WO2020145378A1 - シリカガラスルツボの製造装置および製造方法 - Google Patents

シリカガラスルツボの製造装置および製造方法 Download PDF

Info

Publication number
WO2020145378A1
WO2020145378A1 PCT/JP2020/000609 JP2020000609W WO2020145378A1 WO 2020145378 A1 WO2020145378 A1 WO 2020145378A1 JP 2020000609 W JP2020000609 W JP 2020000609W WO 2020145378 A1 WO2020145378 A1 WO 2020145378A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica powder
mold
silica
glass crucible
silica glass
Prior art date
Application number
PCT/JP2020/000609
Other languages
English (en)
French (fr)
Inventor
剛司 藤田
福井 正徳
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to DE112020000373.6T priority Critical patent/DE112020000373T5/de
Priority to CN202080006277.9A priority patent/CN113423669B/zh
Priority to US17/294,280 priority patent/US20220009815A1/en
Priority to KR1020217015270A priority patent/KR102543612B1/ko
Publication of WO2020145378A1 publication Critical patent/WO2020145378A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Definitions

  • the present invention relates to a silica glass crucible manufacturing apparatus and manufacturing method.
  • a silicon single crystal is produced by melting a silicon raw material (polycrystalline silicon) filled in a silica glass crucible and bringing a seed crystal into contact with the melted polycrystalline silicon and pulling it while rotating (CZ method: Czochralski). Law).
  • the silica glass crucible used in this CZ method is manufactured by a rotational molding method.
  • the method for producing a silica glass crucible by the rotation molding method includes a silica powder layer forming step of forming a silica powder layer by using a centrifugal force to deposit silica powder having an average particle diameter of about 100 ⁇ m to 400 ⁇ m inside a rotating mold. And an arc melting step of forming a silica glass layer by arc melting the silica powder layer while depressurizing the silica powder layer from the mold side.
  • a natural silica powder layer is formed inside the mold, and then a synthetic silica powder layer is formed on the natural silica powder layer.
  • bubbles are removed by melting silica powder under reduced pressure to form a transparent silica glass layer (hereinafter, also referred to as “transparent layer”).
  • transparent layer the pressure-reduced pressure is weakened to form a bubble-containing silica glass layer (hereinafter, also referred to as “non-transparent layer”) in which bubbles remain.
  • a transparent layer is provided on the inner surface side
  • a non-transparent layer is provided on the outer surface side
  • a synthetic layer (a layer formed by melting synthetic silica powder) on the inner surface side
  • a natural layer (natural stone) on the outer surface side.
  • a silica glass crucible having a multilayer structure having a layer formed by melting English powder) is formed.
  • Patent Document 1 discloses that the silica glass crucible can be selectively multilayered or thinned in a specific region and remain near the layer boundary.
  • a method for manufacturing a quartz glass crucible that suppresses bubbles formed includes a step of forming a quartz glass molded body by spraying quartz glass raw material powder into a rotating crucible molding die (mold) in a non-heating and non-melting environment, and heating the quartz glass molded body. Melting and then cooling to form a quartz glass crucible.
  • the silica powder layer forming process by the rotational molding method when the silica powder is put into the rotating mold and the silica powder layer is deposited on the inner wall surface of the mold by using the centrifugal force, the silica powder layer is formed at the desired position and thickness. Is very difficult to form. In other words, it is necessary to consider various conditions such as the mold size (cavity inner diameter) and the centrifugal force based on the number of revolutions, the particle size of silica powder, the charging position, the charging amount, the charging environment, etc.
  • the control for forming the silica powder layer is not easy. Therefore, in forming the silica powder layer, there are many parts that depend on the experience of the operator who inputs the silica powder.
  • the quality of the silica glass crucible manufactured by such a rotational molding method is closely related to the quality of the silicon single crystal (silicon ingot) when the silicon single crystal is pulled up (for example, the CZ method) using the silica glass crucible. is connected with.
  • the metal impurities are mixed in the silica glass crucible, the metal impurities are mixed in the silicon melt when the silicon single crystal is pulled, which leads to dislocation of the silicon ingot. Therefore, the formation of the silica powder layer by the rotation molding method is an important step that also leads to the quality of the silicon single crystal.
  • An object of the present invention is to provide a silica glass crucible manufacturing apparatus and manufacturing method capable of forming a stable silica powder layer in a mold in a short time.
  • One embodiment of the present invention is a silica glass crucible manufacturing apparatus for forming a silica powder layer inside a rotating mold, a rotating means for rotating the mold, a supply means for supplying silica powder inside the mold, Equipped with.
  • the supply means feeds the silica powder so as to drop it to a position separated from the inner wall surface of the mold inside the mold, and the moving direction of the silica powder sent from the delivery part from the drop position to the inside.
  • a diffusing section that widens the diffusion angle from the falling position of the silica powder toward the inner wall surface while converting to the wall surface side.
  • the silica powder dropped inside the mold passes through the diffusing section so that the moving direction is changed from the falling position to the inner wall surface side.
  • the diffusion angle from the drop position toward the inner wall surface is expanded. Therefore, the silica powder can be spread over a wide range on the inner wall surface of the mold in a short time.
  • the diffusing section may have a rotating disk, and the rotating disk may be provided so that the silica powder sent from the sending section is received by the surface of the rotating disk.
  • the silica powder that has dropped onto the surface (upper surface) of the turntable is accelerated by centrifugal force while rolling on the surface of the turntable, and is blown from the turntable to the inner wall surface of the mold.
  • the diffusing section has a driving mechanism that changes the relative position between the rotating disk and the inner wall surface. As a result, the position where the silica powder is blown and the position in the height direction of the inner wall surface of the mold can be adjusted.
  • the hardness of the surface of the rotary disk is preferably 5 or more on Mohs hardness.
  • the Mohs hardness is determined by whether the surface is scratched or scratched with a standard mineral of a Mohs hardness meter. As a result, even if the silica powder comes into contact with the surface of the rotating disk, it is possible to prevent the surface of the rotating disk from being scratched.
  • the diameter of the rotary disk is preferably 9% or more and 76% or less of the inner diameter of the mold. If the diameter of the turntable is smaller than 9% of the inner diameter of the mold, the turntable cannot receive a sufficient amount of silica powder. On the other hand, if the diameter of the turntable exceeds 76% of the inner diameter of the mold, it will be difficult to handle the turntable in and out of the mold. Further, the diffusion angle of the silica powder spreads too much on the turntable, and the amount of the silica powder attached to the mold tends to vary.
  • the concentration of metal impurities in the material of the surface of the rotary disk is 20 ppm or less per element. Therefore, when the silica powder comes into contact with the rotary disk, it is possible to suppress metal impurities generated from the rotary disk and mixed in the silica powder layer.
  • One aspect of the present invention is a method for producing a silica glass crucible for forming a silica powder layer inside a rotating mold, which comprises dropping the silica powder inside the mold while rotating the mold, and dropping the silica powder inside the mold.
  • a step of forming a silica powder layer by converting the moving direction of the silica powder from the falling position to the inner wall surface side, expanding the diffusion angle from the falling position of the silica powder toward the inner wall surface, and scattering the silica powder toward the inner wall surface side, Melting the silica powder layer and then cooling it.
  • the silica powder layer is formed on the inner wall surface of the mold, the moving direction of the silica powder dropped inside the mold is changed from the dropping position toward the inner wall surface side, and The diffusion angle increases from the position toward the inner wall surface. Therefore, the silica powder can be spread over a wide range on the inner wall surface of the mold in a short time.
  • the direction of the silica powder may be changed and the diffusion angle may be widened by receiving the dropped silica powder on the surface of the rotating disk. ..
  • the silica powder that has fallen onto the surface of the rotary disk is accelerated by centrifugal force while rolling on the surface of the rotary disk, and then is blown from the rotary disk to the inner wall surface of the mold.
  • the thickness of the silica powder layer be controlled while changing the relative position between the rotary disk and the inner wall surface. As a result, the position where the silica powder is blown and the position in the height direction of the inner wall surface of the mold can be adjusted.
  • the rotation speed of the rotating disk is 100 rpm or more and 5000 rpm or less. If the rotation speed of the rotary disk is faster than 5000 rpm, the silica powder is scattered too much, and if it is slower than 100 rpm, the silica powder does not jump out horizontally at a sufficient speed, and it becomes difficult to adhere to the inner wall surface of the mold.
  • a silica glass crucible manufacturing apparatus and manufacturing method capable of forming a stable silica powder layer in a mold in a short time.
  • FIG. 1 It is a schematic cross section which illustrates the manufacturing apparatus of the silica glass crucible which concerns on this embodiment.
  • (A) And (b) is a schematic diagram which illustrates a diffusion part.
  • (A) And (b) is a schematic diagram which illustrates a silica glass crucible. It is a flow chart which shows a manufacturing process of a silica glass crucible roughly.
  • (A) And (b) is a schematic diagram for demonstrating the manufacturing method of a silica glass crucible.
  • (A) And (b) is a schematic diagram for demonstrating the manufacturing method of a silica glass crucible. It is a schematic diagram explaining another supply means.
  • (A) And (b) is a schematic diagram explaining another supply means.
  • (A) And (b) is a schematic diagram explaining another supply means.
  • (A) And (b) is a schematic diagram explaining another supply means.
  • (A) And (b) is a schematic diagram explaining another supply means.
  • FIG. 1 is a schematic cross-sectional view illustrating an apparatus for manufacturing a silica glass crucible according to this embodiment.
  • 2A and 2B are schematic views illustrating the diffusion unit.
  • 2A is a plan view of the diffusion unit 42
  • FIG. 2B is a side view of the diffusion unit 42.
  • 3A and 3B are schematic views illustrating a silica glass crucible.
  • 3A shows a perspective view of the silica glass crucible 11
  • FIG. 3B shows a sectional view of the silica glass crucible 11.
  • the silica glass crucible 11 manufactured by the manufacturing apparatus 1 according to this embodiment will be described.
  • the silica glass crucible 11 includes a corner portion 11b having a relatively large curvature, a cylindrical side wall portion 11a having an edge opening on the upper surface, and a straight line or a curve having a relatively small curvature. And a mortar-shaped bottom portion 11c.
  • the corner portion 11b is a portion connecting the side wall portion 11a and the bottom portion 11c, and a common tangent line with the bottom portion 11c is formed from the point where the tangent line of the curved line of the corner portion 11b overlaps with the side wall portion 11a of the silica glass crucible 11. It means the part up to the point. In other words, the point where the side wall 11a of the silica glass crucible 11 begins to bend is the boundary between the side wall 11a and the corner 11b.
  • a portion where the curvature of the bottom of the silica glass crucible 11 is substantially constant is the bottom portion 11c, and the point where the curvature starts to change when the distance from the center of the bottom of the silica glass crucible 11 increases is the bottom portion 11c. It is a boundary with the corner portion 11b.
  • the transparent layer 13 is provided on the inner surface of the crucible (hereinafter, also referred to as “inner surface IS”), and the outer surface of the crucible (hereinafter, referred to as “the inner surface IS”).
  • the non-transparent layer 15 is provided on the outer surface OS side.
  • the transparent layer 13 is a layer that does not substantially contain bubbles.
  • substantially free of bubbles means a bubble content rate and a bubble size such that the single crystallization rate of the silicon single crystal does not decrease due to the bubbles.
  • the bubble content of the transparent layer 13 is 0.1% or less, and the average diameter of the bubbles is 100 ⁇ m or less.
  • the transparent layer 13 preferably contains synthetic silica glass on the inner surface IS side.
  • Synthetic silica glass means, for example, silica glass produced by melting a raw material synthesized by hydrolysis of silicon alkoxide.
  • synthetic silica has characteristics that the concentration of metal impurities is lower and the concentration of OH groups is higher than that of natural quartz.
  • the content of each metal impurity contained in the synthetic silica is less than 0.05 ppm, and the content of the OH group is 30 ppm or more.
  • synthetic silica to which a metal impurity such as Al is added is also known, whether or not it is synthetic silica should not be judged based on one factor, but comprehensively based on a plurality of factors. It should be judged.
  • synthetic silica glass has less impurities than natural silica glass, it is possible to prevent an increase in impurities eluted from the crucible into the silicon melt and to increase the silicon single crystallization rate.
  • the non-transparent layer 15 is a layer that appears opaque due to the bubbles.
  • the non-transparent layer 15 is preferably made of natural quartz glass.
  • Natural quartz glass means silica glass manufactured by melting natural raw materials such as natural quartz and silica stone.
  • natural quartz has a higher concentration of metal impurities and a lower concentration of OH groups than synthetic silica.
  • the content of Al contained in natural quartz is 1 ppm or more
  • the content of each alkali metal (Na, K and Li) is 0.1 ppm or more
  • the content of OH group is less than 60 ppm.
  • the manufacturing apparatus 1 is an apparatus for forming the silica powder layer 210 on the inner wall surface 20a of the mold 20 when manufacturing the silica glass crucible 11 by the rotational molding method.
  • Examples of the material of the mold 20 include carbon.
  • the manufacturing apparatus 1 includes a rotating unit 30 that rotates the mold 20, and a supplying unit 40 that supplies the silica powder 200 into the cavity 20c inside the mold 20.
  • the cavity 20c of the mold 20 has a concave shape that matches the outer shape of the silica glass crucible 11 to be manufactured.
  • the rotating means 30 is disposed below the mold 20, and rotates the mold 20 around the center of the bottom of the cavity 20c of the mold 20.
  • the supply means 40 has a sending part 41 and a diffusing part 42.
  • the delivery unit 41 delivers the silica powder 200 so as to drop the silica powder 200 to a position away from the inner wall surface 20a inside the mold 20 (cavity 20c).
  • the delivery unit 41 has, for example, a mining means for dropping the silica powder 200.
  • the mineral supply means include a pipe, a trough, and a scoop for dropping the silica powder 200.
  • an example is shown in which the silica powder 200 is dropped by a ore feeding pipe 410 as a ore feeding means.
  • the diffusion unit 42 has a function of converting the moving direction of the silica powder 200 delivered from the delivery unit 41 from the falling position to the inner wall surface 20a side, and expanding the diffusion angle from the falling position of the silica powder 200 to the inner wall surface 20a.
  • the diffusion unit 42 has a turntable 420.
  • the rotating disk 420 is, for example, a disk-shaped plate material, and has a shaft 42a at the center.
  • the shaft 42a is rotatably provided by the drive mechanism 430. That is, the turntable 420 is provided so as to be horizontally rotatable by the rotation drive of the drive mechanism 430.
  • the rotary disk 420 is not necessarily limited to a disk shape, and may be a square shape or a polygonal shape.
  • the drive mechanism 430 has a mechanism for moving the turntable 420 in the vertical direction (depth direction of the cavity 20c).
  • the drive mechanism 430 can change the height of the turntable 420 by moving the shaft 42a forward and backward, for example.
  • the drive mechanism 430 may have a mechanism for moving the turntable 420 in the left-right direction (the radial direction of the opening of the cavity 20c).
  • the drive mechanism 430 can change the relative positions of the turntable 420 and the inner wall surface 20a.
  • the delivery port of the ore feed pipe 410 is arranged above the turntable 420.
  • the silica powder 200 introduced from the delivery port of the ore feed pipe 410 falls on the upper surface 420a of the turntable 420.
  • the silica powder 200 that has dropped onto the upper surface 420a of the turntable 420 receives the centrifugal force due to the rotation of the turntable 420 and spreads outward.
  • the moving direction of the silica powder 200 is from the falling direction (the direction from the outlet of the feed pipe 410 toward the falling position) to the outside along the upper surface 420a of the turntable 420 (from the falling position to the inner wall surface 20a of the mold 20).
  • the silica powder 200 advances while accelerating on the upper surface 420a of the rotating disk 420 toward the outer peripheral side, and spreads radially. That is, the diffusion angle of the silica powder 200 is expanded and the silica powder 200 jumps out toward the inner wall surface 20a.
  • Examples of materials for the turntable 420 include quartz and ceramics (SiC, alumina, zirconia oxide, etc.).
  • the silica powder 200 that has fallen from the ore feed pipe 410 hits the upper surface 420a of the turntable 420 and rolls while coming into contact with it, so a material with less wear is desired.
  • the surface (top surface 420a) of the turntable 420 has a Mohs hardness of 5 or more.
  • the reduction of wear suppresses the deformation of the rotary disk 420, and the scattering direction of the silica powder 200 and the thickness of the silica powder 200 attached to the mold 20 can be stabilized. Further, it is possible to suppress the generation of dust from the surface of the rotary disk 420 due to the contact with the silica powder 200.
  • the highest element of alkali metals, aluminum, iron or calcium is preferably 1000 ppm or less, and the concentration of metal impurities is more preferably 20 ppm or less per element. ..
  • the silica glass crucible 11 to be manufactured will also have the metal impurities left.
  • a silicon single crystal is manufactured by the CZ method using the silica glass crucible 11 in which metal impurities are mixed, it causes crystal defects.
  • the concentration of the metal impurities in the rotating disk 420 is 20 ppm or less per element, even if the metal impurities are mixed in the silica glass crucible 11, significant crystal defects will occur in the silicon single crystal produced by the CZ method. Is not the amount to generate. This makes it possible to suppress the occurrence of crystal defects in the silicon single crystal manufactured using this silica glass crucible 11 and manufacture a high-quality silicon single crystal.
  • the diameter of the turntable 420 is 9% of the inner diameter of the mold 20 because the turntable 420 is arranged in the cavity 20c of the mold 20. It is preferably not less than 76% and not more than 76%.
  • the diameter of the turntable 420 is smaller than 9% of the inner diameter of the mold 20, a sufficient amount of the silica powder 200 cannot be received by the turntable 420, and the silica powder 200 blown toward the inner wall surface 20a of the mold 20 cannot be received. The quantity will decrease. Therefore, it takes a long time to add the desired amount of silica powder 200.
  • the diameter of the rotary disc 420 exceeds 76% of the inner diameter of the mold 20, it becomes difficult to handle the rotary disc 420 when taking it in and out of the mold 20. Furthermore, the diffusion angle of the silica powder 200 on the rotating disk 420 becomes too wide, and variations in the amount of the silica powder 200 attached to the mold 20 are likely to occur.
  • ⁇ Diffusion operation of silica powder> As shown in FIG. 2A, when the silica powder 200 falls on a predetermined position on the upper surface 420a of the turntable 420, the silica powder 200 spreads toward the outer circumference of the turntable 420 due to inertia caused by friction with the upper surface 420a. .. Then, the silica powder 200 jumps out from the outer circumference of the rotating disk 420 and hits the inner wall surface 20 a of the mold 20.
  • the silica powder 200 falls onto the upper surface 420a of the turntable 420, receives the centrifugal force due to the rotation of the turntable 420 by contacting the upper surface 420a, and moves from the drop position of the upper surface 420a to the inner wall surface 20a side of the mold 20. change.
  • the locus when rolling (advancing) to the outer periphery of the rotary disc 420 changes depending on the distance between the position on the upper surface 420a of the silica powder 200 and the rotation center of the rotary disc 420.
  • the diffusion range of the silica powder 200 continuously supplied expands toward the outer circumference of the rotary disc 420 and jumps out toward the inner wall surface 20a of the mold 20 with a predetermined diffusion angle.
  • the silica powder 200 supplied by falling (for example, natural falling) is applied with a horizontal component force by hitting the turntable 420.
  • the silica powder 200 continuously supplied spreads while accelerating, jumps out toward the inner wall surface 20a of the mold 20, and hits the inner wall surface 20a.
  • a gas for spraying the silica powder 200 toward the inner wall surface 20a is not necessary, and a large amount of silica powder 200 can be widely spread per unit time by dropping, changing the direction by the turntable 420 and widening the diffusion angle.
  • the silica powder 200 protruding from the rotary disc 420 toward the inner wall surface 20a is pressed against the inner wall surface 20a by the centrifugal force generated by the rotation of the mold 20. Become.
  • the silica powder 200 is gradually deposited on the inner wall surface 20a to form the silica powder layer 210.
  • the rotating direction of the turntable 420 and the rotating direction of the mold 20 may be the same or opposite, but the same is preferable. If the rotating direction of the turntable 420 and the rotating direction of the mold 20 are the same, the difference in relative speed between the turntable 420 and the mold 20 is small, and the turntable 420 jumps out and sticks to the inner wall surface 20a. At this time, it becomes easy to suppress the deviation of the silica powder 200 in the rotation direction. When the deviation of the silica powder 200 in the rotation direction is suppressed, the deposition in the direction orthogonal to the inner wall surface 20a can be efficiently performed.
  • the number of rotations of the turntable 420 is preferably 100 rpm or more and 5000 rpm or less. If the rotation speed of the turntable 420 is faster than 5000 rpm, the silica powder 200 is scattered too much, and the amount of the silica powder 200 flying toward the inner wall surface 20a is reduced. On the other hand, when the rotation speed of the turntable 420 is slower than 100 rpm, the silica powder 200 does not jump out in the horizontal direction at a sufficient speed, and is unlikely to adhere to the inner wall surface 20a.
  • the more preferable rotation speed of the turntable 420 is 100 rpm or more and 4500 rpm or less.
  • FIG. 4 is a flowchart schematically showing a manufacturing process of a silica glass crucible.
  • FIGS. 5A to 6B are schematic views for explaining a method for manufacturing a silica glass crucible.
  • the silica glass crucible 11 is manufactured by a rotational molding method.
  • the rotary molding method is a method of manufacturing the silica glass crucible 11 by forming the silica powder layer 210 inside the rotating mold 20 (inner wall surface 20a), and arc melting and cooling the silica powder layer 210.
  • the mold 20 is rotated as shown in step S101.
  • the mold 20 is rotated at a speed at which the silica powder 200 charged into the cavity 20c is held on the inner wall surface 20a by a centrifugal force.
  • step S102 the turntable 420 is inserted and rotated.
  • the turntable 420 is inserted into the cavity 20c by the drive mechanism 430, and is arranged at a predetermined height and at a predetermined distance from the inner wall surface 20a. Further, the drive mechanism 430 rotates the turntable 420 arranged in the cavity 20c at a predetermined rotation speed.
  • step S103 the silica powder 200 is dropped.
  • the silica powder 200 is dropped and dropped from the ore feed pipe 410 to the upper surface 420a of the turntable 420 while the turntable 420 is being rotated.
  • the silica powder 200 that has fallen onto the upper surface 420a of the rotary disk 420 will spread toward the outer peripheral side due to the friction and inertial force on the rotary disk 420 and will fly out toward the inner wall surface 20a of the mold 20.
  • step S104 the position of the turntable 420 is controlled. That is, while the drive mechanism 430 controls the height of the turntable 420 and the distance from the inner wall surface 20a, the silica powder 200 is continuously dropped. Thereby, as shown in step S105, the silica powder layer 210 is formed on the mold 20. At this time, the silica powder 200 is charged while adjusting the relative positions of the turntable 420 and the inner wall surface 20a. This makes it possible to control the thickness of the silica powder layer 210 at a predetermined position while adjusting the flying distance of the silica powder 200 and the position of the inner wall surface 20a of the mold 20 in the height direction.
  • the excess silica powder 200 is scraped off with a pestle or the like to form a predetermined thickness.
  • the silica powder 200 in order to correspond to the natural layer on the outer side and the synthetic layer on the inner side of the silica glass crucible 11, first, as shown in FIG. The layer 2101 is formed. Since the first silica powder layer 2101 becomes a natural layer of the silica glass crucible 11, for example, natural quartz powder is used as the first silica powder 201.
  • the second silica powder 202 is added as the silica powder 200 to form the second silica powder layer 2102.
  • the second silica powder layer 2102 is a synthetic layer of the silica glass crucible 11, and therefore, for example, synthetic silica powder is used as the second silica powder 202.
  • step S106 arc melting and pressure reduction shown in step S106 are performed.
  • the arc electrode 50 is installed in the cavity 20 c of the mold 20, and arc discharge is performed from the inside of the mold 20 while rotating the mold 20, so that the entire silica powder layer 210 has a temperature of 1720° C. or higher. Heat to melt.
  • the pressure is reduced from the mold 20 side at the same time as the heating, the gas inside the silica is sucked to the outer layer side through the vent holes 21 provided in the mold 20, and the voids in the silica powder layer being heated are degassed. Remove air bubbles on the inner surface. As a result, the transparent layer 13 containing substantially no bubbles is formed.
  • the thickness of the transparent layer 13 can be adjusted by depressurizing time and pressure.
  • the mold 20 is provided with a cooling means (not shown). As a result, the silica that forms the outer surface of the silica glass crucible 11 is prevented from vitrifying.
  • the cooling temperature by the cooling means is a temperature at which silica remains as a sintered body and powder without vitrification.
  • the decompression for degassing is weakened or stopped while continuing the heating, and the bubbles are left to form the non-transparent layer 15 containing many minute bubbles.
  • step S107 power supply to the arc electrode 50 is stopped, and the fused silica glass is cooled to form the shape of the silica glass crucible 11.
  • step S108 the outer surface OS of the silica glass crucible 11 is subjected to sandblasting to finish it to a predetermined surface roughness. Then, in the rim cut shown in step S109, as shown in FIG. 6B, a part of the upper end side of the side wall portion 11a of the silica glass crucible 11 taken out from the mold 20 is cut to reduce the height of the silica glass crucible 11. adjust.
  • the inside of the mold 20 is The direction of the silica powder 200 dropped into (inside the cavity 20c) is converted from the dropping position toward the inner wall surface 20a, and the diffusion angle from the dropping position to the inner wall surface 20a can be expanded. For this reason, the silica powder 200 can be efficiently and efficiently spread over a wide range of the inner wall surface 20a of the mold 20 in a short time.
  • Example 1 A quartz disk (rotating disk 420) is inserted inside the mold (mold 20) rotating at 60 rpm (cavity 20c), and natural quartz powder is dropped onto the rotated quartz disk at a rate of 30 kg/min. The quartz powder was blown horizontally and attached to the inner surface of the wall of the mold. At that time, the disk was moved up and down and evenly attached to the wall. After that, a uniform natural quartz powder layer was formed on the inner surface of the mold by adjusting the shape with a pestle or the like.
  • the synthetic quartz powder is rotated and dropped on a rotating disc, the quartz powder is blown in the horizontal direction and pasted on the inner surface of the wall of the mold, and then the shape is adjusted with a pestle or the like to achieve a uniform synthesis.
  • a quartz powder layer was formed.
  • two uniform crucible-shaped quartz powder compacts were formed inside the mold.
  • Natural quartz powder was poured into the inner wall portion of the mold rotating at 60 rpm at a rate of 1 kg/min without using the turntable 420. After the quartz powder adhered to the wall, the shape of the quartz powder was adjusted with a pestle or the like to form a natural quartz powder layer on the inner surface of the mold. At this time, a large amount of quartz powder flowed down from the wall of the mold to the bottom, and the layer thickness at the bottom was thicker than at the wall. Subsequently, synthetic quartz powder was poured into the wall portion at the same speed. After the quartz powder adhered to the wall, the shape was adjusted with a pestle or the like to form a synthetic quartz powder layer on the inner surface of the mold. As a result, a crucible-shaped two-layer quartz powder compact was formed inside the mold, but the bottom had a thicker distribution than the wall.
  • Example 2 Quartz is used for the rotating plate 420, a high-purity plate material (metal impurities such as Al and Fe is 18 ppm or less) is used, a quartz powder layer is formed under the same conditions as in Example 1, and arc melting is performed. A quartz crucible was created. As a result of analyzing the synthetic layer on the inner surface of the produced quartz crucible, all the metal elements were below the lower limit of quantification.
  • metal impurities such as Al and Fe is 18 ppm or less
  • Quartz was used for the turntable 420, a low-purity plate material (50 ppm or more of Al, Fe, etc.) was used, a quartz powder layer was molded under the same conditions as in Example 1, and a quartz crucible was formed by arc melting. Created. As a result of analyzing the synthetic layer on the inner surface of the prepared quartz crucible, impurities were detected.
  • Example 3 A quartz powder layer was molded under the same conditions as in Example 1 by using alumina ceramics on the rotating disk 420, and a quartz crucible was prepared by arc melting. After repeating this 300 times, the unevenness of the surface (upper surface 420a) of the turntable 420 was measured. The depth of the dent was 0.1 mm or less even at the most recessed part, and the scattering direction of the quartz powder was stable when the quartz powder was dropped onto the disk.
  • Example 4 A quartz powder layer was molded under the same conditions as in Example 1 by using a vinyl chloride plate on the rotating disk 420, and a quartz crucible was prepared by arc melting. After repeating this 300 times, the unevenness of the surface (upper surface 420a) of the turntable 420 was measured. The depth of the dent reaches 1 mm in the most recessed part, and the direction of dispersion of the quartz powder when the quartz powder is dropped on the disk is different from that of a new product, and it is attached to the wall inside the mold. Also, the variation in the thickness of the raw material powder became large.
  • Comparative Example 5 the quartz powder could not be sufficiently accelerated on the upper surface 420a of the turntable 420 and almost fell to the bottom of the mold.
  • Comparative Example 6 a large proportion of the quartz powder moved in the rotation direction on the upper surface 420a of the turntable 420, and a large proportion dropped to the bottom portion instead of the wall portion.
  • the quartz powder on the wall dropped, and it was not possible to mold with a uniform raw material powder thickness.
  • Natural quartz powder was sprayed from the nozzle inside the mold rotating at 60 rpm. A natural quartz powder layer was formed at a carrier gas flow rate of 2.0 m/s. Subsequently, synthetic quartz powder was sprayed from a nozzle to form a synthetic quartz powder layer. When the carrier gas flow rate was 2.0 m/s, the natural quartz powder in the sprayed portion collapsed due to wind pressure, and the thickness of the natural quartz powder layer was not uniform.
  • FIG. 7 shows another example of the turntable 420.
  • the turntable 420 shown in FIG. 7 includes a support member 421 that is a disk-shaped plate member, and a covering member 422 that covers the surface of the support member 421.
  • the material of the supporting member 42 metal, resin, ceramic, or the like is used.
  • a resin material having elasticity such as fluororesin and rubber is used.
  • the silica powder 200 comes into contact with the upper surface 420a of the turntable 420, the elasticity of the covering member 422 suppresses scratches and wear of the support member 421.
  • the silica glass crucible 11 disappears during arc melting in the manufacturing process, and therefore does not remain as an impurity.
  • the concentration of impurities such as metal elements that do not disappear is preferably 20 ppm or less per element.
  • FIG. 8A and 8B show an example of a turntable 420 having steps.
  • 8A shows a side view of the turntable 420
  • FIG. 8B shows a plan view of the turntable 420.
  • a step portion 420b is provided at the center of the upper surface 420a.
  • the silica powder 200 is charged, the silica powder 200 is dropped onto the upper surface 420a outside the step portion 420b. As a result, the silica powder 200 diffuses outside the step portion 420b, so that the range in which the silica powder 200 is blown from the rotary disk 420 can be narrowed.
  • FIG. 9(a) and 9(b) show an example in which a plurality of ore feed pipes 410 are provided.
  • the rotating disks 420 are arranged on opposite sides of the shaft 42a.
  • the silica powder 200 charged from the one ore feeding pipe 410 is diffused and discharged to one side of the upper surface 420a of the turntable 420, and the silica powder 200 introduced from the other ore feeding pipe 410 is turned to the turntable 420. Is diffused and emitted to the other side of the upper surface 420a.
  • the shaft 42a of the rotary disk 420 may be arranged on the rotary shaft of the mold 20. As a result, it becomes possible to uniformly and quickly deposit a desired amount of the silica powder 200 onto a wide range along the circumferential direction of the inner wall surface 20a of the mold 20.
  • FIG. 9 shows an example in which two supply pipes 410 are provided, but three or more supply pipes 410 may be provided.
  • FIG. 10A and 10B show an example of another diffusing section 42.
  • the diffusion part 42 shown in FIG. 10A has a conical disc 425.
  • the conical disc 425 When the conical disc 425 is used, the silica powder 200 is dropped to a predetermined position on the upper surface 425a of the conical disc 425. As a result, the falling silica powder 200 is diverted radially along the upper surface 425a while being redirected at the upper surface 425a of the conical disc 425 and is discharged.
  • the diffusing section 42 shown in FIG. 10B has a curved board 426.
  • the shape of the upper surface 426a of the curved board 426 is a shape obtained by rotating a predetermined curve from the center toward the outer edge.
  • the shape of the upper surface 426a of the curved surface plate 426 is configured by various curves such as a shape obtained by rotating a curve that descends from the center to the outer edge and rises from the middle.
  • the silica powder 200 When using the curved board 426, the silica powder 200 is dropped to a predetermined position on the upper surface 426a of the curved board 426. As a result, the silica powder 200 that has fallen is redirected on the upper surface 426a of the curved surface plate 426 and is radially diffused and discharged along the upper surface 426a. The trajectory during ejection is controlled by the shape of the upper surface 426a. When using such a curved board 426, it is not necessary to rotate the curved board 426.
  • the inclination angle with respect to the horizontal direction may be changed.
  • the emission angle of the silica powder 200 and the vertical diffusion angle can be adjusted according to the inclination angle.
  • the stable silica powder layer 210 can be formed in the mold 20 in a short time. This makes it possible to provide the silica glass crucible 11 suitable for producing a silicon single crystal for semiconductors by the CZ method. Further, it becomes possible to manufacture a silicon single crystal (ingot) in which crystal defects are suppressed by the CZ method using this silica glass crucible 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

モールド内に安定したシリカ粉層を短時間で形成することができるシリカガラスルツボの製造装置および製造方法を提供すること。 本発明の一態様は、回転するモールドの内側にシリカ粉層を形成するシリカガラスルツボの製造装置であって、モールドを回転させる回転手段と、モールドの内側にシリカ粉を供給する供給手段と、を備える。この製造装置において、供給手段は、シリカ粉をモールドの内側におけるモールドの内壁面から離れた位置に落下させるように送り出す送出部と、送出部から送り出されたシリカ粉の方向を落下位置から内壁面側に変換するとともに、シリカ粉の落下位置から内壁面に向けた拡散角度を拡げる拡散部と、を有する。

Description

シリカガラスルツボの製造装置および製造方法
 本発明は、シリカガラスルツボの製造装置および製造方法に関するものである。
 シリコン単結晶は、シリカガラスルツボに充填したシリコン原料(多結晶シリコン)を熔融し、熔融した多結晶シリコンに種結晶を接触させて回転しながら引き上げることで製造される(CZ法:チョクラルスキー法)。このCZ法で使用されるシリカガラスルツボは、回転モールド法によって製造される。
 回転モールド法によるシリカガラスルツボの製造方法は、平均粒径100μm~400μm程度のシリカ粉を回転するモールドの内側に遠心力を利用して堆積させてシリカ粉層を形成するシリカ粉層形成工程と、モールド側からシリカ粉層を減圧しながら、シリカ粉層をアーク熔融させることによってシリカガラス層を形成するアーク熔融工程とを備える。
 シリカ粉層形成工程では、モールドの内側に天然石英粉層を形成した後、天然石英粉層の上に合成シリカ粉層を形成する。アーク熔融工程では、減圧しながらシリカ粉を溶融することによって気泡を除去して透明シリカガラス層(以下、「透明層」とも言う。)を形成する。次いで、減圧を弱くすることによって気泡が残留した気泡含有シリカガラス層(以下、「非透明層」とも言う。)を形成する。これにより、内表面側に透明層、外表面側に非透明層を有し、さらに、内表面側に合成層(合成シリカ粉を溶融して形成した層)、外表面側に天然層(天然石英粉を溶融して形成した層)を有する多層構造のシリカガラスルツボが形成される。
 このようなシリカガラスルツボの製造におけるシリカ粉層の形成において、特許文献1には、石英ガラスルツボの特定領域における選択的な多層化、薄層化を行うことができ、また層境界付近に残存する気泡を抑制した石英ガラスルツボの製造方法が開示される。この製造方法は、回転するルツボ成形用型(モールド)内に石英ガラス原料粉を、非加熱かつ非溶融環境下で吹付けることにより石英ガラス成形体を形成する工程と、石英ガラス成形体を加熱溶融し、その後、冷却し、石英ガラスルツボを形成する工程と、を含む。
特開2017-149603号公報
 回転モールド法でのシリカ粉層形成工程において、回転するモールドにシリカ粉を投入し、遠心力を利用してシリカ粉層をモールド内壁面に堆積させる際、所望の位置および厚さでシリカ粉層を形成することは非常に難しい。すなわち、モールドの大きさ(キャビティ内径)および回転数に基づく遠心力、シリカ粉の粒径、投入位置、投入量、投入環境など、様々な条件を考慮する必要があるため、安定して所望のシリカ粉層を形成するための制御は容易ではない。このため、シリカ粉層の形成では、シリカ粉を投入する作業者の経験に頼る部分が多い。
 また、モールド内壁面に向けてシリカ粉を吹き付けてシリカ粉層を形成する場合、吹き付けによる圧力(例えば、ガスの風圧)によって先に形成されたシリカ粉層の原料粉を崩してしまうという問題が生じる。特に、短時間でシリカ粉層を形成しようとして吹き付けるシリカ粉の量を増加させた場合、このような原料粉の崩れが顕著に現れることになる。
 このような回転モールド法によって製造されるシリカガラスルツボの品質は、シリカガラスルツボを用いてシリコン単結晶の引き上げ(例えば、CZ法)を行った場合のシリコン単結晶(シリコンインゴット)の品質と密接に関連する。例えば、シリカガラスルツボに金属不純物が混入していると、シリコン単結晶の引き上げ時に金属不純物がシリコン融液へ混入し、シリコンインゴットの有転位化に繋がる。したがって、回転モールド法でのシリカ粉層の形成は、シリコン単結晶の品質にも繋がる重要な工程である。
 本発明は、モールド内に安定したシリカ粉層を短時間で形成することができるシリカガラスルツボの製造装置および製造方法を提供することを目的とする。
 本発明の一態様は、回転するモールドの内側にシリカ粉層を形成するシリカガラスルツボの製造装置であって、モールドを回転させる回転手段と、モールドの内側にシリカ粉を供給する供給手段と、を備える。この製造装置において、供給手段は、シリカ粉をモールドの内側におけるモールドの内壁面から離れた位置に落下させるように送り出す送出部と、送出部から送り出されたシリカ粉の移動方向を落下位置から内壁面側に変換するとともに、シリカ粉の落下位置から内壁面に向けた拡散角度を拡げる拡散部と、を有する。
 このような構成によれば、モールドの内壁面にシリカ粉層を形成する際、モールドの内側に落下させたシリカ粉が拡散部を経由することでその移動方向が落下位置から内壁面側に変換されるとともに、落下位置から内壁面に向けた拡散角度が拡がる。このため、シリカ粉をモールドの内壁面の広範囲に短時間で飛着させることができる。
 上記シリカガラスルツボの製造装置において、拡散部は回転盤を有し、回転盤は、送出部から送り出されたシリカ粉を回転盤の表面で受けるよう設けられていてもよい。これにより、回転盤の表面(上面)に落下したシリカ粉は回転板の表面を転がりながら遠心力によって加速して回転盤からモールドの内壁面へ飛ばされることになる。
 上記シリカガラスルツボの製造装置において、拡散部は、回転盤と内壁面との相対的な位置を変化させる駆動機構を有することが好ましい。これにより、シリカ粉を飛ばす位置やモールドの内壁面の高さ方向の位置を調整することができる。
 上記シリカガラスルツボの製造装置において、回転盤の表面の硬さは、モース硬度5以上であることが好ましい。ここで、モース硬度は、モース硬度計の標準鉱物で表面を引っかき、傷付くか否かによって決められる。これにより、回転盤の表面にシリカ粉が接触しても回転盤の表面の傷付きを抑制することができる。
 上記シリカガラスルツボの製造装置において、回転盤の直径は、モールドの内径の9%以上76%以下であることが好ましい。回転盤の直径がモールドの内径の9%よりも小さいと、十分な量のシリカ粉を回転盤で受けることができない。一方、回転盤の直径がモールドの内径の76%を超えると回転盤をモールドの内側に出し入れする際の取り扱いが困難となる。さらに、回転盤上でシリカ粉の拡散角度が広がり過ぎて、モールドに付着するシリカ粉の量のばらつきが発生しやすくなる。
 上記シリカガラスルツボの製造装置において、回転盤の表面の材料における金属不純物の濃度は一つの元素あたり20ppm以下であることが好ましい。これにより、シリカ粉が回転盤に接触した際に回転盤から発生してシリカ粉層に混入する金属不純物を抑制することができる。
 本発明の一態様は、回転するモールドの内側にシリカ粉層を形成するシリカガラスルツボの製造方法であって、モールドを回転させた状態でシリカ粉をモールドの内側に落下させる工程と、落下させたシリカ粉の移動方向を落下位置から内壁面側に変換するとともに、シリカ粉の落下位置から内壁面に向けた拡散角度を拡げて内壁面側に飛散させてシリカ粉層を形成する工程と、シリカ粉層を溶融した後、冷却する工程と、を備える。
 このような構成によれば、モールドの内壁面にシリカ粉層を形成する際、モールドの内側に落下させたシリカ粉の移動方向が落下位置から内壁面側に向かう方向に変換されるとともに、落下位置から内壁面に向けた拡散角度が拡がる。このため、シリカ粉をモールドの内壁面の広範囲に短時間で飛着させることができる。
 上記シリカガラスルツボの製造方法において、シリカ粉層を形成する工程は、落下させたシリカ粉を回転盤の表面で受けることでシリカ粉の方向変換および拡散角度の広角化を行うようにしてもよい。これにより、回転盤の表面に落下したシリカ粉は回転板の表面を転がりながら遠心力によって加速して回転盤からモールドの内壁面へ飛ばされることになる。
 上記シリカガラスルツボの製造方法において、シリカ粉層を形成する工程は、回転盤と内壁面との相対的な位置を変化させながらシリカ粉層の厚さを制御することが好ましい。これにより、シリカ粉を飛ばす位置やモールドの内壁面の高さ方向の位置を調整することができる。
 上記シリカガラスルツボの製造方法におけるシリカ粉層を形成する工程において、回転盤の回転数は100rpm以上5000rpm以下であることが好ましい。回転盤の回転数が5000rpmよりも速いとシリカ粉が散らばりすぎ、100rpmよりも遅いとシリカ粉が水平方向に十分な速度で飛び出ず、モールドの内壁面に付着しにくくなる。
 本発明によれば、モールド内に安定したシリカ粉層を短時間で形成することができるシリカガラスルツボの製造装置および製造方法を提供することが可能になる。
本実施形態に係るシリカガラスルツボの製造装置を例示する模式断面図である。 (a)および(b)は、拡散部を例示する模式図である。 (a)および(b)は、シリカガラスルツボを例示する模式図である。 シリカガラスルツボの製造工程を概略的に示すフローチャートである。 (a)および(b)は、シリカガラスルツボの製造方法を説明するための模式図である。 (a)および(b)は、シリカガラスルツボの製造方法を説明するための模式図である。 他の供給手段について説明する模式図である。 (a)および(b)は、他の供給手段について説明する模式図である。 (a)および(b)は、他の供給手段について説明する模式図である。 (a)および(b)は、他の供給手段について説明する模式図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
 図1は、本実施形態に係るシリカガラスルツボの製造装置を例示する模式断面図である。
 図2(a)および(b)は、拡散部を例示する模式図である。
 図2(a)には拡散部42の平面図が示され、図2(b)には拡散部42の側面図が示される。
 図3(a)および(b)は、シリカガラスルツボを例示する模式図である。
 図3(a)にはシリカガラスルツボ11の斜視図が示され、図3(b)にはシリカガラスルツボ11の断面図が示される。
<シリカガラスルツボ>
 先ず、本実施形態に係る製造装置1で製造されるシリカガラスルツボ11について説明する。
 図3に示すように、シリカガラスルツボ11は、相対的に曲率の大きいコーナ部11bと、上面に開口した縁部を有する円筒状の側壁部11aと、直線または相対的に曲率の小さい曲線からなるすり鉢状の底部11cと、を有する。
 本実施形態において、コーナ部11bは、側壁部11aと底部11cを連接する部分であり、コーナ部11bの曲線の接線がシリカガラスルツボ11の側壁部11aと重なる点から、底部11cと共通接線を有する点までの部分のことを意味する。言い換えると、シリカガラスルツボ11の側壁部11aにおいて曲がり始める点が、側壁部11aとコーナ部11bとの境界である。さらに、シリカガラスルツボ11の底の曲率が実質的に一定の部分が底部11cであり、シリカガラスルツボ11の底の中心からの距離が増したときに曲率が変化し始める点が、底部11cとコーナ部11bとの境界である。
 シリカガラスルツボ11の肉厚方向(厚さ方向とも言う。)において、ルツボ内表面(以下、「内表面IS」とも言う。)側には透明層13が設けられ、ルツボ外表面(以下、「外表面OS」とも言う。)側には非透明層15が設けられる。
 透明層13とは、実質的に気泡を含まない層である。ここで、「実質的に気泡を含まない」とは、気泡が原因でシリコン単結晶の単結晶化率が低下しない程度の気泡含有率および気泡サイズのことを意味する。例えば、透明層13の気泡含有率は0.1%以下であり、気泡の平均直径は100μm以下である。
 透明層13は合成シリカガラスを内表面IS側に含むことが好ましい。合成シリカガラスとは、例えばケイ素アルコキシドの加水分解により合成された原料を溶融して製造されたシリカガラスを意味する。一般に合成シリカは天然石英に比べて金属不純物の濃度が低く、OH基の濃度が高いという特性を有している。例えば、合成シリカに含まれる各金属不純物の含有量は0.05ppm未満であり、OH基の含有量は30ppm以上である。ただし、Al等の金属不純物が添加された合成シリカも知られていることから、合成シリカか否かは一つの要素に基づいて判断されるべきものではなく、複数の要素に基づいて総合的に判断されるべきものである。このように、合成シリカガラスは天然石英ガラスと比べて不純物が少ないことから、ルツボからシリコン融液中へ溶出する不純物の増加を防止することができ、シリコン単結晶化率を高めることができる。
 非透明層15には多数の気泡が内在する。非透明層15は、この気泡によって白濁した状態に見える層のことである。非透明層15は天然石英ガラスからなることが好ましい。天然石英ガラスとは、天然水晶、ケイ石等の天然原料を溶融して製造されたシリカガラスを意味する。一般に天然石英は合成シリカに比べて金属不純物の濃度が高く、OH基の濃度が低いという特性を有している。例えば、天然石英に含まれるAlの含有量は1ppm以上、アルカリ金属(Na,KおよびLi)の含有量はそれぞれ0.1ppm以上、OH基の含有量は60ppm未満である。
 なお、天然石英か否かは一つの要素に基づいて判断されるべきものではなく、複数の要素に基づいて総合的に判断されるべきものである。天然石英は、合成シリカに比べて高温における粘性が高いことから、ルツボ全体の耐熱強度を高めることができる。また、天然原料は合成シリカに比べて安価であり、コスト面でも有利である。
<シリカガラスルツボの製造装置>
 次に、本実施形態に係るシリカガラスルツボ11の製造装置1について説明する。
 図1に示すように、製造装置1は、回転モールド法で上記のシリカガラスルツボ11を製造する際のモールド20の内壁面20aにシリカ粉層210を形成するための装置である。モールド20の材料としては、例えばカーボンなどが挙げられる。製造装置1は、モールド20を回転させる回転手段30と、モールド20の内側であるキャビティ20c内にシリカ粉200を供給する供給手段40と、を備える。
 モールド20のキャビティ20cは、製造するシリカガラスルツボ11の外形に合わせた凹型の形状を有する。回転手段30は、モールド20の下方に配置され、モールド20のキャビティ20cの底の中央を中心としてモールド20を回転させる。
 供給手段40は、送出部41と、拡散部42とを有する。送出部41は、シリカ粉200をモールド20の内側(キャビティ20c)における内壁面20aから離れた位置に落下させるように送り出す。本実施形態において、送出部41はシリカ粉200を落下させる例えば給鉱手段を有する。給鉱手段としては、シリカ粉200を落下させる管、桶、スコップなどが挙げられる。本実施形態では、給鉱手段として給鉱管410によってシリカ粉200を落下させる例を示す。
 拡散部42は、送出部41から送り出されたシリカ粉200の移動方向を落下位置から内壁面20a側に変換するとともに、シリカ粉200の落下位置から内壁面20aに向けた拡散角度を拡げる機能を有する。
 拡散部42は、回転盤420を有する。回転盤420は例えば円盤状の板材であって、中心に軸42aが設けられる。軸42aは駆動機構430によって回転可能に設けられる。すなわち、回転盤420は、駆動機構430の回転駆動によって水平に回転可能に設けられる。なお、回転盤420は必ずしも円盤状に限定されず、四角形状や多角形状であってもよい。
 また、駆動機構430は、回転盤420を上下方向(キャビティ20cの深さ方向)に移動させる機構を有する。駆動機構430は例えば軸42aを上下方向に進退させることで回転盤420の高さを変えることができる。なお、駆動機構430は、回転盤420を左右方向(キャビティ20cの開口径方向)に移動させる機構を有していてもよい。駆動機構430によって、回転盤420と内壁面20aとの相対的な位置を変化させることができる。
 給鉱管410の送出口は回転盤420の上方に配置される。これにより、給鉱管410の送出口から投入されたシリカ粉200が回転盤420の上面420aに落下する。そして、回転盤420の上面420aに落下したシリカ粉200は、回転盤420の回転による遠心力を受けて外方に拡がっていく。
 すなわち、シリカ粉200の移動方向は、落下方向(給鉱管410の送出口から落下位置に向かう方向)から、回転盤420の上面420aに沿った外方(落下位置からモールド20の内壁面20aに向かう方向)へ変換される。さらに、シリカ粉200は、回転盤420の上面420aを外周側に加速しながら進み、放射状に拡がっていく。すなわち、シリカ粉200の拡散角度が拡げられ、内壁面20aに向けて飛び出していく。
 回転盤420の材料としては、石英やセラミック(SiC、アルミナ、酸化ジルコニア等)が挙げられる。回転盤420の上面420aには給鉱管410から落下したシリカ粉200が当たり、接触しながら転がっていくため、摩耗の少ない材料が望まれる。例えば、回転盤420の表面(上面420a)のモース硬さは5以上であることが好ましい。これにより、回転盤420の上面420aにシリカ粉200が接触しても回転盤420の表面の摩耗や傷付きを抑制でき、耐久性を向上させることができる。また、摩耗の低減によって回転盤420の変形が抑制され、シリカ粉200の飛散方向やモールド20に付着するシリカ粉200の厚さを安定させることができる。また、シリカ粉200の接触による回転盤420の表面からのダストの発生を抑制することができる。
 回転盤420の材料として石英を用いる場合、アルカリ金属、アルミニウム、鉄またはカルシウムのうち最も高い元素が1000ppm以下であることが好ましく、金属不純物の濃度が一つの元素あたり20ppm以下であることがより好ましい。これにより、シリカ粉200が回転盤420に接触した際に回転盤420から発生してシリカ粉層に混入する金属等の不純物を抑制することができる。
 ここで、シリカ粉層210に金属不純物が混入すると、製造されるシリカガラスルツボ11にもこの金属不純物が残る状態となる。金属不純物が混入したシリカガラスルツボ11を用いてCZ法でシリコン単結晶を製造すると、結晶欠陥を発生させる原因となる。上記のように回転盤420の金属不純物の濃度が一つの元素あたり20ppm以下であれば、シリカガラスルツボ11へ金属不純物が混入したとしても、CZ法で製造されるシリコン単結晶に重大な結晶欠陥を発生させる量にはならない。これにより、このシリカガラスルツボ11を用いて製造するシリコン単結晶の結晶欠陥の発生を抑制して、品質の高いシリコン単結晶を製造することが可能となる。
 本実施形態に係る製造装置1においてシリカ粉200をモールド20に投入する際、回転盤420をモールド20のキャビティ20c内に配置する関係から、回転盤420の直径は、モールド20の内径の9%以上76%以下が好ましい。
 回転盤420の直径がモールド20の内径の9%よりも小さいと、十分な量のシリカ粉200を回転盤420で受けることができず、モールド20の内壁面20aに向けて飛ばすシリカ粉200の量が少なくなってしまう。このため、所望の量のシリカ粉200の投入に多くの時間を要することになる。一方、回転盤420の直径がモールド20の内径の76%を超えると回転盤420をモールド20の内側へ出し入れする際の取り扱いが困難となる。さらに、回転盤420上でシリカ粉200の拡散角度が広がり過ぎて、モールド20に付着するシリカ粉200の量のばらつきが発生しやすくなる。
<シリカ粉の拡散動作>
 図2(a)に示すように、回転盤420の上面420aの所定位置にシリカ粉200が落下すると、シリカ粉200は上面420aとの摩擦による慣性で回転盤420の外周に向けて拡がっていく。そして、シリカ粉200は回転盤420の外周から飛び出してモールド20の内壁面20aに飛着する。すなわち、シリカ粉200は回転盤420の上面420aへ落下し、上面420aに接触することで回転盤420の回転による遠心力を受けて上面420aの落下位置からモールド20の内壁面20a側に移動方向を変える。
 さらに、シリカ粉200の上面420aに落下した位置と回転盤420の回転中心との距離によって回転盤420の外周まで転がる(進む)際の軌跡が変わる。これにより、連続して供給されたシリカ粉200の拡散範囲は回転盤420の外周に向かうほど拡がり、モールド20の内壁面20aに向けて所定の拡散角度を持って飛び出していくことになる。
 つまり、図2(b)に示すように、落下(例えば、自然落下)によって供給されたシリカ粉200には、回転盤420に当たることで水平方向成分の力が加えられる。連続供給されるシリカ粉200は加速しながら拡がり、モールド20の内壁面20aに向けて飛び出し、内壁面20aに飛着することになる。本実施形態では、シリカ粉200を内壁面20aに向けて吹き付けるためのガスは不要であり、落下と回転盤420による方向変換および拡散角度の広角化によって、単位時間に多くのシリカ粉200を幅広く、かつ高い均一性で飛着させることが可能となる。
 シリカ粉200を付着させる際、モールド20は回転しているため、回転盤420から内壁面20aに向けて飛び出したシリカ粉200はモールド20の回転による遠心力で内壁面20a側に押し付けられる状態になる。シリカ粉200の供給を続けることで内壁面20aにシリカ粉200が徐々に堆積していき、シリカ粉層210となる。
 回転盤420の回転方向とモールド20の回転方向とは同じであっても、逆であってもよいが、同じほうが好ましい。回転盤420の回転方向とモールド20の回転方向とが同じであれば、回転盤420とモールド20との相対的な速度の差が小さくなり、回転盤420から飛び出して内壁面20aに飛着する際のシリカ粉200の回転方向へのずれを抑制しやすくなる。シリカ粉200の回転方向へのずれが抑制されると、内壁面20aと直交する方向への堆積を効率良く行うことができる。
 ここで、回転盤420を利用してシリカ粉200をモールド20の内壁面20aに飛着させる際、回転盤420の回転数は100rpm以上5000rpm以下が好ましい。回転盤420の回転数が5000rpmよりも速いとシリカ粉200が散らばりすぎ、内壁面20aに向けて飛ぶシリカ粉200の量が減ってしまう。一方、回転盤420の回転数が100rpmよりも遅いとシリカ粉200が水平方向に十分な速度で飛び出ず、内壁面20aに付着しにくくなる。回転盤420のより好ましい回転数は100rpm以上4500rpm以下である。
<シリカガラスルツボの製造方法>
 次に、本実施形態に係るシリカガラスルツボ11の製造方法を説明する。
 図4は、シリカガラスルツボの製造工程を概略的に示すフローチャートである。
 また、図5(a)~図6(b)は、シリカガラスルツボの製造方法を説明するための模式図である。
 シリカガラスルツボ11は回転モールド法によって製造される。回転モールド法は、回転するモールド20の内側(内壁面20a)にシリカ粉層210を形成し、シリカ粉層210をアーク熔融および冷却することでシリカガラスルツボ11を製造する方法である。
 先ず、ステップS101に示すように、モールド20の回転を行う。モールド20は、キャビティ20c内に投入されるシリカ粉200が遠心力によって内壁面20aに保持されるスピードで回転される。
 次に、ステップS102に示すように、回転盤420の挿入および回転を行う。回転盤420は駆動機構430によってキャビティ20c内に挿入され、所定の高さおよび内壁面20aから所定の間隔で配置される。また、駆動機構430は、キャビティ20c内に配置した回転盤420を所定の回転数で回転させる。
 次に、ステップS103に示すように、シリカ粉200の落下投入を行う。シリカ粉200の落下投入は、図5(a)に示すように、回転盤420を回転させた状態で給鉱管410から回転盤420の上面420aにシリカ粉200を落下する。これにより、回転盤420の上面420aに落下したシリカ粉200が回転盤420上の摩擦と慣性力とで外周側へ拡がりながらモールド20の内壁面20aに向けて飛び出していくことになる。
 次に、ステップS104に示すように、回転盤420の位置を制御する。すなわち、駆動機構430により回転盤420の高さや内壁面20aとの距離を制御しながらシリカ粉200の落下投入を続ける。これにより、ステップS105に示すように、モールド20へのシリカ粉層210の形成が行われる。この際、回転盤420と内壁面20aとの相対的な位置を調整しながらシリカ粉200の投入を行う。これにより、シリカ粉200を飛ばす距離やモールド20の内壁面20aの高さ方向の位置を調整しながら、シリカ粉層210の所定位置での厚さを制御することができる。
 シリカ粉層210の形成では、余分に付着したシリカ粉200をすりきり棒等によって掻き取り、所定の厚さに成形する。また、シリカ粉200の堆積方向において異なる材料のシリカ粉200を用いてもよい。例えば、シリカガラスルツボ11の外側の天然層および内側の合成層に対応するため、先ず、図5(a)に示すように、シリカ粉200として第1シリカ粉201を投入して第1シリカ粉層2101を形成する。第1シリカ粉層2101は、シリカガラスルツボ11の天然層となることから、第1シリカ粉201として例えば天然石英粉が用いられる。
 次に、図5(b)に示すように、シリカ粉200として第2シリカ粉202を投入して第2シリカ粉層2102を形成する。第2シリカ粉層2102は、シリカガラスルツボ11の合成層となることから、第2シリカ粉202として例えば合成シリカ粉が用いられる。これにより、第1シリカ粉層2101の上に第2シリカ粉層2102が積層された多層構造のシリカ粉層210が形成される。
 次に、ステップS106に示すアーク熔融および減圧を行う。図6(a)に示すように、モールド20のキャビティ20c内にアーク電極50を設置し、モールド20を回転させながらモールド20の内側からアーク放電を行い、シリカ粉層210の全体を1720℃以上に加熱して熔融する。この際、加熱と同時にモールド20側から減圧し、モールド20に設けた通気孔21を通じてシリカ内部の気体を外層側に吸引し、加熱中のシリカ粉層内の空隙を脱気することにより、ルツボ内表面の気泡を除去する。これにより、実質的に気泡を含まない透明層13を形成する。透明層13の厚さは、減圧時間や圧力によって調整可能である。
 モールド20には図示しない冷却手段が設けられている。これにより、シリカガラスルツボ11の外表面となる部分のシリカをガラス化させないようにする。冷却手段による冷却温度は、シリカがガラス化せずに焼結体および粉体として残る温度である。
 その後、加熱を続けながら脱気のための減圧を弱め又は停止し、気泡を残留させることにより、多数の微小な気泡を内包する非透明層15を形成する。
 次いで、ステップS107に示す冷却では、アーク電極50への電力供給を停止して、熔融したシリカガラスを冷却してシリカガラスルツボ11の形状を構成する。
 次に、ステップS108に示す研磨処理として、シリカガラスルツボ11の外表面OSにサンドブラスト処理を施し、所定の表面粗さに仕上げる。そして、ステップS109に示すリムカットでは、図6(b)に示すように、モールド20から取り出したシリカガラスルツボ11の側壁部11aの上端側の一部を切断してシリカガラスルツボ11の高さを調整する。
 このようなシリカガラスルツボ11の製造方法では、モールド20の内壁面20aにシリカ粉層210を形成する工程(ステップS102~ステップS105、図5(a)~(b))において、モールド20の内側(キャビティ20c内)に落下させたシリカ粉200の方向が落下位置から内壁面20a側に向かう方向に変換されるとともに、落下位置から内壁面20aに向けた拡散角度を拡げることができる。このため、シリカ粉200をモールド20の内壁面20aの広範囲に短時間で効率良く飛着させることができる。
<実施例および比較例>
 次に、本実施形態に係る製造装置1および製造方法を適用した実施例と、比較例とを説明する。
(実施例1)
 モールド(モールド20)を60rpmで回転させている内側(キャビティ20c内)に石英円盤(回転盤420)を挿入し、回転させた石英円盤上に天然石英粉を30kg/分の速度で落下させ、石英粉を水平方向へ飛ばしてモールドの壁部内面に貼り付けた。その際、円盤を上下させて壁部に均一に貼り付けた。その後、すりきり棒などで形状を整えることでモールド内面に均一な天然石英粉層を形成した。続いて、合成石英粉を回転、上下させている円盤上に落下させ、石英粉を水平方向へ飛ばしてモールドの壁部内面に貼り付けた後、すりきり棒などで形状を整えることで均一な合成石英粉層を形成した。この結果、モールド内部にルツボ形状の均一な2層の石英粉成型体が形成された。
(比較例1)
 モールドを60rpmで回転させている内側の壁部に、回転盤420を用いることなく天然石英粉を30kg/分の速度で流し入れた。天然石英粉の一部はモールドの壁部に付着したが、殆どはモールドの底部に落下してしまい、石英粉成型体を形成できなかった。
(比較例2)
 モールドを60rpmで回転させている内側の壁部に、回転盤420を用いることなく天然石英粉を1kg/分の速度で流し入れた。石英粉が壁部に付着した後、すりきり棒などで形状を整えることでモールド内面に天然石英粉層を形成した。このとき、モールドの壁部から底部に流れ落ちる石英粉が多く、壁部よりも底部の層厚が厚くなった。続いて、合成石英粉を壁部に同様の速度で流し入れた。石英粉が壁部に付着した後、その後すりきり棒などで形状を整えることでモールド内面に合成石英粉層を形成した。この結果、モールド内部にルツボ形状の2層の石英粉成型体を形成したが、底部のほうが壁部よりも厚い分布となった。
(実施例2)
 回転盤420に石英を使用し、板の材質を高純度のもの(Al、Feなどの金属不純物が18ppm以下)を使用し、実施例1と同じ条件で石英粉層を成型し、アーク溶融によって石英ルツボを作成した。作成した石英ルツボの内表面の合成層を分析した結果、いずれの金属元素も定量下限以下であった。
(比較例3)
 回転盤420に石英を使用し、板の材質を低純度のもの(Al、Feなどが50ppm以上)を使用し、実施例1と同じ条件で石英粉層を成型し、アーク溶融によって石英ルツボを作成した。作成した石英ルツボの内表面の合成層を分析した結果、不純物が検出された。
(実施例3)
 回転盤420にアルミナセラミックスを用いて実施例1と同じ条件で石英粉層を成型し、アーク溶融によって石英ルツボを作成した。これを300回繰り返した後、回転盤420の表面(上面420a)の凹凸を測定した。最も窪んでいる箇所でもくぼみの深さは0.1mm以下で、円盤上に石英粉を落下させた際の石英粉の飛散方向は安定していた。
(比較例4)
 回転盤420に塩化ビニル板を用いて実施例1と同じ条件で石英粉層を成型し、アーク溶融によって石英ルツボを作成した。これを300回繰り返した後、回転盤420の表面(上面420a)の凹凸を測定した。最も窪んでいる箇所ではくぼみの深さは1mmに達し、円盤上に石英粉を落下させた際の石英粉の飛散方向は新品時と比べて変化しており、モールド内の壁部に貼り付けた原料粉の厚さのばらつきが大きくなった。
(比較例5、実施例4、実施例5および比較例6)
 比較例5、実施例4、実施例5および比較例6では、以下の表1に示すように回転盤420の径を変更して原料粉(石英粉)の成型を行った。
Figure JPOXMLDOC01-appb-T000001
 比較例5では石英粉が回転盤420の上面420aで十分に加速できず、モールドの底部へ殆ど落下してしまった。比較例6では石英粉が回転盤420の上面420aで回転方向へ移動してしまう割合が多く、壁部ではなく底部へ落下する割合が多かった。すりきり棒などで表面を均一に成型すると壁部の石英粉が落下し、均一な原料粉厚さで成型することができなかった。
(比較例7、実施例6、実施例7、実施例8および比較例8)
 比較例7、実施例6、実施例7、実施例8および比較例8では、以下の表2に示すように回転盤420の回転数を変えて原料の成型を行った。
Figure JPOXMLDOC01-appb-T000002
 比較例7では石英粉が回転盤420の上面420aで十分に加速できず、モールドの底部へ殆ど落下してしまった。比較例8では石英粉が回転盤420の上面420aで回転方向へ移動してしまう割合が多く、壁部ではなく底部へ落下する割合が多かった。すりきり棒などで表面を均一に成型すると壁部の石英粉が落下し、均一な原料粉厚さで成型することができなかった。
(比較例9)
 モールドを60rpmで回転させている内側にノズルから天然石英粉を吹きつけた。キャリアガスの流速を2.0m/sとして天然石英粉層を形成した。続いて合成石英粉をノズルから吹き付けて合成石英粉層を形成した。キャリアガスの流速を2.0m/sで行ったが、吹き付けた部分の天然石英粉が風圧で崩れてしまい、天然石英粉層の厚みが均一ではなくなった。
<他の供給手段>
 次に、他の供給手段40について説明する。
 図7~図10(b)は、他の供給手段について説明する模式図である。
 図7には、回転盤420の他の例が示される。図7に示す回転盤420は、円盤状の板材である支持部材421と、支持部材421の表面を覆う被覆部材422と、を有する。
 支持部材421の材料には、金属、樹脂およびセラミックなどが用いられる。被覆部材422の材料には、フッ素樹脂およびゴムなど、弾性を有する樹脂材料が用いられる。これにより、回転盤420の上面420aにシリカ粉200が接触しても、被覆部材422の弾性によって支持部材421の傷付きや摩耗が抑制される。なお、消耗によって被覆部材422の一部が剥がれたとしても、シリカガラスルツボ11を製造工程におけるアーク熔融の際に消失するため、不純物として残ることはない。ただし、消失しない金属元素などの不純物濃度は一つの元素あたり20ppm以下であることが好ましい。
 図8(a)および(b)には、段差を有する回転盤420の例が示される。図8(a)には回転盤420の側面図が示され、図8(b)には回転盤420の平面図が示される。この回転盤420においては、上面420aの中央部分に段差部420bが設けられる。シリカ粉200を投入する際には、段差部420bよりも外側の上面420aに落下させる。これにより、シリカ粉200は段差部420bよりも外側で拡散することから、回転盤420からシリカ粉200を飛ばす範囲を絞ることができる。
 図9(a)および(b)には、複数の給鉱管410が設けられた例が示される。
 図9に示す例では、回転盤420の軸42aを中心として互いに反対側に配置される。これにより、一方の給鉱管410から投入されたシリカ粉200は回転盤420の上面420aの一方側に拡散して放出され、他方の給鉱管410から投入されたシリカ粉200は回転盤420の上面420aの他方側に拡散して放出される。
 このような供給手段40を用いることで、短時間により多くのシリカ粉200を投入することができる。また、この供給手段40では、モールド20の回転軸上に回転盤420の軸42aを配置してもよい。これにより、モールド20の内壁面20aの周方向に沿った広い範囲へ均一かつ短時間で所望の量のシリカ粉200を飛着させることが可能となる。
 なお、図9では2つの給鉱管410が設けられた例を示したが、3つ以上の給鉱管410を設けるようにしてもよい。
 図10(a)および(b)には、他の拡散部42の例が示される。
 図10(a)に示す拡散部42は、円錐盤425を有する。円錐盤425を用いる場合、シリカ粉200を円錐盤425の上面425aの所定位置に落下させる。これにより、落下したシリカ粉200は円錐盤425の上面425aで方向転換しつつ上面425aに沿って放射状に拡散して放出される。このような円錐盤425を用いる場合、円錐盤425を必ずしも回転させる必要はない。
 図10(b)に示す拡散部42は、曲面盤426を有する。曲面盤426の上面426aの形状は、中心から外縁に向けた所定の曲線を回転させた形状になっている。例えば、中心から外縁に向けた途中まで下がり、途中から上がるような曲線を回転させた形状など、様々な曲線によって曲面盤426の上面426aの形状が構成される。
 曲面盤426を用いる場合、シリカ粉200を曲面盤426の上面426aの所定位置に落下させる。これにより、落下したシリカ粉200は曲面盤426の上面426aで方向転換しつつ上面426aに沿って放射状に拡散して放出される。放出の際の軌跡は上面426aの形状によって制御される。このような曲面盤426を用いる場合、曲面盤426を必ずしも回転させる必要はない。
 なお、上記説明した回転盤420、円錐盤425および曲面盤426において、水平方向に対する傾斜角度を変更できるようにしてもよい。これにより、傾斜角度に応じてシリカ粉200の放出角度や上下方向の拡散角度を調整できるようになる。
 以上説明したように、本実施形態によれば、モールド20内に安定したシリカ粉層210を短時間で形成することが可能となる。これにより、特に、CZ法により半導体用シリコン単結晶を製造する際に好適なシリカガラスルツボ11を提供することが可能となる。また、このシリカガラスルツボ11を用いたCZ法によって結晶欠陥の抑制されたシリコン単結晶(インゴット)を製造することが可能となる。
 なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に包含される。
1…製造装置
11…シリカガラスルツボ
11a…側壁部
11b…コーナ部
11c…底部
13…透明層
15…非透明層
20…モールド
20a…内壁面
20c…キャビティ
21…通気孔
30…回転手段
40…供給手段
41…送出部
42…拡散部
42a…軸
50…アーク電極
200…シリカ粉
201…第1シリカ粉
202…第2シリカ粉
210…シリカ粉層
410…給鉱管
420…回転盤
420a…上面
420b…段差部
421…支持部材
422…被覆部材
425…円錐盤
425a…上面
426…曲面盤
426a…上面
430…駆動機構
2101…第1シリカ粉層
2102…第2シリカ粉層
IS…内表面
OS…外表面
 

Claims (10)

  1.  回転するモールドの内側にシリカ粉層を形成するシリカガラスルツボの製造装置であって、
     前記モールドを回転させる回転手段と、
     前記モールドの内側にシリカ粉を供給する供給手段と、
     を備え、
     前記供給手段は、
      前記シリカ粉を前記モールドの内側における前記モールドの内壁面から離れた位置に落下させるように送り出す送出部と、
      前記送出部から送り出された前記シリカ粉の移動方向を落下位置から前記内壁面側に変換するとともに、前記シリカ粉の前記落下位置から前記内壁面に向けた拡散角度を拡げる拡散部と、を有する、シリカガラスルツボの製造装置。
  2.  前記拡散部は回転盤を有し、
     前記回転盤は、前記送出部から送り出された前記シリカ粉を前記回転盤の表面で受ける、請求項1記載のシリカガラスルツボの製造装置。
  3.  前記拡散部は、前記回転盤と前記内壁面との相対的な位置を変化させる駆動機構を有する、請求項2記載のシリカガラスルツボの製造装置。
  4.  前記回転盤の表面の硬さは、モース硬度5以上である、請求項2または3に記載のシリカガラスルツボの製造装置。
  5.  前記回転盤の直径は、前記モールドの内径の9%以上76%以下である、請求項2から4のいずれか1項に記載のシリカガラスルツボの製造装置。
  6.  前記回転盤の表面の材料における金属不純物の濃度は一つの元素あたり20ppm以下である、請求項2から5のいずれか1項に記載のシリカガラスルツボの製造装置。
  7.  回転するモールドの内側にシリカ粉層を形成するシリカガラスルツボの製造方法であって、
     前記モールドを回転させた状態でシリカ粉を前記モールドの内側における前記モールドの内壁面から離れた位置に落下させる工程と、
     落下させた前記シリカ粉の移動方向を落下位置から前記内壁面側に変換するとともに、前記シリカ粉の前記落下位置から前記内壁面に向けた拡散角度を拡げて前記内壁面側に飛散させて前記シリカ粉層を形成する工程と、
     前記シリカ粉層を溶融した後、冷却する工程と、
     を備えたシリカガラスルツボの製造方法。
  8.  前記シリカ粉層を形成する工程は、落下させた前記シリカ粉を回転盤の表面で受けることで前記シリカ粉の方向変換および拡散角度の広角化を行う、請求項7記載のシリカガラスルツボの製造方法。
  9.  前記シリカ粉層を形成する工程は、前記回転盤と前記内壁面との相対的な位置を変化させながら前記シリカ粉層の厚さを制御する、請求項8記載のシリカガラスルツボの製造方法。
  10.  前記シリカ粉層を形成する工程において、前記回転盤の回転数は100rpm以上5000rpm以下である、請求項8または9に記載のシリカガラスルツボの製造方法。
PCT/JP2020/000609 2019-01-11 2020-01-10 シリカガラスルツボの製造装置および製造方法 WO2020145378A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020000373.6T DE112020000373T5 (de) 2019-01-11 2020-01-10 Vorrichtung und Verfahren zur Herstellung eines Quarzglastiegels
CN202080006277.9A CN113423669B (zh) 2019-01-11 2020-01-10 二氧化硅玻璃坩埚的制造装置及制造方法
US17/294,280 US20220009815A1 (en) 2019-01-11 2020-01-10 Apparatus and method for manufacturing silica glass crucible
KR1020217015270A KR102543612B1 (ko) 2019-01-11 2020-01-10 실리카 유리 도가니의 제조 장치 및 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-003058 2019-01-11
JP2019003058A JP7157932B2 (ja) 2019-01-11 2019-01-11 シリカガラスルツボの製造装置および製造方法

Publications (1)

Publication Number Publication Date
WO2020145378A1 true WO2020145378A1 (ja) 2020-07-16

Family

ID=71521068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000609 WO2020145378A1 (ja) 2019-01-11 2020-01-10 シリカガラスルツボの製造装置および製造方法

Country Status (6)

Country Link
US (1) US20220009815A1 (ja)
JP (1) JP7157932B2 (ja)
KR (1) KR102543612B1 (ja)
CN (1) CN113423669B (ja)
DE (1) DE112020000373T5 (ja)
WO (1) WO2020145378A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148718A (ja) * 1987-12-03 1989-06-12 Shin Etsu Handotai Co Ltd 石英るつぼの製造方法
JP2003095678A (ja) * 2001-07-16 2003-04-03 Heraeus Shin-Etsu America シリコン単結晶製造用ドープ石英ガラスルツボ及びその製造方法
JP2007045704A (ja) * 2005-08-08 2007-02-22 Shinetsu Quartz Prod Co Ltd 石英ガラス坩堝の製造方法
JP2007326780A (ja) * 2007-09-18 2007-12-20 Shinetsu Quartz Prod Co Ltd シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP2010024137A (ja) * 2008-07-19 2010-02-04 Heraeus Quarzglas Gmbh & Co Kg 窒素ドープした石英ガラスルツボおよびそのようなルツボの製造方法
WO2017110763A1 (ja) * 2015-12-21 2017-06-29 株式会社Sumco シリカガラスルツボ、シリカガラスルツボの製造方法、シリコン単結晶の引き上げ装置、インゴットおよびホモエピタキシャルウェーハ

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2928089C3 (de) * 1979-07-12 1982-03-04 Heraeus Quarzschmelze Gmbh, 6450 Hanau Verbundtiegel für halbleitertechnologische Zwecke und Verfahren zur Herstellung
EP0369091A1 (en) * 1988-11-15 1990-05-23 Battelle Memorial Institute Method for manufacturing amorphous silica objects
WO1997009144A1 (en) * 1995-09-07 1997-03-13 Shanghai Shen-Jian Metallurgical & Machinery-Electrical Technology Engineering Corp. A method and an equipment for producing rapid condensation hydrogen storage alloy powder
JP4140868B2 (ja) 1998-08-31 2008-08-27 信越石英株式会社 シリコン単結晶引き上げ用石英ガラスるつぼ及び その製造方法
JP4236750B2 (ja) * 1999-01-27 2009-03-11 コバレントマテリアル株式会社 石英ルツボ製造装置
DE19917288C2 (de) * 1999-04-16 2001-06-28 Heraeus Quarzglas Quarzglas-Tiegel
JP3765368B2 (ja) * 1999-06-01 2006-04-12 東芝セラミックス株式会社 石英ガラスルツボおよびその製造方法
DE19943103A1 (de) * 1999-09-09 2001-03-15 Wacker Chemie Gmbh Hochgefüllte SiO2-Dispersion, Verfahren zu ihrer Herstellung und Verwendung
DE10033632C1 (de) * 2000-07-11 2002-01-03 Heraeus Quarzglas Vorrichtung zur Herstellung rotationssymmetrischer Quarzglastiegel
DE10114698A1 (de) * 2001-03-23 2002-09-26 Heraeus Quarzglas Bauteil aus Quarzglas sowie Verfahren zur Herstellung desselben
DE602004029057D1 (de) * 2003-05-30 2010-10-21 Heraeus Quarzglas Quarzglastiegel zum ziehen von siliciumeinkristall
JP2005060153A (ja) * 2003-08-08 2005-03-10 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法及びシリコン単結晶ウェーハ
US7497907B2 (en) * 2004-07-23 2009-03-03 Memc Electronic Materials, Inc. Partially devitrified crucible
RU2301133C1 (ru) * 2005-11-02 2007-06-20 Сергей Викторович Агеев Способ получения порошка карбида вольфрама, устройство для реализации способа и порошок карбида вольфрама, полученный этим способом
JP4850501B2 (ja) * 2005-12-06 2012-01-11 新日鉄マテリアルズ株式会社 高純度シリコンの製造装置及び製造方法
JP5433986B2 (ja) * 2007-07-12 2014-03-05 株式会社リコー トナー及びその製造方法
EP2174917A4 (en) * 2007-07-27 2012-08-15 Japan Super Quartz Corp PROCESS FOR PRODUCING A QUARTZ GLASS CUP
JP5229778B2 (ja) * 2007-09-28 2013-07-03 株式会社Sumco シリコン単結晶引き上げ用石英ガラスルツボの製造方法
JP5143520B2 (ja) * 2007-09-28 2013-02-13 ジャパンスーパークォーツ株式会社 シリカガラスルツボとその製造方法および引き上げ方法
DE102008030310B3 (de) * 2008-06-30 2009-06-18 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung eines Quarzglastiegels
US8286447B2 (en) * 2008-07-09 2012-10-16 Japan Super Quartz Corporation Method for producing quartz glass crucible
DE102008033945B4 (de) * 2008-07-19 2012-03-08 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung von mit Stickstoff dotiertem Quarzglas sowie zur Durchführung des Verfahrens geeignete Quarzglaskörnung, Verfahren zur Herstellung eines Quarzglasstrangs und Verfahren zur Herstellung eines Quarzglastiegels
JP5713903B2 (ja) * 2009-08-12 2015-05-07 株式会社Sumco シリカガラスルツボの製造装置及びシリカガラスルツボの製造方法
EP2484813B1 (en) * 2009-09-09 2014-11-26 Japan Super Quartz Corporation Composite crucible, method for producing same and use thereof
JP5397857B2 (ja) * 2009-10-20 2014-01-22 株式会社Sumco 石英ガラスルツボの製造方法および製造装置
DE102010008162B4 (de) * 2010-02-16 2017-03-16 Heraeus Quarzglas Gmbh & Co. Kg Verfahren für die Herstellung von Quarzglas für einen Quarzglastiegel
CN201648235U (zh) * 2010-03-19 2010-11-24 常熟华融太阳能新型材料有限公司 太阳能石英坩埚的自动喷涂装置
KR101920942B1 (ko) * 2010-09-17 2018-11-21 후루카와 덴키 고교 가부시키가이샤 다공질 실리콘 입자 및 다공질 실리콘 복합체 입자 및 이들의 제조방법
CN107416764A (zh) * 2010-10-27 2017-12-01 皮瑟莱根特科技有限责任公司 纳米晶体的合成、盖帽和分散
JP5500687B2 (ja) * 2010-12-02 2014-05-21 株式会社Sumco シリカガラスルツボの製造方法および製造装置
JP5500688B2 (ja) * 2010-12-03 2014-05-21 株式会社Sumco シリカガラスルツボの製造方法
JP5543909B2 (ja) 2010-12-27 2014-07-09 コバレントマテリアル株式会社 シリカガラスルツボ
JP5773382B2 (ja) * 2010-12-29 2015-09-02 株式会社Sumco シリカガラスルツボ及びその製造方法
JP5777880B2 (ja) * 2010-12-31 2015-09-09 株式会社Sumco シリカガラスルツボの製造方法
JP5781303B2 (ja) * 2010-12-31 2015-09-16 株式会社Sumco シリカガラスルツボ製造方法およびシリカガラスルツボ製造装置
JP5714476B2 (ja) * 2010-12-31 2015-05-07 株式会社Sumco シリカガラスルツボの製造方法
JP5749147B2 (ja) * 2010-12-31 2015-07-15 株式会社Sumco シリカガラスルツボの製造方法
JP5777881B2 (ja) * 2010-12-31 2015-09-09 株式会社Sumco シリカガラスルツボの製造方法
US9328009B2 (en) * 2011-05-13 2016-05-03 Sumco Corporation Vitreous silica crucible for pulling silicon single crystal, and method for manufacturing the same
KR101657969B1 (ko) * 2013-02-05 2016-09-20 (주) 쿼츠테크 석영 도가니 제조방법
CN104395509A (zh) * 2013-04-08 2015-03-04 信越石英株式会社 单晶硅提拉用二氧化硅容器及其制造方法
EP2878584B1 (de) * 2013-11-28 2017-01-04 Heraeus Quarzglas GmbH & Co. KG Verfahren zur Herstellung eines beschichteten Bauteils aus Quarzglas oder Quarzgut
CN105849320B (zh) * 2013-12-28 2018-07-06 胜高股份有限公司 石英玻璃坩埚及其制造方法
TW201732095A (zh) * 2014-09-24 2017-09-16 Sumco股份有限公司 單晶矽之製造方法及製造系統
US20180361017A1 (en) * 2015-12-10 2018-12-20 Mirus Llc Tungsten-Copper Alloys For Medical Devices
JP6567987B2 (ja) 2016-02-24 2019-08-28 クアーズテック株式会社 石英ガラスルツボの製造方法
US11766506B2 (en) * 2016-03-04 2023-09-26 Mirus Llc Stent device for spinal fusion
EP3248950B1 (de) * 2016-05-24 2020-08-05 Heraeus Quarzglas GmbH & Co. KG Verfahren zur herstellung eines poren enthaltenden, opaken quarzglases
CN107849732B (zh) * 2016-06-29 2020-09-18 株式会社水晶系统 单晶制造装置和单晶制造方法
CN113897669B (zh) 2016-09-13 2023-11-07 胜高股份有限公司 石英玻璃坩埚及其制造方法
CN106591942B (zh) * 2016-12-30 2019-06-11 江西赛维Ldk太阳能高科技有限公司 多晶硅铸锭用坩埚及其制备方法和多晶硅锭及其制备方法
CN108607713A (zh) * 2017-01-09 2018-10-02 镇江荣德新能源科技有限公司 一种自动喷涂流量稳定系统
JP6922982B2 (ja) * 2017-07-04 2021-08-18 株式会社Sumco 石英ガラスルツボ
US20190117827A1 (en) * 2017-10-25 2019-04-25 Mirus Llc Medical Devices
CN108823635B (zh) * 2018-07-19 2020-01-07 江苏斯力康科技有限公司 太阳能级硅的制备方法及其微波熔炼炉
EP4317066A1 (en) * 2021-03-31 2024-02-07 Mitsubishi Chemical Corporation Fluorine-containing silica glass powder and method for producing fluorine-containing silica glass powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148718A (ja) * 1987-12-03 1989-06-12 Shin Etsu Handotai Co Ltd 石英るつぼの製造方法
JP2003095678A (ja) * 2001-07-16 2003-04-03 Heraeus Shin-Etsu America シリコン単結晶製造用ドープ石英ガラスルツボ及びその製造方法
JP2007045704A (ja) * 2005-08-08 2007-02-22 Shinetsu Quartz Prod Co Ltd 石英ガラス坩堝の製造方法
JP2007326780A (ja) * 2007-09-18 2007-12-20 Shinetsu Quartz Prod Co Ltd シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP2010024137A (ja) * 2008-07-19 2010-02-04 Heraeus Quarzglas Gmbh & Co Kg 窒素ドープした石英ガラスルツボおよびそのようなルツボの製造方法
WO2017110763A1 (ja) * 2015-12-21 2017-06-29 株式会社Sumco シリカガラスルツボ、シリカガラスルツボの製造方法、シリコン単結晶の引き上げ装置、インゴットおよびホモエピタキシャルウェーハ

Also Published As

Publication number Publication date
JP7157932B2 (ja) 2022-10-21
CN113423669B (zh) 2023-05-23
KR102543612B1 (ko) 2023-06-14
US20220009815A1 (en) 2022-01-13
DE112020000373T5 (de) 2021-10-07
JP2020111483A (ja) 2020-07-27
KR20210079346A (ko) 2021-06-29
CN113423669A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
TWI382002B (zh) 矽單晶拉晶用石英玻璃坩堝和其製造方法
JP5459804B2 (ja) シリコン単結晶引き上げ用シリカガラスルツボの製造方法
JP6567987B2 (ja) 石英ガラスルツボの製造方法
JPH0422861B2 (ja)
JP5397857B2 (ja) 石英ガラスルツボの製造方法および製造装置
US5201917A (en) Plate with an abrasion-proof surface and process for the production thereof
WO2020145378A1 (ja) シリカガラスルツボの製造装置および製造方法
JP6253976B2 (ja) 石英ガラスルツボ及びその製造方法
TWI412633B (zh) Single - crystal silicon - pulling quartz glass crucible and its manufacturing method
JP3568404B2 (ja) 石英ガラスルツボの製造方法及び製造装置
JP7447671B2 (ja) ブラスト加工用研磨材及びその製造方法、ブラスト加工方法、並びにブラスト加工装置
JPH0585515B2 (ja)
JP2006052442A (ja) 回転ディスク法による球状微小銅粉製造装置および回転ディスク法による球状微小銅粉の製造方法
US20100095881A1 (en) Arc discharge apparatus, apparatus and method for manufacturing vitreous silica glass crucible, and method for pulling up silicon single crystal
JPH0157756B2 (ja)
JP4396930B2 (ja) シリカガラス製容器成型体の成型装置及び成型方法並びにシリカガラス製容器の製造方法
KR101255615B1 (ko) 다이아몬드 공구용 세그먼트의 제조방법 및 제조된 세그먼트를 구비한 다이아몬드 공구
JP7094487B2 (ja) シリカガラスルツボの製造装置およびシリカガラスルツボの製造方法
JP7378966B2 (ja) 石英ガラスルツボ及びその製造方法
JP6981474B2 (ja) 乾式回転バレル研磨装置、乾式回転バレル研磨システム及び乾式回転バレル研磨方法
CN1044247A (zh) 制造金属线的方法和实施这种方法的设备
KR20190103251A (ko) 플라스틱으로부터 분상 물질을 제조하기 위한 방법 및 디바이스
JP2741205B2 (ja) 均一粒子径の金属粉末をうるための素材溶融方法
JP2023091555A (ja) 石英ガラスルツボの製造方法および石英ガラスルツボ
JPH0220183Y2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20739001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217015270

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20739001

Country of ref document: EP

Kind code of ref document: A1