
  • the present invention provides a compound represented by formula (I), a pharmaceutically acceptable salt or isomer thereof,
  • R a and R b are each independently H, F or -CH 3 ;
  • R c is each independently H or -CH 3 ;
  • Each T 2 is independently N or CR d ;
  • Each R d is independently H or F;
  • T 3 is -CH 2 -or
  • T 4 is N or CR e ;
  • R e is H, F, Cl or -CH 3 ;
  • R 1 and R 2 are each independently H, -CH 3 , -CF 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 or -CH 2 (CH 3 ) 2 ;
  • R 3 and R 5 are each independently H, F, Cl, -CN, -OH or C 1-3 alkoxy;
  • R f is H, -CH 3 or -CH 2 CH 3 ;
  • n 0, 1 or 2;
  • R 4 is a 6-12 membered heterocycloalkyl group optionally substituted by 1, 2 or 3 R g ;
  • Each R g is independently H, F, Cl, -OH, -CN, C 1-3 alkoxy or optionally 1, 2 or 3 independently selected from F, Cl, -OH, -CN and -OCH 3 of substituents of C 1-3 alkyl;
  • the 6-12 membered heterocycloalkyl group contains 1, 2, 3, or 4 heteroatoms independently selected from N, -O- and -S-.
  • the present invention provides a compound represented by formula (I), a pharmaceutically acceptable salt or isomer thereof,
  • R a and R b are each independently H, F or -CH 3 ;
  • R c is each independently H or -CH 3 ;
  • Each T 2 is independently N or CR d ;
  • Each R d is independently H or F;
  • T 3 is -CH 2 -or
  • T 4 is N or CR e ;
  • R e is H, F, Cl or -CH 3 ;
  • R 1 and R 2 are each independently H, -CH 3 , -CF 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 or -CH 2 (CH 3 ) 2 ;
  • R 3 and R 5 are each independently H, F, Cl, -CN, -OH or C 1-3 alkoxy;
  • R f is H, -CH 3 or -CH 2 CH 3 ;
  • n 0, 1 or 2;
  • R 4 is a 6-12 membered heterocycloalkyl group optionally substituted by 1, 2 or 3 R g ;
  • Each R g is independently H, F, Cl, -OH, -CN, C 1-3 alkoxy, 4-6 membered heterocycloalkyl, or optionally 1, 2 or 3 independently selected from F, cl, -OH, -CN, C 1-3 alkylamino substituted with -OCH 3 group and substituted C 1-3 alkyl;
  • the 6-12 membered heterocycloalkyl group and the 4-6 membered heterocycloalkyl group respectively contain 1, 2, 3, or 4 heteroatoms independently selected from N, -O- and -S-.
  • the above-mentioned compounds have structures represented by formulas (I-A) to (I-C):
  • T 1 , T 2 , T 3 , T 4 , R 1 , R 2 , R 3 , R 4 , R 5 and L are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (I-A), (I-B), (I-C) or (I-E):
  • T 1 , T 2 , T 3 , T 4 , R 1 , R 2 , R 3 , R 4 , R 5 and L are as defined in the present invention.
  • the above-mentioned compounds have structures represented by formulas (I-A1) to (I-A5):
  • T 2 R 1, R 2, R 3, R 4, L, R a, R b and R c are as defined herein.
  • the above-mentioned compound has a structure represented by formula (I-B1):
  • T 2 , R 1 , R 2 , R 3 , R 4 and L are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (I-C1) or (I-C2):
  • T 2 , R 1 , R 2 , R 3 , R 4 , R 5 , L and R e are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (I-E1):
  • T 2 , R 1 , R 2 , R 3 , R 4 , R 5 and L are as defined in the present invention.
  • the present invention also provides a compound represented by formula (I-D) or (I-F), its pharmaceutically acceptable salt or its isomer,
  • each T 2 is independently N or CR d ;
  • Each R d is independently H or F;
  • Each T 4 is independently N or CR e ;
  • R e is H, F, Cl or -CH 3 ;
  • R 1 and R 2 are each independently H, -CH 3 , -CF 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 or -CH 2 (CH 3 ) 2 ;
  • R 3 and R 5 are each independently H, F, Cl, -CN, -OH or C 1-3 alkoxy;
  • R f is H, -CH 3 or -CH 2 CH 3 ;
  • n 0, 1 or 2;
  • R 4 is optionally substituted with 1,2, or 3 R g substituted 6-12 membered heterocycloalkyl, optionally substituted with 1,2, or 3 R g azetidinyl substituted or optionally substituted with 1 , 2 or 3 cyclohexyl substituted by R g ;
  • Each R g is independently H, F, Cl, -OH, -CN, C 1-3 alkoxy, C 1-3 alkylamino, C 3-4 cycloalkyl, 4-6 membered heterocycloalkyl or Optionally by 1, 2 or 3 independently selected from F, Cl, -OH, -CN, C 1-5 alkyl substituted by C 1-3 alkylamino and -OCH 3 substituents;
  • the 6-12 membered heterocycloalkyl group and the 4-6 membered heterocycloalkyl group respectively contain 1, 2, 3, or 4 heteroatoms independently selected from N, -O- and -S-.
  • the above-mentioned compound has a structure represented by formula (I-D1) or (I-F1):
  • T 2 , R 1 , R 2 , R 3 , R 5 , L and R 4 are as defined in the present invention.
  • each of the foregoing R g is H, F, Cl, -OH, -CN, -CH 3 , -CH 2 CH 3 , -OCH 3 , -OCH 2 CH 3 , -CF 3 ,- CH 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 OH or -CH 2 CH 2 OH, and other variables are as defined in the present invention.
  • each of the above R g is H, F, Cl, -OH, -CN, -CH 3 , -CH 2 CH 3 , -CH(CH 3 ) 2 , -OCH 3 , -OCH 2 CH 3 , -CF 3 , -CH 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 OH , -CH 2 CH 2 OH, -CH 2 CH 2 OCH 3 or CH 2 CH 2 N(CH 3 ) 2 , and other variables are as defined in the present invention.
  • each of the above R g is H, F, Cl, -OH, -CN, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 CH(CH 3 ) 2 , -OCH 3 , -OCH 2 CH 3 , -N(CH 3 ) 2 , -CF 3 , -CH 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 OH, -CH 2 CH 2 OH, -CH 2 CH 2 OCH 3 , -CH 2 CH 2 N(CH 3 ) 2 ,
  • Other variables are as defined in the present invention.
  • R 4 is a 6-10 membered heterocycloalkyl group optionally substituted with 1, 2, or 3 R g , and R g and other variables are as defined in the present invention.
  • R 4 is optionally substituted by 1, 2 or 3 R g 6-10 membered heterocycloalkyl, optionally substituted by 1, 2 or 3 nitrogen R g Heterocyclobutyl or cyclohexyl optionally substituted with 1, 2 or 3 R g , R g and other variables are as defined in the present invention.
  • R 4 is Which said Optionally substituted by 1, 2, or 3 R g , R g and other variables are as defined in the present invention.
  • R 4 is or Which said Optionally substituted by 1, 2, or 3 R g , R g and other variables are as defined in the present invention.
  • R 4 is Which said Optionally substituted by 1, 2, or 3 R g , R g and other variables are as defined in the present invention.
  • R 4 is R g and other variables are as defined in the present invention.
  • R 4 is or R g and other variables are as defined in the present invention.
  • R 4 is R g and other variables are as defined in the present invention.
  • R 4 is or Other variables are as defined in the present invention.
  • the above-mentioned compounds have structures represented by formulas (I-A6) to (I-A11):
  • R 1, R 2, R 3, R a, R b, R c, R d and R g are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (I-B2):
  • R 1 , R 2 , R 3 , Rd and R g are as defined in the present invention.
  • the above-mentioned compounds have structures represented by formulas (I-C4) to (I-C6):
  • R 1, R 2, R 3, R 5, R e and R g are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (I-E2):
  • R 1 , R 2 , R 3 and R g are as defined in the present invention.
  • the above-mentioned compound has a structure represented by formula (I-D2) or (I-F2):
  • R 1 , R 2 , R 3 and R g are as defined in the present invention.
  • R 3 and R 5 are each independently H, F, Cl, -CN, -OH or -OCH 3 , and other variables are as defined in the present invention.
  • R 3 is H, F, Cl, -CN, -OH or -OCH 3 , and other variables are as defined in the present invention.
  • the present invention also provides a compound of the following formula, its pharmaceutically acceptable salt or its isomer:
  • the present invention also provides a compound of the following formula, its pharmaceutically acceptable salt or its isomer:
  • the aforementioned pharmaceutically acceptable salt is formate or hydrochloride.
  • the present invention also provides a pharmaceutical composition, which contains a therapeutically effective amount of the above-mentioned compound, its pharmaceutically acceptable salt or its isomer, or the above-mentioned formate or hydrochloride and a pharmaceutically acceptable carrier.
  • the present invention also provides the application of the above-mentioned compound, its pharmaceutically acceptable salt or its isomer, the above-mentioned formate and hydrochloride, and the above-mentioned pharmaceutical composition in the preparation of c-Met inhibitor drugs.
  • the compound of the present invention has good selectivity and inhibitory activity against c-Met kinase, and at the same time has excellent pharmacokinetics and pharmacodynamic properties. It is expected to be used for the treatment of abnormal c-Met signaling pathway and drug-resistant c-Met abnormal expression tumors.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • the base addition salt can be obtained by contacting the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acids include such as acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and acidic
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing an acid radical or a base by conventional chemical methods. Generally, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or an organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • enantiomer or “optical isomer” refers to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” is caused by the inability to rotate freely because of double bonds or single bonds of ring-forming carbon atoms.
  • diastereomer refers to a stereoisomer in which a molecule has two or more chiral centers and the relationship between the molecules is non-mirror-image relationship.
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a three-dimensional center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dotted key Or use wavy lines Represents a straight solid line key And straight dashed key
  • tautomer or “tautomeric form” means that at room temperature, the isomers of different functional groups are in dynamic equilibrium and can be transformed into each other quickly. If tautomers are possible (such as in solution), the chemical equilibrium of tautomers can be reached.
  • proton tautomer also called prototropic tautomer
  • Valence isomers include some recombination of bonding electrons to carry out mutual transformation.
  • keto-enol tautomerization is the tautomerization between two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refer to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90% and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated, and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with an appropriate optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which employs a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • radioisotopes such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • heavy hydrogen can be used to replace hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs have reduced toxic side effects and increased drug stability.
  • Enhance the efficacy extend the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • “Optional” or “optionally” means that the event or condition described later may but does not necessarily occur, and the description includes a situation where the event or condition occurs and a situation where the event or condition does not occur.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by substituents, and can include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the substituted compound is stable of.
  • oxygen it means that two hydrogen atoms are replaced. Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary based on chemically achievable.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • substituents When a substituent is vacant, it means that the substituent is absent. For example, when X in A-X is vacant, it means that the structure is actually A.
  • substituents do not indicate which atom is connected to the substituted group, such substituents can be bonded via any atom.
  • a pyridyl group can pass through any one of the pyridine ring as a substituent. The carbon atom is attached to the substituted group.
  • the middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the opposite direction to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the chemical bond between the site and other groups can be a straight solid bond Straight dotted key Or wavy line Said.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy line in indicates that the phenyl group is connected to other groups through the 1 and 2 carbon atoms.
  • the number of atoms in a ring is generally defined as the number of ring members.
  • “5-7 membered ring” refers to a “ring” in which 5-7 atoms are arranged around.
  • 6-12 membered ring means a cycloalkyl, heterocycloalkyl, cycloalkenyl, or heterocycloalkenyl composed of 6 to 12 ring atoms.
  • the ring includes a single ring, as well as a bicyclic or polycyclic ring system such as a spiro ring, a fused ring and a bridged ring.
  • the ring optionally contains 1, 2, or 3 heteroatoms independently selected from O, S, and N.
  • the 6-12 membered ring includes 6-10 membered, 6-9 membered, 6-8 membered, 6-7 membered ring and the like.
  • 6-7 membered heterocycloalkyl includes piperidinyl and the like, but does not include phenyl.
  • ring also includes a ring system containing at least one ring, where each "ring" independently meets the above definition.
  • C 1-5 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 5 carbon atoms.
  • the C 1-5 alkyl group includes C 1-4 , C 1-3 , C 1-2 , C 2-5 , C 2-4 and C 5 alkyl group, etc.; it may be monovalent (such as methyl) , Divalent (such as methylene) or multivalent (such as methine).
  • C 1-5 alkyl groups include but are not limited to methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , S-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl) and so on.
  • C 1-4 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 4 carbon atoms.
  • the C 1-4 alkyl group includes C 1-2 , C 1-3 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent ( Such as methine).
  • Examples of C 1-4 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , S-butyl and t-butyl) and so on.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include but are not limited to methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy) and the like.
  • C 3-4 cycloalkyl means a saturated cyclic hydrocarbon group composed of 3 to 4 carbon atoms, which is a monocyclic ring system, which may be monovalent, divalent or multivalent.
  • Examples of C 3-4 cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl and the like.
  • the term "6-12 membered heterocycloalkyl" by itself or in combination with other terms means a saturated cyclic group consisting of 6 to 12 ring atoms, with 1, 2, 3 or 4 ring atoms.
  • heteroatoms independently selected from O, S and N, and the rest are carbon atoms, wherein nitrogen atoms are optionally quaternized, and nitrogen and sulfur heteroatoms can be optionally oxidized (ie NO and S(O) p , p Is 1 or 2). It includes monocyclic, bicyclic and tricyclic ring systems, among which the bicyclic and tricyclic ring systems include spiro, fused, and bridged rings.
  • a heteroatom may occupy the connection position of the heterocycloalkyl group with the rest of the molecule.
  • the 6-12 membered heterocycloalkyl group includes 6-10 membered, 6-9 membered, 6-8 membered, 6-7 membered, 6-membered, 7-membered, and 8-membered heterocycloalkyl group.
  • 6-12 membered heterocycloalkyl examples include, but are not limited to, tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2-piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), dioxanyl, dithiaalkyl, isoxazolidinyl, iso Thiazolidine, 1,2-oxazinyl, 1,2-thiazinyl, hexahydropyridazinyl, homopiperazinyl, homopiperidinyl, dioxepanyl, octahydrocyclopentano [c] Pyrrolyl, 8-azabicyclo[3.2.1]octyl, 1-azabicyclo[2.2.1]heptyl, etc.
  • the term "6-10 membered heterocycloalkyl" by itself or in combination with other terms means a saturated cyclic group consisting of 6 to 10 ring atoms, with 1, 2, 3 or 4 ring atoms.
  • heteroatoms independently selected from O, S and N, and the rest are carbon atoms, wherein nitrogen atoms are optionally quaternized, and nitrogen and sulfur heteroatoms can be optionally oxidized (ie NO and S(O) p , p Is 1 or 2). It includes monocyclic, bicyclic and tricyclic ring systems, among which the bicyclic and tricyclic ring systems include spiro, fused, and bridged rings.
  • a heteroatom may occupy the connection position of the heterocycloalkyl group with the rest of the molecule.
  • the 6-10 membered heterocycloalkyl group includes 6-9 membered, 6-8 membered, 6-7 membered, 6-membered, 7-membered, and 8-membered heterocycloalkyl group.
  • 6-10 membered heterocycloalkyl examples include, but are not limited to, tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2-piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), dioxanyl, dithiaalkyl, isoxazolidinyl, iso Thiazolidine, 1,2-oxazinyl, 1,2-thiazinyl, hexahydropyridazinyl, homopiperazinyl, homopiperidinyl, dioxepanyl, octahydrocyclopentano [c] Pyrrolyl, 8-azabicyclo[3.2.1]octyl, 1-azabicyclo[2.2.1]heptyl, etc.
  • 4-6 membered heterocycloalkyl by itself or in combination with other terms means a saturated cyclic group consisting of 4 to 6 ring atoms, with 1, 2, 3 or 4 ring atoms.
  • heteroatoms independently selected from O, S and N, and the rest are carbon atoms, wherein nitrogen atoms are optionally quaternized, and nitrogen and sulfur heteroatoms can be optionally oxidized (ie NO and S(O) p , p Is 1 or 2). It includes monocyclic and bicyclic ring systems, where the bicyclic ring system includes spiro, fused, and bridged rings.
  • a heteroatom may occupy the connection position of the heterocycloalkyl group with the rest of the molecule.
  • the 4-6 membered heterocycloalkyl includes 5-6, 4-, 5-, and 6-membered heterocycloalkyl and the like.
  • 4-6 membered heterocycloalkyl examples include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2- Piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), Dioxanyl, dithiazinyl, isoxazolidinyl, isothiazolidiny
  • C 1-3 alkylamino refers to those alkyl groups containing 1 to 3 carbon atoms attached to the rest of the molecule through an amino group.
  • the C 1-3 alkylamino group includes C 1-2 , C 3 and C 2 alkylamino groups and the like.
  • Examples of C 1-3 alkylamino groups include, but are not limited to, -NHCH 3 , -N(CH 3 ) 2 , -NHCH 2 CH 3 , -N(CH 3 )CH 2 CH 3 , -NHCH 2 CH 2 CH 3 ,- NHCH 2 (CH 3 ) 2 and so on.
  • C 6-10 aromatic ring and “C 6-10 aryl” can be used interchangeably in the present invention.
  • C 6-10 aromatic ring or “C 6-10 aryl” means A cyclic hydrocarbon group composed of 6 to 10 carbon atoms with a conjugated ⁇ -electron system, which can be a monocyclic, fused bicyclic or fused tricyclic system, in which each ring is aromatic. It may be monovalent, divalent or multivalent, and C 6-10 aryl groups include C 6-9 , C 9 , C 10 and C 6 aryl groups and the like. Examples of C 6-10 aryl groups include, but are not limited to, phenyl, naphthyl (including 1-naphthyl, 2-naphthyl, etc.).
  • C n-n+m or C n -C n+m includes any specific case of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , including any range from n to n+m, for example, C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.; in the same way, from n to n +m means the number of atoms in the ring is n to n+m, for example, 3-12 membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membered ring, 9-membered
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (for example, an affinity substitution reaction).
  • representative leaving groups include triflate; chlorine, bromine, iodine; sulfonate groups, such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters, etc.; acyloxy groups, such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl, such as alkanoyl (such as acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, such as tert-butoxycarbonyl (Boc) ; Arylmethyloxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethyloxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups, such as trimethylsilyl (TMS) and tert-butyldi
  • hydroxyl protecting group refers to a protecting group suitable for preventing side reactions of the hydroxyl group.
  • Representative hydroxy protecting groups include, but are not limited to: alkyl groups, such as methyl, ethyl and tert-butyl; acyl groups, such as alkanoyl groups (such as acetyl); arylmethyl groups, such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and so on.
  • alkyl groups such as methyl, ethyl and tert-butyl
  • acyl groups such as alkanoyl groups (such as acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (P
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the solvent used in the present invention is commercially available. It can be used without further purification.
  • the reaction is generally carried out in an anhydrous solvent under inert nitrogen.
  • NBS N-bromosuccinimide
  • Pd(dppf)Cl 2 stands for [1,1'-bis(diphenylphosphino)ferrocene]palladium dichloride
  • BAST stands for bis(2-methoxyethyl)aminosulfur trifluoride
  • DMF stands for N,N-dimethylformamide
  • NaBH(OAc) 3 stands for sodium triacetoxyborohydride
  • Pd(PPh 3 ) 2 Cl 2 stands for bis(triphenylphosphine) palladium dichloride
  • DIPEA stands for N,N-diisopropylethylamine
  • TBDMSCl stands for tert-butyldimethylchlorosilane
  • DMSO stands for dimethyl sulfoxide
  • DME stands for ethyl Glycol dimethyl ether
  • Pd(PPh 3 ) 4 stands for tetrakistriphenylphosphine palladium
  • Boc
  • the compounds of the present invention are based on conventional naming principles in the field or use ChemDraw
  • the software is named, and the commercially available compounds use the supplier catalog name.
  • the compound having formula (I) can be prepared according to the synthetic method described in Scheme A, wherein R 1 , R 2 , R 3 , R 4 , L, T, ring A and ring B are as in the present invention As defined, X is Br or Cl.
  • the present invention is now further described through examples.
  • the examples given below are for illustrative purposes only and are not limited to the scope of the invention.
  • the compounds of the present invention can be prepared by many methods known in the field of organic synthesis.
  • the embodiments of the present invention can be synthesized using the methods described below, as well as synthetic methods known in the field of organic synthetic chemistry, or improved methods based on them.
  • Preferred methods include, but are not limited to the methods described below.
  • reaction solution was washed three times with 200 ml of 0.5 mol/L hydrochloric acid aqueous solution and then washed with 300 ml of saturated sodium bicarbonate aqueous solution.
  • the organic phase was separated, dried and filtered with anhydrous sodium sulfate, and then spin-dried to obtain compound 1G.
  • Des Martin reagent 24.00 g, 56.59 mmol, 17.52 mL was added to a solution of compound 3A (12 g, 51.45 mmol) in dichloromethane (200 mL), and the solution was stirred at 0 degrees Celsius After 0.5 hours, the reaction solution was diluted with dichloromethane (1500 ml) and washed with saturated sodium sulfite (300 ml ⁇ 1 time), saturated sodium bicarbonate (300 ml ⁇ 1 time), dried and filtered with anhydrous sodium sulfate, and the filtrate was concentrated.
  • compound 1C is replaced with compound 3B to obtain compound 3C.
  • compound 1E is replaced with compound 3C to obtain compound 3D.
  • LCMS ESI: m/z: 216.0 [M+1].
  • Trifluoroacetic acid (1.54 g, 13.51 mmol, 1 ml) was added to a solution of compound 3E (200 mg, 335.21 ⁇ mol) in dichloromethane (2 ml) and stirred at 25 degrees Celsius for 1 hour.
  • the reaction solution was concentrated and dissolved In ethyl acetate (20 mL), washed once with saturated sodium bicarbonate aqueous solution (10 mL), dried over anhydrous sodium sulfate, and concentrated to obtain compound 3F and used directly in the next step.
  • LCMS (ESI): m/z: 497.2 [M+1].
  • compound 1L is replaced with compound 3F to obtain compound 3 formate.
  • LCMS LCMS (ESI): m/z: 511.3 [M+1].
  • compound 1E is replaced with compound 4A to obtain compound 4B.
  • compound 6A is replaced with 6-bromo-1H-indole-2-carboxylic acid to obtain compound 10A.
  • compound 5I was replaced with compound 14C-1 to obtain compound 14D-1.
  • LCMS (ESI) m/z: 518.2 [M+1].
  • compound 5I was replaced with compound 14C-2 to obtain compound 14D-2.
  • LCMS (ESI) m/z: 518.2 [M+1].
  • the mixture of 15C-1 and 15C-2 is separated by chiral SFC (separation column: Chiralpak AD-350 ⁇ 4.6 mm ID, 3 microns; mobile phase: phase A is carbon dioxide, phase B is isopropanol + acetonitrile (containing 0.05% of two Ethylamine); gradient elution: 40% isopropanol + acetonitrile (containing 0.05% diethylamine) in carbon dioxide; flow rate: 3 ml/min; detection wavelength: 220 nm; column temperature: 35 degrees Celsius; pressure: 100 bar ),
  • compound 5I was replaced with compound 15C-1 to obtain compound 15D-1.
  • LCMS (ESI) m/z: 522.3 [M+1].
  • compound 5I was replaced with compound 15C-2 to obtain compound 15D-2.
  • LCMS (ESI) m/z: 522.3 [M+1].
  • the mixture of compounds 17A-1 and 17A-2 undergoes chiral SFC (separation method: separation column: Chiralpak AS-3 50 ⁇ 4.6 mm ID, 3 microns; mobile phase: phase A is carbon dioxide, phase B is ethanol (containing 0.05% of the two Ethylamine); gradient elution: ethanol (containing 0.05% diethylamine) in carbon dioxide from 5% to 40%; flow rate: 3 ml/min; detection wavelength: 220 nm; column temperature: 35 degrees Celsius; pressure: 100 bar .)
  • the compound with a retention time of 1.542 minutes is compound 17A-1
  • the compound with a retention time of 1.644 minutes is compound 17A-2.
  • compound 5I was replaced with compound 17A-1 to obtain compound 17B-1.
  • compound 5I was replaced with compound 17A-2 to obtain compound 17B-2.
  • the mixture of compound 18A-1 and 18A-2 undergoes chiral SFC (separation method: separation column: Chiralcel OD-350 ⁇ 4.6 mm ID, 3 microns; mobile phase: phase A is carbon dioxide, phase B is methanol + acetonitrile (containing 0.05% Diethylamine); gradient elution: 40% methanol + acetonitrile (containing 0.05% diethylamine) in carbon dioxide; flow rate: 3 ml/min; detection wavelength: 220 nm; column temperature: 35 degrees Celsius; pressure: 100 bar. ) After separation, the compound with a retention time of 1.716 minutes is obtained as compound 18A-1, and the compound with a retention time of 2.381 minutes is obtained as compound 18A-2.
  • chiral SFC separation method: separation column: Chiralcel OD-350 ⁇ 4.6 mm ID, 3 microns; mobile phase: phase A is carbon dioxide, phase B is methanol + acetonitrile (containing 0.05% Diethylamine); gradient
  • compound 5I was replaced with compound 18A-1 to obtain compound 18B-1.
  • compound 5I was replaced with compound 18A-2 to obtain compound 18B-2.
  • compound 5I is replaced with compound 21D-1 or 21D-2 to obtain compound 21E-1 or 21E-2.
  • compound 5I is replaced with compound 21D-2 or 21D-1 to obtain compound 21E-2 or 21E-1.
  • compound 6H was replaced with compound 22B to obtain a mixture of compound 22C-1 and 22C-2.
  • the mixture of compounds 22C-1 and 22C-2 undergoes chiral SFC (separation method: separation column: Chiralcel OJ-350 ⁇ 4.6 mm ID, 3 microns; mobile phase: phase A is carbon dioxide, phase B is ethanol (containing 0.05% diethyl) Amine); gradient elution: 40% ethanol (containing 0.05% diethylamine) in carbon dioxide; flow rate: 3 ml/min; detector: PDA; column temperature: 35 degrees Celsius; pressure: 100 bar.) separation and retention
  • the compound with a time of 1.591 minutes is compound 22C-1, and the compound with a retention time of 2.636 minutes is compound 22C-2.
  • compound 5I was replaced with compound 22C-1 to obtain compound 22D-1.
  • compound 5I was replaced with compound 22C-2 to obtain compound 22D-2.
  • compound 1E was replaced with compound 23B, and the obtained crude product was prepared and separated by high performance liquid chromatography (formic acid system) to obtain compound 23C.
  • Water (10 mL), acetonitrile (3 mL) and aqueous hydrochloric acid (0.5 mol/L, 0.2 mL) were sequentially added to compound 26. After the mixture was stirred at 25 degrees Celsius for 15 minutes, it was freeze-dried to obtain the hydrochloride of compound 26 .
  • compound 6C was replaced with compound 27G to obtain compound 27H.
  • compound 1H was replaced with compound 36A to obtain compound 36B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

公开了一类含嘧啶基团的三并环类化合物,及其在制备治疗癌症的药物中的应用。具体公开了式(I)所示化合物、其药学上可接受的盐或其异构体。

Description

作为c-Met抑制剂的含嘧啶基团的三并环类化合物
本申请主张如下优先权:
CN201910105481.5,申请日2019年02月01日;
CN201910469780.7,申请日2019年05月31日;
CN201910865757.X,申请日2019年09月12日;
CN202010006610.8,申请日2020年01月03日。
技术领域
本发明涉及一类作为c-Met抑制剂的含嘧啶基团的三并环类化合物,及其在治疗癌症的药物中的应用。具体涉及式(I)所示化合物、其药学上可接受的盐或其异构体。
背景技术
受体酪氨酸激酶c-Met又称肝细胞生长因子(hypatocyte growth factor,HGF)受体,是MET基因编码产生的具有自主磷酸化活性的跨膜受体,是受体酪氨酸激酶(Receptor tyrosine kinases,RTKs)家族中一类独特的亚族,主要在上皮细胞产生。HGF是c-Met唯一的高亲和配体,广泛存在于人类各种组织与器官中。c-Met与间叶细胞分泌的HGF结合,引发c-Met二聚化,进而在c-Met活化环(A-loop)的两个催化位点Tyr1234及Tyr1235发生转移磷酸化,导致其C末端多功能对接区的Tyr1349及Tyr1356发生自身磷酸化,从而募集多种细胞效应器,如GAB1、GRB2、PLC和SRC等。GAB1继续募集下游效应分子,如SHP2、PI3K、CRKL等,形成多蛋白信号复合物进而激活一系列下游信号传导通路,其中包括RAS-MAPK、PI3K-AKT及STATs通路。c-Met/HGF具有多种生物学功能,激活下游信号通路,在肿瘤的发生、发展、转移及血管再生中发挥非常重要的作用。
研究发现,很多肿瘤细胞中出现c-Met高表达,例如肝细胞癌、胃癌、卵巢癌、非小细胞肺癌、肾癌等癌症细胞中均观察到c-Met的高表达,且c-Met的过度表达和多种肿瘤的形成及预后密切相关。HGF/c-Met通路的过度激活将引起下游信号通路的活化,从而诱使癌症发生。此外,HGF和c-Met的过表达还会导致EGFR、RAS-RAF-MEK和Akt-mTOR信号通路对相关抑制剂的耐药反应,这是肿瘤细胞逃逸的重要机制。例如,在EGFR活性突变的非小细胞肺癌中,HGF的过表达,致使c-Met磷酸化,从而激活下游的PI3K-Akt通路,导致细胞对EGFR抑制剂产生耐药。同样,在肿瘤微环境中HGF的上调和分泌会导致细胞对RAS抑制剂的耐药。
将肿瘤细胞中异常活化的HGF/c-Met信号通路阻断后,肿瘤细胞会出现细胞形态改变,增殖减缓,成瘤性降低,侵袭能力下降等一系列变化。因此,研制出一种高活性的c-Met抑制剂,可以为多种原发性c-Met信号通路异常及耐药性c-Met异常表达型肿瘤,提供一种有效的治疗方法。
目前对c-Met通路的干预疗法主要有以下几种:①治疗抗体:与HGF或c-Met结合,通过干预HGF与c-Met的相互作用从而抑制c-Met通路;②小分子酪氨酸激酶抑制剂:抑制c-Met激酶活性或其他在癌症进程中起重要作用的激酶;③类似HS90抑制剂的分子:通过影响c-Met蛋白的稳定性或表达来阻断c-Met通路;④干扰c-Met通路下游效应器的功能分子。
对于c-Met小分子抑制剂,根据分子与c-Met蛋白的结合模式的不同,可分为2种类型:Ⅰ型(Ⅰa 型与Ⅰb型)、Ⅱ型。Ⅰ型c-Met抑制剂是一类ATP竞争型抑制剂,围绕Met1211以U型构象结合在ATP结合口袋,与c-Met主链中的Met1160和Asp1222等氨基酸残基形成氢键,并与A-loop上的Tyr1230形成π-π堆积作用。大多数Ⅰ型c-Met抑制剂优先结合处于非活性构象的激酶靶点,具有较好的选择性。Ⅱ型c-Met抑制剂为多靶点c-Met抑制剂,不仅占据ATP结合位点,还能通过Gatekeeper进入由非活性“DFG-out”构象形成的疏水口袋,从而使抑制剂能较好地与靶点结合。抑制剂进入c-Met疏水口袋必须使A-loop让出空间,这就要求Ⅱ型c-Met抑制剂具有较高的相对分子质量和较强的亲脂性。
目前临床在研的c-Met小分子抑制剂主要有Crizotinib、Tepotinib(EMD1214063)、Capmatinib、Volitinib、Cabozantinib(XL-184)、和ARQ-197等。虽然这些药物在临床上展示了良好的治疗效果,但部分药物存在分子临床给药剂量高,临床副作用较大,及药物稳定性不高等不足。因此,开发新型的高活性高选择性且具有良好类药性的c-Met抑制剂,仍是目前未满足的临床需求。
发明内容
本发明提供了式(I)所示化合物、其药学上可接受的盐或其异构体,
Figure PCTCN2020073842-appb-000001
其中,
Figure PCTCN2020073842-appb-000002
Figure PCTCN2020073842-appb-000003
Figure PCTCN2020073842-appb-000004
Figure PCTCN2020073842-appb-000005
Figure PCTCN2020073842-appb-000006
时,T为C;
所述结构单元
Figure PCTCN2020073842-appb-000007
Figure PCTCN2020073842-appb-000008
Figure PCTCN2020073842-appb-000009
时,T为N;
所述结构单元
Figure PCTCN2020073842-appb-000010
T 1
Figure PCTCN2020073842-appb-000011
R a和R b各自独立地为H、F或-CH 3
R c各自独立地为H或-CH 3
各T 2独立地为N或CR d
各R d独立地为H或F;
T 3为-CH 2-或
Figure PCTCN2020073842-appb-000012
各T 4独立地为N或CR e
R e为H、F、Cl或-CH 3
R 1和R 2各自独立地为H、-CH 3、-CF 3、-CH 2CH 3、-CH 2CH 2CH 3或-CH 2(CH 3) 2
R 3和R 5各自独立地为H、F、Cl、-CN、-OH或C 1-3烷氧基;
L为
Figure PCTCN2020073842-appb-000013
R f为H、-CH 3或-CH 2CH 3
n为0、1或2;
R 4为任选被1、2或3个R g所取代的6-12元杂环烷基、任选被1、2或3个R g所取代的氮杂环丁基或任选被1、2或3个R g所取代的环己基;
各R g独立地为H、F、Cl、-OH、-CN、C 1-3烷氧基、C 1-3烷氨基、C 3-4环烷基、4-6元杂环烷基或任选被1、2或3个独立选自F、Cl、-OH、-CN、
Figure PCTCN2020073842-appb-000014
C 1-3烷氨基和-OCH 3的取代基所取代的C 1-5烷基;
所述6-12元杂环烷基和4-6元杂环烷基分别包含1、2、3或4个独立选自N、-O-和-S-的杂原子。
本发明提供了式(I)所示化合物、其药学上可接受的盐或其异构体,
Figure PCTCN2020073842-appb-000015
其中,
Figure PCTCN2020073842-appb-000016
Figure PCTCN2020073842-appb-000017
Figure PCTCN2020073842-appb-000018
Figure PCTCN2020073842-appb-000019
Figure PCTCN2020073842-appb-000020
时,T为C;
所述结构单元
Figure PCTCN2020073842-appb-000021
Figure PCTCN2020073842-appb-000022
Figure PCTCN2020073842-appb-000023
时,T为N;
所述结构单元
Figure PCTCN2020073842-appb-000024
T 1
Figure PCTCN2020073842-appb-000025
R a和R b各自独立地为H、F或-CH 3
R c各自独立地为H或-CH 3
各T 2独立地为N或CR d
各R d独立地为H或F;
T 3为-CH 2-或
Figure PCTCN2020073842-appb-000026
T 4为N或CR e
R e为H、F、Cl或-CH 3
R 1和R 2各自独立地为H、-CH 3、-CF 3、-CH 2CH 3、-CH 2CH 2CH 3或-CH 2(CH 3) 2
R 3和R 5各自独立地为H、F、Cl、-CN、-OH或C 1-3烷氧基;
L为
Figure PCTCN2020073842-appb-000027
R f为H、-CH 3或-CH 2CH 3
n为0、1或2;
R 4为任选被1、2或3个R g所取代6-12元杂环烷基;
各R g独立地为H、F、Cl、-OH、-CN、C 1-3烷氧基或任选被1、2或3个独立选自F、Cl、-OH、-CN和-OCH 3的取代基所取代的C 1-3烷基;
所述6-12元杂环烷基包含1、2、3或4个独立选自N、-O-和-S-的杂原子。
本发明提供了式(I)所示化合物、其药学上可接受的盐或其异构体,
Figure PCTCN2020073842-appb-000028
其中,
Figure PCTCN2020073842-appb-000029
Figure PCTCN2020073842-appb-000030
Figure PCTCN2020073842-appb-000031
Figure PCTCN2020073842-appb-000032
Figure PCTCN2020073842-appb-000033
时,T为C;
所述结构单元
Figure PCTCN2020073842-appb-000034
Figure PCTCN2020073842-appb-000035
Figure PCTCN2020073842-appb-000036
时,T为N;
所述结构单元
Figure PCTCN2020073842-appb-000037
T 1
Figure PCTCN2020073842-appb-000038
R a和R b各自独立地为H、F或-CH 3
R c各自独立地为H或-CH 3
各T 2独立地为N或CR d
各R d独立地为H或F;
T 3为-CH 2-或
Figure PCTCN2020073842-appb-000039
T 4为N或CR e
R e为H、F、Cl或-CH 3
R 1和R 2各自独立地为H、-CH 3、-CF 3、-CH 2CH 3、-CH 2CH 2CH 3或-CH 2(CH 3) 2
R 3和R 5各自独立地为H、F、Cl、-CN、-OH或C 1-3烷氧基;
L为
Figure PCTCN2020073842-appb-000040
R f为H、-CH 3或-CH 2CH 3
n为0、1或2;
R 4为任选被1、2或3个R g所取代6-12元杂环烷基;
各R g独立地为H、F、Cl、-OH、-CN、C 1-3烷氧基、4-6元杂环烷基、或任选被1、2或3个独立选自F、Cl、-OH、-CN、C 1-3烷氨基和-OCH 3的取代基所取代的C 1-3烷基;
所述6-12元杂环烷基和4-6元杂环烷基分别包含1、2、3或4个独立选自N、-O-和-S-的杂原子。
在本发明的一些方案中,上述化合物具有式(I-A)~(I-C)所示结构:
Figure PCTCN2020073842-appb-000041
其中,T 1、T 2、T 3、T 4、R 1、R 2、R 3、R 4、R 5和L如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-A)、(I-B)、(I-C)或(I-E)所示结构:
Figure PCTCN2020073842-appb-000042
其中,T 1、T 2、T 3、T 4、R 1、R 2、R 3、R 4、R 5和L如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-A1)~(I-A5)所示结构:
Figure PCTCN2020073842-appb-000043
Figure PCTCN2020073842-appb-000044
其中,T 2、R 1、R 2、R 3、R 4、L、R a、R b和R c如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-B1)所示结构:
Figure PCTCN2020073842-appb-000045
其中,T 2、R 1、R 2、R 3、R 4和L如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-C1)或(I-C2)所示结构:
Figure PCTCN2020073842-appb-000046
其中,T 2、R 1、R 2、R 3、R 4、R 5、L和R e如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-E1)所示结构:
Figure PCTCN2020073842-appb-000047
其中,T 2、R 1、R 2、R 3、R 4、R 5和L如本发明所定义。
本发明还提供了式(I-D)或(I-F)所示化合物、其药学上可接受的盐或其异构体,
Figure PCTCN2020073842-appb-000048
其中,各T 2独立地为N或CR d
各R d独立地为H或F;
各T 4独立地为N或CR e
R e为H、F、Cl或-CH 3
R 1和R 2各自独立地为H、-CH 3、-CF 3、-CH 2CH 3、-CH 2CH 2CH 3或-CH 2(CH 3) 2
R 3和R 5各自独立地为H、F、Cl、-CN、-OH或C 1-3烷氧基;
L为
Figure PCTCN2020073842-appb-000049
R f为H、-CH 3或-CH 2CH 3
n为0、1或2;
R 4为任选被1、2或3个R g所取代的6-12元杂环烷基、任选被1、2或3个R g所取代的氮杂环丁基或任选被1、2或3个R g所取代的环己基;
各R g独立地为H、F、Cl、-OH、-CN、C 1-3烷氧基、C 1-3烷氨基、C 3-4环烷基、4-6元杂环烷基或任选被1、2或3个独立选自F、Cl、-OH、-CN、
Figure PCTCN2020073842-appb-000050
C 1-3烷氨基和-OCH 3的取代基所取代的C 1-5烷基;
所述6-12元杂环烷基和4-6元杂环烷基分别包含1、2、3或4个独立选自N、-O-和-S-的杂原子。
在本发明的一些方案中,上述化合物具有式(I-D1)或(I-F1)所示结构:
Figure PCTCN2020073842-appb-000051
其中,T 2、R 1、R 2、R 3、R 5、L和R 4如本发明所定义。
在本发明的一些方案中,上述L为
Figure PCTCN2020073842-appb-000052
其他变量如本发明所定义。
在本发明的一些方案中,上述L为
Figure PCTCN2020073842-appb-000053
其他变量如本发明所定义。
在本发明的一些方案中,上述各R g为H、F、Cl、-OH、-CN、-CH 3、-CH 2CH 3、-OCH 3、-OCH 2CH 3、 -CF 3、-CH 2CF 3、-CH 2CH 2CF 3、-CH 2OH或-CH 2CH 2OH,其他变量如本发明所定义。
在本发明的一些方案中,上述各R g为H、F、Cl、-OH、-CN、
Figure PCTCN2020073842-appb-000054
-CH 3、-CH 2CH 3、-CH(CH 3) 2、-OCH 3、-OCH 2CH 3、-CF 3、-CH 2CF 3、-CH 2CH 2CF 3、-CH 2OH、-CH 2CH 2OH、-CH 2CH 2OCH 3或CH 2CH 2N(CH 3) 2,其他变量如本发明所定义。
在本发明的一些方案中,上述各R g为H、F、Cl、-OH、-CN、
Figure PCTCN2020073842-appb-000055
-CH 3、-CH 2CH 3、-CH 2CH 2CH 3、-CH(CH 3) 2、-CH 2CH(CH 3) 2、-OCH 3、-OCH 2CH 3、-N(CH 3) 2、-CF 3、-CH 2CF 3、-CH 2CH 2CF 3、-CH 2OH、-CH 2CH 2OH、-CH 2CH 2OCH 3、-CH 2CH 2N(CH 3) 2
Figure PCTCN2020073842-appb-000056
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4为任选被1、2或3个R g所取代6-10元杂环烷基,R g及其他变量如本发明所定义。
在本发明的一些方案中,上述R 4为任选被1、2或3个R g所取代的6-10元杂环烷基、任选被1、2或3个R g所取代的氮杂环丁基或任选被1、2或3个R g所取代的环己基,R g及其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000057
其中所述
Figure PCTCN2020073842-appb-000058
任选被1、2或3个R g所取代,R g及其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000059
Figure PCTCN2020073842-appb-000060
其中所述
Figure PCTCN2020073842-appb-000061
任选被1、2或3个R g所取代,R g及其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000062
Figure PCTCN2020073842-appb-000063
其中所述
Figure PCTCN2020073842-appb-000064
Figure PCTCN2020073842-appb-000065
任选被1、2或3个R g所取代,R g及其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000066
R g及其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000067
Figure PCTCN2020073842-appb-000068
R g及其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000069
Figure PCTCN2020073842-appb-000070
R g及其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000071
Figure PCTCN2020073842-appb-000072
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000073
Figure PCTCN2020073842-appb-000074
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000075
Figure PCTCN2020073842-appb-000076
Figure PCTCN2020073842-appb-000077
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4
Figure PCTCN2020073842-appb-000078
Figure PCTCN2020073842-appb-000079
Figure PCTCN2020073842-appb-000080
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000081
Figure PCTCN2020073842-appb-000082
R g及其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000083
Figure PCTCN2020073842-appb-000084
R g及其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000085
Figure PCTCN2020073842-appb-000086
Figure PCTCN2020073842-appb-000087
R g及其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000088
Figure PCTCN2020073842-appb-000089
Figure PCTCN2020073842-appb-000090
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000091
Figure PCTCN2020073842-appb-000092
Figure PCTCN2020073842-appb-000093
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000094
Figure PCTCN2020073842-appb-000095
Figure PCTCN2020073842-appb-000096
Figure PCTCN2020073842-appb-000097
Figure PCTCN2020073842-appb-000098
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000099
Figure PCTCN2020073842-appb-000100
Figure PCTCN2020073842-appb-000101
Figure PCTCN2020073842-appb-000102
其他变量如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-A6)~(I-A11)所示结构:
Figure PCTCN2020073842-appb-000103
其中,R 1、R 2、R 3、R a、R b、R c、R d和R g如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-B2)所示结构:
Figure PCTCN2020073842-appb-000104
其中,R 1、R 2、R 3、R d和R g如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-C4)~(I-C6)所示结构:
Figure PCTCN2020073842-appb-000105
其中,R 1、R 2、R 3、R 5、R e和R g如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-E2)所示结构:
Figure PCTCN2020073842-appb-000106
其中,R 1、R 2、R 3和R g如本发明所定义。
在本发明的一些方案中,上述化合物具有式(I-D2)或(I-F2)所示结构:
Figure PCTCN2020073842-appb-000107
其中,R 1、R 2、R 3和R g如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000108
Figure PCTCN2020073842-appb-000109
Figure PCTCN2020073842-appb-000110
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000111
Figure PCTCN2020073842-appb-000112
Figure PCTCN2020073842-appb-000113
在本发明的一些方案中,上述所述结构单元
Figure PCTCN2020073842-appb-000114
Figure PCTCN2020073842-appb-000115
Figure PCTCN2020073842-appb-000116
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2020073842-appb-000117
Figure PCTCN2020073842-appb-000118
Figure PCTCN2020073842-appb-000119
Figure PCTCN2020073842-appb-000120
其他变量如本发明所定义。
在本发明的一些方案中,上述R 3和R 5各自独立地为H、F、Cl、-CN、-OH或-OCH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3为H、F、Cl、-CN、-OH或-OCH 3,其他变量如本发明所定义。
本发明还有一些方案是由上述变量任意组合而来。
本发明还提供了下式化合物、其药学上可接受的盐或其异构体:
Figure PCTCN2020073842-appb-000121
Figure PCTCN2020073842-appb-000122
Figure PCTCN2020073842-appb-000123
Figure PCTCN2020073842-appb-000124
Figure PCTCN2020073842-appb-000125
本发明还提供了下式化合物、其药学上可接受的盐或其异构体:
Figure PCTCN2020073842-appb-000126
Figure PCTCN2020073842-appb-000127
在本发明的一些方案中,上述药学上可接受的盐为甲酸盐或盐酸盐。
本发明还提供了一种药物组合物,其含有治疗有效量的上述化合物、其药学上可接受的盐或其异构体或上述甲酸盐或盐酸盐和药学上可接受的载体。
本发明还提供了上述化合物、其药学上可接受的盐或其异构体、上述甲酸盐和盐酸盐以及上述药物组合物在制备c-Met抑制剂药物中的应用。
技术效果
本发明化合物对c-Met激酶,具有很好的选择性和抑制活性,同时兼具优良的药代动力学和药效学性质。有望用于c-Met信号通路异常及耐药性c-Met异常表达型肿瘤的治疗。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的 惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2020073842-appb-000128
和楔形虚线键
Figure PCTCN2020073842-appb-000129
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2020073842-appb-000130
和直形虚线键
Figure PCTCN2020073842-appb-000131
表示立体中心的相对构型,用波浪线
Figure PCTCN2020073842-appb-000132
表示楔形实线键
Figure PCTCN2020073842-appb-000133
或楔形虚线键
Figure PCTCN2020073842-appb-000134
或用波浪线
Figure PCTCN2020073842-appb-000135
表示直形实线键
Figure PCTCN2020073842-appb-000136
和直形虚线键
Figure PCTCN2020073842-appb-000137
除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。 例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125 I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2020073842-appb-000138
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2020073842-appb-000139
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2020073842-appb-000140
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2020073842-appb-000141
直形虚线键
Figure PCTCN2020073842-appb-000142
或波浪线
Figure PCTCN2020073842-appb-000143
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2020073842-appb-000144
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2020073842-appb-000145
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。
除非另有规定,“6-12元环”表示由6至12个环原子组成的环烷基、杂环烷基、环烯基或杂环烯基。所述的环包括单环,也包括螺环、并环和桥环等双环或多环体系。除非另有规定,该环任选地包含1、2或3个独立选自O、S和N的杂原子。所述6-12元环包括6-10元、6-9元、6-8元和6-7元环等。术语“6-7元杂环烷基”包括哌啶基等,但不包括苯基。术语“环”还包括含有至少一个环的环系,其中的每一个“环”均独立地符合上述定义。
除非另有规定,术语“C 1-5烷基”用于表示直链或支链的由1至5个碳原子组成的饱和碳氢基团。所述C 1-5烷基包括C 1-4、C 1-3、C 1-2、C 2-5、C 2-4和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-5烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)等。
除非另有规定,术语“C 1-4烷基”用于表示直链或支链的由1至4个碳原子组成的饱和碳氢基团。所述C 1-4烷基包括C 1-2、C 1-3和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-4烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)等。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,“C 3-4环烷基”表示由3至4个碳原子组成的饱和环状碳氢基团,其为单环体系,其可以是一价、二价或者多价。C 3-4环烷基的实例包括,但不限于,环丙基、环丁基等。
除非另有规定,术语“6-12元杂环烷基”本身或者与其他术语联合分别表示由6至12个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任 选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。此外,就该“6-12元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述6-12元杂环烷基包括6-10元、6-9元、6-8元、6-7元、6元、7元和8元杂环烷基等。6-12元杂环烷基的实例包括但不限于四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基、二氧杂环庚烷基、八氢环戊烷并[c]吡咯基、8-氮杂双环[3.2.1]辛基、1-氮杂双环[2.2.1]庚基等。
除非另有规定,术语“6-10元杂环烷基”本身或者与其他术语联合分别表示由6至10个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。此外,就该“6-10元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述6-10元杂环烷基包括6-9元、6-8元、6-7元、6元、7元和8元杂环烷基等。6-10元杂环烷基的实例包括但不限于四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基、二氧杂环庚烷基、八氢环戊烷并[c]吡咯基、8-氮杂双环[3.2.1]辛基、1-氮杂双环[2.2.1]庚基等。
除非另有规定,术语“4-6元杂环烷基”本身或者与其他术语联合分别表示由4至6个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。此外,就该“4-6元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述4-6元杂环烷基包括5-6元、4元、5元和6元杂环烷基等。4-6元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基或高哌啶基等。
除非另有规定,术语“C 1-3烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氨基包括C 1-2、C 3和C 2烷氨基等。C 1-3烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2等。
除非另有规定,本发明术语“C 6-10芳环”和“C 6-10芳基”可以互换使用,术语“C 6-10芳环”或“C 6-10芳基”表示由6至10个碳原子组成的具有共轭π电子体系的环状碳氢基团,它可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其可以是一价、二价或者多价,C 6-10芳基包括C 6-9、C 9、C 10和C 6芳基等。C 6-10芳基的实例包括但不限于苯基、萘基(包括1-萘基和2-萘基等)。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1-3、 C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明所使用的溶剂可经市售获得。无需进一步纯化即可使用。反应一般是在惰性氮气下、无水溶剂中进行的。
本发明采用下述缩略词:NBS代表N-溴代丁二酰亚胺;Pd(dppf)Cl 2代表[1,1'-双(二苯基膦基)二茂铁]二氯化钯;BAST代表双(2-甲氧乙基)氨基三氟化硫;DMF代表N,N-二甲基甲酰胺;NaBH(OAc) 3代表三乙酰氧基硼氢化钠;Pd(PPh 3) 2Cl 2代表双(三苯基膦)二氯化钯;DIPEA代表N,N-二异丙基乙胺;TBDMSCl代表叔丁基二甲基氯硅烷,DMSO代表二甲基亚砜;DME代表乙二醇二甲醚;Pd(PPh 3) 4代表四三苯基膦钯;Boc 2O代表二碳酸二叔丁酯;TEA代表三乙胺;DPPA代表叠氮磷酸二苯酯;DMAP代表4-二甲基氨基吡啶;dppf代表1,1'-双(二苯基膦基)二茂铁;Pd(dppf)Cl 2·CH 2Cl 2代表[1,1'-双(二苯基膦基)二茂铁]二氯化钯(II)二氯甲烷加合物;Pd 2(dba) 3代表三(二亚苄基丙酮)二钯;NMP代表N-甲基吡咯烷酮;TMSCl代表三甲基氯硅烷;ADDP代表偶氮二甲酰二哌啶;SFC代表超临界流体色谱仪;Xantphos代表4,5-双(二苯基膦)-9,9-二甲基氧杂蒽;LiHMDS代表六甲基二硅基胺基锂。
本发明化合物依据本领域常规命名原则或者使用ChemDraw
Figure PCTCN2020073842-appb-000146
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情 况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。本发明化合物的盐酸盐或甲酸盐,加入饱和碳酸氢钠溶液调节pH到中性,经过高效液相色谱法分离(中性,碳酸氢铵体系)得到化合物的游离碱。
在一些实施例中,具有式(I)的化合物可以按照方案A中所述的合成方法制备,其中R 1、R 2、R 3、R 4、L、T、环A和环B如本发明所定义,X为Br或Cl。
方案A
Figure PCTCN2020073842-appb-000147
本发明现在进一步通过实施例描述。下面给出的实施例仅用于说明目的,而不是仅限于此发明的范围。本发明的化合物可以用有机合成领域中许多已知的方法来制备。本发明的实施例可以使用下面描述的方法来合成,以及有机合成化学领域中已知的合成方法,或在其基础上通过改进的方法。优选的方法包括,但不限于以下描述方法。
具体实施方式
为了更详细地说明本发明,给出下列实例,但本发明的范围并非限定于此。
实施例1
Figure PCTCN2020073842-appb-000148
Figure PCTCN2020073842-appb-000149
化合物1A:
Figure PCTCN2020073842-appb-000150
向3-溴-4-甲基苯腈(15.00克,76.51毫摩尔)的四氯化碳(500毫升)溶液中加入NBS(54.47克,306.05毫摩尔)和过氧苯甲酰(1.85克,7.65毫摩尔)。反应体系于80摄氏度搅拌16小时。反应液降温至30摄氏度,过滤。滤液浓缩得到粗品,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=40:1-20:1洗脱)得到化合物1A。 1H NMR(400MHz,CDCl 3)δ=8.14(d,J=8.2Hz,1H),7.83(d,J=1.6Hz,1H),7.71(dd,J=1.6,8.2Hz,1H),7.02(s,1H)。
化合物1B:
Figure PCTCN2020073842-appb-000151
向化合物1A(27.78克,78.51毫摩尔)的乙腈(300毫升)溶液中加入硝酸银(53.35克,314.04毫摩尔)的水(150毫升)溶液,反应体系于80摄氏度搅拌16小时,反应液过滤,滤液用乙酸乙酯(500毫升)稀释,水洗(300毫升×2次),有机相用无水硫酸钠干燥,过滤,滤液浓缩至干,得到化合物1B。 1H NMR(400MHz,CDCl 3)δ=10.32(s,1H),7.96-7.87(m,2H),7.66(dd,J=1.0,9.0 Hz,1H)。
化合物1C:
Figure PCTCN2020073842-appb-000152
化合物1B(16.95克,80.70毫摩尔),2-甲氧基-5-吡啶硼酸频那醇酯(22.77克,96.84毫摩尔),Pd(dppf)Cl 2(5.91克,8.07毫摩尔)和碳酸钾(22.31克,161.41毫摩尔)的二氧六环(180毫升)和水(60毫升)的混合物于100摄氏度搅拌2小时。反应液用乙酸乙酯(500毫升)稀释,用饱和食盐水洗(300毫升×2次)。有机相用无水硫酸钠干燥,过滤,滤液浓缩。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=20:1-10:1)得到化合物1C。 1H NMR(400MHz,CDCl 3)δ=10.03(d,J=0.7Hz,1H),8.18(d,J=2.2Hz,1H),8.13(d,J=7.8Hz,1H),7.82-7.78(m,1H),7.75(d,J=1.2Hz,1H),7.62(dd,J=2.4,8.6Hz,1H),4.03(s,3H)。
化合物1D:
Figure PCTCN2020073842-appb-000153
化合物1C(2.00克,8.39毫摩尔)和过氧叔丁醇(5.5摩尔/升癸烷溶液,6.11毫升)的1,2-二氯乙烷(8毫升)溶液于100摄氏度搅拌60小时,反应液用二氯甲烷(300毫升)稀释,依次用饱和硫代硫酸钠水溶液(150毫升×3次),水(100毫升×1次),饱和食盐水(150毫升×1次)洗,有机相用无水硫酸钠干燥,过滤,浓缩得到粗品。将粗品悬浮于石油醚(50毫升)中,于25摄氏度搅拌30分钟,过滤,滤饼干燥后得到化合物1D。 1H NMR(400MHz,CDCl 3)δ=7.83(d,J=8.6Hz,1H),7.75(d,J=7.8Hz,1H),7.65-7.59(m,2H),6.94(d,J=8.6Hz,1H),4.09(s,3H)。LCMS(ESI):m/z:237.1[M+1]。
化合物1E:
Figure PCTCN2020073842-appb-000154
氮气保护下,化合物1D(365毫克,1.55毫摩尔)和BAST(2.39克,10.82毫摩尔)于60摄氏度搅拌12小时,反应液用水(100毫升)淬灭后,用乙酸乙酯(100毫升×2次)萃取。合并的有机相用饱和食盐水(100毫升×1次)洗,无水硫酸钠干燥,过滤,浓缩,粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=20:1到15:1)得到化合物1E。 1H NMR(400MHz,DMSO-d 6)δ=8.35-8.24(m,2H),7.97-7.86(m,2H),7.13(d,J=8.3Hz,1H),3.95(s,3H)。LCMS(ESI):m/z:259.0[M+1]。
化合物1F:
Figure PCTCN2020073842-appb-000155
向化合物1E(165毫克,0.64毫摩尔)和碘化钠(574.68毫克,3.83毫摩尔)的乙腈(5毫升)的混合物中加入三甲基氯硅烷(416.52毫克,3.83毫摩尔),反应体系于70摄氏度搅拌2小时,水(150毫升)加入反应液中,混 合物用乙酸乙酯(100毫升×2次)萃取。合并的有机相依次用饱和亚硫酸钠水溶液(100毫升×2次),饱和食盐水(100毫升×1次)洗,无水硫酸钠干燥有机相,过滤,浓缩至干,得到化合物1F。 1H NMR(400MHz,DMSO-d 6)δ=8.28-8.23(m,1H),8.20-8.15(m,1H),7.92-7.84(m,2H),6.91-6.83(m,1H)。LCMS(ESI):m/z:245.0[M+1]。
化合物1G:
Figure PCTCN2020073842-appb-000156
将叔丁基4-羟甲基哌啶-1-羧酸酯(50克,232.25毫摩尔)溶于800毫升无水二氯甲烷中加入DIEA(60.10克,465.04毫摩尔,81毫升),在0摄氏度下缓慢滴加甲烷磺酰氯(31.08克,271.32毫摩尔,21毫升)。加料完毕后混合液在27摄氏度氮气保护环境下搅拌反应1小时。反应液用0.5摩尔/升的盐酸水溶液200毫升洗涤三次后再用300毫升饱和碳酸氢钠水溶液洗涤。分出有机相用无水硫酸钠干燥过滤后旋干得到化合物1G。 1H NMR(400MHz,CDCl 3)δ=4.14(br s,2H),4.07(d,J=6.4Hz,2H),3.01(s,3H),2.71(br t,J=12.4Hz,2H),1.97-1.83(m,1H),1.74(br d,J=12.8Hz,2H),1.46(s,9H),1.32-1.14(m,2H)。LCMS(ESI):m/z:238.1[M-55]。
化合物1H:
Figure PCTCN2020073842-appb-000157
将化合物1G(109克,371.53毫摩尔),2-氯-5-羟基嘧啶(40.25克,308.37毫摩尔)和碳酸钾(85.24克,616.75毫摩尔)溶于1000毫升DMF中。混合液在80摄氏度氮气保护环境下搅拌反应16小时。反应液旋干移除有机溶剂。剩余残渣加入400毫升水然后分别用300毫升乙酸乙酯萃取三次。合并有机相用无水硫酸钠干燥过滤后旋干。残渣通过柱层析法(SiO 2,石油醚:乙酸乙酯=50:1-5:1)纯化得到粗品产物。然后粗品用60毫升石油醚:乙酸乙酯=5:1混合溶剂在25摄氏度打浆十五分钟过滤,滤饼用10毫升石油醚:乙酸乙酯=5:1混合溶剂洗涤三次后旋干得到化合物1H。 1H NMR(400MHz,DMSO-d 6)δ=8.53(s,2H),4.02(d,J=6.5Hz,2H),3.96(br d,J=12.2Hz,2H),2.87-2.62(m,2H),2.01-1.87(m,1H),1.80-1.66(m,2H),1.39(s,9H),1.10-1.02(m,2H)。LCMS(ESI):m/z:272.0[M-55]。
化合物1I:
Figure PCTCN2020073842-appb-000158
将化合物1H(34克,103.72毫摩尔)和3-羟甲基苯硼酸(16克,105.29毫摩尔)溶于250毫升二氧六环和50毫升水中,加入碳酸钠(33克,311.35毫摩尔)和Pd(dppf)Cl 2(3克,4.10毫摩尔)。混合液在90摄氏度氮气保护环境下搅拌反应12小时,反应液旋干移除有机溶剂。剩余残渣加入100毫升水,然后分别用100毫升乙酸乙酯萃取三次。合并有机相旋干,残渣通过200毫升石油醚:乙酸乙酯=1:1混合溶剂打浆半小时过滤,滤饼用50毫升石油醚:乙酸乙酯=1:1混合溶剂洗涤三次得到化合物1I。 1H NMR(400MHz,CDCl3)δ=8.46(s,2H),8.34(br s,1H),8.28(br s,1H),7.47(br s,2H),4.80(br s,2H),4.20(br s,2H),3.95(br d,J=5.9Hz,2H),2.77(br s,
2H),2.02(br s,1H),1.85(br d,J=13.7Hz,2H),1.48(s,9H),1.32(1.45-1.12,m,2H)。LCMS(ESI):m/z:400.1[M+1]。
化合物1J:
Figure PCTCN2020073842-appb-000159
向化合物1I(5克,12.52毫摩尔)的二氯甲烷(50毫升)溶液中加入四溴化碳(6.23克,18.77毫摩尔)和三苯基磷(3.94克,15.02毫摩尔)后在25摄氏度搅拌30分钟。TLC(石油醚:乙酸乙酯=2:1)显示还有原料剩余,再向反应液中加入四溴化碳(2.99克,9.01毫摩尔)和三苯基磷(2.00克,7.63毫摩尔)后在25摄氏度搅拌10分钟。TLC(石油醚:乙酸乙酯=2:1)显示原料反应完全。将反应液浓缩,向剩余物中加入二氯甲烷(10毫升)和乙酸乙酯(30毫升)后搅拌10分钟后过滤,滤液浓缩。向浓缩物中加入甲醇(40毫升)后在25摄氏度搅拌15分钟后过滤。滤饼用甲醇(5毫升)洗涤两次后在空气中干燥得到化合物1J。 1H NMR(400MHz,DMSO-d 6)δ=8.68-8.64(m,2H),8.39(s,1H),8.24(br d,J=7.7Hz,1H),7.58-7.46(m,2H),4.82(s,2H),4.08(br d,J=6.4Hz,2H),3.99(br d,J=10.4Hz,2H),2.76(br s,2H),1.99(br s,1H),1.78(br d,J=12.0Hz,2H),1.41(s,9H),1.27-1.11(m,2H)。
化合物1K:
Figure PCTCN2020073842-appb-000160
化合物1F(160毫克,0.66毫摩尔),化合物1J(393.84毫克,0.85毫摩尔)和碳酸钾(271.66毫克,1.97毫摩尔)的DMF(5毫升)的悬浊液于65摄氏度搅拌1.5小时,加入水(50毫升)到反应液中,混合物用乙酸乙酯(100毫升×2次)萃取,合并的有机相用饱和食盐水(100毫升×3次)洗,无水硫酸钠干燥有机相,过滤,浓缩。粗品经硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-2:1)得到化合物1K。LCMS(ESI):m/z:648.2[M+23]。
化合物1L:
Figure PCTCN2020073842-appb-000161
向化合物1K(55毫克,0.088毫摩尔)的二氯甲烷(2毫升)溶液加入盐酸乙酸乙酯溶液(4摩尔/升,1.5毫升),反应体系于25摄氏度搅拌2小时。用饱和碳酸氢钠水溶液调pH至8,混合物用乙酸乙酯(60毫升×2次) 萃取,合并的有机相依次用水(100毫升×1次),饱和食盐水(100毫升×1次)洗,无水硫酸钠干燥有机相,过滤,浓缩至干,得到化合物1L。LCMS(ESI):m/z:526.2[M+1]。
化合物1的甲酸盐:
Figure PCTCN2020073842-appb-000162
向化合物1L(52毫克,0.099毫摩尔)的四氢呋喃(3毫升)溶液加入甲醛水溶液(80.29毫克,0.99毫摩尔)和NaBH(OAc) 3(41.94毫克,0.20毫摩尔)。反应体系于25摄氏度搅拌0.5小时,水(50毫升)加入反应液中,混合物用乙酸乙酯(50毫升×2次)萃取,合并的有机相用饱和食盐水洗,无水硫酸钠干燥有机相,过滤,浓缩。粗品经高效液相色谱制备分离(甲酸体系),得到化合物1的甲酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.61(s,2H),8.27-8.10(m,5H),7.89-7.79(m,2H),7.45(t,J=7.8Hz,1H),7.30(d,J=7.8Hz,1H),6.87(d,J=9.3Hz,1H),5.38(s,2H),4.10-3.97(m,2H),2.82(br d,J=11.0Hz,2H),2.19(s,3H),1.95(br t,J=11.0Hz,2H),1.74(br d,J=9.5Hz,3H),1.41-1.25(m,2H)。LCMS(ESI):m/z:540.2[M+1]。
实施例2
Figure PCTCN2020073842-appb-000163
化合物2A:
Figure PCTCN2020073842-appb-000164
根据化合物1F的方法制备,将化合物1E替换为化合物1D,得到化合物2A。LCMS(ESI):m/z:223.0[M+1]。化合物2B:
Figure PCTCN2020073842-appb-000165
根据化合物1K的方法制备,将化合物1F替换为化合物2A,得到化合物2B。 1H NMR(400MHz,DMSO-d 6)δ=8.62(s,2H),8.24-8.15(m,2H),8.09(d,J=9.3Hz,1H),8.01(s,1H),7.73(dd,J=1.2,7.3Hz,1H),7.59(d,J=7.6Hz,1H),7.46-7.33(m,2H),6.90(d,J=9.3Hz,1H),5.57(s,2H),4.09-4.02(m,2H),2.83-2.69(m, 2H),1.81-1.70(m,2H),1.40(s,9H),1.20(br s,3H),0.89-0.77(m,2H)。LCMS(ESI):m/z:604.2[M+1]。
化合物2C:
Figure PCTCN2020073842-appb-000166
根据化合物1L的方法制备,将化合物1K替换为化合物2B,得到化合物2C。LCMS(ESI):m/z:504.2[M+1]。化合物2的甲酸盐:
Figure PCTCN2020073842-appb-000167
根据化合物1的甲酸盐的方法制备,将化合物1L替换为化合物2C,得到化合物2的甲酸盐。 1H NMR(400MHz,CDCl 3)δ=8.50(s,1H),8.43(s,3H),8.23(td,J=1.5,7.6Hz,1H),7.61(d,J=9.3Hz,1H),7.57-7.53(m,1H),7.52-7.48(m,1H),7.46-7.37(m,3H),6.94(d,J=9.0Hz,1H),5.75(s,2H),3.98(d,J=5.9Hz,2H),3.33(br d,J=10.8Hz,2H),2.57(s,3H),2.40(br s,2H),2.08-1.93(m,3H),1.87-1.70(m,2H)。LCMS(ESI):m/z:518.2[M+1]。
实施例3
Figure PCTCN2020073842-appb-000168
化合物3A:
Figure PCTCN2020073842-appb-000169
根据化合物1C的方法制备,将化合物1B替换为2-溴-4-氟苯甲醇,得到化合物3A。 1H NMR(400MHz,CDCl 3)δ=8.17(d,J=2.3Hz,1H),7.65(dd,J=2.4,8.6Hz,1H),7.53(dd,J=5.9,8.4Hz,1H),7.09(dt,J=2.7,8.4Hz,1H),6.98(dd,J=2.6,9.4Hz,1H),6.82(d,J=8.4Hz,1H),4.56(s,2H),3.99(s,3H),1.88(s,1H)。LCMS(ESI):m/z:234.1[M+1]。
化合物3B:
Figure PCTCN2020073842-appb-000170
在0摄氏度下,将戴斯马丁试剂(24.00克,56.59毫摩尔,17.52毫升)加入到化合物3A(12克,51.45毫摩尔)的二氯甲烷(200毫升)溶液中,该溶液在0摄氏度搅拌0.5小时,反应液用二氯甲烷(1500毫升)稀释饱和亚硫酸钠(300毫升×1次)洗涤,饱和碳酸氢钠(300毫升×1次),无水硫酸钠干燥过滤,滤液浓缩。粗品通过柱层析法(石油醚:乙酸乙酯=20:1,加入10%二氯甲烷)得到化合物3B。 1H NMR(400MHz,CDCl 3)δ=10.01-9.86(m,1H),8.18(d,J=2.3Hz,1H),8.08(dd,J=6.0,8.7Hz,1H),7.61(dd,J=2.5,8.5Hz,1H),7.21(dt,J=2.3,8.2Hz,1H),7.10(dd,J=2.4,9.2Hz,1H),6.88(d,J=8.6Hz,1H),4.02(s,3H)。
化合物3C:
Figure PCTCN2020073842-appb-000171
根据化合物1D的方法制备,将化合物1C替换为化合物3B,得到化合物3C。 1H NMR(400MHz,CDCl 3)δ=7.64(d,J=8.3Hz,1H),7.58(dd,J=5.3,8.1Hz,1H),6.99(dd,J=2.1,8.2Hz,1H),6.83(dt,J=2.1,8.7Hz,1H),6.77(d,J=8.4Hz,1H),3.99(s,3H)。
化合物3D:
Figure PCTCN2020073842-appb-000172
根据化合物1F的方法制备,将化合物1E替换为化合物3C,得到化合物3D。 1H NMR(400MHz,DMSO-d 6)δ=7.87(d,J=9.2Hz,1H),7.58-7.51(m,1H),7.12(d,J=8.8Hz,1H),6.61-6.51(m,2H),6.10(s,1H)。LCMS(ESI):m/z:216.0[M+1]。
化合物3E:
Figure PCTCN2020073842-appb-000173
根据化合物1K的方法制备,将化合物1F替换为化合物3D,得到化合物3E。 1H NMR(400MHz,DMSO-d 6)δ=8.63(s,2H),8.22(s,1H),8.18(d,J=7.8Hz,1H),8.04(d,J=9.2Hz,1H),7.56-7.47(m,2H),7.45-7.39(m,1H),7.38-7.31(m,1H),7.04-6.95(m,1H),6.85(d,J=9.3Hz,1H),5.59(s,2H),4.15-4.05(m,2H),3.98(d,J=11.0Hz,2H),2.90-2.64(m,2H),2.07-1.91(m,1H),1.76(d,J=10.6Hz,2H),1.40(s,9H),1.20-1.11(m,2H)。LCMS(ESI):m/z:597.2[M+1]。
化合物3F:
Figure PCTCN2020073842-appb-000174
向化合物3E(200毫克,335.21微摩尔)的二氯甲烷(2毫升)溶液中加入三氟乙酸(1.54克,13.51毫摩尔,1毫升)后在25摄氏度搅拌1小时,将反应液浓缩后溶在乙酸乙酯(20毫升)中,用饱和碳酸氢钠水溶液(10毫升)洗涤一次后用无水硫酸钠干燥,浓缩,得到化合物3F直接用于下一步。LCMS(ESI):m/z:497.2[M+1]。
化合物3的甲酸盐:
Figure PCTCN2020073842-appb-000175
根据化合物1的甲酸盐的方法制备,将化合物1L替换为化合物3F,得到化合物3的甲酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.63(s,2H),8.23-8.16(m,3H),8.05(d,J=9.3Hz,1H),7.56-7.49(m,2H),7.47-7.41(m,1H),7.38-7.33(m,1H),7.00(dd,J=2.3,7.9,9.7Hz,1H),6.86(d,J=9.2Hz,1H),5.59(s,2H),4.06(d,J=5.9Hz,2H),2.96(s,2H),2.34-2.29(m,3H),2.17(s,2H),1.81(d,J=10.8Hz,3H),1.38(d,J=12.5Hz,2H)。LCMS(ESI):m/z:511.3[M+1]。
实施例4
Figure PCTCN2020073842-appb-000176
化合物4A:
Figure PCTCN2020073842-appb-000177
根据化合物1E的方法制备,将化合物1D替换为化合物3C,得到化合物4A。 1H NMR(400MHz,CDCl 3)δ=7.72(d,J=8.4Hz,1H),7.63-7.57(m,1H),7.14(dd,J=2.0,8.3Hz,1H),6.98(dt,J=2.2,8.7Hz,1H),6.85(d,J=8.4Hz,1H),4.06(s,3H)。LCMS(ESI):m/z:252.0[M+1]。
化合物4B:
Figure PCTCN2020073842-appb-000178
根据化合物1F的方法制备,将化合物1E替换为化合物4A,得到化合物4B。 1H NMR(400MHz,DMSO-d 6)δ=12.33-11.06(m,1H),8.13(d,J=8.6Hz,1H),7.78-7.71(m,1H),7.67(dd,J=1.8,9.0Hz,1H),7.23-7.12(m,1H),6.84(d,J=8.4Hz,1H)。LCMS(ESI):m/z:238.0[M+1]。
化合物4C:
Figure PCTCN2020073842-appb-000179
根据化合物1K的方法制备,将化合物1F替换为化合物4B,得到化合物4C。 1H NMR(400MHz,DMSO-d 6)δ=8.65-8.53(m,2H),8.23-8.15(m,2H),8.07(d,J=9.5Hz,1H),7.66(dd,J=4.9,8.1Hz,1H),7.59(dd,J=2.3,8.9Hz,1H),7.44(t,J=7.8Hz,1H),7.29(d,J=8.1Hz,1H),7.08(ddd,J=2.3,8.3,9.4Hz,1H),6.81(d,J=9.3Hz,1H),5.39(s,2H),4.03(d,J=6.4Hz,2H),4.01-3.94(m,2H),2.81-2.66(m,2H),1.98-1.90(m,1H),1.80-1.71(m,2H),1.39(s,9H),1.15-1.10(m,2H)。LCMS(ESI):m/z:641.1[M+23]。
化合物4D:
Figure PCTCN2020073842-appb-000180
根据化合物3F的方法制备,将化合物3E替换为化合物4C,得到化合物4D直接用于下一步。LCMS(ESI):m/z:519.2[M+1]。
化合物4的甲酸盐:
Figure PCTCN2020073842-appb-000181
根据化合物1的方法制备,将化合物1L替换为化合物4D,得到化合物4的甲酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.62(s,2H),8.21-8.19(m,1H),8.19(s,1H),8.15(s,1H),8.12-8.08(m,1H),7.74-7.67(m,1H),7.64(dd,J=2.3,9.0Hz,1H),7.46(t,J=7.8Hz,1H),7.30(d,J=7.2Hz,1H),7.14-7.07(m,1H),6.84(d,J=9.4Hz,1H),5.39(s,2H),4.06-4.01(m,2H),2.86-2.80(m,2H),2.20(s,3H),1.95(t,J=10.8Hz,2H),1.75(d,J=9.2Hz,3H),1.42-1.25(m,2H)。LCMS(ESI):m/z:533.3[M+1]。
实施例5
Figure PCTCN2020073842-appb-000182
化合物5A:
Figure PCTCN2020073842-appb-000183
将2-溴-6-甲氧基吡啶(10克,53.19毫摩尔,6.54毫升)溶于四氢呋喃(100毫升),冷却到-60摄氏度,缓慢滴加正丁基锂溶液(2.5摩尔/升,23.40毫升),然后继续在该温度下缓慢滴加DMF(4.67克,63.83毫摩尔,4.9毫升)。加完后将反应液升温到-30摄氏度,缓慢滴加甲醇(40毫升),加完后将反应液升温到0摄氏度,分批加入硼氢化钠(2.41克,63.83毫摩尔),反应液在0~15摄氏度搅拌0.5小时,将反应液浓缩至体积约50毫升,加入乙酸乙酯(100毫升)稀释,加入水(50毫升)淬灭,然后用2摩尔/升稀盐酸调节pH值为8~9。分离有机相,用无水硫酸钠干燥,浓缩,得到化合物5A。 1H NMR(400MHz,CDCl 3)δ=7.49(dd,J=7.2,8.2Hz,1H),6.73(dd,J=0.7,7.3Hz,1H),6.59-6.54(m,1H),4.60(s,2H),3.88(s,3H)。
化合物5B:
Figure PCTCN2020073842-appb-000184
将化合物5A(8.3克,53.09毫摩尔)溶于二氯甲烷(100毫升),冷却到-20摄氏度,缓慢滴加液溴(9.33克,58.39毫摩尔,3.01毫升),加完后将反应液升温至10摄氏度,缓慢加入碳酸氢钠(8.92克,106.17毫摩尔)的水(100毫升)溶液,然后10~20摄氏度搅拌0.5小时。分离有机相,用无水硫酸钠干燥,浓缩,通过硅胶色谱柱纯化(纯石油醚洗脱),得到化合物5B。 1H NMR(400MHz,CDCl 3)δ=7.70(d,J=8.8Hz,1H),6.64-6.60(m,1H),4.70(s,2H),3.99(s,3H)。LCMS(ESI):m/z:217.9[M+1]。
化合物5C:
Figure PCTCN2020073842-appb-000185
将化合物5B(3克,13.76毫摩尔)和咪唑(1.12克,16.51毫摩尔)溶于二氯甲烷,冷却到10摄氏度,滴加TBDMSCl(2.49克,16.51毫摩尔,2.02毫升),加完后在20~30摄氏度搅拌2小时,反应液用水(20毫升)淬灭,有机相分离,水相用二氯甲烷萃取(20毫升×1)。合并有机相,用无水硫酸钠干燥,浓缩,通过硅胶色谱柱纯化(纯石油醚洗脱),得到化合物5C。 1H NMR(400MHz,CDCl 3)δ=7.51(d,J=8.6Hz,1H),6.42(d,J=8.6Hz,1H),4.69(s,2H),3.81(s,3H),0.82(s,9H),0.00(s,6H)。LCMS(ESI):m/z:332.0[M+1]。
化合物5D:
Figure PCTCN2020073842-appb-000186
将化合物5C(2.5克,7.52毫摩尔)和双联频那醇硼酸酯(3.82克,15.05毫摩尔)加入到二氧六环(40毫升),再加入DMSO(7毫升),Pd(dppf)Cl 2(550.48毫克,752.31微摩尔)和醋酸钾(2.21克,22.57毫摩尔),反应体系在氮气保护下于80~90摄氏度搅拌3小时,反应液用乙酸乙酯稀释(20毫升),过滤,滤液溶于乙酸乙酯(100毫升),然后用饱和氯化钠水溶液洗涤(20毫升×4),有机相用无水硫酸钠干燥,浓缩,通过硅胶色谱柱纯化(纯石油醚洗脱),得到化合物5D。 1H NMR(400MHz,CDCl 3)δ=7.94(d,J=8.3Hz,1H),6.61(d,J=8.3Hz,1H),4.99(s,2H),3.99(s,3H),1.35(s,12H),0.94(s,9H),0.10(s,6H)。LCMS(ESI):m/z:380.1[M+1]。
化合物5E:
Figure PCTCN2020073842-appb-000187
将化合物5D(1.6克,4.22毫摩尔)和3-溴-4-氯苯腈(912.93毫克,4.22毫摩尔)加入到DME(30毫升),再加入Pd(PPh 3) 4(487.36毫克,421.75微摩尔),碳酸钠(1.34克,12.65毫摩尔)和水(6毫升),反应体系在80摄氏度搅拌2小时。反应液用乙酸乙酯稀释(40毫升),过滤,滤液用饱和氯化钠水溶液洗涤(10毫 升×1),水相用乙酸乙酯萃取(10毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,通过硅胶色谱柱纯化(石油醚:乙酸乙酯=100:1),得到化合物5E。 1H NMR(400MHz,CDCl 3)δ=7.69(dd,J=0.9,1.6Hz,1H),7.61-7.58(m,2H),7.40(d,J=8.3Hz,1H),6.76(d,J=8.6Hz,1H),4.63-4.46(m,2H),4.02(s,3H),0.84(s,9H),0(d,J=7.1Hz,6H)。LCMS(ESI):m/z:389.0[M+1]。
化合物5F:
Figure PCTCN2020073842-appb-000188
将化合物5E(1克,2.57毫摩尔)溶于四氢呋喃(10毫升),加入四丁基氟化铵四氢呋喃溶液(1摩尔/升,2.6毫升),反应体系在20~30摄氏度搅拌0.5小时。将反应液浓缩,用乙酸乙酯稀释(30毫升),然后用饱和氯化钠水溶液洗涤(10毫升×1),水相用乙酸乙酯萃取(10毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,通过硅胶色谱柱纯化(石油醚:乙酸乙酯=50:1),得到化合物5F。 1H NMR(400MHz,CDCl 3)δ=7.65(t,J=1.5Hz,2H),7.56-7.54(m,1H),7.43(d,J=8.3Hz,1H),6.80(d,J=8.6Hz,1H),4.41(d,J=7.3Hz,2H),4.06(s,3H),3.98(s,1H)。
化合物5G:
Figure PCTCN2020073842-appb-000189
将化合物5F(350毫克,1.27毫摩尔)溶于四氢呋喃(8毫升),加入叔丁醇钾四氢呋喃溶液(1摩尔/升,1.3毫升),反应体系在20~30摄氏度搅拌0.5小时。反应液用乙酸乙酯稀释(30毫升),然后用饱和氯化铵水溶液洗涤(10毫升×1),水相用乙酸乙酯萃取(10毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,得到化合物5G。 1H NMR(400MHz,CDCl 3)δ=7.86(d,J=8.6Hz,1H),7.84(d,J=2.0Hz,1H),7.49(dd,J=2.0,8.6Hz,1H),7.04(d,J=8.6Hz,1H),6.81(d,J=8.8Hz,1H),5.26(s,2H),3.98(s,3H)。LCMS(ESI):m/z:239.0[M+1]。
化合物5H:
Figure PCTCN2020073842-appb-000190
根据化合物1F的方法制备,将化合物1E替换为化合物5G,得到化合物5H。 1H NMR(400MHz,DMSO-d 6)δ=8.18(s,1H),8.10(br d,J=9.5Hz,1H),7.61(dd,J=2.0,8.3Hz,1H),7.07(d,J=8.3Hz,1H),6.47(br d,J=8.6Hz,1H),5.16(s,2H)。LCMS(ESI):m/z:225.1[M+1]。
化合物5I:
Figure PCTCN2020073842-appb-000191
根据化合物1K的方法制备,将化合物1F替换为化合物5H,将纯化方法替换为制备高效液相色谱法,得到化合物5I。 1H NMR(400MHz,DMSO-d 6)δ=8.65(s,2H),8.25-8.10(m,4H),7.61(br d,J=9.5Hz,1H),7.49-7.44(m,1H),7.30(br d,J=7.1Hz,1H),7.03(d,J=8.3Hz,1H),6.69(br d,J=9.5Hz,1H),5.41(br s,2H),5.27(br s,2H),4.06(br d,J=6.8Hz,2H),2.73(br s,4H),1.98-1.90(m,1H),1.76(br d,J=9.5Hz,4H),1.40(s,9H)。LCMS(ESI):m/z:550.1[M-55]。
化合物5J:
Figure PCTCN2020073842-appb-000192
将化合物5I(100毫克,165.10微摩尔)溶于二氯甲烷(2毫升),加入三氟乙酸(154毫克,1.35毫摩尔,0.1毫升),反应体系于20~30摄氏度搅拌2小时。反应体系物用二氯甲烷(5毫升)稀释,用饱和碳酸氢钠水溶液洗涤(2毫升×1),水相用二氯甲烷萃取(2毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,得到化合物5J。 1H NMR(400MHz,CDCl 3)δ=8.46(s,2H),8.31(d,J=7.8Hz,1H),8.27(s,1H),7.75(d,J=9.8Hz,1H),7.71(d,J=2.0Hz,1H),7.50-7.48(m,1H),7.46(d,J=8.1Hz,1H),7.44-7.40(m,1H),7.23(d,J=8.1Hz,1H),6.93(d,J=8.3Hz,1H),6.85(d,J=9.5Hz,1H),5.45(br s,2H),5.13(s,2H),4.00(br d,J=5.9Hz,2H),3.45(br d,J=11.7Hz,2H),2.91(br t,J=12.3Hz,4H),2.17-1.07(m,1H),1.71(br d,J=12.7Hz,2H)。LCMS(ESI):m/z:506.1[M+1]。
化合物5的甲酸盐:
Figure PCTCN2020073842-appb-000193
根据化合物1的甲酸盐的方法制备,将化合物1L替换为化合物5J,得到化合物5的甲酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.61(s,2H),8.29(s,1H),8.21(d,J=8.1Hz,1H),8.18(d,J=2.0Hz,1H),8.16(d,J=9.8Hz,2H),7.60(dd,J=1.8,8.4Hz,1H),7.48(t,J=7.8Hz,1H),7.30(d,J=7.8Hz,1H),7.02(d,J=8.3Hz,1H),6.69(d,J=9.5Hz,1H),5.41(br s,2H),5.26(s,2H),4.03(d,J=6.1Hz,2H),2.97(br d,J=11.7Hz,2H),2.32(s,3H),2.20(br t,J=10.9Hz,2H),1.87-1.74(m,3H),1.45-1.32(m,2H)。LCMS(ESI):m/z:520.1[M+1]。
实施例6
Figure PCTCN2020073842-appb-000194
化合物6A:
Figure PCTCN2020073842-appb-000195
将5-溴苯并噻吩(10克,46.93毫摩尔)溶于四氢呋喃(100毫升),冷却到-60摄氏度,氮气球保护下缓慢滴加二异丙基氨基锂(2摩尔/升,30.00毫升),加完后在-60~-30摄氏度下搅拌1小时,然后再冷却到-60摄氏度,分批加入干冰(20克,454.45毫摩尔)。加完后反应体系在常压下-60~-30摄氏度搅拌0.5小时,然后-30~0摄氏度搅拌0.5小时,将反应液用2摩尔/升稀盐酸(100毫升)淬灭,用乙酸乙酯萃取(100毫升×1,50毫升×2)。有机相用无水硫酸钠干燥,浓缩,粗品用石油醚(30毫升)打浆,得到化合物6A。 1H NMR(400MHz,DMSO-d 6)δ=8.27(d,J=2.0Hz,1H),8.09(s,1H),8.04(d,J=8.6Hz,1H),7.65(dd,J=2.1,8.7Hz,1H)。
化合物6B:
Figure PCTCN2020073842-appb-000196
将化合物6A(11.8克,45.90毫摩尔),TEA(5.09克,50.29毫摩尔,7毫升)和DPPA(13.9克,50.51毫摩尔,10.94毫升)依次加入到叔丁醇(150毫升)中,反应体系在20摄氏度下搅拌0.5小时,然后80摄氏度加热搅拌8小时。将反应体系浓缩,用乙酸乙酯(200毫升)稀释,然后用饱和碳酸氢钠水溶液洗涤(150毫升×1),水相用乙酸乙酯萃取(100毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,通过硅胶色谱柱纯化(石油醚:乙酸乙酯:二氯甲烷=50:1:1),得到化合物6B。 1H NMR(400MHz,CDCl 3)δ=7.71(d,J=1.7Hz,1H),7.57(d,J=8.3Hz,1H),7.32(dd,J=1.8,8.4Hz,1H),7.13(br s,1H),6.67(s,1H),1.57(s,9H).LCMS(ESI)m/z:271.9[M-55]。
化合物6C:
Figure PCTCN2020073842-appb-000197
将DMF(218.50毫克,2.99毫摩尔,0.23毫升)加入到四氢呋喃(2毫升)中,冷却到0摄氏度,小心滴加三氯氧磷(693.00毫克,4.52毫摩尔,420.00微升),反应液在0摄氏度搅拌0.5小时。然后将化合物6B(0.5克,1.52毫摩尔)溶于四氢呋喃(4毫升),在0摄氏度下滴加到反应液中,加完后在20摄氏度搅拌1小时。将反应体系用乙酸乙酯(20毫升)稀释,然后用2摩尔/升氢氧化钠水溶液淬灭并调节pH值到7,有机相分离,水相用乙酸乙酯萃取(10毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,得到化合物6C。 1H NMR(400MHz,CDCl 3)δ=11.17(br s,1H),10.19(s,1H),8.05(d,J=1.7Hz,1H),7.61(d,J=8.6Hz,1H),7.43(dd,J=1.7,8.3Hz,1H),1.60(s,9H).LCMS(ESI)m/z:299.9[M-55]。
化合物6D:
Figure PCTCN2020073842-appb-000198
将磷酰基乙酸三乙酯(2克,8.92毫摩尔,1.77毫升)溶于四氢呋喃(5毫升)中,冷却到0摄氏度,分批加入氢化钠(35毫克,8.88毫摩尔,60%纯度),反应液在0摄氏度搅拌0.5小时。然后将化合物6C(0.79克,2.22毫摩尔)溶于四氢呋喃(10毫升),在0摄氏度下加入到反应液中,加完后在0~20摄氏度搅拌0.5小时,然后60摄氏度加热搅拌12小时。向反应体系加入乙酸乙酯(30毫升),然后用饱和氯化铵水溶液淬灭(10毫升),有机相分离,水相用乙酸乙酯萃取(10毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,通过硅胶色谱柱纯化(石油醚:乙酸乙酯=30:1),得到化合物6D。 1H NMR(400MHz,CDCl 3)δ=7.86(d,J=1.7Hz,1H),7.70(d,J=15.9Hz,1H),7.51(d,J=8.6Hz,1H),7.40(br s,1H),7.31(dd,J=1.8,8.4Hz,1H),6.33(d, J=16.1Hz,1H),4.26(q,J=7.1Hz,2H),1.51(s,9H),1.32(t,J=7.1Hz,3H).LCMS(ESI)m/z:325.8[M-99]。
化合物6E:
Figure PCTCN2020073842-appb-000199
将化合物1I(44克,110.14毫摩尔)溶于400毫升二氯甲烷中后加入DIPEA(57.13克,442.08毫摩尔,77毫升)在0摄氏度下缓慢加入甲烷磺酰氯(51.80克,452.20毫摩尔,35毫升)。加完后反应液在20摄氏度下搅拌反应4小时,反应液加入300毫升二氯甲烷并用300毫升饱和碳酸氢钠水溶液洗涤三次。有机相用无水硫酸钠干燥过滤后旋干。残渣通过柱层析法(石油醚:乙酸乙酯=100:1-10:1)纯化得到化合物6E。 1H NMR(400MHz,CDCl 3)δ=8.49-8.44(m,2H),8.39(s,1H),8.38-8.29(m,1H),7.50-7.44(m,2H),4.71-4.67(m,2H),4.19(br s,2H),3.96(d,J=6.4Hz,2H),2.77(br t,J=12.2Hz,2H),2.08-1.98(m,1H),1.85(br d,J=12.6Hz,2H),1.48(s,9H),1.39-1.29(m,2H)。LCMS(ESI):m/z:418.0[M+1]。
化合物6F:
Figure PCTCN2020073842-appb-000200
将化合物6D(0.2克,469.13微摩尔)和化合物6E(235毫克,562.30微摩尔)加入到DMF(4毫升)中,再加入碳酸铯(220毫克,675.22微摩尔)和碘化钾(80毫克,481.93微摩尔)。反应体系在70~80摄氏度加热搅拌3小时。将反应体系用乙酸乙酯(8毫升)稀释,用饱和氯化钠水溶液洗涤(4毫升×1),水相用乙酸乙酯萃取(4毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,通过薄层硅胶色谱纯化(石油醚:乙酸乙酯=2:1),得到化合物6F。 1H NMR(400MHz,CDCl 3)δ=8.33(s,2H),8.19(br d,J=7.3Hz,1H),8.14(br s,1H),7.97(d,J=2.0Hz,1H),7.49(d,J=16.4Hz,1H),7.45(d,J=8.6Hz,1H),7.38-7.35(m,1H),7.32(d,J=7.6Hz,1H),7.30-7.26(m,1H),6.29(d,J=16.4Hz,1H),4.84(s,2H),4.16(m,4H),3.86(d,J=6.4Hz,2H),2.69(br t,J=12.0Hz,2H),2.00-1.87(m,1H),1.76(br d,J=13.2Hz,2H),1.45-1.33(m,18H),1.31-1.17(m,5H).LCMS(ESI)m/z:809.0[M+3]。
化合物6G的盐酸盐:
Figure PCTCN2020073842-appb-000201
将化合物6F(0.3克,371.38微摩尔)溶于甲醇(5毫升),加入盐酸甲醇溶液(4摩尔/升,2毫升),反应体系在60摄氏度加热搅拌1小时。将反应体系浓缩,得到化合物6G的盐酸盐。LCMS(ESI)m/z:563.0[M+3]。 化合物6H:
Figure PCTCN2020073842-appb-000202
将化合物6G的盐酸盐(0.22克,367.92微摩尔)溶于甲醇(2毫升)和二氯甲烷(2毫升),加入三乙胺(181.75毫克,1.80毫摩尔,0.25毫升),DMAP(45毫克,368.35微摩尔)和Boc 2O(96毫克,439.87微摩尔,101.05微升)。反应体系在40~50摄氏度加热搅拌1小时。将反应体系用乙酸乙酯(10毫升)稀释,用饱和氯化钠水溶液洗涤(3毫升×1),水相用乙酸乙酯萃取(2毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,通过薄层硅胶色谱纯化(二氯甲烷:甲醇=20:1),得到化合物6H。 1H NMR(400MHz,CDCl 3)δ=8.48(s,1H),8.46(s,2H),8.33-8.28(m,1H),7.98-7.94(m,2H),7.57(d,J=8.5Hz,1H),7.46-7.43(m,2H),7.41(dd,J=2.0,8.5Hz,1H),6.77(d,J=9.3Hz,1H),5.54(s,2H),4.21(br s,2H),3.97(d,J=6.3Hz,2H),2.79(br t,J=12.3Hz,2H),2.10-1.97(m,1H),1.86(br d,J=12.8Hz,2H),1.50(s,9H),1.40-1.28(m,2H).LCMS(ESI)m/z:663.0[M+3]。
化合物6I:
Figure PCTCN2020073842-appb-000203
将化合物6H(0.14克,211.61微摩尔)和氰化锌(38毫克,323.61微摩尔)加入到DMF(2毫升)中,再加入锌粉(14毫克,214.10微摩尔),dppf(24毫克,43.29微摩尔)和Pd 2(dba) 3(20毫克,21.84微摩尔)。反应体系在90~100摄氏度加热搅拌12小时。将反应体系用乙酸乙酯(10毫升)稀释然后过滤,滤液用饱和氯化钠水溶液洗涤(2毫升×1),水相用乙酸乙酯萃取(2毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩,通过薄层硅胶色谱纯化(二氯甲烷:甲醇=20:1),得到化合物6I。 1H NMR(400MHz,CDCl 3)δ=8.41-8.36(m,3H),8.23(dt,J=1.7,4.5Hz,1H),8.03(d,J=1.2Hz,1H),7.93(d,J=9.5Hz,1H),7.73(d,J=8.3Hz,1H),7.46(dd,J=1.5,8.3Hz,1H),7.37-7.34(m,2H),6.73(d,J=9.3Hz,1H),5.47(s,2H),4.13(m,2H),3.88(d,J=6.4Hz,2H),2.69(br t,J=12.3Hz,2H),2.01-1.88(m,1H),1.77(br d,J=12.7Hz,2H),1.40(s,9H),1.25(dq,J=4.6,12.4Hz,2H).LCMS(ESI)m/z:552.1[M-55]。
化合物6J:
Figure PCTCN2020073842-appb-000204
根据化合物5J的方法制备,将化合物5I替换为化合物6I,得到化合物6J直接用于下一步。LCMS(ESI)m/z:508.1[M+1]。
化合物6的盐酸盐:
Figure PCTCN2020073842-appb-000205
根据化合物1的方法制备,将化合物1L替换为化合物6J,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物6的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.83(br s,1H),8.69-8.60(m,3H),8.47(d,J=9.3Hz,1H),8.28-8.17(m,3H),7.70(d,J=8.3Hz,1H),7.51-7.41(m,2H),6.72(d,J=9.3Hz,1H),5.49(s,2H),4.06(br d,J=6.4Hz,2H),3.40(br d,J=11.2Hz,2H),2.95(q,J=11.1Hz,2H),2.69(br d,J=4.4Hz,3H),2.05(m,1H),1.94(br d,J=13.7Hz,2H),1.66(q,J=11.7Hz,2H);LCMS(ESI)m/z:522.4[M+1]。
实施例7
Figure PCTCN2020073842-appb-000206
化合物7A:
Figure PCTCN2020073842-appb-000207
将化合物5-溴-3氟-2-甲氧基吡啶(10克,48.54毫摩尔)和双联频那醇硼酸酯(13.56克,53.39毫摩尔)溶解于1,4-二氧六环(100mL)中,加入Pd(dppf)Cl 2·CH 2Cl 2(1.98克,2.43毫摩尔)和乙酸钾(9.53克,97.08毫摩尔),然后混合物在氮气保护下于100摄氏度继续搅拌12小时。反应完毕后将反应液过滤,收集滤液并浓缩,得到化合物7A。 1HNMR(400MHz,CDCl 3)δ=8.28(d,J=0.8Hz,1H),7.63(dd,J=1.4,10.7Hz,1H),4.04(s,3H),1.33(s,12H)。
化合物7B:
Figure PCTCN2020073842-appb-000208
根据化合物1C的方法制备,将2-甲氧基-5-吡啶硼酸频那醇酯替换为化合物7A,得到化合物7B。 1HNMR(400MHz,CDCl 3)δ=9.97(s,1H),8.05(d,J=8.1Hz,1H),7.85(d,J=2.1Hz,1H),7.75(d,J=8.1Hz,1H),7.66(d,J=1.3Hz,1H),7.34(dd,J=2.1,10.1Hz,1H),4.04(s,3H);LCMS(ESI)m/z:257.1[M+1]。
化合物7C:
Figure PCTCN2020073842-appb-000209
将化合物7B(3.5克,13.66毫摩尔)溶解于过氧叔丁醇(5.5摩尔/升癸烷溶液,19.87毫升)中,加热至100摄氏度继续搅拌12小时。反应完毕后冷却至20摄氏度,有固体析出。将固体过滤,并用二氯甲烷(50毫升)溶解,用饱和碳酸钠溶液(10毫升)洗涤三次,有机相用无水硫酸钠干燥后浓缩,得化合物7C。 1H NMR(400MHz,CDCl 3)δ=7.66(br d,J=7.5Hz,1H),7.56(br d,J=7.3Hz,1H),7.52(s,1H),7.48(br d,J=8.8Hz,1H),4.09(s,3H).LCMS(ESI)m/z:255.1[M+1]。
化合物7D:
Figure PCTCN2020073842-appb-000210
将化合物7C(300毫克,1.18毫摩尔)溶解于乙腈(15毫升)和NMP(1.5毫升)中,加入TMSCl(384.63毫克,3.54毫摩尔,449.33微升)和碘化钠(530.67毫克,3.54毫摩尔)。将混合物加热至70摄氏度继续搅拌12小时,反应完毕后冷却至20摄氏度,将反应液倒入水中,过滤得固体,收集固体并干燥。将所得固体溶解于乙腈(15毫升)和NMP(1.5毫升)中,加入过氧叔丁醇(5.5摩尔/升,227.09微升),继续加热至70摄氏度继续搅拌12小时,反应完毕后冷却至20摄氏度,反应液浓缩至固体,用乙酸乙酯打浆,得到化合物7D。 1H NMR(400MHz,DMSO-d 6)δ=8.16-8.02(m,1H),8.02-7.90(m,1H),7.77(br d,J=7.7Hz,1H),7.61(br d,J=7.5Hz,1H).LCMS(ESI)m/z:241.0[M+1]。
化合物7E:
Figure PCTCN2020073842-appb-000211
将化合物7D(350毫克,1.46毫摩尔)溶解于DMF(10毫升)中,加入碳酸铯(712.17毫克,2.19毫摩尔),碘化钾(362.84毫克,2.19毫摩尔)和化合物6E(913.50毫克,2.19毫摩尔),将混合物加热至75摄氏度继续 搅拌1.5小时后冷却至20摄氏度,将反应液倒入水中,乙酸乙酯(150毫升)萃取三次。有机相干燥浓缩后得粗品,粗品用柱层析(石油醚:乙酸乙酯=3:1到1:1)纯化,得化合物7E。 1H NMR(400MHz,CDCl 3)δ=8.51-8.42(m,2H),8.36(s,2H),8.27(d,J=7.8Hz,1H),7.58-7.56(m,2H),7.50-7.49(m,1H),7.44-7.42(m,1H),7.39-7.37(m,1H),5.83(s,2H),4.21(s,2H),3.97-3.93(m,2H),2.82-2.75(m,2H),2.12-2.01(m,1H),1.88-1.85(m,2H),1.49(s,9H),1.36-1.28(m,2H).LCMS(ESI)m/z:566.2[M-55]。
化合物7F:
Figure PCTCN2020073842-appb-000212
根据化合物5J的方法制备,将化合物5I替换为化合物7E,得到化合物7F直接用于下一步。LCMS(ESI)m/z:522.2[M+1]。
化合物7的盐酸盐:
Figure PCTCN2020073842-appb-000213
根据化合物1的方法制备,将化合物1L替换为化合物7F,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物7的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.35-10.24(m,1H),8.68-8.62(m,2H),8.28(s,1H),8.20(d,J=8.8 Hz,2H),8.01(s,1H),7.78(dd,J=1.3,7.5Hz,1H),7.62(d,J=7.4Hz,1H),7.53-7.35(m,2H),5.63(s,2H),4.09(br d,J=6.3Hz,2H),3.44(br d,J=11.4Hz,2H),3.02-2.85(m,2H),2.76-2.67(m,3H),,2.14-1.90(m,2H),1.69-1.49(m,2H);LCMS(ESI)m/z:536.3[M+1]。
实施例8
Figure PCTCN2020073842-appb-000214
化合物8A:
Figure PCTCN2020073842-appb-000215
根据化合物6D的方法制备,将磷酰基乙酸三乙酯替换为2-氟磷酰基乙酸三乙酯,得到化合物8A。 1H NMR(400MHz,CDCl 3)δ=7.63(s,1H),7.50(d,J=8.3Hz,1H),7.30(dd,J=1.8,8.4Hz,1H),7.11-6.99(d,1H),4.36(q,J=7.1Hz,2H),1.49(s,9H),1.37(t,J=7.2Hz,3H);LCMS(ESI)m/z:345.8[M-99]。
化合物8B:
Figure PCTCN2020073842-appb-000216
根据化合物6F的方法制备,将化合物6D替换为化合物8A,得到化合物8B。 1H NMR(400MHz,CDCl 3)δ=8.36-8.32(m,2H),8.22-8.13(m,2H),7.76-7.72(m,1H),7.45(d,J=8.6Hz,1H),7.38-7.31(m,2H),7.30-7.25(m,1H),6.80-6.62(m,1H),4.83(s,2H),4.16-4.01(m,4H),3.86(d,J=6.1Hz,2H),2.75-2.63(m,2H),1.96-1.88(m,1H),1.77(br d,J=12.7Hz,2H),1.43-1.34(m,18H),1.32-1.24(m,5H);LCMS(ESI)m/z:827.1[M+3]。
化合物8C的盐酸盐:
Figure PCTCN2020073842-appb-000217
根据化合物6G的方法制备,将化合物6F替换为化合物8B,得到化合物8C的盐酸盐。LCMS(ESI)m/z:580.1[M+3]。
化合物8D:
Figure PCTCN2020073842-appb-000218
根据化合物6H的方法制备,将化合物6G的盐酸盐替换为化合物8C的盐酸盐,得到化合物8D。LCMS(ESI)m/z:624.9[M-55]。
化合物8E:
Figure PCTCN2020073842-appb-000219
根据化合物6I的方法制备,将化合物6H替换为化合物8D,得到化合物8E。LCMS(ESI)m/z:570.1[M-55]。化合物8F:
Figure PCTCN2020073842-appb-000220
根据化合物5J的方法制备,将化合物5I替换为化合物8E,得到化合物8F。LCMS(ESI)m/z:526.1[M+1]。化合物8的盐酸盐:
Figure PCTCN2020073842-appb-000221
根据化合物1的方法制备,将化合物1L替换为化合物8F,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物8的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.54(br s,1H),8.70(d,J=1.0Hz,1H),8.67-8.63(m,2H),8.62(d,J=10.0Hz,1H),8.28(s,1H),8.27-8.22(m,2H),7.76(dd,J=1.6,8.4Hz,1H),7.53-7.44(m,2H),5.57(s,2H),4.07(d,J=6.4Hz,2H),3.42(br d,J=11.2Hz,2H),3.02-2.89(m,2H),2.71(d,J=4.6Hz,3H),2.08-2.00(m,1H),1.96(br d,J=13.9Hz,2H),1.70-1.57(m,2H);LCMS(ESI)m/z:540.1[M+1]。
实施例9
Figure PCTCN2020073842-appb-000222
Figure PCTCN2020073842-appb-000223
化合物9A:
Figure PCTCN2020073842-appb-000224
将4-溴苯基-1,2-二胺(10克,53.47毫摩尔)和溴腈(5.66克,53.47毫摩尔,3.93毫升)溶解于乙醇(50毫升)和水(50毫升)中,然后混合物在氮气保护下70摄氏度继续搅拌12小时。反应完毕后将反应液浓缩,加入氢氧化钠水溶液(2摩尔/升)调至pH约为9。然后将固体过滤,收集滤饼并干燥,得化合物9A。 1HNMR(400MHz,CD 3OD)δ=7.39(d,J=1.6Hz,1H),7.24-7.19(m,1H),7.18-7.12(m,1H);LCMS(ESI)m/z:212.0[M+1]。化合物9B1、9B2:
Figure PCTCN2020073842-appb-000225
将化合物9A(7克,33.01毫摩尔)和1,1,1-三氯-4-乙氧基-3-丁烯-2-酮(7.18克,33.01毫摩尔)溶解于甲苯(70毫升)中,加入三乙胺(3.34克,33.01毫摩尔,4.59毫升),然后混合物在氮气保护下于100摄氏度继续搅拌2小时。反应完毕后将反应液过滤,收集滤液并浓缩得到粗品。粗品用甲醇(150毫升)打浆,然后过滤并干燥,得化合物化合物9B1和9B2的混合物。 1H NMR(400MHz,CDCl 3)δ=8.79(d,J=7.3Hz,1H),8.06(d, J=1.7Hz,1H),7.88(d,J=8.8Hz,1H),7.66(dd,J=1.8,8.8Hz,1H),7.50(d,J=7.2Hz,1H);LCMS(ESI)m/z:365.9[M+3]。
化合物9C1、9C2:
Figure PCTCN2020073842-appb-000226
将化合物9B1和9B2的混合物(0.6g,1.64毫摩尔)溶解于乙腈(2毫升)中,加入氢氧化钠(85.37毫克,2.13毫摩尔)。加热至70摄氏度继续搅拌0.5小时。反应完毕后浓缩至固体,加入稀盐酸(2摩尔/升)调节pH约为3,有固体析出。将固体过滤并干燥,得化合物9C1和9C2的混合物。 1H NMR(400MHz,DMSO-d 6)δ=8.85-8.70(m,1H),8.24(d,J=1.5Hz,0.4H),7.89(d,J=8.5Hz,0.6H),7.72(d,J=1.8Hz,0.5H),7.48-7.38(m,1.5H),6.15(dd,J=2.3,7.8Hz,1H);LCMS(ESI)m/z:264.0[M+1]。
化合物9D1、9D2:
Figure PCTCN2020073842-appb-000227
将化合物9C1和9C2的混合物(100毫克,378.68微摩尔)和化合物6E(158.26毫克,378.68微摩尔)溶解于DMF(3毫升)中,加入碳酸铯(61.63毫克,189.15微摩尔)和碘化钾(31.40毫克,189.15微摩尔)。将混合物加热至70摄氏度继续搅拌1小时。将反应液浓缩得到粗品,粗品经薄层硅胶色谱纯化(石油醚:乙酸乙酯=1:2),分别得到化合物9D1和9D2。化合物9D1表征为: 1H NMR(400MHz,CDCl 3)δ=8.51(s,1H),8.36(s,2H),8.17(d,J=7.9Hz,1H),7.90(d,J=7.8Hz,1H),7.60-7.55(m,2H),7.52(d,J=8.6Hz,1H),7.40(dd,J=1.8,8.6Hz,1H),7.33(t,J=7.8Hz,1H),6.17(d,J=7.8Hz,1H),5.64-5.43(m,2H),4.12(br s,2H),3.86(d,J=6.4Hz,2H),2.69(br t,J=12.3Hz,2H),2.02-1.89(m,1H),1.77(br d,J=12.5Hz,2H),1.40(s,9H),1.31-1.20(m,2H).LCMS(ESI)m/z:647.3[M+3]。化合物9D2表征为: 1H NMR(400MHz,CDCl 3)δ=8.52(s,1H),8.40-8.32(m,2H),8.22-8.12(m,1H),7.93(d,J=7.8Hz,1H),7.81(d,J=1.6Hz,1H),7.59(d,J=7.8Hz,1H),7.40-7.27(m,3H),6.17(d,J=7.8Hz,1H),5.50(s,2H),4.28-4.00(m,2H),3.87(d,J=6.3Hz,2H),2.69(br t,J=11.1Hz,2H),2.02-1.88(m,1H),1.77(br d,J=12.6Hz,2H),1.40(s,9H),1.29-1.16(m,2H).LCMS(ESI)m/z:647.3[M+3]。
化合物9E:
Figure PCTCN2020073842-appb-000228
根据化合物6I的方法制备,将化合物6H替换为化合物9D2,得到化合物9E。 1H NMR(400MHz,CDCl 3)δ=8.55(s,1H),8.18(d,J=7.9Hz,1H),8.01-7.91(m,3H),7.60(d,J=7.6Hz,1H),7.55-7.47(m,2H),7.38-7.30(m,2H),6.25(d,J=7.8Hz,1H),5.51(s,2H),4.22-4.03(m,2H),3.87(d,J=6.3Hz,2H),2.78-2.62(m,2H),2.11-1.90(m,1H),1.77(br d,J=13.1Hz,2H),1.40(s,9H),1.31-1.21(m,2H).LCMS(ESI)m/z:536.2[M-55]。
化合物9F:
Figure PCTCN2020073842-appb-000229
根据化合物5J的方法制备,将化合物5I替换为化合物9E,得到化合物9F直接用于下一步。LCMS(ESI)m/z:492.2[M+1]。
化合物9的盐酸盐:
Figure PCTCN2020073842-appb-000230
根据化合物1的方法制备,将化合物1L替换为化合物9F,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物9的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.70-9.57(m,1H),8.99(d,J=7.8Hz,1H),8.67-8.62(m,2H),8.35(s,1H),8.22-8.12(m,3H),7.74(dd,J=1.1,8.4Hz,1H),7.54-7.49(m,1H),7.47-7.41(m,1H),6.44(d,J=7.8Hz,1H),5.45(s,2H),4.09(d,J=6.1Hz,2H),3.48-3.43(m,2H),3.04-2.85(m,2H),2.74(d,J=4.4Hz,3H),2.13-1.94(m,3H),1.63-1.44(m,2H).LCMS(ESI)m/z:506.2[M+1]。
实施例10
Figure PCTCN2020073842-appb-000231
化合物10A:
Figure PCTCN2020073842-appb-000232
根据化合物6B的方法制备,将化合物6A替换为6-溴-1H-吲哚-2-羧酸,得到化合物10A。 1H NMR(400MHz,CDCl 3)δ=9.91(s,1H),7.38(s,1H),7.25(d,J=2.9Hz,1H),7.14(dd,J=1.7,8.4Hz,1H),6.90(br s,1H),5.71(d,J=1.3Hz,1H),1.53(s,9H).LCMS(ESI):m/z:254.9[M-55]。
化合物10B的三氟乙酸盐:
Figure PCTCN2020073842-appb-000233
将化合物10A(2克,6.43毫摩尔)溶于二氯甲烷(20毫升)后加入三氟乙酸(3.85克,33.77毫摩尔,2.5毫升),在15摄氏度搅拌64小时后,将反应溶剂蒸干得到化合物10B的三氟乙酸盐。 1H NMR(400MHz,CDCl 3)δ=12.71-12.12(m,1H),11.54-10.93(m,1H),9.95(br s,1H),8.40(br s,1H),7.31(d,J=1.2Hz,1H),7.29-7.24(m,1H),7.20-7.13(m,1H).LCMS(ESI)m/z:213.5[M+3]。
化合物10C:
Figure PCTCN2020073842-appb-000234
根据化合物9B1、9B2的方法制备,将化合物9A替换为化合物10B,得到化合物10C。LCMS(ESI)m/z:364.9[M+3]。
化合物10D:
Figure PCTCN2020073842-appb-000235
根据化合物9C1、9C2的方法制备,将化合物9B1、9B2的混合物替换为化合物10C,得到化合物10D。LCMS(ESI)m/z:264.6[M+3]。
化合物10E:
Figure PCTCN2020073842-appb-000236
根据化合物9D1、9D2的方法制备,将化合物9C1、9C2的混合物替换为化合物10D,得到化合物10E。 1H NMR(400MHz,CDCl 3)δ=8.49-8.44(m,2H),8.41(s,1H),8.28(br d,J=7.1Hz,1H),8.04(d,J=7.7Hz,1H),7.64(s,1H),7.47-7.37(m,2H),7.37-7.30(m,2H),7.28(s,1H),6.09(d,J=7.8Hz,1H),5.33(d,J=8.2Hz,2H),4.35-4.16(m,2H),3.96(d,J=6.4Hz,2H),2.90-2.67(m,2H),2.06-1.97(m,1H),1.86(br d,J=11.9Hz,2H),1.50(s,9H),1.41-1.30(m,2H).LCMS(ESI)m/z:646.3[M+3]。
化合物10F:
Figure PCTCN2020073842-appb-000237
根据化合物6I的方法制备,将化合物6H替换为化合物10E,得到化合物10F。LCMS(ESI)m/z:535.1[M-55]。化合物10G:
Figure PCTCN2020073842-appb-000238
根据化合物5J的方法制备,将化合物5I替换为化合物10F,得到化合物10G直接用于下一步。LCMS(ESI)m/z:491.1[M+1]。
化合物10的盐酸盐:
Figure PCTCN2020073842-appb-000239
根据化合物1的方法制备,将化合物1L替换为化合物10G,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物10的盐酸盐。 1H NMR(400MHz,CD 3OD)δ=8.59(d,J=7.8Hz,1H),8.42(s,2H),8.20(s,1H),8.16-8.04(m,2H),7.49(d,J=8.3Hz,1H),7.42-7.33(m,3H),6.09-6.00 (m,1H),5.26(s,2H),4.00(d,J=5.5Hz,2H),3.48(br d,J=12.5Hz,2H),2.97(br t,J=12.5Hz,2H),2.84-2.74(m,3H),2.05(br d,J=13.5Hz,3H),1.60(q,J=12.6Hz,2H).LCMS(ESI)m/z:505.5[M+1]。
实施例11
Figure PCTCN2020073842-appb-000240
化合物11A:
Figure PCTCN2020073842-appb-000241
向化合物9D1(1.00克,1.55毫摩尔)和氰化锌(1.00克,8.52毫摩尔)的DMF(20毫升)溶液中加入Pd(PPh 3) 4(1.00克,865.38微摩尔),将混合物于120摄氏度搅拌1.5小时。反应液用水(120毫升)稀释后用乙酸乙酯(80毫升×3次)萃取,合并有机相用水洗(100毫升×3次)。有机相用无水硫酸钠干燥,过滤,滤液浓缩。向残余物中加入乙酸乙酯(30毫升)后在20摄氏度搅拌15分钟后过滤,滤饼用乙酸乙酯洗涤(5毫升×2次)后在空气中干燥得到化合物11A。 1H NMR(400MHz,DMSO-d 6)δ=8.92(d,J=7.8Hz,1H),8.63(s,2H),8.57(s,1H),8.36(s,1H),8.20(d,J=7.8Hz,1H),7.81-7.73(m,2H),7.53-7.50(m,1H),7.46-7.42(m,1H),6.47(d,J=7.8Hz,1H),5.47(s,2H),4.09-4.03(m,2H),4.02-3.93(m,2H),2.81-2.68(m,2H),2.00-1.90(m,1H),1.76(br d,J=11.6Hz,2H),1.40(s,9H),1.24-1.11(m,2H);LCMS(ESI)m/z:592.2[M+1]。
化合物11的盐酸盐:
Figure PCTCN2020073842-appb-000242
向化合物11A(720毫克,1.55毫摩尔)的甲酸(7.5毫升)溶液中加入37%甲醛水溶液(7.5mL),将混合物于120摄氏度搅拌1小时后,将反应液浓缩,向剩余物中加入甲醇(30毫升)后用28%氨水调节pH为9到10后在20摄氏度搅拌15小时过滤,滤饼加入到二氯甲烷(60毫升)和甲醇(20毫升)的混合溶液中在20摄氏度搅拌1小时过滤,滤液与前面滤液合并后通过柱层析法(二氯甲烷:甲醇=25:1到二氯甲烷:甲醇=10:1加0.1%氨水洗脱)纯化。将得到的化合物通过硅胶制备板分离(二氯甲烷:甲醇=10:1加0.1%氨水),将得到的产品浓缩后向残余物中加入乙腈(10毫升)和水(30毫升)和2摩尔/升的盐酸水溶液(0.5毫升)后浓缩,剩余物冷冻干燥得到化合物11的盐酸盐。 1H NMR(400MHz,CD 3OD)δ=8.75(d,J=7.8Hz,1H),8.54 (s,2H),8.41(s,1H),8.31(d,J=0.9Hz,1H),8.24(d,J=7.8Hz,1H),7.81-7.75(m,1H),7.74-7.69(m,1H),7.62(d,J=7.3Hz,1H),7.50-7.41(m,1H),6.38(d,J=7.8Hz,1H),5.59(s,2H),4.13(d,J=5.6Hz,2H),3.67-3.58(m,2H),3.14-3.03(m,2H),2.91(s,3H),2.27-2.12(m,3H),1.78-1.61(m,2H);LCMS(ESI)m/z:506.2[M+1]。
实施例12
Figure PCTCN2020073842-appb-000243
根据化合物1的甲酸盐的方法制备,将化合物1L替换为化合物2C,将甲醛水溶液替换为乙醛,将纯化方法替换为薄层硅胶色谱纯化(二氯甲烷:甲醇=5:1)分离,得到化合物12后加入水(10毫升)和盐酸(2摩尔/升,0.2毫升)后,将混合液浓缩至干得到化合物12的盐酸盐。 1H NMR(400 MHz,DMSO-d 6)δ=10.37-10.02(m,1H),8.67-8.63(m,2H),8.23(s,1H),8.17(d,J=7.8Hz,1H),8.09(d,J=9.3Hz,1H),8.02(d,J=0.8Hz,1H),7.73(dd,J=1.3,7.5Hz,1H),7.59(d,J=7.5Hz,1H),7.45-7.40(m,1H),7.38-7.34(m,1H),6.91(d,J=9.3Hz,1H),5.57(s,2H),4.09(d,J=6.5Hz,2H),3.49-3.46(m,2H),3.05(br dd,J=5.3,7.3Hz,2H),2.95-2.84(m,2H),2.14-1.91(m,3H),1.72-1.56(m,2H),1.28-1.22(m,3H);LCMS(ESI):m/z:532.2[M+1]。
实施例13
Figure PCTCN2020073842-appb-000244
Figure PCTCN2020073842-appb-000245
化合物13A:
Figure PCTCN2020073842-appb-000246
向5-氟尿嘧啶(10.00克,76.88毫摩尔)和2-氟-4-溴硝基苯(16.92克,76.91毫摩尔)的DMSO(150毫升)溶液中加入碳酸钾(12.76克,92.33毫摩尔),将混合物于80摄氏度搅拌2小时后,将反应液冷却至15摄氏度。用1摩尔/升的盐酸水溶液调节pH到4后加入水(800毫升),将混合物过滤,滤饼干燥得到化合物13A。 1H NMR(400MHz,DMSO-d 6)δ=12.24(br s,1H),8.43(d,J=6.5Hz,1H),8.14(d,J=8.5Hz,1H),8.10(d,J=2.3Hz,1H),7.99(dd,J=2.3,8.8Hz,1H);LCMS(ESI)m/z:329.9[M+1]。
化合物13B:
Figure PCTCN2020073842-appb-000247
向化合物13A(24.00克,72.71毫摩尔)在乙醇(250毫升)和水(25毫升)的溶液中加入铁粉(20.30克,363.56毫摩尔)和氯化铵(19.45克,363.56毫摩尔),将混合物于80摄氏度搅拌1小时后冷却到室温,过滤,滤液用乙酸乙酯(200毫升)稀释后用盐水(50毫升×1次)洗涤,滤饼再用乙酸乙酯(150毫升×5次)洗涤, 将有机相合并浓缩得到化合物13B。LCMS(ESI)m/z:299.9[M+1]。
化合物13C:
Figure PCTCN2020073842-appb-000248
将化合物13B(10.00克,33.32毫摩尔)和氧氯化磷(165克,1.08摩尔,100毫升)的溶液于100摄氏度搅拌12小时后,将反应液冷却后加入到水(1升)中,将混合物过滤,滤饼真空干燥得到化合物13C。 1HNMR(400MHz,DMSO-d 6)δ=9.98(d,J=4.4Hz,1H),8.61(d,J=2.0Hz,1H),7.85(d,J=8.8Hz,1H),7.71(dd,J=2.0,8.6Hz,1H);LCMS(ESI)m/z:301.8[M+3]。
化合物13D:
Figure PCTCN2020073842-appb-000249
向化合物13C(3.52克,11.71毫摩尔)的THF(30毫升)溶液中加入氢氧化钠水溶液(2摩尔/升,88毫升)。将混合物于80摄氏度搅拌1小时后,将反应液冷却后用1摩尔/升的盐酸水溶液调节反应液pH到5后浓缩。向残余物中加入乙腈(50毫升)后在20摄氏度搅拌30分钟。将混合物过滤,滤饼真空干燥得到化合物13D。LCMS(ESI)m/z:283.9[M+3]。
化合物13E:
Figure PCTCN2020073842-appb-000250
根据化合物9D1、9D2的方法制备,将化合物9C1、9C2的混合物替换为化合物13D,得到化合物13E。 1H NMR(400MHz,CDCl 3)δ=8.44(s,2H),8.38(s,1H),8.30(td,J=2.1,6.3Hz,1H),8.01(d,J=3.5Hz,1H),7.64(d,J=1.5Hz,1H),7.47-7.38(m,3H),7.18(d,J=8.8Hz,1H),5.49(s,2H),4.28-4.10(m,2H),3.95(d,J=6.5Hz,2H),2.77(br t,J=12.1Hz,2H),2.07-1.95(m,1H),1.85(br d,J=12.5Hz,2H),1.48(s,9H),1.40-1.26(m,2H);LCMS(ESI)m/z:663.1[M+1]。
化合物13F:
Figure PCTCN2020073842-appb-000251
向化合物13E(200毫克,301.42微摩尔)和氰化锌(200毫克,1.70毫摩尔)的DMF(10毫升)溶液中加入Pd(PPh 3) 4(105毫克,90.87微摩尔)。将混合物于100摄氏度搅拌2小时。将反应液冷却加入水(50毫升)后用乙酸乙酯(30毫升×3次)萃取。合并有机相浓缩后向剩余物中加入乙酸乙酯(20毫升)后在20摄氏度搅拌0.5小时。将混合物过滤,滤饼真空干燥得到化合物13F。LCMS(ESI)m/z:610.2[M+1]。化合物13G:
Figure PCTCN2020073842-appb-000252
根据化合物5J的方法制备,将化合物5I替换为化合物13F,得到化合物13G直接用于下一步。LCMS(ESI)m/z:510.2[M+1]。
化合物13的盐酸盐:
Figure PCTCN2020073842-appb-000253
根据化合物1的甲酸盐的方法制备,将化合物1L替换为化合物2C,将甲醛水溶液替换为乙醛,将纯化方法替换为薄层硅胶色谱纯化(二氯甲烷:甲醇=10:1)分离,得到化合物13后加入水(10毫升)和盐酸(2摩尔/升,0.2毫升)后,将混合液浓缩得到化合物13的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.51(br s,1H),9.21(br s,1H),8.74-8.46(m,3H),8.40-8.13(m,2H),7.93-7.72(m,2H),7.45(br s,2H),5.54(br s,2H),4.08(br s,2H),3.54-3.47(m,2H),3.14-2.81(m,4H),2.16-1.88(m,3H),1.82-1.59(m,2H),1.26(br s,3H);LCMS(ESI)m/z:538.2[M+1]。
实施例14
Figure PCTCN2020073842-appb-000254
化合物14A:
Figure PCTCN2020073842-appb-000255
向化合物1H(30.00克,91.52毫摩尔)和1-[3-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)苯基]乙酮(18.02克,73.21毫摩尔)的二氧六环(300毫升)和水(50毫升)的混合溶液中加入Pd(dppf)Cl 2·CH 2Cl 2(2.24克,2.75毫摩尔)和碳酸钾(25.30克,183.04毫摩尔),将反应液于100摄氏度搅拌12小时后,将反应液冷却至15摄氏度后过滤,滤饼丢弃,向滤液中加入乙酸乙酯(400毫升)后用盐水(300毫升×2次)洗涤,有机相浓缩后,向残余物中加入乙酸乙酯(500毫升),将混合物在80摄氏度搅拌1小时后冷却至15摄氏度搅拌1小时。将混合物过滤后将滤饼干燥得到化合物14A。 1H NMR(400MHz,CDCl 3)δ=8.95(t,J=1.6Hz,1H),8.57(td,J=1.4,7.8Hz,1H),8.49(s,2H),8.05(td,J=1.5,7.8Hz,1H),7.58(t,J=7.8Hz,1H),4.31-4.13(m,2H),3.98(d,J=6.3Hz,2H),2.84-2.73(m,2H),2.71(s,3H),2.09-2.00(m,1H),1.86(br d,J=13.0Hz,2H),1.48(s,9H),1.41-1.30(m,2H);LCMS(ESI)m/z:434.1[M+23]。
化合物14B:
Figure PCTCN2020073842-appb-000256
在氮气保护0摄氏度下向化合物14A(24.00克,58.32毫摩尔)的甲醇(100毫升)和四氢呋喃(200毫升) 的混合溶液中加入硼氢化钠(3.31克,87.49毫摩尔)。将反应液于15摄氏度搅拌2.5小时后,缓慢向反应液中加水(300毫升)后用乙酸乙酯(250毫升×2次)萃取。合并有机相用盐水(300毫升×2次)洗涤后用无水硫酸钠干燥后过滤,浓缩得到化合物14B。 1H NMR(400MHz,CDCl 3)δ=8.44(s,2H),8.34(s,1H),8.25(td,J=1.7,7.1Hz,1H),7.50-7.41(m,2H),5.00(q,J=6.4Hz,1H),4.28-4.14(m,2H),3.93(d,J=6.3Hz,2H),2.76(br t,J=12.0Hz,2H),2.16(br s,1H),2.03-1.95(m,1H),1.83(br d,J=11.3Hz,2H),1.56(d,J=6.5Hz,3H),1.47(s,9H),1.37-1.29(m,2H);LCMS(ESI)m/z:414.1[M+1]。
化合物14C-1和14C-2:
Figure PCTCN2020073842-appb-000257
向化合物2A(400毫克,1.80毫摩尔)、化合物14B(1.12克,2.70毫摩尔)和三丁基膦(548毫克,2.71毫摩尔)在甲苯(15毫升)中的混合溶液中加入ADDP(680毫克,2.70毫摩尔)。将反应液在氮气保护下于15摄氏度搅拌0.5小时后再于100摄氏度搅拌12小时。向反应液中加入乙酸乙酯(100毫升)后用盐水(30毫升×2次)洗涤,浓缩,粗品经高效液相色谱制备分离(甲酸体系),得到化合物14C-1和14C-2的混合物,表征为: 1H NMR(400MHz,CDCl 3)δ=8.43(s,2H),8.38(s,1H),8.28-8.21(m,1H),7.60-7.47(m,3H),7.44-7.37(m,3H),6.91(q,J=7.2Hz,1H),6.79(dt,J=2.2,3.4Hz,1H),4.28-4.11(m,2H),3.94(d,J=6.4Hz,2H),2.84-2.71(m,2H),2.06(d,J=6.8Hz,3H),2.01-1.97(m,1H),1.84(br d,J=13.7Hz,2H),1.48(s,9H),1.37-1.26(m,2H);LCMS(ESI)m/z:618.3[M+1]。
14C-1和14C-2的混合物经手性SFC(分离柱:Chiralpak IC-350×4.6毫米I.D.,3微米;流动相:A相为二氧化碳,B相为异丙醇+乙腈(含0.05%二乙胺);梯度洗脱:60%异丙醇+乙腈(含0.05%二乙胺)在二氧化碳中;流速:3毫升/分钟;检测波长:220纳米;柱温:35摄氏度;压力:100巴)分离,得到保留时间为2.091分钟的化合物为化合物14C-1。LCMS(ESI)m/z:618.3[M+1]。
得到保留时间为3.435分钟的化合物为化合物14C-2。 1H NMR(400MHz,CDCl 3)δ=8.43(s,2H),8.38(s,1H),8.24(dd,J=2.0,6.3Hz,1H),7.61-7.47(m,3H),7.45-7.39(m,3H),6.91(q,J=7.0Hz,1H),6.84-6.74(m,1H),4.29-4.11(m,2H),3.94(d,J=6.3Hz,2H),2.77(br t,J=12.5Hz,2H),2.14-1.95(m,4H),1.84(br d,J=13.3Hz,2H),1.48(s,9H),1.39-1.27(m,2H)。
化合物14D-1和14D-2:
Figure PCTCN2020073842-appb-000258
根据化合物5J的方法制备,将化合物5I替换为化合物14C-1得到化合物14D-1。LCMS(ESI)m/z:518.2 [M+1]。根据化合物5J的方法制备,将化合物5I替换为化合物14C-2,得到化合物14D-2。LCMS(ESI)m/z:518.2[M+1]。
化合物14-1和14-2的盐酸盐:
Figure PCTCN2020073842-appb-000259
根据化合物1的方法制备,将化合物1L替换为化合物14D-1,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物14-1的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.73-8.58(m,2H),8.28(br d,J=1.5Hz,1H),8.20-8.10(m,1H),8.08-7.97(m,2H),7.74(br d,J=7.3Hz,1H),7.68-7.57(m,1H),7.48-7.33(m,2H),6.83-6.51(m,2H),4.08(d,J=6.3Hz,2H),3.43(br d,J=11.3Hz,2H),3.01-2.87(m,2H),2.71(d,J=4.8Hz,3H),2.05-1.88(m,6H),1.68-1.53(m,2H);LCMS(ESI)m/z:532.3[M+1]。
根据化合物1的方法制备,将化合物1L替换为化合物14D-2,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物14-2的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.68-8.64(m,2H),8.28(br s,1H),8.20-8.15(m,1H),8.08-8.01(m,2H),7.75(br d,J=7.3Hz,1H),7.69-7.59(m,1H),7.49-7.34(m,2H),6.83-6.58(m,2H),4.08(d,J=6.1Hz,2H),3.43(br d,J=11.0Hz,2H),3.02-2.89(m,2H),2.72(d,J=4.6Hz,3H),2.05-1.91(m,6H),1.65-1.51(m,2H);LCMS(ESI)m/z:532.3[M+1]。
实施例15
Figure PCTCN2020073842-appb-000260
化合物15A:
Figure PCTCN2020073842-appb-000261
将化合物6D(2.68克,6.29毫摩尔)和盐酸甲醇(4摩尔/升,53.60毫升)在15摄氏度搅拌14小时后,向反应液中加入饱和碳酸氢钠水溶液至混合物的pH值为9,有固体析出。将混合物过滤,滤饼干燥后得到化合物15A。 1H NMR(400MHz,DMSO-d 6)δ=8.51(br d,J=9.3Hz,1H),8.43(d,J=1.5Hz,1H),7.94(d,J=8.5Hz,1H),7.55(dd,J=2.0,8.5Hz,1H),6.67(td,J=2.2,4.8Hz,1H);LCMS(ESI)m/z:279.9[M+1]。
化合物15B:
Figure PCTCN2020073842-appb-000262
根据化合物14C的方法制备,将化合物2A替换为化合物15A,得到化合物15B。 1H MNR(400MHz,CDCl 3)δ=8.49-8.43(m,3H),8.33(d,J=7.6Hz,1H),7.96-7.87(m,2H),7.48-7.38(m,3H),7.35-7.30(m,1H),6.97(br d,J=5.6Hz,1H),6.75(d,J=9.5Hz,1H),4.29-4.11(m,2H),3.95(d,J=6.4Hz,2H),2.84-2.67(m,2H),2.07-2.01(m,4H),1.84(br d,J=12.5Hz,2H),1.48(s,9H),1.38-1.28(m,2H)。
化合物15C-1和15C-2:
Figure PCTCN2020073842-appb-000263
根据化合物6I的方法制备,将化合物6H替换为化合物15B,得到15C-1和15C-2的混合物,表征为: 1HNMR(400MHz,CDCl 3)δ=8.51-8.44(m,3H),8.36(d,J=7.3Hz,1H),8.07(s,1H),7.98(d,J=9.3Hz,1H),7.65(d,J=8.3Hz,1H),7.51-7.41(m,3H),7.06-6.95(m,1H),6.82(d,J=9.5Hz,1H),4.21(ddd,J=3.9,5.2,8.5Hz,2H),3.96(d,J=6.4Hz,2H),2.83-2.69(m,2H),2.05-1.97(m,4H),1.84(br d,J=11.5Hz,2H),1.48(s,9H),1.38-1.29(m,2H);LCMS(ESI)m/z:622.2[M+1]。
15C-1和15C-2的混合物经手性SFC分离(分离柱:Chiralpak AD-350×4.6毫米I.D.,3微米;流动相:A相为二氧化碳,B相为异丙醇+乙腈(含0.05%二乙胺);梯度洗脱:40%异丙醇+乙腈(含0.05%二乙胺)在二氧化碳中;流速:3毫升/分钟;检测波长:220纳米;柱温:35摄氏度;压力:100巴),
得到保留时间为1.557分钟的化合物为化合物15C-1,LCMS(ESI)m/z:622.3[M+1];
得到保留时间为1.889分钟的化合物为化合物15C-2。LCMS(ESI)m/z:622.3[M+1]。
化合物15D-1和15D-2:
Figure PCTCN2020073842-appb-000264
根据化合物5J的方法制备,将化合物5I替换为化合物15C-1,得到化合物15D-1。LCMS(ESI)m/z:522.3[M+1]。根据化合物5J的方法制备,将化合物5I替换为化合物15C-2,得到化合物15D-2。LCMS(ESI)m/z:522.3[M+1]。
化合物15-1和15-2的盐酸盐:
Figure PCTCN2020073842-appb-000265
根据化合物1的方法制备,将化合物1L替换为化合物15D-1,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物15-1的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.33-10.20(m,1H),8.68(d,J=1.0Hz,1H),8.66-8.62(m,2H),8.47(d,J=9.5Hz,1H),8.29-8.25(m,2H),8.12(d,J=8.3Hz,1H),7.68(dd,J=1.4,8.4Hz,1H),7.58-7.46(m,2H),6.74(d,J=9.3Hz,2H),4.07(d,J=6.3Hz,2H),3.42(br d,J=12.3Hz,2H),3.03-2.87(m,2H),2.71(d,J=4.8Hz,3H),2.05-1.90(m,6H),1.67-1.51(m,2H);LCMS(ESI)m/z:536.2[M+1]。
根据化合物1的方法制备,将化合物1L替换为化合物15D-2,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物15-2的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.41-10.27(m,1H),8.70-8.60(m,3H),8.46(d,J=9.5Hz,1H),8.30-8.23(m,2H),8.11(d,J=8.3Hz,1H),7.67(dd,J=1.1,8.4Hz,1H),7.58-7.45(m,2H),6.74(d,J=9.3Hz,2H),4.06(d,J=6.3Hz,2H),3.41(br d,J=12.3Hz,2H),3.01-2.86(m,2H),2.75-2.67(m,3H),2.05-1.91(m,6H),1.70-1.52(m,2H);LCMS(ESI)m/z:536.2[M+1]。
实施例16
Figure PCTCN2020073842-appb-000266
化合物16A:
Figure PCTCN2020073842-appb-000267
根据化合物1E的方法制备,将化合物1D替换为化合物7C,得到化合物16A。 1H NMR(400MHz,CDCl 3)δ=7.80-7.72(m,1H),7.71-7.65(m,2H),7.57(d,J=9.2Hz,1H);LCMS(ESI):m/z:277.1[M+1]。
化合物16B:
Figure PCTCN2020073842-appb-000268
将化合物16A(260毫克,941.30微摩尔)溶解于乙腈(6毫升)中,加入TMSCl(513.60毫克,4.73毫摩尔,0.60毫升)和碘化钠(710毫克,4.74毫摩尔)。将混合物加热至80摄氏度继续搅拌18小时,反应完毕后冷却至20摄氏度,将反应液倒入水(18毫升)中,过滤得固体,滤饼用水洗涤两次(5毫升/次)后干燥,得到化合物16B。 1H NMR(400MHz,DMSO-d 6)δ=8.38-8.18(m,2H),8.01-7.91(m,2H).LCMS(ESI)m/z:263.6[M+1]。
化合物16C:
Figure PCTCN2020073842-appb-000269
根据化合物1K的方法制备,将化合物1F替换为化合物16B,得到化合物16C。 1H NMR(400MHz,DMSO-d 6)δ=8.52-8.48(m,2H),8.41(s,1H),8.30(d,J=7.6Hz,1H),7.65-7.58(m,2H),7.52(s,1H),7.47-7.35(m,3H),5.55(s,2H),4.28-4.12(m,2H),4.02-3.92(m,2H),2.90-2.69(m,2H),2.06-1.97(m,1H),1.90-1.78(m,2H),1.50(s,9H),1.38-1.27(m,2H);LCMS(ESI):m/z:644.3[M+1]。
化合物16D:
Figure PCTCN2020073842-appb-000270
向化合物16C(60毫克,93.22微摩尔)的甲醇(2毫升)溶液加入盐酸甲醇溶液(4摩尔/升,1毫升),反应体系于15摄氏度搅拌30分钟。向反应液中加水(30毫升)后用1摩尔/升的氢氧化钠水溶液调节溶液pH至10,混合物用二氯甲烷(15毫升×3次)萃取,合并的有机相用无水硫酸钠干燥后过滤,浓缩至干,得到化合物16D。LCMS(ESI):m/z:544.3[M+1]。
化合物16的盐酸盐:
Figure PCTCN2020073842-appb-000271
根据化合物1的方法制备,将化合物1L替换为化合物16D,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物16的盐酸盐。 1H NMR(400MHz,CD 3OD)δ=8.55(s,2H),8.32-8.20(m,2H),8.03-7.91(m,2H),7.76(s,2H),7.53-7.39(m,2H),5.56(s,2H),4.13(d,J=5.6Hz,2H),3.69-3.52(m,2H),3.09(br t,J=11.9Hz,2H),2.96-2.89(m,3H),2.28-2.11(m,3H),1.81-1.62(m,2H);LCMS(ESI)m/z:558.3[M+1]。
实施例17
Figure PCTCN2020073842-appb-000272
化合物17A-1和17A-2:
Figure PCTCN2020073842-appb-000273
根据化合物14C的方法制备,将化合物2A替换为化合物16B,得到化合物17A-1和17A-2的混合物,表征为: 1H NMR(400MHz,CDCl 3)δ=8.51(s,1H),8.44(s,2H),8.30(d,J=7.8Hz,1H),7.72-7.66(m,1H),7.66-7.61(m,1H),7.56(br d,J=7.7Hz,1H),7.51(s,1H),7.49-7.44(m,1H),7.31(d,J=7.3Hz,1H),5.79(br d,J=4.6Hz,1H),4.29-4.15(m,2H),3.94(d,J=6.2Hz,2H),2.78(br t,J=11.4Hz,2H),2.20(d,J=6.8Hz,3H),2.03(br dd,J=3.4,6.8Hz,1H),1.85(br d,J=12.2Hz,2H),1.49(s,9H),1.39-1.31(m,2H);LCMS(ESI):m/z:658.3[M+1]。化合物17A-1和17A-2的混合物经手性SFC(分离方法:分离柱:Chiralpak AS-3 50×4.6毫米I.D.,3微米;流动相:A相为二氧化碳,B相为乙醇(含0.05%二乙胺);梯度洗脱:乙醇(含0.05%二乙胺)在二氧化碳中从5%到40%;流速:3毫升/分钟;检测波长:220纳米;柱温:35摄氏度;压力:100巴。)分离,得到保留时间为1.542分钟的化合物为化合物17A-1,得到保留时间为1.644分钟的化合物为化合物17A-2。
化合物17B-1和17B-2:
Figure PCTCN2020073842-appb-000274
根据化合物5J的方法制备,将化合物5I替换为化合物17A-1,得到化合物17B-1。LCMS(ESI)m/z:558.1[M+1]。根据化合物5J的方法制备,将化合物5I替换为化合物17A-2,得到化合物17B-2。LCMS(ESI)m/z:558.1[M+1]。
化合物17-1和17-2的盐酸盐:
Figure PCTCN2020073842-appb-000275
根据化合物1的方法制备,将化合物1L替换为化合物17B-1,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物17-1的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.62-10.01(m,1H),8.72-8.61(m,2H),8.33(s,1H),8.27-8.20(m,1H),8.20-8.12(m,2H),8.03-7.85(m,2H),7.54-7.41(m,2H),5.67(br d,J=6.0Hz,1H),4.08(br d,J=6.1Hz,2H),3.31-3.07(m,1H),3.03-2.88(m,2H),2.83-2.64(m,4H),2.15-1.90(m,6H),1.70-1.50(m,2H);LCMS(ESI)m/z:572.4[M+1]。
根据化合物1的方法制备,将化合物1L替换为化合物17B-2,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物17-2的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.67-10.14(m,1H),8.66(s,2H),8.33(s,1H),8.29-8.10(m,3H),8.02-7.82(m,2H),7.48(br d,J=7.7Hz,2H),5.68(br d,J=5.7Hz,1H),4.08(br d,J=6.1Hz,2H),3.29-3.11(m,1H),3.04-2.88(m,2H),2.82-2.60(m,4H),2.14-1.89(m,6H),1.71-1.53(m,2H);LCMS(ESI)m/z:572.4[M+1]。
实施例18
Figure PCTCN2020073842-appb-000276
化合物18A-1和18A-2:
Figure PCTCN2020073842-appb-000277
根据化合物14C的方法制备,将化合物2A替换为化合物1F,得到化合物18A-1和18A-2的混合物。表征为: 1H NMR(400MHz,CDCl 3)δ=8.49(s,1H),8.43(s,2H),8.28(d,J=7.6Hz,1H),7.69-7.65(m,1H),7.62-7.57(m,1H),7.55-7.48(m,3H),7.47-7.41(m,1H),6.63(d,J=9.3Hz,1H),5.81-5.68(m,1H),4.26-4.14(m,2H),3.94(d,J=6.4Hz,2H),2.87-2.67(m,2H),2.17(d,J=6.8Hz,3H),2.04-1.96(m,1H),1.84(br d,J=13.0Hz,2H),1.48(s,9H),1.38-1.28(m,2H);LCMS(ESI):m/z:640.3[M+1]。化合物18A-1和18A-2的混合物经手性SFC(分离方法:分离柱:Chiralcel OD-350×4.6毫米I.D.,3微米;流动相:A相为二氧化碳,B相为甲醇+乙腈(含0.05%二乙胺);梯度洗脱:40%甲醇+乙腈(含0.05%二乙胺)在二氧化碳中;流速:3毫升/分钟;检测波长:220纳米;柱温:35摄氏度;压力:100巴。)分离,得到保留时间为1.716分钟的化合物为化合物18A-1,得到保留时间为2.381分钟的化合物为化合物18A-2。
化合物18B-1和18B-2:
Figure PCTCN2020073842-appb-000278
根据化合物5J的方法制备,将化合物5I替换为化合物18A-1,得到化合物18B-1。LCMS(ESI)m/z: 540.3[M+1]。根据化合物5J的方法制备,将化合物5I替换为化合物18A-2,得到化合物18B-2。LCMS(ESI)m/z:540.3[M+1]。
化合物18-1和18-2的盐酸盐:
Figure PCTCN2020073842-appb-000279
根据化合物1的方法制备,将化合物1L替换为化合物18B-1,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物18-1的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.97-10.65(m,1H),8.67-8.61(m,2H),8.27(s,1H),8.22-8.16(m,2H),8.05(d,J=9.3Hz,1H),7.93(br d,J=7.8Hz,1H),7.88-7.80(m,1H),7.51-7.42(m,2H),6.62(br d,J=9.3Hz,1H),5.59(br d,J=6.3Hz,1H),4.06(brd,J=6.3Hz,2H),3.43-3.37(m,2H),3.02-2.88(m,2H),2.74-2.65(m,3H),2.03(br d,J=6.8Hz,4H),1.94(br d,J=12.3Hz,2H),1.72-1.57(m,2H);LCMS(ESI)m/z:554.3[M+1]。
根据化合物1的方法制备,将化合物1L替换为化合物18B-2,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物18-2的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.77-10.02(m,1H),8.67-8.62(m,2H),8.28(s,1H),8.22-8.16(m,2H),8.05(d,J=9.3Hz,1H),7.94(br d,J=7.5Hz,1H),7.86(d,J=7.8Hz,1H),7.53-7.34(m,2H),6.63(br d,J=9.3Hz,1H),5.69-5.53(m,1H),4.07(d,J=6.3Hz,2H),3.46-3.38(m,2H),3.01-2.88(m,2H),2.70(br d,J=4.5Hz,3H),2.03(br d,J=6.8Hz,4H),1.96(br d,J=14.5Hz,2H),1.60(br d,J=12.8Hz,2H);LCMS(ESI)m/z:554.3[M+1]。
实施例19
Figure PCTCN2020073842-appb-000280
根据化合物1的甲酸盐的方法制备,将化合物1L替换为化合物2C,将甲醛水溶液替换为丙酮,经高效液相色谱制备分离(甲酸体系)分离后的产物又经薄层硅胶色谱纯化(二氯甲烷:甲醇=5:1)分离,得到化合物19(30毫克),加水(10毫升)后加入盐酸水溶液(0.5摩尔/升,0.44毫升)后的混合物于15摄氏度搅拌30分钟,将混合物经冷冻干燥,得到化合物19的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.64(s,2H),8.23(s,1H),8.18(d,J=7.5Hz,1H),8.10(d,J=9.3Hz,1H),8.03(s,1H),7.77-7.73(m,1H),7.60(d,J=7.5Hz,1H),7.46-7.41(m,1H),7.39-7.34(m,1H),6.91(d,J=9.3Hz,1H),5.58(s,2H),4.11-3.99(m,3H),3.47-3.39(m,2H),3.12-2.80(m,2H),2.19-2.06(m,1H),2.04-1.89(m,2H),1.75-1.55(m,2H),1.33-1.16(m,6H);LCMS(ESI):m/z:546.3[M+1]。
实施例20
Figure PCTCN2020073842-appb-000281
化合物20A:
Figure PCTCN2020073842-appb-000282
在0摄氏度下向2-氯-5-羟基嘧啶(2克,15.32毫摩尔),N-Boc哌嗪(3.14g,16.85毫摩尔)和三乙胺(3.10克,30.64毫摩尔,4.27毫升)的二氯甲烷(20毫升)溶液中加入三光气(5.46克,18.39毫摩尔)。然后将反应液在15摄氏度搅拌1小时。向反应液中加入饱和碳酸氢钠水溶液(30毫升)后萃取,水相分出后用二氯甲烷(20毫升×1次)萃取。有机相合并后用硫酸钠干燥后浓缩,残余物通过柱层析法(石油醚:乙酸乙酯=10:1-4:1)纯化得到化合物20A。LCMS(ESI):m/z:287.1[M-55]。
化合物20B:
Figure PCTCN2020073842-appb-000283
将化合物20A(1克,2.40毫摩尔)和3-羟甲基苯硼酸(400毫克,2.63毫摩尔)溶于10毫升二氧六环和2毫升水中,加入碳酸钾(660毫克,4.78毫摩尔)和Pd(dppf)Cl 2(90毫克,123。00微摩尔)。混合液在110摄氏度氮气保护环境下搅拌反应2小时,反应液浓缩干移除有机溶剂。剩余残渣加入乙酸乙酯(30毫升),然后用水(20毫升×1次)和盐水(20毫升×1次)洗涤,有机相浓缩干得到化合物20B直接用于下一步。
化合物20C:
Figure PCTCN2020073842-appb-000284
根据化合物6E的方法制备,将化合物1I替换为化合物20B,得到化合物20C。LCMS(ESI):m/z:433.0[M+1]。化合物20D:
Figure PCTCN2020073842-appb-000285
根据化合物1K的方法制备,将化合物1F替换为化合物2A,将化合物1J替换为化合物20C,得到化合物20D。 1H NMR(400MHz,CDCl 3)δ=8.64(s,2H),8.48(s,1H),8.29(d,J=7.8Hz,1H),7.61(d,J=9.3Hz,1H),7.57-7.53(m,1H),7.49(dd,J=1.2,7.4Hz,2H),7.43(d,J=7.8Hz,1H),7.39(s,1H),6.94(d,J=9.3Hz,1H),5.76(s,2H),3.70(br s,2H),3.55(br s,6H),1.50(s,9H)。LCMS(ESI):m/z:619.2[M+1]。
化合物20E:
Figure PCTCN2020073842-appb-000286
根据化合物5J的方法制备,将化合物5I替换为化合物20D,得到化合物20E。LCMS(ESI)m/z:519.3[M+1]。化合物20的盐酸盐:
Figure PCTCN2020073842-appb-000287
根据化合物1的方法制备,将化合物1L替换为化合物20E,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物20的盐酸盐。 1H NMR(400MHz,CD 3OD)δ=8.72(s,2H),8.35(s,1H),8.29(br d,J=7.6Hz,1H),8.01(d,J=9.3Hz,1H),7.76(s,1H),7.67-7.57(m,2H),7.54-7.48(m,1H),7.48-7.41(m,1H),6.91(d,J=9.3Hz,1H),5.74(s,2H),4.60-4.31(m,2H),3.68-3.52(m,3H),3.47-3.37(m,1H),3.31-3.19(m,2H),3.00(s,3H);LCMS(ESI)m/z:533.3[M+1]。
实施例21
Figure PCTCN2020073842-appb-000288
Figure PCTCN2020073842-appb-000289
化合物21A:
Figure PCTCN2020073842-appb-000290
根据化合物6D的方法制备,将磷酰基乙酸三乙酯替换为2-二乙氧基磷酰基-2-氟乙酸乙酯,得到化合物21A。LCMS(ESI)m/z:343.7[M-100]。
化合物21B:
Figure PCTCN2020073842-appb-000291
向化合物21A(0.93克,2.09毫摩尔)的甲醇(10毫升)和二氯甲烷(10毫升)的混合溶液中加入盐酸甲醇(4摩尔/升,10毫升)。将反应液于20摄氏度搅拌16小时后,将反应液浓缩至干。残余物加入乙酸乙酯(3毫升)稀释后过滤,滤饼干燥得到化合物21B。 1H NMR(400MHz,DMSO-d 6)δ=8.52(br d,J=9.8Hz,1H),8.41(br s,1H),7.96(d,J=8.6Hz,1H),7.55(dd,J=1.6,8.4Hz,1H);LCMS(ESI)m/z:297.7[M+1]。
化合物21C:
Figure PCTCN2020073842-appb-000292
根据化合物14C的方法制备,将化合物2A替换为化合物21B,将高效液相色谱制备分离(甲酸体系)替换为薄层硅胶色谱纯化(二氯甲烷:甲醇=20:1)分离,得到化合物21C。 1H NMR(400MHz,CDCl 3)δ=8.39(s,1H),8.37(s,2H),8.27(d,J=7.3Hz,1H),7.80(d,J=1.7Hz,1H),7.66(d,J=8.6Hz,1H),7.42-7.32(m,3H),7.31-7.27(m,1H),6.89(q,J=6.8Hz,1H),4.12(m,2H),3.87(d,J=6.1Hz,2H),2.69(br t,J=12.3Hz,2H),1.98 (d,J=7.1Hz,3H),1.96-1.88(m,1H),1.76(br d,J=12.0Hz,2H),1.40(s,9H),1.30-1.18(m,2H);LCMS(ESI)m/z:639.3[M-55]。
化合物21D-1和21D-2:
Figure PCTCN2020073842-appb-000293
根据化合物6I的方法制备,将化合物6H替换为化合物21C,得到21D-1和21D-2的混合物,表征为:LCMS(ESI)m/z:584.1[M-55]。21D-1和21D-2的混合物经手性SFC(分离方法:分离柱:Chiralpak AD-350×4.6毫米I.D.,3微米;流动相:A相为二氧化碳,B相为异丙醇+乙腈(含0.05%二乙胺);梯度洗脱:40%异丙醇+乙腈(含0.05%二乙胺)在二氧化碳中;流速:3毫升/分钟;检测波长:220纳米;柱温:35摄氏度;压力:100巴)分离,得到保留时间为0.845分钟的化合物为化合物21D-1。 1H NMR(400MHz,CDCl 3)δ=8.47(s,1H),8.45(s,2H),8.36(d,J=7.6Hz,1H),8.03(s,1H),7.79(d,J=8.3Hz,1H),7.67(d,J=8.3Hz,1H),7.51-7.45(m,2H),7.44-7.39(m,1H),7.01(q,J=7.1Hz,1H),4.19(m,2H),3.95(d,J=6.4Hz,2H),2.77(br t,J=12.0Hz,2H),2.06(d,J=7.1Hz,3H),2.02(m,1H),1.84(br d,J=12.5Hz,2H),1.48(s,9H),1.37-1.26(m,2H)。手性SFC分离得到保留时间为1.077分钟的化合物为化合物21D-2。 1H NMR(400MHz,CDCl 3)δ=8.47(s,1H),8.45(s,2H),8.37(d,J=7.8Hz,1H),8.03(s,1H),7.79(d,J=8.6Hz,1H),7.67(d,J=8.3Hz,1H),7.51-7.45(m,2H),7.45-7.40(m,1H),7.01(q,J=7.1Hz,1H),4.19(br s,2H),3.95(d,J=6.4Hz,2H),2.77(br t,J=12.0Hz,2H),2.06(d,J=7.3Hz,3H),2.02-1.95(m,1H),1.84(br d,J=13.0Hz,2H),1.48(s,9H),1.38-1.26(m,2H)。
化合物21E-1和21E-2:
Figure PCTCN2020073842-appb-000294
根据化合物5J的方法制备,将化合物5I替换为化合物21D-1或21D-2,得到化合物21E-1或21E-2。LCMS(ESI)m/z:540.1[M+1]。根据化合物5J的方法制备,将化合物5I替换为化合物21D-2或21D-1,得到化合物21E-2或21E-1。LCMS(ESI)m/z:522.3[M+1]。
化合物21-1和21-2的盐酸盐:
Figure PCTCN2020073842-appb-000295
根据化合物1的方法制备,将化合物1L替换为化合物21E-1,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物21-1的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.50-9.97(m,1H),8.73-8.64(m,3H),8.60(d,J=9.8Hz,1H),8.34-8.25(m,2H),8.15(d,J=8.3Hz,1H),7.72(dd,J=1.5,8.4Hz,1H),7.61-7.44(m,2H),6.88-6.61(m,1H),4.08(d,J=6.2Hz,2H),3.44(br d,J=12.0Hz,2H),3.03-2.86(m,2H),2.72(d,J=4.8Hz,3H),2.13-1.88(m,6H),1.69-1.50(m,2H);LCMS(ESI)m/z:554.3[M+1]。
根据化合物1的方法制备,将化合物1L替换为化合物21E-2,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物21-2的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.86-10.40(m,1H),8.72-8.62(m,3H),8.60(d,J=9.8Hz,1H),8.36-8.22(m,2H),8.14(d,J=8.3Hz,1H),7.71(dd,J=1.3,8.4Hz,1H),7.60-7.45(m,2H),6.74(br s,1H),4.07(d,J=6.2Hz,2H),3.44-3.38(m,2H),3.03-2.86(m,2H),2.80-2.64(m,3H),2.14-1.87(m,6H),1.71-1.54(m,2H);LCMS(ESI)m/z:554.3[M+1]。
实施例22
Figure PCTCN2020073842-appb-000296
化合物22A:
Figure PCTCN2020073842-appb-000297
根据化合物6E的方法制备,将化合物6D替换为化合物14B,得到化合物22A。 1H NMR(400MHz,CDCl 3)δ=8.46(s,2H),8.41(t,J=1.8Hz,1H),8.30(td,J=1.5,7.5Hz,1H),7.58-7.40(m,2H),5.20(q,J=6.9Hz,1H),4.31-4.08(m,2H),3.96(d,J=6.5Hz,2H),2.77(br t,J=12.6Hz,2H),2.10-1.97(m,1H),1.92(d,J=6.8Hz,3H),1.85(br d,J=12.5Hz,2H),1.48(s,9H),1.41-1.27(m,2H);LCMS(ESI)m/z:432.1[M+1]。
化合物22B:
Figure PCTCN2020073842-appb-000298
根据化合物6F的方法制备,将化合物6D替换为化合物9C1,将化合6E替换为化合物22A,得到化合物22B。 1H NMR(400MHz,CDCl 3)δ=8.55(s,1H),8.43(s,2H),8.24(d,J=8.0Hz,1H),7.95(d,J=7.8Hz,1H),7.66-7.61(m,2H),7.58-7.53(m,1H),7.49-7.38(m,2H),6.65(q,J=6.9Hz,1H),6.16(d,J=7.5Hz,1H),4.26-4.13(m,2H),3.94(d,J=6.5Hz,2H),2.85-2.68(m,2H),2.16(d,J=7.3Hz,3H),2.00(br dd,J=3.4,7.9Hz,1H),1.88-1.79(m,2H),1.48(s,9H),1.35-1.29(m,2H);LCMS(ESI)m/z:661.1[M+3]。
化合物22C-1和22C-2:
Figure PCTCN2020073842-appb-000299
根据化合物6I的方法制备,将化合物6H替换为化合物22B,得到化合物22C-1和22C-2的混合物。化合物22C-1和22C-2的混合物经手性SFC(分离方法:分离柱:Chiralcel OJ-350×4.6毫米I.D.,3微米;流动相:A相为二氧化碳,B相为乙醇(含0.05%二乙胺);梯度洗脱:40%乙醇(含0.05%二乙胺)在二氧化碳中;流速:3毫升/分钟;检测器:PDA;柱温:35摄氏度;压力:100巴。)分离,得到保留时间为1.591分钟的化合物为化合物22C-1,保留时间为2.636分钟的化合物为化合物22C-2。
化合物22D-1和22D-2:
Figure PCTCN2020073842-appb-000300
根据化合物5J的方法制备,将化合物5I替换为化合物22C-1,得到化合物22D-1。LCMS(ESI)m/z:506.2[M+1]。根据化合物5J的方法制备,将化合物5I替换为化合物22C-2,得到化合物22D-2。LCMS(ESI)m/z: 506.2[M+1]。
化合物22-1和22-2的盐酸盐:
Figure PCTCN2020073842-appb-000301
根据化合物1的方法制备,将化合物1L替换为化合物22D-1,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物22-1的盐酸盐。 1H NMR(400MHz,CDCl 3)δ=8.55(s,1H),8.42(s,2H),8.24(d,J=7.8Hz,1H),8.05(d,J=7.8Hz,1H),7.82(s,1H),7.73(d,J=8.3Hz,1H),7.67-7.58(m,2H),7.42(t,J=7.8Hz,1H),6.67(q,J=7.1Hz,1H),6.24(d,J=7.8Hz,1H),4.01(br d,J=3.8Hz,2H),3.60-3.46(m,2H),2.77(s,5H),2.16(d,J=7.3Hz,3H),2.09(br s,5H);LCMS(ESI)m/z:520.2[M+1]。
根据化合物1的方法制备,将化合物1L替换为化合物22D-2,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物22-2的盐酸盐。 1H NMR(400MHz,CDCl 3)δ=8.56(s,1H),8.44(s,2H),8.25(d,J=7.8Hz,1H),8.05(d,J=7.5Hz,1H),7.82(s,1H),7.74(d,J=8.5Hz,1H),7.68-7.62(m,2H),7.43(t,J=7.8Hz,1H),6.68(q,J=7.2Hz,1H),6.25(d,J=7.5Hz,1H),4.03(br d,J=3.3Hz,2H),3.68-3.59(m,2H),2.91-2.66(m,5H),2.16(d,J=7.3Hz,3H),2.14-2.06(m,3H),1.88-1.86(m,2H);LCMS(ESI)m/z:520.2[M+1]。
实施例23
Figure PCTCN2020073842-appb-000302
化合物23A:
Figure PCTCN2020073842-appb-000303
在15摄氏度下向2-溴-6-甲氧基吡啶(5克,26.59毫摩尔)的DMF(50毫升)溶液中加入NBS(9.47克,53.19毫摩尔),混合物在90摄氏度搅拌0.5小时后,向反应液中加水(50毫升)后用乙酸乙酯(50毫升×1次)萃取,有机相用盐水(50毫升×5次)洗涤后,经硫酸钠干燥,过滤浓缩,粗品经硅胶柱层析纯化(纯石油醚洗脱)得到化合物23A。 1H NMR(400MHz,CDCl 3)δ=7.62(d,J=8.5Hz,1H),6.54(d,J=8.5Hz,1H),3.85(s,3H);LCMS(ESI)m/z:267.9[M+3]。
化合物23B:
Figure PCTCN2020073842-appb-000304
25摄氏度下向盛有NMP(5毫升)的50毫升圆底烧瓶中加入Pd 2(dba) 3(138毫克,150.70微摩尔)和Xantphos(174毫克,300.72微摩尔),混合物在搅拌下氮气吹扫10分钟。在另外一个10毫升的圆底烧瓶中加入碘化亚铜(45毫克,236.28微摩尔)、化合物23A(1克,3.75毫摩尔)、6-亚氨基-1H-吡啶-3-甲腈(540毫克,4.53毫摩尔)和碳酸铯(4.88克,14.98毫摩尔),将前述制备好的催化剂在氮气保护下加入反应瓶中后,混合物用氮气吹扫5分钟,将混合物于90摄氏度搅拌45分钟。将反应液冷却至室温后过滤,滤饼用二氯甲烷:甲醇=10:1(15毫升×3次)洗涤。所得滤液用盐酸水溶液(2摩尔/升)调节pH到1后水相用二氯甲烷(15毫升×3次)洗涤,有机相丢弃,水相用饱和碳酸氢钠水溶液调节pH到8,析出的固体经过滤后减压干燥,得到化合物23B。 1H NMR(400MHz,DMSO-d 6)δ=9.92(s,1H),8.65(d,J=8.9Hz,1H),7.88-7.75(m,2H),6.95(d,J=8.9Hz,1H),3.99(s,3H);LCMS(ESI)m/z:225.6[M+1]。
化合物23C:
Figure PCTCN2020073842-appb-000305
根据化合物1F的方法制备,将化合物1E替换为化合物23B,得到的粗品经高效液相色谱制备分离(甲酸体系)后,得到化合物23C。 1H NMR(400MHz,DMSO-d 6)δ=9.54(s,1H),8.09(br d,J=9.3Hz,1H),7.60-7.47(m,2H),6.16(d,J=9.3Hz,1H)。
化合物23D:
Figure PCTCN2020073842-appb-000306
根据化合物6F的方法制备,将化合物6D替换为化合物23C,得到化合物23D。 1H NMR(400MHz,DMSO-d 6)δ=9.78(s,1H),8.63-8.57(m,2H),8.43(d,J=9.5Hz,1H),8.28(s,1H),8.15(br d,J=7.2Hz,1H),7.92-7.72 (m,2H),7.50-7.35(m,2H),6.50(d,J=9.5Hz,1H),5.52(s,2H),4.04(d,J=6.5Hz,2H),3.96(br d,J=11.4Hz,2H),2.80-2.65(m,2H),1.96(br s,1H),1.77-1.72(m,2H),1.38(s,9H),1.18-1.10(m,2H);LCMS(ESI)m/z:592.4[M+1]。
化合物23的盐酸盐:
Figure PCTCN2020073842-appb-000307
25摄氏度下向化合物23D(50毫克,84.51微摩尔)的甲酸(0.5毫升)溶液中加入37%甲醛水溶液(0.5毫升),混合物于100摄氏度搅拌0.5小时后减压浓缩至干。将残余物溶于甲醇(4毫升)后,向反应液中加入37%甲醛水溶液(0.1毫升)和NaBH(OAc) 3(36毫克,169.86微摩尔),混合物于25摄氏度搅拌0.5小时后浓缩至干,残余物经高效液相色谱制备分离(盐酸体系)分离,得到的混合物用饱和碳酸氢钠水溶液调节pH到8后用二氯甲烷:甲醇=10:1(20毫升×3次)萃取,合并有机相减压浓缩。向残余物中加水(10毫升)和乙腈(0.5毫升)后,再加入盐酸水溶液(0.5摩尔/升,0.1毫升)后在25摄氏度搅拌0.5小时,混合物经减压浓缩,得到化合物23的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.14-9.70(m,2H),8.68-8.55(m,2H),8.44(d,J=9.5Hz,1H),8.29(s,1H),8.16(br d,J=7.1Hz,1H),7.88-7.76(m,2H),7.48-7.38(m,2H),6.50(d,J=9.5Hz,1H),5.53(s,2H),4.08(br d,J=6.0Hz,2H),3.28-3.08(m,2H),3.07-2.86(m,2H),2.80-2.70(m,3H),2.09-1.88(m,3H),1.65-1.47(m,2H);LCMS(ESI)m/z:506.2[M+1]。
实施例24
Figure PCTCN2020073842-appb-000308
化合物24A:
Figure PCTCN2020073842-appb-000309
根据化合物13A的方法制备,将5-氟尿嘧啶替换为尿嘧啶,得到化合物24A。 1H NMR(400MHz,DMSO-d 6)δ=11.69(s,1H),8.16-8.10(m,2H),8.02-7.95(m,1H),7.89(d,J=7.9Hz,1H),5.82(dd,J=2.1,8.0Hz,1H)。化合物24B:
Figure PCTCN2020073842-appb-000310
25摄氏度下向化合物24A(5克,16.02毫摩尔)的醋酸(100毫升)溶液中加入还原铁粉(4.47克,80.11毫摩尔)。将混合物于90摄氏度搅拌1小时,冷却至室温后过滤,滤液减压浓缩旋干,加入水(50毫升)后用氢氧化钠水溶液(1摩尔/升)调节溶液pH到8,用二氯甲烷:甲醇=10:1(100毫升×3次)萃取。合并有机相干燥浓缩后经柱层析纯化(二氯甲烷:甲醇=1:0-20:1洗脱)得到化合物24B。 1H NMR(400MHz,DMSO-d 6)δ=11.29(d,J=1.6Hz,1H),7.38(d,J=7.9Hz,1H),7.31-7.21(m,2H),6.72(d,J=8.6Hz,1H),5.61(dd,J=2.3,7.8Hz,1H),5.54(s,2H);LCMS(ESI)m/z:284.1[M+3]。
化合物9C1:
Figure PCTCN2020073842-appb-000311
将化合物24B(2.9克,10.28毫摩尔)和多聚磷酸(15克)的混合物于170摄氏度搅拌2小时,冷却至室温后加入水(40毫升)后用饱和碳酸钠水溶液调节溶液pH到5~6,析出的固体过滤后旋干,向旋干的固体中加入乙酸乙酯(20毫升)后过滤,滤饼干燥后得到化合物9C1。 1H NMR(400MHz,DMSO-d 6)δ=8.77(d,J=7.7Hz,1H),8.24(d,J=1.6Hz,1H),7.51-7.40(m,2H),6.14(d,J=7.8Hz,1H);LCMS(ESI)m/z:264.2[M+1]。
化合物9D1:
Figure PCTCN2020073842-appb-000312
根据化合物6F的方法制备,将化合物6D替换为化合物9C1,得到化合物9D1。 1H NMR(400MHz,DMSO-d 6)δ=8.90(d,J=7.8Hz,1H),8.63(s,2H),8.41-8.30(m,2H),8.26-8.10(m,1H),7.62-7.55(m,1H),7.53-7.41 (m,3H),6.37(d,J=7.8Hz,1H),5.44(s,2H),4.06(d,J=6.4Hz,2H),3.98(br d,J=11.9Hz,2H),2.75(br s,2H),1.97(br dd,J=6.8,12.6Hz,1H),1.76(br d,J=11.0Hz,2H),1.41(s,9H),1.17(dq,J=4.3,12.3Hz,2H);LCMS(ESI)m/z:645.4[M+1]。
化合物24C的三氟乙酸盐:
Figure PCTCN2020073842-appb-000313
向化合物11A(0.9克,1.52毫摩尔)的二氯甲烷(3毫升)溶液中加入三氟乙酸(0.9毫升),混合物于25摄氏度搅拌15分钟后减压浓缩至干得到化合物24C的三氟乙酸盐。 1H NMR(400MHz,CD 3OD)δ=8.74(d,J=7.7Hz,1H),8.53(s,2H),8.41(s,1H),8.30(d,J=0.9Hz,1H),8.24(d,J=7.9Hz,1H),7.79-7.75(m,1H),7.74-7.69(m,1H),7.61(d,J=7.6Hz,1H),7.45(t,J=7.7Hz,1H),6.38(d,J=7.8Hz,1H),5.59(s,2H),4.12(d,J=6.0Hz,2H),3.48(br d,J=12.7Hz,2H),3.13-3.04(m,2H),2.31-2.18(m,1H),2.13(br d,J=13.2Hz,2H),1.73-1.58(m,2H);LCMS(ESI)m/z:492.4[M+1]。
化合物24的盐酸盐:
Figure PCTCN2020073842-appb-000314
向化合物24C的三氟乙酸盐(0.4克,660.54微摩尔,三氟乙酸盐)的乙醇(10毫升)和二氯甲烷(10毫升)的混合物中依次加入乙醛水溶液(2.55克,23.14毫摩尔,40%纯度)、碳酸氢钠(832毫克,9.91毫摩尔)和NaBH(OAc) 3(558毫克,2.63毫摩尔)。将反应液于25摄氏度搅拌0.5小时后浓缩至干,残余物中加入饱和碳酸氢钠水溶液(20毫升),用二氯甲烷:甲醇=10:1(50毫升×3次)萃取,合并有机相用盐水(20毫升×1次)洗涤,硫酸钠干燥,过滤后浓缩至干。残余物经高效液相色谱制备分离(甲酸体系)分离,得到的混合物用饱和碳酸氢钠水溶液调节pH到8后用二氯甲烷:甲醇=10:1(20毫升×3次)萃取,合并有机相用盐水(20毫升×1次)洗涤,硫酸钠干燥,过滤后浓缩至干得到化合物24。向化合物24中依次加入水(5毫升)、乙腈(10毫升)和盐酸水溶液(0.5摩尔/升,1毫升)后在25摄氏度搅拌15分钟,混合物经减压浓缩,得到化合物24的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.65(br s,1H),8.94(d,J=7.8Hz,1H),8.65(s,2H),8.59(s,1H),8.36(s,1H),8.20(d,J=7.8Hz,1H),7.82-7.72(m,2H),7.55-7.50(m,1H),7.48-7.40(m,1H),6.47(d,J=7.7Hz,1H),5.47(s,2H),4.10(br d,J=5.7Hz,2H),3.49(br s,2H),3.17-2.80(m,4H),2.14-1.89(m,3H),1.60(br d,J=12.8Hz,2H),1.24(br t,J=7.0Hz,3H);LCMS(ESI)m/z:520.2[M+1]。
实施例25
Figure PCTCN2020073842-appb-000315
向化合物24C的三氟乙酸盐(0.4克,660.54微摩尔,三氟乙酸盐)在乙醇(10毫升)和DMF(7毫升)中的混合物中,依次加入碳酸钾(912毫克,6.60毫摩尔)和2-碘丙烷(896毫克,5.27毫摩尔)。将反应液于70摄氏度搅拌1小时后冷却至室温加水(20毫升),析出的固体过滤,滤饼加入乙醇(20毫升)打浆后过滤,滤饼干燥后经高效液相色谱制备分离(甲酸体系)分离,得到的混合物用饱和碳酸氢钠水溶液调节pH到8后用二氯甲烷:甲醇=10:1(40毫升×3次)萃取,合并有机相用无水硫酸钠干燥,过滤后浓缩至干得到化合物25。向化合物25中依次加入水(5毫升)、乙腈(10毫升)和盐酸水溶液(1摩尔/升,0.6毫升),混合物在25摄氏度搅拌15分钟后减压浓缩,得到化合物25的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.44(br s,1H),8.94(d,J=7.8Hz,1H),8.65(s,2H),8.59(s,1H),8.36(s,1H),8.20(d,J=7.8Hz,1H),7.84-7.71(m,2H),7.55-7.49(m,1H),7.48-7.41(m,1H),6.47(d,J=7.8Hz,1H),5.47(s,2H),4.10(br d,J=6.1Hz,2H),3.40(br d,J=10.8Hz,3H),2.99(br d,J=10.9Hz,2H),2.10(br d,J=15.2Hz,1H),2.00(br d,J=13.8Hz,2H),1.73-1.57(m,2H),1.26(br d,J=6.6Hz,6H);LCMS(ESI)m/z:534.2[M+1]。
实施例26
Figure PCTCN2020073842-appb-000316
化合物24C:
Figure PCTCN2020073842-appb-000317
向化合物24C的三氟乙酸盐(335毫克,569.64微摩尔)中加入饱和碳酸氢钠水溶液(20毫升),用二氯甲烷:甲醇=10:1(20毫升×3次)萃取,合并有机相用硫酸钠干燥,过滤后浓缩至干,得到化合物24C直接用于下一步。
化合物26的盐酸盐:
Figure PCTCN2020073842-appb-000318
向化合物24C(280毫克,569.64微摩尔)的DMF(10毫升)中依次加入3-碘氧杂环丁烷(838毫克,4.56毫摩尔)和碳酸钾(787毫克,5.70毫摩尔)。将反应液于90摄氏度搅拌16小时后冷却至室温,将反应液加入到水(80毫升)中,析出的固体过滤,滤饼溶解在二氯甲烷(250毫升)中用盐水(150毫升×2次)洗涤,有机相用硫酸钠干燥后过滤浓缩,残余物经柱层析纯化(二氯甲烷:甲醇=40:1洗脱)。所得粗品经高效液相色谱制备分离(盐酸体系)分离,得到的混合物用饱和碳酸氢钠水溶液调节pH到8后用二氯甲烷:甲醇=10:1(40毫升×3次)萃取,合并有机相用硫酸钠干燥,过滤后浓缩至干得到化合物26。向化合物26中依次加入水(10毫升)、乙腈(3毫升)和盐酸水溶液(0.5摩尔/升,0.2毫升),混合物在25摄氏度搅拌15分钟后,经冷冻干燥,得到化合物26的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.83-10.45(m,1H),8.93(d,J=7.8Hz,1H),8.65(s,2H),8.58(s,1H),8.36(s,1H),8.20(d,J=7.8Hz,1H),7.79-7.75(m,2H),7.55-7.50(m,1H),7.48-7.43(m,1H),6.46(d,J=7.8Hz,1H),5.47(s,2H),4.86-4.76(m,2H),4.74-4.66(m,2H),4.40-4.28(m,1H),4.11(d,J=6.1Hz,2H),2.95-2.75(m,2H),2.07-1.92(m,2H),1.74-1.55(m,5H);LCMS(ESI)m/z:548.2[M+1]。
实施例27
Figure PCTCN2020073842-appb-000319
Figure PCTCN2020073842-appb-000320
化合物27A:
Figure PCTCN2020073842-appb-000321
在低于0摄氏度以下,向2,4,6-三甲基苯磺酰氯(25克,114.31毫摩尔)和N-羟基氨基甲酸叔丁酯(16克,120.17毫摩尔)在甲基叔丁基醚(250毫升)的混合物中,加入三乙胺(12.00克,118.54毫摩尔),混合物于0~10摄氏度搅拌2小时,将混合物过滤,滤液减压浓缩至干,残余物用正己烷(50毫升×2次)打浆,过滤后滤饼干燥得到化合物27A。 1H NMR(400MHz,CDCl 3)δ=7.99-7.46(m,1H),6.99(s,2H),2.68(s,6H),2.32(s,3H),1.32(s,9H)。
化合物27B:
Figure PCTCN2020073842-appb-000322
在0摄氏度,向三氟乙酸(57毫升)中加入化合物33A(19克,60.24毫摩尔),混合物于0摄氏度搅拌0.5小时,向反应液中加水(20毫升),将析出的固体过滤后溶解在二氯甲烷(100毫升)后,有机相用饱和碳酸氢钠水溶液(50毫升×1次)洗涤后加入硫酸钠干燥,过滤后浓缩,将所得的残余物溶于二氯甲烷(50毫升)后直接用于下一步反应。
化合物27C:
Figure PCTCN2020073842-appb-000323
-78摄氏度氮气保护下,向4-溴-2-氟吡啶(7.9克,44.89毫摩尔)和乙腈(3.69克,89.87毫摩尔)的四氢呋喃(90毫升)溶液中加入LiHMDS(1摩尔/升,四氢呋喃溶液,89.78毫升,89.78毫摩尔)。将混合物于-78摄氏度搅拌2小时后,升温至25摄氏度,在25摄氏度搅拌2小时,于25摄氏度向反应液中加入饱和氯化铵水溶液(25毫升),混合物用乙酸乙酯(20毫升×3次)萃取,合并有机相用盐水(20毫升×2次)洗涤,硫酸钠干燥,过滤后浓缩,残余物经柱层析纯化(石油醚:乙酸乙酯=50:1-20:1洗脱)得到化合物27C。 1H NMR(400MHz,CDCl 3)δ=8.34(d,J=5.3Hz,1H),7.57(d,J=1.3Hz,1H),7.39(dd,J=1.8,5.4Hz,1H),3.86(s,2H);LCMS(ESI)m/z:197.1[M+1]。
化合物27D:
Figure PCTCN2020073842-appb-000324
在25摄氏度向化合物27C(6.3克,31.97毫摩尔)的二氯甲烷(50毫升)溶液中加入化合物27B(13克,60.39毫摩尔)的二氯甲烷(50毫升)溶液,将混合物于25摄氏度搅拌2小时后过滤,滤饼用二氯甲烷(40毫升×3次)洗涤,滤饼干燥后得到化合物27D。 1H NMR(400MHz,DMSO-d 6)δ=8.44(d,J=7.3Hz,1H),7.78(d,J=1.6Hz,1H),6.87(dd,J=2.3,7.3Hz,1H),6.76(s,2H),6.48-6.28(m,2H)。。
化合物27E:
Figure PCTCN2020073842-appb-000325
在0摄氏度向化合物27D(8克,19.40毫摩尔)的甲醇(70毫升)溶液中加入碳酸钾(5.38克,38.90毫摩尔),混合物于25摄氏度搅拌2小时后减压浓缩至干,向残余物中加水(40毫升)后用二氯甲烷:甲醇=10:1(50毫升×4次)萃取,合并有机相用硫酸钠干燥,过滤后减压浓缩至干,得到化合物27E。 1H NMR(400MHz,DMSO-d 6)δ=8.21(d,J=7.3Hz,1H),7.53(d,J=1.8Hz,1H),6.60(dd,J=2.3,7.2Hz,1H),5.63(s,1H),5.44(s,2H);LCMS(ESI)m/z:212.0[M+1]。
化合物27F:
Figure PCTCN2020073842-appb-000326
在25摄氏度向化合物27E(8克,19.40毫摩尔)的二氧六环(45毫升)溶液中加入DMAP(260毫克, 2.13毫摩尔)和Boc 2O(5.42克,24.83毫摩尔),混合物于25摄氏度搅拌0.5小时,反应液用水(40毫升)稀释后用二氯甲烷(70毫升×2次)萃取,合并有机相减压浓缩至干,残余物经柱层析纯化(石油醚:乙酸乙酯=50:1-10:1洗脱),得到化合物27F。 1H NMR(400MHz,DMSO-d 6)δ=10.13(br s,1H),8.44(d,J=7.3Hz,1H),7.85(d,J=1.8Hz,1H),6.87(dd,J=2.1,7.3Hz,1H),6.62(s,1H),1.48(s,9H);LCMS(ESI)m/z:314.2[M+3]。
化合物27G:
Figure PCTCN2020073842-appb-000327
将DMF(329毫克,4.50毫摩尔,0.35毫升)加入到四氢呋喃(10毫升)中,冷却到0摄氏度,氮气保护下缓慢滴加三氯氧磷(1.03克,6.71毫摩尔,0.62毫升),反应液在0摄氏度搅拌0.5小时。然后将化合物27F(0.7克,2.24毫摩尔)溶于四氢呋喃(2毫升),在0摄氏度下滴加到反应液中,加完后在40摄氏度搅拌0.5小时。向反应液中加入饱和碳酸氢钠水溶液(15毫升)后用二氯甲烷(20毫升×2)萃取。合并有机相,用无水硫酸钠干燥,过滤浓缩至干,残余物经柱层析纯化(石油醚:二氯甲烷=10:1-1:1洗脱),得到化合物27G。 1H NMR(400MHz,DMSO-d 6)δ=9.95(s,1H),9.91(s,1H),8.68(d,J=7.2Hz,1H),8.30-8.21(m,1H),7.30(dd,J=2.3,7.2Hz,1H),1.43(s,9H)。
化合物27H:
Figure PCTCN2020073842-appb-000328
根据化合物6D的方法制备,将化合物6C替换为化合物27G,得到化合物27H。 1H NMR(400MHz,DMSO-d 6)δ=9.67(s,1H),8.65(d,J=7.2Hz,1H),8.38-8.28(m,1H),7.70(d,J=16.3Hz,1H),7.22-7.16(m,1H),6.34(d,J=16.3Hz,1H),4.17(q,J=7.1Hz,2H),1.45(s,9H),1.20(t,J=7.1Hz,3H)。
化合物27I:
Figure PCTCN2020073842-appb-000329
根据化合物6G的盐酸盐的方法制备,将化合物6F替换为化合物27H,得到化合物27I。 1H NMR(400MHz,DMSO-d 6)δ=12.11(br s,1H),8.73(d,J=7.3Hz,1H),8.44(d,J=1.5Hz,1H),8.13(d,J=9.4Hz,1H),7.23(dd,J=1.9,7.2Hz,1H),6.16(d,J=9.4Hz,1H);LCMS(ESI)m/z:266.1[M+3]。
化合物27J:
Figure PCTCN2020073842-appb-000330
根据化合物6F的方法制备,将化合物6D替换为化合物27I,得到化合物27J。 1H NMR(400MHz,DMSO-d 6)δ=8.81(d,J=7.4Hz,1H),8.61(s,2H),8.52(d,J=1.6Hz,1H),8.28-8.22(m,2H),8.20-8.14(m,1H),7.49-7.40(m,2H),7.32-7.23(m,1H),6.37(d,J=9.4Hz,1H),5.43(s,2H),4.05(d,J=6.4Hz,2H),4.02-3.92(m,2H),2.74(brs,2H),1.97(br d,J=3.8Hz,1H),1.76(br d,J=10.8Hz,2H),1.20-1.12(m,2H);LCMS(ESI)m/z:647.4[M+3]。
化合物27K:
Figure PCTCN2020073842-appb-000331
根据化合物6I的方法制备,将化合物6H替换为化合物27J,将薄层硅胶色谱纯化替换为硅胶柱层析纯化(二氯甲烷:甲醇=1:0-50:1洗脱)得到化合物27K。 1H NMR(400MHz,DMSO-d 6)δ=9.48(dd,J=0.8,7.2Hz,1H),9.40(s,1H),9.30(s,2H),9.09(d,J=7.7Hz,1H),8.97-8.92(m,1H),8.72(d,J=9.4Hz,1H),8.47(br s,1H),8.04-8.00(m,1H),7.92(dd,J=1.9,7.2Hz,1H),7.47(d,J=9.4Hz,1H),6.45(s,2H),4.80(d,J=6.3Hz,2H),3.63(br s,2H),2.88(br s,1H),2.71(br d,J=12.8Hz,2H),2.34-2.33(m,9H),2.24-2.13(m,4H);LCMS(ESI)m/z:592.3[M+1]。
化合物27L的三氟乙酸盐:
Figure PCTCN2020073842-appb-000332
根据化合物24C的三氟乙酸盐的方法制备,将化合物11A替换为化合物27K,得到化合物27L的三氟乙酸盐。 1H NMR(400MHz,CD 3OD)δ=8.88(dd,J=0.8,7.2Hz,1H),8.60-8.57(m,1H),8.53(s,2H),8.39(s,1H),8.26(d,J=9.3Hz,1H),8.21(d,J=8.0Hz,1H),7.56(s,1H),7.45-7.39(m,1H),7.31(dd,J=1.8,7.2Hz,1H),6.55(d,J=9.4Hz,1H),5.61(s,2H),4.11(d,J=5.9Hz,2H),3.48(br d,J=12.4Hz,2H),3.13-3.02(m,2H),2.32-2.19(m,1H),2.13(br d,J=13.9Hz,2H),1.70-1.58(m,2H);LCMS(ESI)m/z:492.4[M+1]。
化合物27的盐酸盐:
Figure PCTCN2020073842-appb-000333
根据化合物24的盐酸盐的方法制备,将化合物24C的三氟乙酸盐替换为化合物27L的三氟乙酸盐,得到化合物27的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.02(br s,1H),9.04(d,J=7.0Hz,1H),8.87(s,1H),8.69-8.58(m,2H),8.36-8.23(m,2H),8.17(br s,1H),7.46-7.33(m,3H),6.50(d,J=9.4Hz,1H),5.47(s,2H),4.08(br d,J=6.0Hz,2H),3.47-3.45(m,2H),3.03-2.89(m,2H),2.78-2.60(m,3H),2.12-1.93(m,3H),1.69-1.50(m,2H);LCMS(ESI)m/z:506.4[M+1]。
实施例28
Figure PCTCN2020073842-appb-000334
化合物28A:
Figure PCTCN2020073842-appb-000335
向6-羟基-2-氮杂螺[3.3]庚烷-2-羧酸叔丁酯(1.18克,5.53毫摩尔)和DMAP(180毫克,1.47毫摩尔)在二氯甲烷(20毫升)的混合物中,加入三乙胺(1.2毫升,8.62毫摩尔),将混合物冷却至0摄氏度,在0摄氏度向反应液中加入对甲苯磺酰氯(1.27克,6.64毫摩尔),加完后将反应液升至25摄氏度并于25摄氏度搅拌1小时,向反应液中加入乙酸乙酯(80毫升),将混合物依次用盐酸水溶液(0.5摩尔/升,60毫升×2次),饱和碳酸氢钠水溶液(50毫升×2次),盐水(50毫升×2次)洗涤后,用硫酸钠干燥,过滤后滤液浓缩,得到化合物28A。 1H NMR(400MHz,CDCl 3)δ=7.76(d,J=8.3Hz,2H),7.34(d,J=8.1Hz,2H),4.77-4.58(m,1H),3.84(d,J=1.2Hz,4H),2.51-2.43(m,5H),2.35-2.24(m,2H),1.40(s,9H)。LCMS(ESI)m/z:312.1[M-55]。
化合物28B:
Figure PCTCN2020073842-appb-000336
根据化合物1H的方法制备,将化合物1G替换为化合物28A,得到化合物28B。LCMS(ESI)m/z:270.3[M-55]。化合物28C:
Figure PCTCN2020073842-appb-000337
根据化合物1I的方法制备,将化合物1H替换为化合物28B,纯化方法替换为硅胶柱层析纯化(石油醚:乙酸乙酯=5:1-2:1洗脱),得到化合物28C。 1H NMR(400MHz,CDCl 3)δ=8.35(s,2H),8.33(s,1H),8.29-8.22(m,1H),7.49-7.44(m,2H),4.78(br s,2H),4.72-4.61(m,1H),3.99(s,2H),3.96(s,2H),2.84-2.71(m,2H),2.46-2.34(m,2H),1.44(s,9H);LCMS(ESI)m/z:398.2[M+1]。
化合物28D:
Figure PCTCN2020073842-appb-000338
根据化合物6E的方法制备,将化合物1I替换为化合物28C,得到化合物28D。 1H NMR(400MHz,CDCl 3)δ=8.38(s,1H),8.37(s,2H),8.34-8.27(m,1H),7.53-7.43(m,2H),4.76-4.63(m,3H),4.01(s,2H),3.97(s,2H),2.86-2.72(m,2H),2.50-2.36(m,2H),1.45(s,9H);LCMS(ESI)m/z:416.2[M+1]。
化合物28E:
Figure PCTCN2020073842-appb-000339
根据化合物6F的方法制备,将化合物6D替换为化合物9C1,将化合物6E替换为化合物28D,得到化合物28E。 1H NMR(400MHz,CDCl 3)δ=8.56(s,1H),8.33(s,2H),8.23(d,J=7.6Hz,1H),7.97(d,J=7.6Hz,1H),7.68-7.62(m,2H),7.58(d,J=8.6 Hz,1H),7.50-7.44(m,1H),7.41(t,J=7.8Hz,1H),6.23(d,J=7.8Hz,1H),5.57(s,2H),4.68(quin,J=6.7Hz,1H),4.00(s,2H),3.96(s,2H),2.77(ddd,J=3.1,7.0,10.5Hz,2H),2.44-2.35(m,2H),1.45(s,9H);LCMS(ESI)m/z:645.3[M+3]。
化合物28F:
Figure PCTCN2020073842-appb-000340
根据化合物6I的方法制备,将化合物6H替换为化合物28E,将薄层硅胶色谱纯化替换为硅胶柱层析纯化(石油醚:乙酸乙酯=3:1-1:1洗脱)得到化合物28F。LCMS(ESI)m/z:590.2[M+1]。
化合物28G:
Figure PCTCN2020073842-appb-000341
根据化合物5J的方法制备,将化合物5I替换为化合物28F,得到化合物28G。LCMS(ESI)m/z:490.1[M+1]。化合物28的盐酸盐:
Figure PCTCN2020073842-appb-000342
根据化合物1的方法制备,将化合物1L替换为化合物28G,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(盐酸体系),得到化合物28的盐酸盐。 1H NMR(400MHz,CD 3OD)δ=8.76(d,J=7.9Hz,1H),8.42(s,2H),8.40(s,1H),8.32(s,1H),8.27-8.21(m,1H),7.80-7.76(m,1H),7.75-7.71(m,1H),7.64-7.59(m,1H),7.49-7.42(m,1H),6.38(d,J=7.9Hz,1H),5.59(s,2H),4.13(s,1H),3.37(s,4H),2.93(s,3H),2.92-2.87(m,2H),2.58-2.45(m,2H);LCMS(ESI)m/z:504.0[M+1]。
实施例29
Figure PCTCN2020073842-appb-000343
化合物29A:
Figure PCTCN2020073842-appb-000344
-78摄氏度氮气保护下,向(5-溴-2-氟-苯基)甲醇(5克,24.39毫摩尔)的四氢呋喃(50毫升)溶液中加入正丁基锂(2.5摩尔/升己烷溶液,21.46毫升,53.65毫摩尔)。将混合物于-78摄氏度搅拌15分钟后,于-78摄氏度加入硼酸三异丙酯(10.09克,53.65毫摩尔),加完后将反应液升温至25摄氏度,在25摄氏度搅拌1小时,于25摄氏度向反应液中加入水(30毫升),混合物用乙酸乙酯(20毫升×2次)萃取,水相用盐酸水溶液(2摩尔/升)调到pH=3后用乙酸乙酯(250毫升×2次)萃取,有机相用硫酸钠干燥,过滤后浓缩,得到化合物29A。 1H NMR(400MHz,DMSO-d 6)δ=7.97-7.90(m,1H),7.75-7.70(m,1H),7.13-7.05(m,1H),4.54(s,2H)。
化合物29B:
Figure PCTCN2020073842-appb-000345
根据化合物1I的方法制备,将化合物3-羟甲基苯硼酸替换为化合物29A,纯化方法替换为硅胶柱层析纯化(石油醚:乙酸乙酯=4:1到二氯甲烷:甲醇=30:1洗脱)后用石油醚:乙酸乙酯=10:1混合溶剂打浆,得到化合物29B。 1H NMR(400MHz,CDCl 3)δ=8.50-8.40(m,3H),8.35-8.23(m,1H),7.20-7.07(m,1H),4.90-4.80(m,2H),4.18(br s,2H),3.98-3.90(m,2H),2.85-2.65(m,2H),1.97-2.02(m,1H),1.88-1.77(m,2H),1.44(s,9H),1.40-1.23(m,2H),;LCMS(ESI)m/z:418.1[M+1]。
化合物29C:
Figure PCTCN2020073842-appb-000346
根据化合物6E的方法制备,将化合物1I替换为化合物29B,得到化合物29C。 1H NMR(400MHz,CDCl 3)δ=8.49-8.42(m,3H),8.39-8.27(m,1H),7.20-7.14(m,1H),4.70(s,2H),4.19(br s,2H),3.96(d,J=6.4Hz,2H),2.73(br t,J=12.2Hz,2H),2.10-1.98(m,1H),1.80(br d,J=12.6Hz,2H),1.48(s,9H),1.38-1.20(m,2H);LCMS(ESI)m/z:380.2[M-55]。
化合物29D:
Figure PCTCN2020073842-appb-000347
根据化合物6F的方法制备,将化合物6D替换为化合物9C1,将化合物6E替换为化合物29C,得到化合物29D。 1H NMR(400MHz,DMSO-d 6)δppm8.92(d,J=7.82Hz,1H)8.54(s,2H)8.31(d,J=1.71Hz,1H)8.26-8.17(m,1H)8.08(dd,J=7.46,2.08Hz,1H)7.56-7.53(m,1H)7.46(dd,J=8.56,1.96Hz,1H)7.35(dd,J=9.78,8.80Hz,1H)6.40(d,J=7.83Hz,1H)5.46(s,2H)4.02-3.98(m,2H)3.94(d,J=10.88Hz,2H)2.75-2.66(m,2H)1.96-1.85(m,1H)1.76-1.67(m,2H)1.38(s,9H)1.18-1.09(m,2H);LCMS(ESI)m/z:664.9[M+3]。
化合物29E:
Figure PCTCN2020073842-appb-000348
根据化合物6I的方法制备,将化合物6H替换为化合物29D,将薄层硅胶色谱纯化替换为硅胶柱层析纯化(石油醚:乙酸乙酯=10:1-2:1,二氯甲烷:甲醇=80:1洗脱),得到化合物29E。 1H NMR(400MHz,DMSO-d 6)δppm8.96(d,J=7.83Hz,1H)8.59-8.53(m,3H)8.33-8.20(m,1H)8.13(dd,J=7.46,2.08Hz,1H)7.78-7.70(m,2H)7.44-7.33(m,1H)6.51(d,J=7.70Hz,1H)5.49(s,2H)4.01(d,J=6.48Hz,2H)3.96(d,J=11.25Hz,2H)2.82-2.65(m,2H)1.99-1.87(m,1H)1.78-1.68(m,2H)1.39(s,9H)1.20-1.07(m,2H);LCMS(ESI)m/z:554.9[M-55]。
化合物29F:
Figure PCTCN2020073842-appb-000349
根据化合物5J的方法制备,将化合物5I替换为化合物29E,得到化合物29F。 1H NMR(400MHz,DMSO-d 6)δppm8.96(d,J=7.88Hz,1H)8.61-8.54(m,3H)8.27-8.20(m,1H)8.13(dd,J=7.38,2.13Hz,1H)7.80-7.74(m,2H)7.39-7.31(m,1H)6.50(d,J=7.75Hz,1H)5.49(s,2H)3.97(d,J=6.50Hz,2H)2.98(d,J=11.88Hz,2H)1.95-1.78(m,1H)1.69(d,J=10.88Hz,2H)1.22-1.10(m,4H);LCMS(ESI)m/z:510.4[M+1]。化合物29的盐酸盐:
Figure PCTCN2020073842-appb-000350
根据化合物1的方法制备,将化合物1L替换为化合物29F,将甲醛水溶液替换为乙醛水溶液,将高效液相色谱制备分离(甲酸体系)得到的混合物用饱和碳酸氢钠水溶液调节pH到8后用二氯甲烷:甲醇=10:1(20毫升×3次)萃取,合并有机相减压浓缩得到化合物29。向化合物29(360毫克)中加水(30毫升)和乙腈(6毫升)后,再加入盐酸水溶液(1摩尔/升,0.8毫升)后在25摄氏度搅拌0.5小时,混合物经冷冻干燥,得到化合物29的盐酸盐。 1H NMR(400MHz,CD 3OD)δppm8.78(d,J=7.83Hz,1H)8.44(s,2H)8.31(s,1H)8.30-8.25(m,1H)8.12(dd,J=7.40,2.02Hz,1H)7.75-7.67(m,2H)7.25(dd,J=9.72,8.86Hz,1H)6.39(d,J=7.82Hz,1H)5.62(s,2H)4.06(d,J=5.62Hz,2H)3.63(d,J=12.59Hz,2H)3.19(q,J=7.42Hz,2H)3.08-2.92(m,2H)2.24-2.08(m,3H)1.75-1.61(m,2H)1.36(t,J=7.34Hz,3H);LCMS(ESI)m/z:538.5[M+1]。
实施例30
Figure PCTCN2020073842-appb-000351
向化合物24C的三氟乙酸盐(100毫克,165.13微摩尔,三氟乙酸盐)和2-溴乙醇(32毫克,256.07微摩尔)在DMF(3毫升)的混合物中,加入碳酸钾(70毫克,506.49微摩尔)。将反应液于80摄氏度搅拌0.5小时后冷却至室温过滤,滤液浓缩至干,残余物经高效液相色谱(三氟乙酸体系)分离,得到的混合物用饱和碳酸氢钠水溶液调节pH到8后用二氯甲烷:甲醇=10:1(20毫升×3次)萃取,合并有机相后,用无水硫酸钠干燥后减压浓缩得到化合物30,向化合物30中依次加入水(5毫升)、乙腈(10毫升)和盐酸水溶液(1摩尔/升,0.13毫升)后在25摄氏度搅拌15分钟,混合物经减压浓缩,得到化合物30的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.60(br s,1H),8.94(d,J=7.7Hz,1H),8.71-8.62(m,2H),8.60-8.55(m,1H),8.58(s,1H),8.36(s,1H),8.20(d,J=7.7Hz,1H),7.84-7.71(m,2H),7.55-7.49(m,1H),7.48-7.41(m,1H),6.47(d,J=7.8Hz,1H),5.47(s,2H),4.09(d,J=6.1Hz,2H),3.85-3.72(m,2H),3.57(br d,J=11.5Hz,2H),3.14(br d,J=4.8Hz,2H),3.07-2.93(m,2H),2.08(br s,1H),1.98(br d,J=13.4Hz,2H),1.77-1.58(m,2H);LCMS(ESI)m/z:536.3[M+1]。
实施例31
Figure PCTCN2020073842-appb-000352
化合物31A:
Figure PCTCN2020073842-appb-000353
向化合物24C(40毫克,81.38微摩尔)和2-氯乙醛(16毫克,81.38微摩尔)的二氯甲烷(5毫升)和甲醇(0.5毫升)的混合物中依次加入NaBH(OAc) 3(26毫克,122.06微摩尔)和醋酸(5毫克,81.38微摩尔)。将反应液于25摄氏度搅拌2小时,反应液用碳酸氢钠水溶液调节到pH到9,用二氯甲烷:甲醇=10:1(20毫升×3次)萃取,合并有机相用硫酸钠干燥,过滤后浓缩至干。残余物经薄层硅胶色谱纯化(二氯甲烷:甲醇=10:1)分离,得到化合物31A。LCMS(ESI)m/z:554.3[M+1]。
化合物31:
Figure PCTCN2020073842-appb-000354
向化合物31A(10毫克,18.05微摩尔)在乙醇(2毫升)的混合物中,加入二甲胺的四氢呋喃溶液(2摩尔/升,0.1毫升,0.2毫摩尔)。将反应液于闷罐中90摄氏度搅拌1小时后冷却至室温,浓缩至干,所得粗品经高效液相色谱制备分离(甲酸体系)分离,得到的混合物用饱和碳酸氢钠水溶液调节pH到8后用二氯甲烷:甲醇=10:1(20毫升×3次)萃取,合并有机相,用无水硫酸钠干燥后减压浓缩得到化合物31。LCMS(ESI)m/z:563.4[M+1]。
实施例32
Figure PCTCN2020073842-appb-000355
根据化合物1的方法制备,将化合物1L替换为8-氧代-9-(3-(5-(哌啶-4-基甲氧基)嘧啶-2-基)苄基)-8,9-二氢吡啶[2',3':4,5]咪唑[1,2-a]嘧啶-3-腈,将高效液相色谱制备分离(甲酸体系)替换为高效液相色谱制备分离(三氟乙酸体系),得到的混合物加入饱和碳酸氢钠水溶液(30毫升)后用2摩尔/升的氢氧化钠水溶液调节pH到10后用二氯甲烷(30毫升×3次)萃取,合并有机相减压浓缩得到化合物32。向得到的化合物32中加水(10毫升)后,用盐酸水溶液(3摩尔/升)调节pH到2后,混合物经冷冻干燥,得到化合物32的盐酸盐。 1H NMR(400MHz,CD 3OD)δ=8.69(d,J=7.9Hz,1H),8.66(d,J=1.8Hz,1H),8.54(s,2H),8.41(s,1H),8.35(d,J=1.8Hz,1H),8.23(d,J=7.9Hz,1H),7.63(d,J=7.5Hz,1H),7.44(t,J=7.8Hz,1H),6.44(d,J=7.8Hz,1H),5.56(s,2H),4.32-4.06(m,2H),3.65-3.55(m,2H),3.17-3.03(m,2H),2.91(s,3H),2.28-2.12(m,3H),1.79-1.65(m,2H);LCMS(ESI)m/z:507.1[M+1]。
实施例33
Figure PCTCN2020073842-appb-000356
化合物33A:
Figure PCTCN2020073842-appb-000357
向化合物3-溴-9-(3-(5-(哌啶-4-基甲氧基)嘧啶-2-基)苄基)吡啶[2',3':4,5]咪唑[1,2-a]嘧啶-8(9H)-酮的三氟乙酸盐(70毫克,128.11微摩尔,三氟乙酸盐)在DMF(2毫升)中的混合物中,依次加入碳酸钾(50毫克,361.77微摩尔)和2-碘丙烷(80毫克,470.61微摩尔)。将反应液于100摄氏度搅拌1小时后冷却至室温,浓缩至干,得到化合物33A的粗品。LCMS(ESI)m/z:590.2[M+3]。
化合物33的盐酸盐:
Figure PCTCN2020073842-appb-000358
将化合物33A(75毫克,127.44微摩尔)和氰化锌(75毫克,638.71微摩尔)加入到DMF(2毫升)中,再加入锌粉(30毫克,458.79微摩尔),dppf(35毫克,63.13微摩尔)和Pd 2(dba) 3(30毫克,32.76微摩尔)。反应体系在110摄氏度加热搅拌2小时。将反应体系用饱和碳酸氢钠水溶液(30毫升)稀释后用二氯甲烷(20毫升×3)萃取。合并有机相,用无水硫酸钠干燥,浓缩,通过薄层硅胶色谱纯化(二氯甲烷:甲醇=7:1)后再用高效液相色谱制备分离(三氟乙酸体系),得到的混合物加入饱和碳酸氢钠水溶液(30毫升)后用2摩尔/升的氢氧化钠水溶液调节pH到10后用二氯甲烷(30毫升×3次)萃取,合并有机相减压浓缩得到化合物33。向化合物33中加水(10毫升)后,用盐酸水溶液(3摩尔/升)调节pH到2后,混合物经冷冻干燥,得到化合物33的盐酸盐。 1H NMR(400MHz,CD 3OD)δ=8.70(d,J=7.8Hz,1H),8.67(d,J=1.8Hz,1H),8.54(s,2H),8.43(s,1H),8.37(d,J=1.8Hz,1H),8.25(d,J=7.9Hz,1H),7.64(d,J=7.5Hz,1H),7.49-7.42(m,1H),6.45(d,J=7.8Hz,1H),5.58(s,2H),4.13(d,J=5.6Hz,2H),3.57-3.53(m,2H),3.18-3.09(m,2H),2.21(br d,J=13.1Hz,3H),1.73(br dd,J=1.9,13.9Hz,3H),1.40(d,J=6.8Hz,6H);LCMS(ESI)m/z:535.2[M+1]。
实施例34
Figure PCTCN2020073842-appb-000359
Figure PCTCN2020073842-appb-000360
化合物34A:
Figure PCTCN2020073842-appb-000361
氮气保护下,向2-氯-5-羟基嘧啶(3克,22.98毫摩尔)和1-氧杂-6-氮杂螺[2.5]辛烷-6-羧酸叔丁酯(8.82克,41.37毫摩尔)的DMF(50毫升)溶液中加入碳酸钾(6.36克,46.01毫摩尔)。将混合物于70~80摄氏度搅拌12小时后,将反应液冷却至25摄氏度后,于25摄氏度向反应液中加入乙酸乙酯(80毫升)后过滤,滤液用饱和氯化铵水溶液(50毫升×1次)洗涤,水相用乙酸乙酯(50毫升×2次)萃取。合并的有机相用硫酸钠干燥,过滤后浓缩,残余物经硅胶柱纯化(石油醚:乙酸乙酯=5:1),得到化合物34A。 1H NMR(400MHz,DMSO-d 6)δ=8.56(s,2H),3.99(s,2H),3.78-3.66(m,2H),3.18-3.00(m,2H),1.59-1.50(m,4H),1.41(s,9H).LCMS(ESI)m/z:344.2[M+1]。
化合物34B:
Figure PCTCN2020073842-appb-000362
将化合物34A(1克,2.91毫摩尔)和3-羟甲基苯硼酸频那醇酯(820毫克,3.50毫摩尔)溶于20毫升乙二醇二 甲醚中,加入Pd(PPh 3) 4(170毫克,147.11微摩尔),碳酸钠(33克,311.35毫摩尔)和水(5毫升)。混合液在70~80摄氏度氮气保护环境下搅拌反应2小时,将反应液用乙酸乙酯(40毫升)稀释后用饱和食盐水(10毫升×1次)洗涤。有机相用无水硫酸钠干燥后浓缩,残渣通过硅胶柱纯化(石油醚:乙酸乙酯:二氯甲烷=10:1:1),得到化合物34B。 1H NMR(400MHz,CDCl 3)δ=8.50(s,2H),8.37(s,1H),8.32-8.28(m,1H),7.52-7.48(m,2H),4.82(s,2H),3.97(m,4H),3.31-3.18(m,2H),1.82-1.75(m,2H),1.70(m,2H),1.50(s,9H).
LCMS(ESI)m/z:416.2[M+1]。
化合物34C:
Figure PCTCN2020073842-appb-000363
根据化合物6E的方法制备,将化合物1I替换为化合物34B,得到化合物34C。 1H NMR(400MHz,CDCl 3)δ=8.43(s,2H),8.32(s,1H),8.27-8.22(m,1H),7.44-7.39(m,2H),4.61(s,2H),3.89(m,4H),3.22-3.10(m,2H),1.74-1.67(m,2H),1.62(m,2H),1.41(s,9H).LCMS(ESI)m/z:434.2[M+1]。
化合物34D:
Figure PCTCN2020073842-appb-000364
根据化合物6F的方法制备,将化合物6D替换为化合物9C1,将化合物6E替换为化合物34C,得到化合物34D。 1H NMR(400MHz,DMSO-d 6)δ=8.90(d,J=7.8Hz,1H),8.64(s,2H),8.37-8.30(m,2H),8.20(d,J=7.8Hz,1H),7.58(d,J=8.6Hz,1H),7.56-7.48(m,2H),7.47-7.42(m,1H),6.37(d,J=7.8Hz,1H),5.44(s,2H),4.01(s,2H),3.79-3.69(m,2H),3.18-3.01(m,2H),1.57(br dd,J=3.9,6.8Hz,4H),1.41(s,9H);LCMS(ESI)m/z:663.0[M+3]。
化合物34E:
Figure PCTCN2020073842-appb-000365
将化合物34D(0.2克,302.32微摩尔)和氰化锌(178毫克,1.52毫摩尔)加入到DMF(5毫升)中,再加入锌粉(40毫克,611.71微摩尔),dppf(67毫克,120.86微摩尔)和Pd 2(dba) 3(56毫克,61.15微摩尔)。反应体系在90~100摄氏度加热搅拌12小时。将反应体系用二氯甲烷(10毫升)稀释然后过滤,滤液用饱和氯化钠水溶液洗涤(5毫升×1),水相用二氯甲烷萃取(5毫升×2)。合并有机相,用无水硫酸钠干燥,浓缩。向残余物中加入二氯甲烷(2毫升)后过滤,滤饼用乙酸乙酯洗涤(1毫升×2)后干燥,得到化合物34E。 1HNMR(400MHz,DMSO-d 6)δ=8.93(d,J=7.8 Hz,1H),8.64(s,2H),8.58(s,1H),8.37(s,1H),8.20(d,J=7.6Hz,1H),7.80-7.74(m,2H),7.54-7.49(m,1H),7.47-7.41(m,1H),6.47(d,J=7.6Hz,1H),5.47(s,2H),4.88(s,1H),4.01(s,2H),3.79-3.67(m,2H),3.18-3.04(m,2H),1.57(m,4H),1.41(s,9H);LCMS(ESI)m/z:608.2[M+1]。
化合物34F:
Figure PCTCN2020073842-appb-000366
根据化合物5J的方法制备,将化合物5I替换为化合物34E,得到化合物34F。LCMS(ESI)m/z:508.2[M+1]。化合物34的盐酸盐:
Figure PCTCN2020073842-appb-000367
根据化合物1的方法制备,将化合物1L替换为化合物34F,将高效液相色谱制备分离(甲酸体系)得到的混合物浓缩后,加入饱和碳酸氢钠水溶液(30毫升),用2摩尔/升的氢氧化钠水溶液调节pH到10后用二 氯甲烷(20毫升×3次)萃取,合并有机相减压浓缩得到化合物34。向化合物34中加水(30毫升)和乙腈(6毫升)后,再加入盐酸水溶液(1摩尔/升,1毫升)后在25摄氏度搅拌0.5小时,混合物经冷冻干燥,得到化合物34的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.33(br s,1H),8.95(d,J=7.8Hz,1H),8.70-8.64(m,2H),8.59(s,1H),8.37(s,1H),8.20(d,J=7.6Hz,1H),7.81-7.72(m,2H),7.55-7.50(m,1H),7.48-7.42(m,1H),6.46(d,J=7.6Hz,1H),5.47(s,2H),4.07(s,2H),3.35-3.29(m,2H),3.22-3.10(m,2H),2.76(d,J=4.9Hz,3H),1.99(dt,J=4.3,13.8Hz,2H),1.83(m,2H);LCMS(ESI)m/z:522.2[M+1]。
实施例35
Figure PCTCN2020073842-appb-000368
根据化合物30的方法制备,将化合物2-溴乙醇替换为1-溴-2-甲氧基乙烷,得到化合物35的盐酸盐。 1H NMR(400MHz,CD 3OD)δ=8.74(d,J=7.8Hz,1H),8.58-8.49(m,2H),8.39(s,1H),8.30(d,J=0.9Hz,1H),8.23(d,J=7.8Hz,1H),7.78-7.74(m,1H),7.73-7.69(m,1H),7.61(d,J=7.8Hz,1H),7.45(t,J=7.7Hz,1H),6.38(d,J=7.8Hz,1H),5.58(s,2H),4.16-4.07(m,2H),3.79-3.75(m,2H),3.70(br d,J=12.5Hz,2H),3.44(s,3H),3.38-3.36(m,2H),3.14-3.05(m,2H),2.29-2.11(m,3H),1.88-1.66(m,2H);LCMS(ESI)m/z:550.2[M+1]。
实施例36
Figure PCTCN2020073842-appb-000369
Figure PCTCN2020073842-appb-000370
化合物36A:
Figure PCTCN2020073842-appb-000371
向化合物34A(3克,22.98毫摩尔)的四氢呋喃(20毫升)溶液中加入氢化钠(465毫克,11.63毫摩尔,60%纯度)。将混合物于0摄氏度搅拌1小时后,加入碘甲烷(3.30克,23.27毫摩尔)后,将混合物于25摄氏度搅拌16小时。向反应液中加入水(50毫升)后用乙酸乙酯(300毫升×2次)后萃取,合并的有机相用硫酸钠干燥,过滤后浓缩,残余物经硅胶柱纯化(石油醚:乙酸乙酯=3:1,加入10%二氯甲烷),得到化合物36A。 1H NMR(400MHz,CDCl 3)δ=8.33(s,2H),3.96(s,2H),3.94-3.78(m,2H),3.30(s,3H),3.12(s,2H),1.92(d,J=12.5Hz,2H),1.65-1.52(m,2H),1.47(s,9H);LCMS(ESI)m/z:358.1[M+1]。
化合物36B:
Figure PCTCN2020073842-appb-000372
根据化合物1I的方法制备,将化合物1H替换为化合物36A,得到化合物36B。 1H NMR(400MHz,CDCl 3) δ=8.50(s,2H),8.35(s,1H),8.28(dt,J=1.7,4.5Hz,1H),7.48(d,J=5.1Hz,2H),4.80(s,2H),4.01(s,2H),3.96-3.78(m,2H),3.39-3.31(m,3H),3.25-3.01(m,2H),1.99-1.86(m,2H),1.72-1.56(m,2H),1.48(s,9H);LCMS(ESI)m/z:430.2[M+1]。
化合物36C:
Figure PCTCN2020073842-appb-000373
根据化合物6E的方法制备,将化合物1I替换为化合物36B,得到化合物36C。 1H NMR(400MHz,CDCl 3)δ=8.51(s,2H),8.42-8.38(m,1H),8.35-8.28(m,1H),7.51-7.47(m,2H),4.69(s,2H),4.02(s,2H),3.97-3.80(m,2H),3.34(s,3H),3.22-3.06(m,2H),1.95(d,J=12.6Hz,2H),1.65-1.58(m,2H),1.48(s,9H);LCMS(ESI)m/z:448.2[M+1]。
化合物36D:
Figure PCTCN2020073842-appb-000374
根据化合物6F的方法制备,将化合物6D替换为化合物9C1,将化合6E替换为化合物36C,得到化合物36D。 1H NMR(400MHz,CDCl 3)δ=8.58(s,1H),8.49-8.45(m,2H),8.24(d,J=7.8Hz,1H),7.97(d,J=7.8Hz,1H),7.66-7.61(m,2H),7.57(d,J=8.6Hz,1H),7.48-7.37(m,2H),6.22(d,J=7.8Hz,1H),5.57(s,2H),3.99(s,2H),3.95-3.79(m,2H),3.32(s,3H),3.13(d,J=5.3Hz,2H),1.93(d,J=13.1Hz,2H),1.66-1.54(m,2H),1.45(s,9H);LCMS(ESI)m/z:675.2[M+1]。
化合物36E:
Figure PCTCN2020073842-appb-000375
根据化合物6I的方法制备,将化合物6H替换为化合物36D,得到化合物36E。 1H NMR(400MHz,CDCl 3)δ=8.60(s,1H),8.49(s,2H),8.27(d,J=7.7Hz,1H),8.06(d,J=7.7Hz,1H),7.85-7.78(m,2H),7.66(t,J=6.5Hz,2H),7.42(t,J=7.8Hz,1H),6.34(d,J=7.7Hz,1H),5.60(s,2H),4.01(s,2H),3.97-3.82(m,2H),3.33(s,3H),3.24-3.07(m,2H),2.00-1.89(m,2H),1.67-1.62(m,1H),1.59-1.55(m,1H),1.48(s,9H);LCMS(ESI)m/z:622.4[M+1]。
化合物36F:
Figure PCTCN2020073842-appb-000376
根据化合物5J的方法制备,将化合物5I替换为化合物36E,得到化合物36F。 1H NMR(400MHz,DMSO-d 6)δ=8.91(d,J=7.8Hz,1H),8.69-8.65(m,2H),8.56(s,1H),8.36(s,1H),8.19(d,J=7.7Hz,1H),7.79-7.74(m,1H),7.79-7.72(m,1H),7.52(s,1H),7.48-7.41(m,1H),6.46(d,J=7.8Hz,1H),5.46(s,2H),4.15(s,2H),3.17(s,3H),2.84-2.74(m,4H),1.77(d,J=13.2Hz,2H),1.63-1.49(m,2H);LCMS(ESI)m/z:522.2[M+1]。化合物36的盐酸盐:
Figure PCTCN2020073842-appb-000377
根据化合物1的方法制备,将化合物1L替换为化合物36F,将高效液相色谱制备分离(甲酸体系)得到的混 合物浓缩后,加入饱和碳酸氢钠水溶液(30毫升),用2摩尔/升的氢氧化钠水溶液调节pH到10后用二氯甲烷(20毫升×3次)萃取,合并有机相减压浓缩得到化合物36。向化合物36中加水(30毫升)和乙腈(10毫升)后,再加入盐酸水溶液(1摩尔/升,0.2毫升)后在25摄氏度搅拌0.5小时,混合物经冷冻干燥,得到化合物36的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.71(s,1H),8.92(d,J=7.8Hz,1H),8.71-8.63(m,2H),8.57(s,1H),8.39-8.33(m,1H),8.19(d,J=7.7Hz,1H),7.77-7.73(m,2H),7.55-7.48(m,1H),7.46-7.41(m,1H),6.46(d,J=7.8Hz,1H),5.52-5.38(m,2H),4.21(s,2H),3.24-3.19(m,5H),3.06-3.02(m,2H),2.81-2.78(m,3H),2.10(d,J=13.8Hz,2H),1.88-1.78(m,2H);LCMS(ESI)m/z:536.1[M+1]。
实施例37
Figure PCTCN2020073842-appb-000378
根据化合物30的方法制备,将化合物2-溴乙醇替换为2-碘丙烷,将化合物24C的三氟乙酸盐替换为化合物34F,将纯化方法替换为高效液相色谱制备(甲酸体系),得到化合物37的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.91(d,J=7.8Hz,1H),8.63(s,2H),8.56(s,1H),8.36(s,1H),8.19(d,J=7.8Hz,1H),7.80-7.72(m,2H),7.53-7.48(m,1H),7.46-7.40(m,1H),6.46(d,J=7.8Hz,1H),5.46(s,2H),4.56(s,1H),3.96(s,2H),2.71-2.63(m,1H),2.46(m,4H),1.69-1.60(m,2H),1.60-1.52(m,2H),0.97(d,J=6.5Hz,6H);LCMS(ESI)m/z:550.2[M+1]。
实施例38
Figure PCTCN2020073842-appb-000379
根据化合物30的方法制备,将化合物2-溴乙醇替换为2-碘丙烷,将化合物24C的三氟乙酸盐替换为化合物36F,将纯化方法替换为高效液相色谱制备(甲酸体系),得到化合物38的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.38-9.23(m,1H),8.92(d,J=7.8Hz,1H),8.67(s,2H),8.57(s,1H),8.36(s,1H),8.20(d,J=7.7Hz,1H),7.78-7.74(m,2H),7.52(d,J=7.6Hz,1H),7.47-7.40(m,1H),6.46(d,J=7.8Hz,1H),5.46(s, 2H),4.21(s,2H),3.44-3.41(m,2H),3.22(s,3H),3.06-2.95(m,2H),2.17-2.07(m,2H),1.93-1.86(m,3H),1.32-1.26(d,J=6.4Hz,6H);LCMS(ESI)m/z:564.2[M+1]。
实施例39
Figure PCTCN2020073842-appb-000380
向化合物24C三氟乙酸盐(150毫克,305.16微摩尔,三氟乙酸盐)和2,2-二甲基环氧乙烷(812毫克,11.26毫摩尔)在DMF(2毫升)的混合物中,加入碳酸钾(90毫克,651.21微摩尔)。将反应液于80摄氏度搅拌2小时,然后冷却至室温过滤,收集滤饼浓缩至干,得到化合物39。向化合物39中依次加入水(10毫升)、乙腈(5毫升)和盐酸水溶液(1摩尔/升,0.1毫升)后在25摄氏度搅拌30分钟,混合物经减压浓缩,得到化合物39的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.08(br s,1H),8.94(d,J=7.8Hz,1H),8.70-8.61(m,2H),8.59(s,1H),8.35(s,1H),8.20(d,J=7.8Hz,1H),7.82-7.73(m,2H),7.57-7.49(m,1H),7.49-7.41(m,1H),6.46(d,J=7.8Hz,1H),5.47(s,2H),4.21-4.05(m,2H),3.63(br s,2H),3.35-3.24(m,2H),3.07(br d,J=4.3Hz,2H),2.08(br s,1H),1.97-1.76(m,4H),1.27(s,6H);LCMS(ESI)m/z:564.3[M+1]。
实施例40
Figure PCTCN2020073842-appb-000381
根据化合物30的方法制备,将化合物2-溴乙醇替换为碘甲烷,将化合物24C的三氟乙酸盐替换为化合物39,得到化合物40的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.94(br d,J=7.8Hz,1H),8.66(br s,2H),8.58(br s,1H),8.35(br s,1H),8.20(br d,J=6.6Hz,1H),7.77(br s,2H),7.62-7.34(m,2H),6.46(br d,J=7.6Hz,1H),5.47(br s,2H),4.17(br s,2H),3.95-3.49(m,2H),3.22(br d,J=18.8Hz,4H),2.51-2.30(m,3H),2.12(brs,1H),1.95-1.81(m,4H),1.34(br s,6H);LCMS(ESI)m/z:578.2[M+1]。
实施例41
Figure PCTCN2020073842-appb-000382
根据化合物30的方法制备,将化合物24C的三氟乙酸盐替换为化合物36F,将纯化方法替换为高效液相色谱制备(甲酸体系),得到化合物41的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.72-9.41(m,1H),8.98-8.88(m,1H),8.76-8.64(m,2H),8.57(br d,J=2.8Hz,1H),8.36(br s,1H),8.25-8.15(m,1H),7.86-7.72(m,2H),7.58-7.40(m,2H),6.53-6.40(m,1H),5.46(s,2H),5.40-5.16(m,1H),4.24-4.12(m,4H),3.74(br s,4H),3.08-2.94(m,4H),2.12-1.94(m,4H);LCMS(ESI)m/z:566.3[M+1]。
实施例42
Figure PCTCN2020073842-appb-000383
根据化合物30的方法制备,将化合物2-溴乙醇替换为1-溴-2-(甲砜基)乙烷,得到化合物42的盐酸盐。 1HNMR(400MHz,DMSO-d 6)δ=10.80(br s,1H),8.94(d,J=7.8Hz,1H),8.71-8.62(m,2H),8.58(s,1H),8.36(s,1H),8.20(d,J=7.8Hz,1H),7.80-7.71(m,2H),7.57-7.49(m,1H),7.49-7.40(m,1H),6.46(d,J=7.8Hz,1H),5.47(s,2H),4.09(br d,J=6.0Hz,2H),3.85-3.72(m,2H),3.59(br d,J=11.9Hz,2H),3.53-3.46(m,2H),3.13(s,3H),3.10-2.94(m,2H),2.16-1.92(m,3H),1.81-1.59(m,2H);LCMS(ESI)m/z:598.3[M+1]。
实施例43
Figure PCTCN2020073842-appb-000384
根据化合物30的方法制备,将化合物2-溴乙醇替换为1-溴丙烷,将纯化方法替换为高效液相色谱制备(甲酸体系),得到化合物43的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.58-9.32(m,1H),8.93(d,J=7.8Hz,1H),8.64(s,2H),8.60-8.55(m,1H),8.35(s,1H),8.24-8.16(m,1H),7.81-7.73(m,2H),7.56-7.49(m,1H),7.48-7.39(m,1H),6.47(d,J=7.7Hz,1H),5.49-5.44(m,2H),4.10(d,J=6.0Hz,2H),3.64-3.48(m,2H),3.05-2.80(m,4H),1.99(br d,J=14.3Hz,2H),1.75-1.65(m,3H),1.62-1.56(m,2H),0.92-0.89(m,3H); LCMS(ESI)m/z:534.2[M+1]。
实施例44
Figure PCTCN2020073842-appb-000385
根据化合物30的方法制备,将化合物2-溴乙醇替换为1-碘-2-甲基丙烷,将纯化方法替换为高效液相色谱制备(甲酸体系),得到化合物44的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=8.93(d,J=7.7Hz,1H),8.68-8.63(m,2H),8.58(s,1H),8.38-8.33(m,1H),8.20(d,J=7.5Hz,1H),7.78-7.74(m,2H),7.56-7.49(m,1H),7.48-7.39(m,1H),6.47(d,J=7.7 Hz,1H),5.46(s,2H),4.15-4.05(m,2H),3.69-3.45(m,2H),2.92-2.87(m,2H),2.11-2.04(m,2H),1.98-1.92(m,2H),1.71-1.63(m,2H),1.20-1.11(m,2H),0.97(d,J=6.6Hz,6H);LCMS(ESI)m/z:548.3[M+1]。
实施例45
Figure PCTCN2020073842-appb-000386
根据化合物30的方法制备,将化合物2-溴乙醇替换为溴代环丁烷,将纯化方法替换为高效液相色谱制备(甲酸体系),得到化合物45的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=10.22-9.62(m,1H),9.01-8.90(m,1H),8.68-8.63(m,2H),8.58(s,1H),8.35(s,1H),8.20(br d,J=7.3Hz,1H),7.80-7.73(m,2H),7.52(br d,J=7.5Hz,1H),7.48-7.40(m,1H),6.46(d,J=7.6Hz,1H),5.46(s,2H),4.10(br d,J=5.1Hz,2H),3.63-3.51(m,2H),2.98-2.93(m,1H),2.80-2.73(m,2H),2.31-2.23(m,2H),2.22-2.14(m,2H),2.04-1.97(m,2H),1.67-1.60(m,2H),1.16-1.10(m,3H);LCMS(ESI)m/z:546.3[M+1]。
实施例46
Figure PCTCN2020073842-appb-000387
Figure PCTCN2020073842-appb-000388
化合物46A:
Figure PCTCN2020073842-appb-000389
向N-杂环丁烷-3-羧酸(SM14,3.6克,35.61毫摩尔)的甲醇(72毫升)和丙酮(14.35毫升,195.25毫摩尔)溶液中加入湿钯碳(720毫克,10%含量,含50%水)。氮气置换3次后用氢气置换3次,在20摄氏度氢气(15Psi)氛围下搅拌8小时后,将反应液过滤,滤液浓缩,得到化合物46A。 1H NMR(400MHz,DMSO-d 6)δ=3.50-3.41(m,2H),3.29-3.21(m,2H),3.09-2.97(m,1H),2.43(td,J=6.2,12.4Hz,1H),0.87(d,J=6.2Hz,6H)。
化合物46B:
Figure PCTCN2020073842-appb-000390
在0摄氏度向化合物46A(5.1克,35.62毫摩尔)的四氢呋喃(100毫升)溶液中分批缓慢加入氢化铝锂(2.68克,70.72毫摩尔),加完后在25摄氏度搅拌16小时。向反应液中依次加入水(2.68毫升),15%氢氧化钠水溶液(2.68毫升)和水(8.1毫升)后,在25摄氏度搅拌10分钟后过滤,滤饼用二氯甲烷:甲醇=10:1混合溶剂(50毫升×2次)洗涤,收集滤液用无水硫酸钠干燥后过滤浓缩,得到化合物46B。 1HNMR(400MHz,CDCl 3)δ=3.75(d,J=5.7Hz,2H),3.29(t,J=7.6Hz,2H),2.99(t,J=6.2Hz,2H),2.61-2.48(m,1H),2.34-2.19(m,1H),0.91(d,J=6.2Hz,6H)。
化合物46C:
Figure PCTCN2020073842-appb-000391
在0摄氏度向2-氯-5-羟基嘧啶(3.3克,25.28毫摩尔),化合物46B(3.59克,27.81毫摩尔),三苯基膦(13.26克,50.56毫摩尔)和三乙胺(7.70克,76.05毫摩尔)的四氢呋喃(70毫升)溶液中滴加入偶氮二羧酸二异丙酯(10.24克,50.64毫摩尔),加完后在升温至25摄氏度并在25摄氏度搅拌4小时。向反 应液中加入水(50毫升)后用乙酸乙酯(50毫升×2次)萃取,合并有机层用无水硫酸钠干燥后过滤浓缩,残余物经柱层析(石油醚:乙酸乙酯=1:1到纯二氯甲烷再到二氯甲烷:甲醇=10:1并添加1%氨水)纯化,得到化合物46C。 1H NMR(400MHz,CDCl 3)δ=8.28(s,2H),4.26-4.14(m,2H),3.39(t,J=7.7Hz,2H),3.10-3.03(m,2H),2.90-2.80(m,1H),2.33(spt,J=6.2Hz,1H),0.93(d,J=6.3Hz,6H)。
化合物46D:
Figure PCTCN2020073842-appb-000392
根据化合物1I的方法制备,将化合物1H替换为化合物46C,得到化合物46D。 1H NMR(400MHz,CDCl 3)δ=8.44(s,2H),8.34(s,1H),8.26(br s,1H),7.46(br d,J=4.4Hz,2H),4.78(s,2H),4.21(br d,J=6.6Hz,2H),3.39(br t,J=7.5Hz,2H),3.05(br t,J=6.5Hz,2H),2.93-2.80(m,1H),2.34(td,J=6.1,12.2Hz,1H),0.94(brd,J=6.1Hz,6H)。
化合物46E:
Figure PCTCN2020073842-appb-000393
在0摄氏度氮气保护下,向化合物9C1(80毫克,302.94微摩尔),化合物46D(105毫克,335.04微摩尔)和三苯基磷(160毫克,610.02微摩尔)的DMF(10毫升)溶液中加入偶氮二羧酸二异丙酯(123毫克,608.28微摩尔),加完后在20摄氏度搅拌2小时。将反应液过滤,滤液浓缩。残余物中加入盐水(40毫升)后用二氯甲烷:甲醇=10:1(20毫升×2次)萃取,合并有机层用无水硫酸钠干燥后过滤浓缩,残余物经制备板(二氯甲烷:甲醇=10:1并添加1%氨水)纯化,得到化合物46C。LCMS(ESI)m/z:559.1[M+1]。化合物46的盐酸盐:
Figure PCTCN2020073842-appb-000394
将化合物46E(70毫克,125.12微摩尔)和氰化锌(75毫克,638.71微摩尔)加入到DMF(10毫升)中,再加入锌粉(17毫克,259.98微摩尔),dppf(27毫克,48.70微摩尔)和Pd 2(dba) 3(22毫克,24.02微摩尔)。反应体系在100摄氏度加热搅拌16小时。将反应体系冷却至室温后用二氯甲烷(10毫升)稀释然后过滤,滤液浓缩,通过柱层析纯化(石油醚:乙酸乙酯=5:1到石油醚:乙酸乙酯=1:1再到二氯甲烷:甲醇=8:1并添加1%氨水),得到的产品经高效液相色谱法(盐酸体系)纯化。将得到的产品溶液用饱和碳酸氢钠水溶液调节到pH=8后用二氯甲烷(40毫升×1次)和二氯甲烷:甲醇=10:1(40毫升×1次)萃取,合并有机 层用无水硫酸钠干燥后过滤浓缩得到化合物46。向化合物46中加入乙醇(4毫升),乙腈(5毫升),水(20毫升),0.1摩尔/升盐酸水溶液(0.1毫升)后,经冷冻干燥得到化合物46的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=11.35-10.84(m,1H),8.94(d,J=7.8Hz,1H),8.68(d,J=13.0Hz,2H),8.58(s,1H),8.37(s,1H),8.20(d,J=7.8Hz,1H),7.82-7.71(m,2H),7.55-7.48(m,1H),7.48-7.39(m,1H),6.46(d,J=7.8Hz,1H),5.46(s,2H),4.61-4.44(m,1H),4.42-4.26(m,1H),4.22-4.02(m,2H),4.00-3.81(m,2H),3.43(s,1H),3.24-2.97(m,1H),1.16(d,J=6.1Hz,6H).LCMS(ESI)m/z:506.4[M+1]。
实施例47
Figure PCTCN2020073842-appb-000395
化合物47A:
Figure PCTCN2020073842-appb-000396
向反式(4-氨基环己基)甲醇(200毫克,1.55毫摩尔)的四氢呋喃(5毫升)溶液中加入Boc 2O(405.33毫克,1.86毫摩尔),将反应液在20摄氏度搅拌2小时后,向反应液中加水(10毫升)后用乙酸乙酯(20毫升×2次)萃取,合并有机层依次用水(30毫升×1次)和盐水(40毫升×1次)洗涤后用无水硫酸钠干燥,浓缩后残余物用正己烷(2毫升)在20摄氏度打浆30分钟后过滤,滤饼经真空干燥得到化合物47A。 1H NMR(400MHz,CDCl 3)δ=4.46-4.31(m,1H),3.47(t,J=6.0Hz,2H),3.43-3.33(m,1H),2.11-2.00(m,2H),1.88-1.79(m,2H),1.45(s,9H),1.27(t,J=5.6Hz,1H),1.18-0.97(m,4H)。
化合物47B:
Figure PCTCN2020073842-appb-000397
根据化合物28A的方法制备,将化合物6-羟基-2-氮杂螺[3.3]庚烷-2-羧酸叔丁酯替换为化合物47A,得到化合物47B。 1H NMR(400MHz,CDCl 3)δ=7.79(s,1H),7.77(s,1H),7.36(s,1H),7.34(s,1H),4.35(br s,1H),3.82(d,J=6.5Hz,2H),3.39-3.22(m,1H),2.46(s,3H),2.05-1.96(m,2H),1.81-1.71(m,2H),1.67-1.59(m,1H),1.43(s,9H),1.12-1.03(m,2H),1.02-0.92(m,2H)。
化合物47C:
Figure PCTCN2020073842-appb-000398
根据化合物1H的方法制备,将化合物1G替换为化合物47B,得到化合物47C。 1H NMR(400MHz,CDCl 3)δ=8.27(s,2H),4.41(br s,1H),3.85(d,J=6.4Hz,2H),3.50-3.36(m,1H),2.10(br d,J=10.0Hz,2H),1.97-1.88(m,2H),1.85-1.73(m,1H),1.46(s,9H),1.23-1.09(m,4H)。
化合物47D:
Figure PCTCN2020073842-appb-000399
根据化合物1I的方法制备,将化合物1H替换为化合物47C,纯化方法替换为硅胶制备板分离(石油醚:乙酸乙酯=1:1),得到化合物47D。 1H NMR(400MHz,CDCl 3)δ=8.45(s,2H),8.34(s,1H),8.30-8.25(m,1H),7.50-7.45(m,2H),4.80(s,2H),4.42(br d,J=5.4Hz,1H),3.91(d,J=6.4Hz,2H),3.50(s,1H),3.45(br d,J=4.9Hz,1H),2.11(br d,J=10.3Hz,2H),2.02-1.93(m,2H),1.87-1.76(m,1H),1.46(s,9H),1.29-1.13(m,4H)。LCMS(ESI)m/z:414.3[M+1]。
化合物47E:
Figure PCTCN2020073842-appb-000400
根据化合物6E的方法制备,将化合物1I替换为化合物47D,得到化合物47E。 1H NMR(400MHz,CDCl 3)δ=8.45(s,2H),8.39(s,1H),8.32(ddd,J=1.8,3.8,5.2Hz,1H),7.50-7.46(m,2H),4.69(s,2H),4.42(br d,J=4.8Hz,1H),3.92(d,J=6.4Hz,2H),3.45(br d,J=1.1Hz,1H),2.16-2.07(m,2H),2.03-1.93(m,2H),1.87-1.76(m,1H),1.46(s,9H),1.24-1.14(m,4H)。LCMS(ESI)m/z:432.2[M+1]。
化合物47F:
Figure PCTCN2020073842-appb-000401
根据化合物6F的方法制备,将化合物6D替换为化合物9C1,将化合物6E替换为化合物47E,得到化合物47F。 1H NMR(400MHz,CDCl 3)δ=8.58(s,1H),8.42(s,2H),8.25(d,J=7.9Hz,1H),7.99(d,J=7.8Hz,1H),7.67-7.58(m,3H),7.48(dd,J=1.7,8.6Hz,1H),7.41(t,J=7.7Hz,1H),6.25(d,J=7.9Hz,1H),5.58(s,2H),4.42(br dd,J=1.1,4.3Hz,1H),3.89(d,J=6.4Hz,2H),3.44(br dd,J=5.0,7.6Hz,1H),2.11(br d,J=9.5Hz,2H),2.01-1.93(m,2H),1.87-1.73(m,1H),1.46(s,9H),1.27-1.10(m,4H)。LCMS(ESI)m/z:659.0[M+1]。
化合物47G:
Figure PCTCN2020073842-appb-000402
将化合物47F(200毫克,303.23微摩尔)和氰化锌(178毫克,1.52毫摩尔)加入到DMF(5毫升)中,再加入锌粉(40毫克,612.52微摩尔),dppf(67毫克,121.29微摩尔)和Pd 2(dba) 3(56毫克,61.25微摩尔)。反应体系在90~100摄氏度加热搅拌12小时。将反应体系冷却至室温后用二氯甲烷(10毫升)稀释然后过滤,滤液浓缩,通过柱层析(二氯甲烷:甲醇=1:0到100:1)纯化,得到化合物47G。 1H NMR(400MHz,CDCl 3)δ=8.60(s,1H),8.43(s,2H),8.26(d,J=8.0Hz,1H),8.09-8.02(m,1H),7.84-7.77(m,2H),7.66(dd,J=1.4,8.4Hz,2H),7.42(t,J=7.8Hz,1H),6.34(d,J=7.8Hz,1H),5.60(s,2H),4.41(br dd,J=3.5,5.5Hz,1H),3.90(d,J=6.4Hz,2H),3.54-3.37(m,1H),2.11(br d,J=9.4Hz,2H),2.01-1.93(m,2H),1.85-1.75(m,1H),1.46(s,9H),1.24-1.10(m,4H)。LCMS(ESI)m/z:606.3[M+1]。
化合物47H的三氟乙酸盐:
Figure PCTCN2020073842-appb-000403
向化合物47G(115毫克,189.87微摩尔)的二氯甲烷(5毫升)溶液中加入三氟乙酸(0.8毫升),混合物于25摄氏度搅拌1小时后减压浓缩至干得到化合物47H的三氟乙酸盐。LCMS(ESI)m/z:506.2[M+1]。化合物47的盐酸盐:
Figure PCTCN2020073842-appb-000404
根据化合物24的盐酸盐的方法制备,将化合物24C的三氟乙酸盐替换为化合物47H的三氟乙酸盐,将乙醛水溶液替换为甲醛水溶液,将高效液相色谱制备分离(甲酸体系)得到的混合物浓缩后,加入饱和碳酸氢钠水溶液(30毫升),用2摩尔/升的氢氧化钠水溶液调节pH到10后用二氯甲烷(20毫升×3次)萃取,合并有机相减压浓缩得到化合物47。向化合物47中加水(20毫升)和乙腈(10毫升)后,再加入盐酸水溶液(0.1摩尔/升,1.12毫升),混合物用旋蒸除去有机溶剂后经冷冻干燥,得到化合物47的盐酸盐。 1HNMR(400MHz,CD 3OD)δ=8.63(d,J=7.8Hz,1H),8.39(s,2H),8.28(s,1H),8.19(s,1H),8.12(br d,J=7.8Hz,1H),7.68-7.63(m,1H),7.62-7.57(m,1H),7.49(br d,J=7.8Hz,1H),7.33(t,J=7.8Hz,1H),6.26(d,J=7.8Hz,1H),5.47(s,2H),3.92(d,J=6.1Hz,2H),2.77(s,6H),2.10-1.99(m,4H),1.59-1.46(m,3H),1.26-1.14(m,3H);LCMS(ESI)m/z:534.3[M+1]。
实施例48
Figure PCTCN2020073842-appb-000405
化合物48A:
Figure PCTCN2020073842-appb-000406
向顺式-4-氨基环己酸(1.30克,9.08毫摩尔)的1,4-二氧六环(20毫升)溶液中加入1摩尔/升的氢氧化钠水溶液(19.52毫升)后冷却至0摄氏度,在0摄氏度向反应液中加入Boc 2O(2.28克,10.44毫摩尔)溶于1,4-二氧六环(20毫升)的溶液,将反应液在0-25摄氏度搅拌4小时后,向反应液中加盐酸水溶液(1摩尔/升,50毫升)后用二氯甲烷:甲醇=10:1(200毫升×5次)萃取,合并有机层用无水硫酸钠干燥后过滤,滤液旋蒸浓缩至干得到化合物48A。 1H NMR(400MHz,CDCl 3)δ=4.65(br s,1H),3.63(br s,1H),2.51(br s,1H),1.96-1.83(m,2H),1.79-1.52(m,6H),1.45(s,9H)。
化合物48B:
Figure PCTCN2020073842-appb-000407
在0摄氏度向化合物48A(5.00克,20.55毫摩尔)的四氢呋喃(50毫升)溶液中滴加硼烷-二甲硫醚溶液(10摩尔/升,6.17毫升),加完后将反应液在10摄氏度搅拌16小时,在20摄氏度向反应液中加入甲醇(40毫升)将反应淬灭,然后将反应液旋蒸浓缩至干得到化合物48B。 1H NMR(400MHz,CDCl 3)δ=4.65(br s,1H),3.75(br t,J=6.5Hz,2H),3.63(br d,J=6.2Hz,1H),3.51(br s,1H),1.60(br s,9H),1.45(s,9H)。化合物48C:
Figure PCTCN2020073842-appb-000408
根据化合物46C的方法制备,将化合物46B替换为化合物48B,得到化合物48C。 1H NMR(400MHz,CDCl 3)δ=8.33(s,2H),4.74-4.58(m,1H),4.14(q,J=7.1Hz,1H),3.92(d,J=6.5Hz,1H),3.53(d,J=6.3Hz,1H),1.78-1.63(m,9H),1.47(d,J=2.4Hz,9H)。
化合物48D:
Figure PCTCN2020073842-appb-000409
将化合物48C(5.5克,16.09毫摩尔)和3-羟甲基苯硼酸(2.47克,16.25毫摩尔)溶于55毫升二氧六环和12毫升水中,加入碳酸钠(5.12克,48.27毫摩尔)和Pd(dppf)Cl 2·CH 2Cl 2(1.31克,1.61毫摩尔)。混合液在90摄氏度氮气保护环境下搅拌反应1小时,将反应液冷却至室温后过滤,滤液旋干移除有机溶剂。剩余残渣加入50毫升水,然后分别用80毫升二氯甲烷萃取三次。合并有机相旋干,残渣通过硅胶柱层析(石油醚:乙酸乙酯=1:0到3:1)纯化后再经高效液相色谱法(甲酸体系)分离纯化,得到化合物48D。 1H NMR(400MHz,CDCl 3)δ=8.38(s,2H),8.26(s,1H),8.22-8.16(m,1H),7.66(s,1H),7.28(br d,J=7.5Hz,1H),4.71-4.68(m,2H),4.60(br d,J=17.6Hz,1H),3.88(d,J=6.6Hz,2H),3.73(br s,1H),2.05(br s,1H),1.93-1.85(m,1H),1.73-1.67(m,6H),1.39(s,9H)。
化合物48E:
Figure PCTCN2020073842-appb-000410
根据化合物6E的方法制备,将化合物1I替换为化合物48D,得到化合物48E。 1H NMR(400MHz,CDCl 3)δ=8.73(s,2H),8.45(s,1H),8.32(br d,J=6.8Hz,1H),7.58-7.51(m,1H),6.81(br d,J=5.3Hz,1H),4.94(s,2H),4.12(br d,J=7.0Hz,2H),3.59(br s,1H),1.95(br s,1H),1.69-1.55(m,8H),1.45(s,9H)。
化合物48F:
Figure PCTCN2020073842-appb-000411
根据化合物6F的方法制备,将化合物6D替换为化合物9C1,将化合物6E替换为化合物48E,得到化合物48F。 1H NMR(400MHz,CDCl 3)δ=8.90(d,J=7.9Hz,1H),8.64(s,2H),8.36-8.30(m,2H),8.20(d,J=7.8Hz,1H),7.61-7.56(m,1H),7.53-7.40(m,2H),6.72(br d,J=6.3Hz,1H),6.37(d,J=7.8Hz,1H),5.44(s,2H),4.04(d,J=7.0Hz,2H),3.53(br s,1H),1.88(br s,1H),1.65-1.45(m,8H),1.39(s,9H)。LCMS(ESI)m/z:661.3[M+3]。
化合物48G:
Figure PCTCN2020073842-appb-000412
根据化合物6I的方法制备,将化合物6H替换为化合物48F,得到化合物48G。 1H NMR(400MHz,DMSO-d 6)δ=8.93(d,J=7.9Hz,1H),8.64(s,2H),8.60-8.54(m,1H),8.36(s,1H),8.20(d,J=7.9Hz,1H),7.96(s,1H),7.80-7.75(m,2H),7.52(br d,J=7.9Hz,1H),6.72(br d,J=7.1Hz,1H),6.47(d,J=7.8Hz,1H),5.47(s,2H),4.07-4.02(m,2H),3.53(br s,1H),1.88(br s,1H),1.64-1.47(m,9H),1.39(s,9H)。LCMS(ESI)m/z:606.4[M+1]。
化合物48H的三氟乙酸盐:
Figure PCTCN2020073842-appb-000413
向化合物48G(200毫克,330.20微摩尔)的二氯甲烷(1.4毫升)溶液中加入三氟乙酸(0.6毫升),混合物于25摄氏度搅拌0.5小时后减压浓缩至干得到化合物48H的三氟乙酸盐。LCMS(ESI)m/z:506.4[M+1]。 化合物48的盐酸盐:
Figure PCTCN2020073842-appb-000414
根据化合物24的盐酸盐的方法制备,将化合物24C的三氟乙酸盐替换为化合物48H的三氟乙酸盐,将乙醛水溶液替换为甲醛水溶液,将高效液相色谱制备分离(甲酸体系)替换为制备板分离(二氯甲烷:甲醇=10:1),将得到的化合物48中加水(10毫升)和乙腈(6毫升)后,再加入盐酸水溶液(1摩尔/升,28微升),混合物旋蒸除去有机溶剂后经冷冻干燥,得到化合物48的盐酸盐。 1H NMR(400MHz,DMSO-d 6)δ=9.89(br s,1H),8.99(d,J=7.9Hz,1H),8.72(s,2H),8.64(s,1H),8.41(s,1H),8.26(d,J=7.8Hz,1H),7.87-7.78(m,2H),7.62-7.55(m,1H),7.54-7.44(m,1H),6.53(d,J=7.8Hz,1H),5.53(s,2H),4.26(d,J=7.5Hz,2H),2.78(d,J=5.0Hz,6H),2.20(br s,1H),2.11-1.99(m,1H),1.97-1.83(m,4H),1.79-1.63(m,4H);LCMS(ESI)m/z:534.4[M+1]。
体外活性测试
生化实验:
实验目的:
检测化合物对c-Met酶活性的抑制效应。
实验材料:
c-Met Kinase Enzyme System(c-Met激酶系统)购自Promega。Envision多标记分析仪(PerkinElmer)。实验方法:
使用试剂盒里的kinase buffer(激酶缓冲液)稀释酶,底物,ATP和抑制剂。
将待测化合物用排枪进行5倍稀释至第8个浓度,即从50μM稀释至0.65nM,DMSO终浓度为5%,设置双复孔实验。向微孔板中加入1μL抑制剂各浓度梯度,2μL c-Met酶(4ng),2μL底物和ATP的混合物(10μM ATP,0.2μg/μL Poly E 4Y 1(聚E 4Y 1)),此时化合物终浓度梯度为10μM稀释至0.13nM。反应体系置于30摄氏度反应60分钟。反应结束后,每孔加入5μL ADP-Glo试剂,30摄氏度继续反应40分钟,结束反应后每孔加入10μL的kinase detection(激酶检测)试剂,30摄氏度反应30分钟后采用PerkinElmerEnvision多标记分析仪读数化学发光,积分时间0.5秒。
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。表1提供了本发明化合物对c-Met酶学抑制活性。
EBC-1细胞增殖实验:
实验材料:
MEM培养基,胎牛血清,盘尼西林/链霉素抗生素购自维森特。EBC-1细胞系购自南京科佰生物技术 有限公司。Envision多标记分析仪(PerkinElmer)。
实验方法:
将EBC-1细胞种于白色96孔板中,80μL细胞悬液每孔,其中包含3000个EBC-1细胞。细胞板置于二氧化碳培养箱中过夜培养。
将待测化合物用排枪进行5倍稀释至第8个浓度,即从2mM稀释至26nM,设置双复孔实验。向中间板中加入78μL培养基,再按照对应位置,转移2μL每孔的梯度稀释化合物至中间板,混匀后转移20μL每孔到细胞板中。细胞板置于二氧化碳培养箱中培养3天。另准备一块细胞板,在加药当天读取信号值作为Max值参与数据分析。向此细胞板每孔加入25μL Promega CellTiter-Glo,室温孵育10分钟使发光信号稳定。采用PerkinElmer Envision多标记分析仪读数。
向细胞板中加入每孔25μL的Promega CellTiter-Glo试剂,室温孵育10分钟使发光信号稳定。采用PerkinElmer Envision多标记分析仪读数。
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中"log(inhibitor)vs.response--Variable slope"模式得出)。表1提供了本发明的化合物对EBC-1细胞增殖的抑制活性。
Hs746T细胞增殖实验:
实验材料:
DMEM培养基购自Gibco,胎牛血清购自Hyclone。Hs746T细胞系购ATCC。Envision多标记分析仪(PerkinElmer)。
实验方法:
将Hs746T细胞种于384孔板中,50μL细胞悬液每孔,其中包含1500个Hs746T细胞。细胞板置于二氧化碳培养箱中过夜培养。
将待测化合物用Tecan按3倍稀释9个浓度,设置双复孔实验,加入384孔细胞板中,化合物终浓度为1000nM至0.15nM。细胞板置于二氧化碳培养箱中培养4天。
4天后向细胞板中加入每孔25μL的Promega CellTiter-Glo试剂,室温孵育10分钟使发光信号稳定。采用PerkinElmer Envision多标记分析仪读数。
数据分析:
利用利用Xlfit软件自动拟合化合物的作用曲线,并计算IC 50的值,High control为DMSO处理孔数值,Low control为无细胞培养基孔数值。表1提供了本发明的化合物对Hs746T细胞增殖的抑制活性。
表1.本发明化合物抑制c-Met酶及对EBC-1细胞和Hs746T细胞抗增殖活性的IC 50数据
Figure PCTCN2020073842-appb-000415
Figure PCTCN2020073842-appb-000416
注:“-”代表未测试
结论:本发明化合物对c-Met酶具有较强的抑制活性,同时对EBC-1细胞和Hs746T细胞具有较强的抗增殖活性。
人肺癌EBC-1裸鼠移植瘤体内药效实验:
BALB/c裸鼠,雌性,6-8周,体重约18-20克,动物在SPF级动物房以IVC(独立送风系统,恒温恒湿)笼具饲养(每笼3只)。所有的笼子,铺垫和水在使用前进行消毒。所有的动物都可以自由获取标准 认证的商业实验室饮食。共有36只购于上海灵畅生物科技有限公司的小鼠用于研究。每只动物于右后背位置接种0.1毫升(5×10 6个)EBC-1细胞,肿瘤平均体积达到243立方毫米时,采用随机分组,开始给药。将试验化合物每日口服给药,化合物24的盐酸盐剂量为10毫克/公斤,化合物25的盐酸盐的两个剂量分别为10毫克/公斤和20毫克/公斤,化合物29的盐酸盐的剂量为10毫克/公斤。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。相对肿瘤增殖率T/C(%)=T RTV/C RTV×100%(T RTV:治疗组平均RTV;C RTV:阴性对照组平均RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=V t/V 0,其中V 0是分组给药时(即D0)测量所得肿瘤体积,V t为某一次测量时的肿瘤体积,T RTV与C RTV取同一天数据。TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。统计分析基于试验结束时RTV的数据运用SPSS软件进行分析。两组间比较用T检验进行分析,三组或多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey‘s法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。p<0.05认为有显著性差异。
本实验评价了化合物在人肺癌EBC-1异种移植瘤模型中的药效,以空白组为参照,给药15天后停药观察至第25天时,平均肿瘤体积为2034立方毫米,化合物24的盐酸盐(10毫克/公斤)、化合物25的盐酸盐(10毫克/公斤)、化合物25的盐酸盐(20毫克/公斤)和化合物29的盐酸盐(10毫克/公斤)的平均肿瘤体积分别为257立方毫米、83立方毫米、4立方毫米和337立方毫米,T RTV/C RTV分别为13.7%、4.3%、0.2%和16.2%,TGI分别为99.3%、108.9%、113.4%和94.8%,P值分别为0.001、0.002、0.001和0.002。本发明化合物对人肺癌EBC-1裸鼠移植瘤生长有显著抑制作用。
表2.各组不同时间点的瘤体积
Figure PCTCN2020073842-appb-000417
注:a.平均值±标准误差,n=6(每组6只)
人胃癌Hs746T裸鼠移植瘤体内药效实验:
BALB/c裸鼠,雌性,6-8周,体重约18-22克,动物在SPF级动物房以IVC(独立送风系统,恒温恒湿)笼具饲养(每笼3只)。所有的笼子,铺垫和水在使用前进行消毒。所有的动物都可以自由获取标准认证的商业实验室饮食。将0.2mL(5×10 6个)Hs746T细胞悬液(加基质胶,体积比1:1)皮下接种于每 只小鼠的右后背,共接种55只。当肿瘤平均体积达到160mm 3时,依据肿瘤体积和动物体重采用随机分层分组方法开始分组给药。将试验化合物每日口服给药,化合物25的盐酸盐的两个剂量分别为3毫克/公斤和6毫克/公斤,化合物39的盐酸盐的剂量为3毫克/公斤。每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。相对肿瘤增殖率T/C(%)=T RTV/C RTV×100%(T RTV:治疗组平均RTV;C RTV:阴性对照组平均RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=V t/V 0,其中V 0是分组给药时(即D0)测量所得肿瘤体积,V t为对应小鼠某一次测量时的肿瘤体积,T RTV与C RTV取同一天数据。TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。统计分析基于第20天的相对肿瘤体积(RTV)运用SPSS软件进行分析。两组间比较用T检验进行分析,三组或多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey‘s法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。p<0.05认为有显著性差异。
本实验评价了化合物在人胃癌Hs746T异种移植瘤模型中的体内药效,以空白组为参照,给药20天后,平均肿瘤体积为2301立方毫米,化合物25的盐酸盐(3毫克/公斤)、化合物25的盐酸盐(6毫克/公斤)和化合物39的盐酸盐(3毫克/公斤)的平均肿瘤体积分别为234立方毫米、17立方毫米和16立方毫米,T RTV/C RTV分别为10.2%、0.7%和0.7%,TGI分别为96.6%、106.7%和106.7%,P值均小于0.001。本发明化合物对人胃癌Hs746T异种移植瘤生长有显著抑制作用。
表3.各组不同时间点的瘤体积
Figure PCTCN2020073842-appb-000418
注:a.平均值±标准误差,n=6(每组6只)
小鼠、犬单次静脉与口服给药的药代动力学研究
本实验旨在研究供试化合物单次静脉及单次口服给药后,化合物在不同种属体内的药代动力学(PK)情况。
样品收集与制备:
静脉注射或口服给药后,采集动物血液样本,记录实际采血时间。血样采集以后,立即转移至贴有标签的含K2-EDTA的离心管中,随后离心处理后取血浆。将血浆转移至预冷的离心管,在干冰中速冻,并储存在-70±10℃超低温冰箱中,直到进行LC-MS/MS分析。
药代动力学数据分析:
使用药动学软件,以非房室模型对化合物的血浆药物浓度数据进行处理。达峰浓度(C max)和达峰时间(T max)以及可定量末时间,从血药浓度-时间图中直接获得。使用对数线性梯形法计算下列药代动力学参数:半衰期(T 1/2),表观分布容积(V dss)以及清除率(Cl),0点到末端时间点时间-血浆浓度曲线下面积(AUC 0-last),初始浓度(C 0)。
实验结果:
见表3和表4。
实验结论:
本发明化合物在小鼠中口服吸收较好,具有较低的清除率,半衰期较长,生物利用度较好;化合物在犬中口服吸收较好,半衰期较长,生物利用度较高。
表4.小鼠单次静脉和口服给药本发明化合物的药代动力学参数
Figure PCTCN2020073842-appb-000419
表5.犬单次静脉和口服给药本发明化合物的药代动力学参数
Figure PCTCN2020073842-appb-000420

Claims (29)

  1. 式(I)所示化合物、其药学上可接受的盐或其异构体,
    Figure PCTCN2020073842-appb-100001
    其中,
    Figure PCTCN2020073842-appb-100002
    为-或=;
    Figure PCTCN2020073842-appb-100003
    为=时,T为C;
    所述结构单元
    Figure PCTCN2020073842-appb-100004
    Figure PCTCN2020073842-appb-100005
    Figure PCTCN2020073842-appb-100006
    为-时,T为N;
    所述结构单元
    Figure PCTCN2020073842-appb-100007
    Figure PCTCN2020073842-appb-100008
    T 1
    Figure PCTCN2020073842-appb-100009
    R a和R b各自独立地为H、F或-CH 3
    R c各自独立地为H或-CH 3
    各T 2独立地为N或CR d
    各R d独立地为H或F;
    T 3为-CH 2-或
    Figure PCTCN2020073842-appb-100010
    各T 4独立地为N或CR e
    R e为H、F、Cl或-CH 3
    R 1和R 2各自独立地为H、-CH 3、-CF 3、-CH 2CH 3、-CH 2CH 2CH 3或-CH 2(CH 3) 2
    R 3和R 5各自独立地为H、F、Cl、-CN、-OH或C 1-3烷氧基;
    L为--O-(CH 2) n--、
    Figure PCTCN2020073842-appb-100011
    R f为H、-CH 3或-CH 2CH 3
    n为0、1或2;
    R 4为任选被1、2或3个R g所取代的6-12元杂环烷基、任选被1、2或3个R g所取代的氮杂环丁基或任选被1、2或3个R g所取代的环己基;
    各R g独立地为H、F、Cl、-OH、-CN、C 1-3烷氧基、C 1-3烷氨基、C 3-4环烷基、4-6元杂环烷基或任选被1、2或3个独立选自F、Cl、-OH、-CN、
    Figure PCTCN2020073842-appb-100012
    C 1-3烷氨基和-OCH 3的取代基所取代的C 1-5烷基;
    所述6-12元杂环烷基和4-6元杂环烷基分别包含1、2、3或4个独立选自N、-O-和-S-的杂原子。
  2. 根据权利要求1所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-A)、(I-B)、(I-C)或(I-E)所示结构:
    Figure PCTCN2020073842-appb-100013
    其中,T 1、T 2、T 3、T 4、R 1、R 2、R 3、R 4、R 5和L如权利要求1所定义。
  3. 根据权利要求2所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-A1)~(I-A5)所示结构:
    Figure PCTCN2020073842-appb-100014
    其中,T 2、R 1、R 2、R 3、R 4、L、R a、R b和R c如权利要求1所定义。
  4. 根据权利要求2所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-B1)所示结构:
    Figure PCTCN2020073842-appb-100015
    其中,T 2、R 1、R 2、R 3、R 4和L如权利要求1所定义。
  5. 根据权利要求2所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-C1)或(I-C2)所示结构:
    Figure PCTCN2020073842-appb-100016
    其中,T 2、R 1、R 2、R 3、R 4、R 5、L和R e如权利要求1所定义。
  6. 根据权利要求2所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-E1)所示结构:
    Figure PCTCN2020073842-appb-100017
    其中,T 2、R 1、R 2、R 3、R 4、R 5和L如权利要求1所定义。
  7. 式(I-D)或(I-F)所示化合物、其药学上可接受的盐或其异构体,
    Figure PCTCN2020073842-appb-100018
    其中,各T 2独立地为N或CR d
    各R d独立地为H或F;
    各T 4独立地为N或CR e
    R e为H、F、Cl或-CH 3
    R 1和R 2各自独立地为H、-CH 3、-CF 3、-CH 2CH 3、-CH 2CH 2CH 3或-CH 2(CH 3) 2
    R 3和R 5各自独立地为H、F、Cl、-CN、-OH或C 1-3烷氧基;
    L为--O-(CH 2) n--、
    Figure PCTCN2020073842-appb-100019
    R f为H、-CH 3或-CH 2CH 3
    n为0、1或2;
    R 4为任选被1、2或3个R g所取代的6-12元杂环烷基、任选被1、2或3个R g所取代的氮杂环丁基或任选被1、2或3个R g所取代的环己基;
    各R g独立地为H、F、Cl、-OH、-CN、C 1-3烷氧基、C 1-3烷氨基、C 3-4环烷基、4-6元杂环烷基或任选被1、2或3个独立选自F、Cl、-OH、-CN、
    Figure PCTCN2020073842-appb-100020
    C 1-3烷氨基和-OCH 3的取代基所取代的C 1-5烷基;
    所述6-12元杂环烷基和4-6元杂环烷基分别包含1、2、3或4个独立选自N、-O-和-S-的杂原子。
  8. 根据权利要求7所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-D1)或(I-F1)所示结构:
    Figure PCTCN2020073842-appb-100021
    其中,T 2、R 1、R 2、R 3、R 5、L和R 4权利要求7所定义。
  9. 根据权利要求1~8任一项所述的化合物、其药学上可接受的盐或其异构体,其中所述L为--O--、
    Figure PCTCN2020073842-appb-100022
    Figure PCTCN2020073842-appb-100023
  10. 根据权利要求1或7所述的化合物、其药学上可接受的盐或其异构体,其中所述各R g为H、F、Cl、-OH、-CN、
    Figure PCTCN2020073842-appb-100024
    -CH 3、-CH 2CH 3、-CH 2CH 2CH 3、-CH(CH 3) 2、-CH 2CH(CH 3) 2、-OCH 3、-OCH 2CH 3、-N(CH 3) 2、-CF 3、-CH 2CF 3、-CH 2CH 2CF 3、-CH 2OH、-CH 2CH 2OH、-CH 2CH 2OCH 3、-CH 2CH 2N(CH 3) 2
    Figure PCTCN2020073842-appb-100025
    Figure PCTCN2020073842-appb-100026
  11. 根据权利要求1~8任一项所述的化合物、其药学上可接受的盐或其异构体,其中所述R 4为任选被1、2或3个R g所取代的6-10元杂环烷基、任选被1、2或3个R g所取代的氮杂环丁基或任选被1、2或3个R g所取代的环己基。
  12. 根据权利要求11所述的化合物、其药学上可接受的盐或其异构体,其中所述R 4
    Figure PCTCN2020073842-appb-100027
    Figure PCTCN2020073842-appb-100028
    其中所述
    Figure PCTCN2020073842-appb-100029
    Figure PCTCN2020073842-appb-100030
    任选被1、2或3个R g所取代。
  13. 根据权利要求12所述的化合物、其药学上可接受的盐或其异构体,其中所述R 4
    Figure PCTCN2020073842-appb-100031
    Figure PCTCN2020073842-appb-100032
  14. 根据权利要求13所述的化合物、其药学上可接受的盐或其异构体,其中所述R 4
    Figure PCTCN2020073842-appb-100033
    Figure PCTCN2020073842-appb-100034
    Figure PCTCN2020073842-appb-100035
  15. 根据权利要求1~8任一项所述的化合物、其药学上可接受的盐或其异构体,其中所述结构单元
    Figure PCTCN2020073842-appb-100036
    Figure PCTCN2020073842-appb-100037
    Figure PCTCN2020073842-appb-100038
  16. 根据权利要求15所述的化合物、其药学上可接受的盐或其异构体,其中所述结构单元
    Figure PCTCN2020073842-appb-100039
    Figure PCTCN2020073842-appb-100040
    Figure PCTCN2020073842-appb-100041
    Figure PCTCN2020073842-appb-100042
  17. 根据权利要求1所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-A6)~(I-A11)所示结构:
    Figure PCTCN2020073842-appb-100043
    其中,R 1、R 2、R 3、R a、R b、R c、R d和R g如权利要求1所定义。
  18. 根据权利要求1所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-B2)所示结构:
    Figure PCTCN2020073842-appb-100044
    其中,R 1、R 2、R 3、R d和R g如权利要求1所定义。
  19. 根据权利要求1所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-C4)~(I-C6)所示结构:
    Figure PCTCN2020073842-appb-100045
    其中,R 1、R 2、R 3、R 5、R e和R g如权利要求1所定义。
  20. 根据权利要求1所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-E2)所示结构:
    Figure PCTCN2020073842-appb-100046
    其中,R 1、R 2、R 3和R g如权利要求1所定义。
  21. 根据权利要求7所述的化合物、其药学上可接受的盐或其异构体,其具有式(I-D2)或(I-F2)所示结构:
    Figure PCTCN2020073842-appb-100047
    其中,R 1、R 2、R 3和R g如权利要求7所定义。
  22. 根据权利要求1所述的化合物、其药学上可接受的盐或其异构体,其中所述结构单元
    Figure PCTCN2020073842-appb-100048
    Figure PCTCN2020073842-appb-100049
  23. 根据权利要求1~8或19任一项所述的化合物、其药学上可接受的盐或其异构体,其中所述R 3和R 5各自独立地为H、F、Cl、-CN、-OH或-OCH 3
  24. 根据权利要求17、18、20或21任一项所述的化合物、其药学上可接受的盐或其异构体,其中所述R 3为H、F、Cl、-CN、-OH或-OCH 3
  25. 下式化合物、其药学上可接受的盐或其异构体:
    Figure PCTCN2020073842-appb-100050
    Figure PCTCN2020073842-appb-100051
    Figure PCTCN2020073842-appb-100052
    Figure PCTCN2020073842-appb-100053
  26. 下式化合物、其药学上可接受的盐或其异构体:
    Figure PCTCN2020073842-appb-100054
  27. 根据权利要求1~26任一项所述的化合物、其药学上可接受的盐或其异构体,其中所述药学上可接受的盐为甲酸盐或盐酸盐。
  28. 一种药物组合物,其含有治疗有效量的根据权利要求1~26任一项所述的化合物、其药学上可接受的盐或其异构体或根据权利要求27所述的甲酸盐或盐酸盐和药学上可接受的载体。
  29. 根据权利要求1~26任一项所述的化合物、其药学上可接受的盐或其异构体、根据权利要求27所述的甲酸盐或盐酸盐或根据权利要求28所述的药物组合物在制备c-Met抑制剂药物中的应用。
PCT/CN2020/073842 2019-02-01 2020-01-22 作为c-Met抑制剂的含嘧啶基团的三并环类化合物 WO2020156453A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20748406.4A EP3919492A4 (en) 2019-02-01 2020-01-22 TRICYCLIC COMPOUND CONTAINING PYRIMIDINYL GROUP AS C-MET INHIBITOR
KR1020217028054A KR102660608B1 (ko) 2019-02-01 2020-01-22 c-Met억제제로서 피리미디닐기를 포함하는 삼환식 화합물
JP2021544884A JP7214879B2 (ja) 2019-02-01 2020-01-22 c-Met阻害剤としてのピリミジニルを含むトリシクリル系化合物
US17/427,185 US20230056559A1 (en) 2019-02-01 2020-01-22 Pyrimidinyl group-containing tricyclic compound serving as c-met inhibitor
CN202080012066.6A CN113365997B (zh) 2019-02-01 2020-01-22 作为c-Met抑制剂的含嘧啶基团的三并环类化合物

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910105481.5 2019-02-01
CN201910105481 2019-02-01
CN201910469780 2019-05-31
CN201910469780.7 2019-05-31
CN201910865757.X 2019-09-12
CN201910865757 2019-09-12
CN202010006610.8 2020-01-03
CN202010006610 2020-01-03

Publications (1)

Publication Number Publication Date
WO2020156453A1 true WO2020156453A1 (zh) 2020-08-06

Family

ID=71841636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073842 WO2020156453A1 (zh) 2019-02-01 2020-01-22 作为c-Met抑制剂的含嘧啶基团的三并环类化合物

Country Status (6)

Country Link
US (1) US20230056559A1 (zh)
EP (1) EP3919492A4 (zh)
JP (1) JP7214879B2 (zh)
KR (1) KR102660608B1 (zh)
CN (1) CN113365997B (zh)
WO (1) WO2020156453A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292405A (zh) * 2021-06-01 2021-08-24 湖南华腾制药有限公司 一种2-溴-4氯苯甲醛的制备方法
CN113402428A (zh) * 2021-06-11 2021-09-17 重庆医药高等专科学校 一种反式4-(叔丁氧羰氨基)环己烷羧酸及其中间体的制备方法
CN113461567A (zh) * 2021-07-30 2021-10-01 湖南华腾制药有限公司 一种2-溴-4腈基苯甲醛的制备方法
WO2022022687A1 (zh) * 2020-07-31 2022-02-03 南京明德新药研发有限公司 含嘧啶基团的三并环类化合物的盐型、晶型及其制备方法
WO2023138492A1 (zh) * 2022-01-19 2023-07-27 南京明德新药研发有限公司 一种包含嘧啶基团的三并环类化合物的组合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100345850C (zh) * 2002-10-23 2007-10-31 赛诺菲-安万特 3-苯基取代的吡啶并吲哚酮,其制备和治疗用途
US20090042924A1 (en) * 2002-10-23 2009-02-12 Sanofi-Aventis Pyridoindolone Derivatives Substituted in the 3-position by a Heterocyclic Group, Their Preparation and Their Application in Therapeutics
WO2010138661A1 (en) * 2009-05-27 2010-12-02 Elan Pharma International Ltd. Nanoparticulate anticancer compositions and methods for making the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846330B1 (fr) * 2002-10-23 2004-12-03 Sanofi Synthelabo Derives de pyridoindolone substitues en -3 par groupe heterocyclique, leur preparation et leur application en therapeutique
DE102007032507A1 (de) * 2007-07-12 2009-04-02 Merck Patent Gmbh Pyridazinonderivate
DE102009003975A1 (de) * 2009-01-07 2010-07-08 Merck Patent Gmbh Benzothiazolonderivate
CN105153164B (zh) * 2014-05-30 2018-10-30 齐鲁制药有限公司 作为hbv抑制剂的二氢嘧啶并环衍生物
JP6710642B2 (ja) * 2014-05-30 2020-06-17 チル ファーマシューティカル カンパニー リミテッド Hbv阻害剤としてのジヒドロピリミジン縮環誘導体
PE20190912A1 (es) * 2016-10-27 2019-06-26 Fujian Cosunter Pharmaceutical Co Ltd Compuesto de piridona como inhibidor de c-met

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100345850C (zh) * 2002-10-23 2007-10-31 赛诺菲-安万特 3-苯基取代的吡啶并吲哚酮,其制备和治疗用途
US20090042924A1 (en) * 2002-10-23 2009-02-12 Sanofi-Aventis Pyridoindolone Derivatives Substituted in the 3-position by a Heterocyclic Group, Their Preparation and Their Application in Therapeutics
WO2010138661A1 (en) * 2009-05-27 2010-12-02 Elan Pharma International Ltd. Nanoparticulate anticancer compositions and methods for making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919492A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022022687A1 (zh) * 2020-07-31 2022-02-03 南京明德新药研发有限公司 含嘧啶基团的三并环类化合物的盐型、晶型及其制备方法
CN113292405A (zh) * 2021-06-01 2021-08-24 湖南华腾制药有限公司 一种2-溴-4氯苯甲醛的制备方法
CN113402428A (zh) * 2021-06-11 2021-09-17 重庆医药高等专科学校 一种反式4-(叔丁氧羰氨基)环己烷羧酸及其中间体的制备方法
CN113402428B (zh) * 2021-06-11 2023-03-03 重庆医药高等专科学校 一种反式4-(叔丁氧羰氨基)环己烷羧酸及其中间体的制备方法
CN113461567A (zh) * 2021-07-30 2021-10-01 湖南华腾制药有限公司 一种2-溴-4腈基苯甲醛的制备方法
CN113461567B (zh) * 2021-07-30 2023-08-22 长沙创新药物工业技术研究院有限公司 一种2-溴-4腈基苯甲醛的制备方法
WO2023138492A1 (zh) * 2022-01-19 2023-07-27 南京明德新药研发有限公司 一种包含嘧啶基团的三并环类化合物的组合物及其制备方法和应用

Also Published As

Publication number Publication date
EP3919492A1 (en) 2021-12-08
CN113365997A (zh) 2021-09-07
JP7214879B2 (ja) 2023-01-30
US20230056559A1 (en) 2023-02-23
KR20210123360A (ko) 2021-10-13
CN113365997B (zh) 2022-06-07
EP3919492A4 (en) 2022-11-09
JP2022519125A (ja) 2022-03-18
KR102660608B1 (ko) 2024-04-26

Similar Documents

Publication Publication Date Title
CN113365997B (zh) 作为c-Met抑制剂的含嘧啶基团的三并环类化合物
JP7326305B2 (ja) 医薬化合物
JP2021513534A (ja) 抗癌剤として有用なテトラヒドロキナゾリン誘導体
TW200951133A (en) P38 kinase inhibiting agents
KR20170002623A (ko) 피라졸로피리딘 및 피라졸로피리미딘
EP3950685A1 (en) Pyrazolopyridine compound as ret inhibitor and application thereof
CN103596926A (zh) 作为raf激酶抑制剂的稠合三环化合物
JP2020203945A (ja) それに関連する障害の治療または予防に有用なβ−3アドレナリン受容体調節剤
CN113316576A (zh) 用于治疗癌症的作为HPK1抑制剂的2,3-二氢-1H-吡咯并[3,4-c]吡啶-1-酮衍生物
WO2020233641A1 (zh) 用作ret激酶抑制剂的化合物及其应用
JP2022511112A (ja) Alk5阻害剤としてのナフチリジンおよびキノリン誘導体
US11702405B2 (en) Chemical compounds
CN117940436A (zh) 一种7-(萘-1-基)吡啶并[4,3-d]嘧啶衍生物及其制备和应用
EP3985005A1 (en) Fused ring compound as fgfr and vegfr dual inhibitor
CN118055932A (zh) 一种kras抑制剂及其制备和在药学上的应用
WO2022173033A1 (ja) 4-アミノキナゾリン化合物
WO2022194192A1 (zh) 一类杂芳环化合物、其制备方法及用途
JP2019518032A (ja) Pi3k beta阻害薬としての二環式ピリジン、ピラジンおよびピリミジン誘導体
US20230265107A1 (en) Pb2 inhibitor, and preparation method therefor and use thereof
EP4155304A1 (en) Compound used as ret kinase inhibitor and application thereof
JP7440710B1 (ja) G12d変異krasタンパクに作用する複素環化合物
CN112142731B (zh) 一种2,4-二取代嘧啶衍生物及其制备方法和用途
JP7053654B2 (ja) PI3Kβ阻害剤としてのキノキサリン及びピリドピラジン誘導体
CN116143805A (zh) 一类含氮杂环联芳基类化合物、制备方法和用途
CN116761801A (zh) 具有蛋白激酶抑制活性的杂环化合物、包含其的药物组合物及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544884

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217028054

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020748406

Country of ref document: EP

Effective date: 20210901