WO2020155517A1 - 柔性阵列基板、显示面板及制备方法 - Google Patents

柔性阵列基板、显示面板及制备方法 Download PDF

Info

Publication number
WO2020155517A1
WO2020155517A1 PCT/CN2019/091089 CN2019091089W WO2020155517A1 WO 2020155517 A1 WO2020155517 A1 WO 2020155517A1 CN 2019091089 W CN2019091089 W CN 2019091089W WO 2020155517 A1 WO2020155517 A1 WO 2020155517A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending area
flexible
substrate
layer
organic film
Prior art date
Application number
PCT/CN2019/091089
Other languages
English (en)
French (fr)
Inventor
白思航
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/485,438 priority Critical patent/US20210336163A1/en
Publication of WO2020155517A1 publication Critical patent/WO2020155517A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the field of display devices, in particular to a flexible array substrate, a display panel and a preparation method.
  • the non-display area on the display panel is compressed smaller and smaller.
  • the method of compressing the non-display area can be to set a special-shaped area at the upper end of the display area, and set the front camera and earpiece of the mobile phone in the special-shaped area; or to place multiple functional layers in the display panel in the non-display area. Fold to the side of the display panel opposite to the light-emitting surface to realize the narrow design of the frame of the display panel. For example, in order to achieve a narrow bezel design for a small-size mobile phone and achieve a larger screen-to-body ratio, the industry has tried to reduce the lower bezel area.
  • the most effective way to reduce the lower bezel is the bending technology, which is to fan a part of the screen.
  • Out (Fanout) wiring area, driver IC and flexible circuit board (FPC) are bent together to the back of the screen for bonding. Can effectively reduce the length of the lower border area.
  • the metal traces in the bending area are subject to greater stress and are prone to breakage, resulting in abnormal display. Therefore, these metal traces need to have bending resistance.
  • the bending resistance of the metal trace cannot meet the demand, so it is particularly important to improve the bending resistance of the metal trace in the bending area.
  • the technical problem to be solved by the present invention is to provide a flexible array substrate, a display panel and a preparation method, which can improve the bending resistance and stability of the metal wiring in the bending area.
  • the present invention provides a flexible array substrate, including a flexible substrate and a functional layer provided on the flexible substrate, the surface of the functional layer is covered with an organic film layer, the flexible array substrate Divided into a non-bending zone and a bending zone, the flexible substrate, the functional layer, and the organic film layer extend from the non-bending zone to the bending zone, and in the bending zone
  • the functional layer has a via hole, the via hole penetrates the functional layer, at least one metal trace is arranged on the inner wall of the via hole, and the organic film layer fills the via hole.
  • the inner wall of the via hole is stepped, and the metal trace climbs along the stepped inner wall.
  • the thickness of the organic film layer in the bending area is greater than the thickness of the organic film layer in the non-bending area.
  • the height from the upper surface of the organic film layer in the bending area to the flexible substrate is greater than the height from the upper surface of the organic film layer in the non-bending area to the flexible substrate the height of.
  • the thickness of the flexible substrate in the bending zone is smaller than the thickness of the flexible substrate in the non-bending zone.
  • the flexible substrate includes a first flexible sub-substrate, an inorganic layer, and a second flexible sub-substrate arranged in sequence, and the functional layer is disposed on the second flexible sub-substrate In the bending area, the first flexible sub-substrate has a groove recessed toward the inorganic layer, so that the thickness of the flexible substrate in the bending area is smaller than that of the non-bending area The thickness of the flexible substrate.
  • the present invention also provides a method for preparing the above-mentioned flexible array substrate, including the steps of: providing a flexible substrate, the flexible substrate is divided into a non-bending area and a bending area; on the flexible substrate Forming a functional layer, the functional layer extending from the non-bending area to the bending area; forming a source and drain hole in the non-bending area, and forming a penetrating through the functional layer in the bending area Via; forming a source and drain trace in the source and drain hole, at least one metal trace is formed on the inner wall of the via; in the functional layer, the source and drain trace and the metal An organic film layer is formed on the surface of the trace, and the organic film layer fills the via hole.
  • the width of the functional layer is different at different heights of the functional layer, so that the width of the via hole is different.
  • the inner wall is stepped.
  • the method before the step of providing a flexible substrate, the method further includes the following steps: providing a supporting substrate; forming an inorganic material block on the supporting substrate; The material block is covered with a flexible substrate, the area of the flexible substrate corresponding to the inorganic material block is a bending area, and the area outside the bending area is a non-bending area; when forming the organic film After layering, the support substrate and the inorganic material block are removed, so that the thickness of the flexible substrate in the bending area is smaller than the thickness of the flexible substrate in the non-bending area.
  • the present invention also provides a display panel including the above-mentioned flexible array substrate.
  • the inner wall of the via hole is stepped, and the metal trace climbs along the stepped inner wall.
  • the thickness of the organic film layer in the bending area is greater than the thickness of the organic film layer in the non-bending area.
  • the height from the upper surface of the organic film layer in the bending area to the flexible substrate is greater than the height from the upper surface of the organic film layer in the non-bending area to the flexible substrate the height of.
  • the thickness of the flexible substrate in the bending zone is smaller than the thickness of the flexible substrate in the non-bending zone.
  • the flexible substrate includes a first flexible sub-substrate, an inorganic layer, and a second flexible sub-substrate arranged in sequence, and the functional layer is disposed on the second flexible sub-substrate In the bending area, the first flexible sub-substrate has a groove recessed toward the inorganic layer, so that the thickness of the flexible substrate in the bending area is smaller than that of the non-bending area The thickness of the flexible substrate.
  • the display panel further includes a light emitting layer disposed on the organic film layer of the flexible array substrate, the light emitting layer includes a pixel defining layer and a pillar layer, the pixel The limiting layer and the pillar layer extend from the non-bending area to the bending area.
  • the advantage of the present invention is that in the bending area, the thickness of the material layer under the metal trace is reduced, and the thickness of the material layer above the metal trace is increased at the same time, which is beneficial to adjust the metal trace to the neutral surface, thereby improving the metal The bending resistance and stability of the trace.
  • FIG. 1 is a schematic structural diagram of an embodiment of a flexible array substrate of the present invention
  • FIG. 2 is a schematic diagram of the steps of an embodiment of the method for preparing a flexible array substrate of the present invention
  • 3A to 3F are flowcharts of an embodiment of the method for manufacturing the flexible array substrate of the present invention.
  • 4A to 4C are a flow chart of the preparation process of an embodiment of the flexible substrate of the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of the display panel of the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a flexible array substrate of the present invention.
  • the flexible array substrate 1 of the present invention includes a flexible substrate 10 and a functional layer 11 disposed on the flexible substrate 10.
  • the surface of the functional layer 11 is covered with an organic film layer 12.
  • the flexible array substrate 1 is divided into a non-bending area A and a bending area B.
  • the non-bending area A refers to an area that does not need to be bent
  • the bending area B refers to an area that needs to be bent.
  • the flexible substrate 10, the functional layer 11 and the organic film layer 12 extend from the non-bending area A to the bending area B, that is, the flexible substrate 10, the functional layer 11 and
  • the organic film layer 12 is also divided into a non-bending area and a bending area.
  • the flexible substrate 10 may be a conventional flexible substrate, such as a polyimide flexible substrate, or the flexible substrate 10 may be a composite flexible substrate.
  • the flexible substrate 10 is a composite flexible substrate, which includes a first flexible sub-substrate 101, an inorganic layer 102, and a second flexible sub-substrate 103 arranged in sequence.
  • the functional layer 11 is arranged on the second flexible sub-substrate 103.
  • the first flexible sub-substrate 101 includes but is not limited to a polyimide substrate
  • the inorganic layer 102 includes but is not limited to a silicon dioxide layer
  • the second flexible sub-substrate 103 includes but is not limited to polyimide. Imide substrate.
  • a buffer layer 13 is covered on the surface of the flexible substrate 10, which has a conventional structure. In other embodiments, the buffer layer 13 may not be provided.
  • the functional layer 11 includes but is not limited to a thin film transistor layer. Specifically, in this embodiment, the functional layer 11 includes a first gate insulating layer 111, a second gate insulating layer 112, and a passivation layer 113.
  • the first gate insulating layer 111, The second gate insulating layer 112 and the passivation layer 113 extend from the non-bending area A to the bending area B.
  • an active layer 114 is further provided between the flexible substrate 10 and the first gate insulating layer 11, and an active layer 114 is provided between the first gate insulating layer 111 and the second gate insulating layer 111.
  • a first gate 115 is also arranged between the polar insulating layers 112, a second gate 116 is also arranged between the second gate insulating layer 112 and the passivation layer 113, and a source and drain 117 passes through
  • the passivation layer 113, the second gate insulating layer 112 and the first gate insulating layer 111 are connected to the active layer 114.
  • the first gate insulating layer 111, the active layer 114, the second gate insulating layer 112, the first gate 115, the second gate 116, and the passivation layer 113 forms a thin film transistor layer.
  • the functional layer 11 has a via 118.
  • the via hole 118 penetrates the functional layer 11. Specifically, the bottom of the via hole 118 exposes the upper surface of the flexible substrate 10.
  • the via hole 118 may extend to the upper surface of the buffer layer 13, or may penetrate ⁇ Buffer layer 13.
  • At least one metal trace 14 is provided on the inner wall of the via hole 118. Specifically, the metal trace 14 climbs along the inner wall of the via hole 118. Furthermore, the inner wall of the via hole 118 is stepped, and the metal trace 14 climbs along the stepped inner wall.
  • the advantage is that the stepped structure can make the inner wall of the via hole 118 a gentle slope. In turn, it can be ensured that the metal trace 14 will not have the risk of disconnection during the climbing process.
  • the metal traces 14 can be used as connection lines between the source and drain traces of the non-bending area A and the driving integrated circuit (not shown in the drawings).
  • the organic film layer 12 fills the via hole 118. Specifically, the organic film layer 12 fills the via hole 118 and covers the metal trace 14.
  • the thickness of the organic film layer 12 in the bending area B is greater than the thickness of the organic film layer 12 in the non-bending area A.
  • the upper surface of the organic film layer 12 is on the same plane, then in the bending area B, because the The organic film layer 12 also fills the via hole 118, so the thickness of the organic film layer 12 in the bending area B is greater than the thickness of the organic film layer 12 in the non-bending area A.
  • the organic film layer 12 fills the via 118, the organic film layer 12 is covered above the metal trace 14, and there is no organic material layer under the metal trace 14, which is equivalent to Reducing the thickness of the organic film layer under the metal traces 14 and increasing the thickness of the organic film layer above the metal traces facilitates the adjustment of the metal traces 14 to the neutral surface, thereby facilitating the bending resistance of the metal traces 14 Performance and stability.
  • the specific description of the neutral surface is as follows: when the flexible array substrate is bent, there will be a neutral surface on the flexible array substrate. The neutral surface is a critical surface, which will not be pulled during the bending process.
  • the film layer on the side of the neutral surface close to the convex side (that is, the outer side of the bending area) will be subjected to tensile stress, and the film on the side of the neutral surface away from the convex side (that is, the bending The film layer on the inner side of the zone will be subjected to compressive stress.
  • the closer the film layer is to the neutral surface the smaller the stress.
  • the thickness of the organic film layer above and below the metal wiring 14 is adjusted so that the metal wiring 14 is located on the neutral plane, thereby improving the bending resistance of the metal wiring 14.
  • the height from the upper surface of the organic film layer 12 in the bending zone B to the flexible substrate 10 is greater than the height from the upper surface of the organic film layer 12 in the non-bending zone A to the flexible substrate 10
  • the height of the bottom 10 can further adjust the position of the metal trace 14 so that it is located on the neutral plane.
  • the thickness of the flexible substrate in the bending zone B is smaller than the thickness of the flexible substrate in the non-bending zone A.
  • the first flexible sub-substrate 101 has a groove 104 recessed toward the inorganic layer 102, so that the bending area B
  • the thickness of the flexible substrate 10 is smaller than the thickness of the flexible substrate 10 in the non-bending area A, which can further adjust the position of the metal trace 14 to be located on the neutral plane.
  • FIG. 2 is a schematic diagram of the steps of an embodiment of the method for preparing the flexible array substrate of the present invention.
  • the method for preparing a flexible array substrate of the present invention includes the following steps: step S21, providing a flexible substrate, the flexible substrate is divided into a non-bending area and a bending area; step S22, in the A functional layer is formed on the flexible substrate, and the functional layer extends from the non-bending area to the bending area; step S23, forming a source and drain hole in the non-bending area, and forming in the bending area A via hole penetrating the functional layer; step S24, forming a source and drain wire in the source and drain hole, and forming at least one metal wire on the inner wall of the via; step S25, in the function An organic film layer is formed on the surface of the layer, the source and drain wiring lines and the metal wiring line, and the organic film layer fills the via hole.
  • 3A to 3F are flowcharts of an embodiment of the method for manufacturing the flexible array substrate of the present invention.
  • a flexible substrate 300 is provided, and the flexible substrate 300 is divided into a non-bending area A and a bending area B. In this step, the flexible substrate 300 needs to be placed on a supporting substrate 400.
  • the flexible substrate 300 includes, but is not limited to, a single-layer substrate or a multilayer composite substrate.
  • the flexible substrate 300 is a flexible composite substrate, which includes a first flexible sub-substrate 301, an inorganic layer 302, and a second flexible sub-substrate 303, wherein the first flexible The sub-substrate 301 has a groove 304 recessed toward the inorganic layer 302, so that the thickness of the flexible substrate 300 in the bending area B is smaller than that of the flexible substrate 300 in the non-bending area A thickness of.
  • the preparation method of the flexible substrate 300 of this embodiment is listed below.
  • 4A to 4C are flow charts of the preparation process of an embodiment of the flexible substrate of the present invention.
  • the supporting substrate 400 includes but is not limited to a glass substrate.
  • an inorganic material block 401 is formed on the supporting substrate 400. Specifically, an inorganic material layer with a thickness of about 1 ⁇ m, for example, a silicon dioxide layer, is deposited on the supporting substrate 400, and the inorganic material layer is patterned so that the inorganic material block 401 is only left in the bending area B.
  • a conventional patterning method in the art may be used to pattern the inorganic material layer, or a mask method may be used when forming the inorganic material layer to directly form the inorganic material block 401.
  • a first flexible sub-substrate 301 is covered on the supporting substrate 400 and the inorganic material block 401, and the area of the first flexible sub-substrate 301 corresponding to the inorganic material block 401 is the curved Bending area B, the area outside the bending area B is the non-bending area A, the inorganic layer 302 and the second flexible sub-substrate are sequentially deposited on the first flexible sub-substrate 301 303.
  • the first flexible sub-substrate 302 forms a concave recessed toward the inorganic layer 302.
  • the groove 304 makes the thickness of the flexible substrate 300 in the bending area B smaller than the thickness of the flexible substrate 300 in the non-bending area A.
  • the supporting substrate 400 and the inorganic material block 401 need to be removed in subsequent processes to prevent them from affecting the bending performance of the flexible substrate.
  • step S21 further includes a step of forming a buffer layer 310 on the flexible substrate 300, which is an optional step.
  • the buffer layer 310 includes, but is not limited to, a silicon dioxide layer.
  • a functional layer 320 is formed on the flexible substrate 300.
  • the functional layer 320 extends from the non-bending area A to the bending area B.
  • the functional layer 320 is a thin film transistor layer.
  • an active layer 321, a first gate insulating layer 322, a first gate 323, a second gate insulating layer 324, a second gate 325 and a blunt layer are sequentially formed on the flexible substrate 300.
  • a layer 326, wherein the first gate insulating layer 322, the second gate insulating layer 324, and the passivation layer 326 extend from the non-bending area A to the bending area B.
  • the structure of the functional layer 302 can also be set according to actual conditions, for example, a thin film transistor layer with a single gate structure, which does not require two gate insulating layers.
  • the active layer 321 is disposed on the buffer layer 310.
  • a source and drain hole 330 is formed in the non-bending area A, and a via 340 penetrating the functional layer 320 is formed in the bending area B.
  • the via hole 340 may be formed first, and then the source and drain holes 330 may be formed.
  • the width of removing the functional layer 320 is different, so that the inner wall of the via 340 is stepped.
  • a multi-pass etching method is used to make the width of the functional layer 320 removed at different heights of the functional layer 320 are different.
  • a source and drain wiring 350 is formed in the source and drain holes 330, and at least one metal wiring 360 is formed on the inner wall of the via hole 340.
  • the metal is deposited and the metal layer is patterned, and the source and drain traces 350 are formed in the source and drain holes 330, and the metal traces are formed on the inner wall of the via hole 340. Line 360.
  • an organic film layer 370 is formed on the surface of the functional layer 320, the source/drain wiring 350 and the metal wiring 360, and the organic film layer 370 fills the over Hole 340 forms the flexible array substrate.
  • the organic film layer 370 may be formed by a half-ashing mask process, and the thickness of the organic film layer 370 in the non-bending area A is smaller than the thickness of the organic film layer 370 in the bending area B.
  • the upper surface of the organic film layer 370 in the bending area B is higher than the upper surface of the organic film layer in the non-bending area A.
  • the flexible array substrate is formed, if a display panel needs to be formed, subsequent conventional processes can be performed, which will not be repeated here.
  • the supporting substrate 400 and the inorganic material block 401 can be removed after forming the display panel.
  • the preparation method of the present invention increases the cost of the photomask, there is no need to use organic photoresist material under the metal traces, which reduces the risk of peeling off the organic photoresist material from the metal traces, and is more conducive to metal Adjust the wiring to the neutral plane.
  • the present invention also provides a display panel which uses the above-mentioned flexible array substrate.
  • FIG. 5 is a schematic structural diagram of an embodiment of the display panel of the present invention.
  • the display panel includes the above-mentioned flexible array substrate 1 and a light-emitting layer 2.
  • the display panel is an OLED display panel.
  • the light-emitting layer 2 is disposed on the organic film layer 12 of the flexible array substrate 1.
  • the light-emitting layer 2 is a conventional structure in the art.
  • the light-emitting layer 2 includes a pixel defining layer 20 and a pillar layer 21.
  • the pixel defining layer 20 and the pillar layer 21 extend from the non-bending area A to the bending area B, namely In the bending area B, the pixel defining layer 20 and the pillar layer 21 of the light-emitting layer 2 are all retained, which can further increase the thickness of the material layer above the metal wiring 14, thereby more conducive to adjusting the metal wiring 14 Position to make it closer to the neutral side.
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种柔性阵列基板、显示面板及制备方法。本发明的优点在于,在弯折区,减小金属走线下方的材料层的厚度,同时增加金属走线上方的材料层的厚度,有利于将金属走线调整至中性面,进而提高金属走线的耐弯折性能以及稳定性。

Description

柔性阵列基板、显示面板及制备方法 技术领域
本发明涉及显示装置领域,尤其涉及一种柔性阵列基板、显示面板及制备方法。
背景技术
随着显示屏运用越来越广泛,宽屏技术成为其中的重要技术项,与此同时,显示面板窄边框的技术也越来越重要。先进的电子产品,尤其是手携式电子产品,越来越趋向于窄边框设计。
为了提高电子产品的屏占比,显示面板上的非显示区域被压缩得越来越小。压缩非显示区域的方法可以为在显示区域上端设置异形区,将手机的前置摄像头和听筒等装置设置在异形区;也可以为将显示面板中的多个功能层位于非显示区的部分弯折至显示面板的与其出光面相背的一侧,以实现该显示面板的边框的窄化设计。例如,为了实现小尺寸手机的窄边框设计,实现手机更大的屏占比,业界尝试将下边框区减小,针对减小下边框,最有效的办法是弯折技术,即将屏幕的一部分扇出(Fanout)走线区及驱动IC及柔性线路板(FPC)一起弯折到屏幕的背面进行绑定(bonding)。可有效减小下边框区域的长度。
技术问题
在弯折区域的金属走线受到的应力较大,容易发生断裂等情况,从而导致显示异常,因此,该些金属走线需要具备耐弯折性能。在现有的结构设计中,金属走线的耐弯折性能不能满足需求,因此提高弯折区域的金属走线耐弯折性能显得尤为重要。
技术解决方案
本发明所要解决的技术问题是,提供一种柔性阵列基板、显示面板及制备方法,其能够提高弯折区的金属走线的耐弯折性能以及稳定性。
为了解决上述问题,本发明提供了一种柔性阵列基板,包括一柔性衬底及设置在所述柔性衬底上的一功能层,所述功能层表面覆盖有一有机膜层,所述柔性阵列基板划分为一非弯折区及一弯折区,所述柔性衬底、所述功能层及所述有机膜层自所述非弯折区延伸至所述弯折区,在所述弯折区,所述功能层具有一过孔,所述过孔贯穿所述功能层,至少一金属走线设置在所述过孔的内壁,所述有机膜层填充所述过孔。
在一实施例中,所述过孔的内壁呈台阶状,所述金属走线沿台阶状的所述内壁爬升。
在一实施例中,所述弯折区的所述有机膜层的厚度大于所述非弯折区的所述有机膜层的厚度。
在一实施例中,所述弯折区的所述有机膜层的上表面至所述柔性衬底的高度大于所述非弯折区的所述有机膜层的上表面至所述柔性衬底的高度。
在一实施例中,所述弯折区的所述柔性衬底的厚度小于所述非弯折区的所述柔性衬底的厚度。
在一实施例中,所述柔性衬底包括依次设置的一第一柔性子衬底、一无机层及一第二柔性子衬底,所述功能层设置在所述第二柔性子衬底上,在所述弯折区,所述第一柔性子衬底具有一朝向所述无机层凹陷的凹槽,以使得所述弯折区的所述柔性衬底的厚度小于所述非弯折区的所述柔性衬底的厚度。
本发明还提供一种上述的柔性阵列基板的制备方法,包括如下步骤:提供一柔性衬底,所述柔性衬底划分为一非弯折区及一弯折区;在所述柔性衬底上形成一功能层,所述功能层自所述非弯折区延伸至弯折区;在所述非弯折区形成一源漏极孔,在所述弯折区形成一贯穿所述功能层的过孔;在所述源漏极孔中形成一源漏极走线,在所述过孔的内壁形成至少一金属走线;在所述功能层、所述源漏极走线及所述金属走线的表面形成一有机膜层,且所述有机膜层填充所述过孔。
在一实施例中,在所述弯折区形成一贯穿所述功能层的过孔的步骤中,在所述功能层的不同高度,去除所述功能层的宽度不同,使所述过孔的内壁呈台阶状。
在一实施例中,在提供一柔性衬底的步骤之前,还包括如下步骤:提供一支撑衬底;在所述支撑衬底上形成一无机材料块;在所述支撑衬底及所述无机材料块上覆盖一柔性衬底,所述柔性衬底对应所述无机材料块的区域为一弯折区,所述弯折区之外的区域为一非弯折区;在形成所述有机膜层后,去除所述支撑衬底及所述无机材料块,以使得所述弯折区的所述柔性衬底的厚度小于所述非弯折区的所述柔性衬底的厚度。
本发明还提供一种显示面板,包括上述的柔性阵列基板。
在一实施例中,所述过孔的内壁呈台阶状,所述金属走线沿台阶状的所述内壁爬升。
在一实施例中,所述弯折区的所述有机膜层的厚度大于所述非弯折区的所述有机膜层的厚度。
在一实施例中,所述弯折区的所述有机膜层的上表面至所述柔性衬底的高度大于所述非弯折区的所述有机膜层的上表面至所述柔性衬底的高度。
在一实施例中,所述弯折区的所述柔性衬底的厚度小于所述非弯折区的所述柔性衬底的厚度。
在一实施例中,所述柔性衬底包括依次设置的一第一柔性子衬底、一无机层及一第二柔性子衬底,所述功能层设置在所述第二柔性子衬底上,在所述弯折区,所述第一柔性子衬底具有一朝向所述无机层凹陷的凹槽,以使得所述弯折区的所述柔性衬底的厚度小于所述非弯折区的所述柔性衬底的厚度。
在一实施例中,所述显示面板还包括一发光层,所述发光层设置在所述柔性阵列基板的有机膜层上,所述发光层包括一像素限定层及一支柱层,所述像素限定层及所述支柱层自所述非弯折区延伸至所述弯折区。
有益效果
本发明的优点在于,在弯折区,减小金属走线下方的材料层的厚度,同时增加金属走线上方的材料层的厚度,有利于将金属走线调整至中性面,进而提高金属走线的耐弯折性能以及稳定性。
附图说明
图1是本发明柔性阵列基板的一实施例的结构示意图;
图2是本发明柔性阵列基板的制备方法的一实施例的步骤示意图;
图3A~图3F是本发明柔性阵列基板的制备方法的一实施例的流程图;
图4A~图4C是本发明柔性衬底的一实施例的制备工艺流程图;
图5是本发明显示面板的一实施例的结构示意图。
本发明的实施方式
下面结合附图对本发明提供的柔性阵列基板、显示面板及制备方法的具体实施方式做详细说明。
图1是本发明柔性阵列基板的一实施例的结构示意图。请参阅图1,本发明柔性阵列基板1包括一柔性衬底10及设置在所述柔性衬底10上的一功能层11。所述功能层11表面覆盖有一有机膜层12。所述柔性阵列基板1划分为一非弯折区A及一弯折区B,所述非弯折区A是指不需要弯折的区域,所述弯折区B是指需要弯折的区域。所述柔性衬底10、所述功能层11及所述有机膜层12自所述非弯折区A延伸至所述弯折区B,即所述柔性衬底10、所述功能层11及所述有机膜层12也被划分为非弯折区及弯折区。
所述柔性衬底10可以为常规的柔性衬底,例如聚酰亚胺柔性衬底,或者所述柔性衬底10为复合柔性衬底。在本实施例中,所述柔性衬底10为复合柔性衬底,其包括依次设置的一第一柔性子衬底101、一无机层102及一第二柔性子衬底103,所述功能层11设置在所述第二柔性子衬底103上。其中,所述第一柔性子衬底101包括但不限于聚酰亚胺衬底,所述无机层102包括但不限于二氧化硅层,所述第二柔性子衬底103包括但不限于聚酰亚胺衬底。进一步,在本实施例中,在所述柔性衬底10的表面覆盖有一缓冲层13,其为常规结构,在其他实施例中,也可以不设置所述缓冲层13。
所述功能层11包括但不限于薄膜晶体管层。具体地说,在本实施例中,所述功能层11包括一第一栅极绝缘层111、一第二栅极绝缘层112及一钝化层113,所述第一栅极绝缘层111、所述第二栅极绝缘层112及所述钝化层113自所述非弯折区A延伸至所述弯折区B。在所述非弯折区A,在所述柔性衬底10与所述第一栅极绝缘层11之间还设置有一有源层114,在所述第一栅极绝缘层111与第二栅极绝缘层112之间还设置有一第一栅极115,在所述第二栅极绝缘层112与所述钝化层113之间还设置有一第二栅极116,一源漏极117穿过所述钝化层113、第二栅极绝缘层112及所述第一栅极绝缘层111与所述有源层114连接。其中,所述第一栅极绝缘层111、所述有源层114、所述第二栅极绝缘层112、所述第一栅极115、所述第二栅极116及所述钝化层113形成一薄膜晶体管层。
在所述弯折区B,所述功能层11具有一过孔118。所述过孔118贯穿所述功能层11。具体地说,所述过孔118的底部暴露出所述柔性衬底10的上表面,在本实施例中,所述过孔118可以延伸至所述缓冲层13的上表面,也可以贯穿所述缓冲层13。至少一金属走线14设置在所述过孔118的内壁。具体地说,所述金属走线14沿所述过孔118的内壁爬升。进一步,所述过孔118的内壁呈台阶状,所述金属走线14沿台阶状的所述内壁爬升,其优点在于,所述台阶状的结构可以使所述过孔118的内壁呈缓坡,进而能够保证金属走线14在爬坡过程中不会存在断线的风险。所述金属走线14可以作为非弯折区A的源漏极走线与驱动集成电路(附图中未绘示)的连接线。
所述有机膜层12填充所述过孔118。具体地说,所述有机膜层12充满所述过孔118,并覆盖所述金属走线14。所述弯折区B的所述有机膜层12的厚度大于所述非弯折区A的所述有机膜层12的厚度。例如,为了便于后续工艺的进行,在所述非弯折区A及所述弯折区B,所述有机膜层12的上表面在同一平面,则在所述弯折区B,由于所述有机膜层12还填充所述过孔118,所以所述弯折区B的所述有机膜层12的厚度大于所述非弯折区A的所述有机膜层12的厚度。
由于所述有机膜层12填充所述过孔118,则在所述金属走线14的上方覆盖有机膜层12,而在所述金属走线14的下方未设置有机材料层,则其相当于减小金属走线14下方的有机膜层厚度,同时增加金属走线上方的有机膜层的厚度,有利于将金属走线14调整至中性面,从而有利于金属走线14的耐弯折性能以及稳定性。其中,所述中性面的具体说明如下:在柔性阵列基板发生弯折时,柔性阵列基板上会存在一个中性面,中性面是一个临界面,在弯折过程中既不会受到拉应力,也不会受到压应力,位于中性面靠近凸侧面(即弯折区的外侧面)的一侧的膜层将受到拉应力,位于中性面远离凸侧面的一侧(即弯折区的内侧面)的膜层将受到压应力,膜层越靠近中性面设置受到的应力越小。在本发明柔性阵列基板中,调整金属走线14上下方的有机膜层的厚度,使得所述金属走线14位于中性面,进而提高所述金属走线14的抗弯折性能。
进一步,所述弯折区B的所述有机膜层12的上表面至所述柔性衬底10的高度大于所述非弯折区A的所述有机膜层12的上表面至所述柔性衬底10的高度,其能够进一步调整所述金属走线14的位置,使其位于中性面。所述弯折区B的所述柔性衬底的厚度小于所述非弯折区A的所述柔性衬底的厚度。具体地说,在本实施例中,在所述弯折区B,所述第一柔性子衬底101具有一朝向所述无机层102凹陷的凹槽104,以使得所述弯折区B的所述柔性衬底10的厚度小于所述非弯折区A的所述柔性衬底10的厚度,其能够进一步调整所述金属走线14的位置,使其位于中性面。
本发明还提供一种上述的柔性阵列基板的制备方法。图2是本发明柔性阵列基板的制备方法的一实施例的步骤示意图。请参阅图2,本发明柔性阵列基板的制备方法包括如下步骤:步骤S21、提供一柔性衬底,所述柔性衬底划分为一非弯折区及一弯折区;步骤S22、在所述柔性衬底上形成一功能层,所述功能层自所述非弯折区延伸至弯折区;步骤S23、在所述非弯折区形成一源漏极孔,在所述弯折区形成一贯穿所述功能层的过孔;步骤S24、在所述源漏极孔中形成一源漏极走线,在所述过孔的内壁形成至少一金属走线;步骤S25、在所述功能层、所述源漏极走线及所述金属走线的表面形成一有机膜层,且所述有机膜层填充所述过孔。
图3A~图3F是本发明柔性阵列基板的制备方法的一实施例的流程图。
请参阅步骤S21及图3A,提供一柔性衬底300,所述柔性衬底300划分为一非弯折区A及一弯折区B。在本步骤中,所述柔性衬底300需要置于一支撑衬底400上。所述柔性衬底300包括但不限于单层衬底或多层复合衬底。在本实施例中,所述柔性衬底300为柔性复合衬底,其包括一第一柔性子衬底301、一无机层302及一第二柔性子衬底303,其中,所述第一柔性子衬底301具有一朝向所述无机层302凹陷的凹槽304,以使得所述弯折区B的所述柔性衬底300的厚度小于所述非弯折区A的所述柔性衬底300的厚度。
下面列举本实施例柔性衬底300的制备方法。图4A~图4C是本发明柔性衬底的一实施例的制备工艺流程图。
请参阅图4A,提供一支撑衬底400。所述支撑衬底400包括但不限于玻璃衬底。
请参阅图4B,在所述支撑衬底400上形成一无机材料块401。具体地说,在支撑衬底400上沉积一层厚度约1μm的无机材料层,例如,二氧化硅层,图形化所述无机材料层,使得仅在弯折区B保留无机材料块401。其中,可采用本领域常规的图形化方法图形化所述无机材料层,或者,在形成所述无机材料层时采用掩膜的方法,直接形成所述无机材料块401。
请参阅图4C,在所述支撑衬底400及所述无机材料块401上覆盖一第一柔性子衬底301,第一柔性子衬底301对应所述无机材料块401的区域为所述弯折区B,所述弯折区B之外的区域为所述非弯折区A,在所述第一柔性子衬底301上依次沉积所述无机层302及所述第二柔性子衬底303。在所述弯折区B,由于所述无机材料块401占据了所述第一柔性子衬底301的部分空间,使得所述第一柔性子衬底302形成朝向所述无机层302凹陷的凹槽304,使得所述弯折区B的所述柔性衬底300的厚度小于所述非弯折区A的所述柔性衬底300的厚度。所述支撑衬底400及所述无机材料块401在后续工艺中需要去除,以避免其影响柔性衬底的弯折性能。
进一步,在步骤S21之后,请参阅图3B,还包括一在所述柔性衬底300上形成一缓冲层310的步骤,其为可选步骤。所述缓冲层310包括对但不限于二氧化硅层。
请参阅步骤S22及图3C,在所述柔性衬底300上形成一功能层320。所述功能层320自所述非弯折区A延伸至弯折区B。具体地说,所述功能层320为一薄膜晶体管层。在该步骤中,在所述柔性衬底300上依次形成有源层321、第一栅极绝缘层322、第一栅极323、第二栅极绝缘层324、第二栅极325及一钝化层326,其中,所述第一栅极绝缘层322、第二栅极绝缘层324及钝化层326自所述非弯折区A延伸至所述弯折区B。在本发明其他实施例中,也可以根据实际情况设置功能层302的结构,例如,单栅极结构的薄膜晶体管层,其不需要形成两个栅极绝缘层。在本实施例中,所述有源层321设置在所述缓冲层310上。
请参阅步骤S23及图3D,在所述非弯折区A形成一源漏极孔330,在所述弯折区B形成一贯穿所述功能层320的过孔340。具体地说,在该步骤中,可先形成所述过孔340,再形成所述源漏极孔330。其中,在所述弯折区B形成所述过孔340的步骤中,在所述功能层320的不同高度,去除所述功能层320的宽度不同,使所述过孔340的内壁呈台阶状。例如,采用多道刻蚀的方式使得在所述功能层320的不同高度去除所述功能层320的宽度不同。
请参阅步骤S24及图3E,在所源漏极孔330中形成一源漏极走线350,在所述过孔340的内壁形成至少一金属走线360。具体地说,在该步骤中进行金属沉积,并图形化金属层,则在所源漏极孔330中形成所述源漏极走线350,在所述过孔340的内壁形成所述金属走线360。
请参阅步骤S25及图3F,在所述功能层320、所述源漏极走线350及所述金属走线360的表面形成一有机膜层370,且所述有机膜层370填充所述过孔340,形成所述柔性阵列基板。具体地说,可采用半灰化光罩工艺形成有机膜层370,在所述非弯折区A的有机膜层370的厚度小于在所述弯折区B的有机膜层370的厚度。在本实施例中,所述弯折区B的所述有机膜层370的上表面高于所述非弯折区A的有机膜层的上表面。
形成所述柔性阵列基板后,若需要形成显示面板,则可进行后续常规工艺,此处不再赘述。其中,所述支撑衬底400及无机材料块401可在形成显示面板后去除。
从制备方法来讲,虽然本发明的制备方法增加了光罩成本,但是金属走线下方无需使用有机光阻材料,降低了有机光阻材料与金属走线发生剥离的风险,更有利于将金属走线调整至中性面。
本发明还提供一种显示面板,其采用上述的柔性阵列基板。
图5是本发明显示面板的一实施例的结构示意图。请参阅图5,所述显示面板包括上述的柔性阵列基板1及一发光层2。在本实施例中,所述显示面板为OLED显示面板。所述发光层2设置在所述柔性阵列基板1的有机膜层12上。所述发光层2为本领域常规结构。其中,所述发光层2包括一像素限定层20及一支柱层21,所述像素限定层20及所述支柱层21自所述非弯折区A延伸至所述弯折区B,即在弯折区B,所述发光层2的所述像素限定层20及所述支柱层21均保留,其能够进一步增加金属走线14上方的材料层的厚度,从而更有利于调整金属走线14的位置,使其更靠近中性面。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (15)

  1. 一种柔性阵列基板,其包括一柔性衬底及设置在所述柔性衬底上的一功能层,所述功能层表面覆盖有一有机膜层,所述柔性阵列基板划分为一非弯折区及一弯折区,所述柔性衬底、所述功能层及所述有机膜层自所述非弯折区延伸至所述弯折区,在所述弯折区,所述功能层具有一过孔,所述过孔贯穿所述功能层,至少一金属走线设置在所述过孔的内壁,所述有机膜层填充所述过孔。
  2. 根据权利要求1所述的柔性阵列基板,其中所述过孔的内壁呈台阶状,所述金属走线沿台阶状的所述内壁爬升。
  3. 根据权利要求1所述的柔性阵列基板,其中所述弯折区的所述有机膜层的厚度大于所述非弯折区的所述有机膜层的厚度。
  4. 根据权利要求1所述的柔性阵列基板,其中所述弯折区的所述有机膜层的上表面至所述柔性衬底的高度大于所述非弯折区的所述有机膜层的上表面至所述柔性衬底的高度。
  5. 根据权利要求1所述的柔性阵列基板,其中所述弯折区的所述柔性衬底的厚度小于所述非弯折区的所述柔性衬底的厚度。
  6. 根据权利要求5所述的柔性阵列基板,其中所述柔性衬底包括依次设置的一第一柔性子衬底、一无机层及一第二柔性子衬底,所述功能层设置在所述第二柔性子衬底上,在所述弯折区,所述第一柔性子衬底具有一朝向所述无机层凹陷的凹槽,以使得所述弯折区的所述柔性衬底的厚度小于所述非弯折区的所述柔性衬底的厚度。
  7. 一种权利要求1所述的柔性阵列基板的制备方法,其包括如下步骤:提供一柔性衬底,所述柔性衬底划分为一非弯折区及一弯折区;在所述柔性衬底上形成一功能层,所述功能层自所述非弯折区延伸至弯折区;在所述非弯折区形成一源漏极孔,在所述弯折区形成一贯穿所述功能层的过孔;在所述源漏极孔中形成一源漏极走线,在所述过孔的内壁形成至少一金属走线;以及在所述功能层、所述源漏极走线及所述金属走线的表面形成一有机膜层,且所述有机膜层填充所述过孔。
  8. 根据权利要求7所述的柔性阵列基板的制备方法,其中在所述弯折区形成一贯穿所述功能层的过孔的步骤中,在所述功能层的不同高度,去除所述功能层的宽度不同,使所述过孔的内壁呈台阶状。
  9. 根据权利要求7所述的柔性阵列基板的制备方法,其中在提供一柔性衬底的步骤之前,还包括如下步骤:提供一支撑衬底;在所述支撑衬底上形成一无机材料块;在所述支撑衬底及所述无机材料块上覆盖一柔性衬底,所述柔性衬底对应所述无机材料块的区域为一弯折区,所述弯折区之外的区域为一非弯折区;在形成所述有机膜层后,去除所述支撑衬底及所述无机材料块,以使得所述弯折区的所述柔性衬底的厚度小于所述非弯折区的所述柔性衬底的厚度。
  10. 一种显示面板,其包括如权利要求1所述的柔性阵列基板。
  11. 根据权利要求10所述的显示面板,其中所述过孔的内壁呈台阶状,所述金属走线沿台阶状的所述内壁爬升。
  12. 根据权利要求10所述的显示面板,其中所述弯折区的所述有机膜层的厚度大于所述非弯折区的所述有机膜层的厚度。
  13. 根据权利要求10所述的显示面板,其中所述弯折区的所述有机膜层的上表面至所述柔性衬底的高度大于所述非弯折区的所述有机膜层的上表面至所述柔性衬底的高度。
  14. 根据权利要求10所述的显示面板,其中所述弯折区的所述柔性衬底的厚度小于所述非弯折区的所述柔性衬底的厚度。
  15. 根据权利要求10所述的显示面板,其中所述显示面板还包括一发光层,所述发光层设置在所述柔性阵列基板的有机膜层上,所述发光层包括一像素限定层及一支柱层,所述像素限定层及所述支柱层自所述非弯折区延伸至所述弯折区。
PCT/CN2019/091089 2019-01-30 2019-06-13 柔性阵列基板、显示面板及制备方法 WO2020155517A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/485,438 US20210336163A1 (en) 2019-01-30 2019-06-13 Flexible array substrate, display panel, and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910093586.3 2019-01-30
CN201910093586.3A CN109817675B (zh) 2019-01-30 2019-01-30 柔性阵列基板、显示面板及制备方法

Publications (1)

Publication Number Publication Date
WO2020155517A1 true WO2020155517A1 (zh) 2020-08-06

Family

ID=66605919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091089 WO2020155517A1 (zh) 2019-01-30 2019-06-13 柔性阵列基板、显示面板及制备方法

Country Status (3)

Country Link
US (1) US20210336163A1 (zh)
CN (1) CN109817675B (zh)
WO (1) WO2020155517A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817675B (zh) * 2019-01-30 2021-03-23 武汉华星光电半导体显示技术有限公司 柔性阵列基板、显示面板及制备方法
CN110265347A (zh) 2019-06-06 2019-09-20 深圳市华星光电技术有限公司 一种基板
CN110264870B (zh) 2019-06-13 2021-05-07 武汉华星光电半导体显示技术有限公司 显示面板
CN110391294B (zh) * 2019-07-08 2021-04-27 武汉华星光电半导体显示技术有限公司 柔性阵列基板及柔性显示面板
CN110289301B (zh) * 2019-07-09 2021-11-02 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN110544710A (zh) * 2019-08-08 2019-12-06 武汉华星光电半导体显示技术有限公司 柔性阵列基板及显示装置
CN110767723B (zh) * 2019-10-09 2022-03-01 昆山工研院新型平板显示技术中心有限公司 一种柔性电路板及显示面板
CN110797348B (zh) * 2019-10-12 2022-01-04 武汉华星光电半导体显示技术有限公司 一种显示面板
CN110827684B (zh) * 2019-10-24 2021-01-01 武汉华星光电半导体显示技术有限公司 一种柔性显示面板、显示装置
CN113424323B (zh) * 2019-11-28 2023-04-04 京东方科技集团股份有限公司 显示基板、显示面板及拼接屏
CN111106129A (zh) * 2019-12-05 2020-05-05 武汉华星光电半导体显示技术有限公司 一种阵列基板、显示面板及阵列基板的制造方法
CN111063696A (zh) * 2019-12-10 2020-04-24 武汉华星光电半导体显示技术有限公司 一种阵列基板及其制备方法、显示面板
CN112331691B (zh) * 2020-01-14 2023-06-27 友达光电股份有限公司 折叠显示器
US11974475B2 (en) 2020-02-28 2024-04-30 Chengdu Boe Optoelectronics Technology Co., Ltd. Flexible display panel, display device and forming method
CN111370365B (zh) * 2020-03-17 2022-07-19 广东晨海科技有限公司 一种柔性显示面板及其制造方法
CN111477659B (zh) * 2020-04-15 2022-12-16 东莞市兴展光电科技有限公司 一种柔性显示面板及其修复方法
CN111599845B (zh) * 2020-05-29 2024-04-09 京东方科技集团股份有限公司 一种柔性显示面板及其制备方法和显示装置
CN111785758A (zh) * 2020-07-17 2020-10-16 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN115000124B (zh) * 2021-11-11 2023-09-01 荣耀终端有限公司 显示面板、显示屏及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278333A1 (en) * 2005-05-27 2006-12-14 Woo-Jae Lee Method of manufacturing a flexible display device
CN106920829A (zh) * 2017-03-30 2017-07-04 京东方科技集团股份有限公司 一种柔性显示面板、显示装置及柔性显示面板的制作方法
CN108288637A (zh) * 2018-01-24 2018-07-17 武汉华星光电半导体显示技术有限公司 柔性显示面板的制作方法及柔性显示面板
CN109817675A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 柔性阵列基板、显示面板及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513997B1 (ko) * 2016-02-04 2023-03-24 삼성디스플레이 주식회사 표시 장치
KR102550696B1 (ko) * 2016-04-08 2023-07-04 삼성디스플레이 주식회사 디스플레이 장치
CN107068862B (zh) * 2017-03-06 2020-06-02 京东方科技集团股份有限公司 柔性显示基板及其制造方法、柔性显示装置、载体基板
CN107994055B (zh) * 2017-11-10 2020-09-04 武汉华星光电半导体显示技术有限公司 可弯折显示面板及其制作方法
CN108899340A (zh) * 2018-06-29 2018-11-27 武汉华星光电半导体显示技术有限公司 柔性amoled显示面板及其制造方法
CN109148532B (zh) * 2018-08-21 2020-04-10 武汉华星光电半导体显示技术有限公司 柔性显示装置及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060278333A1 (en) * 2005-05-27 2006-12-14 Woo-Jae Lee Method of manufacturing a flexible display device
CN106920829A (zh) * 2017-03-30 2017-07-04 京东方科技集团股份有限公司 一种柔性显示面板、显示装置及柔性显示面板的制作方法
CN108288637A (zh) * 2018-01-24 2018-07-17 武汉华星光电半导体显示技术有限公司 柔性显示面板的制作方法及柔性显示面板
CN109817675A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 柔性阵列基板、显示面板及制备方法

Also Published As

Publication number Publication date
US20210336163A1 (en) 2021-10-28
CN109817675B (zh) 2021-03-23
CN109817675A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2020155517A1 (zh) 柔性阵列基板、显示面板及制备方法
US10847596B2 (en) Bendable display panel and fabricating method thereof
US20210408405A1 (en) Display panel and manufacturing method thereof
WO2021190162A1 (zh) 显示基板及其制备方法、显示面板
WO2018107531A1 (zh) 柔性显示屏结构及其制作方法
WO2020042235A1 (zh) 柔性oled显示面板
WO2020118823A1 (zh) 显示面板及具有该显示面板的显示装置
WO2021217841A1 (zh) 柔性显示面板及其制作方法
WO2020077815A1 (zh) 一种柔性oled显示面板及其制备方法
WO2020216259A1 (zh) 显示面板、显示装置及制造方法
US10916718B2 (en) Flexible array substrate, method for manufacturing same, and display panel
CN110718558B (zh) Oled显示面板及其制备方法
WO2020000609A1 (zh) 显示面板及其制造方法
WO2022047907A1 (zh) 微发光二极管显示基板及其制作方法
CN109698160B (zh) 阵列基板及其制作方法、显示面板、显示装置
WO2021022594A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
WO2015090000A1 (zh) 阵列基板及其制作方法,显示装置
WO2021022583A1 (zh) 柔性显示面板
WO2021031512A1 (zh) 阵列基板和显示面板
WO2021056670A1 (zh) Oled折叠显示屏及其制作方法
US20200119110A1 (en) Flexible organic light emitting diode display device and method of fabricating same
CN109671748A (zh) 一种显示面板及其制作方法
US11121333B2 (en) OLED display panel and method for fabricating same
WO2020077800A1 (zh) 柔性 oled 显示装置及制备方法
WO2021027247A1 (zh) 显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912698

Country of ref document: EP

Kind code of ref document: A1