WO2020149328A1 - 一方向性電磁鋼板およびその製造方法 - Google Patents

一方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020149328A1
WO2020149328A1 PCT/JP2020/001156 JP2020001156W WO2020149328A1 WO 2020149328 A1 WO2020149328 A1 WO 2020149328A1 JP 2020001156 W JP2020001156 W JP 2020001156W WO 2020149328 A1 WO2020149328 A1 WO 2020149328A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
spinel
annealing
insulating film
steel plate
Prior art date
Application number
PCT/JP2020/001156
Other languages
English (en)
French (fr)
Inventor
藤井 浩康
聖記 竹林
義行 牛神
隆史 片岡
俊介 奥村
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to BR112021013601-0A priority Critical patent/BR112021013601A2/pt
Priority to US17/422,401 priority patent/US20220119958A1/en
Priority to KR1020217024421A priority patent/KR102557225B1/ko
Priority to JP2020566448A priority patent/JP7256405B2/ja
Priority to EP20740801.4A priority patent/EP3913098A4/en
Priority to RU2021123244A priority patent/RU2771282C1/ru
Priority to CN202080008991.1A priority patent/CN113302324B/zh
Publication of WO2020149328A1 publication Critical patent/WO2020149328A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/04General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering with simultaneous application of supersonic waves, magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the same.
  • the present application claims priority based on Japanese Patent Application No. 2019-005131 filed in Japan on January 16, 2019, the content of which is incorporated herein.
  • Unidirectional electrical steel sheet (unidirectional silicon steel sheet) is often used as an iron core material for transformers.
  • the transformer is continuously used for a long time from installation to disposal, and continues to generate energy loss. Therefore, as an iron core material, a material with less iron loss is required in order to reduce energy loss. Applying tension to the steel sheet is effective for reducing iron loss. Therefore, it has been attempted to reduce iron loss by forming a film made of a material having a smaller thermal expansion coefficient than that of a steel sheet at a high temperature and applying tension generated during cooling to the steel sheet due to the difference in the thermal expansion coefficient.
  • the film as described above there is a forsterite film formed by the reaction between the oxide on the surface of the steel sheet and the annealing separating agent containing MgO in the finish annealing step.
  • the forsterite film can give tension to the steel sheet and has excellent film adhesion.
  • the general method for producing unidirectional silicon steel sheet is to leave the forsterite film generated in the finish annealing process and then form the insulating film mainly containing phosphate.
  • Patent Document 1 in order to apply a tension to a steel sheet to reduce iron loss, a coating liquid mainly containing colloidal silica and a phosphate is applied on the forsterite film and baked.
  • the method of forming an insulating film by this is disclosed.
  • Patent Document 3 discloses a method in which alumina having a purity of 99% or more and a particle size of 100 mesh to 400 mesh is used as an annealing separator.
  • Patent Document 4 discloses a method using an annealing separator mainly composed of aluminum hydroxide.
  • Patent Document 5 discloses a method of using an annealing separator in which an alkali metal compound containing a boric acid component is added to alumina.
  • Patent Document 6 discloses a method in which an annealing separator containing 5 to 40% of hydrous silicate mineral powder and the balance being alumina.
  • Patent Document 7 discloses an annealing separator containing 0.2 to 20% of strontium and barium compounds, 2 to 30% of calcia and calcium hydroxide, and the balance of alumina, in addition to hydrous silicate mineral powder. The technique used is disclosed.
  • Patent Document 8 also discloses a method in which coarse-grained alumina having an average particle diameter of 1 ⁇ m to 50 ⁇ m is mixed with fine-grained alumina having an average particle diameter of 1 ⁇ m or less.
  • Patent Document 9 discloses an annealing separator containing 15 to 70 parts by weight of inert magnesia having a specific surface area of 0.5 to 10 m 2 /g calcinated at 1300° C. or more and pulverized with respect to 100 parts by weight of alumina. It is disclosed.
  • the decarburization annealed sheet is subjected to finish annealing by applying the above-mentioned technology, some effect can be recognized in preventing the formation of forsterite film. However, it was difficult to stably obtain a finish-annealed plate in which no forsterite film was formed and no oxide remained.
  • Patent Document 10 discloses a method for stably obtaining a finish-annealed plate in which a forsterite film is not formed and no oxide remains.
  • a powder made of alumina and unavoidable impurity elements having a calcination temperature of 900 to 1400° C. and a ⁇ ratio of 0.001 to 2.0 as an annealing separator, the residual oxide It is described that can be suppressed.
  • Patent Document 10 With the method disclosed in Patent Document 10, it is possible to stably obtain a finish-annealed plate in which a forsterite film is not formed and no oxide remains. However, the method of Patent Document 10 does not form a forsterite coating and makes the surface of the steel sheet smooth, so there is room for improvement in the adhesion of the insulating coating.
  • Patent Document 11 a tension-imparting insulating film and a unidirectional silicon steel plate are provided so that sufficient film adhesion can be obtained for a finish-annealed unidirectional silicon steel plate having no inorganic mineral film.
  • a method of forming an external oxidation type oxide film made of silica having a film thickness of 2 nm or more and 500 nm or less on the interface is disclosed.
  • the present invention is a unidirectional electrical steel sheet that does not have a forsterite-based coating on the surface of the steel sheet in order to significantly reduce iron loss, and the adhesion between the insulating coating and the steel sheet. It is an object of the present invention to provide an excellent grain-oriented electrical steel sheet and a method for manufacturing the same.
  • the forsterite coating is effective for imparting tension to the steel sheet, but on the other hand, it also has the aspect of reducing the iron loss improving effect due to the coating tension. Therefore, in order to further improve the iron loss, it is preferable to form an insulating film that imparts tension on a steel sheet that does not have a forsterite film on its surface. However, when there is no forsterite film on the surface of the steel sheet, the film adhesion of the insulating film decreases.
  • the present invention was made based on the above findings.
  • the gist of the present invention is as follows. (1) A steel plate, an insulating film disposed on the steel plate, and a spinel that is inserted into the insulating film at a part of the steel plate at an interface between the steel plate and the insulating film.
  • the grain-oriented electrical steel sheet, wherein the amount of the spinel is 5 to 50 mg/m 2 per unit area of the surface of the steel sheet.
  • the grain-oriented electrical steel sheet of the present invention does not have a forsterite coating on the steel sheet surface, excellent magnetic properties can be obtained. Further, since there is a spinel (convex spinel) formed by being fitted into the insulating film at the interface between the steel plate and the insulating film, the adhesion between the steel plate and the insulating film is excellent. Further, according to the method for producing a unidirectional electrical steel sheet of the present invention, it is possible to provide a unidirectional electrical steel sheet having excellent magnetic properties and coating adhesion.
  • FIG. 1 It is a schematic diagram which shows the grain-oriented electrical steel sheet which concerns on this embodiment. It is an example of a wide-angle X-ray diffraction chart of the unidirectional electrical steel sheet according to the present embodiment (a wide-angle X-ray diffraction chart (2 examples) showing that the product on the surface of the steel sheet is spinel). It is the example which observed the section of the grain-oriented electrical steel sheet concerning this embodiment with an optical microscope.
  • the grain-oriented electrical steel sheet 1 according to the present embodiment has a steel sheet 2, an insulating film 4 formed on the steel sheet 2, and a part of an interface between the steel sheet 2 and the insulating film 4. , And the spinel 3 formed by being fitted into the insulating film 4.
  • the annealing separator containing Al 2 O 3 and MgO is applied before the finish annealing, and the forsterite film is not formed between the steel plate 2 and the insulating film 4.
  • the spinel 3 is formed at a part of the interface between the steel plate 2 and the insulating film 4, no intermediate layer such as an oxide film is formed.
  • each of the steel plate 2, the spinel 3, and the insulating film 4 included in the unidirectional electromagnetic steel plate 1 according to this embodiment will be described in detail.
  • the components of the steel sheet 2 are not particularly limited as long as they are in the range applicable to a normal unidirectional electrical steel sheet.
  • a steel sheet having a chemical composition that can obtain preferable properties as a unidirectional electrical steel sheet after forming an insulating film for example, C: 0.085% or less, Si: 0.80 to 7.00%, Mn: 1 0.00% or less, Al: 0.065% or less, S: 0.013% or less, Cu: 0 to 0.80%, N: 0 to 0.012%, P: 0 to 0.5%, Ni:
  • Examples of the steel sheet include 0 to 1.0%, Sn: 0 to 0.3%, Sb: 0 to 0.3%, and the balance being Fe and impurities.
  • the above components of the steel plate 2 may be measured by a general steel analysis method.
  • the components of the steel sheet 2 may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • C and S may be measured by a combustion-infrared absorption method, and N may be measured by an inert gas melting-thermal conductivity method.
  • a part of the surface of the steel sheet 2 at the interface between the steel sheet 2 and the insulating film 4 is identified by a JCPDS (Joint Commitee on) which is identified from a diffraction pattern by a wide-angle X-ray diffraction method.
  • the Powder Diffraction Standards) number is 21-1152, and the spinel 3 represented by MgAl 2 O 4 is formed.
  • the spinel 3 is formed so as to adhere to the surface of the steel plate 2 and project from the steel plate 2 toward an insulating film 4 formed later.
  • the spinel 3 is formed so as to fit into the insulating film 4.
  • the fitting means that the spinel 3 enters the insulating film 4 from the interface between the insulating film 4 and the steel plate 2 in the plate thickness direction of the steel plate 2, as shown in FIG. 1.
  • the spinel 3 is not fitted on the steel sheet 2 side.
  • the spinel 3 thus formed may be referred to as “convex spinel”.
  • FIG. 2 is an example of a wide-angle X-ray diffraction chart of the grain-oriented electrical steel sheet according to the present embodiment.
  • the spinel 3 (convex spinel) is formed on the surface of the steel sheet 2 as described above. By doing so, the adhesion of the insulating film 4 can be enhanced.
  • the spinel 3 (convex spinel) needs to be present in an amount of 5 to 50 mg/m 2 per unit area of the surface of the steel plate 2.
  • the amount of spinel 3 (convex spinel) per unit area on the surface of the steel plate 2 exceeds 50 mg/m 2 , the spinel 3 is also fitted and formed inside the steel plate 2. In this case, iron loss increases (deteriorates). Therefore, the amount of spinel 3 (convex spinel) is set to 5 to 50 mg/m 2 per side of the steel sheet.
  • the spinel 3 is formed by applying a decarburization-annealed steel sheet with an annealing separator containing MgO and Al 2 O 3 containing a ⁇ phase and an ⁇ phase, and then performing finish annealing, as described below. It An intermediate steel plate having the steel plate 2 and the spinel 3 formed on a part of the steel plate 2 by finish annealing, and the content of the spinel 3 being 5 to 50 mg/m 2 is obtained. Further, by forming the insulating film 4 on this intermediate steel plate, the unidirectional electromagnetic steel plate 1 according to the present embodiment is obtained.
  • the content of the spinel 3 per unit area on the surface of the steel sheet 2 can be determined by the following method. First, the steel plate 2 having the spinel 3 and the insulating film 4 is immersed in a 40% sodium hydroxide aqueous solution heated to 85° C. for 20 minutes. Then, the surface of the steel sheet is wiped with a waste cloth under running water, and then thoroughly washed with running water. Finally, pass through a drier to dry the water. By these series of operations, the insulating film 4 is removed, and the steel plate 2 and the spinel 3 on the steel plate 2 remain.
  • the crystal phase is identified by the wide-angle X-ray diffraction method, and the existence of alumina is not confirmed, but it is confirmed that the spinel 3 is generated.
  • the residue on the surface of the steel sheet 2 was collected by a chemical dissolution method using a Br 2 /CH 3 OH solution, etc. After preparing a uniform solution in which is dissolved, the amount of Al 2 O 3 is calculated by the ICP method.
  • the steel plate 2 does not have an Al 2 O 3 component other than the spinel 3, the content of the spinel 3 per unit area of the surface of the steel plate 2 can be obtained by the above method.
  • the alumina caused an obstacle to the movement of the domain wall, which increased the iron loss, the presence of the alumina increased the amount of the insulating film, and the unevenness of the surface of the steel sheet 2.
  • the presence or absence of alumina can be determined by the wide-angle X-ray diffraction method as described above.
  • alumina is confirmed when the annealing separator mainly composed of alumina does not contain MgO or when the ratio of the weight of MgO to the total weight of Al 2 O 3 and MgO is less than 5%. This is the case. In such a case, since the alumina contained in the annealing separator seizes on the steel sheet, even if the steel sheet after finish annealing is washed with water or pickled, the alumina cannot be removed and the alumina remains on the steel sheet surface. To do.
  • the existence form of the spinel 3 can be determined from an optical microscope image of a cross section in the plate thickness direction. Specifically, the steel plate 2 having the spinel 3 and the insulating film 4 is immersed in a 40% concentration aqueous sodium hydroxide solution heated to 85° C. for 20 minutes. Then, the surface of the steel sheet is wiped with a waste cloth under running water, and then thoroughly washed with running water. Finally, pass through a drier to dry the water. By these series of operations, the insulating film 4 is removed, and the steel plate 2 and the spinel 3 on the steel plate 2 remain.
  • An observation sample is taken from the steel plate 2 having the spinel 3 so that the cross section in the plate thickness direction becomes the observation surface, and the observation surface is polished.
  • An image of the polished sample is collected with an optical microscope at a magnification of about 1000 times.
  • the steel plate 2 shows metal reflection
  • the spinel 3 does not show metal reflection and appears black. From the observed image, if the black-colored spinel 3 exists on the outer side of the steel plate 2 that exhibits metal reflection, it can be determined that the spinel 3 is formed by being inserted into (entering) the insulating film 4. ..
  • the insulating film 4 is formed on the steel plate 2.
  • the insulating film 4 is formed on the spinel 3 in that part. That is, the insulating film 4 is formed on the steel plate 2 and the spinel 3.
  • the insulating film 4 is an insulating film formed by applying and baking a coating liquid mainly containing phosphate and colloidal silica (SiO 2 ). With this insulating film 4, a strong surface tension can be applied to the steel plate 2 as the base material.
  • the unidirectional electrical steel sheet 1 according to this embodiment does not require a step for forming a SiO 2 film, and is therefore preferable in terms of productivity.
  • the unidirectional electrical steel sheet 1 according to this embodiment does not have a forsterite coating on the steel sheet 2.
  • the presence or absence of the forsterite coating on the steel sheet 2 can be confirmed by analyzing the surface of the steel sheet from which the insulating coating 4 has been removed by an X-ray diffraction method. Specifically, the obtained X-ray diffraction spectrum is collated with a PDF (Powder Diffraction File). JCPDS number: 34-189 may be used to determine the presence or absence of forsterite, for example.
  • JCPDS number: 34-189 may be used to determine the presence or absence of forsterite, for example.
  • no forsterite peak is detected even when the surface of the steel sheet 2 from which the insulating coating 4 has been removed is analyzed by the X-ray diffraction method.
  • the unidirectional electrical steel sheet 1 according to this embodiment is obtained by a manufacturing method including the following steps (A) to (D).
  • the steel sheet after the powder removal step is coated with a coating liquid containing colloidal silica, and baked onto the steel sheet.
  • Insulating Film Forming Step of Forming Insulating Film Each step will be described below.
  • the present inventors investigated the relationship between the annealing separator applied to the steel sheet after decarburization annealing prior to finish annealing, and the amount and existence form of spinel 3 formed on the surface of the steel sheet after finish annealing. Specifically, first, a large number of primary recrystallized decarburized annealed plates were prepared. Mixtures of various Al 2 O 3 and MgO having different crystal systems (annealing separating agents) were prepared into water slurries on these decarburized and annealed plates, applied, and dried. Then, the steel sheet after the application of the annealing separator was subjected to finish annealing in dry hydrogen at a soaking temperature of 1200° C.
  • the spinel 3 content was converted.
  • the existence form of the spinel 3 was judged by observing the cross section in the plate thickness direction of the steel plate 2 in which the insulating film 4 was dissolved and removed and then observing the magnification at 1000 times using an optical microscope.
  • a coating solution containing Al phosphate and colloidal silica as a main component is applied to the steel sheet from which the unreacted annealing separator after the final annealing has been washed away, and the steel sheet is baked at 835° C. for 30 seconds to give tension to the steel sheet.
  • the insulating film 4 was formed.
  • the steel sheet 2 on which the insulating coating 4 was formed was pressed against a cylinder so that the bending diameter was 20 mm, and was bent back to observe the peeling of the insulating coating 4 to evaluate the coating adhesion.
  • Al 2 O 3 used as the annealing separator is composed of a mixed phase containing a ⁇ phase and an ⁇ phase, the BET specific surface area of MgO is 5.0 m 2 /g or less, and the Al 2 O 3 and MgO are When the weight ratio of MgO to the total weight of and was 5 to 50%, the spinel 3 was convex with respect to the steel plate 2, and the adhesion of the insulating film 4 was good.
  • the annealing separating agent containing Al 2 O 3 and MgO is applied to the decarburized and annealed steel sheet.
  • Al 2 O 3 is composed of a mixed phase containing a ⁇ phase and an ⁇ phase
  • the BET specific surface area of MgO is 5.0 m 2 /g or less
  • Al 2 O 3 and MgO are included.
  • a decarburization annealing oxide layer containing SiO 2 is formed near the surface of the steel sheet after decarburization annealing.
  • This decarburized annealing oxide layer is softened and melted in the final annealing step after the application of the annealing separator.
  • the annealing separator contains Al 2 O 3 but does not contain MgO, a large part of SiO 2 generated near the surface of the steel sheet during decarburization annealing is adsorbed by Al 2 O 3 near the surface of the steel sheet.
  • the formation of mullite is suppressed.
  • the weight ratio of MgO to the total weight of Al 2 O 3 and MgO is less than 5%, the formation of mullite is not sufficiently suppressed.
  • the ratio of the weight of MgO to the total weight of Al 2 O 3 and MgO exceeds 50%, a forsterite film is formed.
  • Al 2 O 3 in the annealing separator is composed of a mixed phase containing a ⁇ phase and an ⁇ phase, SiO 2 generated near the surface of the steel sheet 2 and Al (solid solution Al) in the steel sheet 2 are formed. It is possible to effectively suppress mullite from reacting with.
  • Al 2 O 3 does not include a ⁇ phase, for example, is composed of a ⁇ phase and an ⁇ phase, although a certain effect can be obtained for preventing oxides from remaining on the surface of the steel sheet 2, thermally oxidized SiO 2 Unless an intermediate layer such as a film is formed, the adhesion between the steel plate 2 and the insulating film 4 becomes insufficient, which is not preferable.
  • the proportion of the ⁇ phase in Al 2 O 3 is preferably 5.0 to 50.0% in mass %. If there is a large amount of ⁇ phase, excessive hydration reaction proceeds during the preparation of the water slurry of the annealing separator, and the water contained in the hydrate of alumina is released during the finish annealing of the steel sheet coated with this water slurry. There is a concern that moisture may form an oxide.
  • the proportion of the ⁇ phase in Al 2 O 3 is 50.0% by mass or less, the hydration reaction of the annealing separator during the preparation of the water slurry is suppressed, and the oxide during finish annealing of the steel sheet coated with this water slurry is suppressed.
  • the BET specific surface area of MgO contained in the annealing separator is set to 5.0 m 2 /g or less. From the viewpoint of preventing the hydration reaction, the BET specific surface area of MgO is preferably 2.0 m 2 /g or less.
  • Al 2 O 3 in the annealing separator preferably has a BET specific surface area of 1 to 100 m 2 /g.
  • the BET specific surface area is less than 1 m 2 /g, Al 2 O 3 may be burned, which is not preferable. If the BET specific surface area of Al 2 O 3 is 1 m 2 /g or more, it is possible to further suppress the seizure of Al 2 O 3 .
  • the hydration reaction proceeds in the step of preparing the water slurry of the annealing separator, and the water contained in the hydrate of alumina is released during the finish annealing, so that the steel sheet It is not preferable because it may oxidize 2.
  • the BET specific surface area of Al 2 O 3 is 100 m 2 /g or less, the hydration reaction of the annealing separator during the preparation of the water slurry can be suppressed, and the oxidation of the steel sheet 2 during the finish annealing can be suppressed. ..
  • the weight ratio of MgO in the annealing separator can be determined by weighing Al 2 O 3 and MgO to prepare the annealing separator when preparing the mixture of Al 2 O 3 and MgO in the water slurry.
  • Al 2 O 3 containing the ⁇ -phase and ⁇ -phase as Al 2 O 3 in the preparation of the annealing separator, the Al 2 O 3 in the annealing separator, mixed phase comprising the ⁇ -phase and ⁇ -phase
  • the Al 2 O 3 in the annealing separator consists of a mixed phase containing a ⁇ phase and an ⁇ phase
  • the BET specific surface area of Al 2 O 3 and MgO contained in the annealing separator is a general method for evaluating the surface area of the inorganic mineral powder, and is obtained by the following method.
  • the BET specific surface area of Al 2 O 3 and MgO is obtained by a method of adsorbing an inert gas such as argon on the particle surface and measuring the pressure before and after the adsorption to measure the surface area.
  • the coating amount of the annealing separator is not limited, it is preferably 5 g/m 2 to 20 g/m 2 . If the coating amount is less than 5 g/m 2 , the steel sheets cannot be sufficiently covered, and seizure between the steel sheets may occur during finish annealing. When the applied amount of the annealing separator is 5 g/m 2 or more, it becomes possible to prevent seizure between the steel sheets during finish annealing. On the other hand, when the applied amount of the annealing separator is more than 20 g/m 2, the amount of water introduced between the steel sheets is large. It is feared that this moisture will be released during finish annealing and cause oxidation of the steel sheet. When the applied amount of the annealing separator is 20 g/m 2 or less, it becomes possible to suppress the oxidation of the steel sheet.
  • the method for obtaining the decarburized and annealed steel sheet prior to the step of applying the annealing separator is not particularly limited.
  • the molten steel adjusted to the required composition (chemical composition) is cast by an ordinary method (for example, continuous casting) to produce a slab for producing a grain-oriented electrical steel sheet.
  • this slab is subjected to normal hot rolling to obtain a hot rolled steel sheet, and this hot rolled steel sheet is wound to obtain a hot rolled coil.
  • the hot-rolled coil is rewound, hot-rolled sheet is annealed, and then cold-rolled once, or cold-rolled a plurality of times with intermediate annealing, to obtain the same thickness as the final product.
  • a decarburized and annealed steel sheet is obtained by subjecting the steel sheet after cold rolling to decarburization and annealing.
  • finish annealing is performed on the steel sheet coated with the annealing separating agent.
  • the finish annealing is preferably performed at an annealing temperature (soaking temperature) of 1200° C. to 1250° C. and a soaking time of 5 to 20 hours.
  • soaking temperature annealing temperature
  • spinel is formed on the steel sheet. If the annealing temperature is less than 1200° C., the impurity elements in the steel sheet, such as N, are not sufficiently purified, and inclusions may be formed to cause magnetic deterioration. If the annealing temperature is 1200° C.
  • the soaking temperature is higher than 1250°C, seizure between steel sheets may occur even if an annealing separator is used. When the soaking temperature is 1250° C. or lower, it becomes possible to further suppress the seizure between steel sheets. If the soaking time is less than 5 hours, the impurity elements in the steel sheet, such as N, may not be sufficiently purified, and inclusions may be formed to cause magnetic deterioration.
  • the soaking time is 5 hours or more, purification can be more sufficiently performed, formation of inclusions can be suppressed, and deterioration of magnetism can be suppressed.
  • the productivity is lowered, which is not preferable. If the soaking time is 20 hours or less, the productivity can be maintained.
  • ⁇ Powder removal process> In the powder removing step, after the finishing annealing step is completed, excess annealing separator such as unreacted annealing separator on the surface of the steel sheet is removed by washing with water or the like. If the excess annealing separator is not sufficiently removed during the finish annealing of the steel sheet surface without performing the powder removing step, the space factor is deteriorated and the performance as the iron core is deteriorated.
  • the insulating film is formed on the steel plate 2 by applying a coating solution containing colloidal silica to the steel plate 2 (intermediate steel plate having the steel plate 2 and the spinel 3 on the steel plate) after the powder removing step and baking. 4 is formed.
  • the coating liquid may further contain a phosphate such as aluminum phosphate and chromic acid.
  • the baking conditions are not limited, but for example, baking is performed at 835 to 870° C. for 20 to 100 seconds in an atmosphere containing at least either nitrogen 3 to 97% or hydrogen 3 to 97%.
  • the baking atmosphere may contain water vapor derived from the water contained in the coating liquid, which is generated when the coating liquid is dried and baked. Therefore, the baking atmosphere is not limited to a completely dry atmosphere, that is, a system containing no water.
  • the conditions in the example are one condition example adopted for confirming the feasibility and effects of the present invention, and the present invention is based on this one condition example. It is not limited.
  • the present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 The decarburization annealed plate (plate thickness: 0.23 mm) having the chemical composition shown in Table 1-1 and having been subjected to primary recrystallization was coated with an annealing separator and dried.
  • the components of the decarburized annealed plate were measured by using ICP-AES, by using the combustion-infrared absorption method for C and S, and by using the inert gas melting-thermal conductivity method for N.
  • the annealing separator, and a and MgO Al 2 O 3 the ratio of the weight of MgO based on the total weight of Al 2 O 3 and MgO, and a BET specific surface area of MgO so that the values listed in Table 2 The adjusted one was used.
  • Al 2 O 3 used as the annealing separator contained only the ⁇ phase and did not contain the ⁇ phase.
  • No. In b4 to b6, Al 2 O 3 used as the annealing separator contained the ⁇ phase and the ⁇ phase, and did not contain the ⁇ phase.
  • the steel sheet coated with the annealing separator was subjected to finish annealing at 1200° C. for 20 hours. Then, the steel sheet after the finish annealing was washed with water to wash away the unreacted annealing separator. A coating solution containing phosphate and colloidal silica is applied to the steel sheet after being washed with water, and baked at 850° C.
  • the Al 2 O 3 used in the annealing separator made from a mixed phase comprising the ⁇ -phase and ⁇ -phase, BET specific surface area of MgO is not more than 5.0 m 2 / g, Al 2
  • the weight ratio of MgO to the total weight of O 3 and MgO was 5 to 50%
  • the spinel was convex with respect to the steel plate and the amount was 5 to 50 mg/m 2 .
  • the adhesion of the insulating film was good and the iron loss was also excellent.
  • No. In b5 and b6, Al 2 O 3 in the annealing separator did not include the ⁇ phase.
  • Example 2 A unidirectional electrical steel sheet was manufactured under the same conditions as in Example 1. However, in this example, the ratio of the ⁇ phase in Al 2 O 3 and the coating amount of the annealing separator were also changed. A sample was taken of the obtained grain-oriented electrical steel sheet, and the amount of spinel formed between the steel sheet and the spinel was measured by the same method as in Example 1 to evaluate iron loss and coating adhesion. The results are shown in Table 3.
  • a unidirectional electrical steel sheet having excellent magnetic properties and excellent adhesion between the steel sheet and the insulating film can be obtained. Therefore, it has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この一方向性電磁鋼板は、鋼板と、前記鋼板上に配された絶縁皮膜と、前記鋼板と前記絶縁皮膜との界面で前記鋼板上の一部に、前記絶縁皮膜に嵌入して存在するスピネルと、を有し、前記スピネルの量が、前記鋼板の表面の単位面積あたり、5~50mg/mであることを特徴とする。

Description

一方向性電磁鋼板およびその製造方法
 本発明は、一方向性電磁鋼板およびその製造方法に関する。本願は、2019年1月16日に、日本に出願された特願2019-005131号に基づき優先権を主張し、その内容をここに援用する。
 一方向性電磁鋼板(一方向性ケイ素鋼板)は変圧器の鉄芯材料として多用されている。変圧器は、据付けから廃棄までの長期間にわたり連続的に使用され、エネルギー損失を発生し続ける。そのため、鉄芯材料として、エネルギー損失を少なくするために、鉄損の少ない材料が求められている。鉄損の低減には鋼板に張力を付与することが有効である。そのため、鋼板に比べ熱膨張係数の小さい材質からなる皮膜を高温で形成し、熱膨張係数の違いによって冷却時に発生する張力を鋼板に付与することによって、鉄損の低減が図られてきた。上記のような皮膜として、仕上げ焼鈍工程で鋼板表面の酸化物とMgOを含む焼鈍分離剤とが反応して生成するフォルステライト皮膜がある。フォルステライト皮膜は、鋼板に張力を与えることができ、さらに皮膜密着性にも優れている。
 そこで、仕上げ焼鈍工程で生じたフォルステライト皮膜を残した上で、リン酸塩を主体とする絶縁皮膜を形成することが一般的な一方向性ケイ素鋼板の製造方法となっている。
 例えば、特許文献1には、鋼板に張力を付与して鉄損を低減するため、フォルステライト皮膜の上にコロイド状シリカとリン酸塩とを主体とするコーティング液を鋼板表面に塗布し、焼き付けることによって絶縁皮膜を形成する方法が開示されている。
 しかしながら、近年、フォルステライト皮膜と地鉄との乱れた界面構造が、皮膜張力による鉄損改善効果をある程度、減殺させていることが明らかになってきた。そこで、例えば、特許文献2に開示されているように、仕上げ焼鈍工程で生じるフォルステライト皮膜を除去したり、更に鏡面化仕上げを行ったりした後、改めて張力皮膜を形成させることにより、更なる鉄損低減を試みる技術が提案されている。
 しかしながら、鋼板側に嵌入した形態で形成されたフォルステライト皮膜を除去するには多大の労力を要する。例えば、酸洗によって除去しようとした場合、フォルステライトはシリカ成分を含んでいるので、酸液にはふっ酸など、シリカ成分をも溶解できる強力な酸液を必要とし、その酸液中に長時間浸漬する必要がある。また、機械的表面研削等の手段で除去する場合、嵌入部分まで完全に除去するには10μm近く研削する必要があり、歩留まり上、採用しにくい。更には研削による皮膜除去法では研削の際に鋼板側への歪導入が不可避であり、磁気特性の劣化を招いてしまうという欠点もある。
 そのため、仕上げ焼鈍工程で生成したフォルステライトを焼鈍後に除去するという方法ではなく、仕上げ焼鈍中にフォルステライト等の無機鉱物質の皮膜を形成させない技術が種々検討された。その中で、仕上げ焼鈍後に酸化物が残留しにくい焼鈍分離剤としてアルミナが注目され、アルミナを主体とする焼鈍分離剤を用いた種々の技術が提案されている。
 例えば特許文献3には、純度99%以上、粒度100メッシュから400メッシュのアルミナを焼鈍分離剤として用いる方法が開示されている。また、特許文献4には、水酸化アルミニウムを主体とする焼鈍分離剤を用いる方法が開示されている。また、特許文献5にはアルミナにほう酸成分を含むアルカリ金属化合物を添加した焼鈍分離剤を用いる方法が開示されている。
 更に、特許文献6には含水ケイ酸塩鉱物粉末を5~40%含み、残部をアルミナとする焼鈍分離剤を用いる方法が開示されている。特許文献7には含水ケイ酸塩鉱物粉末の他にストロンチウムやバリウムの化合物を0.2~20%と、カルシアや水酸化カルシウムを2~30%含有し、残部をアルミナとする焼鈍分離剤を用いる技術が開示されている。更に、特許文献8には平均粒径が1μmから50μmの粗粒アルミナに平均粒径1μm以下の微粒アルミナを混合して使用する方法も開示されている。
 上述のアルミナを主体として開示された技術はアルミナの粒径に関し規定したものが多い。一方、特許文献9にはアルミナ100重量部に対し、1300℃以上で焼成しかつ粉砕した比表面積が0.5~10m/gの不活性マグネシアを15~70重量部添加した焼鈍分離剤が開示されている。
 上述の技術を適用し、脱炭焼鈍板に仕上げ焼鈍を施せば、フォルステライト皮膜の形成防止にはある程度の効果は認められる。しかしながら、フォルステライト皮膜が生成しておらず、かつ、酸化物の残留もない仕上げ焼鈍板を安定して得るのは困難であった。
 このような課題に対し、特許文献10には、フォルステライト皮膜が生成せず、酸化物の残留がない仕上げ焼鈍板を安定して得る方法が開示されている。特許文献10の技術では、焼成温度を900~1400℃として、γ率を0.001~2.0としたアルミナと不可避的不純物元素からなる粉末を焼鈍分離剤として用いることで、酸化物の残留が抑制できると記載されている。
 特許文献10に開示された方法であれば、フォルステライト皮膜が生成せず、酸化物の残留がない仕上げ焼鈍板を安定して得ることができる。しかしながら、特許文献10の方法ではフォルステライト皮膜が形成されず、鋼板表面が平滑になるので、絶縁皮膜の密着性において改善の余地があった。
 例えば特許文献11には、無機鉱物質皮膜のない仕上げ焼鈍済みの一方向性ケイ素鋼板に対し、十分な皮膜密着性を得ることができるように、張力付与性絶縁皮膜と一方向性ケイ素鋼板との界面に、膜厚が2nm以上500nm以下のシリカからなる外部酸化型酸化膜を形成する方法が開示されている。
 しかしながら、外部酸化型酸化膜を形成するには、絶縁皮膜形成前に熱処理等を行う必要があり、生産性が低下する。
日本国特開昭48-39338号公報 日本国特開昭49-96920号公報 米国特許第3785882号明細書 日本国特開昭56-65983号公報 日本国特公昭48-19050号公報 日本国特公昭56-3414号公報 日本国特公昭58-44152号公報 日本国特開平7-18457号公報 日本国特開昭59-96278号公報 日本国特許第4184809号公報 日本国特許第4473489号公報
 本発明は、上述した従来技術の現状に鑑み、鉄損を大幅に低減するために鋼板表面にフォルステライト系皮膜を有さない一方向性電磁鋼板であって、絶縁皮膜と鋼板との密着性に優れた一方向性電磁鋼板を提供すること、およびその製造方法を提供することを課題とする。
 上述したように、一方向性電磁鋼板において、フォルステライト皮膜は鋼板に張力を付与するためには有効であるものの、一方で、皮膜張力による鉄損改善効果を減殺させるという側面も有する。そのため、更なる鉄損の改善にはフォルステライト皮膜を表面に有さない鋼板に、張力を付与する絶縁皮膜を形成することが好ましい。しかしながら、鋼板の表面にフォルステライト皮膜がない場合、絶縁皮膜の皮膜密着性が低下する。
 本発明者らが外部酸化型酸化膜を形成する必要のない製造方法を適用することを前提として検討した結果、鋼板と皮膜との界面の鋼板上にスピネル(MgO・Al)を形成することで、フォルステライト皮膜がなく、かつ、鋼板と絶縁皮膜との間に酸化膜等の中間層がない場合でも、絶縁皮膜の密着性を向上させることができることを見出した。また、フォルステライト皮膜がなく、スピネルが存在する一方向性電磁鋼板を得る場合、仕上げ焼鈍時に用いる焼鈍分離剤を適切に選択することが重要であることを見出した。
 本発明は上記の知見に基づいてなされた。本発明の要旨は以下の通りである。
 (1)鋼板と、前記鋼板上に配された絶縁皮膜と、前記鋼板と前記絶縁皮膜との界面で前記鋼板上の一部に、前記絶縁皮膜に嵌入して存在するスピネルと、を有し、前記スピネルの量が、前記鋼板の表面の単位面積あたり、5~50mg/mである、一方向性電磁鋼板。
(2)(1)に記載の一方向性電磁鋼板の製造方法であって、脱炭焼鈍された鋼板に、AlとMgOとを含む焼鈍分離剤を塗布する焼鈍分離剤塗布工程と、前記鋼板に、仕上げ焼鈍を行う仕上げ焼鈍工程と、前記仕上げ焼鈍工程後の前記鋼板の表面の余分な焼鈍分離剤を除去する除粉工程と、前記除粉工程後の前記鋼板に、コロイダルシリカを含む塗布液を塗布し、焼き付けることで前記鋼板上に絶縁皮膜を形成する絶縁皮膜形成工程とを有し、前記Alが、κ相とα相とを含む混合相からなり、前記MgOのBET比表面積が5.0m/g以下であり、前記Alと前記MgOとの合計重量に対する前記MgOの重量の割合が、5~50%である、一方向性電磁鋼板の製造方法。
(3)前記Alにおける前記κ相の割合が、質量%で、5.0~50.0%である、(2)に記載の一方向性電磁鋼板の製造方法。
(4)前記焼鈍分離剤塗布工程における、前記焼鈍分離剤の塗布量が、5~20g/mである、(2)または(3)に記載の一方向性電磁鋼板の製造方法。
 本発明の一方向性電磁鋼板は、鋼板表面にフォルステライト皮膜を有さないので、優れた磁気特性が得られる。また、鋼板と絶縁皮膜との界面に絶縁皮膜に嵌入して形成されたスピネル(凸型スピネル)が存在するので、鋼板と絶縁皮膜との密着性に優れる。
 また、本発明の一方向性電磁鋼板の製造方法によれば、磁気特性と皮膜密着性とに優れる一方向性電磁鋼板を提供できる。
本実施形態に係る一方向性電磁鋼板を示す模式図である。 本実施形態に係る一方向性電磁鋼板の広角X線回折チャートの例(鋼板表面の生成物がスピネルである事を示す広角X線回折チャート(2例))である。 本実施形態に係る一方向性電磁鋼板の断面を光学顕微鏡で観察した例である。
 まず、本発明の一実施形態に係る一方向性電磁鋼板(本実施形態に係る一方向性電磁鋼板)およびその製造方法について図面を参照して説明する。
 図1に示されるように、本実施形態に係る一方向性電磁鋼板1は、鋼板2と、鋼板2上に形成された絶縁皮膜4と、鋼板2と絶縁皮膜4との界面の一部に、絶縁皮膜4に嵌入して形成されたスピネル3とを有している。本実施形態では、仕上げ焼鈍前にAlとMgOとを含む焼鈍分離剤を塗布しており、鋼板2と絶縁皮膜4との間にはフォルステライト皮膜が形成されない。また、鋼板2と絶縁皮膜4との間の界面の一部にはスピネル3が形成されているものの、酸化膜のような中間層は形成されていない。
 以下、本実施形態に係る一方向性電磁鋼板1が含む、鋼板2、スピネル3、絶縁皮膜4のそれぞれについて詳細に説明する。
 <鋼板>
 鋼板2の成分は、通常の一方向性電磁鋼板に適用される範囲であれば特に限定されない。絶縁皮膜を形成した後に、一方向性電磁鋼板としての好ましい特性が得られる化学組成を有する鋼板として、例えば、C:0.085%以下、Si:0.80~7.00%、Mn:1.00%以下、Al:0.065%以下、S:0.013%以下、Cu:0~0.80%、N:0~0.012%、P:0~0.5%、Ni:0~1.0%、Sn:0~0.3%、Sb:0~0.3%を含有し、残部がFeおよび不純物からなる鋼板が例示される。
 上記した鋼板2の成分は、鋼の一般的な分析方法によって測定すればよい。例えば、鋼板2の成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 <スピネル>
 一般には、特許文献10に記載されるように、鋼板の表面上には酸化物等が残留しないことが指向される。一方で、鋼板2の表面にフォルステライト皮膜が形成されず、かつ酸化物等も残留しない場合、鋼板2表面が平滑になるので、鋼板2と絶縁皮膜4との密着性が十分に得られないという課題があった。本発明者らは、絶縁皮膜4を形成する前の、フォルステライト皮膜が形成されていない鋼板2と絶縁皮膜4との密着性を向上させる方法について種々検討を行った。その結果、絶縁皮膜4を形成する前の鋼板2の表面にスピネル3を形成することで、鋼板2と絶縁皮膜4との密着性を向上させることができることを新たに見出した。具体的には以下の通りである。
 本実施形態に係る一方向性電磁鋼板1では、鋼板2と絶縁皮膜4との界面の鋼板2の表面上の一部に、広角X線回折法による回折パターンから同定されるJCPDS(Joint Committee on Powder Diffraction Standards)番号が21-1152であり、MgAlで表されるスピネル3が形成されている。このスピネル3は、図3に示されるように、鋼板2の表面に付着し、鋼板2から、後に形成される絶縁皮膜4に向かって突出するように形成される。その結果、絶縁皮膜4の形成後には、スピネル3が絶縁皮膜4に嵌入するような形態で形成される。本実施形態において、嵌入するとは、図1に示す通り、鋼板2の板厚方向において、スピネル3が絶縁皮膜4と鋼板2との界面から絶縁皮膜4に侵入した状態であることを示す。一方、図3に示されるように、本実施形態に係る一方向性電磁鋼板1では、スピネル3は、鋼板2側には嵌入していない。
 本実施形態では、このように形成されたスピネル3を「凸型スピネル」という場合がある。
 また、図2は、本実施形態に係る一方向性電磁鋼板の広角X線回折チャートの例である。
 本実施形態に係る一方向性電磁鋼板1では、鋼板2の表面が平滑でありかつフォルステライト皮膜が形成されていないものの、上述のように鋼板2の表面にスピネル3(凸型スピネル)が形成されることで、絶縁皮膜4の密着性を高めることができる。
 皮膜密着性向上効果を得るためには、スピネル3(凸型スピネル)を、鋼板2の表面の単位面積あたり、5~50mg/m存在させる必要がある。スピネル3(凸型スピネル)が形成されていても、含有量が5mg/m未満である場合、皮膜密着性向上効果が十分に得られない。一方、鋼板2の表面の単位面積あたりのスピネル3(凸型スピネル)量が50mg/mを超えると、スピネル3が鋼板2の内部側にも嵌入して形成されるようになる。この場合、鉄損が大きくなる(劣化する)。そのため、スピネル3(凸型スピネル)の量を、鋼板片面当たり5~50mg/mとする。
 スピネル3は、後述するように、脱炭焼鈍された鋼板に、MgOならびに、κ相およびα相を含むAlとを含む焼鈍分離剤を塗布し、その後仕上げ焼鈍を行うことによって形成される。仕上げ焼鈍によって鋼板2と、前記鋼板2上の一部に形成されたスピネル3とを有し、前記スピネル3の含有量が、5~50mg/mである中間鋼板が得られる。
 また、この中間鋼板に、絶縁皮膜4を形成することで、本実施形態に係る一方向性電磁鋼板1が得られる。
 鋼板2の表面の単位面積あたりのスピネル3の含有量については、以下の方法で求めることができる。
 まず、スピネル3と絶縁皮膜4を有する鋼板2を、85℃に加熱した濃度40%の水酸化ナトリウム水溶液中に20分間浸漬する。次いで、流水下でウェス(布)を用いて鋼板表面を払拭し、その後流水で十分に洗浄する。最後に乾燥機に通し、水分を乾燥させる。これらの一連の操作により、絶縁皮膜4は除去され、鋼板2と鋼板2上のスピネル3とが残存する。このスピネル3を有する鋼板2に対し、広角X線回折法により、結晶相を同定し、アルミナの存在は確認されず、スピネル3が生成していることを確認する。
 アルミナの存在が確認されず、スピネル3の生成が確認された条件については、Br/CHOH液等による化学的溶解法により、鋼板2の表面上の残留物を採取し、この残留物が溶解した均一溶液を作製した後、ICP法によってAl量を算出する。次いで、算出されたAl量に、(スピネルの分子量/Al分子量)を乗ずる、すなわち、「(MgO・Al)/Al=142.3/102=1.4」を乗ずる事で、スピネル量を求める事ができる。このスピネル量とスピネル量の算出に用いた鋼板2の面積から、鋼板2の表面の単位面積あたりのスピネル3の含有量を求めることができる。
 本発明では、鋼板2にはスピネル3以外には、Al成分は存在しないため、上記の方法で鋼板2の表面の単位面積あたりのスピネル3の含有量を求めることができる。
 広角X線回折法によりアルミナの存在が確認された条件では、このアルミナが磁壁移動の障害になることによる鉄損の増大、アルミナが存在することによる絶縁皮膜量の増加、鋼板2の表面の凹凸の増大による占積率の低下等による鉄損の増大が生じる。よって、鋼板2にはアルミナが存在しないことが好ましい。したがって、上記のICP分析に先立ち、アルミナの有無を確認することが好ましい。アルミナの有無は、上記のとおり、広角X線回折法によって行うことができる。
 なお、アルミナの存在が確認されるのは、アルミナを主体とする焼鈍分離剤がMgOを含まない場合、または、AlとMgOとの合計重量に対するMgOの重量の割合が5%未満の場合である。このような場合、焼鈍分離剤に含まれるアルミナが鋼板に焼き付くため、仕上げ焼鈍後の鋼板に対して水洗や酸洗を施しても、アルミナを除去することができず、鋼板表面にアルミナが残存する。
 また、スピネル3の存在形態(凸型であるかどうか)は板厚方向の断面の光学顕微鏡画像から判定できる。
 具体的には、スピネル3と絶縁皮膜4を有する鋼板2を、85℃に加熱した濃度40%の水酸化ナトリウム水溶液中に20分間浸漬する。次いで、流水下でウェス(布)を用いて鋼板表面を払拭し、その後流水で十分に洗浄する。最後に乾燥機に通し、水分を乾燥させる。これらの一連の操作により、絶縁皮膜4は除去され、鋼板2と鋼板2上のスピネル3とが残存する。このスピネル3を有する鋼板2から、板厚方向の断面が観察面となるように、観察試料を採取し、観察面に研磨を施す。研磨済みの試料について、光学顕微鏡を用いて、倍率1000倍程度で、画像を採取する。
 観察の際、金属反射を示すのが、鋼板2であり、金属反射を示さずかつ黒色に見えるのがスピネル3である。観察された画像から、黒色に見えるスピネル3が、金属反射を示す鋼板2の外側に存在していれば、スピネル3は絶縁皮膜4に嵌入して(侵入して)形成されていると判断できる。
 <絶縁皮膜>
 絶縁皮膜4は、鋼板2の上に形成される。鋼板2の表面の一部にスピネル3が形成されている場合には、その部分については、絶縁皮膜4はスピネル3の上に形成される。すなわち、絶縁皮膜4は、鋼板2およびスピネル3の上に形成される。
 絶縁皮膜4は、リン酸塩とコロイダルシリカ(SiO)とを主体とする塗布液を塗布して焼付けて形成される絶縁皮膜である。この絶縁皮膜4により、母材である鋼板2に強い面張力を付与することができる。
 本実施形態に係る一方向性電磁鋼板1では、鋼板2と絶縁皮膜4との間にSiOからなる非晶質酸化物皮膜(SiO皮膜)を形成しなくても、絶縁皮膜4の皮膜密着性に優れる。そのため、SiO皮膜を必要とせず、絶縁皮膜4は、鋼板2およびスピネル3の上に直接形成されていることを基本とする。本実施形態に係る一方向性電磁鋼板1では、SiO皮膜を形成するための工程を必要とないので、生産性の点でも好ましい。
 一方、絶縁皮膜4と鋼板2との間にSiOからなる非晶質酸化物皮膜(不図示)が形成されていてもスピネル3による絶縁皮膜4の皮膜密着性向上効果は損なわれない。SiO皮膜が形成される場合、SiO皮膜は、鋼板2の上に形成されるが、スピネル3上には形成されないので、スピネル3による絶縁皮膜4の密着性の向上は損なわれず、スピネル3が形成されていない部分での鋼板2と絶縁皮膜4との密着性が向上するので、鋼板2と絶縁皮膜4との密着性がさらに向上する。
 本実施形態に係る一方向性電磁鋼板1は、鋼板2上にフォルステライト系被膜を有していない。鋼板2上のフォルステライト系被膜の有無は、絶縁皮膜4が除去された鋼板の表面についてX線回折法により分析することで確認することができる。具体的には、得られたX線回折スペクトルをPDF(Powder Diffraction File)と照合する。フォルステライトの有無の判断には、例えば、JCPDS番号:34-189を用いればよい。

 本実施形態に係る一方向性電磁鋼板1は、絶縁皮膜4が除去された鋼板2の表面についてX線回折法により分析を行っても、フォルステライトのピークは検出されない。
 次に、本実施形態に係る一方向性電磁鋼板の製造方法について説明する。
 本実施形態に係る一方向性電磁鋼板1は、以下の(A)~(D)の工程を含む製造方法によって得られる。
(A)脱炭焼鈍された鋼板に、AlとMgOとを含む焼鈍分離剤を塗布する焼鈍分離剤塗布工程
(B)前記鋼板に、仕上げ焼鈍を行う仕上げ焼鈍工程
(C)前記仕上げ焼鈍後の前記鋼板の表面の未反応の焼鈍分離剤を除去する除粉工程
(D)前記除粉工程後の前記鋼板に、コロイダルシリカを含む塗布液を塗布し、焼き付けることで前記鋼板上に絶縁皮膜を形成する絶縁皮膜形成工程
 以下、各工程について説明する。
 <焼鈍分離剤塗布工程>
 本発明者らは、仕上げ焼鈍に先立って脱炭焼鈍後の鋼板に塗布する焼鈍分離剤と、仕上げ焼鈍後の鋼板の表面に形成されるスピネル3の量および存在形態との関係を調べた。具体的には、まず、一次再結晶済みの脱炭焼鈍板を多数用意した。これらの脱炭焼鈍板に、結晶系の異なる種々のAlとMgOとの混合物(焼鈍分離剤)を水スラリーに調製して、塗布し、乾燥させた。次いで、焼鈍分離剤塗布後の鋼板に、乾燥水素中で均熱温度1200℃、均熱時間20時間の仕上げ焼鈍を施した。仕上げ焼鈍後、これらの鋼板を水洗し、未反応の焼鈍分離剤を洗い流した。
 このようにして調製した鋼板2について、広角X線回折法により結晶相を同定し、アルミナの存在が確認されず、スピネル3の形成が確認された条件については、Br/CHOH液等による化学的溶解法により、鋼板2の表面上の残留物を採取し、この残留物が溶解した均一溶液を作製した後、ICP法によってAl量を算出し、Alの算出に用いた鋼板2の面積を基にこれをスピネル3含有量に換算した。
 また、スピネル3の存在形態は上述のように、絶縁皮膜4を溶解、除去した鋼板2の板厚方向断面を研磨した後、光学顕微鏡を用いて倍率を1000倍で観察して判定した。
 また、仕上げ焼鈍後の未反応の焼鈍分離剤を洗い流した鋼板に対し、リン酸Alとコロイダルシリカとを主成分とする塗布液を塗布し、835℃で30秒間焼き付け、鋼板に張力を付与する絶縁皮膜4を形成した。この絶縁皮膜4を形成した鋼板2を、曲げ直径が20mmとなるように円筒に押し付け、曲げ戻して、絶縁皮膜4の剥離を観察し、皮膜密着性を評価した。
 その結果、焼鈍分離剤で用いられるAlが、κ相とα相とを含む混合相からなり、MgOのBET比表面積が5.0m/g以下であり、AlとMgOとの合計重量に対するMgOの重量の割合が、5~50%である場合に、スピネル3が鋼板2に対し、凸型であって、絶縁皮膜4の密着性が良好であった。
 上記実験からも分かるように、焼鈍分離剤塗布工程では、脱炭焼鈍された鋼板に、AlとMgOとを含む焼鈍分離剤を塗布する。その際、この焼鈍分離剤は、Alが、κ相とα相とを含む混合相からなり、MgOのBET比表面積が5.0m/g以下であり、AlとMgOとの合計重量に対するMgOの重量の割合が、5~50%である必要がある。
 一方向性電磁鋼板はSiを多く含むので、脱炭焼鈍後の鋼板の表面近傍には、SiOを含む脱炭焼鈍酸化層が形成される。この脱炭焼鈍酸化層は焼鈍分離剤塗布後の仕上げ焼鈍工程において、軟化、溶融する。この際、焼鈍分離剤がAlを含み、MgOを含まない場合、鋼板の表面近傍において、脱炭焼鈍時に鋼板表面近傍に生成したSiOの大分部はAlに吸着されるものの、Alが吸着しきれなかったSiOの一部は、鋼板中のAl(固溶Al)と反応してムライト(3Al・2SiO)を形成する。この場合、十分なスピネルが形成されない。また、このムライトは、磁壁移動の障害となるので、一方向性電磁鋼板の磁気特性の劣化の原因となる。一方、焼鈍分離剤がMgOを含み、かつAlを含まない場合には、鋼板上にフォルステライト皮膜が形成される。
 焼鈍分離剤が、Alと所定の量のMgOとを含むことで、鋼板上にフォルステライト皮膜が形成されず、かつ、スピネルが形成される。また、ムライトの形成が抑制される。
 焼鈍分離剤において、AlとMgOとの合計重量に対するMgOの重量の割合が、5%未満では、ムライトの形成が十分に抑制されない。一方、AlとMgOとの合計重量に対するMgOの重量の割合が50%超では、フォルステライト皮膜が形成される。
 また、焼鈍分離剤中のAlが、κ相とα相とを含む混合相からなることで、鋼板2表面近傍に生成したSiOと、鋼板2中のAl(固溶Al)とが反応してムライトが生成することを効果的に抑制できる。Alが、κ相を含まない、例えばγ相とα相とからなる場合には、鋼板2表面における酸化物の残留防止に対しては一定の効果が得られるものの、熱酸化SiO皮膜等の中間層を形成しないと、鋼板2と絶縁皮膜4との密着性が不十分となるため好ましくない。
 上記効果をより確実に得る場合、Alにおけるκ相の割合は、質量%で5.0~50.0%であることが好ましい。κ相が多いと、焼鈍分離剤の水スラリー調製中に過度の水和反応が進行し、この水スラリーを塗布した鋼板の仕上げ焼鈍中にアルミナの水和物に含まれる水分が放出され、この水分により酸化物が形成されることが懸念される。Alにおけるκ相の割合が50.0質量%以下であれば、焼鈍分離剤の水スラリー調製時の水和反応が抑制され、この水スラリーを塗布した鋼板の仕上げ焼鈍中の酸化物の形成を抑制することが可能となる。また、焼鈍分離剤中のAlにおけるκ相が少ない場合、仕上げ焼鈍後に鋼板2の内部に、例えばムライト等の析出物が残留してしまうことが懸念される。析出物が残留すると、磁壁移動の障害となり,鉄損が劣化する可能性がある。Alにおけるκ相の割合が5.0質量%以上であれば、仕上げ焼鈍後の鋼板2の内部の析出物の残留を抑制することが可能である。
 また、焼鈍分離剤に含まれるMgOのBET比表面積が5.0m/g超である場合、焼鈍分離剤の水スラリーを調製する段階で水和反応が進み、マグネシアの水和物に含まれる水分が仕上げ焼鈍中に放出され、この水分が鋼板2を酸化させ、絶縁皮膜4の密着性の低下の原因となる。そのため、焼鈍分離剤に含まれるMgOのBET比表面積を5.0m/g以下とする。水和反応の防止の点では、MgOのBET比表面積は2.0m/g以下であることが好ましい。
 焼鈍分離剤中のAlは、BET比表面積が1~100m/gであることが好ましい。BET比表面積が1m/g未満である場合、Alが焼き付いてしまうおそれがあるため好ましくない。AlのBET比表面積が1m/g以上であれば、Alの焼き付きをより一層抑制することが可能である。一方、BET比表面積が100m/g超であると、焼鈍分離剤の水スラリーを調製する段階で水和反応が進み、アルミナの水和物に含まれる水分が仕上げ焼鈍中に放出され、鋼板2を酸化させてしまうおそれがあるため好ましくない。AlのBET比表面積が100m/g以下であれば、焼鈍分離剤の水スラリー調製時の水和反応が抑制され、仕上げ焼鈍時の鋼板2の酸化を抑制することが可能である。
 焼鈍分離剤中のMgOの重量の割合は、AlとMgOとの混合物を水スラリーに調製する際にAlとMgOを秤量して焼鈍分離剤を調製することによって決定できる。
 焼鈍分離剤を調製する際にAlとしてκ相とα相とを含むAlを用いれば、焼鈍分離剤中のAlが、κ相とα相とを含む混合相からなることになるが、焼鈍分離剤中のAlが、κ相とα相とを含む混合相からなるかどうかは、調製された焼鈍分離剤を用いて以下の方法で確認することもできる。
 焼鈍分離剤に用いるAlに対し、2θ=10~70°程度の範囲に渡り、X線回折チャートを採取する。そして、各回折線について面間隔を求める。次いで、求めた面間隔をJCPDSカードにおけるα相Alの面間隔およびκ相Alの面間隔と照合し、各結晶相の存在の有無を確認する。
 焼鈍分離剤に含まれるAl、MgOのBET比表面積は、無機鉱物質粉末の表面積を評価する一般的な手法であり、以下の方法で求められる。Al、MgOのBET比表面積は、アルゴン等の不活性気体を粒子表面に吸着させ、吸着前後の圧力を測定することで表面積を測定する方法によって求められる。
 焼鈍分離剤の塗布量は限定されないが、5g/m~20g/mであることが好ましい。塗布量が5g/m未満の場合には鋼板を十分に被覆する事ができず、仕上げ焼鈍中に鋼板同士の焼き付きが起こってしまう場合がある。焼鈍分離剤の塗布量が5g/m以上であれば、仕上げ焼鈍中の鋼板同士の焼き付きを防止することが可能となる。一方、焼鈍分離剤の塗布量が20g/mよりも多い場合、鋼板間に持ち込まれた水分量が多くなる。この水分は仕上げ焼鈍中に放出されて、鋼板の酸化の原因となることが懸念される。焼鈍分離剤の塗布量が20g/m以下であれば、鋼板の酸化を抑制することが可能となる。
 焼鈍分離剤塗布工程に先立って脱炭焼鈍された鋼板を得る方法については、特に限定されない。例えば、所要の成分組成(化学組成)に調整した溶鋼を、通常の方法(例えば、連続鋳造)で鋳造して一方向性電磁鋼板製造用のスラブを製造する。次いで、このスラブを通常の熱間圧延に供して、熱延鋼板とし、この熱延鋼板を巻き取って熱延コイルとする。続いて、熱延コイルを巻き戻して、熱延板焼鈍を施し、その後、1回の冷間圧延、または、中間焼鈍を挟む複数回の冷間圧延を施して、最終製品と同じ板厚の鋼板とする。冷間圧延後の鋼板に脱炭焼鈍を施すことによって脱炭焼鈍された鋼板が得られる。
 <仕上げ焼鈍工程>
 仕上げ焼鈍工程では、上記焼鈍分離剤を塗布した鋼板に、仕上げ焼鈍を行う。仕上げ焼鈍は、焼鈍温度(均熱温度)を1200℃~1250℃、均熱時間を5~20時間として行うことが好ましい。この仕上げ焼鈍によって鋼板上にスピネルが形成される。
 焼鈍温度が1200℃に満たないと、鋼板中の不純物元素、例えばNの純化が十分でなく、介在物が形成されて、磁性劣化を引き起こす可能性がある。焼鈍温度が1200℃以上であれば、純化がより十分に行われ、介在物の形成が抑制され、磁性劣化を抑制することが可能となる。一方、均熱温度が1250℃よりも高いと、焼鈍分離剤を使用していても鋼板同士の焼き付きが生じる可能性がある。均熱温度が1250℃以下であれば、鋼板同士の焼き付きをより一層抑制することが可能となる。
 均熱時間が5時間に満たないと、鋼板中の不純物元素、例えば、Nの純化が十分でなく、介在物が形成されて、磁性劣化を引き起こす可能性がある。均熱時間が5時間以上であれば、純化がより十分に行われ、介在物の形成が抑制され、磁性劣化を抑制することが可能となる。一方、均熱時間が20時間を超えると、生産性が低下するので好ましくない。均熱時間が20時間以下であれば、生産性を維持することが可能となる。
 <除粉工程>
 除粉工程では、仕上げ焼鈍工程の終了後、水洗等によって鋼板表面の未反応の焼鈍分離剤等の余分な焼鈍分離剤を除去する。
 除粉工程を行わず、鋼板表面の仕上げ焼鈍時に余分な焼鈍分離剤の除去が不十分な場合、占積率が悪化し、鉄芯としての性能が低下してしまう。
 <絶縁皮膜形成工程>
 絶縁皮膜形成工程では、除粉工程後の鋼板2(鋼板2と鋼板上のスピネル3と有する中間鋼板)に対し、コロイダルシリカを含む塗布液を塗布し、焼き付けることで前記鋼板2上に絶縁皮膜4を形成する。
 塗布液には、さらに、リン酸アルミニウムなどのリン酸塩、クロム酸を含んでもよい。焼き付け条件は限定されないが、例えば窒素3~97%、または水素3~97%、の少なくともいずれかを含有する雰囲気中において、835~870℃で20~100秒焼き付けることが例示される。なお、焼き付け雰囲気は、塗布液が含有する水分由来の、塗布液の乾燥、焼き付けの際に生じる水蒸気を含有しても良い。したがって、焼き付け雰囲気は、完全乾燥雰囲気すなわち水分を含まない系に限られない。
 <磁区制御工程>
 冷延板、脱炭焼鈍板、仕上げ焼鈍板、または、絶縁皮膜を形成した一方向性電磁鋼板に対して、必要に応じて、鉄損を低減するため、磁区制御を施してもよい。磁区制御方法は特定の方法に限定されないが、例えば、レーザー照射、電子ビーム照射、エッチング、歯車による溝形成法にて、磁区制御を施すことができる。これにより、より低鉄損の一方向性電磁鋼板が得られる。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
(実施例1)
 表1-1に示す化学組成を有する、一次再結晶済みの脱炭焼鈍板(板厚:0.23mm)に、焼鈍分離剤を塗布し、乾燥させた。脱炭焼鈍板の成分は、ICP-AESを用い、CおよびSについては燃焼-赤外線吸収法を用い、Nについては不活性ガス融解-熱伝導度法を用いて測定した。焼鈍分離剤には、AlとMgOとを含み、AlとMgOとの合計重量に対するMgOの重量の割合、およびMgOのBET比表面積を表2に記載の値になるように調整したものを用いた。また、焼鈍分離剤に用いたAlについては、2θ=10~70°程度の範囲に渡り、X線回折チャートを採取した。そして、各回折線について面間隔を求め、次いで、求めた面間隔をJCPDSカードにおけるα相Alの面間隔およびκ相Alの面間隔と照合し、各結晶相の存在の有無を確認した。その結果、表2に示すように、No.B1~B6については、焼鈍分離剤に用いたAlがκ相とα相とを含んでいた。一方、No.b1~b3では、焼鈍分離剤に用いたAlがα相のみを含み、κ相を含んでいなかった。また、No.b4~b6では、焼鈍分離剤に用いたAlがα相とγ相とを含み、κ相を含んでいなかった。
 次に、焼鈍分離剤を塗布した鋼板に対し、1200℃で20時間の仕上げ焼鈍を行った。
 続いて、仕上げ焼鈍後の鋼板を、水洗し、未反応の焼鈍分離剤を洗い流した。
 水洗後の鋼板に対し、リン酸塩とコロイダルシリカとを含む塗布液を塗布し、窒素90体積%、水素10体積%、(露点+30)℃の雰囲気下で、850℃で30秒の焼付けを行って、絶縁皮膜を形成させた。
 また、絶縁皮膜を形成させた鋼板(一方向性電磁鋼板)に対し、レーザを照射して磁区制御を行った。
 仕上げ焼鈍後の鋼板に対し、化学組成を分析した結果、表1-2の通りであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 このようにして得られた一方向性電磁鋼板からサンプルを採取し、以下の方法で鋼板と絶縁皮膜との間に形成されたスピネルについて、単位面積あたりのスピネル含有量を測定した。
 また、特性として、後述の方法で鉄損および皮膜密着性を評価した。
<単位面積あたりのスピネル含有量の測定>
 上記サンプルを、85℃に加熱した濃度40%の水酸化ナトリウム水溶液中に20分間浸漬した。次いで、流水下でウェス(布)を用いて鋼板表面を払拭し、その後流水で十分に洗浄した。最後に乾燥機に通し、水分を乾燥させた。これらの一連の操作により、絶縁皮膜を除去した。絶縁皮膜を除去した鋼板に対し、広角X線回折法により、結晶相を確認し、スピネルの生成の有無を確認した。その後、Br/CHOH液等による化学的溶解法により、鋼板表面上の残留物を採取し、この残留物が溶解した均一溶液を作製した後、ICP法によってAl量を算出した。算出されたAl量に、(スピネルの分子量/Al分子量)を乗じてスピネル量を求めた。このスピネル量とスピネル量の算出に用いたサンプルの面積から、単位面積あたりのスピネル含有量を求めた。
 また、スピネルが存在している例については、スピネルの存在形態を板厚方向の断面の光学顕微鏡画像から判定した。
 具体的には、絶縁皮膜を除去した鋼板から、板厚方向の断面が観察面となるように、観察試料を採取し、観察面に研磨を施した。研磨済みの試料について、光学顕微鏡を用いて、倍率1000倍程度で、画像を採取した。観察された画像から、黒色に見えるスピネルが、金属反射を示す鋼板の外側に存在していれば、絶縁皮膜に嵌入して(侵入して)形成されていると判断した。
 結果を表2に示す。
<鉄損>
 製造した一方向性電磁鋼板から採取した試料に対し、JIS C 2550-1:2000に基づき、エプスタイン試験により励磁磁束密度1.7T、周波数50Hzにおける鉄損W17/50(W/kg)を測定した。
 結果を表2に示す。
<皮膜密着性>
 製造した一方向性電磁鋼板から採取した試験片を、直径20mmの円筒に巻き付け(180°曲げ)、曲げ戻した時の皮膜残存面積率で、絶縁皮膜の皮膜密着性を評価した。絶縁皮膜の皮膜密着性の評価は、目視で絶縁皮膜の剥離の有無を判断した。鋼板から剥離しなかった皮膜の面積率(皮膜残存面積率)が95%以上をAA、90%以上95%未満をA、50%以上90%未満をB、50%未満をCとした。A以上(AまたはAA)であれば十分な皮膜の密着性が得られたと判断した。
 結果を表2に示す。なお、表2中、凸型スピネル量が「0mg/m」とは、広角X線回折法によりスピネルの生成が確認されなかったことを示す。
 表2から分かるように、焼鈍分離剤で用いられるAlが、κ相とα相とを含む混合相からなり、MgOのBET比表面積が5.0m/g以下であり、AlとMgOとの合計重量に対するMgOの重量の割合が、5~50%である場合に、スピネルが鋼板に対し、凸型でかつその量が5~50mg/mであった。その結果、絶縁皮膜の密着性が良好であり、鉄損にも優れていた。
 これに対し、No.b5、b6では焼鈍分離剤中のAlが、κ相を含んでいなかった。その結果、凸型スピネルが十分に生成されず、皮膜密着性が低かった。
 また、No.b1、b4では焼鈍分離剤中のAlが、κ相を含んでいなかった。また、焼鈍分離剤がMgOを含んでいなかった。これらの例では、焼鈍分離剤がMgOを含んでいないため、Alが鋼板に激しく焼き付いており、仕上げ焼鈍後に水洗しても鋼板表面にAlが残存した。その結果、Alによる凹凸の増大により皮膜密着性は良好であったものの、鉄損が劣っていた。
 また、No.b2、b3では、焼鈍分離剤中のAlが、κ相を含んでいなかった。これらの例では、スピネルが過剰に生成され、このスピネルは、絶縁皮膜だけでなく、鋼板にも嵌入していた。その結果、スピネルにより皮膜密着性は良好であったものの、鉄損が劣っていた。
Figure JPOXMLDOC01-appb-T000003
(実施例2)
 実施例1と同様の条件で、一方向性電磁鋼板を製造した。ただし、本実施例では、Al中のκ相の割合および焼鈍分離剤の塗布量も変化させた。
 得られた一方向性電磁鋼板に対し、サンプルを採取し、実施例1と同じ方法で鋼板とスピネルとの間に形成されたスピネル量を測定し、鉄損および皮膜密着性を評価した。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、これらの条件で得られた一方向性電磁鋼板は、鉄損が低く、皮膜密着性に優れることが分かった。
 本発明によれば、優れた磁気特性および鋼板と絶縁皮膜との密着性に優れる一方向性電磁鋼板が得られる。そのため、産業上の利用可能性が高い。
1 一方向性電磁鋼板
2 鋼板
3 スピネル(凸型スピネル)
4 絶縁皮膜

Claims (4)

  1.  鋼板と、
     前記鋼板上に配された絶縁皮膜と、
     前記鋼板と前記絶縁皮膜との界面で前記鋼板上の一部に、前記絶縁皮膜に嵌入して存在するスピネルと、
    を有し、
     前記スピネルの量が、前記鋼板の表面の単位面積あたり、5~50mg/mであることを特徴とする一方向性電磁鋼板。
  2.  請求項1に記載の一方向性電磁鋼板の製造方法であって、
     脱炭焼鈍された鋼板に、AlとMgOとを含む焼鈍分離剤を塗布する焼鈍分離剤塗布工程と、
     前記鋼板に、仕上げ焼鈍を行う仕上げ焼鈍工程と、
     前記仕上げ焼鈍工程後の前記鋼板の表面の余分な焼鈍分離剤を除去する除粉工程と、
     前記除粉工程後の前記鋼板に、コロイダルシリカを含む塗布液を塗布し、焼き付けることで前記鋼板上に絶縁皮膜を形成する絶縁皮膜形成工程と、
    を有し、
     前記Alが、κ相とα相とを含む混合相からなり、
     前記MgOのBET比表面積が5.0m/g以下であり、
     前記Alと前記MgOとの合計重量に対する前記MgOの重量の割合が、5~50%である、
    ことを特徴とする一方向性電磁鋼板の製造方法。
  3.  前記Alにおける前記κ相の割合が、質量%で、5.0~50.0%であることを特徴とする請求項2に記載の一方向性電磁鋼板の製造方法。
  4.  前記焼鈍分離剤塗布工程における、前記焼鈍分離剤の塗布量が、5~20g/mであることを特徴とする請求項2または3に記載の一方向性電磁鋼板の製造方法。
PCT/JP2020/001156 2019-01-16 2020-01-16 一方向性電磁鋼板およびその製造方法 WO2020149328A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112021013601-0A BR112021013601A2 (pt) 2019-01-16 2020-01-16 Chapa de aço elétrico com grão orientado, e, método para fabricar uma chapa de aço elétrico de grão orientado
US17/422,401 US20220119958A1 (en) 2019-01-16 2020-01-16 Grain-oriented electrical steel sheet and manufacturing method of the same
KR1020217024421A KR102557225B1 (ko) 2019-01-16 2020-01-16 일방향성 전자 강판 및 그 제조 방법
JP2020566448A JP7256405B2 (ja) 2019-01-16 2020-01-16 一方向性電磁鋼板およびその製造方法
EP20740801.4A EP3913098A4 (en) 2019-01-16 2020-01-16 CORNORATED ELECTROSTEEL SHEET AND METHOD OF PRODUCTION THEREOF
RU2021123244A RU2771282C1 (ru) 2019-01-16 2020-01-16 Лист электротехнической стали с ориентированной зеренной структурой и способ его изготовления
CN202080008991.1A CN113302324B (zh) 2019-01-16 2020-01-16 单方向性电磁钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019005131 2019-01-16
JP2019-005131 2019-01-16

Publications (1)

Publication Number Publication Date
WO2020149328A1 true WO2020149328A1 (ja) 2020-07-23

Family

ID=71613889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001156 WO2020149328A1 (ja) 2019-01-16 2020-01-16 一方向性電磁鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US20220119958A1 (ja)
EP (1) EP3913098A4 (ja)
JP (1) JP7256405B2 (ja)
KR (1) KR102557225B1 (ja)
CN (1) CN113302324B (ja)
BR (1) BR112021013601A2 (ja)
RU (1) RU2771282C1 (ja)
WO (1) WO2020149328A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS4819050B1 (ja) 1969-10-03 1973-06-11
US3785882A (en) 1970-12-21 1974-01-15 Armco Steel Corp Cube-on-edge oriented silicon-iron having improved magnetic properties and method for making same
JPS4996920A (ja) 1973-01-22 1974-09-13
JPS563414B2 (ja) 1976-08-13 1981-01-24
JPS5665983A (en) 1979-10-15 1981-06-04 Allegheny Ludlum Ind Inc Silicon steel
JPS5844152B2 (ja) 1978-12-27 1983-10-01 川崎製鉄株式会社 下地被膜をほとんど有しない方向性珪素鋼板の製造方法
JPS5996278A (ja) 1982-11-25 1984-06-02 Kawasaki Steel Corp 焼鈍分離剤
JPH0718457A (ja) 1993-07-01 1995-01-20 Nippon Steel Corp 方向性珪素鋼板用焼鈍分離剤
JPH08134660A (ja) * 1994-11-02 1996-05-28 Nippon Steel Corp 極めて低い鉄損を有する一方向性電磁鋼板
WO2002088403A1 (fr) * 2001-04-23 2002-11-07 Nippon Steel Corporation Procede de production de tole d'acier au silicium unidirectionnel exempte de pellicule de revetement minerale inorganique
JP4473489B2 (ja) 2002-04-25 2010-06-02 新日本製鐵株式会社 一方向性珪素鋼板とその製造方法
WO2015064472A1 (ja) * 2013-10-30 2015-05-07 Jfeスチール株式会社 磁気特性および被膜密着性に優れる方向性電磁鋼板
JP2019005131A (ja) 2017-06-23 2019-01-17 株式会社三共 遊技機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563414A (en) 1979-06-22 1981-01-14 Mitsubishi Electric Corp Sound recorder/reproducer
JPS5844152A (ja) 1981-09-10 1983-03-15 日本設備コア株式会社 プラスチツク製タイル
JPS6017261A (ja) * 1983-07-11 1985-01-29 Nissan Motor Co Ltd ペ−パライザ
DE69218511T2 (de) * 1991-07-10 1997-11-06 Nippon Steel Corp Kornorientiertes Siliziumstahlblech mit ausgezeichneten primären Glasfilmeigenschaften
US7942982B2 (en) * 2006-11-22 2011-05-17 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in coating adhesion and method of producing the same
EP2377961B1 (en) * 2008-12-16 2020-04-29 Nippon Steel Corporation Grain-oriented electrical steel sheet, and manufacturing method thereof
EP3048180B2 (en) * 2013-09-19 2022-01-05 JFE Steel Corporation Grain-oriented electrical steel sheet, and method for manufacturing same
JP7040888B2 (ja) * 2016-10-12 2022-03-23 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の張力絶縁被膜形成方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819050B1 (ja) 1969-10-03 1973-06-11
US3785882A (en) 1970-12-21 1974-01-15 Armco Steel Corp Cube-on-edge oriented silicon-iron having improved magnetic properties and method for making same
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS4996920A (ja) 1973-01-22 1974-09-13
JPS563414B2 (ja) 1976-08-13 1981-01-24
JPS5844152B2 (ja) 1978-12-27 1983-10-01 川崎製鉄株式会社 下地被膜をほとんど有しない方向性珪素鋼板の製造方法
JPS5665983A (en) 1979-10-15 1981-06-04 Allegheny Ludlum Ind Inc Silicon steel
JPS5996278A (ja) 1982-11-25 1984-06-02 Kawasaki Steel Corp 焼鈍分離剤
JPH0718457A (ja) 1993-07-01 1995-01-20 Nippon Steel Corp 方向性珪素鋼板用焼鈍分離剤
JPH08134660A (ja) * 1994-11-02 1996-05-28 Nippon Steel Corp 極めて低い鉄損を有する一方向性電磁鋼板
WO2002088403A1 (fr) * 2001-04-23 2002-11-07 Nippon Steel Corporation Procede de production de tole d'acier au silicium unidirectionnel exempte de pellicule de revetement minerale inorganique
JP4184809B2 (ja) 2001-04-23 2008-11-19 新日本製鐵株式会社 一方向性珪素鋼板の製造方法
JP4473489B2 (ja) 2002-04-25 2010-06-02 新日本製鐵株式会社 一方向性珪素鋼板とその製造方法
WO2015064472A1 (ja) * 2013-10-30 2015-05-07 Jfeスチール株式会社 磁気特性および被膜密着性に優れる方向性電磁鋼板
JP2019005131A (ja) 2017-06-23 2019-01-17 株式会社三共 遊技機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJII, H ET AL.: "Glass Film Structure of Grain- Oriented Silicon Steel Using Aluminum Nitride as an Inhibitor", JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, vol. 3, no. 2, 30 April 1994 (1994-04-30), pages 214 - 217, XP000470001 *
See also references of EP3913098A4

Also Published As

Publication number Publication date
KR20210110682A (ko) 2021-09-08
EP3913098A1 (en) 2021-11-24
JPWO2020149328A1 (ja) 2021-11-25
BR112021013601A2 (pt) 2021-10-05
RU2771282C1 (ru) 2022-04-29
EP3913098A4 (en) 2022-09-28
JP7256405B2 (ja) 2023-04-12
CN113302324B (zh) 2023-06-02
CN113302324A (zh) 2021-08-24
KR102557225B1 (ko) 2023-07-19
US20220119958A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
JP6547835B2 (ja) 方向性電磁鋼板、及び方向性電磁鋼板の製造方法
KR102393831B1 (ko) 방향성 전자 강판
KR102579758B1 (ko) 방향성 전자 강판의 제조 방법
WO2020149347A1 (ja) 方向性電磁鋼板の製造方法
JPWO2020149351A1 (ja) 方向性電磁鋼板の製造方法
CN113272459B (zh) 方向性电磁钢板的制造方法
WO2020149328A1 (ja) 一方向性電磁鋼板およびその製造方法
JP7196622B2 (ja) 方向性電磁鋼板及び方向性電磁鋼板の製造方法
RU2727435C1 (ru) Лист анизотропной электротехнической стали
JP5482117B2 (ja) 薄手方向性電磁鋼板及び張力絶縁膜被覆薄手方向性電磁鋼板
JP7207436B2 (ja) 方向性電磁鋼板
JPWO2020149326A1 (ja) 方向性電磁鋼板の製造方法
KR20210110681A (ko) 포르스테라이트 피막을 갖지 않는 절연 피막 밀착성이 우수한 방향성 전자 강판
RU2774384C1 (ru) Лист анизотропной электротехнической стали, промежуточный стальной лист для листа анизотропной электротехнической стали и способы их производства
JP7230929B2 (ja) 方向性電磁鋼板の製造方法
WO2022215710A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
WO2023195517A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
CN117157427A (zh) 方向性电磁钢板及绝缘被膜的形成方法
CN117425748A (zh) 取向性电工钢板
JPWO2020149336A1 (ja) 方向性電磁鋼板の製造方法
BR112021013529B1 (pt) Método para produzir uma chapa de aço elétrico de grão orientado
KR20240067263A (ko) 방향성 전자 강판, 방향성 전자 강판용의 중간 강판 및 그것들의 제조 방법
JPH10110249A (ja) 方向性電磁鋼板およびその製造方法
JP2003171720A (ja) 被膜特性および電磁特性に優れた方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021013601

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217024421

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020740801

Country of ref document: EP

Effective date: 20210816

ENP Entry into the national phase

Ref document number: 112021013601

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210709