WO2020138241A1 - 積層体、活性エネルギー線硬化性組成物、及び積層体の製造方法 - Google Patents

積層体、活性エネルギー線硬化性組成物、及び積層体の製造方法 Download PDF

Info

Publication number
WO2020138241A1
WO2020138241A1 PCT/JP2019/051022 JP2019051022W WO2020138241A1 WO 2020138241 A1 WO2020138241 A1 WO 2020138241A1 JP 2019051022 W JP2019051022 W JP 2019051022W WO 2020138241 A1 WO2020138241 A1 WO 2020138241A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active energy
energy ray
transparent conductive
meth
Prior art date
Application number
PCT/JP2019/051022
Other languages
English (en)
French (fr)
Inventor
数馬 清野
友浩 早川
Original Assignee
東洋インキScホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋インキScホールディングス株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to CN201980074472.2A priority Critical patent/CN113039070B/zh
Publication of WO2020138241A1 publication Critical patent/WO2020138241A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a laminate having a transparent substrate, an index matching layer and a transparent electrode layer, an active energy ray curable composition, and a method for producing the laminate.
  • a transparent conductive film in which a transparent conductive material is formed on a transparent plastic film substrate by a method such as sputtering to provide a transparent conductive layer.
  • the transparent conductive layer can be further patterned to form a transparent conductive layer having a desired circuit pattern. For example, it can be used as an electrode for liquid crystal control in a liquid crystal panel or an electrode of a touch panel provided on a display device. Has been done.
  • the transparent conductive layer indium-tin oxide (ITO/Indium Tin Oxide) and indium, which are indium-based oxides, have high visible light transmittance, relatively low surface resistance value, and excellent environmental characteristics.
  • Zinc oxide (IZO) and the like are widely used.
  • the transparent conductive layer has a high refractive index, and in the transparent conductive film having the patterned transparent conductive layer, the transparent conductive layer has a difference in refractive index between the portion having the transparent conductive layer and the portion having no transparent electrode. There is a problem that the existence of is noticeable (so-called bone appearance).
  • Patent Documents 1 and 2 a layer having a refractive index similar to that of the transparent conductive layer (hereinafter referred to as an index matching layer (IM layer)) between the base material and the transparent conductive layer.
  • IM layer index matching layer
  • Patent Document 1 discloses a laminate in which a transparent substrate, an index matching layer having a refractive index of 1.59 to 1.80, and a transparent electrode layer are laminated in this order.
  • Citation 1 discloses that the index matching layer is composed of a composition containing (A) metal oxide particles having a refractive index of 1.7 or more, (B) silica particles, and (C) resin component in a specific ratio. Has been done.
  • Patent Document 14 of Patent Document 2 discloses a specific transparent conductive laminate in which a cured resin layer and a transparent conductive layer are sequentially laminated on a transparent organic polymer substrate.
  • Patent Document 2 discloses that the cured resin layer contains first and second ultrafine particles. Then, in the example, an example including silica and titanium oxide as ultrafine particles is shown.
  • the thickness of the transparent conductive layer that is, the thickness of the transparent conductive layer such as ITO. Is being considered.
  • the specifications of touch panels become more complicated and diversified every day, the specifications of electrode materials are becoming more complicated, multi-layered and diversified every day.
  • another inorganic layer may be provided over the patterned transparent conductive layer and the exposed IM layer, and there may be multiple inorganic layers provided.
  • Another inorganic material layer provided on the transparent conductive layer and the IM layer is formed by a physical vapor deposition (PVD) method using a vacuum or a chemical vapor deposition (CVD) method like a transparent conductive layer such as ITO. It At the time of film formation, various loads (thermal, physical, etc.) are applied to the IM layer, not a little.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a long transparent conductive film is wound into a roll or unwound. ..
  • the IM layer is rubbed against the back surface of the substrate film or a transport roll. If the adhesion between the IM layer and the transparent conductive layer is insufficient, the transparent conductive layer easily floats or peels off from the IM layer due to rubbing (scratch) during the winding process and the unwinding process.
  • the transparent conductive layer itself becomes thicker or a plurality of inorganic layers are provided on the transparent conductive layer after patterning the load applied to the interface between the IM layer and the transparent conductive layer is larger. Therefore, the floating or peeling of the transparent conductive layer from the IM layer becomes remarkable.
  • Adhesion between a base material such as a film or a metal foil and any film or layer adjacent to the base material is often evaluated by a test method called a cross-cut test or a cross-cut peeling test. That is, a scratch that reaches from the surface of the film/layer to the surface of the base material is attached with a cutter knife or the like, and after the adhesive tape is attached to the scratched portion of the surface of the film/layer, the adhesive tape is peeled off, This is a method of evaluating how to peel off.
  • a general adhesion test the degree of easiness or difficulty of exfoliation of the transparent conductive layer from the IM layer due to "rubbing" could not be correctly evaluated.
  • the susceptibility and scratch resistance of the film/layer are often evaluated by a test method called a scratch test or a scratch resistance test. That is, while pressing a jig such as a file or steel wool against the surface of the film/layer with a constant load, reciprocating motion at a constant speed or rotating motion is performed to detect the state of occurrence of scratches on the surface of the film/layer. It is a method of evaluation. However, in such a general scratch test, it is not possible to correctly evaluate the degree of easiness or difficulty of exfoliation of the transparent conductive layer from the IM layer due to “rubbing”.
  • silica particles are used for the index matching layer and the cured resin layer. Since the silica particles have a relatively low refractive index, they do not contribute to increasing the refractive index of the index matching layer.
  • the present inventors have studied an index matching layer that does not contain silica particles, and have found that the "rubbing" may cause the transparent conductive layer and the anchor layer to be easily peeled off.
  • An object of the present invention is to provide a laminate (transparent conductive film) having a transparent conductive layer that has excellent adhesion to the index matching layer and is hard to peel off.
  • (meth)acrylate represents each of an acrylate and a methacrylate
  • (meth)acryl etc. follow this.
  • the present invention relates to a laminate having a transparent substrate, an index matching layer and a transparent conductive layer, which satisfies all of the following (1) to (3).
  • the index matching layer is in contact with the transparent conductive layer, or
  • An anchor layer formed of a metal oxide is provided between the index matching layer and the transparent conductive layer, the index matching layer and the anchor layer are in contact with each other, and the anchor layer and the transparent conductive layer are in contact with each other.
  • the index matching layer has metal oxide particles (A) having a refractive index of 1.70 to 2.72, a polyfunctional active energy ray-curable component (c1) having a tertiary amino group, and a tertiary amino group It is a cured product of an active energy ray-curable composition containing a polyfunctional active energy ray-curable component (c2) having no. (3) 2% by mass or more and 50% by mass or less of the active energy ray-curable component (c1) having a tertiary amino group is contained in 100% by mass of the total of (A), (c1) and (c2).
  • metal oxide particles (A) include zirconium oxide particles or titanium oxide particles.
  • Another invention relates to an active energy ray-curable composition that satisfies all of the following (4) to (5).
  • the energy ray-curable component (c2) is included.
  • Another invention relates to a method for manufacturing a laminate having a transparent substrate, an index matching layer and a transparent conductive layer, the manufacturing method including the following steps (I) and (II-1).
  • the active energy ray-curable composition After coating the active energy ray-curable composition on a substrate having a transparent substrate, the active energy ray-curable composition is cured by irradiating with the active energy ray to form an index matching layer. The process of doing.
  • (II-1) A step of depositing a conductive metal compound on the index matching layer by a film forming method using vacuum to form a transparent conductive layer.
  • Another invention relates to a method for manufacturing a laminate having a transparent substrate, an index matching layer and a transparent conductive layer, the manufacturing method including the following steps (I), (II-2) and (II-3).
  • the active energy ray-curable composition After coating the active energy ray-curable composition on a substrate having a transparent substrate, the active energy ray-curable composition is cured by irradiating with the active energy ray to form an index matching layer. The process of doing.
  • (II-2) A step of depositing a metal oxide on the index matching layer by a film forming method using vacuum to form an anchor layer.
  • (II-3) A step of depositing a conductive metal compound on the anchor layer by a film forming method using vacuum to form a transparent conductive layer.
  • III A step of patterning the transparent conductive layer to form a transparent electrode layer.
  • the present invention provides a laminate (transparent conductive film) having a transparent conductive layer that is excellent in adhesion to the index matching layer and is hard to peel off.
  • a laminate according to the present invention (also referred to as the present laminate) is a laminate having a transparent substrate, an index matching layer (also referred to as IM layer) and a transparent conductive layer, and includes all of the following (1) to (3). Fulfill.
  • the IM layer and the transparent conductive layer are in contact with each other, or
  • An anchor layer formed of a metal oxide is provided between the IM layer and the transparent conductive layer, the IM layer and the anchor layer are in contact with each other, and the anchor layer and the transparent conductive layer are in contact with each other.
  • the curable component (c1) is contained in an amount of 2 to 50 mass% in the total 100 mass% of the metal oxide particles (A), the curable component (c1), and the curable component (c2).
  • the present laminate as the active energy ray-curable composition for IM layer, contains a polyfunctional active energy ray-curable component (c1) having a tertiary amino group, and the ratio of the curable component (c1) is the above.
  • the haze is low, the transparency and the scratch resistance are excellent, and the transparent conductive layer formed on the IM layer is patterned. Even in this case, the pattern appearance is suppressed.
  • This laminate has at least a transparent substrate, an index matching layer and a transparent conductive layer, and may have an anchor layer between the IM layer and the transparent conductive layer, within a range that does not impair the effects of the present invention. Further, it may have another layer.
  • the active energy ray-curable composition for forming the IM layer will be described first, and then each layer will be described.
  • the index matching layer is a cured product of an active energy ray-curable composition that satisfies all of the following (4) to (5).
  • the active energy ray-curable composition comprises a metal oxide particle (A) having a refractive index of 1.70 to 2.72, a polyfunctional active energy ray-curable component (c1) having a tertiary amino group, and It contains a polyfunctional active energy ray-curable component (c2) having a tertiary amino group.
  • 2 to 50% by mass of the curable component (c1) is contained in 100% by mass of the total of the metal oxide particles (A), the curable component (c1), and the curable component (c2).
  • the active energy ray-curable composition according to the present invention (also referred to as the active energy ray-curable component) contains metal oxide particles (A), a curable component (c1), and a curable component (c2). And may further contain other components, if necessary. Each component will be described below.
  • the metal oxide particles (A) having a refractive index of 1.70 to 2.72 reduce the visibility of the patterned transparent conductive layer and improve the adhesion to the transparent conductive layer and the anchor layer.
  • the metal oxide particles (A) are preferably metal oxide particles having low conductivity or insulating properties. Specific examples of such metal oxide particles (A) include zirconium oxide, titanium oxide, and aluminum oxide, and zirconium oxide or titanium oxide is preferable from the viewpoint of high refractive index.
  • the metal oxide particles (A) for example, the following commercial products may be used.
  • the average primary particle diameter of the metal oxide particles (A) improves the dispersibility in the active energy ray-curable composition, suppresses scattering of light such as visible light in the formed cured film, that is, the IM layer, and is transparent. From the viewpoint of improving the property, the thickness is preferably 5 to 100 nm, more preferably 5 to 30 nm.
  • the average primary particle diameter of the metal oxide particles (A) can be determined by observation with an electron microscope. That is, the average size of 10 particles observed with a scanning electron microscope (“JEM-2800” manufactured by JEOL Ltd.) at a magnification of 20,000 is used as the average primary particle diameter.
  • the dispersed particle diameter (D50) of the metal oxide particles (A) in the active energy ray-curable composition is 10 to 500 nm from the viewpoint of transparency when a cured film of the active energy ray-curable composition is formed. Is preferable, and 10 to 100 nm is more preferable.
  • the dispersed particle size of the metal oxide particles (A) can be determined by using “Nanotrack UPA” manufactured by Nikkiso Co., Ltd., which utilizes a dynamic light scattering method. Specifically, the metal oxide dispersion in which the metal oxide particles (A) are dispersed in a solvent is added to the diluent so that the measured concentration becomes 1.0, and the measurement is performed.
  • the proportion of the metal oxide particles (A) in the active energy ray-curable composition may be appropriately adjusted according to the desired refractive index and the like.
  • the content ratio of the metal oxide particles (A) is, among others, the metal oxide particles (A), the active energy ray-curable component (c1) having a tertiary amino group, and the active energy ray curable having no tertiary amino group.
  • the total 100% by mass of the sex component (c2) 5 to 70% by mass is preferable, 10 to 55% by mass is more preferable, and 15 to 50% by mass is further preferable.
  • the content ratio of the metal oxide particles (A) is at least the above lower limit, it is excellent in that the visibility of the transparent conductive layer and the like is lowered and the adhesion is improved. On the other hand, when the content ratio of the metal oxide particles (A) is not more than the above upper limit value, the mechanical strength of the IM layer is excellent.
  • This active energy ray-curable composition is a component for fixing metal oxide particles (A) and forming a film, that is, a multifunctional active energy ray-curable component (c1) having a tertiary amino group as a binder and a tertiary. It contains a polyfunctional active energy ray-curable component (c2) having no amino group and an active energy ray-curable component (C) which may contain other curable components.
  • This active energy ray-curable composition contains 2% by mass or more of the curable component (c1) in 100% by weight of the total of the metal oxide particles (A), the curable component (c1) and the curable component (c2). , 50 mass% or less.
  • the curable component (c1) By containing the curable component (c1) in an amount of 2% by mass or more, the adhesion between the IM layer and the transparent conductive layer or anchor layer formed on the IM layer is improved, and peeling of the transparent conductive layer or anchor layer can be prevented. .. By containing 50% by mass or less of the curable component (c1), it is possible to improve the adhesion to the transparent conductive layer or the anchor layer formed on the IM layer without significantly impairing the scratch resistance of the IM layer. .. Above all, the curable component (c1) is more preferably 2% by mass or more and 10% by mass or less.
  • the curable component (c1) is a compound having at least one tertiary amino group and at least two polymerizable unsaturated double bond groups in the molecule.
  • the group having a polymerizable unsaturated double bond group include a vinyl group, an allyl group and a (meth)acryloyl group.
  • the curable component (c1) include (meth)acrylic compounds having one or more tertiary amino groups in the molecule, fatty acid vinyl compounds, alkyl vinyl ether compounds, ⁇ -olefin compounds, vinyl compounds, ethynyl compounds, etc. Are listed.
  • the curable component (c1) may be used alone or in combination of two or more.
  • the curable component (c1) has two or more polymerizable unsaturated double bond groups in one molecule, a cured product excellent in photocurability, scratch resistance and hard coat property can be obtained.
  • the functional compound preferably has 2 to 6 functional groups, and more preferably 4 to 6 functional groups.
  • a commercially available product may be used as the polyfunctional active energy ray-curable component (c1) having a tertiary amino group.
  • Examples of commercially available products include the following. Daicel Ornex Co., Ltd.: Ebecryl80, Ebecryl81, Ebecryl83, Ebecryl7100 Arkema Corporation: CN371 NS, CN386, CN549 NS, CN550, CN551 NS.
  • the polyfunctional active energy ray-curable component (c2) having no tertiary amino group is a compound having two or more polymerizable unsaturated double bond groups in the molecule and no tertiary amino group. ..
  • a polyfunctional compound By using a polyfunctional compound, photocurability and hard coat property of the coating film are improved.
  • the curable component (c2) for example, a compound having a polymerizable unsaturated double bond group such as a (meth)acrylic compound, a fatty acid vinyl compound, an alkyl vinyl ether compound, an ⁇ -olefin compound, a vinyl compound, an ethynyl compound is used. be able to.
  • the curable component (c2) may have a substituent such as a hydroxyl group, an alkoxy group, a carboxyl group, an amide group and a silanol group.
  • (meth)acrylic compound examples include benzyl (meth)acrylate, alkyl (meth)acrylate, alkylene glycol (meth)acrylate, a compound having a carboxyl group and a polymerizable unsaturated double bond, and a hydroxyl group (meth).
  • Acrylic compounds, nitrogen-containing (meth)acrylic compounds, and the like examples include benzyl (meth)acrylate, alkyl (meth)acrylate, alkylene glycol (meth)acrylate, a compound having a carboxyl group and a polymerizable unsaturated double bond, and a hydroxyl group (meth).
  • (meth)acrylate compounds are preferable, and poly(meth)acrylates such as polyepoxy poly(meth)acrylate and polyurethane poly(meth)acrylate having at least three functional groups are particularly preferable.
  • Acrylates and polyfunctional acrylates having 3 or more acryloyl groups can be preferably used.
  • Polyepoxy poly(meth)acrylate is obtained by esterifying an epoxy group of an epoxy resin with (meth)acrylic acid to form a (meth)acryloyl group as a functional group.
  • examples thereof include acid adducts and (meth)acrylic acid adducts with novolac type epoxy resins.
  • Polyurethane poly(meth)acrylate is for example, those obtained by reacting diisocyanate with (meth)acrylates having a hydroxyl group, There is a product obtained by reacting an isocyanate group-containing urethane prepolymer obtained by reacting a polyol and a polyisocyanate under conditions of excess isocyanate groups with (meth)acrylates having a hydroxyl group. Alternatively, it can also be obtained by reacting a hydroxyl group-containing urethane prepolymer obtained by reacting a polyol and a polyisocyanate under conditions of excess hydroxyl groups with (meth)acrylates having an isocyanate group.
  • polyols examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, butylene glycol, 1,6-hexanediol, 3-methyl-1,5-pentane glycol, neopentyl glycol, hexanetriol, trimellilol propane, polytetra Examples thereof include methylene glycol and polycondensation products of adipic acid and ethylene glycol.
  • polyisocyanates examples include tolylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, and the like.
  • (meth)acrylates having a hydroxyl group examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, pentaerythritol tri(meth)acrylate, and dipentaerythritol penta. Examples thereof include (meth)acrylate and ditrimethylolpropane tetra(meth)acrylate.
  • Examples of (meth)acrylates having an isocyanate group include 2-(meth)acryloyloxyethyl isocyanate and (meth)acryloyl isocyanate.
  • Examples of commercially available products of the polyfunctional active energy ray-curable component (c2) having no tertiary amino group include the following. Toagosei Co., Ltd.: Aronix M-400, Aronix M-402, Aronix M-408, Aronix M-450, Aronix M-7100, Aronix M-8030, Aronix M-8060, Osaka Organic Chemical Industry Co., Ltd.: Viscoat #400, Kayaku Sartomer Co., Ltd.: SR-295, Shin-Nakamura Chemical Co., Ltd.: NK ester A-TMMT, NK ester A-TMM-3LM-N, NK ester A-9570W, NK oligo EA-1020, NK oligo EMA-1020, NK oligo EA-6310, NK Oligo EA-6320, NK oligo EA-6340, NK oligo MA-6, NK oligo U-4HA, NK oligo U-6HA, NK oligo U-15
  • the curable component (c2) may be used alone or in combination of two or more.
  • the proportion of the curable component (c2) in the active energy ray-curable composition may be appropriately adjusted depending on the desired physical properties and the like.
  • the content ratio of the curable component (c2) is, among others, the metal oxide particles (A), the active energy ray-curable component having a tertiary amino group (c1), and the active energy ray curable having no tertiary amino group.
  • 1 to 93 mass% is preferable, 2 to 70 mass% is more preferable, and 5 to 60 mass% is further preferable.
  • the active energy ray-curable component (C) may have other curable components as necessary.
  • other curable components include a monofunctional active energy ray curable component (c3).
  • the monofunctional active energy ray-curable component (c3) for example, alkyl (meth)acrylate, alkylene glycol-based (meth)acrylate, active energy ray-curable compound having a carboxyl group, hydroxyl group-containing (meth)acrylic compound, Examples thereof include nitrogen-containing (meth)acrylic compounds, fatty acid vinyl compounds, alkyl vinyl ether compounds, ⁇ -olefin compounds, vinyl compounds and ethynyl compounds.
  • alkyl (meth)acrylate examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and heptyl (meth)acrylate.
  • alkylene glycol-based (meth)acrylate examples include polyethylene glycol mono(meth)acrylate such as diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, and hexaethylene glycol mono(meth)acrylate.
  • polyethylene glycol mono(meth)acrylate such as diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, and hexaethylene glycol mono(meth)acrylate.
  • Acrylate dipropylene glycol mono(meth)acrylate, tripropylene glycol mono(meth)acrylate, tetrapropylene glycol mono(meth)acrylate, polytetramethylene glycol (meth)acrylate, etc.
  • a chain-containing mono(meth)acrylate Methoxyethylene glycol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate, methoxytetraethylene glycol (meth)acrylate, ethoxytetraethylene glycol (meth)acrylate, propoxytetraethylene glycol (meth)acrylate , N-butoxytetraethylene glycol (meth)acrylate, n-pentoxytetraethylene glycol (meth)acrylate, tripropylene glycol (meth)acrylate, tetrapropylene glycol (meth)acrylate, methoxytripropylene glycol (meth)acrylate, methoxy Tetrapropylene glycol (meth)acrylate, ethoxytetrapropylene glycol (meth)acrylate, propoxytetrapropylene glycol (meth)acrylate, n-butoxytetrapropylene glycol (meth)acryl
  • (Meth)acrylate Phenoxydiethylene glycol (meth)acrylate, phenoxyethylene glycol (meth)acrylate, phenoxytriethylene glycol (meth)acrylate, phenoxytetraethylene glycol (meth)acrylate, phenoxyhexaethylene glycol (meth)acrylate, phenoxypolyethylene glycol (meth)acrylate, Examples thereof include polyoxyalkylene (meth)acrylates having a phenoxy group or an aryloxy group at the terminal such as phenoxytetrapropylene ethylene glycol (meth)acrylate.
  • Examples of the active energy ray-curable compound having a carboxyl group include maleic acid, fumaric acid, itaconic acid, citraconic acid, or their alkyl or alkenyl monoesters, phthalic acid ⁇ -(meth)acryloxyethyl monoester, isophthalic acid.
  • Examples include ⁇ -(meth)acryloxyethyl monoester, succinic acid ⁇ -(meth)acryloxyethyl monoester, acrylic acid, methacrylic acid, crotonic acid, and cinnamic acid.
  • hydroxyl group-containing (meth)acrylic compound examples include mono(meth)acrylate having a hydroxyl group at the terminal and a polyoxyalkylene chain, 2-hydroxyethyl(meth)acrylate, 2-hydroxypropyl(meth)acrylate, 4-hydroxybutyl(meth)acrylate, glycerol mono(meth)acrylate, 4-hydroxyvinylbenzene, 2-hydroxy-3-phenoxypropyl(meth)acrylate and the like can be mentioned.
  • nitrogen-containing (meth)acrylic compound examples include (meth)acrylamide, N-methylol(meth)acrylamide, N-methoxymethyl-(meth)acrylamide, N-ethoxymethyl-(meth)acrylamide, N-propoxymethyl-( Monoalkylol (meth)acrylamides such as (meth)acrylamide, N-butoxymethyl-(meth)acrylamide, N-pentoxymethyl-(meth)acrylamide, N,N-di(methylol)acrylamide, N-methylol-N- Methoxymethyl(meth)acrylamide, N,N-di(methylol)acrylamide, N-ethoxymethyl-N-methoxymethylmethacrylamide, N,N-di(ethoxymethyl)acrylamine, N-ethoxymethyl-N-propoxy Methylmethacrylamide, N,N-di(propoxymethyl)acrylamide, N-butoxymethyl-N-(propoxymethyl)methacrylamide, N,N-di
  • Examples thereof include a quaternary ammonium salt of a dialkylamino group-containing unsaturated compound having a halogen ion such as ⁇ , I ⁇ or QSO 3 ⁇ (Q: an alkyl group having 1 to 12 carbon atoms).
  • unsaturated compounds include perfluoromethylmethyl (meth)acrylate, perfluoroethylmethyl (meth)acrylate, 2-perfluorobutylethyl (meth)acrylate, 2-perfluorohexylethyl (meth)acrylate, 2- Perfluorooctylethyl (meth)acrylate, 2-perfluoroisononylethyl (meth)acrylate, 2-perfluorononylethyl (meth)acrylate, 2-perfluorodecylethyl (meth)acrylate, perfluoropropylpropyl (meth) Perfluoroalkylalkyl (meth) having a perfluoroalkyl group having 1 to 20 carbon atoms, such as acrylate, perfluorooctylpropyl (meth)acrylate, perfluorooctylamyl (meth)acrylate, and perfluorooctylundecyl (
  • perfluoroalkyl groups such as perfluorobutylethylene, perfluorohexylethylene, perfluorooctylethylene and perfluorodecylethylene, and perfluoroalkyl group-containing vinyl monomers such as alkylenes; vinyltrichlorosilane, vinyltris( ⁇ -methoxyethoxy) Examples thereof include alkoxysilyl group-containing vinyl compounds such as silane, vinyltriethoxysilane and ⁇ -(meth)acryloxypropyltrimethoxysilane, and derivatives thereof; glycidyl group-containing acrylates such as glycidyl acrylate and 3,4-epoxycyclohexyl acrylate.
  • fatty acid vinyl compound examples include vinyl acetate, vinyl butyrate, vinyl crotonate, vinyl caprylate, vinyl laurate, vinyl chloroacetate, vinyl oleate, vinyl stearate and the like.
  • alkyl vinyl ether compounds examples include butyl vinyl ether and ethyl vinyl ether.
  • ⁇ -olefin compounds examples include 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene and the like.
  • vinyl compound examples include allyl acetic acid, allyl alcohol, allylbenzene, allyl compounds such as allyl cyanide, vinyl cyanide, vinylcyclohexane, vinyl methyl ketone, styrene, ⁇ -methylstyrene, 2-methylstyrene, chlorostyrene and the like.
  • ethynyl compound examples include acetylene, ethynylbenzene, ethynyltoluene, 1-ethynyl-1-cyclohexanol and the like.
  • the other curable component (c3) may be used alone or in combination of two or more.
  • the content ratio of the other curable component (c3) in the present active energy ray curable composition is, among others, the metal oxide particles (A), the active energy ray curable component (c1) having a tertiary amino group, and 3 It is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 1 part by mass or less, based on 100 parts by mass in total of the active energy ray-curable component (c2) having no primary amino group.
  • the present active energy ray-curable composition contains at least the above-mentioned (A) to (C) and, if necessary, a solvent, and further various additives are added to achieve the objects and effects of the present invention. It can be included within the range not impaired.
  • the additives include photopolymerization initiators, photocurable compounds, polymerization inhibitors, photosensitizers, leveling agents, surfactants, antibacterial agents, antiblocking agents, plasticizers, ultraviolet absorbers, infrared absorbers. , Antioxidants, silane coupling agents, conductive polymers, conductive surfactants, inorganic fillers, pigments, dyes, silica particles and the like.
  • the solvent is not particularly limited, and various known organic solvents can be used. Specifically, for example, cyclohexanone, methyl isobutyl ketone, methyl ethyl ketone, acetone, acetylacetone, toluene, xylene, n-butanol, isobutanol, tert-butanol, n-propanol, isopropanol, ethanol, methanol, 3-methoxy-1-butanol.
  • 3-methoxy-2-butanol ethylene glycol monomethyl ether, ethylene glycol mono-n-butyl ether, 2-ethoxyethanol, 1-methoxy-2-propanol, diacetone alcohol, ethyl lactate, butyl lactate, propylene glycol monomethyl ether, ethylene
  • examples thereof include glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, 2-ethoxyethyl acetate, butyl acetate, isoamyl acetate, dimethyl adipate, dimethyl succinate, dimethyl glutarate, tetrahydrofuran, and methylpyrrolidone.
  • These organic solvents may be used in combination of two or more.
  • the hydroxyl group-containing solvent has good wettability with respect to the metal oxide (A) having a highly hydrophilic particle surface property, so that the dispersibility of the metal oxide and the active energy ray-curable composition thereof are It is preferable because it is very effective in improving the stability over time and also improves the leveling property in the coating step.
  • the content of the hydroxyl group-containing solvent in the total solvent composition is preferably 10 to 100% by weight.
  • the hydroxyl group-containing solvent includes n-butanol, isobutanol, tert-butanol, n-propanol, isopropanol, ethanol, methanol, 3-methoxy-1-butanol, 3-methoxy-2-butanol, ethylene glycol.
  • examples thereof include monomethyl ether, ethylene glycol mono n-butyl ether, 2-ethoxyethanol, 1-methoxy-2-propanol, diacetone alcohol, ethyl lactate, butyl lactate, propylene glycol monomethyl ether and the like.
  • 3-methoxy-1-butanol, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, and ethylene glycol mono n-butyl ether are preferable because the dispersibility and dispersion stability of the metal oxide are improved.
  • the active energy ray-curable composition in the invention may further contain a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited as long as it has a function of initiating the polymerization of the acryloyl group of the active energy ray-curable component (C) by photoexcitation, and for example, a monocarbonyl compound, a dicarbonyl compound, an acetophenone compound, A benzoin ether compound, an acylphosphine oxide compound, an aminocarbonyl compound, etc. can be used.
  • benzophenone 4-methyl-benzophenone, 2,4,6-trimethylbenzophenone, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, 4-(4-methylphenylthio)phenyl -Ethanone, 3,3'-dimethyl-4-methoxybenzophenone, 4-(1,3-acryloyl-1,3,3'-dimethyl-4-methoxybenzophenone, 4-(1,3-acryloyl-1,4 ,7,10,13-Pentaoxotridecyl)benzophenone, 3,3′,4,4′-tetra(t-butylperoxycarbonyl)benzophenone, 4-benzoyl-N,N,N-trimethyl-1-propanamine Hydrochloride, 4-benzoyl-N,N-dimethyl-N-2-(1-oxo-2-propenyloxyethyl)methammonium oxalate
  • dicarbonyl compound examples include 1,2,2-trimethyl-bicyclo[2.1.1]heptane-2,3-dione, benzyl, 2-ethylanthraquinone, 9,10-phenanthrenequinone, methyl- ⁇ -oxobenzene. Examples thereof include acetate and 4-phenylbenzyl.
  • acetophenone compound 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)-2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-Isopropylphenyl)-2-hydroxy-di-2-methyl-1-phenylpropan-1-one, 1-hydroxy-cyclohexylphenylketone, 2-hydroxy-2-methyl-1-styrylpropan-1-one Polymer, diethoxyacetophenone, dibutoxyacetophenone, 2,2-dimethoxy-1,2-diphenylethan-1-one, 2,2-diethoxy-1,2-diphenylethan-1-one, 2-methyl-1 -[4-(Methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one, 1-phenyl-1,2- Examples thereof include propanedione-2-(o-eth, 2-
  • benzoin ether compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzoin normal butyl ether.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 4-n-propylphenyl-di(2,6-dichlorobenzoyl)phosphine oxide.
  • aminocarbonyl compounds are methyl-4-(dimethoxyamino)benzoate, ethyl-4-(dimethylamino)benzoate, 2-n-butoxyethyl-4-(dimethylamino)benzoate, isoamyl-4-(dimethylamino)benzoate.
  • 2-(dimethylamino)ethylbenzoate, 4,4'-bis-4-dimethylaminobenzophenone, 4,4'-bis-4-diethylaminobenzophenone, 2,5'-bis(4-diethylaminobenzal)cyclopenta Non, etc. are mentioned.
  • photopolymerization initiators include IRGACURE 184, 651, 500, 907, 127, 369, 784, 2959 manufactured by Ciba Specialty Chemicals Co., Ltd., LUCIRIN TPO manufactured by BASF, Esacure ONE manufactured by Japan Siber Hegner Co., Ltd., etc. Can be given.
  • the photopolymerization initiator is not limited to the above compounds, and may be any one as long as it has the ability to initiate polymerization by ultraviolet rays. These photopolymerization initiators may be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator used is not particularly limited, but it is preferably used within the range of 1 to 20 parts by weight with respect to 100 parts by weight of the total amount of the active energy ray-curable compound (C).
  • a known organic amine or the like can be added as a sensitizer.
  • a cationic polymerization initiator may be used in combination.
  • the active energy ray-curable composition may contain, as a binder component, a resin having no active energy ray-curable functional group.
  • binder resin include polyurethane resin, polyurea resin, polyurethane urea resin, polyester resin, polyether resin, polycarbonate resin, epoxy resin, amino resin, styrene resin, acrylic resin, melamine resin, polyamide resin, and phenol resin. , Vinyl resin and the like. These resins may be used alone or in combination of two or more.
  • the binder resin is preferably used within a range of 20% by weight or less based on the total amount of solids (components other than the solvent; hereinafter the same) of the active energy ray-curable composition (100% by weight).
  • the active energy ray-curable composition may contain silica particles.
  • the silica particles can be appropriately selected and used from known materials used for the IM layer.
  • the IM layer formed from the present active energy ray-curable composition has excellent adhesion to the transparent conductive layer and the anchor layer even when it does not contain silica particles as described above.
  • the content ratio of the silica particles in the active energy ray-curable composition is such that the metal oxide particles (A) and the active energy ray-curable component (c1) having a tertiary amino group are contained in order to increase the refractive index of the IM layer.
  • the active energy ray-curable component (c2) having no tertiary amino group preferably 0.1 parts by mass or less, more preferably 0.01 parts by mass or less, and substantially contained. It is more preferable not to do so.
  • the method for producing the active energy ray-curable composition is not particularly limited, and several methods can be mentioned. Specifically, first, the metal oxide particles (A), the curable component (c1) and the curable component (c2) are mixed and dispersed to obtain a stable metal oxide dispersion, and then various other additions are made. A method of adding and adjusting an agent to produce the compound; from the beginning, the metal oxide particles (A), the curable component (c1), the curable component (c2) and other additives are dispersed in a mixed state. Manufacturing method; and the like. A part of the active energy ray-curable component (C) can be used when the metal oxide particles (A) are dispersed, and the rest can be added after the dispersion.
  • the layer structure of this laminate is (1) transparent base material/IM layer/transparent conductive layer, or (2) transparent base material/IM layer/anchor layer/transparent conductive layer, and if necessary, a transparent base. Further, another layer may be provided on the surface of the material opposite to the IM layer, between the transparent substrate and the IM layer, or on the surface of the transparent conductive layer opposite to the IM layer. Further, the transparent conductive layer may have a desired pattern. Since the IM layer is a cured product of the active energy ray-curable composition, the present laminate has improved adhesion to a transparent conductive layer or an anchor layer directly provided on the IM layer, and has a transparent conductive property against "rubbing". The peeling of the layer is suppressed.
  • the transparent substrate may be glass, plastic, etc., and is not particularly limited.
  • plastics include polyester, polyolefin, polycarbonate, polystyrene, polymethylmethacrylate, triacetylcellulose resin, ABS resin, AS resin, polyamide, epoxy resin, melamine resin and the like.
  • shape of the base material include a film sheet, a plate-shaped panel, a lens shape, a disk shape, and a fiber shape, but are not particularly limited.
  • the IM layer is a cured product of the active energy ray-curable composition.
  • the thickness of the IM layer is preferably 0.03 ⁇ m to 30 ⁇ m, more preferably 0.05 ⁇ m to 10 ⁇ m.
  • the anchor layer is a layer that may be provided between the IM layer and the transparent conductive layer, and improves the adhesion between the IM layer and the transparent conductive layer.
  • the anchor layer preferably has transparency and insulating properties.
  • silicon oxide is preferable. Silicon oxide is also excellent in adhesion to the IM layer containing the cured product of the active energy ray-curable composition.
  • the thickness of the anchor layer is preferably 0.03 ⁇ m to 30 ⁇ m, more preferably 0.05 ⁇ m to 1 ⁇ m.
  • the transparent conductive layer is a layer provided on the IM layer or the anchor layer, and has transparency and conductivity.
  • the material of the transparent conductive layer include indium tin oxide, tin oxide, zinc oxide and the like.
  • the thickness of the transparent conductive layer is preferably within the range of 1 nm to several tens of nm, and more preferably within the range of 0.01 to 1 ⁇ m, from the viewpoint of improving the conductivity and the adhesion with the IM layer or the anchor layer. Is more preferable.
  • Other layers may be provided between the transparent conductive layer and the IM layer.
  • the other layer include surface treatment layers such as a hard coat layer and an anti-blocking layer.
  • the hard coat layer and the anti-blocking layer are formed from the active energy ray-curable composition obtained by removing the high-refractive index particles such as the metal oxide particles (A) from the active energy ray-curable composition of the present invention. be able to. If a hard coat layer is provided between the transparent substrate and the IM layer, the effect that the IM layer is less likely to be damaged can be expected. When the substrate provided with the anti-blocking layer is used, it is expected that the transportability of the substrate is improved and the productivity is improved in the industrial production process until the IM layer is provided.
  • the first method for producing a laminate according to the present invention is a production method which usually includes the following step (I) and the following step (II-1) in this order, and further has other steps as necessary. It may be.
  • (I) A step of applying the present active energy ray-curable composition onto a substrate having a transparent substrate and then irradiating the active energy ray-curable composition to cure the active energy ray-curable composition to form an index matching layer. ..
  • II-1 A step of depositing a conductive metal compound on the index matching layer by a film forming method using vacuum to form a transparent conductive layer.
  • the second manufacturing method of the laminate according to the present invention is a manufacturing method which usually includes the above-mentioned step (I), the following step (II-2) and the following step (II-3) in this order, and if necessary, And may further have other steps.
  • (II-2) A step of depositing a metal oxide on the index matching layer by a film forming method using vacuum to form an anchor layer.
  • (II-3) A step of depositing a conductive metal compound on the anchor layer by a film forming method using vacuum to form a transparent conductive layer.
  • the substrate having the transparent substrate in the step (I) may have at least a transparent substrate and may have the surface treatment layer on the IM layer forming surface of the transparent substrate, which is opposite to the IM layer forming surface of the transparent substrate. It represents a substrate which may have various functional layers on its side surface.
  • the IM layer can be formed by directly coating the active energy ray-curable composition on a transparent substrate, or the IM layer can be formed on a transparent substrate by previously providing a surface treatment layer such as a hard coat layer or an anti-blocking layer.
  • the active energy ray-curable composition may be directly applied to form the IM layer.
  • the coating method a known method can be used, for example, a method using a lot or a wire bar, or various coating methods such as microgravure, gravure, die, curtain, lip, slot or spin. it can.
  • the transparent substrate is coated with an active energy ray-curable composition, and the composition is naturally or forcibly dried and then irradiated with an active energy ray to be cured.
  • Examples of active energy rays include ultraviolet rays, electron rays, and visible light having a wavelength of 400 to 500 nm.
  • a radiation source (light source) of ultraviolet rays and visible light having a wavelength of 400 to 500 nm for example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a gallium lamp, a xenon lamp, a carbon arc lamp or the like can be used.
  • a thermionic emission gun, an electrolytic emission gun, or the like can be used as the electron beam source. Irradiation with these active energy rays can be combined with heat treatment such as infrared rays, far infrared rays, hot air, and high frequency heating.
  • the curing treatment may be carried out after natural or forced drying in order to prevent deterioration of the strength of the coating film due to inhibition of curing by water or residual organic solvent.
  • the curing treatment may be performed at the same time as the coating or after the coating.
  • the active energy dose for irradiation is preferably in the range of 400 to 2000 mJ/cm 2 , and more preferably in the range of 400 to 1000 mJ/cm 2 from the viewpoint of easy process control.
  • the irradiation amount is preferably 400 mJ/c 2 or more from the viewpoint of improving the adhesion between the IM layer and the ITO film (transparent conductive layer), and the irradiation amount is 2000 mJ/c from the viewpoint of improving the adhesion between the transparent substrate and the IM layer. It is preferably not more than cm 2 .
  • the anchor layer is formed on the IM layer as needed (step (II-2)).
  • the anchor layer is preferably a layer formed by a film forming method using vacuum as in the method of forming a transparent conductive layer described later.
  • the anchor layer can be formed, for example, by using silicon oxide instead of the conductive metal compound in the film forming method described later.
  • the transparent conductive layer is a layer formed by a film forming method using vacuum.
  • a film forming method using a vacuum for example, a dry process such as a vacuum vapor deposition method (physical vapor deposition method or chemical vapor deposition method), a sputtering method, and an ion plating method can be used.
  • a conductive metal compound can be deposited on the IM layer or the anchor layer to form a transparent conductive layer.
  • the transparent conductive layer formed by a film forming method using vacuum can be formed uniformly even with a thin film of about several nm. By forming it on the IM layer or the anchor layer, it is possible to prevent "rubbing". Stripping is suppressed.
  • the first manufacturing method and the second manufacturing method may further include a step (step (III)) of patterning the transparent conductive layer.
  • a transparent conductive layer having a predetermined circuit pattern such as a transparent electrode layer can be formed.
  • the patterning method can be appropriately selected from various etching methods such as a known dry etching method and wet etching method.
  • the transparent electrode layer in this laminate has excellent adhesion to the IM layer and is difficult to peel off, so stable conductivity can be exhibited.
  • Metal oxide particles (A) having a refractive index of 1.70 to 2.72> A-1: Zirconium oxide particles (refractive index: 2.72)
  • c3-2 Kyoeisha Chemical Co., Ltd., light ester DE (diethylaminoethyl methacrylate)
  • c3-3 KAYARAD PET-30 (mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate) manufactured by Nippon Kayaku Co., Ltd.
  • c3-4 manufactured by Toagosei Co., Ltd., Aronix MT-3548 (a mixture of pentaerythritol monoacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate and pentaerythritol tetraacrylate)
  • Example 1 40 parts by mass of A-1 as the metal oxide particles (A) and 2 parts by mass of c1-1 as the active energy ray-curable component (c1) having a tertiary amino group, and other active energy ray-curable components As (c2), 58 parts by mass of the above c2-1, 150 parts by mass of propylene glycol monomethyl ether as an organic solvent, and IRGACURE 184 manufactured by Ciba Specialty Chemicals Co., Ltd. as a photopolymerization initiator, 100 parts by mass of active energy ray-curable components. 5 parts by mass with respect to 10 parts by mass were mixed and dispersed to obtain an active energy ray-curable composition 1 having a D50 particle size of 81 nm. The D50 particle size was determined according to the method described below.
  • the active energy ray-curable composition 1 thus obtained was coated on a 100 ⁇ m-thick polyester film (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd.), which is a transparent substrate, and dried. After removing the organic solvent, ultraviolet rays of 400 mJ/cm 2 were irradiated using a high-pressure mercury lamp to form a 1.0 ⁇ m cured film (IM layer) to obtain an intermediate. According to the methods described below, the refractive index and scratch resistance of the IM layer and the haze and total light transmittance of the intermediate were determined.
  • indium tin oxide was sputtered by a magnetron sputtering device (“MSP-30T magnetron sputter” manufactured by Vacuum Device Co., Ltd.) to form a transparent conductive layer of 25 nm and laminated.
  • MSP-30T magnetron sputter manufactured by Vacuum Device Co., Ltd.
  • Example 2 to 14 (Comparative Examples 1 to 11) An active energy ray-curable composition, an intermediate, and a laminate were obtained in the same manner as in Example 1 except that the types and blending ratios shown in Tables 1 and 2 were used for the components of the active energy ray-curable composition. It evaluated similarly.
  • the refractive index of the IM layer at a wavelength of 594 nm was obtained using the obtained intermediate and "Prism coupler model 2010" manufactured by Metricon.
  • Adhesion test 1 Cross-cut test
  • the transparent conductive layer surface of the laminate is scratched with a cutter in a grid pattern at intervals of 1 mm to form a grid pattern of 100 squares, and then the grid pattern is scratched.
  • a cellophane tape was attached so as to cover the entire surface, the tape was peeled off, and the peeled state of the transparent conductive layer was visually observed, and evaluated according to the following criteria. 0: The circumference of the scratch line is completely smooth, and no peeling occurs on any lattice. 1: Small peeling of the conductive layer was observed around the intersection of the scratches, but the total peeled area was less than 5% on the grid.
  • the conductive layer was peeled off along the edge direction of the scratch, or the conductive layer was peeled off at the intersection of the scratches, and the total peeled area was 5% or more and less than 15% on the grid.
  • the total peeled area is 15% or more and less than 35% of the grid.
  • the total peeled area is 35% or more and less than 80% of the grid pattern.
  • the total peeled area is 80% or more of the cross, and peeling is also observed on the outside of the cross-shaped scratch.
  • Adhesion test 2 Change in surface resistance value before and after steel wool (SW) test
  • SW steel wool
  • ⁇ Method of measuring surface resistance of conductive layer The surface resistance value of the transparent conductive layer was determined by pressing a probe against the transparent conductive layer of the laminate using "Lorester GX MCP-T600" manufactured by Mitsubishi Chemical Corporation as a measuring device. After the scratch resistance test, the surface resistance value of the transparent conductive layer of the laminate was determined by pressing the probe so as to cross the portion rubbed with steel wool.
  • ⁇ Evaluation criteria> 0: The surface resistance value after the test is less than 10 times the resistance value before the test. 1: The surface resistance value after the test is 10 times or more and less than 100 times the resistance value before the test. 2: The surface resistance value after the test is 100 times or more the resistance value before the test.
  • Comparative Example 1 not containing the polyfunctional active energy ray-curable component having a tertiary amino group (c1), the polyfunctional active energy ray-curable component having a tertiary amino group (c1)
  • Comparative Example 2 and Comparative Example 3 in which the amount of) is small, the adhesion between the IM layer and the transparent conductive layer is good in the cross-cut test, but when the surface is rubbed with steel wool, the transparent conductive layer is peeled off and the surface resistance value is extremely high. Increase to.
  • Comparative Example 4 and Comparative Example 5 in which the amount of the polyfunctional active energy ray-curable component (c1) having a tertiary amino group was large, the scratch resistance of the IM layer was poor.
  • Comparative Examples 6 and 7 in which (c3-1) and (c3-2) having a tertiary amine but having a monofunctionality were used, the adhesion of the transparent conductive layer was good against rubbing with steel wool. However, since it was monofunctional, it was easily released from the coating film by moist heat, and it became clear that the surface resistance value was extremely increased by rubbing with steel wool after the moist heat test.
  • the IM layer in the present invention has excellent hard coat properties and transparency, and also has excellent adhesion to the transparent conductive layer. Therefore, a laminate provided with such an IM layer is used as a front plate of various display devices such as a cathode ray tube, a flat display panel (liquid crystal display, plasma display, electrochromic display, light emitting diode display, etc.) or an input device thereof. Is also available.
  • various display devices such as a cathode ray tube, a flat display panel (liquid crystal display, plasma display, electrochromic display, light emitting diode display, etc.) or an input device thereof. Is also available.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、IM層に対する密着性に優れ、剥落しにくい透明導電層を具備する積層体(透明導電性フィルム)を提供することを目的とする。 透明基板、IM層および透明導電層を有する積層体であって、下記(1)~(3)の全てを満たす積層体。 (1)IM層と透明導電層とが接しているか、または、IM層と透明導電層との間に金属酸化物から形成されるアンカー層を有し、IM層とアンカー層とが接し、アンカー層と透明導電層とが接している。 (2)IM層が、屈折率が1.70~2.72の金属酸化物粒子(A)、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)を含む活性エネルギー線硬化性組成物の硬化物である。 (3)金属酸化物粒子(A)、硬化性成分(c1)、および線硬化性成分(c2)の合計100質量%中、硬化性成分(c1)を2~50質量%含む。

Description

積層体、活性エネルギー線硬化性組成物、及び積層体の製造方法
 本発明は、透明基板、インデックスマッチング層及び透明電極層を有する積層体、活性エネルギー線硬化性組成物、及び該積層体の製造方法に関する。
 透明なプラスチックフィルム基材上に、透明導電性材料をスパッタリング等の方法で成膜して、透明導電層を設けてなる透明導電性フィルムが知られている。前記透明導電層はさらにパターン化することで所望の回路パターンを備える透明導電層とすることができ、例えば、液晶パネルにおける液晶制御用の電極や、表示装置上に設けられるタッチパネルの電極等として使用されている。
 透明導電層としては、可視光透過率が高く、表面抵抗値が比較的低いこと、環境特性に優れていることから、インジウム系酸化物である酸化インジウム-錫(ITO/Indium Tin Oxide)やインジウム亜鉛酸化物(IZO)などが広く用いられている。
 しかし、透明導電層は屈折率が高く、パターン状の透明導電層を有する透明導電性フィルムにおいては、透明導電層を有する部分と透明電極を有さない部分との屈折率差により、透明導電層の存在が目だってしまう(いわゆる骨見え)という課題がある。
 この課題を解決するために、基材と透明導電層との間に透明導電層と同程度の屈折率を有する層(以下、インデックスマッチング層(IM層)という)を設けることが提案されている(特許文献1~2)。
 特許文献1には、透明基板と、屈折率が1.59~1.80のインデックスマッチング層と、透明電極層がこの順に積層した積層体が開示されている。引用文献1では、当該インデックスマッチング層として、(A)屈折率1.7以上の金属酸化物粒子、(B)シリカ粒子および(C)樹脂成分を特定比率で含んだ組成物からなるもが開示されている。
 特許文献2の請求項14には、透明有機高分子基板に、硬化樹脂層と、透明導電層とが順次積層されてなる特定の透明導電性積層体が開示されている。特許文献2には、前記硬化樹脂層が第1、第2の超微粒子を含むことが開示されている。そして、実施例では、超微粒子としてシリカと酸化チタンとを含む例が示されている。
特開2014-209333号公報 WO2010/114056号
 近年、タッチパネルの大画面化に伴う高感度化のため、透明導電性フィルムの低抵抗値化が求められており、透明導電層の厚膜化、すなわちITO等の透明導電層の厚膜化が検討されている。
 また、タッチパネルの仕様が日々複雑化・多様化するに伴い、電極材料の仕様も日々複雑化・多層化・多様化しつつある。例えば、パターン化された透明導電層および露出しているIM層の上に別の無機物層が設けられることがあり、設けられる無機物層も複数のことがある。透明導電層上およびIM層上に設けられる別の無機物層はITO等の透明導電層と同様に真空を利用する物理的蒸着(PVD)法や化学的気相成長(CVD)法により成膜される。成膜の際、IM層には少なからず種々の負荷(熱的、物理的等)が加えられる。
 ところで、透明導電性フィルムを製造する際や透明導電層上にさらに無機物層を設ける際、工業的には長尺の透明導電性フィルムをロール状に巻き取ったり、巻き取ったロールをほどいたりする。このような巻き取り工程・巻解き工程において、IM層は基材フィルムの背面や搬送用のロールに接しこすられることとなる。IM層と透明導電層との密着性が不十分だと、巻き取り工程・巻解き工程中のこすれ(スクラッチ)によって、IM層から透明導電層が浮いたり、剥落したりし易い。
 殊に、透明導電層自体が厚くなったり、パターン化後、透明導電層等の上に複数の無機物層が設けられたりする場合、IM層と透明導電層との界面にかかる負荷がより大きなものとなるので、IM層からの透明導電層の浮きや剥落が顕著になる。
 フィルムや金属箔等の基材と該基材に隣接する何らかの膜・層との密着性は、多くの場合、クロスカット試験とか碁盤目剥離試験とかと称される試験方法で評価される。即ち、膜・層の表面から基材表面まで達する傷をカッターナイフ等で付け、膜・層の表面の傷部分に粘着性テープを貼り付けた後、前記粘着性テープを剥がし、膜・層の剥がれ方を評価する方法である。
 しかし、このような一般的な密着性試験では、「こすれ」によるIM層からの透明導電層の剥落し易さ・剥落し難さの程度を正しく評価できなかった。
 また、膜・層の傷付き易さ、傷付き難さは、多くの場合、スクラッチ試験とか耐擦傷性試験とかと称される試験方法で評価される。即ち、やすりやスチールウール等の治具を一定荷重で膜・層の表面に押し当てつつ、一定速度で往復運動させたり、回転運動させたりして、膜・層の表面の傷の発生状態を評価する方法である。
 しかし、このような一般的なスクラッチ試験では、「こすれ」によるIM層からの透明導電層の剥落し易さ・剥落し難さの程度を正しく評価できなかった。
 前記特許文献1及び2において、インデックスマッチング層や硬化樹脂層には、シリカ粒子が用いられている。当該シリカ粒子は比較的屈折率が低いため、インデックスマッチング層の高屈折率化に寄与するものではない。本発明者らは、シリカ粒子を含まないインデックスマッチング層を検討したところ、上記「こすれ」により透明導電層やアンカー層が剥落しやすくなることがあるとの知見を得た。
 本発明は、インデックスマッチング層に対する密着性に優れ、剥落しにくい透明導電層を具備する積層体(透明導電性フィルム)を提供することを目的とする。
 以下、本発明に係る積層体及びその製造方法、活性エネルギー線硬化性組成物について説明する。
 なお、本発明において、「(メタ)アクリレート」とは、アクリレートとメタクリレートの各々を表し、「(メタ)アクリル」等もこれに準ずる。
 本発明は、透明基板、インデックスマッチング層および透明導電層を有する積層体であって、下記(1)~(3)の全てを満たす積層体に関する。
(1) インデックスマッチング層と透明導電層とが接しているか、または、
 インデックスマッチング層と透明導電層との間に金属酸化物から形成されるアンカー層を有し、インデックスマッチング層とアンカー層とが接し、アンカー層と透明導電層とが接している。
(2) インデックスマッチング層が、屈折率が1.70~2.72の金属酸化物粒子(A)、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)を含む活性エネルギー線硬化性組成物の硬化物である。
(3) 前記(A)、(c1)および(c2)の合計100質量%中、前記3級アミノ基を有する活性エネルギー線硬化性成分(c1)を2質量%以上、50質量%以下含む。
 別の発明は、金属酸化物粒子(A)が、酸化ジルコニウム粒子または酸化チタン粒子を含む、前記積層体に関する。
 別の発明は、下記(4)~(5)の全てを満たす活性エネルギー線硬化性組成物に関する。
(4) 屈折率が1.70~2.72の金属酸化物粒子(A)、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)および3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)を含む。
(5) 前記(A)、(c1)および(c2)の合計100質量%中、前記3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)を2質量%以上、50質量%以下含む。
 別の発明は、透明基板、インデックスマッチング層および透明導電層を有する積層体の製造方法であって、下記工程(I)、及び(II-1)を含む製造方法に関する。
(I) 透明基板を有する基板上に、前記の活性エネルギー線硬化性組成物を塗工した後、活性エネルギー線を照射し前記の活性エネルギー線硬化性組成物を硬化し、インデックスマッチング層を形成する工程。
(II-1) 前記インデックスマッチング層上に、真空を利用した成膜法により導電性金属化合物を付着し、透明導電層を形成する工程。
 別の発明は、透明基板、インデックスマッチング層および透明導電層を有する積層体の製造方法であって、下記工程(I)、(II-2)、および(II-3)を含む製造方法に関する。
(I) 透明基板を有する基板上に、前記の活性エネルギー線硬化性組成物を塗工した後、活性エネルギー線を照射し前記の活性エネルギー線硬化性組成物を硬化し、インデックスマッチング層を形成する工程。
(II-2) 前記インデックスマッチング層上に、真空を利用した成膜法により金属酸化物を付着し、アンカー層を形成する工程。
(II-3) 前記アンカー層上に、真空を利用した成膜法により導電性金属化合物を付着し、透明導電層を形成する工程。
(III) 前記透明導電層をパターニングして透明電極層を形成する工程。
 本発明により、インデックスマッチング層に対する密着性に優れ、剥落しにくい透明導電層を具備する積層体(透明導電性フィルム)が提供される。
 本発明に係る積層体について説明する。
 本発明に係る積層体(本積層体ともいう)は、透明基板、インデックスマッチング層(IM層ともいう)および透明導電層を有する積層体であって、下記(1)~(3)の全てを満たす。
(1) IM層と透明導電層とが接しているか、または、
 IM層と透明導電層との間に金属酸化物から形成されるアンカー層を有し、IM層とアンカー層とが接し、アンカー層と透明導電層とが接している。
(2) IM層が、屈折率が1.70~2.72の金属酸化物粒子(A)(金属酸化物粒子(A)ともいう)、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)(硬化性成分(c1)、3級アミノ基を有する硬化性成分(c1)ともいう)、および3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)(硬化性成分(c2)、3級アミノ基を有しない硬化性成分(c2)ともいう)を含む活性エネルギー線硬化性組成物の硬化物である。
(3) 前記金属酸化物粒子(A)、前記硬化性成分(c1)、および前記硬化性成分(c2)の合計100質量%中、前記硬化性成分(c1)を2~50質量%含む。
 本積層体は、IM層用の活性エネルギー線硬化性組成物として、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)を含むものとし、当該硬化性成分(c1)の割合を上記特定の範囲とすることで、シリカ粒子を用いない場合であっても、IM層と当該IM層上に形成された透明導電層やアンカー層との密着性に優れ、こすれに対する透明導電層の剥落が抑制された積層体が得られる。また、IM層として上記組成の活性エネルギー線硬化性組成物の硬化物を用いることで、ヘイズが低く、透明性及び耐擦傷性に優れ、IM層上に形成される透明導電層をパターン化した場合であってもパターン見えが抑制される。
 本積層体は、少なくとも、透明基板、インデックスマッチング層および透明導電層を有し、IM層と透明導電層との間にアンカー層を有していてもよく、本発明の効果を損なわない範囲で更に他の層を有していてもよいものである。
 以下、まずIM層を形成するための活性エネルギー線硬化性組成物を説明し、次いで各層について説明する。
 インデックスマッチング層は、下記(4)~(5)の全てを満たす活性エネルギー線硬化性組成物の硬化物である。
(4) 活性エネルギー線硬化性組成物が、屈折率が1.70~2.72の金属酸化物粒子(A)、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)、および3級アミノ基を有する多官能活性エネルギー線硬化性成分(c2)を含む。
(5) 前記金属酸化物粒子(A)、硬化性成分(c1)、および硬化性成分(c2)の合計100質量%中、前記硬化性成分(c1)を2~50質量%含む。
 上記本発明に係る活性エネルギー線硬化性組成物(本活性エネルギー線硬化性成分ともいう)は、金属酸化物粒子(A)、硬化性成分(c1)、および硬化性成分(c2)を含むものであり、必要に応じて更に他の成分を含んでいてもよいものである。以下各成分について説明する。
 屈折率が1.70~2.72の金属酸化物粒子(A)は、パターン化された透明導電層の視認性を低下するとともに、透明導電層やアンカー層との密着性を向上する。金属酸化物粒子(A)としては、導電性の低い、または絶縁性の金属酸化物粒子が好ましい。このような金属酸化物粒子(A)の具体例としては、酸化ジルコニウム、酸化チタン、酸化アルミニウムなどが挙げられ、高屈折率の点から、酸化ジルコニウム、または酸化チタンが好ましい。金属酸化物粒子(A)は、例えば下記の市販品を用いてもよい。
 屈折率が2.72の酸化チタンとしては、
 石原産業(株)製:TTO-55(A)、TTO-55(B)、TTO-55(C)、TTO-55(D)、TTO-55(S)、TTO-55(N)、TTO-51(A)、TTO-51(C)、TTO-S-1、TTO-S-2、TTO-S-3、TTO-S-4、ST-01、ST-21、ST-30L、ST-31、
 堺化学工業(株)製:STR-60C、STR-60C-LP、STR-100C、STR-100C-LP、STR-100A-LP、STR-100W、
 テイカ(株)製:MT-05、MT-100S、MT-100HD、MT-100SA、MT-500HD、MT-500SA、MT-600SA、MT-700HD、
 シーアイ化成(株)製:ナノテックTiOが、
 屈折率が2.22の酸化ジルコニウムとしては、
 住友大阪セメント(株)製:OZC-3YC、OZC-3YD、OZC-3YFA、OZC-8YC、OZC-0S100、
 日本電工(株)製:PCS、PCS-60、PCS-90、T-01が、
 屈折率が1.77の酸化アルミニウムとしては、
 日本アエロジル(株)製:AEROXIDEAluC、AEROXIDEAlu65、AEROXIDEAlu130、シーアイ化成(株)製:ナノテックAl等が挙げられる。
 金属酸化物粒子(A)は1種類を単独で又は2種類以上を組み合わせて用いることができる。
 金属酸化物粒子(A)の平均一次粒子径は、活性エネルギー線硬化性組成物における分散性を向上し、形成される硬化膜、即ちIM層の可視光等の光に対する散乱を抑制し、透明性を向上できるという点から、5~100nmであることが好ましく、5~30nmであることがより好ましい。
 金属酸化物粒子(A)の平均一次粒子径は、電子顕微鏡の観察により求めることができる。即ち、走査型電子顕微鏡(日本電子株式会社製「JEM-2800」)を用いて倍率2万倍で観察した際の粒子10個の平均サイズを平均一次粒子径として用いる。
 また、活性エネルギー線硬化性組成物における金属酸化物粒子(A)の分散粒径(D50)は、該活性エネルギー線硬化性組成物の硬化膜を形成した際の透明性の点から10~500nmであることが好ましく、10~100nmであることがより好ましい。
 金属酸化物粒子(A)の分散粒径は、動的光散乱法を利用した日機装(株)製「ナノトラックUPA」等を用いて求めることができる。具体的には、金属酸化物粒子(A)を溶剤に分散させた金属酸化物分散体を、測定濃度が1.0になるように希釈液に添加し測定する。
 本活性エネルギー線硬化性組成物における金属酸化物粒子(A)の割合は、所望の屈折率等に応じて適宜調整すればよい。金属酸化物粒子(A)の含有割合は、中でも、金属酸化物粒子(A)、3級アミノ基を有する活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない活性エネルギー線硬化性成分(c2)の合計100質量%中、5~70質量%が好ましく、10~55質量%がより好ましく、15~50質量%がさらに好ましい。金属酸化物粒子(A)の含有割合が上記下限値以上であれば、透明導電層等の視認性の低下及び密着性の向上の点で優れている。一方、金属酸化物粒子(A)の含有割合が上記上限値以下であれば、IM層の機械強度に優れている。
 本活性エネルギー線硬化性組成物は、金属酸化物粒子(A)を固定し、成膜する成分、即ちバインダーとして、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)および3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)を含み、他の硬化性成分を含んでいてもよい活性エネルギー線硬化性成分(C)を含む。
 本活性エネルギー線硬化性組成物は、金属酸化物粒子(A)、硬化性成分(c1)および硬化性成分(c2)の合計100重量%中に、硬化性成分(c1)を2質量%以上、50質量%以下含む。
 硬化性成分(c1)を2質量%以上含むことによって、IM層とIM層上に形成される透明導電層やアンカー層との密着性が向上し、透明導電層やアンカー層の剥落を防止できる。硬化性成分(c1)を50質量%以下含むことによって、IM層の耐擦傷性を大きく損なうことなく、IM層上に形成される透明導電層やアンカー層との密着性を向上させることができる。硬化性成分(c1)は、中でも、2質量%以上、10質量%以下であることがより好ましい。
 硬化性成分(c1)は、分子中に1つ以上の3級アミノ基と、2つ以上の重合性不飽和二重結合基を有する化合物である。重合性不飽和二重結合基を有する基としては、ビニル基、アリル基、(メタ)アクリロイル基等が挙げられる。硬化性成分(c1)としては、例えば、分子中に1つ以上の3級アミノ基を有する(メタ)アクリル系化合物、脂肪酸ビニル化合物、アルキルビニルエーテル化合物、α-オレフィン化合物、ビニル化合物、エチニル化合物等が挙げられる。硬化性成分(c1)は1種単独で、又は2種以上を組み合わせて用いることができる。
硬化性成分(c1)は、重合性不飽和二重結合基を1分子中に2個以上有するため、光硬化性に優れ、耐擦傷性やハードコート性に優れた硬化物が得られる。官能化合物は、中でも2~6官能が好ましく、4~6官能がより好ましい。
 3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)は市販品を用いてもよい。市販品としては、以下のものが例示できる。
 ダイセル・オルネクス(株)製:Ebecryl80、Ebecryl81、Ebecryl83、Ebecryl7100
 アルケマ(株)製:CN371 NS、CN386、CN549 NS、CN550、CN551 NS。
 3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)は、分子中に、2つ以上の重合性不飽和二重結合基を有し、3級アミノ基を有しない化合物である。多官能化合物を用いることで、光硬化性や塗膜のハードコート性が向上する。硬化性成分(c2)は、例えば、(メタ)アクリル系化合物、脂肪酸ビニル化合物、アルキルビニルエーテル化合物、α-オレフィン化合物、ビニル化合物、エチニル化合物等の重合性不飽和二重結合基を有する化合物を用いることができる。
 硬化性成分(c2)は、水酸基、アルコキシ基、カルボキシル基、アミド基、シラノール基等の置換基を有していてもよい。
 (メタ)アクリル系化合物としては、ベンジル(メタ)アクリレート、アルキル系(メタ)アクリレート、アルキレングリコール系(メタ)アクリレート、カルボキシル基と重合性不飽和二重結合とを有する化合物、水酸基を有する(メタ)アクリル系化合物、窒素含有(メタ)アクリル系化合物等が挙げられる。
 これらのなかでも、強度、耐擦傷性の観点より、(メタ)アクリレート化合物が好ましく、特にポリエポキシポリ(メタ)アクリレート、少なくとも3つの官能基を有するポリウレタンポリ(メタ)アクリレート等のポリ(メタ)アクリレート類、3個以上のアクリロイル基を有する多官能のアクリレート類(前記ポリウレタンポリウレタンポリ(メタ)アクリレートやポリエポキシポリ(メタ)アクリレート以外の)を好適に使用することができる。
 ポリエポキシポリ(メタ)アクリレートは、エポキシ樹脂のエポキシ基を(メタ)アクリル酸でエステル化して、官能基を(メタ)アクリロイル基としたものであり、ビスフェノールA型エポキシ樹脂への(メタ)アクリル酸付加物、ノボラック型エポキシ樹脂への(メタ)アクリル酸付加物等がある。
 ポリウレタンポリ(メタ)アクリレートは、
 例えば、ジイソシアネートと水酸基を有する(メタ)アクリレート類とを反応させて得られるもの、
 ポリオールとポリイソシアネートとをイソシアネート基過剰の条件下に反応させてなるイソシアネート基含有ウレタンプレポリマーを、水酸基を有する(メタ)アクリレート類と反応させて得られるものがある。
 あるいは、ポリオールとポリイソシアネートとを水酸基過剰の条件下に反応させてなる水酸基含有ウレタンプレポリマーを、イソシアネート基を有する(メタ)アクリレート類と反応させて得ることもできる。
 ポリオールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ブチレングリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタングリコール、ネオペンチルグリコール、ヘキサントリオール、トリメリロールプロパン、ポリテトラメチレングリコール、アジピン酸とエチレングリコールとの縮重合物等が挙げられる。
 ポリイソシアネートとしては、トリレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
 水酸基を有する(メタ)アクリレート類としては、2-ヒドロキシエチル(メタ)アクリレート,2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等が挙げられる。
 イソシアネート基を有する(メタ)アクリレート類としては、2-(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート等が挙げられる。
 3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)の市販品としては、以下のものが例示できる。
 東亜合成(株)製:アロニックスM-400、アロニックスM-402、アロニックスM-408、アロニックスM-450、アロニックスM-7100、アロニックスM-8030、アロニックスM-8060、
 大阪有機化学工業(株)製:ビスコート♯400、
 化薬サートマー(株)製:SR-295、
 新中村化学工業(株)製:NKエステルA-TMMT、NKエステルA-TMM-3LM-N、NKエステルA-9570W、NKオリゴEA-1020、NKオリゴEMA-1020、NKオリゴEA-6310、NKオリゴEA-6320、NKオリゴEA-6340、NKオリゴMA-6、NKオリゴU-4HA、NKオリゴU-6HA、NKオリゴU-15HA、NKオリゴU-324A、
 BASF社製:LaromerEA81、
 荒川化学工業(株)製:ビームセット371、ビームセット575、ビームセット577、ビームセット700、ビームセット710;
 根上工業(株)製:アートレジンUN-3320HA、アートレジンUN-3320HB、アートレジンUN-3320HC、アートレジンUN-3320HS、アートレジンUN-9000H、アートレジンUN-901T、アートレジンHDP、アートレジンHDP-3、アートレジンH61、
 日本合成化学工業(株)製:紫光UV-7600B、紫光UV-7610B、紫光UV-7620EA、紫光UV-7630B、紫光UV-1400B、紫光UV-1700B、紫光UV-6300B、
 共栄社化学(株)製:ライトアクリレートPE-4A、ライトアクリレートDPE-6A、UA-306H、UA-306T、UA-306I、
 日本化薬(株)製:KAYARADDPHA、KAYARADDPHA2C、KAYARADDPHA-40H、KAYARADD-310、KAYARADD-330、KAYARAD PET-30、等が挙げられる。
 本活性エネルギー線硬化性組成物において硬化性成分(c2)は、1種単独で又は2種以上を組み合わせて用いることができる。
 本活性エネルギー線硬化性組成物において硬化性成分(c2)の割合は、所望の物性等に応じて適宜調整すればよい。硬化性成分(c2)の含有割合は、中でも、金属酸化物粒子(A)、3級アミノ基を有する活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない活性エネルギー線硬化性成分(c2)の合計100質量%中、1~93質量%が好ましく、2~70質量%がより好ましく、5~60質量%がさらに好ましい。
 活性エネルギー線硬化性成分(C)は、必要に応じて他の硬化性成分を有していてもよい。他の硬化性成分としては、単官能活性エネルギー線硬化性成分(c3)が挙げられる。単官能活性エネルギー線硬化性成分(c3)としては、例えば、アルキル(メタ)アクリレート、アルキレングリコール系(メタ)アクリレート、カルボキシル基を有する活性エネルギー線硬化性化合物、水酸基含有(メタ)アクリル系化合物、窒素含有(メタ)アクリル系化合物、脂肪酸ビニル化合物、アルキルビニルエーテル化合物、α-オレフィン化合物、ビニル化合物、エチニル化合物などが挙げられる。
 アルキル(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、イコシル(メタ)アクリレート、ヘンイコシル(メタ)アクリレート、ドコシル(メタ)アクリレート等の炭素数1~22のアルキル(メタ)アクリレート等が挙げられる。極性の調整を目的とする場合には、好ましくは炭素数2~10、さらに好ましくは炭素数2~8のアルキル基を有するアルキル(メタ)アクリレートを用いることが好ましい。また、レベリング性の調節等を目的とする場合には、炭素数6以上のアルキル(メタ)アクリレートを用いることが好ましい。
 アルキレングリコール系(メタ)アクリレートとしては、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレートなどのポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリテトラメチレングリコール(メタ)アクリレート等の、末端に水酸基を有しポリオキシアルキレン鎖を有するモノ(メタ)アクリレート;
 メトキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、エトキシテトラエチレングリコール(メタ)アクリレート、プロポキシテトラエチレングリコール(メタ)アクリレート、n-ブトキシテトラエチレングリコール(メタ)アクリレート、n-ペンタキシテトラエチレングリコール(メタ)アクリレート、トリプロピレングリコール(メタ)アクリレート、テトラプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシテトラプロピレングリコール(メタ)アクリレート、エトキシテトラプロピレングリコール(メタ)アクリレート、プロポキシテトラプロピレングリコール(メタ)アクリレート、n-ブトキシテトラプロピレングリコール(メタ)アクリレート、n-ペンタキシテトラプロピレングリコール(メタ)アクリレート、ポリテトラメチレングリコール(メタ)アクリレート、メトキシポリテトラメチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート等の、末端にアルコキシ基を有しポリオキシアルキレン鎖を有するモノ(メタ)アクリレート;
 フェノキシジエチレングリコール(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、フェノキシトリエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェノキシテトラプロピレンエチレングリコール(メタ)アクリレート等の、末端にフェノキシ基またはアリールオキシ基を有するポリオキシアルキレン系(メタ)アクリレートが挙げられる。
 カルボキシル基を有する活性エネルギー線硬化性化合物としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸、または、これらのアルキルもしくはアルケニルモノエステル、フタル酸β-(メタ)アクリロキシエチルモノエステル、イソフタル酸β-(メタ)アクリロキシエチルモノエステル、コハク酸β-(メタ)アクリロキシエチルモノエステル、アクリル酸、メタクリル酸、クロトン酸、珪皮酸等が挙げられる。
 水酸基含有(メタ)アクリル系化合物としては、前記末端に水酸基を有しポリオキシアルキレン鎖を有するモノ(メタ)アクリレートのほか、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、4-ヒドロキシビニルベンゼン、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。
 窒素含有(メタ)アクリル系化合物としては、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル-(メタ)アクリルアミド、N-エトキシメチル-(メタ)アクリルアミド、N-プロポキシメチル-(メタ)アクリルアミド、N-ブトキシメチル-(メタ)アクリルアミド、N-ペントキシメチル-(メタ)アクリルアミド等のモノアルキロール(メタ)アクリルアミド、N,N-ジ(メチロール)アクリルアミド、N-メチロール-N-メトキシメチル(メタ)アクリルアミド、N,N-ジ(メチロール)アクリルアミド、N-エトキシメチル-N-メトキシメチルメタアクリルアミド、N,N-ジ(エトキシメチル)アクリルアミンド、N-エトキシメチル-N-プロポキシメチルメタアクリルアミド、N,N-ジ(プロポキシメチル)アクリルアミド、N-ブトキシメチル-N-(プロポキシメチル)メタアクリルアミド、N,N-ジ(ブトキシメチル)アクリルアミド、N-ブトキシメチル-N-(メトキシメチル)メタアクリルアミド、N,N-ジ(ペントキシメチル)アクリルアミド、N-メトキシメチル-N-(ペントキシメチル)メタアクリルアミド等のジアルキロール(メタ)アクリルアミド等のアクリルアミド系不飽和化合物;
 ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、メチルエチルアミノエチル(メタ)アクリレート、ジメチルアミノスチレン、ジエチルアミノスチレン等のジアルキルアミノ基を有する不飽和化合物;及び、対イオンとしてCl、Br-、I等のハロゲンイオンまたはQSO3(Q:炭素数1~12のアルキル基)を有するジアルキルアミノ基含有不飽和化合物の4級アンモニウム塩等がある。
 その他の不飽和化合物としては、パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2-パーフルオロブチルエチル(メタ)アクリレート、2-パーフルオロヘキシルエチル(メタ)アクリレート、2-パーフルオロオクチルエチル(メタ)アクリレート、2-パーフルオロイソノニルエチル(メタ)アクリレート、2-パーフルオロノニルエチル(メタ)アクリレート、2-パーフルオロデシルエチル(メタ)アクリレート、パーフルオロプロピルプロピル(メタ)アクリレート、パーフルオロオクチルプロピル(メタ)アクリレート、パーフルオロオクチルアミル(メタ)アクリレート、パーフルオロオクチルウンデシル(メタ)アクリレート等の、炭素数1~20のパーフルオロアルキル基を有するパーフルオロアルキルアルキル(メタ)アクリレート類を挙げることができる。
 さらに、パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、パーフルオロデシルエチレン等のパーフルオロアルキル、アルキレン類等のパーフルオロアルキル基含有ビニルモノマー;ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等のアルコキシシリル基含有ビニル化合物及びその誘導体;グリシジルアクリレート、3,4-エポキシシクロヘキシルアクリレート等のグリシジル基含有アクリレートが挙げられる。
 脂肪酸ビニル化合物としては、酢酸ビニル、酪酸ビニル、クロトン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、クロル酢酸ビニル、オレイン酸ビニル、ステアリン酸ビニル等が挙げられる。
 アルキルビニルエーテル化合物としては、ブチルビニルエーテル、エチルビニルエーテル等が挙げられる。
 α-オレフィン化合物としては、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン等が挙げられる。
 ビニル化合物としては、アリル酢酸、アリルアルコール、アリルベンゼン、シアン化アリル等のアリル化合物、シアン化ビニル、ビニルシクロヘキサン、ビニルメチルケトン、スチレン、α-メチルスチレン、2-メチルスチレン、クロロスチレン等が挙げられる。
 エチニル化合物としては、アセチレン、エチニルベンゼン、エチニルトルエン、1-エチニル-1-シクロヘキサノール等が挙げられる。
 本活性エネルギー線硬化性組成物において他の硬化性成分(c3)は、1種単独で又は2種以上を組み合わせて用いることができる。
 本活性エネルギー線硬化性組成物において他の硬化性成分(c3)の含有割合は、中でも、金属酸化物粒子(A)、3級アミノ基を有する活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない活性エネルギー線硬化性成分(c2)の合計100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましく、1質量部以下がさらに好ましい。
 本活性エネルギー線硬化性組成物は、少なくとも、前述の(A)~(C)と、必要に応じて溶剤とを含有するものであり、さらに様々な添加剤を、本発明の目的や効果を損なわない範囲において含むことができる。
 添加剤としては、例えば、光重合開始剤、光硬化性化合物、重合禁止剤、光増感剤、レベリング剤、界面活性剤、抗菌剤、アンチブロッキング剤、可塑剤、紫外線吸収剤、赤外線吸収剤、酸化防止剤、シランカップリング剤、導電性ポリマー、導電性界面活性剤、無機充填剤、顔料、染料、シリカ粒子等が挙げられる。
 溶剤を加える場合は、溶剤を揮発させた後に活性エネルギー線による硬化処理を行なうことが好ましい。
 溶剤としては、特に制限されるものでなく、様々な公知の有機溶剤を用いることができる。具体的には例えば、シクロヘキサノン、メチルイソブチルケトン、メチルエチルケトン、アセトン、アセチルアセトン、トルエン、キシレン、n-ブタノール、イソブタノール、tert-ブタノール、n-プロパノール、イソプロパノール、エタノール、メタノール、3-メトキシ-1-ブタノール、3-メトキシ-2-ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノn-ブチルエーテル、2-エトキシエタノール、1-メトキシ-2-プロパノール、ジアセトンアルコール、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、2-エトキシエチルアセテート、ブチルアセテート、イソアミルアセテート、アジピン酸ジメチル、コハク酸ジメチル、グルタル酸ジメチル、テトラヒドロフラン、メチルピロリドン等が挙げられる。これらの有機溶剤は、2種類以上を併用しても差し支えない。
 なかでも、水酸基含有溶剤は、親水性の高い粒子表面物性を持つ金属酸化物(A)に対して濡れ性が良いことから、当該金属酸化物の分散性及びその活性エネルギー線硬化性組成物の経時安定性の向上において非常に効果的であり、かつ塗工工程のレベリング性も向上することから好ましい。
 全溶剤組成中の水酸基含有溶剤含有量は、10~100重量%であることが好ましい。具体的には、水酸基含有溶剤としては、n-ブタノール、イソブタノール、tert-ブタノール、n-プロパノール、イソプロパノール、エタノール、メタノール、3-メトキシ-1-ブタノール、3-メトキシ-2-ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノn-ブチルエーテル、2-エトキシエタノール、1-メトキシ-2-プロパノール、ジアセトンアルコール、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル等が挙げられる。特に、3-メトキシ-1-ブタノール、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノn-ブチルエーテルは、金属酸化物の分散性と分散安定性がより良好となることから好ましい。
 本発明における活性エネルギー線硬化性組成物は、さらに、光重合開始剤を含むことができる。
 光重合開始剤としては、光励起によって活性エネルギー線硬化性成分(C)のアクリロイル基の重合を開始できる機能を有するものであれば特に限定はなく、例えばモノカルボニル化合物、ジカルボニル化合物、アセトフェノン化合物、ベンゾインエーテル化合物、アシルホスフィンオキシド化合物、アミノカルボニル化合物等が使用できる。
 具体的には、モノカルボニル化合物としては、ベンゾフェノン、4-メチル-ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチル-o-ベンゾイルベンゾエート、4-フェニルベンゾフェノン、4-(4-メチルフェニルチオ)フェニル-エタノン、3,3’-ジメチル-4-メトキシベンゾフェノン、4-(1,3-アクリロイル-1,3,3’-ジメチル-4-メトキシベンゾフェノン、4-(1,3-アクリロイル-1,4,7,10,13-ペンタオキソトリデシル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4-ベンゾイル-N,N,N-トリメチル-1-プロパンアミン塩酸塩、4-ベンゾイル-N,N-ジメチル-N-2-(1-オキソ-2-プロペニルオキシエチル)メタアンモニウムシュウ酸塩、2-/4-イソ-プロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-ヒドロキ-3-(3,4-ジメチル-9-オキソ-9Hチオキサントン-2-イロキシ-N,N,N-トリメチル-1-プロパンアミン塩酸塩、ベンゾイルメチレン-3-メチルナフト(1,2-d)チアゾリン等が挙げられる。
 ジカルボニル化合物としては、1,2,2-トリメチル-ビシクロ[2.1.1]ヘプタン-2,3-ジオン、ベンザイル、2-エチルアントラキノン、9,10-フェナントレンキノン、メチル-α-オキソベンゼンアセテート、4-フェニルベンザイル等が挙げられる。
 アセトフェノン化合物としては、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-ジ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシ-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-スチリルプロパン-1-オン重合物、ジエトキシアセトフェノン、ジブトキシアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,2-ジエトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、3,6-ビス(2-メチル-2-モルホリノ-プロパノニル)-9-ブチルカルバゾール等が挙げられる。
 ベンゾインエーテル化合物としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイゾブチルエーテル、ベンゾインノルマルブチルエーテル等が挙げられる。
 アシルホスフィンオキシド化合物としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、4-n-プロピルフェニル-ジ(2,6-ジクロロベンゾイル)ホスフィンオキシド等が挙げられる。
 アミノカルボニル化合物としては、メチル-4-(ジメトキシアミノ)ベンゾエート、エチル-4-(ジメチルアミノ)ベンゾエート、2-n-ブトキシエチル-4-(ジメチルアミノ)ベンゾエート、イソアミル-4-(ジメチルアミノ)ベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、4,4’-ビス-4-ジメチルアミノベンゾフェノン、4,4’-ビス-4-ジエチルアミノベンゾフェノン、2,5’-ビス(4-ジエチルアミノベンザル)シクロペンタノン等が挙げられる。
 光重合開始剤の市販品としては、チバ・スペシャリティ・ケミカルズ(株)製イルガキュア184、651、500、907、127、369、784、2959、BASF社製ルシリンTPO、日本シイベルヘグナー(株)製エサキュアワン等があげられる。
 光重合開始剤は、上記化合物に限定されず、紫外線により重合を開始させる能力があれば、どのようなものでも構わない。これらの光重合開始剤は、一種類で用いられるほか、二種類以上を混合して用いてもよい。
 光重合開始剤の使用量に関しては、特に制限はされないが、活性エネルギー線硬化性化合物(C)の全量100重量部に対して1~20重量部の範囲内で使用することが好ましい。増感剤として、公知の有機アミン等を加えることもできる。
 さらに、上記ラジカル重合用開始剤のほかに、カチオン重合用の開始剤を併用することもできる。
 活性エネルギー線硬化性組成物は、バインダー成分として、活性エネルギー線硬化性の官能基を有しない樹脂を含んでいてもよい。
 このようなバインダー樹脂としては、例えば、ポリウレタン樹脂、ポリウレア樹脂、ポリウレタンウレア樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、エポキシ樹脂、アミノ樹脂、スチレン樹脂、アクリル樹脂、メラミン樹脂、ポリアミド樹脂、フェノール樹脂、ビニル樹脂等が挙げられる。これらの樹脂は、一種類で用いても、二種類以上を混合して用いてもよい。バインダー樹脂は、活性エネルギー線硬化性組成物の固形分(溶剤以外の成分。以下、同じ。)の全量を基準(100重量%)として、20重量%以下の範囲内で使用することが好ましい。
 また、本活性エネルギー線硬化性組成物は、シリカ粒子を含んでいてもよい。シリカ粒子としては、IM層に用いられる公知の物の中から適宜選択して用いることができる。しかしながら本活性エネルギー線硬化性組成物より形成されたIM層は、前述のとおりシリカ粒子を含まない場合であっても透明導電層やアンカー層との密着性に優れている。
 本活性エネルギー線硬化性組成物においてシリカ粒子の含有割合は、IM層の高屈折率化の点から、金属酸化物粒子(A)、3級アミノ基を有する活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない活性エネルギー線硬化性成分(c2)の合計100質量部に対して、0.1質量部以下が好ましく、0.01質量部以下がより好ましく、実質的に含有していないことがさらに好ましい。
 活性エネルギー線硬化性組成物の製造方法としては、特に制限されず、いくつかの方法が挙げられる。
 具体的には、初めに金属酸化物粒子(A)、硬化性成分(c1)と硬化性成分(c2)を混合分散し、安定な金属酸化物分散体を得た後、他の様々な添加剤を添加及び調整し製造する方法;初めから、金属酸化物粒子(A)、硬化性成分(c1)、硬化性成分(c2)及びその他の添加剤の全てが混合された状態で、分散し製造する方法;等が挙げられる。活性エネルギー線硬化性成分(C)はその一部を金属酸化物粒子(A)の分散時に使用し、残りを分散後に添加することもできる。
 次に、積層体について説明する。
 本積層体の層構成は、(1)透明基材/IM層/透明導電層、または(2)透明基材/IM層/アンカー層/透明導電層であり、更に必要に応じて、透明基材のIM層とは反対側の面、透明基材とIM層との間、または透明導電層のIM層とは反対側の面に更に他の層を有していてもよいものである。また、透明導電層は、所望のパターンを有するものであってもよい。本積層体は、IM層が前記活性エネルギー線硬化性組成物の硬化物であるため、IM層上に直接設けられる透明導電層又はアンカー層との密着性が向上し、「こすれ」に対する透明導電層の剥落が抑制される。
 透明基板としては、ガラス、プラスチック等が挙げられ、特に制限されるものではない。具体的なプラスチックの種類としては、ポリエステル、ポリオレフィン、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、トリアセチルセルロース樹脂、ABS樹脂、AS樹脂、ポリアミド、エポキシ樹脂、メラミン樹脂等が挙げられる。また基材の形状としてはフィルムシート、板状パネル、レンズ形状、ディスク形状、ファイバー状の物が挙げられるが、特に制限されるものではない。
 IM層は、前記活性エネルギー線硬化性組成物の硬化物である。IM層の厚みは、好ましくは0.03μm~30μm、より好ましくは0.05μm~10μmである。
 アンカー層は、IM層と透明導電層との間に設けられていてもよい層であり、IM層と透明導電層との密着性を向上する。アンカー層は透明性及び絶縁性を有することが好ましい。このようなアンカー層の材質としては、酸化ケイ素が好ましい。酸化ケイ素によれば前記本活性エネルギー線硬化性組成物の硬化物を含むIM層との密着性にも優れている。アンカー層の厚みは、好ましくは0.03μm~30μm、より好ましくは0.05μm~1μmである。
 透明導電層は、前記IM層上又はアンカー層上に設けられる層であり、透明性と導電性を備える。透明導電層の材質としては、酸化インジウムスズ、酸化スズ、酸化亜鉛等が挙げられる。
 透明導電層の厚みは、導電性向上、およびIM層又はアンカー層との密着性向上の点から、1nm~数十nmの範囲内であることが好ましく、さらには0.01~1μmの範囲内であることがより好ましい。
 透明導電層とIM層との間には他の層を有していてもよい。当該他の層としては、ハードコート層やアンチブロッキング層などの表面処理層が挙げられる。ハードコート層やアンチブロッキング層は、本発明の活性エネルギー線硬化性組成物から前述の金属酸化物粒子(A)のような高屈折率の粒子を除いた活性エネルギー線硬化性組成物から形成することができる。透明基板とIM層の間にハードコート層を設けておくとIM層が傷つきにくくなるという効果が期待できる。アンチブロッキング層を設けた基板を用いるとIM層を設けるまでの工業的生産工程において、基板の搬送性が向上し生産性が向上するという効果が期待できる。
 本発明に係る積層体の第1の製造方法は、下記工程(I)、および下記工程(II-1)を通常この順番に含む製造方法であり、必要に応じて更に他の工程を有していてもよいものである。
(I) 透明基板を有する基板上に、本活性エネルギー線硬化性組成物を塗工した後、活性エネルギー線を照射し前記活性エネルギー線硬化性組成物を硬化し、インデックスマッチング層を形成する工程。
(II-1) 前記インデックスマッチング層上に、真空を利用した成膜法により導電性金属化合物を付着し、透明導電層を形成する工程。
 また本発明に係る積層体の第2の製造方法は、前記工程(I)、下記工程(II-2)及び下記工程(II-3)を通常この順番に含む製造方法であり、必要に応じて更に他の工程を有していてもよいものである。
(II-2) 前記インデックスマッチング層上に、真空を利用した成膜法により金属酸化物を付着し、アンカー層を形成する工程。
(II-3) 前記アンカー層上に、真空を利用した成膜法により導電性金属化合物を付着し、透明導電層を形成する工程。
 工程(I)における透明基板を有する基板とは、少なくとも透明基板を有し、透明基板のIM層形成面に前記表面処理層を有していてもよく、透明基板のIM層形成面とは反対側の面に各種機能層を有していてもよい基板を表す。透明基板に本活性エネルギー線硬化性組成物を直接塗工してIM層を形成することもできるし、透明基板にハードコート層やアンチブロッキング層のような表面処理層を予め設けた基板に本活性エネルギー線硬化性組成物を直接塗工してIM層を形成することもできる。
 塗工方法としては、公知の方法を用いることができ、例えばロットまたはワイヤーバー等を用いた方法や、マイクログラビア、グラビア、ダイ、カーテン、リップ、スロットまたはスピン等の各種コーティング方法を用いることができる。
 硬化処理は、透明基板に活性エネルギー線硬化性組成物を塗工し、自然または強制乾燥させたあとに活性エネルギー線を照射し硬化する。
 活性エネルギー線としては、例えば、紫外線、電子線、波長400~500nmの可視光線が挙げられる。
 紫外線および波長400~500nmの可視光線の線源(光源)には、例えば高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ガリウムランプ、キセノンランプ、カーボンアークランプ等を使用することができる。電子線源には、熱電子放射銃、電解放射銃等を使用することができる。これらの活性エネルギー線照射に、赤外線、遠赤外線、熱風、高周波加熱等による熱処理を併用することができる。
 なお、電子線で硬化させる場合は、水による硬化阻害または有機溶剤の残留による塗膜の強度低下を防ぐため、自然または強制乾燥させたあとに硬化処理を行なう方がより好ましい。硬化処理のタイミングは、塗工と同時でもよいし、塗工後でもよい。
 照射する活性エネルギー線量は、400~2000mJ/cmの範囲内であることが好ましく、さらには工程上管理しやすい点から、400~1000mJ/cmの範囲内であることが好ましい。IM層とITO膜(透明導電層)との密着性向上の点から照射量は400mJ/c以上であることが好ましく、透明基板とIM層との密着性向上の点から照射量は2000mJ/cm以下であることが好ましい。
 IM層上には、必要に応じてアンカー層を形成する(工程(II-2))。アンカー層は、後述する透明導電層の形成方法と同様に真空を利用した成膜法により形成された層であることが好ましい。アンカー層は、例えば、後述する成膜法において、導電性金属化合物の代わりに酸化ケイ素を用いることで形成することができる。
 次いで、IM層上またはアンカー層上に透明導電層を形成する(工程(II-1)または(II-3))。
 本積層体において透明導電層は、真空を利用した成膜法により形成された層である。
 真空を利用した成膜法としては、例えば、真空蒸着法(物理的蒸着法または化学的蒸着法)、スパッタリング法、イオンプレーティング法等のドライプロセスを用いることができる。これらの方法により、IM層上またはアンカー層上に導電性金属化合物を付着させ透明導電層を形成できる。真空を利用した成膜法により形成された透明導電層は、数nm程度の薄膜であっても均一に形成することができ、前記IM層やアンカー層上に形成することで、「こすれ」に対する剥落が抑制される。
 第1の製造方法及び第2の製造方法は、更に透明導電層をパターニングする工程(工程(III))を有していてもよい。透明導電層をパターニングすることで、透明電極層など所定の回路パターンを有する透明導電層を形成できる。
 パターニングの方法としては、公知のドライエッチング法、ウェットエッチング法等各種エッチング法の中から適宜選択することができる。
 本積層体における透明電極層は、IM層との密着性に優れ、剥落し難いので安定した導電性を発現できる。
 以下、本発明を実施例により説明するが、本発明は、この実施例により何ら限定されるものではない。
<屈折率が1.70~2.72の金属酸化物粒子(A)>
A-1:酸化ジルコニウム粒子(屈折率:2.72)
A-2:酸化チタン粒子(屈折率:2.22)
<3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)>
c1-1:ダイセル・オルネクス(株)製Ebecryl80(4官能アミン変性ポリエーテルアクリレート)
c1-2:ダイセル・オルネクス(株)製Ebecryl7100(2官能アミノアクリレート)
<3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)>
c2-1:日本化薬(株)製:KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレートと、ジペンタエリスリトールペンタアクリレートの混合物)
c2-2:日立化成(株)製:NKオリゴU-15HA(ウレタンアクリレートオリゴマー(15官能、分子量約2300))
<他の活性エネルギー線硬化性成分(c3)>
c3-1:共栄社化学(株)製、ライトエステルDM(ジメチルアミノエチルメタクリレート)
c3-2:共栄社化学(株)製、ライトエステルDE(ジエチルアミノエチルメタクリレート)
c3-3:日本化薬(株)製、KAYARAD PET-30(ペンタエリスリトールトリアクリレートと、ペンタエリスリトールテトラアクリレートの混合物)
c3-4:東亜合成(株)製、アロニクスMT-3548(ペンタエリスリトールモノアクリレートとペンタエリスリトールジアクリレートとペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートとの混合物)
(実施例1)
 金属酸化物粒子(A)として上記A-1を40質量部、3級アミノ基を有する活性エネルギー線硬化性成分(c1)として上記c1-1を2質量部、他の活性エネルギー線硬化性成分(c2)として上記c2-1を58質量部、有機溶剤としてプロピレングリコールモノメチルエーテルを150質量部、光重合開始剤としてチバ・スペシャリティ・ケミカルズ(株)製イルガキュア184を活性エネルギー線硬化性成分100質量部に対して5質量部、混合・分散して、D50粒子径が81nmの活性エネルギー線硬化性組成物1を得た。
 なお、D50粒子径は、後述する方法に従い求めた。
 透明基板である100μm厚の易接着処理ポリエステルフィルム(東洋紡(株)製「コスモシャインA4100」)上に、バーコーターを用いて、得られた活性エネルギー線硬化性組成物1を塗工し、乾燥して有機溶剤を除去した後、高圧水銀ランプを用いて400mJ/cmの紫外線を照射し、1.0μmの硬化膜(IM層)を形成し、中間体を得た。
 後述する方法に従い、IM層の屈折率・耐擦傷性、中間体のヘイズ・全光線透過率を求めた。
 次いで、得られ中間体のIM層上に、マグネトロンスパッタ装置((株)真空デバイス製「MSP-30Tマグネトロンスパッタ」)により、酸化インジウムスズをスパッタして、25nmの透明導電層を形成し、積層体を得た。
 得られた積層体について、後述する2種類の方法に従い、IM層と透明導電層との密着性を評価した。
(実施例2~14)、(比較例1~11)
 活性エネルギー線硬化性組成物の各成分を表1及び表2に示す種類・配合比率とした以外は、実施例1と同様にして活性エネルギー線硬化性組成物、中間体、積層体を得、同様に評価した。
(D50粒子径、D90粒子径)
 実施例、比較例で得られた各活性エネルギー線硬化性組成物について、測定装置に日機装(株)製「ナノトラックUPA」を、希釈液にメチルエチルケトンを用いて、D50粒子径を求めた。
(IM層の屈折率)
 得られた中間体と、メトリコン社製「プリズムカプラモデル2010」を用いて、IM層の波長594nmにおける屈折率を求めた。
(IM層の耐擦傷性)
 実施例、比較例で得られた各中間体のIM層が試験面となるように学振試験機にセットし、IM層の表面を、スチールウールのNo.0000で、荷重200gの条件で10回往復擦った。
 試験後のIM層の表面のキズの本数で評価した。
 A:0~5本。
 B:6~10本。
 C:11~20本。
 D:21本以上。
(中間体のヘイズ、全光線透過率)
 中間体のヘイズ及び全光線透過率は、日本電色工業(株)製「分光ヘーズメーターSH7000」を用いて求めた。ヘイズは実用的には1.0%以下であることが必要である。
(密着性試験1:クロスカット試験)
 JIS K 5600-5-6に準拠し、積層体における透明導電層の表面に、1mmの間隔で碁盤目状にカッターで傷を付け、100マスの格子パターンを形成した後、碁盤目状の傷全体を覆うようにセロハンテープを付着させ、引きはがし、透明導電層の剥離状態を目視で観察し、以下の基準で評価した。
0:傷の線の周囲が完全に滑らかで、どの格子にも剥がれがない。
1:傷の交点周囲に導電層の小さな剥がれが観察されるが、剥がれた面積の合計は碁盤目の5%未満。
2:傷の縁方向に沿って導電層が剥がれたり、傷の交差点で導電層が剥がれたりしており、剥がれた面積の合計が碁盤目の5%以上、15%未満。
3:剥がれた面積の合計が碁盤目の15%以上35%未満。
4:剥がれた面積の合計が碁盤目の35%以上80%未満。
5:剥がれた面積の合計が碁盤目の80%以上であり、碁盤目状の傷の外部にも剥がれが観察される。
(密着性試験2:スチールウール(SW)試験前後の表面抵抗値変化)
 中間体の代わりに積層体を用い、透明導電層が試験面となるように積層体を学振試験機にセットし、IM層の耐擦傷性試験と同様の条件で透明導電層の表面をスチールウールで擦る前後における透明導電層の表面抵抗値を以下の方法で測定し、以下の基準に示すように試験前の表面抵抗値に対する試験後の表面抵抗値の変化によって評価した。
<導電層の表面抵抗値測定方法>
 測定装置に三菱化学(株)製「ロレスターGX MCP-T600」を用いて、積層体の透明導電層にプローブを押し当て透明電導電層の表面抵抗値を求めた。耐擦傷性試験後では、スチールウールで擦った箇所を横切るようにプローブを押し当て積層体の透明導電層の表面抵抗値を求めた。
<評価基準>
0:試験後の表面抵抗値が試験前の抵抗値の10倍未満。
1:試験後の表面抵抗値が試験前の抵抗値の10倍以上、100倍未満。
2:試験後の表面抵抗値が試験前の抵抗値の100倍以上。
(耐湿熱性試験:ボイル試験前後の表面抵抗値変化)
 中間体の代わりに積層体を用い、積層体を100℃の沸水に30秒間浸漬させ、ボイル試験前後における透明導電層の表面抵抗値を、前記密着性試験2:SW試験前後の表面抵抗値変化と同様の方法で測定し、以下の基準に示すように試験前の表面抵抗値に対する試験後の表面抵抗値の変化によって評価した。
<評価基準>
0:試験後の表面抵抗値が試験前の抵抗値の100,000倍未満。
1:試験後の表面抵抗値が試験前の抵抗値の100,000倍以上、1000,000倍未満。
2:試験後の表面抵抗値が試験前の抵抗値の1000,000倍以上。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)を含まない比較例1、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)の量が少ない比較例2や比較例3は、クロスカット試験ではIM層と透明導電層の密着性は良好であるが、スチールウールで擦ると透明導電層の剥落により、表面抵抗値が極端に増大する。
 3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)の量が多い比較例4や比較例5は、IM層の耐擦傷性が劣る。
 3級アミンを有するが単官能である(c3-1)、(c3-2)を用いた、比較例6、7では、スチールウールによる擦りに対しては透明導電層の密着性は良好であったものの、単官能のため湿熱により塗膜から脱離しやすく、湿熱試験後にスチールウールで擦ると表面抵抗値が極端に増大することが明らかとなった。
 また、水酸基を有する多官能活性エネルギー硬化性成分を含む(c3-3)を用いた、比較例8~11は、クロスカット試験に対する密着性は良好であるが、スチールウールによる擦れ耐性や耐湿熱性に劣ることが明らかとなった。
 一方、屈折率が1.70~2.72の金属酸化物粒子(A)、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)を含む活性エネルギー硬化性組成物を用いて得られた実施例1~14の積層体は、IM層と透明導電層との間の密着性に優れ、剥落しにくいことが明らかとなった。
 本発明におけるIM層は、ハードコート性、透明性に優れ、透明導電層との密着性にも優れる。従って、このようなIM層を具備する積層体は、陰極線管、フラットディスプレイパネル(液晶ディスプレイ、プラズマディスプレイ、エレクトロクロミックディスプレイ、発光ダイオードディスプレイ等)等の各種表示装置の前面板あるいはこれらの入力装置としても利用できる。
 この出願は、2018年12月27日に出願された日本出願特願2018-245245を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (5)

  1.  透明基板、インデックスマッチング層および透明導電層を有する積層体であって、下記(1)~(3)の全てを満たす積層体。
    (1) インデックスマッチング層と透明導電層とが接しているか、または、
     インデックスマッチング層と透明導電層との間に金属酸化物から形成されるアンカー層を有し、インデックスマッチング層とアンカー層とが接し、アンカー層と透明導電層とが接している。
    (2) インデックスマッチング層が、屈折率が1.70~2.72の金属酸化物粒子(A)、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)を含む活性エネルギー線硬化性組成物の硬化物である。
    (3) 前記金属酸化物粒子(A)、前記3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)、および前記3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)の合計100質量%中、前記3級アミノ基を有する活性エネルギー線硬化性成分(c1)を2~50質量%含む。
  2.  金属酸化物粒子(A)が、酸化ジルコニウム粒子または酸化チタン粒子を含む、請求項1に記載の積層体。
  3.  下記(4)~(5)の全てを満たす活性エネルギー線硬化性組成物。
    (4) 屈折率が1.70~2.72の金属酸化物粒子(A)、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)を含む。
    (5) 前記金属酸化物粒子(A)、3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)、および3級アミノ基を有しない多官能活性エネルギー線硬化性成分(c2)の合計100質量%中、前記3級アミノ基を有する多官能活性エネルギー線硬化性成分(c1)を2~50質量%含む。
  4.  透明基板、インデックスマッチング層および透明導電層を有する積層体の製造方法であって、下記工程(I)、および(II-1)を含む製造方法。
    (I) 透明基板を有する基板上に、請求項3記載の活性エネルギー線硬化性組成物を塗工した後、活性エネルギー線を照射し前記活性エネルギー線硬化性組成物を硬化し、インデックスマッチング層を形成する工程。
    (II-1) 前記インデックスマッチング層上に、真空を利用した成膜法により導電性金属化合物を付着し、透明導電層を形成する工程。
  5.  透明基板、インデックスマッチング層および透明導電層を有する積層体の製造方法であって、 下記工程(I)、(II-2)、および(II-3)を含む製造方法。
    (I) 透明基板を有する基板上に、請求項3記載の活性エネルギー線硬化性組成物を塗工した後、活性エネルギー線を照射し前記活性エネルギー線硬化性組成物を硬化し、インデックスマッチング層を形成する工程。
    (II-2) 前記インデックスマッチング層上に、真空を利用した成膜法により金属酸化物を付着し、アンカー層を形成する工程。
    (II-3) 前記アンカー層上に、真空を利用した成膜法により導電性金属化合物を付着し、透明導電層を形成する工程。
PCT/JP2019/051022 2018-12-27 2019-12-25 積層体、活性エネルギー線硬化性組成物、及び積層体の製造方法 WO2020138241A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980074472.2A CN113039070B (zh) 2018-12-27 2019-12-25 层叠体及层叠体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018245245A JP6750666B2 (ja) 2018-12-27 2018-12-27 積層体、及び積層体の製造方法
JP2018-245245 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138241A1 true WO2020138241A1 (ja) 2020-07-02

Family

ID=71128712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051022 WO2020138241A1 (ja) 2018-12-27 2019-12-25 積層体、活性エネルギー線硬化性組成物、及び積層体の製造方法

Country Status (3)

Country Link
JP (1) JP6750666B2 (ja)
CN (1) CN113039070B (ja)
WO (1) WO2020138241A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120076A1 (ja) * 2021-12-24 2023-06-29 東京応化工業株式会社 感光性組成物
WO2023120077A1 (ja) * 2021-12-24 2023-06-29 東京応化工業株式会社 組成物、及び感光性組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6827631B2 (ja) * 2020-08-06 2021-02-10 東洋インキScホールディングス株式会社 活性エネルギー線硬化性組成物
JP7078169B1 (ja) 2021-12-10 2022-05-31 東洋インキScホールディングス株式会社 透明電極フィルム
KR20230152713A (ko) * 2021-03-18 2023-11-03 토요잉크Sc홀딩스주식회사 투명 전극 필름

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132763A (ja) * 2007-11-29 2009-06-18 Toyo Ink Mfg Co Ltd 硬化性組成物
JP2012188612A (ja) * 2011-03-14 2012-10-04 Seiko Epson Corp 紫外線硬化型インクジェット用インク、インクジェット記録方法
WO2013137101A1 (ja) * 2012-03-16 2013-09-19 東レ株式会社 積層フィルムおよびその製造方法
JP2016153450A (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 硬化性組成物、硬化物の製造方法、樹脂パターン製造方法及び硬化膜
JP2016224511A (ja) * 2015-05-27 2016-12-28 日東電工株式会社 透明導電性フィルム
WO2018003516A1 (ja) * 2016-06-29 2018-01-04 Dic株式会社 樹脂組成物、塗料、及び該塗料が塗装された物品
JP2018193459A (ja) * 2017-05-16 2018-12-06 東洋インキScホールディングス株式会社 活性エネルギー線硬化性組成物およびそれを用いたインデックスマッチング層および積層体
WO2019176139A1 (ja) * 2018-03-15 2019-09-19 マクセルホールディングス株式会社 モデル材用組成物、及び光造形用組成物セット

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624719A (ja) * 1985-07-02 1987-01-10 Canon Inc 活性エネルギ−線硬化型樹脂組成物
EP1731541A1 (en) * 2005-06-10 2006-12-13 Cytec Surface Specialties, S.A. Low extractable radiation curable compositions containing aminoacrylates
CN101223198B (zh) * 2005-07-19 2011-12-28 东洋油墨制造株式会社 固化性组合物、固化膜及层叠体
CN102438822B (zh) * 2009-03-31 2015-11-25 帝人株式会社 透明导电性层叠体和透明触摸面板
JP2011131403A (ja) * 2009-12-22 2011-07-07 Toyobo Co Ltd 成型用ハードコートフィルム
JP5878056B2 (ja) * 2012-03-27 2016-03-08 日立マクセル株式会社 ハードコート基材及びそれを用いた透明導電性フィルム
JP5824396B2 (ja) * 2012-03-30 2015-11-25 帝人株式会社 透明導電性積層体
JP6505370B2 (ja) * 2013-03-26 2019-04-24 荒川化学工業株式会社 積層体およびインデックスマッチング層形成用組成物
JP6992244B2 (ja) * 2014-05-26 2022-01-13 東洋インキScホールディングス株式会社 活性エネルギー線重合性組成物、シートおよび光学素子用積層体
JP2017087604A (ja) * 2015-11-12 2017-05-25 東洋インキScホールディングス株式会社 導電性積層体及び金属酸化物組成物
JP6769676B2 (ja) * 2016-03-28 2020-10-14 日本製紙株式会社 ハードコート塗料組成物及び成型用ハードコートフィルム
CN106601340A (zh) * 2016-12-21 2017-04-26 张家港康得新光电材料有限公司 一种折射率匹配膜及ito导电膜
JP7500155B2 (ja) * 2017-03-30 2024-06-17 Dic株式会社 硬化塗膜、及び、積層体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132763A (ja) * 2007-11-29 2009-06-18 Toyo Ink Mfg Co Ltd 硬化性組成物
JP2012188612A (ja) * 2011-03-14 2012-10-04 Seiko Epson Corp 紫外線硬化型インクジェット用インク、インクジェット記録方法
WO2013137101A1 (ja) * 2012-03-16 2013-09-19 東レ株式会社 積層フィルムおよびその製造方法
JP2016153450A (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 硬化性組成物、硬化物の製造方法、樹脂パターン製造方法及び硬化膜
JP2016224511A (ja) * 2015-05-27 2016-12-28 日東電工株式会社 透明導電性フィルム
WO2018003516A1 (ja) * 2016-06-29 2018-01-04 Dic株式会社 樹脂組成物、塗料、及び該塗料が塗装された物品
JP2018193459A (ja) * 2017-05-16 2018-12-06 東洋インキScホールディングス株式会社 活性エネルギー線硬化性組成物およびそれを用いたインデックスマッチング層および積層体
WO2019176139A1 (ja) * 2018-03-15 2019-09-19 マクセルホールディングス株式会社 モデル材用組成物、及び光造形用組成物セット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120076A1 (ja) * 2021-12-24 2023-06-29 東京応化工業株式会社 感光性組成物
WO2023120077A1 (ja) * 2021-12-24 2023-06-29 東京応化工業株式会社 組成物、及び感光性組成物

Also Published As

Publication number Publication date
JP2020104392A (ja) 2020-07-09
CN113039070A (zh) 2021-06-25
JP6750666B2 (ja) 2020-09-02
CN113039070B (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
JP6750666B2 (ja) 積層体、及び積層体の製造方法
JP4692630B2 (ja) 金属酸化物分散体の製造方法、積層体および分散剤
JP2013173871A (ja) 組成物、帯電防止性コート剤及び帯電防止性積層体
KR101436616B1 (ko) 하드코팅 필름
JP6827631B2 (ja) 活性エネルギー線硬化性組成物
JP6540186B2 (ja) 金属酸化物組成物およびその硬化膜
JP7136299B1 (ja) 活性エネルギー線硬化性アンダーコート剤、アンダーコート層、積層体、および金属膜付基材
JP6981565B1 (ja) 積層体および透明電極フィルム
JP2009040847A (ja) 硬化性組成物、硬化膜及び積層体
JP7140187B2 (ja) 活性エネルギー線硬化性組成物及びそれを用いたフィルム
JP2020082618A (ja) 積層体及び積層体の製造方法
JP3690191B2 (ja) ハードコート層を設けた製品
JP2017087604A (ja) 導電性積層体及び金属酸化物組成物
JP5910781B1 (ja) 金属酸化物組成物およびその硬化膜
JP6780799B1 (ja) 活性エネルギー線硬化性ハードコート剤、積層体、透明導電フィルム、光学部材、および電子機器
JP7121351B2 (ja) 透明導電性フィルム、光学部材、および電子機器
JP5910782B1 (ja) 透明導電膜を有する積層体および積層体の製造方法
JPH09143456A (ja) 制電性ハードコート剤および制電性樹脂成形体
JP2023065841A (ja) 活性エネルギー線硬化性アンダーコート剤、アンダーコート層、積層体、および金属膜付基材
CN116406391A (zh) 活性能量线硬化性硬涂剂、硬涂层及层叠体
JP2017037830A (ja) 透明導電膜を有する積層体および積層体の製造方法
WO2017086141A1 (ja) 光学フィルム、画像表示装置、および光学フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904226

Country of ref document: EP

Kind code of ref document: A1