WO2018107531A1 - 柔性显示屏结构及其制作方法 - Google Patents

柔性显示屏结构及其制作方法 Download PDF

Info

Publication number
WO2018107531A1
WO2018107531A1 PCT/CN2016/113023 CN2016113023W WO2018107531A1 WO 2018107531 A1 WO2018107531 A1 WO 2018107531A1 CN 2016113023 W CN2016113023 W CN 2016113023W WO 2018107531 A1 WO2018107531 A1 WO 2018107531A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
flexible
display
display area
organic layer
Prior art date
Application number
PCT/CN2016/113023
Other languages
English (en)
French (fr)
Inventor
李双
孙亮
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/505,115 priority Critical patent/US10446062B2/en
Publication of WO2018107531A1 publication Critical patent/WO2018107531A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a flexible display screen structure and a method of fabricating the same.
  • OLED Organic Light-Emitting Display
  • Dream Display it has been favored by major display manufacturers and has become the main force of the third generation display devices in the display technology field.
  • Each pixel structure generally includes electronic components such as thin film transistors (TFTs) and capacitors.
  • TFTs thin film transistors
  • the force received is the tensile stress
  • the force received is the compressive stress when it is bent toward the inside.
  • the stress on the flexible display when it is bent will damage the display.
  • the tensile stress on the outward bending is more likely to damage the display.
  • the internal structure of the display itself such as the entire display area, is distributed over dense metal array circuit traces.
  • the limitation of the flexible display screen is more limited in terms of radius of curvature, reliability, and the like when bending outward.
  • the object of the present invention is to provide a flexible display screen structure, which can reduce the degree of damage when the flexible display screen is bent outward, increase the reliability when bending outward, and effectively improve the yield of the flexible display screen.
  • Another object of the present invention is to provide a method for fabricating a flexible display screen structure.
  • the flexible display screen produced by the method has a low degree of damage and high reliability when bent outward.
  • the present invention first provides a flexible display screen structure including a flexible a substrate, a first display region disposed on the flexible substrate, a second display region disposed on the flexible substrate, and a plurality of the flexible substrate disposed outside the first display region and the second display region Folding area
  • Array pixel circuits are disposed in the first display area and the second display area, and the outer fold area includes the array pixel circuit and the second display area for connecting the first display area a metal connection line of the array pixel circuit, and a flexible organic layer covering the metal connection line;
  • the first display area and the second display area are bent outward through the outer fold area.
  • the first display area, the second display area, and the outer fold area are located on the same side of the flexible substrate.
  • the flexible organic layer of the outer fold region comprises a plurality of layers and respectively cover upper and lower sides of the metal connecting line.
  • the first display area and the second display area each include: a buffer layer disposed on the flexible substrate, a patterned semiconductor active layer disposed on the buffer layer, and a plurality of layers sequentially stacked on the semiconductor active layer and the buffer layer a layer of an inorganic insulating layer, a metal wiring layer provided on the uppermost inorganic insulating layer and in contact with the semiconductor active layer, a first flexible organic layer covering the metal wiring layer, and a first flexible organic layer and a metal wiring layer a contact anode, and a second flexible organic layer disposed on the anode and the first flexible organic layer; the second flexible organic layer exposing a portion of the anode; the semiconductor active layer, the metal wiring layer, and the anode forming the Array pixel circuit
  • the outer folded region includes a buffer layer disposed on the flexible substrate, a third flexible organic layer disposed on the lower side of the metal connecting line above the buffer layer, and a first flexible organic layer stacked on the side of the metal connecting line And a second flexible organic layer; the metal connection line connecting the metal wiring layer in the first display area and the second display area.
  • the material of the flexible substrate is polyimide.
  • the material of the flexible organic layer is an organic photoresist.
  • the invention also provides a method for manufacturing a flexible display screen structure, comprising the following steps:
  • Step S1 providing a flexible substrate, coating a buffer layer on the flexible substrate, preparing a patterned semiconductor active layer in a region where the first display region and the second display region are to be formed, and sequentially in the semiconductor active layer Laminating a plurality of inorganic insulating layers on the layer and the buffer layer;
  • Step S2 preparing a metal wiring layer using a photomask, the metal wiring layer being in contact with the semiconductor active layer;
  • Step S3 using another reticle to etch away at least one layer of the inorganic insulating layer on the metal wiring layer and the underside thereof in a region where the outer folded region is to be formed;
  • Step S4 filling an organic material in a region where the outer folded region is to be formed, to form a third flexible organic layer
  • Step S5 using another reticle to prepare a metal connecting line in a region where the outer folded region is to be formed, Connecting the metal wiring layer in the first display area and the second display area;
  • Step S6 coating the first flexible organic layer on the metal connecting line, the metal wiring layer, and the third inorganic insulating layer;
  • Step S7 preparing an anode on a region of the first flexible organic layer to form a first display region and a second display region;
  • the anode is in contact with the metal wiring layer; the semiconductor active layer, the metal wiring layer, and the anode constitute an array pixel circuit;
  • Step S8 preparing a second flexible organic layer on the anode and the first flexible organic layer
  • the second flexible organic layer exposes a portion of the anode.
  • the material of the flexible substrate is polyimide.
  • the material of the first flexible organic layer, the second flexible organic layer and the third flexible organic layer is an organic photoresist.
  • the invention also provides a method for manufacturing a flexible display screen structure, comprising the following steps:
  • Step S1 providing a flexible substrate, coating a buffer layer on the flexible substrate, preparing a patterned semiconductor active layer in a region where the first display region and the second display region are to be formed, and sequentially in the semiconductor active layer Laminating a plurality of inorganic insulating layers on the layer and the buffer layer;
  • Step S2 preparing a metal wiring layer using a photomask, the metal wiring layer being in contact with the semiconductor active layer;
  • Step S3 using another reticle to etch away at least one layer of the inorganic insulating layer on the metal wiring layer and the underside thereof in a region where the outer folded region is to be formed;
  • Step S4 filling an organic material in a region where the outer folded region is to be formed, to form a third flexible organic layer
  • Step S5 using another reticle to prepare a metal connecting line in the area where the outer folding area is to be formed, and connecting the metal wiring layer in the first display area and the second display area;
  • Step S6 coating the first flexible organic layer on the metal connecting line, the metal wiring layer, and the third inorganic insulating layer;
  • Step S7 preparing an anode on a region of the first flexible organic layer to form a first display region and a second display region;
  • the anode is in contact with the metal wiring layer; the semiconductor active layer, the metal wiring layer, and the anode constitute an array pixel circuit;
  • Step S8 preparing a second flexible organic layer on the anode and the first flexible organic layer
  • the second flexible organic layer exposes a portion of the anode
  • the material of the flexible substrate is polyimide
  • the material of the first flexible organic layer, the second flexible organic layer and the third flexible organic layer is an organic photoresist.
  • the invention provides a flexible display screen structure, wherein an outer folding area is disposed between the first display area and the second display area, the three share a flexible substrate, and the first display area and the second display area
  • the array pixel circuit is normally disposed in the display area, and only the metal connection line for connecting the array pixel circuit of the first display area and the array pixel circuit of the second display area is disposed in the outer fold area, and the metal connection line covering the metal connection line is disposed.
  • the flexible organic layer reduces the metal traces in the outer fold region, so that the first display region and the second display region can be bent outward through the outer fold region, thereby reducing the occurrence of the metal layer when the flexible display screen is bent outward.
  • the brittle cracking causes the overall display to be poor, thereby reducing the degree of damage of the flexible display when bending outward, increasing the reliability when bending outward, and effectively improving the yield of the flexible display.
  • the invention provides a method for manufacturing a flexible display screen structure, in which a metal wiring layer and at least one inorganic insulating layer on the lower side thereof are etched away in a region where an outer folded region is to be formed, and then the organic material is filled to form a third flexible organic layer.
  • a metal connection line is connected to the metal wiring layer in the first display area and the second display area to reduce the metal trace in the outer fold area, thereby reducing the degree of damage when the flexible display screen is bent outward. Increase the reliability when bending outwards, effectively improving the yield of flexible displays.
  • FIG. 1 is a perspective view showing the flexible display structure of the present invention in a bent state
  • FIG. 2 is a perspective view of the flexible display structure of the present invention in a flattened state
  • FIG. 3 is a schematic plan view showing the structure of the flexible display screen of the present invention when bent inwardly and outwardly;
  • FIG. 4 is a schematic plan view showing the structure of the flexible display screen of the present invention bent only outward;
  • Figure 5 is a cross-sectional view showing the flexible display structure of the present invention in a flattened state
  • FIG. 6 is a flow chart of a method for fabricating a flexible display screen structure of the present invention.
  • step S1 of the method for fabricating a flexible display screen of the present invention is a schematic diagram of step S1 of the method for fabricating a flexible display screen of the present invention.
  • step S2 is a schematic diagram of step S2 of the method for fabricating a flexible display screen structure of the present invention.
  • step S3 is a schematic diagram of step S3 of the method for fabricating a flexible display screen of the present invention.
  • step S4 of the method for fabricating a flexible display screen of the present invention
  • step S5 is a schematic diagram of step S5 of the method for fabricating a flexible display screen of the present invention.
  • step S6 of the method for fabricating a flexible display screen of the present invention
  • FIG. 13 is a schematic diagram of step S7 of the method for fabricating the flexible display screen structure of the present invention.
  • the present invention firstly provides a flexible display screen structure, including a flexible substrate 1 , a first display area 2 disposed on the flexible substrate 1 , and a second surface disposed on the flexible substrate 1 . a display area 4, and an outer fold area 3 disposed on the flexible substrate 1 and connecting the first display area 2 and the second display area 4.
  • the first display area 2 and the second display area 4 are used for effective display, and the array pixel circuits are normally disposed inside.
  • the outer fold region 3 is a non-display area, and includes a metal connection line 31 for connecting the array pixel circuit of the first display area 2 and the array pixel circuit of the second display area 4, and A flexible organic layer covering the metal connection line.
  • first display area 2 only illustrate that the first display area 2, the second display area 4, and the outer fold area 3 are located on the same side of the flexible substrate 1, and the first display area may also be disposed.
  • 2 and one of the second display areas 4 are located on one side of the flexible substrate 1 together with the outer fold area 3, and the other of the first display area 2 and the second display area 4 are located The other side of the flexible substrate 1 is described.
  • the first display area 2 and the second display area 4 each include: a buffer layer 241 disposed on the flexible substrate 1, and a patterned semiconductor active layer disposed on the buffer layer 241. 242.
  • the first inorganic insulating layer 243, the second inorganic insulating layer 244, the third inorganic insulating layer 245, the third inorganic insulating layer 245, the third inorganic insulating layer 245, and the semiconductor are sequentially stacked on the semiconductor active layer 242 and the buffer layer 241.
  • the outer folded region 3 includes a buffer layer 241 disposed on the flexible substrate 1, a third flexible organic layer 33 disposed on the lower side of the buffer layer 241 covering the metal connecting line 31, and a layer overlying the metal connecting line 31.
  • the first flexible organic layer 247 and the second flexible organic layer 249; the metal connection line 31 connects the metal wiring layer 246 in the first display area 2 and the second display area 4.
  • the third flexible organic layer 33 extends at most to the buffer layer 241, and an inorganic insulating layer may be disposed between the third flexible organic layer 33 and the buffer layer 241, as shown in FIG.
  • the insulating layer 243 is spaced apart.
  • the flexible substrate 1 is made of polyimide (PI).
  • the material of the semiconductor active layer 242 is preferably low temperature poly-silicon (LTPS); the buffer layer 241, the first inorganic insulating layer 243, the second inorganic insulating layer 244, and the third inorganic insulating layer 245
  • the material is preferably silicon nitride (SiNx), silicon oxide (SiOx) or a combination of the two
  • the metal wiring layer 246 is densely arranged, and generally includes scan lines, data lines, respective electrodes of the thin film transistor, and the like; Indium Tin Oxide (ITO) is preferred;
  • the material of the first flexible organic layer 247, the second flexible organic layer 249, and the third flexible organic layer 33 is preferably an organic photoresist.
  • the bending of the flexible display screen in the opposite direction to the display surface thereof is defined as bending outward, and the bending toward the display surface direction is defined as bending inward.
  • the first display area 2 and the second display area 4 are bent outward by the outer fold area 3, and the second display area 4 has at least one inner fold line 40, which can be bent inward along the inner fold line 40. Therefore, the flexible display structure of the present invention can enable the flexible display to be displayed in a variety of states and in multiple states, as illustrated below:
  • the first display area 2, the outer fold area 3, and the second display area 4 are both flattened. In this state, the first display area 2 and the second display area 4 are simultaneously displayed at the maximum area. Since the outer fold area 3 occupies a small proportion of the area of the overall display screen, the influence of the outer fold area 3 on the whole surface display can be neglected;
  • the first display area 2 and the second display area 4 are bent outward by a small curvature through the outer fold area 3, and the second display area 4 has a small curvature along the inner fold line 40. Bending inward, the first display area 2 and the second display area 4 are simultaneously displayed on the curved surface;
  • the first display area 2 and the second display area 4 are bent outward by a large curvature through the outer fold area 3, and the second display area 4 has a large curvature along the inner fold line 40. Inwardly bent, in this state, the first display area 2 is displayed, and the second display area 4 can be in a standby mode, a shutdown mode, or the like;
  • the first display area 2 and the second display area 4 are bent outward only by the outer fold area 3 with a large curvature. In this state, the first display area 2 and the second display area 4 are The flat display is performed to achieve a similar effect to the double-sided display.
  • the array display pixel circuit is normally disposed in the first display area 2 and the second display area 4, and the outer fold area 3 is disposed. Only the metal connection line 31 for connecting the array pixel circuit of the first display area 2 and the array pixel circuit of the second display area 4 is disposed, and a flexible organic layer covering the metal connection line 31 is disposed, and the outer fold area is reduced.
  • the metal traces in the 3 are added to the flexible organic layer in the outer fold region 3, so that the first display area 2 and the second display area 4 can be bent outward through the outer fold area 3, thereby reducing the flexible display screen.
  • the metal layer When the outer layer is bent, the metal layer is brittle and peeled off, resulting in a poor overall display, thereby reducing the degree of damage of the flexible display when bending outward, and increasing the reliability when bending outward. Improve the yield of flexible displays.
  • the present invention further provides a method for fabricating a flexible display screen structure, including the following steps:
  • Step S1 as shown in FIG. 7, a flexible substrate 1 is provided, and a buffer layer 241 is sequentially coated on the flexible substrate 1, and a patterned region is formed in a region where the first display region 2 and the second display region 4 are to be formed.
  • the semiconductor active layer 242 and the first inorganic insulating layer 243, the second inorganic insulating layer 244, and the third inorganic insulating layer 245 are laminated on the semiconductor active layer 242 and the buffer layer 241 in this order.
  • the material of the flexible substrate 1 is PI; the material of the semiconductor active layer 242 is preferably LTPS; the buffer layer 241, the first inorganic insulating layer 243, the second inorganic insulating layer 244, and the third inorganic insulation
  • the material of the layer 245 is preferably SiNx, SiOx or a combination of the two.
  • Step S2 as shown in FIG. 8, a metal wiring layer 246 is formed using a photomask, and the metal wiring layer 246 is in contact with the semiconductor active layer 242.
  • the metal wiring layers 246 are densely arranged, and generally include scan lines, data lines, respective electrodes of a thin film transistor, and the like.
  • Step S3 as shown in FIG. 9, another metal mask is used to etch away the metal wiring layer 246 and at least one of the inorganic insulating layers on the underside thereof in a region where the outer folded region 3 is to be formed.
  • the step S3 is etched to the buffer layer 241 at most, and can be selected according to the process capability.
  • FIG. 9 only illustrates that the second inorganic insulating layer 244 and the third inorganic insulating layer 245 are etched away, while the first inorganic layer on the buffer layer 241 is retained. Insulation layer 243.
  • Step S4 as shown in FIG. 10, an organic material is filled in a region where the outer folded region 3 is to be formed to form a third flexible organic layer 33.
  • the organic material is preferably an organic photoresist.
  • Step S5 as shown in FIG. 11, a metal connecting wire 31 is prepared in a region where the outer folded region 3 is to be formed by using another photomask, and the metal wiring layer 246 in the first display region 2 and the second display region 4 is connected.
  • Step S6 as shown in FIG. 12, coating the first flexible organic layer 247 on the metal connection line 31, the metal wiring layer 246, and the third inorganic insulating layer 245.
  • the material of the first flexible organic layer 247 is preferably an organic photoresist.
  • Step S7 as shown in FIG. 13, an anode 248 is prepared on a region of the first flexible organic layer 247 where the first display region 2 and the second display region 4 are to be formed.
  • the anode 248 is in contact with the metal wiring layer 246; the semiconductor active layer 242, the metal wiring layer 246, and the anode 248 constitute an array pixel circuit.
  • the material of the anode 248 is preferably ITO.
  • Step S8 Referring to FIG. 5, a second flexible organic layer 249 is prepared on the anode 248 and the first flexible organic layer 247.
  • the second flexible organic layer 249 exposes a portion of the anode 248.
  • the material of the second flexible organic layer 249 is preferably an organic photoresist.
  • the above method etches away the metal wiring layer 246 and at least one inorganic insulating layer on the underside thereof in a region where the outer folded region 3 is to be formed, and then fills the organic material to form the third flexible organic layer 33, and then prepares the metal connecting line 31.
  • Connecting the metal wiring layer 246 in the first display area 2 and the second display area 4 reduces the metal traces in the outer fold area 3 and increases the flexible organic layer in the outer fold area 3, so that the first display area 2 and the second display area 4 can be bent outward through the outer fold area 3, which reduces the problem that the metal layer is brittle and peeled off when the flexible display screen is bent outward, resulting in poor overall display, thereby reducing the flexible display outward bend
  • the degree of damage at the time of folding increases the reliability of the outward bending and effectively improves the yield of the flexible display.
  • an outer folding area is disposed between the first display area and the second display area, and the three share a flexible substrate, and the first display area and the second display area are normal.
  • An array pixel circuit is disposed, and only a metal connection line for connecting the array pixel circuit of the first display area and the array pixel circuit of the second display area is disposed in the outer fold region, and a flexible organic layer covering the metal connection line is disposed, The metal traces in the outer fold region are reduced, so that the first display region and the second display region can be bent outward through the outer fold region, thereby reducing brittle cracking of the metal layer when the flexible display screen is bent outward.
  • the metal wiring layer and at least one inorganic insulating layer on the underside thereof are etched away in the region where the outer folded region is to be formed, and then the organic material is filled with the organic material to form a third flexible organic layer.
  • the metal connecting wire is connected to the metal wiring layer in the first display area and the second display area, the metal routing in the outer folding area is reduced, and the degree of damage of the flexible display screen when bending outward is reduced, and the outward direction is increased. Reliability when bending, effectively improving the yield of flexible displays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种柔性显示屏结构及其制作方法。该柔性显示屏结构在第一显示区(2)与第二显示区(4)之间设置外折区(3),三者共用一柔性基底(1),第一显示区(2)与第二显示区(4)内正常布设阵列像素电路,而外折区(3)内仅布设用于连接第一显示区(2)的阵列像素电路与第二显示区(4)的阵列像素电路的金属连接线(31),并设置覆盖所述金属连接线(31)的柔性有机层,减少了外折区(3)内的金属走线,使得第一显示区(2)与第二显示区(4)能够通过外折区(3)实现向外弯折,降低柔性显示屏向外弯折时的受破坏程度,增加向外弯折时的可靠性,有效提升柔性显示屏的良率。

Description

柔性显示屏结构及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种柔性显示屏结构及其制作方法。
背景技术
随着显示技术的发展,人们对终端显示屏的要求越来越高,柔性显示屏获得了人们的喜爱和追捧。
有机发光二极管显示屏(Organic Light-Emitting Display,OLED)不仅具有十分优异的显示性能,还具有自发光、结构简单、超轻薄、响应速度快、宽视角、低功耗及可实现柔性显示等特性,被誉为“梦幻显示器”,得到了各大显示器厂家的青睐,已成为显示技术领域中第三代显示器件的主力军。
柔性显示屏同样需要在基板上制作出呈阵列式分布的像素结构,每一像素结构一般包括薄膜晶体管(Thin Film Transistor,TFT)、电容等金属材质的电子元件。
目前,由于柔性显示屏受到柔性材料、结构设计等技术局限,还无法完美实现任意曲率半径弯折,以及多样性弯折。
一般情况下,柔性显示屏在朝其显示面的相反方向向外弯折时,所受的力为拉应力,朝其显示面向内弯折时,所受的力为压应力。柔性显示屏在弯折时候受到的应力会损坏显示屏,其中向外弯折受到的拉应力更容易损坏显示屏,加之显示屏本身内部结构如整个显示区遍布密集的金属材质的阵列电路走线的限制,使得柔性显示屏在向外弯折时的曲率半径、可靠性等方面更受限。
发明内容
本发明的目的在于提供一种柔性显示屏结构,能够降低柔性显示屏向外弯折时的受破坏程度,增加向外弯折时的可靠性,有效提升柔性显示屏的良率。
本发明的另一目的在于提供一种柔性显示屏结构的制作方法,由该方法制作的柔性显示屏向外弯折时的受破坏程度较低,可靠性较高。
为实现上述目的,本发明首先提供一种柔性显示屏结构,包括一柔性 基底、设于所述柔性基底的第一显示区、设于所述柔性基底的第二显示区、以及设于所述柔性基底且连接所述第一显示区与所述第二显示区的外折区;
所述第一显示区与所述第二显示区内均布设阵列像素电路,所述外折区包括用于连接所述第一显示区的所述阵列像素电路与所述第二显示区的所述阵列像素电路的金属连接线、以及覆盖所述金属连接线的柔性有机层;
所述第一显示区与所述第二显示区通过所述外折区实现向外弯折。
所述第一显示区、所述第二显示区以及所述外折区位于所述柔性基底的同一侧。
所述外折区的柔性有机层包括多层,且分别覆盖在所述金属连接线的上下两侧。
所述第一显示区与第二显示区均包括:设在柔性基底上的缓冲层、设在缓冲层上的图案化的半导体有源层、依次层叠在半导体有源层与缓冲层上的多层无机绝缘层、设在最上层的无机绝缘层上并与半导体有源层接触的金属布线层、覆盖金属布线层的第一柔性有机层、设在第一柔性有机层上并与金属布线层接触的阳极、及设在阳极与第一柔性有机层上的第二柔性有机层;所述第二柔性有机层暴露出部分阳极;所述半导体有源层、金属布线层、及阳极构成所述阵列像素电路;
所述外折区包括设在柔性基底上的缓冲层、设在缓冲层上方覆盖所述金属连接线下侧的第三柔性有机层、覆盖所述金属连接线上侧层叠的第一柔性有机层、及第二柔性有机层;所述金属连接线连接第一显示区与第二显示区内的金属布线层。
所述柔性基底的材质为聚酰亚胺。
所述柔性有机层的材质为有机光阻。
本发明还提供一种柔性显示屏结构的制作方法,包括如下步骤:
步骤S1、提供一柔性基底,在所述柔性基底上先后涂布覆盖缓冲层、在欲形成第一显示区与第二显示区的区域制备图案化的半导体有源层、以及依次在半导体有源层与缓冲层上涂布层叠多层无机绝缘层;
步骤S2、使用一道光罩制备出金属布线层,所述金属布线层与半导体有源层接触;
步骤S3、使用另一道光罩在欲形成外折区的区域将金属布线层及其下侧的至少一层所述无机绝缘层蚀刻掉;
步骤S4、在欲形成外折区的区域填涂有机材料,形成第三柔性有机层;
步骤S5、使用再一道光罩在欲形成外折区的区域制备出金属连接线, 连接第一显示区与第二显示区内的金属布线层;
步骤S6、在所述金属连接线、金属布线层、及第三无机绝缘层上涂布覆盖第一柔性有机层;
步骤S7、在第一柔性有机层上欲形成第一显示区与第二显示区的区域制备出阳极;
所述阳极与金属布线层接触;所述半导体有源层、金属布线层、及阳极构成阵列像素电路;
步骤S8、在阳极与第一柔性有机层上制备出第二柔性有机层;
所述第二柔性有机层暴露出部分阳极。
所述柔性基底的材质为聚酰亚胺。
所述第一柔性有机层、第二柔性有机层及第三柔性有机层的材质为有机光阻。
本发明还提供一种柔性显示屏结构的制作方法,包括如下步骤:
步骤S1、提供一柔性基底,在所述柔性基底上先后涂布覆盖缓冲层、在欲形成第一显示区与第二显示区的区域制备图案化的半导体有源层、以及依次在半导体有源层与缓冲层上涂布层叠多层无机绝缘层;
步骤S2、使用一道光罩制备出金属布线层,所述金属布线层与半导体有源层接触;
步骤S3、使用另一道光罩在欲形成外折区的区域将金属布线层及其下侧的至少一层所述无机绝缘层蚀刻掉;
步骤S4、在欲形成外折区的区域填涂有机材料,形成第三柔性有机层;
步骤S5、使用再一道光罩在欲形成外折区的区域制备出金属连接线,连接第一显示区与第二显示区内的金属布线层;
步骤S6、在所述金属连接线、金属布线层、及第三无机绝缘层上涂布覆盖第一柔性有机层;
步骤S7、在第一柔性有机层上欲形成第一显示区与第二显示区的区域制备出阳极;
所述阳极与金属布线层接触;所述半导体有源层、金属布线层、及阳极构成阵列像素电路;
步骤S8、在阳极与第一柔性有机层上制备出第二柔性有机层;
所述第二柔性有机层暴露出部分阳极;
其中,所述柔性基底的材质为聚酰亚胺;
其中,所述第一柔性有机层、第二柔性有机层及第三柔性有机层的材质为有机光阻。
本发明的有益效果:本发明提供的一种柔性显示屏结构,在第一显示区与第二显示区之间设置外折区,三者共用一柔性基底,所述第一显示区与第二显示区内正常布设阵列像素电路,而外折区内仅布设用于连接第一显示区的阵列像素电路与第二显示区的阵列像素电路的金属连接线,并设置覆盖所述金属连接线的柔性有机层,减少了外折区内的金属走线,使得所述第一显示区与第二显示区能够通过外折区实现向外弯折,减少柔性显示屏向外弯折时金属层发生脆裂剥落而导致整体显示不良的问题,从而降低柔性显示屏向外弯折时的受破坏程度,增加向外弯折时的可靠性,有效提升柔性显示屏的良率。本发明提供的一种柔性显示屏结构的制作方法,在欲形成外折区的区域将金属布线层及其下侧的至少一层无机绝缘层蚀刻掉,之后填涂有机材料形成第三柔性有机层,再制备出金属连接线连接第一显示区与第二显示区内的金属布线层,减少了外折区内的金属走线,能够降低柔性显示屏向外弯折时的受破坏程度,增加向外弯折时的可靠性,有效提升柔性显示屏的良率。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的柔性显示屏结构在弯曲状态下的立体示意图;
图2为本发明的柔性显示屏结构在展平状态下的立体示意图;
图3为本发明的柔性显示屏结构同时做向内弯折与向外弯折时的平面示意图;
图4为本发明的柔性显示屏结构仅做向外弯折时的平面示意图;
图5为本发明的柔性显示屏结构在展平状态下的剖面示意图;
图6为本发明的柔性显示屏结构的制作方法的流程图;
图7为本发明的柔性显示屏结构的制作方法的步骤S1的示意图;
图8为本发明的柔性显示屏结构的制作方法的步骤S2的示意图;
图9为本发明的柔性显示屏结构的制作方法的步骤S3的示意图;
图10为本发明的柔性显示屏结构的制作方法的步骤S4的示意图;
图11为本发明的柔性显示屏结构的制作方法的步骤S5的示意图;
图12为本发明的柔性显示屏结构的制作方法的步骤S6的示意图;
图13为本发明的柔性显示屏结构的制作方法的步骤S7的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请同时参阅图1至图5,本发明首先提供一种柔性显示屏结构,包括一柔性基底1、设于所述柔性基底1的第一显示区2、设于所述柔性基底1的第二显示区4、以及设于所述柔性基底1且连接所述第一显示区2与所述第二显示区4的外折区3。
所述第一显示区2与所述第二显示区4用于进行有效显示,二者内部均正常布设阵列像素电路。所述外折区3为非显示区,其包括用于连接所述第一显示区2的所述阵列像素电路与所述第二显示区4的所述阵列像素电路的金属连接线31、以及覆盖所述金属连接线的柔性有机层。
图1至图5仅示意出了所述第一显示区2、所述第二显示区4以及所述外折区3位于所述柔性基底1的同一侧,也可设置所述第一显示区2与所述第二显示区4的其中之一连同外折区3位于所述柔性基底1的一侧,而所述第一显示区2与所述第二显示区4中的另一个位于所述柔性基底1的另一侧。
具体地,如图5所示,所述第一显示区2与第二显示区4均包括:设在柔性基底1上的缓冲层241、设在缓冲层241上的图案化的半导体有源层242、依次层叠在半导体有源层242与缓冲层241上的第一无机绝缘层243、第二无机绝缘层244、与第三无机绝缘层245、设在第三无机绝缘层245上并与半导体有源层242接触的金属布线层246、覆盖金属布线层246的第一柔性有机层247、设在第一柔性有机层247上并与金属布线层246接触的阳极248、及设在阳极248与第一柔性有机层247上的第二柔性有机层249;所述第二柔性有机层249暴露出部分阳极248;所述半导体有源层242、金属布线层246、及阳极248构成所述阵列像素电路。
所述外折区3包括设在柔性基底1上的缓冲层241、设在缓冲层241上方覆盖所述金属连接线31下侧的第三柔性有机层33、覆盖所述金属连接线31上方层叠的第一柔性有机层247、及第二柔性有机层249;所述金属连接线31连接第一显示区2与第二显示区4内的金属布线层246。值得注意的是,所述第三柔性有机层33至多延伸至缓冲层241,可在所述第三柔性有机层33与缓冲层241之间设置无机绝缘层,如图5所示的第一无机绝缘层243进行间隔。
进一步地,所述柔性基底1的材质为聚酰亚胺(Polyimide,PI)。
所述半导体有源层242的材质优选低温多晶硅(Low Temperature Poly-silicon,LTPS);所述缓冲层241、第一无机绝缘层243、第二无机绝缘层244、与第三无机绝缘层245的材质优选氮化硅(SiNx)、氧化硅(SiOx)或二者的组合;所述金属布线层246密集排列,通常包括扫描线、数据线、薄膜晶体管的各个电极等;所述阳极248的材质优选氧化铟锡(Indium Tin Oxide,ITO);所述第一柔性有机层247、第二柔性有机层249、与第三柔性有机层33的材质优选有机光阻。
将柔性显示屏朝其显示面的相反方向的弯折定义为向外弯折,朝其显示面方向的弯折定义为向内弯折。所述第一显示区2与第二显示区4通过外折区3实现向外弯折,所述第二显示区4至少具有一条内折线40,能够沿该内折线40实现向内弯折,从而本发明的柔性显示屏结构可以使得柔性显示屏能够进行多样化、多状态地显示,举例说明如下:
如图2所示,所述第一显示区2、外折区3、与第二显示区4均展平,此种状态下,第一显示区2与第二显示区4同时以最大面积显示,由于外折区3占整体显示屏的面积比例很小,基本可以忽略外折区3对整面显示的影响;
如图1所示,所述第一显示区2与第二显示区4通过外折区3以较小的曲率向外弯折,所述第二显示区4沿内折线40以较小的曲率向内弯折,第一显示区2与第二显示区4同时进行曲面显示;
如图3所示,所述第一显示区2与第二显示区4通过外折区3以较大的曲率向外弯折,所述第二显示区4沿内折线40以较大的曲率向内弯折,这种状态下第一显示区2进行显示,第二显示区4可为待机、关机等不显示模式;
如图4所示,所述第一显示区2与第二显示区4仅通过外折区3以较大的曲率向外弯折,这种状态下第一显示区2与第二显示区4均进行平面显示,达到类似于双面显示的效果。
由于在第一显示区2、外折区3、与第二显示区4共用一柔性基底1,所述第一显示区2与第二显示区4内正常布设阵列像素电路,而外折区3内仅布设用于连接第一显示区2的阵列像素电路与第二显示区4的阵列像素电路的金属连接线31,并设置覆盖所述金属连接线31的柔性有机层,减少了外折区3内的金属走线而增加了外折区3内的柔性有机层,使得所述第一显示区2与第二显示区4能够通过外折区3实现向外弯折,减少柔性显示屏向外弯折时金属层发生脆裂剥落而导致整体显示不良的问题,从而降低柔性显示屏向外弯折时的受破坏程度,增加向外弯折时的可靠性,有 效提升柔性显示屏的良率。
请参阅图6,结合图1至图5,本发明还提供一种柔性显示屏结构的制作方法,包括如下步骤:
步骤S1、如图7所示,提供一柔性基底1,在所述柔性基底1上先后涂布覆盖缓冲层241、在欲形成第一显示区2与第二显示区4的区域制备图案化的半导体有源层242、以及依次在半导体有源层242与缓冲层241上涂布层叠第一无机绝缘层243、第二无机绝缘层244、与第三无机绝缘层245。
具体地,所述柔性基底1的材质为PI;所述半导体有源层242的材质优选LTPS;所述缓冲层241、第一无机绝缘层243、第二无机绝缘层244、与第三无机绝缘层245的材质优选SiNx、SiOx或二者的组合。
步骤S2、如图8所示,使用一道光罩制备出金属布线层246,所述金属布线层246与半导体有源层242接触。
所述金属布线层246密集排列,通常包括扫描线、数据线、薄膜晶体管的各个电极等。
步骤S3、如图9所示,使用另一道光罩在欲形成外折区3的区域将金属布线层246及其下侧的至少一层所述无机绝缘层蚀刻掉。
该步骤S3至多蚀刻至缓冲层241,可根据制程能力选择,图9仅示意出了将第二无机绝缘层244、与第三无机绝缘层245蚀刻掉,而保留缓冲层241上的第一无机绝缘层243。
步骤S4、如图10所示,在欲形成外折区3的区域填涂有机材料,形成第三柔性有机层33。
具体地,所述有机材料优选有机光阻。
步骤S5、如图11所示,使用再一道光罩在欲形成外折区3的区域制备出金属连接线31,连接第一显示区2与第二显示区4内的金属布线层246。
步骤S6、如图12所示,在所述金属连接线31、金属布线层246、及第三无机绝缘层245上涂布覆盖第一柔性有机层247。
具体地,所述第一柔性有机层247的材质优选有机光阻。
步骤S7、如图13所示,在第一柔性有机层247上欲形成第一显示区2与第二显示区4的区域制备出阳极248。
所述阳极248与金属布线层246接触;所述半导体有源层242、金属布线层246、及阳极248构成阵列像素电路。
具体地,所述阳极248的材质优选ITO。
步骤S8、请参阅图5,在阳极248与第一柔性有机层247上制备出第二柔性有机层249。
所述第二柔性有机层249暴露出部分阳极248。
具体地,所述第二柔性有机层249的材质优选有机光阻。
上述方法在欲形成外折区3的区域将金属布线层246及其下侧的至少一层无机绝缘层蚀刻掉,之后填涂有机材料形成第三柔性有机层33,再制备出金属连接线31连接第一显示区2与第二显示区4内的金属布线层246,减少了外折区3内的金属走线而增加了外折区3内的柔性有机层,使得所述第一显示区2与第二显示区4能够通过外折区3实现向外弯折,减少柔性显示屏向外弯折时金属层发生脆裂剥落而导致整体显示不良的问题,从而降低柔性显示屏向外弯折时的受破坏程度,增加向外弯折时的可靠性,有效提升柔性显示屏的良率。
综上所述,本发明的柔性显示屏结构,在第一显示区与第二显示区之间设置外折区,三者共用一柔性基底,所述第一显示区与第二显示区内正常布设阵列像素电路,而外折区内仅布设用于连接第一显示区的阵列像素电路与第二显示区的阵列像素电路的金属连接线,并设置覆盖所述金属连接线的柔性有机层,减少了外折区内的金属走线,使得所述第一显示区与第二显示区能够通过外折区实现向外弯折,减少柔性显示屏向外弯折时金属层发生脆裂剥落而导致整体显示不良的问题,从而降低柔性显示屏向外弯折时的受破坏程度,增加向外弯折时的可靠性,有效提升柔性显示屏的良率。本发明的柔性显示屏结构的制作方法,在欲形成外折区的区域将金属布线层及其下侧的至少一层无机绝缘层蚀刻掉,之后填涂有机材料形成第三柔性有机层,再制备出金属连接线连接第一显示区与第二显示区内的金属布线层,减少了外折区内的金属走线,能够降低柔性显示屏向外弯折时的受破坏程度,增加向外弯折时的可靠性,有效提升柔性显示屏的良率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (10)

  1. 一种柔性显示屏结构,包括一柔性基底、设于所述柔性基底的第一显示区、设于所述柔性基底的第二显示区、以及设于所述柔性基底且连接所述第一显示区与所述第二显示区的外折区;
    所述第一显示区与所述第二显示区内均布设阵列像素电路,所述外折区包括用于连接所述第一显示区的所述阵列像素电路与所述第二显示区的所述阵列像素电路的金属连接线、以及覆盖所述金属连接线的柔性有机层;
    所述第一显示区与所述第二显示区通过所述外折区实现向外弯折。
  2. 如权利要求1所述的柔性显示屏结构,其中,所述第一显示区、所述第二显示区以及所述外折区位于所述柔性基底的同一侧。
  3. 如权利要求1所述的柔性显示屏结构,其中,所述外折区的柔性有机层包括多层,且分别覆盖在所述金属连接线的上下两侧。
  4. 如权利要求3所述的柔性显示屏结构,其中,所述第一显示区与第二显示区均包括:设在柔性基底上的缓冲层、设在缓冲层上的图案化的半导体有源层、依次层叠在半导体有源层与缓冲层上的多层无机绝缘层、设在最上层的无机绝缘层上并与半导体有源层接触的金属布线层、覆盖金属布线层的第一柔性有机层、设在第一柔性有机层上并与金属布线层接触的阳极、及设在阳极与第一柔性有机层上的第二柔性有机层;所述第二柔性有机层暴露出部分阳极;所述半导体有源层、金属布线层、及阳极构成所述阵列像素电路;
    所述外折区包括设在柔性基底上的缓冲层、设在缓冲层上方覆盖所述金属连接线下侧的第三柔性有机层、覆盖所述金属连接线上侧层叠的第一柔性有机层、及第二柔性有机层;所述金属连接线连接第一显示区与第二显示区内的金属布线层。
  5. 如权利要求4所述的柔性显示屏结构,其中,所述柔性基底的材质为聚酰亚胺。
  6. 如权利要求4所述的柔性显示屏结构,其中,所述柔性有机层的材质为有机光阻。
  7. 一种柔性显示屏结构的制作方法,包括如下步骤:
    步骤S1、提供一柔性基底,在所述柔性基底上先后涂布覆盖缓冲层、在欲形成第一显示区与第二显示区的区域制备图案化的半导体有源层、以及依次在半导体有源层与缓冲层上涂布层叠多层无机绝缘层;
    步骤S2、使用一道光罩制备出金属布线层,所述金属布线层与半导体有源层接触;
    步骤S3、使用另一道光罩在欲形成外折区的区域将金属布线层及其下侧的至少一层所述无机绝缘层蚀刻掉;
    步骤S4、在欲形成外折区的区域填涂有机材料,形成第三柔性有机层;
    步骤S5、使用再一道光罩在欲形成外折区的区域制备出金属连接线,连接第一显示区与第二显示区内的金属布线层;
    步骤S6、在所述金属连接线、金属布线层、及第三无机绝缘层上涂布覆盖第一柔性有机层;
    步骤S7、在第一柔性有机层上欲形成第一显示区与第二显示区的区域制备出阳极;
    所述阳极与金属布线层接触;所述半导体有源层、金属布线层、及阳极构成阵列像素电路;
    步骤S8、在阳极与第一柔性有机层上制备出第二柔性有机层;
    所述第二柔性有机层暴露出部分阳极。
  8. 如权利要求7所述的柔性显示屏结构的制作方法,其中,所述柔性基底的材质为聚酰亚胺。
  9. 如权利要求7所述的柔性显示屏结构的制作方法,其中,所述第一柔性有机层、第二柔性有机层及第三柔性有机层的材质为有机光阻。
  10. 一种柔性显示屏结构的制作方法,包括如下步骤:
    步骤S1、提供一柔性基底,在所述柔性基底上先后涂布覆盖缓冲层、在欲形成第一显示区与第二显示区的区域制备图案化的半导体有源层、以及依次在半导体有源层与缓冲层上涂布层叠多层无机绝缘层;
    步骤S2、使用一道光罩制备出金属布线层,所述金属布线层与半导体有源层接触;
    步骤S3、使用另一道光罩在欲形成外折区的区域将金属布线层及其下侧的至少一层所述无机绝缘层蚀刻掉;
    步骤S4、在欲形成外折区的区域填涂有机材料,形成第三柔性有机层;
    步骤S5、使用再一道光罩在欲形成外折区的区域制备出金属连接线,连接第一显示区与第二显示区内的金属布线层;
    步骤S6、在所述金属连接线、金属布线层、及第三无机绝缘层上涂布覆盖第一柔性有机层;
    步骤S7、在第一柔性有机层上欲形成第一显示区与第二显示区的区域制备出阳极;
    所述阳极与金属布线层接触;所述半导体有源层、金属布线层、及阳极构成阵列像素电路;
    步骤S8、在阳极与第一柔性有机层上制备出第二柔性有机层;
    所述第二柔性有机层暴露出部分阳极;
    其中,所述柔性基底的材质为聚酰亚胺;
    其中,所述第一柔性有机层、第二柔性有机层及第三柔性有机层的材质为有机光阻。
PCT/CN2016/113023 2016-12-15 2016-12-29 柔性显示屏结构及其制作方法 WO2018107531A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/505,115 US10446062B2 (en) 2016-12-15 2016-12-29 Flexible display screen structure and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611163661.1 2016-12-15
CN201611163661.1A CN106783917B (zh) 2016-12-15 2016-12-15 柔性显示屏结构及其制作方法

Publications (1)

Publication Number Publication Date
WO2018107531A1 true WO2018107531A1 (zh) 2018-06-21

Family

ID=58892798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113023 WO2018107531A1 (zh) 2016-12-15 2016-12-29 柔性显示屏结构及其制作方法

Country Status (3)

Country Link
US (1) US10446062B2 (zh)
CN (1) CN106783917B (zh)
WO (1) WO2018107531A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774657C1 (ru) * 2019-02-19 2022-06-21 Самсунг Электроникс Ко., Лтд. Складное электронное устройство, включающее в себя множество окон
EP3910693A4 (en) * 2019-01-07 2022-10-19 Samsung Display Co., Ltd. DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207134068U (zh) * 2017-08-31 2018-03-23 昆山国显光电有限公司 柔性显示面板和柔性显示装置
CN108172127A (zh) * 2017-12-15 2018-06-15 武汉华星光电半导体显示技术有限公司 柔性显示面板
CN108305958B (zh) * 2018-01-19 2020-02-28 昆山国显光电有限公司 一种柔性显示装置及其制备方法
CN108288637B (zh) * 2018-01-24 2021-03-02 武汉华星光电半导体显示技术有限公司 柔性显示面板的制作方法及柔性显示面板
CN108417604B (zh) * 2018-02-27 2020-08-04 上海天马微电子有限公司 显示面板和显示装置
KR102584517B1 (ko) * 2018-02-28 2023-10-05 삼성디스플레이 주식회사 디스플레이 장치
CN108493213A (zh) * 2018-03-13 2018-09-04 武汉华星光电半导体显示技术有限公司 显示屏组件及终端设备
US10720589B2 (en) * 2018-04-03 2020-07-21 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible display device and manufacturing method thereof
CN108550603B (zh) * 2018-04-24 2020-12-11 云谷(固安)科技有限公司 柔性显示面板、显示装置及其制作方法
CN109087894A (zh) * 2018-07-17 2018-12-25 武汉华星光电半导体显示技术有限公司 柔性显示器
CN110752230B (zh) * 2018-07-24 2023-04-07 京东方科技集团股份有限公司 柔性基板及其制作方法、显示装置
CN109065505B (zh) * 2018-08-10 2021-01-15 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN109243306B (zh) 2018-09-29 2022-04-08 上海中航光电子有限公司 显示面板、显示装置和可折叠显示装置
CN109616492B (zh) * 2018-10-26 2020-11-06 武汉华星光电半导体显示技术有限公司 柔性显示面板、柔性显示装置和柔性显示面板的制备方法
CN111128066B (zh) * 2018-10-31 2024-01-30 北京小米移动软件有限公司 终端屏幕、屏幕结构及其控制方法、装置和终端
CN109585511A (zh) * 2018-12-03 2019-04-05 武汉华星光电半导体显示技术有限公司 显示面板及其制造方法
CN109887956B (zh) * 2019-01-25 2021-04-27 武汉华星光电半导体显示技术有限公司 有机发光二极管柔性阵列基板
KR20200101220A (ko) 2019-02-19 2020-08-27 삼성전자주식회사 복수의 윈도우를 포함하는 폴더블 전자 장치
CN109920332B (zh) * 2019-02-28 2020-08-11 武汉华星光电半导体显示技术有限公司 柔性阵列基板、其制备方法及显示面板
CN109817647A (zh) * 2019-03-05 2019-05-28 京东方科技集团股份有限公司 一种阵列基板、显示装置以及阵列基板的制备方法
KR20210010717A (ko) * 2019-07-17 2021-01-28 삼성디스플레이 주식회사 표시 장치
US11329073B2 (en) * 2019-10-29 2022-05-10 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel
US11271057B2 (en) * 2020-02-12 2022-03-08 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Array substrate, manufacturing method thereof, and display panel
CN111415947B (zh) * 2020-03-27 2022-10-28 维沃移动通信有限公司 显示基板及其制造方法、显示面板和电子设备
CN111445797B (zh) * 2020-04-07 2023-06-30 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN112786668A (zh) * 2021-01-08 2021-05-11 武汉华星光电半导体显示技术有限公司 一种双面显示面板
KR20230166583A (ko) * 2022-05-31 2023-12-07 엘지디스플레이 주식회사 화소 회로 및 화소 회로를 포함하는 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140097408A1 (en) * 2012-10-08 2014-04-10 Samsung Display Co., Ltd. Flexible display apparatus
CN104934438A (zh) * 2015-04-24 2015-09-23 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN104950535A (zh) * 2015-07-07 2015-09-30 京东方科技集团股份有限公司 一种柔性阵列基板及显示装置
CN105845701A (zh) * 2015-01-16 2016-08-10 昆山工研院新型平板显示技术中心有限公司 一种柔性显示装置及其制作方法
CN106024839A (zh) * 2016-07-12 2016-10-12 武汉华星光电技术有限公司 折叠式oled显示器
CN106057855A (zh) * 2016-05-30 2016-10-26 武汉华星光电技术有限公司 可折叠显示装置及其驱动方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI643056B (zh) * 2013-07-22 2018-12-01 日商半導體能源研究所股份有限公司 發光裝置
KR102138753B1 (ko) * 2013-11-22 2020-07-29 삼성디스플레이 주식회사 접이식 표시장치
CN105702164B (zh) * 2016-03-30 2018-06-22 武汉华星光电技术有限公司 可折叠显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140097408A1 (en) * 2012-10-08 2014-04-10 Samsung Display Co., Ltd. Flexible display apparatus
CN105845701A (zh) * 2015-01-16 2016-08-10 昆山工研院新型平板显示技术中心有限公司 一种柔性显示装置及其制作方法
CN104934438A (zh) * 2015-04-24 2015-09-23 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN104950535A (zh) * 2015-07-07 2015-09-30 京东方科技集团股份有限公司 一种柔性阵列基板及显示装置
CN106057855A (zh) * 2016-05-30 2016-10-26 武汉华星光电技术有限公司 可折叠显示装置及其驱动方法
CN106024839A (zh) * 2016-07-12 2016-10-12 武汉华星光电技术有限公司 折叠式oled显示器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910693A4 (en) * 2019-01-07 2022-10-19 Samsung Display Co., Ltd. DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF
RU2774657C1 (ru) * 2019-02-19 2022-06-21 Самсунг Электроникс Ко., Лтд. Складное электронное устройство, включающее в себя множество окон

Also Published As

Publication number Publication date
CN106783917A (zh) 2017-05-31
US10446062B2 (en) 2019-10-15
CN106783917B (zh) 2018-11-20
US20190156708A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018107531A1 (zh) 柔性显示屏结构及其制作方法
US10573833B2 (en) Flexible display substrate and method for manufacturing the same, and flexible display device
US10847732B2 (en) Manufacturing method of flexible display panel and flexible display panel
US10510821B2 (en) Display device
US20230292577A1 (en) Display substrate and preparation method therefor, and display panel
TWI453516B (zh) 畫素結構及其製作方法
WO2020216259A1 (zh) 显示面板、显示装置及制造方法
WO2020113794A1 (zh) 显示面板及其制造方法
KR20160080310A (ko) 디스플레이 장치 및 그 제조방법
US11374074B2 (en) Display panel, display apparatus, and method of fabricating the display panel
US9461074B2 (en) Motherboard, array substrate and fabrication method thereof, and display device
CN105097948B (zh) 薄膜晶体管、阵列基板及其制作方法、显示面板和装置
CN110071124B (zh) 显示面板及其制作方法
WO2022062740A1 (zh) 显示基板及其制备方法、显示装置
WO2021217841A1 (zh) 柔性显示面板及其制作方法
WO2015027569A1 (zh) 阵列基板及其制作方法、显示装置
CN101231972A (zh) 柔性显示器件及其制造方法
WO2021022594A1 (zh) 阵列基板、显示面板及阵列基板的制作方法
WO2017202188A1 (zh) 显示基板的制作方法、显示基板和显示装置
WO2019237551A1 (zh) 显示面板
US11424311B2 (en) Flexible display panel having mask-etching metal connection line in display and non-display areas and fabricating method thereof
WO2011132353A1 (ja) 表示装置及びその製造方法
WO2022156341A1 (zh) 触控面板及其制备方法、显示触控装置
WO2023207760A1 (zh) 显示基板、显示面板和显示装置
WO2014172957A1 (zh) 电路板、其制作方法以及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924196

Country of ref document: EP

Kind code of ref document: A1