WO2020149347A1 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2020149347A1
WO2020149347A1 PCT/JP2020/001193 JP2020001193W WO2020149347A1 WO 2020149347 A1 WO2020149347 A1 WO 2020149347A1 JP 2020001193 W JP2020001193 W JP 2020001193W WO 2020149347 A1 WO2020149347 A1 WO 2020149347A1
Authority
WO
WIPO (PCT)
Prior art keywords
annealing
steel sheet
sheet
annealed
rolled sheet
Prior art date
Application number
PCT/JP2020/001193
Other languages
English (en)
French (fr)
Inventor
真介 高谷
俊介 奥村
翔二 長野
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to BR112021013600-2A priority Critical patent/BR112021013600A2/pt
Priority to EP20741050.7A priority patent/EP3913108A4/en
Priority to JP2020566465A priority patent/JP7163976B2/ja
Priority to KR1020217024531A priority patent/KR102545563B1/ko
Priority to US17/421,774 priority patent/US20220090240A1/en
Priority to CN202080008982.2A priority patent/CN113302336B/zh
Priority to RU2021123227A priority patent/RU2767365C1/ru
Publication of WO2020149347A1 publication Critical patent/WO2020149347A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties, which is suitable as an iron core material for a transformer.
  • the present application claims priority based on Japanese Patent Application No. 2019-5083 filed in Japan on January 16, 2019, the content of which is incorporated herein.
  • Oriented electrical steel sheets are mainly used for transformers.
  • the transformer is continuously excited for a long period of time from being installed to being discarded, and continues to generate energy loss.Therefore, energy loss when magnetized by alternating current, that is, iron loss, It is the main indicator that determines performance.
  • a grain-oriented electrical steel sheet contains 7 mass% or less of Si and has a texture controlled so that the crystal orientation of each crystal grain matches the ⁇ 110 ⁇ 001> orientation called the Goss orientation. It has a base material steel plate and an insulating coating for imparting insulation to the base material steel plate.
  • applying tension to the base steel sheet is an effective method for reducing iron loss.
  • it is effective to form a coating film made of a material having a smaller thermal expansion coefficient than the base material steel plate on the surface of the base material steel plate at a high temperature.
  • the forsterite coating produced by the reaction of the oxide present on the surface of the base steel sheet with the annealing separator can give tension to the base steel sheet. Since there are irregularities at the interface between the forsterite-based coating and the base steel sheet, the forsterite-based coating also functions as an intermediate coating that enhances the adhesion between the insulating coating and the base steel sheet due to the anchor effect due to this irregularity. To do.
  • Patent Document 1 for forming an insulating coating by baking a coating liquid mainly containing colloidal silica and phosphate has a large effect of applying tension to the base steel sheet and is effective in reducing iron loss.
  • a general method for producing a grain-oriented electrical steel sheet is to apply an insulating coating mainly containing phosphate while leaving the forsterite coating film generated in the finish annealing step.
  • an insulating coating capable of giving not only an insulating property to the base steel sheet but also a tension is referred to as a tension insulating coating.
  • Patent Documents 2 to 5 by controlling the dew point of the atmosphere of decarburization annealing and using alumina as an annealing separator, the surface of the base steel sheet without forming a forsterite coating film in finish annealing.
  • a technique for smoothing is disclosed.
  • Patent Document 6 by using an annealing separating agent containing 5% by weight or more and 30% by weight or less of magnesia with respect to the total weight of alumina and magnesia as an annealing separating agent, forsterite is formed on the surface of the base steel sheet.
  • an annealing separating agent containing 5% by weight or more and 30% by weight or less of magnesia with respect to the total weight of alumina and magnesia as an annealing separating agent, forsterite is formed on the surface of the base steel sheet.
  • the present invention has been made in view of the above circumstances, and an object thereof is to reduce the core loss of the grain-oriented electrical steel sheet in which the forsterite-based coating does not exist between the base material steel sheet and the tension insulating coating as compared with the conventional one. ..
  • the present inventors obtained a sufficient iron loss improving effect when producing a grain-oriented electrical steel sheet in which there is no forsterite coating between the base material steel sheet and the tension insulating coating.
  • An intensive study was conducted on the cause of the failure.
  • a large number of needle-shaped inclusions were present in the surface layer region of the base material steel sheet.
  • the present inventors presumed that the needle-shaped inclusions are the cause of hindering the movement of the domain wall, that is, the cause of adversely affecting iron loss.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • a method of manufacturing a grain-oriented electrical steel sheet according to an aspect of the present invention includes a step of obtaining a hot-rolled sheet by hot rolling a slab, and an annealing by performing hot-rolled sheet annealing on the hot-rolled sheet.
  • the decarburizing annealed plate has a step of applying an annealing separating agent containing alumina as a main component, and a step of applying a finish annealing to the decarburizing annealed sheet coated with the annealing separating agent, wherein the annealing separating agent is 28 to 50% by mass of MgO, and the coating amount of the annealing separator is 6.0 to 14.0 g/m 2 per side of the decarburized and annealed plate.
  • the alumina may have a BET specific surface area of 3.0 to 10.0 m 2 /g.
  • the slab has a chemical composition of, in mass%, C: 0.085% or less, Si: 0.80 to 7 0.00%, Mn: 0.05 to 1.00%, acid-soluble Al: 0.010 to 0.065%, S: 0.01% or less, N: 0.004% to 0.012%, B: 0.0005 to 0.0080%, P: 0 to 0.50%, Ni: 0 to 1.00%, Sn: 0 to 0.30%, Sb: 0 to 0.30%, Cu: 0 to 0 40%, Cr:0 to 0.30%, Bi:0 to 0.01%, and the balance may be Fe and impurities.
  • FIG. 3 is a phase diagram of a ternary system of Al 2 O 3 —MgO—SiO 2 . It is a figure which shows the relationship between the amount of MgO of an annealing separator, and the number of mullite. It is a figure which shows the relationship between the amount of MgO of an annealing separator, and iron loss ( W17/50 ). It is a figure which shows the relationship between the annealing separation agent application amount per one surface, and the number of mullites.
  • a method for manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention includes a hot rolling step, a hot rolled sheet annealing step, a cold rolling step, and a decarburizing annealing step. And an annealing separator application step and a final annealing step.
  • the hot rolling step is a step of hot rolling a slab having a predetermined chemical composition to obtain a hot rolled sheet.
  • the hot rolled sheet annealing step is a step of obtaining an annealed hot rolled sheet by performing hot rolled sheet annealing on the hot rolled sheet.
  • the cold rolling step is a step of obtaining a cold rolled sheet by cold rolling the annealed hot rolled sheet.
  • the decarburization annealing step is a step of obtaining a decarburized annealed sheet by subjecting the cold rolled sheet to decarburization annealing.
  • the annealing separating agent applying step is a step of applying an annealing separating agent containing alumina as a main component to the decarburized annealing plate.
  • the finish annealing step is a step of performing finish annealing on the decarburized annealed plate coated with the annealing separator.
  • the annealing separator having alumina as a main component contains 28 to 50% by mass of MgO.
  • the coating amount of the annealing separator is 6.0 to 14.0 g/m 2 per side of the decarburized and annealed plate.
  • the present inventors have found that one of the reasons why the iron loss cannot be sufficiently reduced is that the magnetic properties are adversely affected during finish annealing. I thought that it might be due to the formation of inclusions that affect Therefore, the present inventors took a sample from a grain-oriented electrical steel sheet having a large iron loss (inferior) so that a cross section (C cross section) orthogonal to the rolling direction of the base steel sheet was exposed, and the sample cross section was taken. It was observed with an optical microscope.
  • the surface layer region of the base steel sheet appearing in the C section more specifically, from the base steel sheet surface to the inner side of the base steel sheet in the thickness direction of the base steel sheet. It was found that a large number of needle-shaped inclusions were present in a region having a length of 10 ⁇ m. Furthermore, it was found that these needle-like inclusions were mullite (3Al 2 O 3 .2SiO 2 ).
  • decarburization annealing is performed before finish annealing for the purpose of removing C (carbon) contained in the cold rolled sheet.
  • C contained in the cold rolled sheet is removed, and at the same time, an oxide film of SiO 2 is formed on the surface of the cold rolled sheet.
  • a steel sheet obtained by such decarburization annealing, that is, a cold rolled sheet from which C is removed and an SiO 2 oxide film is formed on the surface is called a decarburization annealed sheet.
  • the decarburization annealed sheet having an SiO 2 oxide film is used as an annealing separation agent containing alumina as a main component. Apply. Then, the decarburization annealing plate coated with the annealing separator is subjected to finish annealing.
  • mullite is a composite oxide of alumina (Al 2 O 3 ) and SiO 2 , it is generated due to insufficient removal of SiO 2 formed by decarburization annealing during finish annealing. It is thought that it survived.
  • SiO 2 formed by decarburization annealing is adsorbed and removed by alumina having a high BET specific surface area during finish annealing, and is removed by washing and removing the annealing separator. Therefore, the reason why the SiO 2 formed by decarburization annealing is not sufficiently removed is considered to be the insufficient amount of the annealing separator applied.
  • the inventors of the present invention have the technical concept of suppressing the formation of mullite by adjusting the component composition and the coating amount of the annealing separator, and can suppress the formation of mullite.
  • the amount was carefully studied. As a result, they have found that mullite formation can be suppressed by adding MgO to the annealing separator containing alumina as a main component at a specific ratio and controlling the coating amount of the annealing separator within a specific range.
  • FIG. 1 shows a ternary phase diagram of Al 2 O 3 (alumina)-MgO-SiO 2 .
  • alumina Al 2 O 3
  • MgO alumina
  • FIG. 1 shows a ternary phase diagram of Al 2 O 3 (alumina)-MgO-SiO 2 .
  • the present inventors have found that the amount of MgO added to the annealing separator having alumina as a main component and the number of mullites generated in the surface layer region of the base steel sheet (steel sheet obtained after finishing annealing of a decarburized annealed sheet). I investigated the relationship with.
  • a decarburized annealed plate having a plate thickness of 0.23 mm was used, and an annealing separator containing alumina as a main component was added to the decarburized annealed plate in a range of 0 to 80% by mass of MgO added.
  • the coating amount was 8.0 g/m 2 per side.
  • the decarburized annealed sheet is subjected to finish annealing, and the forsterite coating is not present on the surface of the base steel sheet (steel sheet obtained after finishing annealed the decarburized annealed sheet).
  • a steel plate was obtained.
  • the finish annealing was carried out by stacking decarburized annealing plates coated with an annealing separator.
  • a 20 mm square test piece was sampled, and a cross section (C cross section) orthogonal to the rolling direction of the test piece was cut with a diamond. Polished with a buff. Then, using an optical microscope, the test piece was observed at a magnification of 1000 times, and had a length of 10 ⁇ m from the steel plate surface toward the inside of the base metal plate in the plate thickness direction of the base metal plate, and The number of needle-like inclusions having a length of 1 ⁇ m or more existing in a region (observation region) having a length of 20 mm in the plate width direction was measured. Needle-like inclusions were defined as inclusions having a maximum major axis/maximum minor axis of 10 times or more.
  • the iron loss W 17/50 of the test pieces of different levels having different amounts of MgO of the annealing separator was measured.
  • the average of the measured values at 10 points was defined as the iron loss W 17/50 of the test piece.
  • FIG. 2 is a diagram showing the relationship between the amount of MgO in the annealing separator and the number of mullite.
  • FIG. 3 is a diagram showing the relationship between the amount of MgO in the annealing separator and the iron loss (W 17/50 ).
  • mullite is not generated when the MgO content of the annealing separator is 28 mass% or more.
  • the MgO amount of the annealing separator is 28% by mass or more, the iron loss is less than 1.00 W/kg, and the iron loss improving effect is obtained. It can be seen that when the amount of MgO exceeds 50% by mass, the iron loss becomes 1.00 W/kg or more, which is inferior.
  • the surface of the steel sheet obtained was analyzed by XRD.
  • forsterite was detected at a level of 54% by mass or more of MgO, and that the XRD peak height of forsterite increased as the amount of MgO increased. From this, it is considered that when the amount of MgO of the annealing separator exceeds 50 mass %, mullite is not generated (see FIG. 2), but on the other hand, forsterite is generated and the iron loss characteristics are deteriorated.
  • a decarburized annealing plate having a plate thickness of 0.23 mm was coated with an annealing separator containing alumina as a main component and containing 45% by mass of MgO.
  • the applied amount of the annealing separator was changed in the range of 5.0 to 15.0 g/m 2 per side.
  • a plurality of decarburized annealed plates coated with an annealing separator and dried were stacked and finish annealed to produce a grain-oriented electrical steel sheet.
  • a 20 mm square test piece was sampled, and a cross section (C cross section) orthogonal to the rolling direction of the test piece was cut with a diamond. Polished with a buff. Then, using an optical microscope, the test piece was observed at a magnification of 1000 times, and had a length of 10 ⁇ m from the steel plate surface toward the inside of the base metal plate in the plate thickness direction of the base metal plate, and The number of needle-like inclusions having a length of 1 ⁇ m or more existing in a region (observation region) having a length of 20 mm in the plate width direction was measured.
  • FIG. 4 is a diagram showing the relationship between the amount of annealing separator applied per one surface and the number of mullite. From FIG. 4, it is understood that when the amount of the annealing separating agent applied per one surface is less than 6.0 g/m 2 , "acicular inclusions (mullite) having a length of 1 ⁇ m or more" are generated.
  • mullite According to the ternary phase diagram of Al 2 O 3 —MgO—SiO 2 shown in FIG. 1, if MgO is present in a proportion of 50 mol% (28% by mass) or more with respect to alumina, mullite is not formed. Mullite should not be generated when the amount of MgO added is 45% by mass. However, as shown in FIG. 4, when the amount of the annealing separating agent containing 45% by mass of MgO applied on one surface was less than 6.0 g/m 2 , “acicular inclusions (mullite) having a length of 1 ⁇ m or more” were obtained. Is generated. The reason for this is considered as follows.
  • the coating amount of the annealing separator exceeds 14.0 g/m 2 , the coating effect is saturated and the manufacturing cost increases, so the coating amount of the annealing separator is set to 14.0 g/m 2 or less.
  • the inventors of the present invention have controlled the MgO addition amount of the annealing separating agent containing alumina as the main component and the coating amount of the annealing separating agent to be within the specific ranges, so that the surface layer of the base steel sheet of the grain-oriented electrical steel sheet. It has been found that it is possible to suppress the formation of acicular inclusions (mullite) in the region, and thereby reduce the iron loss of the grain-oriented electrical steel sheet. Based on the above-described research results by the present inventors, the present manufacturing method is characterized by satisfying the following two manufacturing conditions. (Condition 1) The annealing separator containing alumina as a main component contains 28 to 50% by mass of MgO. (Condition 2) The coating amount of the annealing separator is 6.0 to 14.0 g/m 2 per side of the decarburized and annealed plate.
  • ⁇ MgO content of annealing separator 28 to 50% by mass>
  • the amount of MgO in the annealing separator is 28% by mass or more. It is preferably 32% by mass or more, and more preferably 35% by mass or more.
  • the amount of MgO in the annealing separator is 50% by mass or less. It is preferably 48% by mass or less, more preferably 45% by mass or less.
  • ⁇ Adhesion amount per unit area of one side after application/drying of the annealing separator (application amount of the annealing separator per one side of the decarburized annealed plate): 6.0 to 14.0 g/m 2 >
  • the coating amount of the annealing separator containing 45% by mass of MgO per one surface is less than 6.0 g/m 2 , "acicular inclusions (mullite) having a length of 1 ⁇ m or more" are formed.
  • the amount of adhesion of the annealing separating agent per unit area on one side after coating and drying is 6.0 g/m 2 or more. It is preferably 7.0 g/m 2 or more, more preferably 8.0 g/m 2 or more.
  • the coating amount of the annealing separator exceeds 14.0 g/m 2 , the coating effect is saturated and the manufacturing cost increases, so the coating amount of the annealing separator is set to 14.0 g/m 2 or less. It is preferably 13.0 g/m 2 or less, more preferably 12.0 g/m 2 or less.
  • ⁇ Molten steel having a specified chemical composition is cast by a normal method to obtain a silicon steel slab.
  • the chemical composition of the silicon steel slab is not limited to a specific composition as long as the magnetic properties and mechanical properties required for the grain-oriented electrical steel sheet can be obtained, but an example of the chemical composition of the silicon steel slab is as follows. is there.
  • a silicon steel slab has a chemical composition, in mass %, C: 0.085% or less, Si: 0.80 to 7.00%, Mn: 0.05 to 1.00%, acid-soluble Al:0. 0.010 to 0.065%, N: 0.004 to 0.012%, S: 0.01% or less, and B: 0.0005 to 0.0080%.
  • C 0.085% or less C is an element effective in controlling the primary recrystallization structure, but has an adverse effect on the magnetic properties, and is an element removed by decarburization annealing before finish annealing. If the C content exceeds 0.085%, the decarburization annealing time becomes long and the productivity decreases, so the C content is set to 0.085% or less.
  • the C content is preferably 0.070% or less, more preferably 0.050% or less.
  • the lower limit of the amount of C includes 0%, but if the amount of C is reduced to less than 0.0001%, the manufacturing cost increases significantly. Therefore, 0.0001% is the practical lower limit of the amount of C in practical steel sheets. .. In the grain-oriented electrical steel sheet, the C content is usually reduced to about 0.001% or less by decarburization annealing.
  • Si 0.80 to 7.00% Si is an element that increases the electrical resistance of the steel sheet and improves the iron loss characteristics. If the Si content is less than 0.80%, ⁇ -transformation occurs during finish annealing and the crystal orientation of the steel sheet is impaired, so the Si content is set to 0.80% or more.
  • the amount of Si is preferably 1.50% or more, more preferably 2.50% or more.
  • the Si content should be 7.00% or less.
  • the Si amount is preferably 5.50% or less, more preferably 4.50% or less.
  • Mn 0.05-1.00% Mn is an element that prevents cracking during hot rolling and forms MnS that functions as an inhibitor by combining with S and/or Se. If the Mn content is less than 0.05%, the effect of addition is not sufficiently exhibited, so the Mn content is set to 0.05% or more.
  • the amount of Mn is preferably 0.07% or more, more preferably 0.09% or more.
  • the Mn content exceeds 1.00%, the precipitation dispersion of MnS becomes non-uniform, the required secondary recrystallization structure cannot be obtained, and the magnetic flux density decreases, so the Mn content is 1.00% or less.
  • the amount of Mn is preferably 0.80% or less, more preferably 0.06% or less.
  • Acid soluble Al 0.010-0.065% Acid-soluble Al is an element that combines with N to produce (Al,Si)N that functions as an inhibitor. If the amount of acid-soluble Al is less than 0.010%, the effect of addition is not sufficiently expressed and secondary recrystallization does not proceed sufficiently, so the amount of acid-soluble Al is set to 0.010% or more. The amount of acid-soluble Al is preferably 0.015% or more, more preferably 0.020% or more.
  • the soluble Al content is 0.065% or less.
  • the amount of acid-soluble Al is preferably 0.050% or less, more preferably 0.040% or less.
  • N 0.004 to 0.012% N is an element that combines with Al to form AlN that functions as an inhibitor, but is also an element that forms blisters (holes) in the steel sheet during cold rolling. If the N content is less than 0.004%, the formation of AlN is insufficient, so the N content is set to 0.004% or more.
  • the amount of N is preferably 0.006% or more, more preferably 0.007% or more.
  • the N content exceeds 0.012%, blisters (holes) may be generated in the steel sheet during cold rolling, so the N content should be 0.012% or less.
  • the amount of N is preferably 0.010% or less, more preferably 0.009% or less.
  • S 0.01% or less S is an element that combines with Mn to form MnS that functions as an inhibitor.
  • the amount of S exceeds 0.01%, the precipitation and dispersion of MnS becomes non-uniform after purification, the desired secondary recrystallization structure cannot be obtained, the magnetic flux density is lowered, and the hysteresis loss is deteriorated, or MnS is purified after purification. Remain, and the hysteresis loss deteriorates.
  • the lower limit is not particularly set, but the S content is preferably 0.003% or more.
  • the S amount is more preferably 0.007% or more.
  • B 0.0005 to 0.0080% B is an element that combines with N and forms a complex precipitate with MnS to form BN that functions as an inhibitor.
  • the amount of B is preferably 0.0010% or more, more preferably 0.0015% or more.
  • the amount of B is preferably 0.0060% or less, more preferably 0.0040% or less.
  • the balance other than the above elements is Fe and impurities.
  • Impurities are elements that are inevitably mixed from the steel raw material and/or in the steelmaking process, and are elements that are allowed within the range that does not impair the properties of the grain-oriented electrical steel sheet.
  • the silicon steel slab does not hinder the magnetic properties of the grain-oriented electrical steel sheet and can enhance other properties, so that Cr: 0.30% or less, Cu: 0.40% or less, P: 0.50%.
  • Cr 0.30% or less
  • Cu 0.40% or less
  • P 0.50%.
  • Ni 1.00% or less
  • Sn 0.30% or less
  • Sb 0.30% or less
  • Bi 0.01% or less
  • the lower limit is 0 because these elements do not have to be contained.
  • a hot rolled sheet is obtained by hot rolling a slab having the above chemical composition.
  • the hot rolling conditions are not particularly limited, and ordinary conditions can be used.
  • the hot rolled sheet obtained by the hot rolling process is wound into a coil.
  • the slab Before subjecting the slab to hot rolling, the slab may be heated to a temperature higher than 1300° C. in order to sufficiently incorporate the inhibitor components of MnS and AlN. Further, from the viewpoint of productivity and manufacturing cost, the slab may be heated to about 1250° C. on the assumption that the inhibitor is enhanced by the nitriding treatment in the subsequent step.
  • the coil-shaped hot-rolled sheet is rewound into a strip-shaped hot-rolled sheet, and then the strip-shaped hot-rolled sheet is annealed to obtain an annealed hot-rolled sheet.
  • the hot rolled sheet annealing conditions are not particularly limited, and ordinary conditions can be used.
  • the annealed hot rolled sheet is subjected to cold rolling once or twice or more to obtain a cold rolled sheet having a final sheet thickness.
  • the cold rolled sheet may be obtained by subjecting the annealed hot rolled sheet to cold rolling two or more times with intermediate annealing.
  • the crystal structure is homogenized.
  • Cold rolling conditions are not particularly limited, and ordinary conditions can be used.
  • a decarburized annealed sheet is obtained by subjecting the cold rolled sheet to decarburization annealing.
  • the cold rolled sheet is heat-treated in wet hydrogen to reduce the amount of C in the cold rolled sheet to an amount that does not deteriorate due to magnetic aging in the product steel sheet, Allow crystals to form and prepare for the next secondary recrystallization.
  • the decarburization annealing conditions are not particularly limited, and ordinary conditions can be used.
  • An oxide film of SiO 2 is formed on the surface of the decarburized and annealed plate obtained by the decarburization and annealing step.
  • the decarburizing and annealing sheet is annealed in an ammonia atmosphere so that AlN that functions as an inhibitor is contained in the decarburizing and annealing sheet. To generate.
  • alumina Al 2 O 3
  • alumina is the main component of the decarburized annealed sheet for the purpose of removing SiO 2 existing on the surface of the decarburized annealed sheet and preventing seizure in the final annealing step.
  • Apply annealing separator The annealing separator containing alumina as a main component contains 28 to 50% by mass of MgO, and the coating amount of the annealing separator is 6.0 to 14.0 g/m 2 per side of the decarburized annealed plate. is there.
  • the decarburized annealed plate coated with the annealing separator is wound into a coil after the annealing separator is dried.
  • the MgO content (addition amount) of the annealing separator containing alumina as the main component is controlled to 28 to 50% by mass, and the amount of the annealing separator applied is 6.0 per surface of the decarburized annealing plate.
  • acicular inclusions (mullite) are generated in the surface layer region of the decarburized annealed plate during the final annealing of the decarburized annealed plate in the subsequent finish annealing step. Can be suppressed.
  • the iron loss W 17/50 of the final product can be reduced to a low value of less than 1.00 W/kg.
  • the BET specific surface area of alumina which is the main component of the annealing separator, can be controlled to 3.0 to 10.0 m 2 /g. preferable.
  • the BET specific surface area of alumina is preferably 3.0 m 2 /g or more. It is more preferably 5.0 m 2 /g or more.
  • the BET specific surface area of alumina is preferably 10.0 m 2 /g or less. It is more preferably 8.0 m 2 /g or less.
  • the coil-shaped decarburized annealing plate coated with the annealing separator is subjected to finish annealing to obtain the base material steel sheet of the final product (oriented electrical steel sheet).
  • the secondary annealing is performed on the decarburized annealed sheet by performing the finish annealing at a temperature of 1100° C. or higher.
  • the finish annealing conditions are not particularly limited, and ordinary conditions can be used.
  • the decarburization annealed plate after the completion of secondary recrystallization may be subjected to purification annealing so that the precipitate used as an inhibitor is rendered harmless.
  • the MgO content of the annealed separator is controlled to 28 to 50% by mass, and the applied amount of the annealed separator is the decarburized annealed plate. Since it is controlled to 6.0 to 14.0 g/m 2 per one surface of Al, it is possible to suppress Al from reacting with SiO 2 remaining on the surface of the decarburized annealed plate. Further, as a result, it is possible to suppress the formation of needle-like inclusions (mullite) in the surface layer region of the decarburized and annealed plate during the finish annealing. Further, since the MgO content of the annealing separator is limited to 50% by mass or less, it is possible to suppress the formation of a forsterite coating film on the surface of the decarburized annealed plate during the final annealing.
  • Needle-like inclusions are not formed in the surface layer region of the base material steel sheet (decarburization annealed sheet after finish annealing) obtained by the above manufacturing method, and the surface of the base material steel sheet is not formed. Has no forsterite coating. That is, according to the present manufacturing method, it is possible to obtain a base material steel sheet in which two factors that hinder the movement of the domain wall are eliminated. Therefore, by forming the tension insulating coating on the surface of the base steel sheet after the finish annealing step, a grain-oriented electrical steel sheet having no forsterite coating between the base steel sheet and the tension insulating coating was obtained as the final product. In this case, it is possible to obtain a grain-oriented electrical steel sheet having a lower iron loss than the conventional one.
  • the condition in the example is one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one condition example. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • Example 1 The slabs having the component compositions shown in Table 1 were heated to 1100° C. and subjected to hot rolling to obtain a hot-rolled sheet having a plate thickness of 2.60 mm, and the hot-rolled sheet was annealed at 1100° C. It was subjected to multiple times of cold rolling with annealing sandwiched, and wound as a cold-rolled sheet having a final sheet thickness of 0.23 mm.
  • the cold-rolled sheet is unwound, decarburized and annealed at 820° C. in a humid atmosphere of hydrogen 75%, nitrogen 25% and dew point 40° C., and then nitriding annealed for the purpose of forming an inhibitor AlN in the decarburized and annealed sheet.
  • aqueous slurry of an annealing separating agent containing alumina having a BET specific surface area of 3.0 to 10.0 m 2 /g as a main component and containing MgO in an amount of 0 to 80% by mass was applied to the surface of the decarburized annealed plate per one side.
  • the coating amount was varied in the range of 5.0 to 15.0 g/m 2 , and the coating was wound into a coil.
  • the coil-shaped decarburized annealed plate coated and dried with the above annealing separator was subjected to finish annealing at 1200°C for 20 hours. From the base material steel sheet obtained after finish annealing, the excess annealing separator is washed off with water to obtain a base material steel sheet of a grain-oriented electrical steel sheet that has no forsterite coating and has a specular gloss and that has completed secondary recrystallization. It was
  • a 20 mm square test piece was sampled from the outermost peripheral portion in the width direction of the thus obtained coiled grain-oriented electrical steel sheet (base steel sheet).
  • a cross section (C cross section) orthogonal to the rolling direction of the test piece was polished with a diamond buff.
  • a cross section of one side (20 mm) of the test piece was observed with an optical microscope (1000 times), and needle-like interpositions with a length of 1 ⁇ m or more present in an observation region having a length in the plate thickness direction of 10 ⁇ m and a length in the plate width direction of 20 mm. The number of items was measured. Further, the iron loss W 17/50 of the test piece was measured according to JIS C 2550. The results are shown in Table 2.
  • the amount of MgO in the annealing separator was controlled in the range of 28% by mass to 50% by mass, and the amount of the annealing separator applied was 6.0 to 14.
  • the iron loss W 17/50 is less than 1.00 W/kg.
  • the coating amount of the annealing separator was controlled to be in the range of 6.0 to 14.0 g/m 2 per surface, but the amount of MgO of the annealing separator was 28. Since the content was less than mass %, a plurality of needle-like inclusions (mullite) having a length of 1 ⁇ m or more were present in the observation region of the base steel sheet, and the iron loss W 17/50 increased to more than 1.00 W/kg.
  • mullite needle-like inclusions
  • the coating amount of the annealing separator is controlled to be in the range of 6.0 to 14.0 g/m 2 per surface, but the amount of MgO of the annealing separator is more than 50% by mass.
  • the iron loss W 17/50 exceeds 1.00 W/kg. Rose.
  • the amount of MgO of the annealing separator is 28% by mass or more, but since the amount of the annealing separator applied is less than 6.0 g/m 2 per side, the observation area of the base steel sheet has a length of 1 ⁇ m. A plurality of the above needle-shaped inclusions (mullite) were present, and the iron loss W 17/50 increased to over 1.00 W/kg.
  • the amount of MgO of the annealing separator is controlled in the range of 28% by mass to 50% by mass, but since the amount of the annealing separator applied is less than 6.0 g/m 2 per side, A plurality of needle-shaped inclusions (mullite) having a length of 1 ⁇ m or more existed in the observation region of the base steel sheet, and the iron loss W 17/50 increased to more than 1.00 W/kg.
  • Example 2 Steel No. shown in Table 1
  • the slab having the composition of A5 was heated to 1100° C. and subjected to hot rolling to obtain a hot-rolled sheet having a plate thickness of 2.60 mm.
  • the hot-rolled sheet was annealed at 1100° C., and then subjected to intermediate annealing. It was subjected to a plurality of cold rolling operations to be sandwiched and wound as a cold rolled sheet having a final sheet thickness of 0.23 mm.
  • the cold-rolled sheet is unwound, subjected to decarburization annealing at 820° C. in a humid atmosphere of hydrogen 75%, nitrogen 25% and dew point 40° C., and then subjected to nitriding annealing for the purpose of forming inhibitor AlN in the decarburized annealed sheet. did.
  • the coil-shaped decarburized annealed plate coated and dried with the above annealing separator was subjected to finish annealing at 1200°C for 20 hours. From the base material steel sheet obtained after finish annealing, the excess annealing separator is washed off with water to obtain a base material steel sheet of a grain-oriented electrical steel sheet that has no forsterite coating and has specular gloss and that has completed secondary recrystallization. It was
  • a 20 mm square test piece was sampled from the outermost peripheral portion in the width direction of the thus obtained coiled grain-oriented electrical steel sheet (base steel sheet).
  • a cross section (C cross section) orthogonal to the rolling direction of the test piece was polished with a diamond buff.
  • a cross section of one side (20 mm) of the test piece was observed with an optical microscope (1000 times), and needle-like interpositions with a length of 1 ⁇ m or more present in an observation region having a length in the plate thickness direction of 10 ⁇ m and a length in the plate width direction of 20 mm. The number of items was measured. Further, the iron loss W 17/50 of the test piece was measured according to JIS C 2550. The results are shown in Table 3.
  • the amount of the annealing separator applied was in the range of 6.0 to 14.0 g/m 2 per side. It is understood that the iron loss W 17/50 can be greatly reduced by controlling and further controlling the BET specific surface area of alumina, which is the main component of the annealing separator, to 3.0 to 10.0 m 2 /g. It is considered that this is because needle-like inclusions were not generated and the amount of SiO 2 adsorbed by alumina was increased.
  • the present invention it is possible to reduce the iron loss of the grain-oriented electrical steel sheet in which the forsterite-based coating is not present between the base steel sheet and the tension insulating coating as compared with the conventional one. Therefore, the present invention is highly applicable in the electromagnetic steel sheet manufacturing industry and the electromagnetic steel sheet utilizing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本発明に係る方向性電磁鋼板の製造方法は、スラブに熱間圧延を施すことにより熱延板を得る工程と、前記熱延板に熱延板焼鈍を施すことにより焼鈍熱延板を得る工程と、前記焼鈍熱延板に冷間圧延を施すことにより冷延板を得る工程と、前記冷延板に脱炭焼鈍を施すことにより脱炭焼鈍板を得る工程と、前記脱炭焼鈍板にアルミナを主成分とする焼鈍分離剤を塗布する工程と、前記焼鈍分離剤が塗布された前記脱炭焼鈍板に仕上げ焼鈍を施す工程とを有し、前記焼鈍分離剤は、28~50質量%のMgOを含有し、前記焼鈍分離剤の塗布量は、前記脱炭焼鈍板の片面当たり6.0~14.0g/m2である。

Description

方向性電磁鋼板の製造方法
 本発明は、変圧器の鉄心材料として好適な優れた磁気特性を有する方向性電磁鋼板の製造方法に関する。
 本願は、2019年1月16日に、日本に出願された特願2019-5083号に基づき優先権を主張し、その内容をここに援用する。
 方向性電磁鋼板は、主として変圧器に使用される。変圧器は据え付けられてから廃棄されるまでの長期間にわたり、連続的に励磁され、エネルギー損失を発生し続けることから、交流で磁化された際のエネルギー損失、即ち、鉄損が、変圧器の性能を決定する主要な指標となる。一般的に、方向性電磁鋼板は、7質量%以下のSiを含有し且つゴス方位と呼ばれる{110}<001>方位に各結晶粒の結晶方位が一致するように制御された集合組織を有する母材鋼板と、この母材鋼板に絶縁性を付与するための絶縁被膜とを有する。
 方向性電磁鋼板の鉄損を低減するため、今まで、多くの手法が提案されてきた。例えば、母材鋼板の集合組織において、ゴス方位への集積を高める手法、母材鋼板において、電気抵抗を高めるSi等の固溶元素の含有量を高める手法、母材鋼板の板厚を薄くする手法等が知られている。
 また、母材鋼板に張力を付与することが、鉄損の低減に有効な手法であることが知られている。母材鋼板に張力を付与するためには、母材鋼板より熱膨張係数の小さい材質からなる被膜を、母材鋼板の表面に、高温で形成することが有効である。
 母材鋼板の仕上げ焼鈍工程において、母材鋼板の表面に存在する酸化物が焼鈍分離剤と反応することで生成されるフォルステライト系被膜は、母材鋼板に張力を与えることができる。このフォルステライト系被膜と母材鋼板との界面には凹凸が存在するため、この凹凸によるアンカー効果により、フォルステライト系被膜は、絶縁被膜と母材鋼板との密着性を高める中間被膜としても機能する。
 特許文献1で開示された、コロイド状シリカとリン酸塩とを主体とするコーティング液を焼き付けることによって絶縁被膜を形成する方法は、母材鋼板に対する張力付与の効果が大きく、鉄損低減に有効である。したがって、仕上げ焼鈍工程で生じたフォルステライト系被膜を残した状態で、リン酸塩を主体とする絶縁コーティングを施すことが、一般的な方向性電磁鋼板の製造方法となっている。なお、本願明細書では、母材鋼板に絶縁性のみならず、張力を与えることが可能な絶縁被膜を張力絶縁被膜と呼称する。
 一方、近年、フォルステライト系被膜により磁壁の移動が阻害され、鉄損に悪影響を及ぼすことが明らかになってきた。方向性電磁鋼板において、磁区は、交流磁場の下では磁壁の移動を伴って変化する。この磁壁の移動がスムーズに行われることが、鉄損改善に効果的であるが、フォルステライト系被膜と母材鋼板との界面に凹凸が存在することに起因して磁壁の移動が妨げられ、その結果、張力付与による鉄損改善効果がキャンセルされて十分な鉄損改善効果が得られないことが判明した。
 それ故、フォルステライト系被膜の生成を抑制し、母材鋼板の表面を平滑化する技術が開発されている。例えば、特許文献2~5には、脱炭焼鈍の雰囲気の露点を制御し、焼鈍分離剤としてアルミナを用いることにより、仕上げ焼鈍において、フォルステライト系被膜を生成させずに、母材鋼板の表面を平滑化する技術が開示されている。
 また、特許文献6には、焼鈍分離剤として、アルミナとマグネシアの合計重量に対し、マグネシアを5重量%以上30重量%以下配合した焼鈍分離剤を用いることにより、母材鋼板の表面にフォルステライト等で構成される無機鉱物質被膜が存在しない方向性珪素鋼板を製造する技術が開示されている。
日本国特開昭48-039338号公報 日本国特開平07-278670号公報 日本国特開平11-106827号公報 日本国特開平07-118750号公報 日本国特開2003-268450号公報 国際公開第2002/088403号
 上記従来技術のように、母材鋼板の表面にフォルステライト系被膜を形成させなければ、磁壁の移動を妨げる凹凸が母材鋼板の表面から消失するため、方向性電磁鋼板の鉄損を改善させることができると考えられていた。しかしながら、これらの技術によっても、鉄損改善効果を十分に得ることができていなかった。
 本発明は上記事情に鑑みてなされたものであり、母材鋼板と張力絶縁被膜との間にフォルステライト系被膜が存在しない方向性電磁鋼板の鉄損を従来よりも低減することを目的とする。
 本発明者らは、上記課題を解決するために、母材鋼板と張力絶縁被膜との間にフォルステライト系被膜が存在しない方向性電磁鋼板を製造した場合に、十分な鉄損改善効果を得られなかった原因について鋭意研究を行った。その結果、十分な鉄損改善効果を得られなかった方向性電磁鋼板では、母材鋼板の表層領域に多数の針状介在物が存在することが判明した。
 本発明者らは、この針状介在物が磁壁の移動を妨げる原因、つまり鉄損に悪影響を及ぼす原因だと推測した。本発明者らがさらなる研究を行った結果、焼鈍分離剤の成分と塗布量を特定の条件下で制御することにより、母材鋼板の表層領域において針状介在物の生成を抑制でき、母材鋼板と張力絶縁被膜との間にフォルステライト系被膜が存在しない方向性電磁鋼板の鉄損を従来よりも低減できることを見出した。
 本発明は、上記知見に基づいてなされたもので、その要旨は、次のとおりである。
(1)本発明の一態様に係る方向性電磁鋼板の製造方法は、スラブに熱間圧延を施すことにより熱延板を得る工程と、前記熱延板に熱延板焼鈍を施すことにより焼鈍熱延板を得る工程と、前記焼鈍熱延板に冷間圧延を施すことにより冷延板を得る工程と、前記冷延板に脱炭焼鈍を施すことにより脱炭焼鈍板を得る工程と、前記脱炭焼鈍板にアルミナを主成分とする焼鈍分離剤を塗布する工程と、前記焼鈍分離剤が塗布された前記脱炭焼鈍板に仕上げ焼鈍を施す工程とを有し、前記焼鈍分離剤は、28~50質量%のMgOを含有し、前記焼鈍分離剤の塗布量は、前記脱炭焼鈍板の片面当たり6.0~14.0g/mである。
(2)上記(1)に記載の方向性電磁鋼板の製造方法において、前記アルミナのBET比表面積が3.0~10.0m/gであってもよい。
(3)上記(1)または(2)に記載の方向性電磁鋼板の製造方法において、前記スラブは、化学組成として、質量%で、C:0.085%以下、Si:0.80~7.00%、Mn:0.05~1.00%、酸可溶性Al:0.010~0.065%、S:0.01%以下、N:0.004%~0.012%、B:0.0005~0.0080%、P:0~0.50%、Ni:0~1.00%、Sn:0~0.30%、Sb:0~0.30%、Cu:0~0.40%、Cr:0~0.30%、Bi:0~0.01%、を含有し、残部がFe及び不純物からなっていてもよい。
 本発明の上記態様によれば、母材鋼板と張力絶縁被膜との間にフォルステライト系被膜が存在しない方向性電磁鋼板の鉄損を従来よりも低減することが可能である。
Al-MgO-SiOの3元系状態図である。 焼鈍分離剤のMgO量とムライトの数との関係を示す図である。 焼鈍分離剤のMgO量と鉄損(W17/50)との関係を示す図である。 片面当たりの焼鈍分離剤塗布量とムライトの数との関係を示す図である。
 本発明の一実施形態に係る方向性電磁鋼板の製造方法(以下、本製造方法と呼称する)は、熱間圧延工程と、熱延板焼鈍工程と、冷間圧延工程と、脱炭焼鈍工程と、焼鈍分離剤塗布工程と、仕上げ焼鈍工程とを有する。
 熱間圧延工程は、所定の化学組成を有するスラブに熱間圧延を施すことにより熱延板を得る工程である。熱延板焼鈍工程は、熱延板に熱延板焼鈍を施すことにより焼鈍熱延板を得る工程である。冷間圧延工程は、焼鈍熱延板に冷間圧延を施すことにより冷延板を得る工程である。脱炭焼鈍工程は、冷延板に脱炭焼鈍を施すことにより脱炭焼鈍板を得る工程である。焼鈍分離剤塗布工程は、脱炭焼鈍板にアルミナを主成分とする焼鈍分離剤を塗布する工程である。仕上げ焼鈍工程は、焼鈍分離剤が塗布された脱炭焼鈍板に仕上げ焼鈍を施す工程である。
 各工程の詳細については後述するが、本製造方法において、最終製品である方向性電磁鋼板の母材鋼板の表層領域に針状介在物が生成されるのを抑制するために、以下の2つの製造条件を満たしていることが特徴である。
(条件1)アルミナを主成分とする焼鈍分離剤は、28~50質量%のMgOを含有する。
(条件2)焼鈍分離剤の塗布量は、脱炭焼鈍板の片面当たり6.0~14.0g/mである。
 以下、本製造方法について説明する。
 本発明者らは、母材鋼板と張力絶縁被膜との間にフォルステライト系被膜が存在しない方向性電磁鋼板において、鉄損を十分に低減できない原因の一つは、仕上げ焼鈍中、磁性に悪影響を及ぼす介在物が生成することにあるのではないかと考えた。そこで、本発明者らは、鉄損が大きい(劣位な)方向性電磁鋼板から、母材鋼板の圧延方向に直交する断面(C断面)が露出するようにサンプルを採取し、そのサンプル断面を光学顕微鏡で観察した。
 その結果、鉄損が大きい方向性電磁鋼板の場合、C断面に現れる母材鋼板の表層領域、より具体的には、母材鋼板の板厚方向において母材鋼板表面から母材鋼板の内側に向かって10μmの長さを有する領域に、多数の針状介在物が存在することが判明した。さらに、これらの針状介在物は、ムライト(3Al・2SiO)であることが判明した。これらの観察結果が、本発明の基礎をなす知見である。
 方向性電磁鋼板の製造においては、仕上げ焼鈍の前に、冷延板に含まれるC(炭素)を除去する目的で脱炭焼鈍を行う。脱炭焼鈍では、冷延板に含まれるCが除去されると同時に、冷延板の表面にSiOの酸化膜が形成される。このような脱炭焼鈍により得られる鋼板、すなわち、Cが除去され且つ表面にSiOの酸化膜が形成された冷延板を脱炭焼鈍板と呼ぶ。脱炭焼鈍後は、コイル状に巻いた脱炭焼鈍板が仕上げ焼鈍中に焼き付くのを防止する目的で、SiOの酸化膜を有する脱炭焼鈍板に、アルミナを主成分とする焼鈍分離剤を塗布する。その後、焼鈍分離剤を塗布した脱炭焼鈍版に仕上げ焼鈍を行う。
 ムライトは、アルミナ(Al)とSiOとの複合酸化物であることから、仕上げ焼鈍中、脱炭焼鈍で形成されたSiOが十分に除去されなかったことに起因して生成して残存したと考えられる。
 そもそも、脱炭焼鈍で形成されたSiOは、仕上げ焼鈍中に、高いBET比表面積を持つアルミナで吸着除去され、焼鈍分離剤を水洗除去することにより、除去される。それ故、脱炭焼鈍で形成されたSiOが十分に除去されない要因として、焼鈍分離剤の塗布量の不足が考えられる。
 即ち、アルミナ単位重量当たりに吸着可能なSiO量には限度があり、焼鈍分離剤の塗布量が不足して、全てのSiOが吸着除去されず、鋼板表面にSiOが残存したと考えられる。その結果、仕上げ焼鈍中に脱炭焼鈍板の内部から鋼板表面に向かって上昇してきたAl(インヒビターとして機能するAlNの分解に伴い発生したAl)が、脱炭焼鈍板の表面に残存するSiOと反応することにより、ムライトが生成し、脱炭焼鈍板の内部(とくに脱炭焼鈍板の表面に近い表層領域)に残存すると考えられる。
 本発明者らは、焼鈍分離剤の成分組成及び塗布量を調整することによりムライトの生成を抑制するとの技術思想のもとで、ムライトの生成を抑制し得る、焼鈍分離剤の成分組成及び塗布量を鋭意検討した。その結果、アルミナを主成分とする焼鈍分離剤に特定の割合でMgOを添加し、かつ、焼鈍分離剤の塗布量を特定の範囲に制御することにより、ムライトの生成を抑制できることを見出した。
 図1に、Al(アルミナ)-MgO-SiOの3元系状態図を示す。図1に示すように、理論的には、MgOが、アルミナに対して50mol%(28質量%)以上の割合で存在すれば、ムライトは生成しない。そこで、本発明者らは、アルミナを主成分とする焼鈍分離剤に対するMgO添加量と、母材鋼板(脱炭焼鈍板を仕上げ焼鈍した後に得られる鋼板)の表層領域に生成されるムライトの数との関係を調査した。
 試験用素材として、板厚0.23mmの脱炭焼鈍板を用い、この脱炭焼鈍板に、アルミナを主成分とする焼鈍分離剤を、MgO添加量を0~80質量%の範囲で変化させながら、片面当たり8.0g/mの塗布量で塗布した。その焼鈍分離剤を乾燥させた後、脱炭焼鈍板に仕上げ焼鈍を施し、母材鋼板(脱炭焼鈍板を仕上げ焼鈍した後に得られる鋼板)の表面にフォルステライト系被膜が存在しない方向性電磁鋼板を得た。なお、仕上げ焼鈍は、焼鈍分離剤を塗布した脱炭焼鈍板を積み重ねて実施した。
 このようにして得た方向性電磁鋼板から、水洗により、余剰の焼鈍分離剤を除去した後、20mm角の試験片を採取し、試験片の圧延方向に直交する断面(C断面)を、ダイヤモンドバフで研磨した。その後、光学顕微鏡を用いて、試験片を倍率1000倍で観察し、母材鋼板の板厚方向において鋼板表面から母材鋼板の内側に向かって10μmの長さを有し、且つ母材鋼板の板幅方向に20mmの長さを有する領域(観察領域)に存在する長さ1μm以上の針状介在物の個数を測定した。針状介在物は、介在物の最大長径/最大短径が10倍以上の介在物と定義した。
 次に、焼鈍分離剤のMgO量が異なる各水準の試験片の鉄損W17/50を測定した。10点の測定値の平均を、試験片の鉄損W17/50とした。
 これらの測定結果を、図2と図3に示す。図2は、焼鈍分離剤のMgO量とムライトの数との関係を示す図である。図3は、焼鈍分離剤のMgO量と鉄損(W17/50)との関係を示す図である。
 図2に示すように、焼鈍分離剤のMgO量が28質量%以上であると、ムライトが生成しない。一方、図3に示すように、焼鈍分離剤のMgO量が28質量%以上の範囲では、鉄損が1.00W/kg未満となり、鉄損改善効果を得られているが、焼鈍分離剤のMgO量が50質量%を超えると、鉄損が1.00W/kg以上となり劣位であることが解る。
 この原因を解明するため、得られた鋼板の表面をXRDにより分析した。その結果、MgO量が54質量%以上の水準においては、フォルステライトが検出され、また、MgO量の増加に伴い、フォルステライトのXRDピーク高さが高くなることが確認された。このことから、焼鈍分離剤のMgO量が50質量%を超えると、ムライトは生成しない(図2参照)が、一方で、フォルステライトが生成して、鉄損特性が劣位になったと考えられる。
 次に、板厚0.23mmの脱炭焼鈍板に、アルミナを主成分とし、MgOを45質量%含む焼鈍分離剤を塗布した。焼鈍分離剤塗布量は、片面当たり5.0~15.0g/mの範囲で変化させた。焼鈍分離剤を塗布・乾燥した脱炭焼鈍板を、複数枚積み重ねて仕上げ焼鈍を施して方向性電磁鋼板を作製した。
 このようにして得た方向性電磁鋼板から、水洗により、余剰の焼鈍分離剤を除去した後、20mm角の試験片を採取し、試験片の圧延方向に直交する断面(C断面)を、ダイヤモンドバフで研磨した。その後、光学顕微鏡を用いて、試験片を倍率1000倍で観察し、母材鋼板の板厚方向において鋼板表面から母材鋼板の内側に向かって10μmの長さを有し、且つ母材鋼板の板幅方向に20mmの長さを有する領域(観察領域)に存在する長さ1μm以上の針状介在物の個数を測定した。
 結果を図4に示す。図4は、片面当たりの焼鈍分離剤塗布量とムライトの数との関係を示す図である。図4から、片面当たりの焼鈍分離剤塗布量が6.0g/m未満であると、“長さ1μm以上の針状介在物(ムライト)”が生成することが解る。
 図1に示すAl-MgO-SiOの3元系状態図によれば、MgOが、アルミナに対し50mol%(28質量%)以上の割合で存在すれば、ムライトは生成しないから、MgO添加量が45質量%の場合にはムライトは生成しないはずである。しかしながら、図4に示すように、MgOを45質量%含む焼鈍分離剤の片面当たりの塗布量が6.0g/m未満であると、“長さ1μm以上の針状介在物(ムライト)”が生成する。この理由は、次のように考えられる。
(x)焼鈍分離剤塗布量が少ないと、仕上げ焼鈍中、焼鈍分離剤のAlによるSiOの吸着除去が不十分となる。
(y)仕上げ焼鈍中、AlN(インヒビター)の分解で生成したAlが、焼鈍分離剤のAl成分に加わり、焼鈍分離剤におけるMgOの比率が相対的に低下し、焼鈍分離剤の成分組成が、ムライト生成域に移行する(図1参照)。
 それ故、仕上げ焼鈍中、焼鈍分離剤のAlによりSiOを十分に吸着除去することが、ムライトの生成を抑制するうえで重要であり、そのためには、焼鈍分離剤のMgO添加量を28質量%以上に制御するだけでなく、焼鈍分離剤塗布量を6.0g/m以上に制御する必要がある。焼鈍分離剤の塗布量が14.0g/mを超えると、塗布効果が飽和するとともに、製造コストが上昇するので、焼鈍分離剤の塗布量は14.0g/m以下とする。
 以上のように、本発明者らは、アルミナを主成分とする焼鈍分離剤のMgO添加量及び焼鈍分離剤の塗布量を特定範囲に制御することにより、方向性電磁鋼板の母材鋼板の表層領域において針状介在物(ムライト)の生成を抑制でき、これにより、方向性電磁鋼板の鉄損低減を実現できることを見出した。
 上記のような本発明者らによる研究結果に基づき、本製造方法では、以下の2つの製造条件を満たしていることを特徴としている。
(条件1)アルミナを主成分とする焼鈍分離剤は、28~50質量%のMgOを含有する。
(条件2)焼鈍分離剤の塗布量は、脱炭焼鈍板の片面当たり6.0~14.0g/mである。
 以下、本製造方法の上記特徴(製造条件)について説明する。
 <焼鈍分離剤のMgO含有量:28~50質量%>
 図2に示すように、焼鈍分離剤のMgO量が28質量%以上であると、ムライトが生成せず、かつ、図3に示すように、鉄損W17/50が1.00W/kg未満と優位である。そのため、焼鈍分離剤のMgO量は28質量%以上とする。好ましくは32質量%以上、より好ましくは35%質量以上である。
 一方、図3に示すように、焼鈍分離剤のMgO量が50質量%を超えると、鉄損W17/50が1.00W/kg以上となり劣位となる。そのため、焼鈍分離剤のMgO量は50質量%以下とする。好ましくは48質量%以下、より好ましくは45質量%以下である。
 <焼鈍分離剤の塗布・乾燥後の片面単位面積当たりの付着量(脱炭焼鈍板の片面当たりの焼鈍分離剤の塗布量):6.0~14.0g/m
 図4に示すように、MgOを45質量%含む焼鈍分離剤の片面当たりの塗布量が6.0g/m未満であると、“長さ1μm以上の針状介在物(ムライト)”が生成するので、焼鈍分離剤の塗布・乾燥後の片面単位面積当たりの付着量(脱炭焼鈍板の片面当たりの焼鈍分離剤の塗布量)は6.0g/m以上とする。好ましくは7.0g/m以上、より好ましくは8.0g/m以上である。
 一方、焼鈍分離剤の塗布量が14.0g/mを超えると、塗布効果が飽和するとともに、製造コストが上昇するので、焼鈍分離剤の塗布量は14.0g/m以下とする。好ましくは13.0g/m以下、より好ましくは12.0g/m以下である。
 次に、本製造方法の基本工程について説明する。
 所定の化学組成を有する溶鋼を、通常の方法で鋳造して珪素鋼スラブとする。珪素鋼スラブの化学組成は、方向性電磁鋼板に要求される磁気特性及び機械的特性を得ることができれば特定の組成に限定されないが、珪素鋼スラブの化学組成の一例を挙げると以下の通りである。例えば、珪素鋼スラブは、化学組成として、質量%で、C:0.085%以下、Si:0.80~7.00%、Mn:0.05~1.00%、酸可溶性Al:0.010~0.065%、N:0.004~0.012%、S:0.01%以下、B:0.0005~0.0080%を含有する。
 C:0.085%以下
 Cは、一次再結晶組織の制御に有効な元素であるが、磁気特性に悪影響を及ぼすので、仕上げ焼鈍前に脱炭焼鈍で除去する元素である。C量が0.085%を超えると、脱炭焼鈍時間が長くなり、生産性が低下するので、C量は0.085%以下とする。C量は好ましくは0.070%以下、より好ましくは0.050%以下である。
 C量の下限は0%を含むが、C量を0.0001%未満に低減すると、製造コストが大幅に上昇するので、実用鋼板上、0.0001%が実質的なC量の下限である。なお、方向性電磁鋼板において、C量は、脱炭焼鈍で、通常、0.001%程度以下に低減する。
 Si:0.80~7.00%
 Siは、鋼板の電気抵抗を高めて、鉄損特性を改善する元素である。Si量が0.80%未満では、仕上げ焼鈍時にγ変態が生じ、鋼板の結晶方位が損なわれるので、Si量は0.80%以上とする。Si量は好ましくは1.50%以上、より好ましくは2.50%以上である。
 一方、Si量が7.00%を超えると、加工性が低下し、圧延時に割れが発生するので、Si量は7.00%以下とする。Si量は好ましくは5.50%以下、より好ましくは4.50%以下である。
 Mn:0.05~1.00%
 Mnは、熱間圧延時の割れを防止するとともに、S及び/又はSeと結合して、インヒビターとして機能するMnSを形成する元素である。Mn量が0.05%未満では、添加効果が十分に発現しないので、Mn量は0.05%以上とする。Mn量は好ましくは0.07%以上、より好ましくは0.09%以上である。
 一方、Mn量が1.00%を超えると、MnSの析出分散が不均一になり、所要の二次再結晶組織が得られず、磁束密度が低下するので、Mn量は1.00%以下とする。Mn量は好ましくは0.80%以下、より好ましくは0.06%以下である。
 酸可溶性Al:0.010~0.065%
 酸可溶性Alは、Nと結合して、インヒビターとして機能する(Al、Si)Nを生成する元素である。酸可溶性Al量が0.010%未満では、添加効果が十分に発現せず、二次再結晶が十分に進行しないので、酸可溶性Al量は0.010%以上とする。酸可溶性Al量は好ましくは0.015%以上、より好ましくは0.020%以上である。
 一方、酸可溶性Al量が0.065%を超えると、(Al、Si)Nの析出分散が不均一になり、所要の二次再結晶組織が得られず、磁束密度が低下するので、酸可溶性Al量は0.065%以下とする。酸可溶性Al量は好ましくは0.050%以下、より好ましくは0.040%以下である。
 N:0.004~0.012%
 Nは、Alと結合して、インヒビターとして機能するAlNを形成する元素であるが、一方で、冷間圧延時、鋼板中にブリスター(空孔)を形成する元素でもある。N量が0.004%未満では、AlNの形成が不十分となるので、N量は0.004%以上とする。N量は好ましくは0.006%以上、より好ましくは0.007%以上である。
 一方、N量が0.012%を超えると、冷間圧延時、鋼板中にブリスター(空孔)が生成する懸念があるので、N量は0.012%以下とする。N量は好ましくは0.010%以下、より好ましくは0.009%以下である。
 S:0.01%以下
 Sは、Mnと結合して、インヒビターとして機能するMnSを形成する元素である。
 S量が0.01%を超えると、純化後にMnSの析出分散が不均一となり、所望の二次再結晶組織が得られず、磁束密度が低下し、ヒシテリシス損が劣化したり、純化後にMnSが残存し、ヒステリシス損が劣化する。下限は特に設けないが、S量は好ましくは0.003%以上とする。S量はより好ましくは0.007%以上である。
 B:0.0005~0.0080%
 Bは、Nと結合し、MnSと複合析出して、インヒビターとして機能するBNを形成する元素である。
 B量が0.0005%未満では、添加効果が十分に発現しないので、B量は0.0005%以上とする。B量は好ましくは0.0010%以上、より好ましくは0.0015%以上である。一方、B量が0.0080%を超えると、BNの析出分散が不均一になり、所要の二次再結晶組織が得られず、磁束密度が低下するので、B量は0.0080%以下とする。B量は好ましくは0.0060%以下、より好ましくは0.0040%以下である。
 珪素鋼スラブにおいて、上記元素を除く残部は、Fe及び不純物である。不純物は、鋼原料から及び/又は製鋼過程で不可避的に混入する元素で、方向性電磁鋼板の特性を阻害しない範囲で許容される元素である。
 また、珪素鋼スラブは、方向性電磁鋼板の磁気特性を阻害せず、他の特性を高め得る範囲で、Cr:0.30%以下、Cu:0.40%以下、P:0.50%以下、Ni:1.00%以下、Sn:0.30%以下、Sb:0.30%以下、及び、Bi:0.01%以下の1種又は2種以上を含有してもよい。なお、これらの元素は含有しなくてもよいので、下限値は0である。
 熱間圧延工程では、上記の化学組成を有するスラブに熱間圧延を施すことにより熱延板を得る。熱間圧延条件はとくに限定されず、通常の条件を使用することができる。熱間圧延工程により得られた熱延板は、コイル状に巻き取られる。
 スラブを熱間圧延に供する前に、MnSやAlNのインヒビター成分を十分に容体化するため、1300℃超の温度にスラブを加熱してもよい。また、生産性や製造コストの観点から、後工程の窒化処理でインヒビターを増強することを前提に、スラブを1250℃程度に加熱してもよい。
 熱延板焼鈍工程では、コイル状の熱延板を帯状の熱延板に巻き戻した後、その帯状の熱延板に熱延板焼鈍を施すことにより焼鈍熱延板を得る。熱延板焼鈍条件は特に限定されず、通常の条件を使用することができる。冷間圧延工程では、焼鈍熱延板に1回又は2回以上の冷間圧延を施すことにより、最終板厚を有する冷延板を得る。この冷間圧延工程において、焼鈍熱延板に中間焼鈍を挟む2回以上の冷間圧延を施すことにより冷延板を得てもよい。仕上げ(最終)冷間圧延前に行う焼鈍では、結晶組織の均質化を行う。冷間圧延条件は特に限定されず、通常の条件を使用することができる。
 脱炭焼鈍工程では、冷延板に脱炭焼鈍を施すことにより脱炭焼鈍板を得る。この脱炭焼鈍工程では、冷延板を湿水素中で熱処理することにより、冷延板中のC量を、製品鋼板において磁気時効による劣化がない量まで低減するとともに、冷延板に一次再結晶を生じさせ、次の二次再結晶の準備を行う。脱炭焼鈍条件は特に限定されず、通常の条件を使用することができる。このような脱炭焼鈍工程により得られた脱炭焼鈍板の表面にはSiOの酸化膜が形成されている。なお、1250℃程度に加熱したスラブから冷延板を製造した場合、脱炭焼鈍後、脱炭焼鈍板をアンモニア雰囲気中で焼鈍することにより、脱炭焼鈍板中に、インヒビターとして機能するAlNを生成させる。
 焼鈍分離剤塗布工程では、脱炭焼鈍板の表面に存在するSiOの除去と、仕上げ焼鈍工程での焼き付き防止を目的として、脱炭焼鈍板にアルミナ(Al)を主成分とする焼鈍分離剤を塗布する。アルミナを主成分とする焼鈍分離剤は、28~50質量%のMgOを含有しており、焼鈍分離剤の塗布量は、脱炭焼鈍板の片面当たり6.0~14.0g/mである。焼鈍分離剤が塗布された脱炭焼鈍板は、焼鈍分離剤の乾燥後にコイル状に巻き取られる。
 前述したように、アルミナを主成分とする焼鈍分離剤のMgO含有量(添加量)を28~50質量%に制御し、且つ焼鈍分離剤の塗布量を脱炭焼鈍板の片面当たり6.0~14.0g/mに制御することにより、後の仕上げ焼鈍工程における脱炭焼鈍板の仕上げ焼鈍中に、脱炭焼鈍板の表層領域に針状介在物(ムライト)が生成されるのを抑制できる。また、その結果、最終製品の鉄損W17/50を1.00W/kg未満の低い値に低減することができる。
 また、針状介在物(ムライト)の生成をより効果的に抑制するために、焼鈍分離剤の主成分であるアルミナのBET比表面積を3.0~10.0m/gに制御することが好ましい。アルミナのBET比表面積が3.0m/g未満であると、SiOを十分に吸着除去することが困難となるので、アルミナのBET比表面積は3.0m/g以上が好ましい。より好ましくは5.0m/g以上である。
 一方、アルミナのBET比表面積が10.0m/gを超えると、焼鈍分離剤の水スラリーの粘度が上昇して、塗布斑が発生し、SiOを十分に吸着除去できない部分が生じるので、アルミナのBET比表面積は10.0m/g以下が好ましい。より好ましくは8.0m/g以下である。
 仕上げ焼鈍工程では、焼鈍分離剤が塗布されたコイル状の脱炭焼鈍板に仕上げ焼鈍を施すことにより、最終製品(方向性電磁鋼板)の母材鋼板を得る。この仕上げ焼鈍工程では、1100℃以上の温度で仕上げ焼鈍を行うことにより、脱炭焼鈍板に二次再結晶を生じさせる。仕上げ焼鈍条件は特に限定されず、通常の条件を使用することができる。なお、最終製品のヒステリシス損を低減するために、インヒビターとして利用した析出物が無害化されるように、二次再結晶完了後の脱炭焼鈍板に純化焼鈍を施してもよい。
 仕上げ焼鈍中に脱炭焼鈍板の内部から表面に向かってAlが移動するが、焼鈍分離剤のMgO含有量が28~50質量%に制御され、且つ焼鈍分離剤の塗布量が脱炭焼鈍板の片面当たり6.0~14.0g/mに制御されているため、Alが脱炭焼鈍板の表面に残存するSiOと反応することを抑制できる。また、その結果、仕上げ焼鈍中に脱炭焼鈍板の表層領域に針状介在物(ムライト)が生成されるのを抑制できる。また、焼鈍分離剤のMgO含有量が50質量%以下に制限されているため、仕上げ焼鈍中に脱炭焼鈍板の表面にフォルステライト系被膜が形成されるのも抑制できる。
 以上のような本製造方法により得られる母材鋼板(仕上げ焼鈍後の脱炭焼鈍板)の表層領域には針状介在物(ムライト)が生成されておらず、また、母材鋼板の表面にはフォルステライト系被膜が存在しない。すなわち、本製造方法によれば、磁壁の移動を妨げる2つの要因が排除された母材鋼板を得ることができる。従って、仕上げ焼鈍工程の後に張力絶縁被膜を母材鋼板の表面に形成することにより、母材鋼板と張力絶縁被膜との間にフォルステライト系被膜が存在しない方向性電磁鋼板を最終製品として得た場合に、従来よりも鉄損の低い方向性電磁鋼板を得ることができる。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
(実施例1)
 表1に示す成分組成のスラブを1100℃に加熱して熱間圧延に供し、板厚2.60mmの熱延板とし、該熱延板に1100℃で熱延板焼鈍を施した後、中間焼鈍を挟む複数回の冷間圧延に供し、最終板厚0.23mmの冷延板として巻き取った。
Figure JPOXMLDOC01-appb-T000001
 上記冷延板を巻き戻し、水素75%、窒素25%、露点40℃の湿潤雰囲気中、820℃で脱炭焼鈍を施し、次いで、脱炭焼鈍板中にインヒビターAlNを形成する目的で窒化焼鈍を施した。その後、BET比表面積3.0~10.0m/gのアルミナを主成分とし、MgOを0~80質量%含有する焼鈍分離剤の水スラリーを、脱炭焼鈍板の表面に、片面当たりの塗布量を5.0~15.0g/mの範囲で変えて塗布し、コイル状に巻き取った。
 上記焼鈍分離剤を塗布・乾燥したコイル状の脱炭焼鈍板に、1200℃、20時間の仕上げ焼鈍を施した。仕上げ焼鈍後に得られる母材鋼板から、余剰の焼鈍分離剤を水洗除去して、フォルステライト系被膜がなく、鏡面光沢を有する、二次再結晶が完了した方向性電磁鋼板の母材鋼板を得た。
 こうして得たコイル状の方向性電磁鋼板(母材鋼板)の最外周の幅方向中央部位から、20mm角の試験片を採取した。試験片の圧延方向に直交する断面(C断面)をダイヤモンドバフで研磨した。試験片の一辺(20mm)の断面を光学顕微鏡(1000倍)で観察し、10μmの板厚方向長さ及び20mmの板幅方向長さを有する観察領域に存在する長さ1μm以上の針状介在物の個数を測定した。また、JIS C 2550に準じて、試験片の鉄損W17/50を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、発明例B1~B10では、焼鈍分離剤のMgO量が28質量%~50質量%の範囲に制御され、且つ焼鈍分離剤の塗布量が片面当たり6.0~14.0g/mの範囲に制御された結果、母材鋼板の観察領域に長さ1μm以上の針状介在物(ムライト)は存在せず、鉄損W17/50は1.00W/kg未満に抑制された。
 表2に示すように、比較例b1~b3では、焼鈍分離剤の塗布量は片面当たり6.0~14.0g/mの範囲に制御されているが、焼鈍分離剤のMgO量が28質量%未満であるので、母材鋼板の観察領域に長さ1μm以上の針状介在物(ムライト)が複数存在し、鉄損W17/50は1.00W/kg超に上昇した。
 比較例b4及びb5では、焼鈍分離剤の塗布量が片面当たり6.0~14.0g/mの範囲に制御されているが、焼鈍分離剤のMgO量が50質量%超である。この場合、母材鋼板の観察領域に長さ1μm以上の針状介在物(ムライト)は存在しないが、フォルステライトが生成され、その結果、鉄損W17/50が1.00W/kg超に上昇した。
 比較例b6では、焼鈍分離剤のMgO量は28質量%以上であるが、焼鈍分離剤の塗布量が片面当たり6.0g/m未満であるので、母材鋼板の観察領域に長さ1μm以上の針状介在物(ムライト)が複数存在し、鉄損W17/50は1.00W/kg超に上昇した。
 比較例b7~b15では、焼鈍分離剤のMgO量は28質量%~50質量%の範囲に制御されているが、焼鈍分離剤の塗布量が片面当たり6.0g/m未満であるので、母材鋼板の観察領域に長さ1μm以上の針状介在物(ムライト)が複数存在し、鉄損W17/50は1.00W/kg超に上昇した。
 (実施例2)
 表1に示す鋼No.A5の成分組成のスラブを1100℃に加熱して熱間圧延に供し、板厚2.60mmの熱延板とし、該熱延板に1100℃で熱延板焼鈍を施した後、中間焼鈍を挟む複数回の冷間圧延に供し、最終板厚0.23mmの冷延板として巻き取った。
 上記冷延板を巻き戻し、水素75%、窒素25%、露点40℃の湿潤雰囲気中、820℃で脱炭焼鈍を施し、脱炭焼鈍板中にインヒビターAlNを形成する目的で窒化焼鈍を施した。
 その後、BET比表面積を3.0~10.0m/gの範囲で変えたアルミナを主成分とし、MgOを35~48質量%含有する焼鈍分離剤の水スラリーを、脱炭焼鈍板の表面に、片面当たりの塗布量を8.2~11.2g/mの範囲で変えて塗布し、コイル状に巻き取った。
 上記焼鈍分離剤を塗布・乾燥したコイル状の脱炭焼鈍板に、1200℃、20時間の仕上げ焼鈍を施した。仕上げ焼鈍後に得られる母材鋼板から、余剰の焼鈍分離剤を水洗除去して、フォルステライト系被膜がなく、鏡面光沢を有する、二次再結晶が完了した方向性電磁鋼板の母材鋼板を得た。
 こうして得たコイル状の方向性電磁鋼板(母材鋼板)の最外周の幅方向中央部位から、20mm角の試験片を採取した。試験片の圧延方向に直交する断面(C断面)をダイヤモンドバフで研磨した。試験片の一辺(20mm)の断面を光学顕微鏡(1000倍)で観察し、10μmの板厚方向長さ及び20mmの板幅方向長さを有する観察領域に存在する長さ1μm以上の針状介在物の個数を測定した。また、JIS C 2550に準じて、試験片の鉄損W17/50を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、焼鈍分離剤のMgO量を28質量%~50質量%の範囲に制御すると共に、焼鈍分離剤の塗布量が片面当たり6.0~14.0g/mの範囲に制御し、さらに焼鈍分離剤の主成分であるアルミナのBET比表面積を3.0~10.0m/gに制御することにより、鉄損W17/50を大きく低減できることが解る。これは、針状介在物が生成されないのに加えて、アルミナによるSiOの吸着量が増大したことが理由だと考えられる。
 本発明によれば、母材鋼板と張力絶縁被膜との間にフォルステライト系被膜が存在しない方向性電磁鋼板の鉄損を従来よりも低減できる。よって、本発明は、電磁鋼板製造産業及び電磁鋼板利用産業において利用可能性が高いものである。

Claims (3)

  1.  スラブに熱間圧延を施すことにより熱延板を得る工程と、
     前記熱延板に熱延板焼鈍を施すことにより焼鈍熱延板を得る工程と、
     前記焼鈍熱延板に冷間圧延を施すことにより冷延板を得る工程と、
     前記冷延板に脱炭焼鈍を施すことにより脱炭焼鈍板を得る工程と、
     前記脱炭焼鈍板にアルミナを主成分とする焼鈍分離剤を塗布する工程と、
     前記焼鈍分離剤が塗布された前記脱炭焼鈍板に仕上げ焼鈍を施す工程と
     を有し、
     前記焼鈍分離剤は、28~50質量%のMgOを含有し、
     前記焼鈍分離剤の塗布量は、前記脱炭焼鈍板の片面当たり6.0~14.0g/mであることを特徴とする方向性電磁鋼板の製造方法。
  2.  前記アルミナのBET比表面積が3.0~10.0m/gであることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  3.  前記スラブは、化学組成として、質量%で、
      C:0.085%以下、
      Si:0.80~7.00%、
      Mn:0.05~1.00%、
      酸可溶性Al:0.010~0.065%、
      S:0.01%以下、
      N:0.004%~0.012%、
      B:0.0005~0.0080%、
      P:0~0.50%、
      Ni:0~1.00%、
      Sn:0~0.30%、
      Sb:0~0.30%、
      Cu:0~0.40%、
      Cr:0~0.30%、
      Bi:0~0.01%、
     を含有し、残部がFe及び不純物からなる
    ことを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。
PCT/JP2020/001193 2019-01-16 2020-01-16 方向性電磁鋼板の製造方法 WO2020149347A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112021013600-2A BR112021013600A2 (pt) 2019-01-16 2020-01-16 Método para fabricar uma chapa de aço elétrico de grão orientado
EP20741050.7A EP3913108A4 (en) 2019-01-16 2020-01-16 GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET PRODUCTION METHOD
JP2020566465A JP7163976B2 (ja) 2019-01-16 2020-01-16 方向性電磁鋼板の製造方法
KR1020217024531A KR102545563B1 (ko) 2019-01-16 2020-01-16 방향성 전자 강판의 제조 방법
US17/421,774 US20220090240A1 (en) 2019-01-16 2020-01-16 Method of manufacturing grain-oriented electrical steel sheet
CN202080008982.2A CN113302336B (zh) 2019-01-16 2020-01-16 方向性电磁钢板的制造方法
RU2021123227A RU2767365C1 (ru) 2019-01-16 2020-01-16 Способ изготовления листа электротехнической стали с ориентированной зеренной структурой

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-005083 2019-01-16
JP2019005083 2019-01-16

Publications (1)

Publication Number Publication Date
WO2020149347A1 true WO2020149347A1 (ja) 2020-07-23

Family

ID=71613626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001193 WO2020149347A1 (ja) 2019-01-16 2020-01-16 方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US20220090240A1 (ja)
EP (1) EP3913108A4 (ja)
JP (1) JP7163976B2 (ja)
KR (1) KR102545563B1 (ja)
CN (1) CN113302336B (ja)
BR (1) BR112021013600A2 (ja)
RU (1) RU2767365C1 (ja)
WO (1) WO2020149347A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250159A1 (ja) * 2021-05-28 2022-12-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2022250162A1 (ja) * 2021-05-28 2022-12-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220090245A1 (en) * 2019-01-16 2022-03-24 Nippon Steel Corporation Grain-oriented electrical steel sheet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPH05263135A (ja) * 1992-03-16 1993-10-12 Kawasaki Steel Corp 金属光沢を有しかつ磁気特性の優れた方向性けい素鋼板の製造方法
JPH06256848A (ja) * 1993-03-04 1994-09-13 Nippon Steel Corp 鉄損の極めて低い鏡面方向性電磁鋼板の製造方法
JPH07118750A (ja) 1993-10-26 1995-05-09 Nippon Steel Corp 鉄損の低い鏡面方向性電磁鋼板の製造方法
JPH07278670A (ja) 1994-04-05 1995-10-24 Nippon Steel Corp 鉄損の低い方向性電磁鋼板の製造方法
JPH083648A (ja) * 1994-04-22 1996-01-09 Nippon Steel Corp 鉄損の低い鏡面方向性珪素鋼板の製造方法
JPH11106827A (ja) 1997-10-06 1999-04-20 Nippon Steel Corp 磁気特性が優れた鏡面一方向性電磁鋼板の製造方法
JP2000038615A (ja) * 1998-07-21 2000-02-08 Nippon Steel Corp 鏡面方向性電磁鋼板の製造方法
WO2002088403A1 (fr) 2001-04-23 2002-11-07 Nippon Steel Corporation Procede de production de tole d'acier au silicium unidirectionnel exempte de pellicule de revetement minerale inorganique
JP2003268450A (ja) 2002-01-08 2003-09-25 Nippon Steel Corp 鏡面方向性珪素鋼板の製造方法
JP2019005083A (ja) 2017-06-22 2019-01-17 サミー株式会社 回胴式遊技機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309473B1 (en) * 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
JP5263135B2 (ja) 2009-12-08 2013-08-14 株式会社デンソー 燃料噴射弁
JP5600991B2 (ja) * 2010-03-29 2014-10-08 新日鐵住金株式会社 方向性電磁鋼板の製造方法
JP5853352B2 (ja) * 2010-08-06 2016-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5754097B2 (ja) * 2010-08-06 2015-07-22 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
DE102011054004A1 (de) * 2011-09-28 2013-03-28 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Herstellen eines kornorientierten, für elektrotechnische Anwendungen bestimmten Elektrobands oder -blechs
US20180119244A1 (en) * 2015-02-05 2018-05-03 Jfe Steel Corporation Grain-oriented electrical steel sheet, manufacturing method therefor, and method for predicting transformer noise property
JP6354957B2 (ja) * 2015-07-08 2018-07-11 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
JP6256848B2 (ja) 2016-04-20 2018-01-10 株式会社サンセイアールアンドディ 遊技機

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPH05263135A (ja) * 1992-03-16 1993-10-12 Kawasaki Steel Corp 金属光沢を有しかつ磁気特性の優れた方向性けい素鋼板の製造方法
JPH06256848A (ja) * 1993-03-04 1994-09-13 Nippon Steel Corp 鉄損の極めて低い鏡面方向性電磁鋼板の製造方法
JPH07118750A (ja) 1993-10-26 1995-05-09 Nippon Steel Corp 鉄損の低い鏡面方向性電磁鋼板の製造方法
JPH07278670A (ja) 1994-04-05 1995-10-24 Nippon Steel Corp 鉄損の低い方向性電磁鋼板の製造方法
JPH083648A (ja) * 1994-04-22 1996-01-09 Nippon Steel Corp 鉄損の低い鏡面方向性珪素鋼板の製造方法
JPH11106827A (ja) 1997-10-06 1999-04-20 Nippon Steel Corp 磁気特性が優れた鏡面一方向性電磁鋼板の製造方法
JP2000038615A (ja) * 1998-07-21 2000-02-08 Nippon Steel Corp 鏡面方向性電磁鋼板の製造方法
WO2002088403A1 (fr) 2001-04-23 2002-11-07 Nippon Steel Corporation Procede de production de tole d'acier au silicium unidirectionnel exempte de pellicule de revetement minerale inorganique
JP2003268450A (ja) 2002-01-08 2003-09-25 Nippon Steel Corp 鏡面方向性珪素鋼板の製造方法
JP2019005083A (ja) 2017-06-22 2019-01-17 サミー株式会社 回胴式遊技機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250159A1 (ja) * 2021-05-28 2022-12-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2022250162A1 (ja) * 2021-05-28 2022-12-01 Jfeスチール株式会社 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
EP3913108A4 (en) 2022-10-12
BR112021013600A2 (pt) 2021-09-28
KR20210111279A (ko) 2021-09-10
CN113302336A (zh) 2021-08-24
RU2767365C1 (ru) 2022-03-17
EP3913108A1 (en) 2021-11-24
US20220090240A1 (en) 2022-03-24
KR102545563B1 (ko) 2023-06-21
JPWO2020149347A1 (ja) 2021-12-09
JP7163976B2 (ja) 2022-11-01
CN113302336B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
KR101963990B1 (ko) 방향성 전기 강판 및 그 제조 방법
WO2012017689A1 (ja) 方向性電磁鋼板およびその製造方法
RU2718026C1 (ru) Горячекатаный стальной лист для листа из текстурированной электротехнической стали и способ его изготовления, и способ изготовления листа из текстурированной электротехнической стали
WO2020149347A1 (ja) 方向性電磁鋼板の製造方法
JP7010305B2 (ja) 方向性電磁鋼板
KR102393831B1 (ko) 방향성 전자 강판
JP6436316B2 (ja) 方向性電磁鋼板の製造方法
KR102579758B1 (ko) 방향성 전자 강판의 제조 방법
WO2014092102A1 (ja) 方向性電磁鋼板
JP4811390B2 (ja) 二方向性電磁鋼板
WO2019013355A9 (ja) 方向性電磁鋼板
JP5862582B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板並びに方向性電磁鋼板用表面ガラスコーティング
JP7207436B2 (ja) 方向性電磁鋼板
JP7339549B2 (ja) フォルステライト皮膜を有しない絶縁皮膜密着性に優れる方向性電磁鋼板
JP4075258B2 (ja) 二方向性電磁鋼板の製造方法
JP4569281B2 (ja) 方向性電磁鋼板用焼鈍分離剤、方向性電磁鋼板の焼鈍方法および方向性電磁鋼板の製造方法
JP7214974B2 (ja) 方向性電磁鋼板の製造方法
WO2024063163A1 (ja) 方向性電磁鋼板
WO2020149333A1 (ja) 一方向性電磁鋼板の製造方法
KR20230159874A (ko) 방향성 전자 강판의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021013600

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217024531

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020741050

Country of ref document: EP

Effective date: 20210816

ENP Entry into the national phase

Ref document number: 112021013600

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210709