WO2020136385A1 - 運転支援方法及び運転支援装置 - Google Patents

運転支援方法及び運転支援装置 Download PDF

Info

Publication number
WO2020136385A1
WO2020136385A1 PCT/IB2018/001592 IB2018001592W WO2020136385A1 WO 2020136385 A1 WO2020136385 A1 WO 2020136385A1 IB 2018001592 W IB2018001592 W IB 2018001592W WO 2020136385 A1 WO2020136385 A1 WO 2020136385A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
turning
parked vehicle
parked
road
Prior art date
Application number
PCT/IB2018/001592
Other languages
English (en)
French (fr)
Inventor
平松真知子
青木元伸
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to CN201880100499.XA priority Critical patent/CN113228128B/zh
Priority to US17/417,809 priority patent/US11370453B2/en
Priority to EP18944136.3A priority patent/EP3905219B1/en
Priority to JP2020561951A priority patent/JP7129495B2/ja
Priority to RU2021122181A priority patent/RU2763452C1/ru
Priority to PCT/IB2018/001592 priority patent/WO2020136385A1/ja
Publication of WO2020136385A1 publication Critical patent/WO2020136385A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/20Static objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18159Traversing an intersection

Definitions

  • the present invention relates to a driving support method and a driving support device.
  • a driving assistance device described in Patent Document 1 uses a map created from driving behavior by a skilled driver to set a target traveling state (passing speed, lateral gap) when passing a side of a parked vehicle or the like. , Driving assistance is provided so that the host vehicle passes the sideways in the target traveling state.
  • An object of the present invention is to smoothly avoid a parked vehicle and pass through the parked vehicle in driving assistance in which the vehicle turns before and after the parked vehicle.
  • a process of determining whether or not there is a parked vehicle ahead of the route of the own vehicle, a process of determining whether to turn the own vehicle, and a turning position at which the turning is performed The process of determining whether or not the distance between the parked vehicle and the parked vehicle satisfies a predetermined condition, and when the distance between the turning position and the parked vehicle satisfies the predetermined condition, a predetermined interval is set on the side of the parked vehicle.
  • the controller executes processing for performing travel control based on the travel trajectory.
  • the parked vehicle in driving assistance that makes a turn in front of and behind a parked vehicle, the parked vehicle can be smoothly bypassed and passed.
  • FIG. 1 shows the schematic structural example of the driving assistance device of embodiment. It is a figure which shows an example of driving assistance at the time of turning at an intersection. It is a figure which shows an example of driving assistance at the time of avoiding and passing a parking vehicle, after turning and entering at an intersection. It is a figure which shows an example of the driving assistance which integrates the steering control which makes a left turn at an intersection, and the steering control which avoids and passes a parking vehicle after a left turn. It is a figure which shows an example of the driving assistance which integrates the steering control which makes a right turn at an intersection, and the steering control which avoids a parked vehicle and passes after a right turn.
  • FIG. 3 is a block diagram showing an example of a functional configuration of the controller of FIG. 1. It is a figure which shows the 1st example of the determination method of a turning position. It is a figure which shows the 2nd example of the determination method of a turning position.
  • the driving support device 1 is an automatic driving system that automatically drives the own vehicle without the driver's involvement, based on a driving environment around a vehicle (hereinafter referred to as “own vehicle”) equipped with the driving support device 1. It performs control and driving support control that assists the driver in driving the vehicle.
  • the driving assistance control includes traveling control such as automatic steering, automatic braking, constant speed traveling control, lane keeping control, and merge assistance control.
  • the driving support device 1 includes a surrounding environment sensor group 10, a navigation system 20, a vehicle sensor group 30, a controller 40, and an actuator group 50.
  • the surrounding environment sensor group 10 is a sensor group that detects the surrounding environment of the own vehicle, for example, an object around the own vehicle.
  • the ambient environment sensor group 10 may include a distance measuring device 11 and a camera 12.
  • the distance measuring device 11 and the camera 12 detect the surrounding environment of the own vehicle such as an object existing around the own vehicle, a relative position between the own vehicle and the object, and a distance between the own vehicle and the object.
  • the distance measuring device 11 may be, for example, a laser range finder (LRF) or a radar.
  • LRF laser range finder
  • the camera 12 may be, for example, a stereo camera.
  • the camera 12 may be a monocular camera, and the monocular camera may photograph the same object from a plurality of viewpoints and calculate the distance to the object. Further, the distance to the object may be calculated based on the ground contact position of the object detected from the image captured by the monocular camera.
  • the distance measuring device 11 and the camera 12 output ambient environment information, which is information on the detected ambient environment, to the controller 40.
  • the navigation system 20 recognizes the current position of the vehicle and road map information at the current position.
  • the navigation system 20 sets a traveling route to the destination input by the occupant, and guides the occupant along the traveling route. Further, the navigation system 20 outputs information about the set traveling route to the controller 40.
  • the controller 40 automatically drives the host vehicle so as to travel along the travel route set by the navigation system 20.
  • the navigation system 20 includes a navigation controller 21, a positioning device 22, a map database 23, a display unit 24, an operation unit 25, a voice output unit 26, and a communication unit 27.
  • the map database is referred to as “map DB” in FIG.
  • the navigation controller 21 is an electronic control unit that controls the information processing operation of the navigation system 20.
  • the navigation controller 21 includes a processor and its peripheral components.
  • the processor may be, for example, a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit).
  • the peripheral parts include a storage device and the like.
  • the storage device may include any one of a semiconductor storage device, a magnetic storage device, and an optical storage device.
  • the storage device may include a memory such as a register, a cache memory, a ROM (Read Only Memory) and a RAM (Random Access Memory) used as a main storage device.
  • the positioning device 22 measures the current position of the vehicle.
  • the positioning device 22 may be, for example, a GPS (Global Positioning System) receiver. Further, the positioning device 22 may measure the current position of the own vehicle based on a global positioning satellite system (GNSS) other than the GPS receiver. Further, the positioning device 22 may be an inertial navigation device.
  • GPS Global Positioning System
  • GNSS global positioning satellite system
  • the map database 23 stores road map data.
  • the road map data includes information about road line types, road shapes, slopes, number of lanes, legal speed (speed limit), road width, presence/absence of merge points, and the like.
  • Road line types include, for example, ordinary roads and expressways.
  • the display unit 24 outputs various visual information in the navigation system 20. For example, the display unit 24 may display a map screen around the vehicle or guidance of recommended routes. Further, the display unit 24 may display a message generated by the driving support control by the driving support device 1 (for example, a message prompting the driver to perform a steering operation or a deceleration operation).
  • the operation unit 25 receives the operation of the passenger in the navigation system 20.
  • the operation unit 25 may be, for example, a button, a dial, a slider, or the like, and may be a touch panel provided on the display unit 24.
  • the operation unit 25 may receive an input operation of a destination by an occupant and an operation of switching the display screen of the display unit 24.
  • the voice output unit 26 outputs various voice information in the navigation system 20.
  • the voice output unit 26 may output driving guidance based on the set traveling route or road guidance information based on road map data around the vehicle.
  • the voice output unit 26 may output a message (for example, a message that prompts the driver to perform a steering operation or a deceleration operation) generated by the driving support control by the driving support apparatus 1.
  • the communication unit 27 performs wireless communication with a communication device outside the own vehicle.
  • the communication method by the communication unit 27 may be, for example, wireless communication using a public mobile phone network, vehicle-to-vehicle communication, road-to-vehicle communication, or satellite communication.
  • the navigation system 20 may acquire road map data from an external device by the communication unit 27.
  • the vehicle sensor group 30 includes a sensor that detects a traveling state of the host vehicle and a sensor that detects a driving operation performed by the driver.
  • the sensors that detect the traveling state of the host vehicle include a vehicle speed sensor 31, an acceleration sensor 32, and a gyro sensor 33.
  • the sensors for detecting the driving operation include a steering angle sensor 34, an accelerator sensor 35, and a brake sensor 36.
  • the vehicle speed sensor 31 detects the wheel speed of the host vehicle and calculates the speed of the host vehicle based on the wheel speed.
  • the acceleration sensor 32 detects the acceleration in the front-rear direction, the acceleration in the vehicle width direction, and the acceleration in the vertical direction of the vehicle.
  • the gyro sensor 33 detects an angular velocity of a rotation angle of the host vehicle around three axes including a roll axis, a pitch axis and a yaw axis.
  • the steering angle sensor 34 detects a current steering angle that is a current rotation angle (steering operation amount) of a steering wheel that is a steering operator.
  • the accelerator sensor 35 detects the accelerator opening degree of the host vehicle. For example, the accelerator sensor 35 detects the depression amount of the accelerator pedal of the host vehicle as the accelerator opening.
  • the brake sensor 36 detects the amount of brake operation by the driver. For example, the brake sensor 36 detects the depression amount of the brake pedal of the host vehicle as the brake operation amount. Information on the speed, acceleration, angular velocity, steering angle, accelerator opening, and brake operation amount of the host vehicle detected by each sensor of the vehicle sensor group 30 is collectively referred to as “sensor information”.
  • the vehicle sensor group 30 outputs sensor information to the controller 40.
  • the controller 40 is an electronic control unit that performs driving support control of the host vehicle.
  • the controller 40 includes a processor 41 and peripheral components such as a storage device 42.
  • the processor 41 may be, for example, a CPU or MPU.
  • the storage device 42 may include any one of a semiconductor storage device, a magnetic storage device, and an optical storage device.
  • the storage device 42 may include a memory such as a register, a cache memory, a ROM and a RAM used as a main storage device.
  • controller 40 may be realized by a functional logic circuit set in a general-purpose semiconductor integrated circuit.
  • the controller 40 may have a programmable logic device (PLD: Programmable Logic Device) such as a field programmable gate array (FPGA: Field-Programmable Gate Array).
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the controller 40 sets a target travel trajectory for causing the host vehicle to travel the travel route set by the navigation system 20, based on the surrounding environment information input from the surrounding environment sensor group 10 and the sensor information input from the vehicle sensor group 30. To generate.
  • the controller 40 drives the actuator group 50 so that the host vehicle travels on the generated target travel path and automatically drives the host vehicle.
  • the actuator group 50 operates a steering wheel, an accelerator opening degree, and a brake device of the own vehicle according to a control signal from the controller 40 to generate a vehicle behavior of the own vehicle.
  • the actuator group 50 includes a steering actuator 52, an accelerator opening actuator 53, and a brake control actuator 54.
  • the steering actuator 52 controls the steering direction and the steering amount of the steering of the host vehicle.
  • the accelerator opening actuator 53 controls the accelerator opening of the host vehicle.
  • the brake control actuator 54 controls the braking operation of the brake device of the vehicle.
  • FIG. 2A It is assumed that the own vehicle 63 is turned (turned left) at an intersection 62 where the road 60 and the road 61 intersect, and the own vehicle enters from the road 60 to the road 61.
  • the road 60 on which the own vehicle 63 travels before turning is referred to as “own vehicle road”, and the road 61 intersecting with the own vehicle road 60 is referred to as “intersection road”.
  • the driving assistance device 1 sets a target traveling trajectory for traveling on the intersection road 61 along the traveling line 64 where the own vehicle 63 turns after turning at the intersection 62.
  • This traveling line 64 indicates the width of the intersection road 61, the presence/absence of a lane marking, and the lane in which the vehicle travels on the intersection road 61 when the own vehicle 63 does not avoid obstacles (such as a parked vehicle). It is set based on the lateral position, the lane width, the vehicle width of the own vehicle 63, the number of lanes, the traffic rules applied to the intersection road 61, and the like.
  • the driving assistance apparatus 1 may set the travel line 64 at approximately the center of the lane in which the own vehicle travels. For example, when there is no lane marking that separates the lane from the own lane and the oncoming lane, the driving assistance device 1 crosses on the left side of the intersection road 61 in the area where left-hand traffic is obligatory and in the area where right-hand traffic is obligatory.
  • the travel line 64 may be set on the right side of the road 61 so that there is a predetermined distance from the road shoulder.
  • a predetermined traveling line 64 that the vehicle 63 travels in a state where it does not avoid obstacles is referred to as a “normal traveling line”.
  • FIG. 2B shows a case where a parked vehicle 65 exists on the intersection 61.
  • the host vehicle 63 immediately after the host vehicle 63 turns at the intersection 62 and enters the intersection road 61, the host vehicle 63 is temporarily driven along the normal travel line 64, and then the parked vehicle 65 is avoided like the travel line 66. Then, it is conceivable to set a target traveling track that passes the sideways and returns to the normal traveling line 64.
  • the steering control for turning at the intersection 62 and the steering control for avoiding the parked vehicle 65 are not continuous but are separately performed. That is, the vehicle travels straight along the normal travel line 64 between the steering turning at the intersection 62 and the steering avoiding the parked vehicle 65. For this reason, after the steering control for turning at the intersection 62, the steering control for returning the steering angle once and the steering control for avoiding the parked vehicle 65 occur, so that the steering becomes frequent and the parked vehicle 65 cannot be smoothly avoided. ..
  • the driving assistance device 1 integrates the steering control for turning and the steering control for avoiding the parked vehicle 65. Specifically, the driving support device 1 passes the side of the parked vehicle 65 at the side of the parked vehicle 65 at a predetermined lateral position with a predetermined gap between the parked vehicle 65 and the own vehicle 63. At the same time, the turning end position when turning before the parked vehicle 65 or the turning start position when turning after passing the side of the parked vehicle 65 is a predetermined side in the road width direction in which the parked vehicle is parked. The target travel trajectory is generated so as to match the one-way position.
  • integrating steering control for turning and the steering control for avoiding the parked vehicle 65 may be simply referred to as “integrating steering control”. With reference to FIGS. 3A and 3B, a case will be described in which the parked vehicle 65 is on a road that has entered by turning.
  • the driving assistance apparatus 1 sets the own vehicle at the turning end position (turning end position) 67 on the intersection road 61.
  • the turning end position may be, for example, a position where the traveling direction of the host vehicle 63 is parallel to the intersection road 61, or a position where the yaw angle of the vehicle disappears.
  • the driving assistance apparatus 1 sets the own vehicle at the turning end position (turning end position) 69 on the intersection road 61.
  • 63 and the parked vehicle 65 are turned right at the intersection 62 so that a lateral gap IL is provided between the own vehicle 63 and the parked vehicle 65.
  • a target traveling track 70 that avoids the parked vehicle 65 is generated. That is, as shown in FIGS. 3A and 3B, when the vehicle turns before the parked vehicle 65, a predetermined distance IL is provided between the parked vehicle 65 and the own vehicle 63 on the side of the parked vehicle 65.
  • the target traveling track 68 passes through the side of the parked vehicle 65 at a predetermined lateral position, and the turning end positions 69 and 67 coincide with the predetermined lateral position in the road width direction in which the parked vehicle 65 is parked. , 70 are generated.
  • FIGS. 4A and 4B a case of turning after avoiding the parked vehicle 65 will be described with reference to FIGS. 4A and 4B.
  • the own vehicle 63 is turned (turned left) at an intersection 73 where the road 71 where the parked vehicle 65 is located and the road 72 intersect with each other to enter the road 72 from the road 71.
  • the road 71 on which the own vehicle 63 travels before turning is referred to as “own vehicle road”
  • the road 72 intersecting with the own vehicle road 71 is referred to as “intersection road”.
  • the driving support device 1 avoids the parked vehicle 65 by moving laterally so as to pass a side of the parked vehicle 65 at a lateral position with a lateral gap IL between the own vehicle 63 and the parked vehicle 65. Then, after that, a target traveling track 75 that turns left at the intersection 73 is generated so as to leave a lateral gap IL between the own vehicle 63 and the parked vehicle 65 at the turning start position 74 on the own road 71.
  • the turning start position may be, for example, a position at which the traveling direction of the host vehicle 63 starts to tilt with respect to the host vehicle road 71, or a position at which a yaw angle change starts to occur.
  • FIG. 4B shows a case where the host vehicle 63 is turned right to enter the intersection road 72 from the host vehicle road 71.
  • the driving support device 1 avoids the parked vehicle 65 by moving laterally so as to pass a side of the parked vehicle 65 at a lateral position with a lateral gap IL between the own vehicle 63 and the parked vehicle 65.
  • a target traveling track 77 that makes a right turn at the intersection 73 is generated so as to leave a lateral gap IL between the own vehicle 63 and the parked vehicle 65 at the turning start position 76 on the own vehicle road 71. That is, as shown in FIGS.
  • a predetermined distance IL is provided between the parked vehicle 65 and the own vehicle 63 on the side of the parked vehicle 65.
  • the vehicle travels past the side of the parked vehicle 65 at a predetermined lateral position, and the target traveling is such that the turning start positions 74 and 76 coincide with the predetermined lateral position in the road width direction in which the parked vehicle is parked.
  • the controller 40 includes the own vehicle road information acquisition unit 80, the own vehicle route information acquisition unit 81, the intersection road information acquisition unit 82, the other vehicle information acquisition unit 83, the vehicle signal acquisition unit 84, and the turning position determination unit 85.
  • the avoidance position determination unit 86, the integrated determination unit 87, the trajectory generation unit 88, and the traveling control unit 89 are provided.
  • Own vehicle road information acquisition unit 80 own vehicle route information acquisition unit 81, crossing road information acquisition unit 82, other vehicle information acquisition unit 83, vehicle signal acquisition unit 84, turning position determination unit 85, avoidance position determination unit 86, integrated determination
  • the functions of the section 87, the trajectory generation section 88, and the travel control section 89 may be realized by the processor 41 of the controller 40 executing a computer program stored in the storage device 42, for example.
  • the own vehicle road information acquisition unit 80 acquires own vehicle road information, which is information about the own vehicle roads 60 and 71, from the surrounding environment information output from the surrounding environment sensor group 10 and/or the road map data read from the map database. To do.
  • the vehicle road information may be information indicating the road width W0 of the vehicle roads 60 and 71, for example.
  • the own vehicle road information acquisition unit 80 outputs the own vehicle road information to the turning position determination unit 85, the avoidance position determination unit 86, and the trajectory generation unit 88.
  • the host vehicle route information acquisition unit 81 acquires host vehicle route information regarding the planned route of the host vehicle from the travel route set by the navigation system 20.
  • the vehicle route information may be information indicating whether the vehicle 63 is going straight, turning left, or turning right at the intersections 62 and 73, for example.
  • the vehicle route information acquisition unit 81 outputs the vehicle route information to the turning position determination unit 85 and the trajectory generation unit 88.
  • intersection road information acquisition unit 82 acquires intersection road information, which is information about the intersection roads 61 and 72, from the surrounding environment information output from the surrounding environment sensor group 10 and/or the road map data read from the map database 23.
  • the intersection road information acquisition unit 82 may acquire the intersection road information by vehicle-vehicle communication or road-vehicle communication by the communication unit 27.
  • the intersection road information is information indicating, for example, the positions (Xin, Yin) of the intersection roads 61 and 72, the road width, and the signal indication of the traffic signal provided at the intersection 73 between the vehicle road 71 and the intersection road 72. Good.
  • the positions (Xin, Yin) of the intersection roads 61 and 72 may be coordinates on the coordinate system used by the road map data of the map database 23, or may be relative coordinates based on the current position of the own vehicle 63. ..
  • the intersection road information is output to the turning position determination unit 85, the avoidance position determination unit 86, the integrated determination unit 87, and the trajectory generation unit 88.
  • the other vehicle information acquisition unit 83 acquires other vehicle information, which is information about other vehicles existing around the own vehicle 63, from the surrounding environment information output from the surrounding environment sensor group 10.
  • the other vehicle information acquisition unit 83 may acquire the intersection road information by the inter-vehicle communication or the road-vehicle communication by the communication unit 27.
  • the other vehicle is, for example, a parked vehicle 65, an oncoming vehicle approaching the own vehicle 63 on the vehicle road 71 or the intersection road 61 where the parked vehicle 65 exists, an intersection vehicle traveling on the intersection road 72 and approaching the intersection 73, and the like. May be
  • the other vehicle information may be information indicating the position (Xpn, Ypn) or vehicle width of the other vehicle.
  • the X coordinate Xpn of the position of the other vehicle may be, for example, a coordinate in the width direction (lateral direction) on the intersection road 61 or the vehicle road 71.
  • the Y coordinate Ypn of the position of the other vehicle may be a coordinate in the traveling direction (front-rear direction) with the position of the intersection 62 or 73 as a reference.
  • the position (Xpn, Ypn) of the other vehicle may be, for example, coordinates on the coordinate system used by the road map data of the map database 23, or may be relative coordinates based on the current position of the own vehicle 63.
  • the other vehicle information acquisition unit 83 outputs the other vehicle information to the avoidance position determination unit 86, the integrated determination unit 87, and the trajectory generation unit.
  • the vehicle signal acquisition unit 84 acquires a vehicle signal, which is information of the own vehicle 63, from the sensor information output from the vehicle sensor group 30.
  • the vehicle signal may be, for example, a signal indicating the speed of the host vehicle 63 or information indicating the steering angle.
  • the vehicle signal acquisition unit 70 outputs the vehicle signal to the track generation unit 71.
  • the turning position determination unit 85 determines the turning position of the vehicle 63. For example, the turning position determination unit 85 determines the turning position of the own vehicle 63 (of the own vehicle 63 based on the road width W0 of the own roads 60 and 71, the road width of the intersection roads 61 and 72, and the position (Xin, Yin) of the intersection road). The position where the turning is performed, that is, the position where the yaw angle change occurs in the host vehicle) may be determined. Please refer to FIG. 6A.
  • the turning position determination unit 85 ends when the turning end point 90 at the intersection 62 is on the normal travel line 64 (for example, when the steering control for turning at the intersection 62 and the steering control for avoiding a parked vehicle are not integrated). The point 90 may be determined as the turning position.
  • the turning position determination unit 85 may determine the position 91 of the entrance of the intersection 62 as the turning position. Reference is made to FIG. 6B.
  • the turning position determination unit 85 starts when the turning start point 92 at the intersection 73 is on the normal travel line 64 (for example, when the steering control for turning at the intersection 73 and the steering control for avoiding the parked vehicle are not integrated). Point 92 may be determined as the turning position.
  • the turning position determination unit 85 may determine the position 93 of the entrance of the intersection 73 as the turning position.
  • the driving support device 1 may integrate the steering control for turning at a place other than the intersection and the steering control for avoiding the parked vehicle.
  • the steering control for turning on a curved road and the steering control for avoiding a parked vehicle may be integrated.
  • steering control for turning when entering or exiting a facility for example, parking lot, commercial facility, public facility, etc.
  • steering control for avoiding the parked vehicle are integrated.
  • the turning position determination unit 85 may determine the position of the entrance or exit of the facility as the turning position.
  • the turning position determination unit 85 outputs the determined turning position to the integrated determination unit 87.
  • the avoidance position determination unit 86 determines the avoidance position at which the vehicle 63 avoids the parked vehicle 65. For example, the avoidance position determination unit 86 may determine the avoidance position based on the road width W0 of the vehicle road 71, the road width of the intersection road 61, the position (Xpn, Ypn) of another vehicle, and the vehicle width.
  • the avoidance position determination unit 86 may determine the rear end of the parked vehicle 65 as the avoidance position.
  • the avoidance position determination unit 86 determines, for example, the front end of the parked vehicle 65 as the avoidance position. Good.
  • the avoidance position determination unit 86 outputs the determined avoidance position to the integrated determination unit 87.
  • the integration determination unit 87 determines whether to integrate the steering control based on whether the distance D between the turning position and the avoidance position (that is, the distance from the turning position to the parked vehicle 65) satisfies a predetermined condition. to decide. Please refer to FIG. 7A.
  • the integrated determination unit 87 determines that the distance D between the turning position and the avoidance position is the predetermined distance Dt or less and that the vehicle is traveling on the intersection road 61.
  • the integrated determination unit 87 may determine whether or not an oncoming vehicle exists based on the other vehicle information output from the other vehicle information acquisition unit 83.
  • the predetermined distance Dt may be set based on the standard avoidance time T, which is the standard time required for the host vehicle 63 to avoid the parked vehicle and pass by the side.
  • the standard avoidance time T is, for example, as shown in a traveling line 66 shown in FIG. 2B, in order to pass the side of the parked vehicle 65 with a lateral gap between the parked vehicle 65 and the own vehicle 63, the normal traveling time is set. It may be the time from the start of the lateral movement from the line 64 to the side of the parked vehicle 65 and the return to the normal travel line 64.
  • the integrated determination unit 87 may set, for example, the product V ⁇ T of the standard avoidance time T and the speed V of the vehicle 63 as the predetermined distance Dt.
  • the integration determination unit 87 determines that the steering control is not integrated when the distance D between the turning position and the avoidance position is longer than the predetermined distance Dt. Further, for example, the integration determination unit 87 may determine that the steering control is not integrated when there is an oncoming vehicle 94 traveling on the intersection road 61 and approaching the own vehicle 63.
  • the integrated determination unit 87 determines that the distance D between the turn position and the avoidance position (that is, the distance from the turn position to the parked vehicle 65) is equal to or less than the predetermined distance Dt, When there is no oncoming vehicle that travels on the own vehicle road 71 and approaches the own vehicle 63, and there is no intersecting vehicle that travels on the intersection road 72 and approaches the intersection 73, it is determined that the steering control is integrated. Such an intersecting vehicle may make a turn at the intersection 73 and enter the vehicle road 71.
  • the integrated determination unit 87 determines to integrate the steering control when there is no crossing vehicle.
  • the integrated determination unit 87 may determine whether or not an intersecting vehicle exists based on the other vehicle information output from the other vehicle information acquisition unit 83. Further, when the traffic signal 95 at the intersection 73 indicates a progress signal to the own vehicle 63, the intersecting vehicle does not enter the own vehicle road 71. Therefore, for example, the integrated determination unit 87 may determine that there is no crossing vehicle when the traffic signal 95 indicates a traveling signal to the own vehicle 63. The integrated determination unit 87 may determine the signal indication of the traffic signal 95 at the intersection 73 based on the intersection road information output from the intersection road information acquisition unit 82, for example.
  • the integration determination unit 87 determines that the steering control is not integrated when the distance D between the turning position and the avoidance position is longer than the predetermined distance Dt. Further, for example, when there is an oncoming vehicle 96 traveling on the vehicle road 71 and approaching the vehicle 63, it may be determined that the steering control is not integrated. Further, for example, when there are intersecting vehicles 97 and 98 that are traveling on the intersection road 72 and approaching the intersection 73, it may be determined that the steering control is not integrated. The integrated determination unit 87 may determine that an intersecting vehicle exists when the traffic signal 95 does not show a traveling signal to the vehicle 63 (for example, when it shows a stop signal).
  • the integrated determination unit 87 determines that the distance D between the turning position and the avoidance position is the predetermined distance Dt or less, that there is no oncoming vehicle of the own vehicle 63, and that the own lane and the oncoming lane are on the own road 71. It may be determined that the steering control should be integrated when there is no lane marking.
  • the integrated determination unit 87 may determine whether there is a lane marking based on the surrounding environment information output from the surrounding environment sensor group 10 or the surrounding environment sensor group 10.
  • the integration determination unit 87 determines that the steering control is not integrated when the distance D between the turning position and the avoidance position is longer than the predetermined distance Dt. Further, for example, it may be determined that the steering control is not integrated when there is an intersecting vehicle 99 or an oncoming vehicle 100. Further, for example, the integration determination unit 87 may determine that the steering control is not integrated when the vehicle road 71 has a lane marking that separates the vehicle lane from the oncoming lane. Please refer to FIG. The integration determination unit 87 outputs the determination result of whether or not to integrate the steering control to the trajectory generation unit 88.
  • the trajectory generation unit 88 based on the surrounding environment information output from the surrounding environment sensor group 10, the road map data provided from the navigation system 20, the travel route set by the navigation system 20, and the vehicle signal, A target travel path for the own vehicle to travel is generated.
  • the trajectory generation unit 88 generates the target traveling trajectory in which the steering control for turning and the steering control for avoiding the parked vehicle 65 are integrated. Specifically, the trajectory generation unit 88 avoids the parked vehicle 65, passes the sideways, and sets a lateral gap between the own vehicle 63 and the parked vehicle 65 at the start position or the end position of the turn at the intersection.
  • a target running trajectory is generated to open.
  • the trajectory generation unit 88 avoids the parked vehicle 65 by making a left turn at the intersection 62 so as to leave a lateral gap between the own vehicle 63 and the parked vehicle 65 at the turning end position 67 on the intersection road 61.
  • a target traveling track 68 passing laterally is generated.
  • the trajectory generation unit 88 avoids the parked vehicle 65 and passes laterally so that the vehicle 63 and the parked vehicle 65 are laterally spaced at the start position 74 of the turn on the vehicle road 71. After that, a target traveling track 75 that turns left at the intersection 73 is generated.
  • FIG. There are a plurality of lanes 101 to 104 that can travel in the same direction as the traveling direction of the host vehicle (for example, multiple lanes on one side) on the vehicle road 60, and a plurality of lanes that can travel in the same direction as the traveling direction of the vehicle on the intersection road 61 ( For example, there are plural lanes on one side) 105 and 106.
  • the track generation unit 88 changes the lane 101 from the lane 101 far from the oncoming lane to the lane 102 near the oncoming lane among the lanes 101 and 102 that can enter the intersection 61, and then starts turning at the intersection 62.
  • the target running trajectory 107 to be performed may be generated.
  • the lane 102 close to the oncoming lane is the lane on the right side of the lane 101 far from the oncoming lane in the area where left traffic is obligatory, and the left lane of the lane 101 far from the oncoming lane in the area where right lane is obligatory. is there.
  • the own vehicle 63 which is traveling in the lane 101 and should enter the lane 105 with the parked vehicle 65, changes the lane in the intersection 62. It is possible to prevent the vehicle from avoiding the parked vehicle 65 and entering the passing lane 106.
  • the trajectory generation unit 88 When the integrated determination unit 87 determines that the steering control is not integrated, the trajectory generation unit 88 generates a target traveling trajectory in which steering control for turning and steering control for avoiding the parked vehicle 65 are separately performed. That is, the target running trajectory is generated in which the steering control for turning and the steering control for avoiding the parked vehicle 65 are not continuous.
  • the trajectory generation unit 88 makes the vehicle 63 travel along the normal traveling line 64 once immediately after the vehicle 63 turns at the intersection 62 and enters the intersection road 61, and then parks as the traveling line 66.
  • a target travel trajectory is generated which avoids the vehicle 65, passes the sideways, and returns to the normal travel line 64.
  • the trajectory generation unit 88 avoids the parked vehicle 65 like the traveling line 66, passes through the side, returns once to the normal traveling line 64, and then turns at the intersection 73 to enter the intersection road 72. Generate a trajectory.
  • the traveling control unit 89 drives the actuator group 50 so that the host vehicle 63 travels on the target traveling trajectory generated by the trajectory generating unit 88. As a result, the traveling control unit 89 executes steering control based on the target traveling trajectory. (motion) Next, an example of the operation of the driving support apparatus 1 will be described with reference to FIGS. 11A, 11B, 12A, and 12B. In the operation shown in FIGS. 11A and 11B, the steering control is integrated when the parked vehicle 65 is present on the road into which the vehicle is turning.
  • the vehicle road information acquisition unit 80 acquires vehicle road information.
  • the own vehicle road information may be information indicating the road width W0 of the own vehicle road, for example.
  • the intersection road information acquisition unit 82 acquires intersection road information.
  • the intersection road information may be, for example, information indicating the position (Xin, Yin) of the intersection road, the road width, and the indication of the traffic signal 95 of the traffic signal provided at the intersection between the vehicle road and the intersection road.
  • the own vehicle course information acquisition unit 81 acquires the own vehicle course information.
  • the own vehicle course information may be, for example, information indicating whether the own vehicle goes straight, makes a left turn, or makes a right turn at the intersection of the own road and the intersection road.
  • the other vehicle information acquisition unit 83 acquires other vehicle information.
  • the other vehicle information includes, for example, a parked vehicle 65, an oncoming vehicle approaching the own vehicle 63 on a vehicle road or an intersection road, an intersection vehicle traveling on the intersection road and approaching an intersection between the own vehicle road and the intersection road, and the like. Information.
  • step S5 the integrated determination unit 87 determines whether or not the host vehicle 63 turns at an intersection.
  • step S5:Y the process proceeds to step S9.
  • step S6 the trajectory generation unit 88 determines whether or not the parked vehicle 65 is ahead of the route of the own vehicle 63.
  • step S7 the process proceeds to step S7.
  • step S8 the process proceeds to step S8.
  • step S7 the trajectory generation unit 88 generates a target traveling trajectory that avoids the parked vehicle 65 and passes the sideways. After that, the process proceeds to step S15.
  • step S8 the trajectory generation unit 88 generates a target traveling trajectory for traveling the vehicle along the normal traveling line 64. After that, the process proceeds to step S15.
  • step S9 the integrated determination unit 87 determines whether or not the parked vehicle 65 is ahead of the intersection where the vehicle 63 is turning. That is, the integrated determination unit 87 determines whether or not there is the parked vehicle 65 on the road that turns and enters the intersection.
  • step S9: Y the process proceeds to step S11.
  • step S9: N the process proceeds to step S10.
  • step S10 the trajectory generation unit 88 generates a target traveling trajectory that causes the vehicle to travel along the normal traveling line 64 on the road that turns into the intersection and enters.
  • step S15 the integrated determination unit 87 determines whether the distance D between the turning position and the parked vehicle is less than or equal to the predetermined distance Dt.
  • step S11: Y the process proceeds to step S12.
  • step S11:N the process proceeds to step S14.
  • step S12 the integrated determination unit 87 determines whether or not there is an oncoming vehicle traveling on the road on which the parked vehicle 65 is located and approaching the host vehicle 63. If there is an oncoming vehicle (step S12: Y), the process proceeds to step S14. When there is no oncoming vehicle (step S12: N), the process proceeds to step S13.
  • step S13 the integration determination unit 87 determines to integrate steering control.
  • the trajectory generation unit 88 turns at the intersection so as to leave a lateral gap between the own vehicle 63 and the parked vehicle 65 at the end position of the turn at the intersection, avoids the parked vehicle, and passes through the side.
  • the traveling track 68 is generated. After that, the process proceeds to step S15.
  • step S14 the integration determination unit 87 determines that steering control is not integrated.
  • the trajectory generation unit 88 generates a target traveling trajectory in which steering control for turning and steering control for avoiding the parked vehicle 65 are separately performed. Specifically, the integrated determination unit 87 makes the vehicle 63 travel along the normal traveling line 64 once after turning at the intersection, and then avoids the parked vehicle 65 and passes by the side like the traveling line 66. Then, a target travel path for returning to the normal travel line 64 is generated. After that, the process proceeds to step S15. In step S15, the traveling control unit 89 executes steering control based on the target traveling trajectory. After that, the process ends.
  • step S21 to S28 is the same as the processing of steps S1 to S8 in FIG. 11A.
  • step S29 the process proceeds to step S29.
  • step S27 or S28 the process proceeds to step S36.
  • step S29 the integrated judgment unit 87 judges whether or not there is the parked vehicle 65 before the intersection where the own vehicle 63 turns. That is, the integrated determination unit 87 determines whether or not to turn after avoiding the parked vehicle 65.
  • step S29: Y the process proceeds to step S31.
  • step S29: N the process proceeds to step S30.
  • step S30 the trajectory generation unit 88 generates a target traveling trajectory for starting a turn at an intersection from the normal traveling line. After that, the process proceeds to step S36.
  • step S31 the integrated determination unit 87 determines whether the distance D between the turning position and the parked vehicle is less than or equal to the predetermined distance Dt. When the distance D is less than or equal to the predetermined distance Dt (step S31: Y), the process proceeds to step S32. When the distance D is longer than the predetermined distance Dt (step S31: N), the process proceeds to step S35.
  • step S32 the integrated determination unit 87 determines whether or not there is an oncoming vehicle approaching the own vehicle 63 by traveling on the road on which the parked vehicle 65 is located. If there is an oncoming vehicle (step S32: Y), the process proceeds to step S35. If there is no oncoming vehicle (step S32: N), the process proceeds to step S33. In step S33, the integrated determination unit 87 determines whether or not there is an intersecting vehicle that travels on a road that intersects with the road on which the parked vehicle 65 exists and approaches the intersection. If there is an intersecting vehicle (step S33: Y), the process proceeds to step S35. If there is no crossing vehicle (step S33: N), the process proceeds to step S34.
  • step S34 it is determined that the steering control is integrated.
  • the track generation unit 88 avoids the parked vehicle 65 and passes the vehicle sideways so as to make a lateral gap between the own vehicle 63 and the parked vehicle 65 at the start position of the turn at the intersection, and then turns at the intersection. Generate a target travel trajectory. After that, the process proceeds to step S36.
  • step S35 the integration determination unit 87 determines that steering control is not integrated. A target traveling track is generated in which steering control for turning and steering control for avoiding the parked vehicle 65 are separately performed.
  • the integrated determination unit 87 avoids the parked vehicle 65 like the traveling line 66, passes through the side, returns to the normal traveling line 64 once, and then generates a target navigation trajectory that turns at an intersection. After that, the process proceeds to step S36.
  • the traveling control unit 89 executes steering control based on the target traveling trajectory. After that, the process ends.
  • the controller 40 determines the presence/absence of the parked vehicle 65 in front of the route of the own vehicle 63, the process of determining whether or not the own vehicle 63 should make a turn, the turning position at which the turn is made, and the parked vehicle.
  • the vehicle passes through the side of the parked vehicle 65 at a predetermined lateral position with the IL open, and at the turning end position when turning at a position before the position of the parked vehicle 65 on the route, or the parked vehicle 65 on the route.
  • Trajectory generation processing to generate a target travel trajectory so that the position in the road width direction of the turning start position when turning after passing the side of the vehicle and steering control based on the target travel trajectory Perform the process to perform.
  • the controller 40 executes the above-described trajectory generation processing when the controller 40 does not detect an intersecting vehicle that approaches the intersection by traveling on a road intersecting the road where the parked vehicle 65 is located at the intersection where the vehicle turns. Such an intersecting vehicle may turn at the intersection and enter the road on which the parked vehicle 65 is located. For this reason, if the vehicle starts a turn with a lateral gap IL between the host vehicle 63 and the parked vehicle 65 (that is, the host vehicle 63 approaches the oncoming lane), the crossing vehicle may be prevented from traveling. .. By integrating the steering control when the crossing vehicle is not detected, it is possible to avoid hindering the traveling of the crossing vehicle.
  • the controller 40 executes the above-described trajectory generation processing when the traffic signal at the intersection at which the vehicle turns is showing a traveling signal to the vehicle 63. As a result, it is possible to prevent the vehicle from stopping at the intersection in the state where the lateral gap IL is provided between the host vehicle 63 and the parked vehicle 65 (that is, the host vehicle 63 approaches the oncoming lane).
  • the controller 40 makes a turn before the position of the parked vehicle 65 on the route, the distance from the turn position to the own vehicle 63 is shorter than the distance from the turn position to the parked vehicle 65. In this case, the above trajectory generation processing is executed. As a result, the steering control for turning and the steering control for avoiding the parked vehicle 65 are continuously performed, so that the number of times of steering is reduced and the parked vehicle 65 can be smoothly avoided.
  • the controller 40 changes the lane from a lane farther from the oncoming lane to a lane closer to the oncoming lane, and then targets a traveling orbit for turning. Generate as a running track. As a result, it is possible to prevent lane change during turning at an intersection due to the integration of steering control.
  • the controller 40 determines, as the distance D between the turning position and the parked vehicle 65, the distance between the entrance and the parked vehicle at the intersection of the road where the parked vehicle 65 intersects the road or the parked vehicle 65. Determine the distance between the entrance or exit of a facility along a road and the parked vehicle. This makes it possible to determine whether or not to integrate steering control based on the distance D between the turning position and the parked vehicle 65.
  • the predetermined condition is that the distance D between the turning position and the parked vehicle 65 is equal to or less than the predetermined distance Dt.
  • the predetermined distance Dt is set based on the standard time T required for the own vehicle 63 to avoid the parked vehicle 65 and pass the sideways. As described above, since it is determined whether or not the steering control is integrated based on the standard time required to avoid the parked vehicle 65, the parked vehicle 65 can be avoided without a sense of discomfort.
  • the controller 40 executes the above trajectory generation processing when an oncoming vehicle traveling on a road on which the parked vehicle 65 is located is not approaching the own vehicle. As a result, when the oncoming vehicle is approaching, it is possible to prevent the own vehicle 63 from traveling while approaching the oncoming lane with a lateral gap IL between the own vehicle 63 and the parked vehicle 65.
  • the above trajectory generation processing is executed when there is no lane marking that separates the own lane and the oncoming lane on the road where the parked vehicle is located.
  • the driver's steering can be realized without integrating the steering control, so that the parked vehicle 65 can be avoided without a sense of discomfort.
  • 1... Driving support device 10... Surrounding environment sensor group, 11... Distance measuring device, 12... Camera, 20... Navigation system, 21... Navigation controller, 22... Positioning device, 23... Map database, 24... Display part, 25... Operating unit, 26... Voice output unit, 27... Communication unit, 30... Vehicle sensor group, 31... Vehicle speed sensor, 32... Acceleration sensor, 33... Gyro sensor, 34... Steering angle sensor, 35... Accelerator sensor, 36... Brake sensor , 40... Controller, 41... Processor, 42... Storage device, 50... Actuator group, 52... Steering actuator, 53... Accelerator opening actuator, 54... Brake control actuator, 80... Own vehicle road information acquisition unit, 81... Own vehicle Route information acquisition unit, 82... Crossing road information acquisition unit, 83... Other vehicle information acquisition unit, 84... Vehicle signal acquisition unit, 85... Turning position determination unit, 86... Avoidance position determination unit, 87... Integrated determination unit, 88... Trajectory generator, 89... Travel controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

コントローラ(40)は、自車両(63)の経路前方の駐車車両(65)の有無を判断する処理(S9,S29)と、自車両の旋回を行うか否かを判断する処理(S5,S25)と、旋回が行われる旋回位置と駐車車両との間の距離(D)が所定条件を満たすか否かを判断する処理(S11,S31)と、旋回位置と駐車車両との間の距離(D)が所定条件を満たす場合に、駐車車両の側方にいて所定の間隔をあけた所定の側方位置で駐車車両の側方を通過するとともに、経路上において駐車車両の位置よりも手前の位置で旋回する場合の旋回終了位置もしくは経路上において駐車車両の側方を通過した後に旋回する場合の旋回開始位置が、駐車車両が駐車している道路幅方向において所定の側方位置と一致するように目標走行軌道(68)を生成する軌道生成処理(S13、S34)と、目標走行軌道に基づいて走行制御を行う処理(S15,S36)と、を実行する。

Description

運転支援方法及び運転支援装置
 本発明は、運転支援方法及び運転支援装置に関する。
 駐車車両を回避して通過する運転を支援する技術として、特許文献1に記載の運転支援装置が知られている。
 特許文献1に記載の運転支援装置は、熟練ドライバによる運転行動から作成したマップを利用して、駐車車両等の側方を通過する場合の目標走行状態(通過速度、側方間隔)を設定し、自車両が目標走行状態で側方を通過するように運転支援を行う。
特開2013−109705号公報
 駐車車両の前後の旋回(例えば交差点や施設入り口での右左折等)を行う運転支援において、旋回のための操舵制御と駐車車両を回避するための操舵制御とが別々に行われると、操舵が頻繁になり駐車車両をスムーズに回避できないことがある。
 本発明は、駐車車両の前後で旋回を行う運転支援において、スムーズに駐車車両を回避して通過することを目的とする。
 本発明の一態様に係る運転支援方法では、自車両の経路前方の駐車車両の有無を判断する処理と、自車両の旋回を行うか否かを判断する処理と、旋回が行われる旋回位置と駐車車両との間の距離が所定条件を満たすか否かを判断する処理と、旋回位置と駐車車両との間の距離が所定条件を満たす場合に、前記駐車車両の側方において所定の間隔をあけた所定の側方位置で駐車車両の側方を通過するとともに、前記経路上において前記駐車車両の位置よりも手前の位置で旋回する場合の旋回終了位置、もしくは前記経路上において前記駐車車両の側方を通過した後に旋回する場合の旋回開始位置を、前記駐車車両が駐車している道路幅方向において前記所定の側方位置と一致するように目標走行軌道を生成する軌道生成処理と、目標走行軌道に基づいて走行制御を行う処理と、をコントローラが実行する。
 本発明の一態様によれば、駐車車両の前後で旋回を行う運転支援において、スムーズに駐車車両を回避して通過できる。
 本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
実施形態の運転支援装置の概略構成例を示す図である。 交差点で旋回する際の運転支援の一例を示す図である。 交差点で旋回して進入した後に駐車車両が回避して通過する際の運転支援の一例を示す図である。 交差点で左折する操舵制御と左折後に駐車車両を回避して通過する操舵制御とを統合する運転支援の一例を示す図である。 交差点で右折する操舵制御と右折後に駐車車両を回避して通過する操舵制御とを統合する運転支援の一例を示す図である。 駐車車両を回避して通過する操舵制御と駐車車両を回避した後に交差点で左折する操舵制御とを統合する運転支援の一例を示す図である。 駐車車両を回避して通過する操舵制御と駐車車両を回避した後に交差点で右折する操舵制御とを統合する運転支援の一例を示す図である。 図1のコントローラの機能構成の一例を示すブロック図である。 旋回位置の決定方法の第1例を示す図である。 旋回位置の決定方法の第2例を示す図である。 旋回する操舵制御と旋回後に駐車車両を回避する操舵制御とを統合する場合の一例を説明する図である。 旋回する操舵制御と旋回後に駐車車両を回避する操舵制御とを別々に行う場合の一例を説明する図である。 駐車車両を回避する操舵制御と回避後に旋回する操舵制御とを統合する場合の一例を説明する図である。 駐車車両を回避する操舵制御と回避後に旋回する操舵制御とを別々に行う場合の一例を説明する図である。 駐車車両を回避する操舵制御と回避後に旋回する操舵制御とを統合する場合の他の一例を説明する図である。 駐車車両を回避する操舵制御と回避後に旋回する操舵制御とを別々に行う場合の他の一例を説明する図である。 複数車線を有する道路から駐車車両がある道路へ自車両が旋回する操舵制御と、旋回後に駐車車両を回避する操舵制御とを統合する運転支援の一例を示す図である。 実施形態の運転支援方法の第1例のフローチャート(その1)である。 実施形態の運転支援方法の第1例のフローチャート(その2)である。 実施形態の運転支援方法の第2例のフローチャート(その1)である。 実施形態の運転支援方法の第2例のフローチャート(その2)である。
 以下、本発明の実施形態について、図面を参照しつつ説明する。
 (構成)
 図1を参照する。運転支援装置1は、運転支援装置1を搭載する車両(以下、「自車両」と表記する)の周囲の走行環境に基づいて、運転者が関与せずに自車両を自動で運転する自動運転制御や、運転者による自車両の運転を支援する運転支援制御を行う。
 運転支援制御には、自動操舵、自動ブレーキ、定速走行制御、車線維持制御、合流支援制御などの走行制御を含む。
 運転支援装置1は、周囲環境センサ群10と、ナビゲーションシステム20と、車両センサ群30と、コントローラ40と、アクチュエータ群50を備える。
 周囲環境センサ群10は、自車両の周囲環境、例えば自車両の周囲の物体を検出するセンサ群である。周囲環境センサ群10は、測距装置11とカメラ12を含んでよい。測距装置11とカメラ12は、自車両周囲に存在する物体、自車両と物体との相対位置、自車両と物体との距離等の自車両の周囲環境を検出する。
 測距装置11は、例えば、レーザレンジファインダ(LRF:Laser Range−Finder)やレーダであってよい。
 カメラ12は、例えばステレオカメラであってよい。カメラ12は、単眼カメラであってもよく、単眼カメラにより複数の視点で同一の物体を撮影して、物体までの距離を計算してもよい。また、単眼カメラによる撮像画像から検出された物体の接地位置に基づいて、物体までの距離を計算してもよい。
 測距装置11とカメラ12は、検出した周囲環境の情報である周囲環境情報をコントローラ40へ出力する。
 ナビゲーションシステム20は、自車両の現在位置と、その現在位置における道路地図情報を認識する。ナビゲーションシステム20は、乗員が入力した目的地までの走行経路を設定し、この走行経路に従って乗員に経路案内を行う。さらにナビゲーションシステム20は、設定した走行経路の情報をコントローラ40へ出力する。
 自車両の走行状態が自動運転モードである場合、コントローラ40は、ナビゲーションシステム20が設定した走行経路に沿って走行するように自車両を自動で運転する。
 ナビゲーションシステム20は、ナビコントローラ21と、測位装置22と、地図データベース23と、表示部24と、操作部25と、音声出力部26と、通信部27を備える。なお、図1において地図データベースを「地図DB」と表記する。
 ナビコントローラ21は、ナビゲーションシステム20の情報処理動作を制御する電子制御ユニットである。ナビコントローラ21は、プロセッサとその周辺部品とを含む。プロセッサは、例えばCPU(Central Processing Unit)、やMPU(Micro−Processing Unit)であってよい。
 周辺部品には記憶装置等が含まれる。記憶装置は、半導体記憶装置、磁気記憶装置及び光学記憶装置のいずれかを備えてよい。記憶装置は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
 測位装置22は、自車両の現在位置を測定する。測位装置22は、例えばGPS(Global Positioning System)受信機であってよい。また測位装置22は、GPS受信機以外の他の全地球型測位システム(GNSS:Global Navigation Satellite System)に基づいて自車両の現在位置を測定してもよい。また測位装置22は、慣性航法装置であってもよい。
 地図データベース23は、道路地図データを記憶している。道路地図データは、道路線種、道路形状、勾配、車線数、法定速度(制限速度)、道幅、合流地点の有無等に関する情報を含む。道路線種には、例えば一般道路と高速道路が含まれる。
 表示部24は、ナビゲーションシステム20において様々な視覚的情報を出力する。例えば、表示部24には、自車両周囲の地図画面や推奨経路の案内を表示してよい。また、表示部24には、運転支援装置1による運転支援制御で生成されるメッセージ(例えば、運転者に操舵操作や減速操作を促すメッセージ)を表示してよい。
 操作部25は、ナビゲーションシステム20において乗員の操作を受け付ける。操作部25は、例えばボタン、ダイヤル、スライダなどであってよく、表示部24に設けられたタッチパネルであってもよい。例えば操作部25は、乗員による目的地の入力操作や、表示部24の表示画面の切り替え操作を受け付けてよい。
 音声出力部26は、ナビゲーションシステム20において様々な音声情報を出力する。音声出力部26は、設定した走行経路に基づく運転案内や、自車両周囲の道路地図データに基づく道路案内情報を出力してよい。また、音声出力部26は、運転支援装置1による運転支援制御で生成されるメッセージ(例えば、運転者に操舵操作や減速操作を促すメッセージ)を出力してよい。
 通信部27は、自車両の外部の通信装置との間で無線通信を行う。通信部27による通信方式は、例えば公衆携帯電話網による無線通信や、車車間通信、路車間通信、又は衛星通信であってよい。ナビゲーションシステム20は、通信部27によって外部装置から道路地図データを取得してもよい。
 車両センサ群30は、自車両の走行状態を検出するセンサと、運転者により行われた運転操作を検出するセンサとを含む。
 自車両の走行状態を検出するセンサには、車速センサ31と、加速度センサ32と、ジャイロセンサ33が含まれる。
 運転操作を検出するセンサには、操舵角センサ34と、アクセルセンサ35と、ブレーキセンサ36が含まれる。
 車速センサ31は、自車両の車輪速を検出し、車輪速に基づいて自車両の速度を算出する。
 加速度センサ32は、自車両の前後方向の加速度、車幅方向の加速度及び上下方向の加速度を検出する。
 ジャイロセンサ33は、ロール軸、ピッチ軸及びヨー軸を含む3軸回りの自車両の回転角度の角速度を検出する。
 操舵角センサ34は、操舵操作子であるステアリングホイールの現在の回転角度(操舵操作量)である現在操舵角を検出する。
 アクセルセンサ35は、自車両のアクセル開度を検出する。例えばアクセルセンサ35は、自車両のアクセルペダルの踏み込み量をアクセル開度として検出する。
 ブレーキセンサ36は、運転者によるブレーキ操作量を検出する。例えばブレーキセンサ36は、自車両のブレーキペダルの踏み込み量をブレーキ操作量として検出する。
 車両センサ群30の各センサが検出した自車両の速度、加速度、角速度、操舵角、アクセル開度、ブレーキ操作量の情報を総称して「センサ情報」と表記する。車両センサ群30はセンサ情報をコントローラ40へ出力する。
 コントローラ40は、自車両の運転支援制御を行う電子制御ユニットである。コントローラ40は、プロセッサ41と、記憶装置42等の周辺部品とを含む。プロセッサ41は、例えばCPUやMPUであってよい。
 記憶装置42は、半導体記憶装置、磁気記憶装置及び光学記憶装置のいずれかを備えてよい。記憶装置42は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM及びRAM等のメモリを含んでよい。
 なお、汎用の半導体集積回路中に設定される機能的な論理回路でコントローラ40を実現してもよい。例えば、コントローラ40はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field−Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
 コントローラ40は、周囲環境センサ群10から入力した周囲環境情報と、車両センサ群30から入力したセンサ情報とに基づいて、ナビゲーションシステム20により設定された走行経路を自車両に走行させる目標走行軌道を生成する。
 コントローラ40は、生成した目標走行軌道を自車両が走行するようにアクチュエータ群50を駆動して自動的に自車両を走行させる。
 アクチュエータ群50は、コントローラ40からの制御信号に応じて、自車両のステアリングホイール、アクセル開度及びブレーキ装置を操作して、自車両の車両挙動を発生させる。アクチュエータ群50は、ステアリングアクチュエータ52と、アクセル開度アクチュエータ53と、ブレーキ制御アクチュエータ54を備える。
 ステアリングアクチュエータ52は、自車両のステアリングの操舵方向及び操舵量を制御する。
 アクセル開度アクチュエータ53は、自車両のアクセル開度を制御する。
 ブレーキ制御アクチュエータ54は、自車両のブレーキ装置の制動動作を制御する。
 次に、交差点などで自車両を旋回させる場合に運転支援装置1が行う運転支援について説明する。
 図2Aを参照する。道路60と道路61とが交差する交差点62で自車両63を旋回(左折)させ、道路60から道路61へと自車両を進入させる場合を想定する。旋回前に自車両63が走行する道路60を「自車道路」と表記し、自車道路60と交差する道路61を「交差道路」と表記する。
 この場合、運転支援装置1は、交差点62で旋回した後に自車両63がある走行ライン64に沿って交差道路61を走行する目標走行軌道を設定する。
 この走行ライン64は、自車両63が障害物(例えば駐車車両など)を回避していない場合に、交差道路61の道幅や、車線区分線の有無、交差道路61で自車両が走行する車線の横位置、車線幅、自車両63の車幅、車線数、交差道路61に適用される交通規則等に基づいて設定される。
 例えば、自車線と対向車線を分ける車線区分線がある場合には、運転支援装置1は、自車両が走行する車線のほぼ中央に走行ライン64を設定してよい。
 例えば、自車線と対向車線を分ける車線区分線がない場合には、運転支援装置1は、左側通行が義務づけられているエリアでは交差道路61の左側に、右側通行が義務づけられているエリアでは交差道路61の右側に、路肩との間に所定間隔があくように走行ライン64を設定してよい。
 自車両63が障害物を回避していない状態で走行する所定の走行ライン64を「通常走行ライン」と表記する。
 図2Bは、交差道路61に駐車車両65が存在している場合を示す。この場合、交差点62で旋回して自車両63が交差道路61に進入した直後に、いったん通常走行ライン64に沿って自車両63を走行させてから、走行ライン66のように駐車車両65を回避して側方を通過して通常走行ライン64へ戻る目標走行軌道を設定することが考えられる。
 この場合、交差点62で旋回する操舵制御と駐車車両65を回避する操舵制御とが連続しておらず別々に行われている。すなわち、交差点62で旋回する操舵と駐車車両65を回避する操舵との間に、通常走行ライン64に沿って直進している。
 このために、交差点62で旋回する操舵制御の後に、いったん操舵角を戻す操舵制御と、駐車車両65を回避する操舵制御とが発生するため、操舵が頻繁になり駐車車両65をスムーズに回避できない。
 そこで、運転支援装置1は、旋回する操舵制御と駐車車両65を回避する操舵制御とを統合する。具体的には、運転支援装置1は駐車車両65の側方において、駐車車両65と自車両63との間に所定の間隔をあけた所定の側方位置で駐車車両65の側方を通過するとともに、駐車車両65よりも手前で旋回する場合の旋回終了位置もしくは駐車車両65の側方を通過した後に旋回する場合の旋回開始位置が、駐車車両が駐車している道路幅方向において所定の側方位置と一致するように、目標走行軌道を生成する。
 以下、旋回する操舵制御と駐車車両65を回避する操舵制御とを統合することを、単に「操舵制御を統合する」と表記することがある。
 図3A及び図3Bを参照して、旋回して進入した道路に駐車車両65がある場合について説明する。
 図3Aに示すように、交差点62で左折して駐車車両65がある交差道路61へ進入する場合、運転支援装置1は、交差道路61での旋回の終了位置(旋回終了位置)67で自車両63と駐車車両65との間に横方向間隔ILをあけるように交差点62で左折して、自車両63と駐車車両65との間に横方向間隔ILをあけた横位置で駐車車両65の側方を通過し、駐車車両65を回避する目標走行軌道68を生成する。ここで、旋回の終了位置とは、例えば自車両63の進行方向が交差道路61と平行になる位置、あるいは車両のヨー角変化が無くなる位置であってよい。
 図3Bに示すように、交差点62で右折して駐車車両65がある交差道路61へ進入する場合、運転支援装置1は、交差道路61での旋回の終了位置(旋回終了位置)69で自車両63と駐車車両65との間に横方向間隔ILをあけるように交差点62で右折して、自車両63と駐車車両65との間に横方向間隔ILをあけた横位置で駐車車両65の側方を通過し、駐車車両65を回避する目標走行軌道70を生成する。すなわち、図3A及び図3Bに示すように駐車車両65よりも手前で旋回する場合には、駐車車両65の側方において、駐車車両65と自車両63との間に所定の間隔ILをあけた所定の側方位置で駐車車両65の側方を通過するとともに、旋回終了位置69、67が駐車車両65が駐車している道路幅方向において所定の側方位置と一致するように目標走行軌道68、70を生成する。
 一方、駐車車両65を回避してから旋回する場合について、図4A及び図4Bを参照して説明する。
 図4Aに示すように、駐車車両65がある道路71と道路72とが交差する交差点73で自車両63を旋回(左折)させ、道路71から道路72へと進入させる場合を想定する。旋回前に自車両63が走行する道路71を「自車道路」と表記し、自車道路71と交差する道路72を「交差道路」と表記する。
 運転支援装置1は、自車両63と駐車車両65との間に横方向間隔ILをあけた横位置で駐車車両65の側方を通過するように横方向に移動して駐車車両65を回避し、その後、自車道路71での旋回の開始位置74で自車両63と駐車車両65との間に横方向間隔ILをあけるように交差点73で左折する目標走行軌道75を生成する。ここで、旋回の開始位置とは、例えば自車道路71に対して自車両63の進行方向が傾き始める位置、あるいはヨー角変化が発生し始める位置であってよい。
 図4Bは、自車両63を右折させて自車道路71から交差道路72へ進入させる場合を示す。
 運転支援装置1は、自車両63と駐車車両65との間に横方向間隔ILをあけた横位置で駐車車両65の側方を通過するように横方向に移動して駐車車両65を回避し、その後、自車道路71での旋回の開始位置76で自車両63と駐車車両65との間に横方向間隔ILをあけるように交差点73で右折する目標走行軌道77を生成する。すなわち、図4A及び図4Bに示すように駐車車両65の側方を通過した後に旋回する場合には、駐車車両65の側方において、駐車車両65と自車両63との間に所定の間隔ILをあけた所定の側方位置で駐車車両65の側方を通過するとともに、旋回開始位置74、76が駐車車両が駐車している道路幅方向において所定の側方位置と一致するように目標走行軌道75、77を生成する。
 以上のように操舵制御を統合することにより、操舵回数を低減して駐車車両65をスムーズに回避することができる。
 次に、図5を参照してコントローラ40の機能構成の一例を説明する。コントローラ40は、自車道路情報取得部80と、自車進路情報取得部81と、交差道路情報取得部82と、他車両情報取得部83と、車両信号取得部84と、旋回位置判断部85と、回避位置判断部86と、統合判断部87と、軌道生成部88と、走行制御部89を備える。
 自車道路情報取得部80、自車進路情報取得部81、交差道路情報取得部82、他車両情報取得部83、車両信号取得部84、旋回位置判断部85、回避位置判断部86、統合判断部87、軌道生成部88、走行制御部89の機能は、例えばコントローラ40のプロセッサ41が、記憶装置42に格納されたコンピュータプログラムを実行することによって実現されてよい。
 自車道路情報取得部80は、周囲環境センサ群10から出力される周囲環境情報及び/又は地図データベースから読み出される道路地図データから、自車道路60及び71に関する情報である自車道路情報を取得する。自車道路情報は、例えば自車道路60及び71の道幅W0を示す情報であってよい。
 自車道路情報取得部80は、自車道路情報を旋回位置判断部85、回避位置判断部86、及び軌道生成部88へ出力する。
 自車進路情報取得部81は、ナビゲーションシステム20が設定した走行経路から、自車両の予定進路に関する自車進路情報を取得する。自車進路情報は、例えば交差点62及び73で自車両63が直進するか、左折するか、右折するかを示す情報であってよい。
 自車進路情報取得部81は、自車進路情報を旋回位置判断部85及び軌道生成部88へ出力する。
 交差道路情報取得部82は、周囲環境センサ群10から出力される周囲環境情報及び/又は地図データベース23から読み出される道路地図データから、交差道路61及び72に関する情報である交差道路情報を取得する。交差道路情報取得部82は、通信部27による車車間通信や路車間通信により交差道路情報を取得してよい。
 交差道路情報は、例えば交差道路61及び72の位置(Xin,Yin)、道幅、及び自車道路71と交差道路72との交差点73に設けられた交通信号機の信号現示を示す情報であってよい。交差道路61及び72の位置(Xin,Yin)は、例えば地図データベース23の道路地図データが使用する座標系上の座標であってもよく、自車両63の現在位置を基準とする相対座標でもよい。
 交差道路情報は、交差道路情報を旋回位置判断部85、回避位置判断部86、統合判断部87、及び軌道生成部88へ出力する。
 他車両情報取得部83は、周囲環境センサ群10から出力される周囲環境情報から、自車両63の周辺に存在する他車両に関する情報である他車両情報を取得する。他車両情報取得部83は、通信部27による車車間通信や路車間通信により交差道路情報を取得してよい。
 他車両は、例えば駐車車両65や、駐車車両65が存在する自車道路71や交差道路61で自車両63へ接近する対向車両や、交差道路72を走行して交差点73へ接近する交差車両等であってよい。
 他車両情報は、他車両の位置(Xpn,Ypn)や車幅を示す情報であってよい。他車両の位置のX座標Xpnは、例えば交差道路61や自車道路71における幅員方向(横方向)の座標であってよい。他車両の位置のY座標Ypnは、交差点62や73の位置を基準とする進路方向(前後方向)の座標であってよい。
 また、他車両の位置(Xpn,Ypn)は、例えば地図データベース23の道路地図データが使用する座標系上の座標であってもよく、自車両63の現在位置を基準とする相対座標でもよい。
 他車両情報取得部83は、他車両情報を回避位置判断部86、統合判断部87、及び軌道生成部へ出力する。
 車両信号取得部84は、車両センサ群30から出力されるセンサ情報から、自車両63の情報である車両信号を取得する。車両信号は、例えば自車両63の速度を示す信号や操舵角を示す情報であってよい。
 車両信号取得部70は、車両信号を軌道生成部71へ出力する。
 旋回位置判断部85は、自車両63の旋回位置を判断する。例えば、旋回位置判断部85は、自車道路60及び71の道幅W0、交差道路61及び72の道幅、交差道路の位置(Xin,Yin)に基づいて自車両63の旋回位置(自車両63の旋回が行われる位置。すなわち、自車両にヨー角変化が発生する位置)を判断してよい。
 図6Aを参照する。例えば旋回位置判断部85は、交差点62における旋回の終了地点90が通常走行ライン64にある場合(例えば、交差点62で旋回する操舵制御と駐車車両を回避する操舵制御とを統合しない場合)の終了地点90を、旋回位置として決定してよい。
 また例えば旋回位置判断部85は、交差点62の入口の位置91を旋回位置として決定してもよい。
 図6Bを参照する。例えば旋回位置判断部85は、交差点73における旋回の開始地点92が通常走行ライン64にある場合(例えば、交差点73で旋回する操舵制御と駐車車両を回避する操舵制御とを統合しない場合)の開始地点92を、旋回位置として決定してよい。
 また例えば旋回位置判断部85は、交差点73の入口の位置93を旋回位置として決定してもよい。
 なお、運転支援装置1は、交差点以外の場所における旋回のための操舵制御と、駐車車両を回避する操舵制御とを統合してもよい。例えば、カーブ路で旋回するための操舵制御と、駐車車両を回避する操舵制御とを統合してもよい。
 また、駐車車両がある道路沿いに存在する施設(例えば、駐車場、商業施設、公共施設など)へ進入したり進出する際の旋回の操舵制御と駐車車両を回避する操舵制御とを統合してもよい。この場合、旋回位置判断部85は施設の入口若しくは出口の位置を旋回位置として決定してもよい。
 旋回位置判断部85は、決定した旋回位置を統合判断部87へ出力する。
 図5を参照する。回避位置判断部86は、自車両63が駐車車両65を回避する回避位置を判断する。
 例えば回避位置判断部86は、自車道路71の道幅W0、交差道路61の道幅、他車両の位置(Xpn,Ypn)及び車幅に基づいて、回避位置を判断してよい。
 また例えば、旋回して進入した道路に駐車車両65がある場合(図3A、図3B)、回避位置判断部86は、駐車車両65の後端を回避位置と決定してもよい。
 駐車車両65を回避(駐車車両65の側方を通過)してから旋回する場合(図4A、図4B)、回避位置判断部86は、例えば駐車車両65の前端を回避位置と決定してもよい。
 回避位置判断部86は、決定した回避位置を統合判断部87へ出力する。
 統合判断部87は、旋回位置と回避位置との間の距離D(すなわち旋回位置から駐車車両65までの距離)が所定条件を満たすか否かに基づいて、操舵制御を統合するか否かを判断する。
 図7Aを参照する。旋回して進入した道路に駐車車両65がある場合、例えば統合判断部87は、旋回位置と回避位置との間の距離Dが所定距離Dt以下であり、且つ交差道路61を走行して自車両63へ接近する対向車両が存在しない場合に、操舵制御を統合すると判断する。
 統合判断部87は、他車両情報取得部83から出力される他車両情報に基づいて対向車両が存在するか否かを判断してよい。
 また、所定距離Dtは、自車両63が駐車車両を回避して側方を通過するのに要する標準的な時間である標準回避時間Tに基づいて設定してよい。
 標準回避時間Tは、例えば、図2Bに示す走行ライン66のように、駐車車両65と自車両63との間に横方向間隔をあけて駐車車両65の側方を通過するために、通常走行ライン64から横方向移動を開始してから、駐車車両65の側方を通過して通常走行ライン64に戻るまでの時間であってよい。
 統合判断部87は、例えば、標準回避時間Tと自車両63の速度Vとの積V×Tを所定距離Dtとしてよい。
 図7Bを参照する。例えば統合判断部87は、旋回位置と回避位置との間の距離Dが所定距離Dtより長い場合に操舵制御を統合しないと判断する。また例えば統合判断部87は、交差道路61を走行して自車両63へ接近する対向車両94が存在する場合に、操舵制御を統合しないと判断してよい。
 図8Aを参照する。駐車車両65を回避してから旋回する場合、例えば統合判断部87は、旋回位置と回避位置との間の距離D(すなわち旋回位置から駐車車両65までの距離)が所定距離Dt以下であり、自車道路71を走行して自車両63へ接近する対向車両が存在せず、且つ交差道路72を走行して交差点73へ接近する交差車両が存在しない場合に、操舵制御を統合すると判断する。
 このような交差車両は、交差点73で旋回して自車道路71へ進入してくる可能性がある。したがって、操舵制御の統合により交差点73の近くで自車両63が対向車線に近付いていると、自車道路71へ進入してくる交差車両の走行を妨げるおそれがある。このため、統合判断部87は、交差車両が存在しない場合に操舵制御を統合すると判断する。
 例えば、統合判断部87は、他車両情報取得部83から出力される他車両情報に基づいて交差車両が存在するか否かを判断してよい。
 また、交差点73の交通信号機95が自車両63へ進行信号を現示している場合には交差車両は自車道路71へ進入してこない。したがって、例えば統合判断部87は、交通信号機95が自車両63へ進行信号を現示している場合に、交差車両が存在しないと判断してもよい。統合判断部87は、例えば交差道路情報取得部82から出力される交差道路情報に基づいて、交差点73の交通信号機95の信号現示を判断してよい。
 図8Bを参照する。例えば統合判断部87は、旋回位置と回避位置との間の距離Dが所定距離Dtより長い場合に操舵制御を統合しないと判断する。また例えば、自車道路71を走行して自車両63へ接近する対向車両96が存在する場合に操舵制御を統合しないと判断してよい。また例えば、交差道路72を走行して交差点73へ接近する交差車両97、98が存在する場合に操舵制御を統合しないと判断してよい。
 統合判断部87は、交通信号機95が自車両63へ進行信号を現示していない場合(例えば停止信号を現示している場合)に交差車両が存在すると判断してもよい。
 図9Aを参照する。例えば統合判断部87は、旋回位置と回避位置との間の距離Dが所定距離Dt以下であり、自車両63の対向車両が存在せず、且つ自車道路71に自車線と対向車線とを分ける車線区分線がない場合に操舵制御を統合すると判断してもよい。
 統合判断部87は、周囲環境センサ群10から出力される周囲環境情報や周囲環境センサ群10に基づいて車線区分線があるか否かを判断してよい。
 図9Bを参照する。例えば統合判断部87は、旋回位置と回避位置との間の距離Dが所定距離Dtより長い場合に操舵制御を統合しないと判断する。また例えば、交差車両99や、対向車両100が存在する場合に操舵制御を統合しないと判断してよい。また例えば統合判断部87は、自車道路71に自車線と対向車線とを分ける車線区分線がある場合に操舵制御を統合しないと判断してよい。
 図5を参照する。統合判断部87は、操舵制御を統合するか否かの判断結果を軌道生成部88へ出力する。
 軌道生成部88は、周囲環境センサ群10から出力される周囲環境情報と、ナビゲーションシステム20から提供される道路地図データと、ナビゲーションシステム20により設定された走行経路と、車両信号とに基づいて、自車両に走行させる目標走行軌道を生成する。
 操舵制御を統合すると統合判断部87が判断した場合、軌道生成部88は、旋回する操舵制御と駐車車両65を回避する操舵制御とが統合された目標走行軌道を生成する。具体的には、軌道生成部88は、駐車車両65を回避して側方を通過するとともに交差点での旋回の開始位置又は終了位置で自車両63と駐車車両65との間に横方向間隔をあけるように目標走行軌道を生成する。
 図7Aを参照する。例えば軌道生成部88は、交差道路61での旋回の終了位置67で自車両63と駐車車両65との間に横方向間隔をあけるように交差点62で左折して、駐車車両65を回避して側方を通過する目標走行軌道68を生成する。
 図8A及び図9Aを参照する。例えば軌道生成部88は、自車道路71での旋回の開始位置74で自車両63と駐車車両65との間に横方向間隔をあけるように、駐車車両65を回避して側方を通過してから交差点73で左折する目標走行軌道75を生成する。
 図10を参照する。自車道路60に自車両の進行方向と同一方向に走行可能な複数車線(例えば片側複数車線)101~104があり、交差道路61に自車両の進行方向と同一方向に走行可能な複数車線(例えば片側複数車線)105及び106がある。
 この場合、軌道生成部88は、交差道路61に進入可能な車線101及び102のうち、対向車線から遠い車線101から対向車線に近い車線102へ車線変更してから、交差点62での旋回を開始する目標走行軌道107を生成してもよい。
 対向車線に近い車線102は、左側通行が義務づけられているエリアでは対向車線から遠い車線101の右側の車線であり、右側通行が義務づけられているエリアでは対向車線から遠い車線101の左側の車線である。
 このように交差点62での旋回よりも前に車線変更を行うことにより、車線101を走行しており駐車車両65のある車線105に進入すべき自車両63が、交差点62内で車線変更して、駐車車両65を回避して通過する車線106へ進入するのを防止できる。
 操舵制御を統合しないと統合判断部87が判断した場合、軌道生成部88は、旋回する操舵制御と駐車車両65を回避する操舵制御とが別々に行われる目標走行軌道を生成する。すなわち、旋回する操舵制御と駐車車両65を回避する操舵制御とが連続しない目標走行軌道を生成する。
 図7Bを参照する。例えば軌道生成部88は、交差点62で旋回して自車両63が交差道路61に進入した直後に、いったん通常走行ライン64に沿って自車両63を走行させてから、走行ライン66のように駐車車両65を回避して側方を通過して通常走行ライン64へ戻る目標走行軌道を生成する。
 図8B及び図9Bを参照する。例えば軌道生成部88は、走行ライン66のように駐車車両65を回避して側方を通過していったん通常走行ライン64へ戻ってから、交差点73で旋回して交差道路72へ進入する目標航行軌道を生成する。
 走行制御部89は、軌道生成部88が生成した目標走行軌道を自車両63が走行するように、アクチュエータ群50を駆動する。この結果、走行制御部89は、目標走行軌道に基づいて操舵制御を実行する。
 (動作)
 次に、図11A、図11B、図12A、及び図12Bを参照して、運転支援装置1の動作の例を説明する。
 図11A及び図11Bに示す動作では、旋回して進入した道路に駐車車両65がある場合に操舵制御を統合する。
 ステップS1において自車道路情報取得部80は、自車道路情報を取得する。自車道路情報は、例えば自車道路の道幅W0を示す情報であってよい。
 ステップS2において交差道路情報取得部82は、交差道路情報を取得する。交差道路情報は、例えば交差道路の位置(Xin,Yin)、道幅、及び自車道路と交差道路との交差点に設けられた交通信号機の交通信号機95の現示を示す情報であってよい。
 ステップS3において自車進路情報取得部81は、自車進路情報を取得する。自車進路情報は、例えば自車道路と交差道路との交差点で自車両が直進するか、左折するか、右折するかを示す情報であってよい。
 ステップS4において他車両情報取得部83は、他車両情報を取得する。他車両情報は、例えば駐車車両65や、自車道路や交差道路で自車両63へ接近する対向車両や、交差道路を走行して、自車道路と交差道路との交差点へ接近する交差車両等の情報であってよい。
 ステップS5において統合判断部87は、自車両63が交差点で旋回するか否かを判断する。自車両63が交差点で旋回する場合(ステップS5:Y)に処理はステップS9へ進む。自車両63が交差点で旋回しない場合(ステップS5:N)に処理はステップS6へ進む。
 ステップS6において軌道生成部88は、自車両63の経路の前方に駐車車両65があるか否かを判断する。駐車車両65がある場合(ステップS6:Y)に処理はステップS7へ進む。駐車車両65がない場合(ステップS6:N)に処理はステップS8へ進む。
 ステップS7において軌道生成部88は、駐車車両65を回避して側方を通過する目標走行軌道を生成する。その後に処理はステップS15へ進む。
 ステップS8において軌道生成部88は、通常走行ライン64に沿って自車両を走行させる目標走行軌道を生成する。その後に処理はステップS15へ進む。
 ステップS9において統合判断部87は、自車両63が旋回する交差点の先に駐車車両65があるか否かを判断する。すなわち統合判断部87は、交差点で旋回して進入した道路に駐車車両65があるか否かを判断する。駐車車両65がある場合(ステップS9:Y)に処理はステップS11へ進む。駐車車両65がない場合(ステップS9:N)に処理はステップS10へ進む。
 ステップS10において軌道生成部88は、交差点で旋回して進入した道路で通常走行ライン64に沿って自車両を走行させる目標走行軌道を生成する。その後に処理はステップS15へ進む。
 ステップS11において統合判断部87は、旋回位置と駐車車両との間の距離Dが所定距離Dt以下であるか否かを判断する。距離Dが所定距離Dt以下である場合(ステップS11:Y)に処理はステップS12へ進む。距離Dが所定距離Dtより長い場合(ステップS11:N)に処理はステップS14へ進む。
 ステップS12において統合判断部87は、駐車車両65がある道路を走行して自車両63へ接近する対向車両があるか否かを判断する。対向車両がある場合(ステップS12:Y)に処理はステップS14へ進む。対向車両がない場合(ステップS12:N)に処理はステップS13へ進む。
 ステップS13において統合判断部87は、操舵制御を統合すると判断する。軌道生成部88は、交差点での旋回の終了位置で自車両63と駐車車両65との間に横方向間隔をあけるように交差点で旋回して、駐車車両を回避して側方を通過する目標走行軌道68を生成する。その後に処理はステップS15へ進む。
 ステップS14において統合判断部87は、操舵制御を統合しないと判断する。軌道生成部88は、旋回する操舵制御と駐車車両65を回避する操舵制御とが別々に行われる目標走行軌道を生成する。
 具体的には統合判断部87は、交差点で旋回した後に、いったん通常走行ライン64に沿って自車両63を走行させてから、走行ライン66のように駐車車両65を回避して側方を通過して通常走行ライン64へ戻る目標走行軌道を生成する。その後に処理はステップS15へ進む。
 ステップS15において走行制御部89は、目標走行軌道に基づいて操舵制御を実行する。その後に処理は終了する。
 図12A及び図12Bに示す動作では、駐車車両65を回避してから旋回する場合に操舵制御を統合する。
 ステップS21~S28の処理は、図11AにおけるステップS1~S8の処理と同様である。ステップS25において自車両63が交差点73で旋回する場合(ステップS25:Y)に処理はステップS29へ進む。ステップS27又はS28の後、処理はステップS36へ進む。
 ステップS29において統合判断部87は、自車両63が旋回する交差点の手前に駐車車両65があるか否かを判断する。すなわち統合判断部87は、駐車車両65を回避してから旋回するか否かを判断する。駐車車両65がある場合(ステップS29:Y)に処理はステップS31へ進む。駐車車両65がない場合(ステップS29:N)に処理はステップS30へ進む。
 ステップS30において軌道生成部88は、通常走行ラインから交差点での旋回を開始する目標走行軌道を生成する。その後に処理はステップS36へ進む。
 ステップS31において統合判断部87は、旋回位置と駐車車両との間の距離Dが所定距離Dt以下であるか否かを判断する。距離Dが所定距離Dt以下である場合(ステップS31:Y)に処理はステップS32へ進む。距離Dが所定距離Dtより長い場合(ステップS31:N)に処理はステップS35へ進む。
 ステップS32において統合判断部87は、駐車車両65がある道路を走行して自車両63へ接近する対向車両があるか否かを判断する。対向車両がある場合(ステップS32:Y)に処理はステップS35へ進む。対向車両がない場合(ステップS32:N)に処理はステップS33へ進む。
 ステップS33において統合判断部87は、駐車車両65がある道路と交差する道路を走行して交差点へ接近する交差車両があるか否かを判断する。交差車両がある場合(ステップS33:Y)に処理はステップS35へ進む。交差車両がない場合(ステップS33:N)に処理はステップS34へ進む。
 ステップS34において操舵制御を統合すると判断する。軌道生成部88は、交差点での旋回の開始位置で自車両63と駐車車両65との間に横方向間隔をあけるように、駐車車両65を回避して側方を通過してから交差点で旋回する目標走行軌道を生成する。その後に処理はステップS36へ進む。
 ステップS35において統合判断部87は、操舵制御を統合しないと判断する。旋回する操舵制御と駐車車両65を回避する操舵制御とが別々に行われる目標走行軌道を生成する。
 具体的には統合判断部87は、走行ライン66のように駐車車両65を回避して側方を通過していったん通常走行ライン64へ戻ってから、交差点で旋回する目標航行軌道を生成する。その後に処理はステップS36へ進む。
 ステップS36において走行制御部89は、目標走行軌道に基づいて操舵制御を実行する。その後に処理は終了する。
 (実施形態の効果)
 (1)コントローラ40は、自車両63の経路前方の駐車車両65の有無を判断する処理と、自車両63の旋回を行うか否かを判断する処理と、旋回が行われる旋回位置と駐車車両65との間の距離Dが所定条件を満たすか否かを判断する処理と、旋回位置と駐車車両との間の距離Dが所定条件を満たす場合に、駐車車両65の側方において所定の間隔ILをあけた所定の側方位置で駐車車両65の側方を通過するとともに、経路上において駐車車両65の位置よりも手前の位置で旋回する場合の旋回終了位置、もしくは経路上において駐車車両65の側方を通過した後に旋回する場合の旋回開始位置の道路幅方向における位置が所定の側方位置と一致するように目標走行軌道を生成する軌道生成処理と、目標走行軌道に基づいて操舵制御を行う処理を実行する。
 このように操舵制御を統合することにより、操舵回数が低減され駐車車両65をスムーズに回避することができる。
 また、操舵回数が低減されることにより操舵機構の損耗を抑え、自動運転制御や運転支援制御により自動的に制御される操舵機構の寿命の延長に貢献するという技術的効果を有し、自動操舵技術を改良する。
 (2)コントローラ40は、経路上において駐車車両65の側方を通過した後に旋回する場合であって、旋回位置から自車両63までの距離が、旋回位置から駐車車両65までの距離よりも遠い場合に、上記の軌道生成処理を実行する。
 これにより駐車車両65を回避する操舵制御とその後の旋回のための操舵制御とを連続して行うため、操舵回数が低減され駐車車両65をスムーズに回避することができる。
 (3)コントローラ40は、旋回が行われる交差点で駐車車両65がある道路と交差する道路を走行して交差点へ接近する交差車両を検出していない場合に、上記の軌道生成処理を実行する。
 このような交差車両は、交差点で旋回して駐車車両65がある道路へ進入してくる可能性がある。このため、自車両63と駐車車両65との間に横方向間隔ILをあけた状態(すなわち自車両63が対向車線に近付いた状態)で旋回を開始すると、交差車両の走行を妨げるおそれがある。
 交差車両を検出していない場合に操舵制御を統合することにより交差車両の走行の妨げるのを回避できる。
 (4)コントローラ40は、旋回が行われる交差点の交通信号機が自車両63へ進行信号を現示している場合に、上記の軌道生成処理を実行する。
 これにより、自車両63と駐車車両65との間に横方向間隔ILをあけた状態(すなわち自車両63が対向車線に近付いた状態)で交差点で停車するのを防止できる。
 (5)コントローラ40は、経路上において駐車車両65の位置よりも手前の位置で旋回する場合であって、旋回位置から駐車車両65までの距離よりも旋回位置から自車両63までの距離が近い場合に上記の軌道生成処理を実行する。
 これにより、旋回のための操舵制御とその後に駐車車両65を回避する操舵制御とを連続して行うため、操舵回数が低減され駐車車両65をスムーズに回避することができる。
 (6)コントローラ40は、複数車線を有する道路どうしが交差する交差点で前記旋回が行われる場合に、対向車線から遠い車線から対向車線に近い車線へ車線変更してから旋回を行う走行軌道を目標走行軌道として生成する。
 これにより、操舵制御の統合により交差点での旋回中に車線変更が行われることを防止できる。
 (7)コントローラ40は、旋回位置と駐車車両65との間の距離Dとして、駐車車両65がある道路と交差する道路との交差点の入口と駐車車両との間の距離、又は駐車車両65がある道路沿いの施設の入口若しくは出口と駐車車両との間の距離を判断する。
 これにより、旋回位置と駐車車両65との間の距離Dに基づいて操舵制御を統合するか否かを判断できる。
 (8)旋回位置と駐車車両65との距離Dが所定距離Dt以下であることを所定条件とする。
 これにより、旋回位置と駐車車両65とが近い場合に操舵制御が統合されるため、旋回する操舵制御と駐車車両65を回避する操舵制御が短い期間に別々に発生することを防止して、スムーズな操舵制御を実現できる。
 (9)所定距離Dtは、自車両63が駐車車両65を回避して側方を通過するのに要する標準的な時間Tに基づいて設定される。
 このように駐車車両65を回避するのに要する標準的な時間に基づいて操舵制御を統合するか否かを判断するので、違和感なく駐車車両65を回避できる。
 (10)コントローラ40は、駐車車両65がある道路を走行する対向車両が自車両へ接近していない場合に上記の軌道生成処理を実行する。
 これにより対向車両が接近している場合、自車両63と駐車車両65との間に横方向間隔ILをあけて自車両63が対向車線に近付いたまま走行するのを抑制できる。
 (11)軌道生成処理は、駐車車両がある道路に自車線と対向車線とを分ける車線区分線が存在していない場合に上記の軌道生成処理を実行する。
 これにより、車線区分線が存在する場合に操舵制御を統合しない運転者の操舵を実現できるので、違和感なく駐車車両65を回避できる。
 ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。
 1…運転支援装置,10…周囲環境センサ群,11…測距装置,12…カメラ,20…ナビゲーションシステム,21…ナビコントローラ,22…測位装置,23…地図データベース,24…表示部,25…操作部,26…音声出力部,27…通信部,30…車両センサ群,31…車速センサ,32…加速度センサ,33…ジャイロセンサ,34…操舵角センサ,35…アクセルセンサ,36…ブレーキセンサ,40…コントローラ,41…プロセッサ,42…記憶装置,50…アクチュエータ群,52…ステアリングアクチュエータ,53…アクセル開度アクチュエータ,54…ブレーキ制御アクチュエータ,80…自車道路情報取得部,81…自車進路情報取得部,82…交差道路情報取得部,83…他車両情報取得部,84…車両信号取得部,85…旋回位置判断部,86…回避位置判断部,87…統合判断部,88…軌道生成部,89…走行制御部

Claims (12)

  1.  自車両の経路前方の駐車車両の有無を判断する処理と、
     前記自車両の旋回を行うか否かを判断する処理と、
     前記旋回が行われる旋回位置と前記駐車車両との間の距離が所定条件を満たすか否かを判断する処理と、
     前記旋回位置と前記駐車車両との間の前記距離が前記所定条件を満たす場合に、前記駐車車両の側方において所定の間隔をあけた所定の側方位置で前記駐車車両の側方を通過するとともに、前記経路上において前記駐車車両の位置よりも手前の位置で旋回する場合の旋回終了位置もしくは前記経路上において前記駐車車両の側方を通過した後に旋回する場合の旋回開始位置が、前記駐車車両が駐車している道路幅方向において前記所定の側方位置と一致するように目標走行軌道を生成する軌道生成処理と、
     前記目標走行軌道に基づいて走行制御を行う処理と、
     をコントローラが実行することを特徴とする運転支援方法。
  2.  前記軌道生成処理は、前記経路上において前記駐車車両の側方を通過した後に旋回する場合であって、前記旋回位置から前記自車両までの距離が前記旋回位置から前記駐車車両までの距離よりも遠い場合に実行することを特徴とする請求項1の運転支援方法。
  3.  前記軌道生成処理は、前記旋回が行われる交差点で前記駐車車両がある道路と交差する道路を走行して前記交差点へ接近する他車両を検出していない場合に実行することを特徴とする請求項2の運転支援方法。
  4.  前記軌道生成処理は、前記旋回が行われる交差点の交通信号機が前記自車両へ進行信号を現示している場合に実行することを特徴とする請求項2又は3に記載の運転支援方法。
  5.  前記軌道生成処理は、前記経路上において前記駐車車両の位置よりも手前の位置で旋回する場合であって、前記旋回位置から前記駐車車両までの距離よりも前記旋回位置から前記自車両までの距離が近い場合に実行することを特徴とする請求項1の運転支援方法。
  6.  複数車線を有する道路どうしが交差する交差点で前記旋回が行われる場合に、対向車線から遠い車線から前記対向車線に近い車線へ車線変更してから前記旋回を行う走行軌道を前記目標走行軌道として生成することを特徴とする請求項5に記載の運転支援方法。
  7.  前記旋回位置と前記駐車車両との間の前記距離として、前記駐車車両がある道路と交差する道路との交差点の入口と前記駐車車両との間の距離、又は前記駐車車両がある道路沿いの施設の入口若しくは出口と前記駐車車両との間の距離を判断することを特徴とする請求項1~6のいずれか一項に記載の運転支援方法。
  8.  前記所定条件は、前記旋回位置と前記駐車車両との前記距離が所定距離以下であることを特徴とする請求項1~7のいずれか一項に記載の運転支援方法。
  9.  前記自車両が駐車車両を回避して側方を通過するのに要する標準的な時間に基づいて前記所定距離を設定することを特徴とする請求項8に記載の運転支援方法。
  10.  前記軌道生成処理は、前記駐車車両がある道路を走行する対向車両が前記自車両へ接近していない場合に実行することを特徴とする請求項1~9のいずれか一項に記載の運転支援方法。
  11.  前記軌道生成処理は、前記駐車車両がある道路に自車線と対向車線とを分ける車線区分線が存在していない場合に実行することを特徴とする請求項1~10のいずれか一項に記載の運転支援方法。
  12.  前記自車両の経路前方の駐車車両の有無を検出し、前記自車両の旋回を行うか否かを判断し、前記旋回が行われる旋回位置と前記駐車車両との間の距離が所定条件を満たすか否かを判断し、前記旋回位置と前記駐車車両との間の前記距離が前記所定条件を満たす場合に、前記駐車車両の側方において所定の間隔をあけた所定の側方位置で前記駐車車両の側方を通過するとともに、前記経路上において前記駐車車両の位置よりも手前の位置で旋回する場合の旋回終了位置もしくは前記経路上において前記駐車車両の側方を通過した後に旋回する場合の旋回開始位置を、前記駐車車両が駐車している道路幅方向において前記所定の側方位置と旋回の開始位置又は終了位置が一致するように目標走行軌道を生成する軌道生成処理を実行し、前記目標走行軌道に基づいて走行制御を行うコントローラと、
     を備えることを特徴とする運転支援装置。
PCT/IB2018/001592 2018-12-28 2018-12-28 運転支援方法及び運転支援装置 WO2020136385A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880100499.XA CN113228128B (zh) 2018-12-28 2018-12-28 驾驶辅助方法及驾驶辅助装置
US17/417,809 US11370453B2 (en) 2018-12-28 2018-12-28 Driving assistance method and driving assistance device
EP18944136.3A EP3905219B1 (en) 2018-12-28 2018-12-28 Driving assistance method and driving assistance device
JP2020561951A JP7129495B2 (ja) 2018-12-28 2018-12-28 運転支援方法及び運転支援装置
RU2021122181A RU2763452C1 (ru) 2018-12-28 2018-12-28 Способ помощи при вождении и устройство помощи при вождении
PCT/IB2018/001592 WO2020136385A1 (ja) 2018-12-28 2018-12-28 運転支援方法及び運転支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/001592 WO2020136385A1 (ja) 2018-12-28 2018-12-28 運転支援方法及び運転支援装置

Publications (1)

Publication Number Publication Date
WO2020136385A1 true WO2020136385A1 (ja) 2020-07-02

Family

ID=71126670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/001592 WO2020136385A1 (ja) 2018-12-28 2018-12-28 運転支援方法及び運転支援装置

Country Status (6)

Country Link
US (1) US11370453B2 (ja)
EP (1) EP3905219B1 (ja)
JP (1) JP7129495B2 (ja)
CN (1) CN113228128B (ja)
RU (1) RU2763452C1 (ja)
WO (1) WO2020136385A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111986513A (zh) * 2020-08-26 2020-11-24 马鞍山贺辉信息科技有限公司 基于云计算和物联网的汽车驾驶辅助预警系统
CN114758522A (zh) * 2022-04-25 2022-07-15 驭势科技(北京)有限公司 一种车辆的月台停靠方法、装置、设备及介质
WO2024181312A1 (ja) * 2023-02-27 2024-09-06 株式会社アイシン 運転支援装置及びコンピュータプログラム
JP7557612B2 (ja) 2020-08-17 2024-09-27 メルセデス・ベンツ グループ アクチェンゲゼルシャフト 自動運転車の運転方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020100728A1 (de) * 2020-01-14 2021-07-15 Bayerische Motoren Werke Aktiengesellschaft Abbiegeassistent für ein Fahrzeug
MX2024006189A (es) * 2021-12-03 2024-06-11 Nissan Motor Metodo de control de vehiculo y dispositivo de control de vehiculo.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145756A (ja) * 2010-01-12 2011-07-28 Renesas Electronics Corp 走行支援システム及び方法
JP2013109705A (ja) 2011-11-24 2013-06-06 Toyota Motor Corp 運転支援装置及び運転支援方法
JP2013186723A (ja) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd 走行制御装置及び走行制御方法
JP2017045130A (ja) * 2015-08-24 2017-03-02 住友電気工業株式会社 運転支援装置、コンピュータプログラム及び運転支援システム
JP2018146461A (ja) * 2017-03-08 2018-09-20 パイオニア株式会社 情報生成装置及び情報生成方法
JP2018202876A (ja) * 2017-05-30 2018-12-27 日産自動車株式会社 先行車判定方法及び先行車判定装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7979172B2 (en) * 1997-10-22 2011-07-12 Intelligent Technologies International, Inc. Autonomous vehicle travel control systems and methods
US7979173B2 (en) * 1997-10-22 2011-07-12 Intelligent Technologies International, Inc. Autonomous vehicle travel control systems and methods
DE112010005448B4 (de) * 2010-04-05 2020-07-23 Toyota Jidosha Kabushiki Kaisha Kollisionsbeurteilungsvorrichtung für ein Fahrzeug
JP5454934B2 (ja) * 2010-09-21 2014-03-26 アイシン精機株式会社 運転支援装置
WO2013046301A1 (ja) * 2011-09-26 2013-04-04 トヨタ自動車株式会社 車両の運転支援システム
CN103204159B (zh) * 2013-01-10 2016-04-27 浙江吉利汽车研究院有限公司杭州分公司 一种电动车转弯辅助系统及控制方法
CN103335658B (zh) * 2013-06-19 2016-09-14 华南农业大学 一种基于弧线路径生成的自主车辆避障方法
CN106030609B (zh) * 2013-12-04 2020-07-03 移动眼视力科技有限公司 用于模仿前车的系统和方法
RU2659670C1 (ru) * 2014-08-11 2018-07-03 Ниссан Мотор Ко., Лтд. Устройство и способ управления движением для транспортного средства
JP6067635B2 (ja) * 2014-09-12 2017-01-25 アイシン精機株式会社 駐車支援装置
MX364574B (es) * 2015-01-05 2019-05-02 Nissan Motor Dispositivo de generacion de ruta objetivo y dispositivo de control de conduccion.
JP6517561B2 (ja) * 2015-03-27 2019-05-22 クラリオン株式会社 車両制御装置
JP2017030549A (ja) * 2015-07-31 2017-02-09 アイシン精機株式会社 駐車支援装置
CN105620474B (zh) * 2016-01-26 2019-02-19 吉林大学 一种具有多模式的四轮轮毂驱动电动汽车主动避障方法
CN105869438A (zh) * 2016-04-12 2016-08-17 深圳市中天安驰有限责任公司 一种车辆防碰撞预警系统
US9981657B2 (en) * 2016-04-14 2018-05-29 Ford Global Technologies, Llc Autonomous vehicle parking and transition to manual control
CN107757613A (zh) * 2016-08-15 2018-03-06 法乐第(北京)网络科技有限公司 一种车辆转弯辅助方法及装置
WO2018081807A2 (en) * 2016-10-31 2018-05-03 Mobileye Vision Technologies Ltd. Systems and methods for navigating lane merges and lane splits
JP6551866B2 (ja) * 2017-03-17 2019-07-31 マツダ株式会社 運転支援制御装置
JP6485792B2 (ja) * 2017-03-17 2019-03-20 マツダ株式会社 運転支援制御装置
DE102018107508A1 (de) * 2017-03-31 2018-10-04 Ford Global Technologies, Llc Echtzeitfahrstreifenwechselanzeige
DE102018107341A1 (de) * 2017-03-31 2018-10-04 Ford Global Technologies, Llc Fahrstreifenwechselratgeber
DE102018107502A1 (de) * 2017-03-31 2018-10-04 Ford Global Technologies, Llc Fahrstreifenwechselassistent
JP6793085B2 (ja) * 2017-04-07 2020-12-02 クラリオン株式会社 駐車支援装置
JP6722616B2 (ja) * 2017-04-07 2020-07-15 クラリオン株式会社 駐車支援装置
RU2756872C1 (ru) * 2018-05-31 2021-10-06 Ниссан Норт Америка, Инк. Структура вероятностного отслеживания объектов и прогнозирования
DE102018127077A1 (de) * 2018-10-30 2020-04-30 Robert Bosch Gmbh Automatisierte Vorbeifahrt an abgestellten Fahrzeugen
US11110922B2 (en) * 2018-11-05 2021-09-07 Zoox, Inc. Vehicle trajectory modification for following
US11351991B2 (en) * 2019-03-25 2022-06-07 Zoox, Inc. Prediction based on attributes
US11414130B2 (en) * 2019-10-09 2022-08-16 Argo AI, LLC Methods and systems for lane changes using a multi-corridor representation of local route regions
US11520342B2 (en) * 2020-03-12 2022-12-06 Pony Ai Inc. System and method for determining realistic trajectories

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145756A (ja) * 2010-01-12 2011-07-28 Renesas Electronics Corp 走行支援システム及び方法
JP2013109705A (ja) 2011-11-24 2013-06-06 Toyota Motor Corp 運転支援装置及び運転支援方法
JP2013186723A (ja) * 2012-03-08 2013-09-19 Nissan Motor Co Ltd 走行制御装置及び走行制御方法
JP2017045130A (ja) * 2015-08-24 2017-03-02 住友電気工業株式会社 運転支援装置、コンピュータプログラム及び運転支援システム
JP2018146461A (ja) * 2017-03-08 2018-09-20 パイオニア株式会社 情報生成装置及び情報生成方法
JP2018202876A (ja) * 2017-05-30 2018-12-27 日産自動車株式会社 先行車判定方法及び先行車判定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905219A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7557612B2 (ja) 2020-08-17 2024-09-27 メルセデス・ベンツ グループ アクチェンゲゼルシャフト 自動運転車の運転方法
CN111986513A (zh) * 2020-08-26 2020-11-24 马鞍山贺辉信息科技有限公司 基于云计算和物联网的汽车驾驶辅助预警系统
CN111986513B (zh) * 2020-08-26 2021-08-10 马鞍山贺辉信息科技有限公司 基于云计算和物联网的汽车驾驶辅助预警系统
CN114758522A (zh) * 2022-04-25 2022-07-15 驭势科技(北京)有限公司 一种车辆的月台停靠方法、装置、设备及介质
WO2024181312A1 (ja) * 2023-02-27 2024-09-06 株式会社アイシン 運転支援装置及びコンピュータプログラム

Also Published As

Publication number Publication date
CN113228128B (zh) 2022-09-20
RU2763452C1 (ru) 2021-12-29
US11370453B2 (en) 2022-06-28
CN113228128A (zh) 2021-08-06
JP7129495B2 (ja) 2022-09-01
US20220089185A1 (en) 2022-03-24
EP3905219A4 (en) 2022-01-19
EP3905219A1 (en) 2021-11-03
EP3905219B1 (en) 2023-05-31
JPWO2020136385A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
CN111149140B (zh) 驾驶辅助方法及驾驶辅助装置
JP7129495B2 (ja) 運転支援方法及び運転支援装置
JP6856134B2 (ja) 運転支援方法及び運転支援装置
JP7173063B2 (ja) 自動運転装置
CN110021179B (zh) 车辆、路径计算装置和路径计算方法
WO2020008220A1 (ja) 走行軌道生成方法及び走行軌道生成装置
JP2018100009A (ja) 車両制御装置
JP2018101302A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP7502869B2 (ja) 車両の運転支援システム
JP2019036826A (ja) 車両用表示方法及び車両用表示装置
JP7019259B2 (ja) 運転支援方法及び運転支援装置
WO2020148561A1 (ja) 運転支援方法及び運転支援装置
JP2022060075A (ja) 運転支援装置
JP7038610B2 (ja) 運転支援方法及び運転支援装置
CN111417838A (zh) 行驶控制装置、车辆和行驶控制方法
EP4309969A1 (en) Travel control method and travel control device for vehicle
JP2023167861A (ja) 車両の運転支援方法及び運転支援装置
JP2023011266A (ja) 運転制御方法及び運転制御システム
JP2023137545A (ja) 運転支援方法及び運転支援装置
JP2023060523A (ja) 車両制御方法及び車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018944136

Country of ref document: EP

Effective date: 20210728