WO2020129955A1 - 湿気硬化型ホットメルト接着剤 - Google Patents

湿気硬化型ホットメルト接着剤 Download PDF

Info

Publication number
WO2020129955A1
WO2020129955A1 PCT/JP2019/049324 JP2019049324W WO2020129955A1 WO 2020129955 A1 WO2020129955 A1 WO 2020129955A1 JP 2019049324 W JP2019049324 W JP 2019049324W WO 2020129955 A1 WO2020129955 A1 WO 2020129955A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
moisture
hot melt
melt adhesive
Prior art date
Application number
PCT/JP2019/049324
Other languages
English (en)
French (fr)
Inventor
岡村 直実
寛生 阿部
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to KR1020217017276A priority Critical patent/KR20210105885A/ko
Priority to JP2020561449A priority patent/JP7380592B2/ja
Priority to CN201980084613.9A priority patent/CN113195666B/zh
Publication of WO2020129955A1 publication Critical patent/WO2020129955A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C

Definitions

  • the present invention relates to a moisture-curable hot melt adhesive.
  • PU hot PU hot
  • melt adhesive a reactive polyurethane hot melt adhesive containing an isocyanate functional group prepared from a prepolymer which is irreversibly cured by the action of moisture in the atmosphere or moisture contained in materials that are adhered to each other
  • PU hot PU hot
  • a prepolymer as described in Patent Document 1 is a reaction product of a polyester polyol and a compound obtained by reacting a desired polyether polyol with a polyisocyanate, and such a reactive PU hot Melt adhesives can be commonly used as adhesives for adhering various materials such as plastic, glass, metal, leather, and wood.
  • the solidification time of the PU hot melt adhesive without the mutual reaction of the starting components can be adjusted within the range of seconds to minutes by changing the blending ratio of the crystalline or amorphous components at room temperature. ..
  • the crystalline structure of PU hot melt adhesives reduces the melt viscosity of the adhesives and improves coatability, as well as good low temperature elasticity due to short set times after coating and low glass transition temperatures. Is known to occur (see, for example, Patent Document 2 and Patent Document 3).
  • the curing accompanied by a crosslinking reaction between the components of the reactive PU hot melt adhesive proceeds in a few days due to the reaction between the isocyanate groups and water, thereby forming a thermosetting polyurea.
  • Subsequent PU hot melt adhesives no longer melt or exhibit, for example, solvent insolubility.
  • the cured adhesive exhibits good heat resistance and good resistance to chemicals such as plasticizers, solvents, oils and fuels.
  • the above-mentioned adhesives have a high concentration of free monomeric polyisocyanate, such as 4,4'-diisocyanatodiphenylmethane (4,4'-MDI). ), 2,4-diisocyanatotoluene, or 2,6-diisocyanatotoluene (TDI) remains. Since such a monomeric polyisocyanate shows vapor pressure at which the monomeric component is released to the ambient environment in a gaseous state at the application temperature of the adhesive (about 100° C. to about 180° C.), it can be used in a predetermined exhaust system or the like. Installation of equipment is required.
  • 4,4'-MDI 4,4'-diisocyanatodiphenylmethane
  • TDI 2,6-diisocyanatototoluene
  • polyurea is formed by the reaction with water. Then, when polyurea is formed, carbon dioxide is released from the adhesive. Therefore, foaming occurs in the bonding area where the adhesive is bonded. As a result, expansion of the surfaces of the members constituting the joint and reduction of the adhesive strength occur.
  • reactive hot melt adhesives are required to have a balance between stability when heated (does not increase viscosity and does not cure) and curability at room temperature.
  • the reactive PU hot melt adhesive has a drawback that the stability upon heating is not sufficient. That is, a reactive PU hot-melt adhesive needs to be heated and melted before coating. At that time, an isocyanate group at the terminal of the molecular chain reacts with a urethane bond or a urea bond in the molecular chain to give an allophanate bond or biuret. In some cases, a bond was formed, a three-dimensional crosslinked structure was formed, the viscosity of the composition was increased, or a gel was formed.
  • silane functional reactive hot melt adhesives based on polyester polyols are known, for example, as disclosed in Patent Documents 4 to 6.
  • the adhesive composition described in Patent Document 4 is a pressure-sensitive adhesive (adhesive), and tack remains a problem even after curing, so stickiness may be a problem depending on the application.
  • the composition described in Patent Document 5 may not have sufficient rising strength in some cases, and the moisture-curable hot melt adhesive composition described in Patent Document 6 ensures sufficient bonding time. It is difficult to achieve both high and sufficient rising strength.
  • JP-A-4-227714 Japanese Unexamined Patent Publication No. 2-0888686 JP-A-2014-205764 Japanese Patent No. 6027146 Japanese Patent No. 57384949 Japanese Patent No. 5254804
  • an object of the present invention is to provide a moisture-curable hot melt adhesive that can achieve both good rising strength and a sufficient length of bonding time.
  • the present invention provides a moisture-curable hot melt adhesive containing an alkoxysilyl group-containing urethane prepolymer (A) which is a reaction product of the following component (a-1) and the following component (a-2).
  • An agent is provided.
  • Component (a-1) Hydroxyl-terminated urethane prepolymer which is a reaction product of the following component (i) and component (ii)
  • the component (ii) may be a solid at room temperature and may further contain a methyl methacrylate-based polymer (ii-2) having a hydroxyl group. Further, in the moisture-curable hot melt adhesive, the component (ii) may contain a polyether polyol (ii-3).
  • the moisture-curable hot melt adhesive may further contain (B) a silane-based adhesion promoter, (C) a modified resin, and (D) an alkoxysilyl group-containing methacrylic acid.
  • a methyl acid-based polymer may be further contained, and (E) an amine-based compound, a divalent tin compound, and a catalyst selected from at least one selected from the group consisting of fluorinated polymers may be further contained.
  • An alkoxysilyl group-containing urethane prepolymer (F) which is a reaction product of (i) and component (ii-2) may be further contained.
  • Component (ii-2) Methyl methacrylate-based polymer having hydroxyl group
  • the present invention also provides a product including the moisture-curable hot melt adhesive according to any one of the above items.
  • the present invention prepares an alkoxysilyl group-containing urethane prepolymer (A) by reacting the following component (a-1) with the following component (a-2).
  • the manufacturing method of the moisture hardening type hot melt adhesive including the process of manufacturing the moisture hardening type hot melt adhesive containing.
  • Component (a-1) Hydroxyl-terminated urethane prepolymer which is a reaction product of the following component (i) and component (ii)
  • the method for producing the moisture-curable hot melt adhesive may further include a step of adding (B) a silane-based adhesion promoter to the component (A).
  • the moisture-curable hot-melt adhesive of the present invention it is possible to provide a moisture-curable hot-melt adhesive capable of achieving both good rising strength and a sufficient length of bonding time.
  • room temperature or "normal temperature” in this specification is a temperature of 23°C.
  • Solid state at room temperature refers to a substance of interest (eg, a given composition) that is crystalline, partially crystalline, and/or glassy amorphous. It means that it has a softening point (measured by the ring and ball method) or a melting point higher than 23°C.
  • the melting point is the maximum value of the curve measured during the heating operation by, for example, dynamic differential calorimetry (differential scanning calorimetry [DSC]), and the target material is transformed from the solid state to the liquid state. Is the temperature.
  • an adhesive refers to a substance that has adhesiveness at room temperature and adheres to an adherend at low pressure, as defined in JIS K6800, for example. Pressure-sensitive adhesive).
  • the "adhesive" in the present specification does not include a pressure-sensitive adhesive. That is, in the present specification, the “adhesive” means an adhesive excluding the pressure sensitive adhesive, and the adhesive according to the present invention is not the pressure sensitive adhesive.
  • “having an adhesive property at room temperature” refers to that according to JIS Z0237.
  • DOW ball tack tester set the angle of the inclined plate to 30 degrees under the environment of temperature 23°C and 50% RH, and roll a predetermined steel ball toward the adhesive surface under the condition of running distance 10 cm, The ball No. stopped at a distance of 10 cm from the edge of the agent.
  • the ball tack is preferably 10 or less and 6 or less. Note that the pressure-sensitive adhesive exhibits adhesiveness only by holding the above-mentioned tackiness for a long period of time and applying pressure at room temperature.
  • the “bondable time” in the present specification is a bondable time from application of the adhesive to the adherend to bonding to another adherend.
  • the “bondable time” can be measured in accordance with Japanese Adhesive Industry Standard JAI7-1991.
  • set time In the present specification is the time until the hot melt adhesive stuck to the adherend is cooled and solidified to show the initial adhesive force.
  • Hot-melt adhesives have sufficiently high rising strength after being applied to the adherend (in other words, the time until the adhesive strength due to solidification is sufficiently short in practice), and hot-melt adhesive The time until the hot melt adhesive and other adherends cannot be properly adhered to each other until the adherend to which the agent is applied is adhered, that is, the bonding possible time. Is required to be long enough.
  • the rising strength is the strength exhibited by the solidification of the hot melt adhesive, and the solidification means that the hot melt adhesive is melted by heating and then cooled to become solid. Then, the reactive hot melt adhesive, after being solidified, is cured due to the progress of a crosslinking reaction due to moisture curing due to the silyl group and the like in the components.
  • the present inventor has conducted various studies on various compounds, compositions, and the like constituting the hot melt adhesive, and as a result, while including the crystal structure, partially including the region of the amorphous molecule, the specific compounding component It has been found that a sufficient rising strength and a sufficient length of bonding time can be made compatible by making selections and the like. Further, it was found that by including a reactive group in the prepolymer or the like constituting the adhesive, the crosslinking reaction proceeds mainly after the adhesive solidifies, and the final strength of the adhesive can be sufficiently improved.
  • the bonding time can be adjusted by including a crystalline compound in the material forming the hot melt adhesive, and for example, a region corresponding to an amorphous molecule such as an ether bond of polyether is partially formed.
  • a crystalline compound in the material forming the hot melt adhesive By including it, flexibility is ensured, and, for example, the cross-linking reaction mainly starting after the adhesive is applied by including a prepolymer having a reactive group at the terminal is allowed to proceed with the passage of time to obtain the final strength. It has been found that can be sufficiently improved.
  • the moisture-curable hot melt adhesive according to the present invention is constituted by including an alkoxysilyl group-containing urethane prepolymer (A) (hereinafter referred to as a component (A)), and the component (A) has a hydroxyl group terminal. It is a reaction product of a urethane prepolymer (a-1) (hereinafter referred to as the component (a-1)) and an isocyanate silane (a-2) (hereinafter referred to as the component (a-2)).
  • the component (a-1) is a polyol (ii) containing an isocyanate group-terminated urethane prepolymer (i) having a polyether skeleton (hereinafter referred to as the component (i)) and at least a crystalline aliphatic polyester polyol. ) (Hereinafter referred to as component (ii).
  • component (ii) The crystalline aliphatic polyester polyol (ii-1) is referred to as component (ii-1)).
  • the component (ii) is, in addition to the component (ii-1) or in place of a part of the component (ii-1), an alkoxysilyl group-containing methyl methacrylate polymer having a hydroxyl group, which is solid at room temperature. It may further contain (ii-2) (hereinafter referred to as component (ii-2)) and/or polyether polyol (ii-3) (hereinafter referred to as component (ii-3)). Further, the component (a-1) is obtained by reacting the component (i) and the component (ii) with a compound (iii) having an alkoxysilyl group and an amino group or a mercapto group (hereinafter referred to as the component (iii)).
  • the resulting reaction product may be used.
  • the component (iii) may be a secondary aminosilane (iii-1) (hereinafter referred to as the component (iii-1)).
  • the moisture-curable hot melt adhesive according to the present invention contains, in addition to the above-mentioned components, a silane-based adhesion-imparting agent (B) (hereinafter referred to as component (B)), a modified resin (C) (hereinafter referred to as component). (C)), alkoxysilyl group-containing methyl methacrylate polymer (D) (hereinafter referred to as component (D)), amine compound, divalent tin compound, and fluorinated polymer.
  • a silane-based adhesion-imparting agent hereinafter referred to as component (B)
  • a modified resin (C) hereinafter referred to as component
  • component (C)) alkoxysilyl group-containing methyl methacrylate polymer (D) (
  • At least one catalyst (crosslinking catalyst) (E) (hereinafter referred to as component (E)), and/or an alkoxysilyl group-containing urethane prepolymer (F) (having a methyl methacrylate-based polymer skeleton)
  • component (E) At least one catalyst (crosslinking catalyst) (hereinafter referred to as component (E)), and/or an alkoxysilyl group-containing urethane prepolymer (F) (having a methyl methacrylate-based polymer skeleton)
  • the component (F) may be further contained.
  • the hot melt adhesive according to the present invention may be configured as a photocurable adhesive.
  • the photocurable adhesive includes a component (A), a component (B), a component (C), a component (D), a component (E), and/or a component (F), a photobase generator and/or a photobase generator. It can be constituted by adding an aminosilane generator.
  • the moisture-curable hot melt adhesive according to the present invention is prepared by reacting the component (i) with the component (ii) to prepare the component (a-1), and the obtained component (a-1) and the component (a). -2) can be prepared by containing the component (A) prepared by reacting with.
  • the component (a-1), the component (B), the component (C), the component (D), the component (E), the component (F), and/or other additives are added to the component (A).
  • the hot melt adhesive according to the present invention is solid at room temperature and is applied to the adherend in a state of being heated and melted.
  • each component will be described in detail.
  • the moisture-curable hot melt adhesive according to the present invention may be referred to as "reactive hot melt adhesive” or "one-pack moisture-curable reactive hot melt adhesive”.
  • the alkoxysilyl group-containing urethane prepolymer (A) has an alkoxysilyl group, and includes a polyether (hereinafter sometimes referred to as “segment B”) and a crystalline aliphatic polyester as essential components. It is a polyblock polymer (hereinafter sometimes referred to as "silylated block polyether [SBPE]”) in which a united body (hereinafter sometimes referred to as "segment A”) is linked by a urethane bond.
  • SBPE silated block polyether
  • the urethane bond is linked by the linking group of the following general formula (I) generated by the reaction between the terminal hydroxyl group of the above segment (segment A and segment B) and the linking agent (diisocyanate compound).
  • R 1 represents a residue after removing two isocyanate groups from a divalent diisocyanate having 1 to 30 carbon atoms.
  • the segment B is preferably a polyether (soft segment) that is liquid at room temperature
  • the segment A is (ii-1) a main chain of a crystalline aliphatic polyester (hard segment) that is solid at room temperature. Due to the structure in which the hard segment A is bonded to the soft segment B, a polymer having toughness and flexibility can be formed.
  • a main chain of a methyl methacrylate-based polymer having a hydroxyl group and/or (ii-3) a main chain of a polyether polyol May be further contained in the segment B.
  • a block polymer composed of a hard segment (a solid crystalline portion at room temperature) and a soft segment (a polyether that is liquid at ordinary temperature) is formed. Based on both the segment skeletons of the non-crystalline portion and the non-crystalline portion, it is possible to secure a sufficient bondable time after coating and to develop an instantaneous adhesive force after bonding. Further, by arranging the soft segment between the hard segments, it has both toughness and flexibility and can exhibit excellent initial adhesive strength.
  • the crystalline aliphatic polyester and the polyether have low compatibility, each of the above properties can be exhibited by forming a block structure.
  • the alkoxysilyl group-containing urethane prepolymer (A) has a “alkoxysilyl group linked by a urethane bond” of the following general formula (II) at the end of the segment A.
  • R 2 is a divalent alkylene group having 3 to 10 carbon atoms
  • R 3 and R 4 are each independently an alkyl group having 1 to 6 carbon atoms or a carbon atom. It is an aryl group having 6 to 8 atoms
  • x has a value of 0, 1, or 2.
  • x is preferably 0,
  • R 4 is preferably an alkyl group having 1 to 2 carbon atoms, and more preferably an alkyl group having 1 carbon atom.
  • R 2 is preferably a divalent alkylene group having 3 carbon atoms.
  • the hydroxyl group-terminated urethane prepolymer (a-1) can be prepared by a conventionally known method. For example, it can be prepared by reacting a predetermined polyether backbone polyurethane prepolymer (component (i)) with a predetermined polyol component (component (ii)).
  • the (i) polyether skeleton-containing isocyanate group-terminated urethane prepolymer according to the present invention comprises a diisocyanate and a polyether polyol in a molar ratio of an isocyanate group of the diisocyanate and a hydroxyl group of the polyether polyol (hereinafter, isocyanate group/hydroxyl group mole).
  • a ratio is in a molar ratio of more than 1, that is, by reacting an isocyanate group in an excess amount with respect to a hydroxyl group.
  • the isocyanate group/hydroxyl group molar ratio is preferably 1.5 or more, more preferably 1.8 or more, further preferably 1.9 or more, preferably 3.0 or less, more preferably 2.5 or less, 2 It is more preferably less than or equal to 1.
  • the isocyanate group/hydroxyl group molar ratio is within such a range, good coatability can be obtained.
  • the isocyanate group-terminated urethane prepolymer having a polyether skeleton is a diisocyanate having an isocyanate group in an insufficient molar ratio with respect to the hydroxyl group of the polyether polyol (for example, 1,6-diisocyanatohexane (HDI ), 2,4-diisocyanatotoluene (TDI), 2,6-diisocyanatotoluene (TDI), 2,4′-diisocyanatodiphenylmethane (MDI), 4,4′-diisocyanatodiphenylmethane (MDI) ))
  • HDI 1,6-diisocyanatohexane
  • TDI 2,4-diisocyanatotoluene
  • TDI 2,6-diisocyanatototoluene
  • MDI 2,4′-diisocyanatodiphenylmethane
  • the polyether polyol and diisocyanate may be reacted in the presence of an amount of up to 5% by weight, for example, a trimer of an aliphatic diisocyanate (eg hexamethylene-diisocyanate, etc.), or the prepolymerization reaction This type of trimer may be added after completion.
  • a trimer of an aliphatic diisocyanate eg hexamethylene-diisocyanate, etc.
  • the diisocyanate used in the present invention is not particularly limited, for example, phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, aromatic diisocyanates such as naphthalene diisocyanate and hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, Aliphatic or alicyclic diisocyanates such as dicyclohexylmethane diisocyanate, xylylene diisocyanate, and tetramethylxylylene isocyanate are listed. Among these, it is preferable to use diphenylmethane diisocyanate, which has a low vapor pressure at the time of heating, from the viewpoint of use in a hot-melt adhesive that is used by melting.
  • polyether polyol examples include polypropylene glycol (PPG), polyethylene glycol (PEG), polytetramethylene glycol (PTMG), and the like. Although these polyols are not limited, the number average molecular weight is preferably 500 or more, more preferably 1,000 or more, further preferably 2,000 or more, more preferably 30,000 or less, more preferably 20,000 or less, 15, 000 or less is more preferable. Further, the polyether polyol is preferably a diol.
  • polyether polyol a compound obtained by copolymerizing two or more kinds of polyether polyol may be used, and examples thereof include polyoxyethylene-oxypropylene block copolymer diol.
  • a diol is preferable because the terminal group is a primary hydroxyl group and has good reactivity with an isocyanate group.
  • the content of ethylene oxide in the polyoxyethylene-oxypropylene block copolymer diol is preferably 5% by weight or more, preferably 90% by weight or less, more preferably 40% by weight or less, and further preferably 20% by weight or less.
  • the (a-1) hydroxyl group-terminated urethane prepolymer according to the present invention is obtained by reacting (ii) a polyol component and (i) an isocyanate group-terminated urethane prepolymer having a polyether skeleton.
  • polyols that can be used in the present invention include polyester-based polyols, polyether-based polyols, acrylic polyols, polycarbonate polyols, polyolefin polyols, castor oil polyols, and the like, or mixtures or copolymers thereof.
  • the (ii) polyol component contains (ii-1) the crystalline aliphatic polyester polyol as an essential component of the present invention.
  • the component (ii) may include the component (ii-2) and the component (ii-3).
  • the component (ii) and the component (i) have a molar ratio between the hydroxyl group of the component (ii) and the isocyanate group of the component (i) (hereinafter, referred to as hydroxyl group/isocyanate group molar ratio). It can be obtained by reacting in a molar ratio of more than 1, that is, by reacting the hydroxyl group in an excessive amount with respect to the isocyanate group. From the viewpoint of obtaining good coatability, the hydroxyl group/isocyanate group molar ratio is preferably 1.5 or more, more preferably 1.8 or more, still more preferably 1.9 or more, and imparts toughness to the adhesive. From the viewpoint of improving the adhesive strength with 3.0, 3.0 or less is preferable, 2.5 or less is more preferable, and 2.1 or less is further preferable.
  • polyester polyol (Ii) A polyester-based polyol used as a polyol component (hereinafter sometimes simply referred to as “polyester polyol”) is a polyester having more than one OH group (preferably two terminal OH groups). means.
  • the moisture-curable hot melt adhesive according to the present invention has a functionality of at least 2 in the polyol component (ii) and is solid at room temperature (preferably at least partially crystalline solid). It contains at least one polyester polyol.
  • the moisture-curable hot melt adhesive has one or more kinds of polyester polyols having a functionality of at least 2 and at least partially crystalline in (ii) a polyol component, and a functionality of at least 2 Having one or more aromatic polyester polyols, alicyclic polyester polyols, one or more polyester polyols having a functionality of at least 2 and being liquid at room temperature, and/or a functionality of at least two. You may contain the 1 type or multiple types of polyether polyol which has.
  • polyester polyol is meant that the polyester polyol is not completely crystalline and partially or additionally contains certain amorphous parts.
  • Such a polyester polyol has a crystalline melting point (Tm) and a glass transition temperature (hereinafter sometimes referred to as “Tg”).
  • Tm crystalline melting point
  • Tg glass transition temperature
  • the melting point indicates the temperature at which the crystalline portion melts.
  • the melting point can be determined as a main endothermic peak (crystal melting peak) by, for example, differential thermal analysis by DSC measurement. According to the DSC measurement (heating and cooling rate in the second heating step is 10 K/min), the melting point of the at least partially crystalline polyester polyol is from about 35°C to about 120°C.
  • the glass transition temperature of at least partially crystalline polyester polyols is generally well below room temperature, for example.
  • Suitable partially crystalline polyester polyols (hereinafter referred to as "crystalline aliphatic polyester polyols") are known to those skilled in the art.
  • the polyester polyol may be a polyester polyol linked with diisocyanate.
  • (Ii-1) Crystalline Aliphatic Polyester Polyol As the crystalline aliphatic polyester polyol (ii-1), for example, a compound obtained by reacting a compound having two or more hydroxyl groups with a polybasic acid can be used. It is also possible to use bifunctional starter molecules, for example polycaprolactone derivatives based on 1,6-hexanediol and the like.
  • the compound having two or more hydroxyl groups includes, for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5.
  • -Number of carbon atoms such as pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol 2 to 16 linear aliphatic diols; and aliphatic triols such as trimethylolethane, trimethylolpropane, pentaerythritol, and glycerin.
  • the number of carbon atoms of the straight-chain aliphatic diol is preferably 4 to 14, and more preferably 6 to 12 from the viewpoint of enhancing the crystallinity.
  • polybasic acid examples include straight chain aliphatic dicarboxylic acids having 2 to 16 carbon atoms such as oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, and 1,12-dodecanedicarboxylic acid. Can be used. Among these, the number of carbon atoms of the linear aliphatic dicarboxylic acid is preferably 6 to 14, and more preferably 8 to 12 from the viewpoint of enhancing the crystallinity. These polybasic acids can be used alone or in combination of two or more.
  • a long-chain aliphatic polyester polyol represented by the following general formula (III) is preferable.
  • R 5 and R 6 each independently represent a straight-chain alkylene group having an even number of carbon atoms, and the total number of carbon atoms contained in R 5 and R 6 is 12 or more. Is. Further, n represents 3 to 40.
  • R 5 in the general formula (III) a straight-chain alkylene group having an even number of carbon atoms can be mentioned, and a range in which the total number of carbon atoms of R 5 and R 6 is 12 or more. Can be selected appropriately. Further, R 5 is preferably a straight-chain alkylene group having an even number of 4 or more carbon atoms.
  • R 6 in the general formula (III), the number of carbon atoms independently with R 5 can be mentioned straight-chain alkylene group with even number, the total number of carbon atoms included in R 5 and R 6 12 It can be appropriately selected within the above range. Further, R 6 is preferably a straight-chain alkylene group having an even number of 10 or more carbon atoms.
  • n in the general formula (III) is 3 to 40, preferably in the range of 9 to 25, and more preferably in the range of 9 to 15.
  • crystalline aliphatic polyester polyol examples include polyhexamethylene adipate, polyhexamethylene sebacate, polyhexamethylene dodecaneate, polydodecamethylene decanate, and the like, and polyhexamethylene sebacate and polyhexamethylene dodecaate. And polydodecamethylenedecaneate are preferred.
  • the crystalline fat is preferably 30° C. or lower and lower than the melting point of the crystalline aliphatic polyester polyol.
  • the base material such as plywood, MDF (medium density fiber board), particle board, etc. and decorative color on the surface It can be used as a decorative work member obtained by laminating a decorative sheet or film with a pattern, a decorative paper, a veneer, a metal foil or the like.
  • the crystalline aliphatic polyester polyol preferably has a number average molecular weight of 1,500 or more, more preferably 2,500 or more, further preferably 3,500 or more, preferably 10,000 or less, and 7,000 or less. More preferably, and even more preferably 6,000 or less.
  • the number average molecular weight is preferably in the range of 20,000 or more and 200,000 or less.
  • the melting point of the crystalline aliphatic polyester polyol is preferably 35° C. or higher, more preferably 45° C. or higher, further preferably 55° C. or higher, preferably 120° C. or lower, more preferably 100° C. or lower, further 80° C. or lower. preferable.
  • Aromatic polyester polyol for example, a reaction product of an aromatic polycarboxylic acid and a low molecular weight aliphatic polyol can be used.
  • aromatic polycarboxylic acid phthalic acid (eg orthophthalic acid, phthalic anhydride), isophthalic acid, terephthalic acid can be used. These aromatic polycarboxylic acids can be used alone or in combination of two or more kinds.
  • polybasic acids can be used in combination with the aromatic polycarboxylic acid, if necessary.
  • the content of the aromatic polycarboxylic acid is preferably 60% by mass or more and more preferably 80% by mass or more in all the polybasic acids.
  • polybasic acids examples include oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid and 1,12-dodecanedicarboxylic acid. These polybasic acids can be used alone or in combination of two or more kinds. Of these polybasic acids, adipic acid and sebacic acid are preferred.
  • Examples of the low molecular weight aliphatic polyol include linear aliphatic diols having 2 to 16 carbon atoms, and among the linear aliphatic diols, ethylene glycol, 1,4-butanediol, 1, 6-Hexanediol is preferable, and ethylene glycol and 1,6-hexanediol are more preferable.
  • low molecular weight aliphatic polyols examples include neopentyl glycol, 1,3-butanediol, 2,2-diethyl-1,3-propanediol, 2,2-diethylpropanediol and 3-methyl-1,5.
  • Branched-chain aliphatic diols such as -pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-methyl-1,8-octanediol and 2,4-diethyl-1,5-pentanediol
  • neopentyl glycol and 3-methyl-1,5-pentanediol are preferable, and neopentyl glycol is more preferable.
  • examples of the low molecular weight aliphatic polyol include low molecular weight aliphatic polyols having an ether bond such as diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol.
  • diethylene glycol Is preferred.
  • an aromatic polyol obtained by subjecting bisphenol A, bisphenol F, etc. to ring-opening addition reaction of ethylene oxide, propylene oxide, ⁇ -butyrolactone, ⁇ -caprolactone, etc. can be used. Then, an aromatic polyol obtained by subjecting bisphenol A and ethylene oxide to a ring-opening addition reaction is preferable.
  • These low molecular weight aliphatic polyols can be used alone or in combination of two or more kinds.
  • neopentyl glycol and diethylene glycol are preferably used from the viewpoint of improving the amorphous property.
  • the number average molecular weight of the aromatic polyester polyol is preferably 900 or more, more preferably 1,000 or more, preferably 5,000 or less, and more preferably 3,000 or less.
  • aromatic polyester polyol for example, an aromatic polyester polyol having a number average molecular weight of 2,000 or more and 5,000 or less and a glass transition temperature of 30° C. or more (hereinafter referred to as “normal temperature solid fragrance”) is used.
  • Group polyester polyol and, for example, an aromatic polyester polyol having a number average molecular weight of 400 or more and 3500 or less and a glass transition temperature of 20° C. or less (hereinafter, “aromatic liquid at room temperature”).
  • aromatic polyester polyol for example, an aromatic polyester polyol having a number average molecular weight of 400 or more and 3500 or less and a glass transition temperature of 20° C. or less.
  • the aromatic polyester polyol which is solid at room temperature can be produced by, for example, a method of subjecting an aromatic polycarboxylic acid and a low molecular weight aliphatic polyol to a condensation reaction.
  • room temperature solid aromatic polyester polyols ethylene glycol and neopentyl glycol as low molecular weight aliphatic polyols, isophthalic acid and terephthalic acid as aromatic polycarboxylic acids, and glass transition temperatures of 30°C or higher. It is preferable to use an aromatic polyester polyol obtained by conducting a condensation reaction by a known method in combination with the above.
  • the aromatic polyester polyol which is solid at room temperature is a compound having a glass transition temperature of 30° C. or higher, and more preferably has a glass transition temperature in the range of 30° C. or higher and 70° C. or lower.
  • a room temperature solid aromatic polyester polyol having a glass transition temperature within such a range the adhesiveness to an aromatic resin such as polyethylene terephthalate can be further improved, and toughness can be imparted to improve the rising strength and final strength. It is possible to obtain a moisture-curable hot melt adhesive that improves strength and exhibits excellent adhesive strength.
  • Aromaatic polyester polyol that is liquid at room temperature for example, an aromatic polyester polyol obtained by reacting an aromatic polycarboxylic acid with a low molecular weight aliphatic polyol having an ether bond, a branched chain aliphatic diol, or the like is used. You can
  • a room temperature liquid aromatic polyester polyol has a glass transition temperature of 20°C or lower.
  • the aromatic polyester polyol which is liquid at room temperature preferably has a glass transition temperature in the range of -30°C to 20°C. Within this range, it is possible to obtain a moisture-curable hot melt adhesive capable of exhibiting even more excellent normal-state adhesive strength.
  • the alicyclic polyester polyol includes, for example, an alicyclic polyol and an aliphatic polycarboxylic acid (or an acid derivative thereof), or an aliphatic polyol and an alicyclic polycarboxylic acid (or an acid derivative thereof). It can be produced by a known reaction method. The manufacturing method is not particularly limited.
  • alicyclic polyol examples include cyclopentanediol, cyclohexanediol, cyclohexanedimethanol, hydrogenated bisphenol A, and addition of alkylene oxide such as ethylene oxide (EO) and propylene oxide (PO) added to these polyols.
  • EO ethylene oxide
  • PO propylene oxide
  • Objects can also be used. These may be used alone or in combination of two or more.
  • aliphatic polyol examples include straight chain aliphatic diols having 2 to 16 carbon atoms, polyalkylene oxide oligomers, branched chain aliphatic diols, and aliphatic triols. Among them, 1,6- Hexanediol, 1,8-octanediol, 1,10-decanediol and neopentyl glycol are preferred, and neopentyl glycol is more preferred.
  • alicyclic polycarboxylic acid examples include cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, and the like, and among these, cyclohexanediadipate (CHDA) is preferable.
  • CHDA cyclohexanediadipate
  • aliphatic polycarboxylic acid examples include linear aliphatic dicarboxylic acid having 2 to 16 carbon atoms.
  • adipic acid, sebacic acid, decanedioic acid and dodecanedioic acid are preferable, and sebacic acid and dodecanedioic acid are more preferable. These may be used alone or in combination of two or more.
  • alicyclic polycarboxylic acid and the aliphatic polycarboxylic acid for example, a lower alkyl ester derivative such as methyl ester, a corresponding acid derivative such as an acid anhydride or an acid halide may be used.
  • the number average molecular weight (Mn) of the alicyclic polyester polyol is preferably 500 or more, more preferably 700 or more, preferably 5,000 or less, more preferably 3,000 or less, still more preferably 2,000 or less.
  • the moisture-curable polyurethane hot melt adhesive has an appropriate melt viscosity, is excellent in coating workability (viscosity suitability) and adhesive strength, and has a base material and a surface member ( It is possible to prevent the surface member from peeling off in a complicated shaped portion of the base material after being bonded to a sheet, a film, a metal foil, a paper or the like).
  • Examples of the aliphatic polyester polyol that is liquid at room temperature include aliphatic polyester polyols that have a number average molecular weight of 4,000 or more and 7,000 or less and that have a branched chain aliphatic group and that are liquid at room temperature.
  • the aliphatic polyester polyol which is liquid at room temperature, has a number within the range of 4,000 or more and 7,000 or less from the viewpoint of maintaining both good wettability of the resulting adhesive in a low temperature atmosphere and high initial adhesive strength. It is essential to have an average molecular weight.
  • the number average molecular weight of the aliphatic polyester polyol which is liquid at room temperature is less than 4,000, the wettability of the resulting adhesive with respect to the base material in a low temperature atmosphere may decrease, and the normal-state adhesive strength may significantly decrease. ..
  • the number average molecular weight exceeds 7,000, the crosslinked density of the cured product of the obtained adhesive increases, and the hot water adhesive strength may decrease.
  • the aliphatic polyester polyol which is liquid at room temperature has a branched chain aliphatic group from the viewpoint of improving the normal adhesive strength to the poorly adherent substrate.
  • 2,2-dimethyl-1,3-propylene group 2-methyl-1,3-propylene group, 1,2-diethyl-1,3-propylene group, 3,2-diethyl group -1,3-propylene group, 3-methyl-1,5-pentane group, 2-ethyl-2-butyl-propylene group, 2-methyl-1,8-octane group, 2,4-diethyl-1,5 -A branched-chain aliphatic diol group such as pentane group.
  • a 2,2-dimethyl-1,3-propylene group and a 3-methyl-1,5-pentane group are preferable, and a 2,2-dimethyl-1,3-propylene group is more preferable.
  • Aliphatic polyester polyols that are liquid at room temperature include condensation reaction of branched-chain aliphatic diols and polycarboxylic acids, ring-opening polymerization of caprolactone and ⁇ -butyl lactone using branched-chain aliphatic diols as initiators, etc.
  • neopentyl glycol 3-methyl-1,5-pentanediol (of which, neopentyl glycol is more preferred), a straight-chain aliphatic diol having 2 to 12 carbon atoms and a carbon atom
  • a straight-chain aliphatic diol having 2 to 12 carbon atoms
  • a carbon atom The use of an aliphatic polyester polyol obtained by reacting a linear aliphatic dicarboxylic acid having 4 to 10 units provides a moisture-curable polyurethane hot melt adhesive having good wettability in a low temperature environment. More preferable.
  • a low molecular weight aliphatic polyol or aliphatic polycarboxylic acid other than the compounds mentioned above can be used in combination, if necessary.
  • aliphatic polyols As other low molecular weight aliphatic polyols, other aliphatic polyols can be used. Among these, it is preferable to use a linear aliphatic diol having 2 to 12 carbon atoms.
  • aliphatic polycarboxylic acid for example, adipic acid, sebacic acid, azelaic acid, decamethylenedicarboxylic acid, etc. can be used in combination. Among these, it is preferable to use a linear aliphatic dicarboxylic acid having 4 to 10 carbon atoms.
  • the (ii) polyol component may contain a polycarbonate polyol.
  • the hydrolysis resistance and the moisture resistance of the moisture-curable hot melt adhesive according to the present invention can be improved.
  • polycarbonate polyol for example, a compound obtained by reacting a carbonic acid ester and/or phosgene with a diol can be used.
  • carbonic acid ester for example, dimethyl carbonate, diphenyl carbonate, etc. can be used. These compounds may be used alone or in combination of two or more.
  • diol examples include linear aliphatic diols such as 1,5-pentanediol, 1,6-hexanediol, and 1,9-nonanediol; neopentyl glycol, 3-methyl-1,5-pentanediol, and 2 Branched chain aliphatic diols such as -methyl-1,8-octanediol; 1,4-cyclohexanedimethanol, bisphenol A and the like can be used. These compounds may be used alone or in combination of two or more.
  • a polycarbonate polyol having only one type of linear aliphatic diol is solid at room temperature and has crystallinity.
  • Examples of the polycarbonate polyol obtained by copolymerizing at least two kinds of diols include, for example, a copolymerized polycarbonate diol whose glycol component is 3-methyl-1,5-pentanediol and 1,6-hexanediol, Examples thereof include a copolycarbonate diol composed of 1,5-pentanediol and 1,6-hexanediol, and a copolycarbonate diol composed of 2-methyl-1,8-octanediol and 1,9-nonanediol.
  • the number average molecular weight of the polycarbonate polyol is preferably 500 or more, more preferably 1,000 or more, and more preferably 5,000 or less, from the viewpoint that the adhesiveness of the moisture-curable hot melt adhesive according to the present invention can be further improved. , 4,000 or less is more preferable.
  • the glass transition temperature (Tg) of the polycarbonate polyol is preferably in the range of -30 to 20°C from the viewpoint of further improving drop impact resistance and adhesiveness.
  • polyester polyols and polycarbonate polyols described above are liquid (glass transition temperature Tg ⁇ 20° C.) or solid at room temperature. And, polyester polyols and polycarbonate polyols that are solid at room temperature are amorphous (Tg>20° C.) or at least partially crystalline.
  • the moisture-curable hot melt adhesive according to the present invention may further contain (ii-2) a hydroxyl group-containing (meth)acrylate polymer as a polyol component.
  • the component (ii-2) does not have to contain a silyl group.
  • the polymer as the component (ii-2) is solid at room temperature.
  • the component (ii-2) preferably has an alkoxysilyl group, and may be, for example, an alkoxysilyl group-containing methyl methacrylate-based polymer having a hydroxyl group.
  • the alkoxysilyl group-containing methyl methacrylate-based polymer having a hydroxyl group can be synthesized by introducing a hydroxyl group into an alkoxysilyl group-containing (meth)acrylic acid ester polymer (for example, the component (D) described below).
  • the (A) alkoxysilyl group-containing urethane prepolymer according to the present invention is also referred to as a crystalline part (hereinafter also referred to as “PEs segment”) that is solid at room temperature due to crystalline polyester and a polyether (hereinafter also referred to as “PE segment”). It is referred to as “) and a block polymer connected by a urethane bond of “(crystalline segment)-(amorphous segment)-(crystalline segment) type” composed of an amorphous part that is liquid at room temperature. Obtained by introducing a crystalline methyl methacrylate-based copolymer segment (hereinafter, also referred to as “PAc segment”), imparts toughness to the moisture-curable hot melt adhesive and improves rising strength. You can
  • the adhesiveness and heat resistance can be further improved by the crosslinking reaction of the alkoxysilyl group.
  • (PEs segment)-(PE segment)-(PEs segment) type, (PAc segment)-(PE segment)-(PAc segment) type, (PEs segment)-(PE segment )-(PAc segment) type block polymer is obtained.
  • a compatibilizing agent for the crystalline polyester and the methyl methacrylate-based copolymer it becomes a compatibilizing agent for the crystalline polyester and the methyl methacrylate-based copolymer, and becomes an incompatible crystalline polyester and the methyl methacrylate-based copolymer. It is possible to improve the adhesive strength by compatibilizing the copolymer.
  • various known methods can be used to introduce a hydroxyl group into the alkoxysilyl group-containing methyl methacrylate polymer. The following method can be mentioned as an example of the method of introducing a hydroxyl group.
  • a method of introducing a hydroxyl group a method of polymerizing using a thiol compound having a hydroxyl group and a metallocene compound is preferable from the viewpoint that one hydroxyl group can be introduced.
  • the thiol compound having a hydroxyl group include 2-mercaptoethanol and the like.
  • the number (average value) of hydroxyl groups of component (ii-2) is preferably 0.3 or more, more preferably 0.5 or more, and 0.8 or more per molecule of the polymer of component (ii-2). Is more preferable, 3 or less is preferable, 2 or less is more preferable, and 1.5 or less is further preferable.
  • the number average molecular weight of the component (ii-2) is preferably 1,000 or more, more preferably 2,000 or more, further preferably 3,000 or more, more preferably 50,000 or less, and more preferably 30,000 or less. It is preferably 15,000 or less, and more preferably 15,000 or less.
  • the weight ratio of the PE segment, the PEs segment, and the PAc segment is such that the PE segment is 15 parts by weight or more and 55 parts by weight when the total of the PE segment, the PEs segment, and the PAc segment is 100 parts by weight. It is preferable that the PEs segment is 15 parts by weight or more and 50 parts by weight or less, and the PAc segment is 10 parts by weight or more and 45 parts by weight or less.
  • the unsaturated compound having a hydroxyl group is preferably a (meth)acrylic acid alkyl ester having a hydroxyl group.
  • examples of such compounds include monohydroxy acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl acrylate; glycerin mono ( Examples thereof include polyhydroxy acrylate such as (meth)acrylate. Of these, monohydroxy acrylate is preferred.
  • the mixing ratio of the unsaturated compound having a hydroxyl group is such that the average number of hydroxyl groups of the unsaturated compound having a hydroxyl group is not less than 3 and not more than 3 with respect to one molecule of the polymer of the component (ii-2). Is preferable, and a ratio of 1.1 or more and 2 or less is more preferable.
  • the moisture-curable hot melt adhesive according to the present invention can further contain (ii-3) polyether polyol as the (ii) polyol component.
  • examples of the (ii-3) polyether polyol include the polyether polyols described in “(i) Isocyanate-terminated urethane prepolymer having polyether skeleton”.
  • the (a-1) hydroxyl group terminated urethane prepolymer according to the present invention is prepared by reacting the component (i) isocyanate group terminated urethane prepolymer having a polyether skeleton with the component (ii) polyol component.
  • a compound containing active hydrogen that is, a component (iii) represented by the following general formula (IV), which has an alkoxysilyl group and an amino group or a mercapto group, is used.
  • the component (a-1) can be prepared by further reacting.
  • X, Y, and Z are the same or different, and are a linear or branched (C1-C8) alkyl group, a cyclic (C3-C8) alkyl group or a (C1-C8) alkoxy group.
  • R is a linear or branched alkylene group having 1 to 8 carbon atoms, or R is Represents a cyclic alkylene group of 3 to 8, W represents -SH, or -NH-R' (wherein R'is a hydrogen atom, a straight chain or branched chain having 1 to 8 carbon atoms) Represents an alkyl group, a cyclic alkyl group having 3 to 8 carbon atoms, an aryl group, or a group represented by the following general formula (V)).
  • R′′ and R′′′ are the same or different and are linear or branched alkyl groups having 1 to 8 carbon atoms or cyclic alkyl groups having 3 to 8 carbon atoms. Indicates.
  • Examples of the compound represented by the general formula (IV) include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-butyl-3-aminopropyltrimethoxysilane, N -Propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 4-amino-3,3-dimethyl-butyl-trimethoxysilane, 4-amino-3,3-dimethyl-butyl -Methyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropyltriethoxysilane.
  • a compound represented by the general formula (IV) having an alkoxysilane group and an amino group that is, a compound in which the residue W of the general formula (IV) corresponds to a —NHR′ group.
  • the compound (iii-1) represented by the general formula (IV) having an alkoxysilane group and a secondary amino group that is, the residue W of the general formula (IV) is a —NR′2 group (R′ is It is more preferable to use a compound (corresponding to each other), wherein the residue R′ is preferably a compound corresponding to the general formula (V)).
  • These compounds can be prepared, for example, by the method described in Japanese Patent No. 3342552.
  • Examples of the compound having an alkoxysilyl group and an amino group or a mercapto group include N-(3-triethoxysilylpropyl)aspartic acid diethyl ester and N-(3-triethoxysilylpropyl)aspartic acid dimethyl ester. , N-(3-triethoxysilylpropyl)aspartic acid di-n-butyl ester, N-(3-trimethoxysilylpropyl)aspartic acid dimethyl ester, and N-(3-trimethoxysilylpropyl)aspartic acid diethyl ester Etc.
  • the component (iii) represented by the general formula (IV), a compound having an alkoxysilyl group and an amino group or a mercapto group, and an isocyanate group-containing prepolymer (that is, the component (i)) are, for example, The reaction is carried out in a temperature range of 60°C or higher, preferably 80°C or higher and 150°C or lower, preferably 130°C or lower.
  • the component (i) is a crystalline polyester (hereinafter sometimes referred to as “crystalline PEs”) and/or a hydroxyl group-containing polymethyl methacrylate polymer (hereinafter referred to as “hydroxyl group-containing PAc”). And an isocyanate group is contained.
  • crystalline PEs crystalline polyester
  • hydroxyl group-containing PAc hydroxyl group-containing polymethyl methacrylate polymer
  • the amount ratio (blending ratio) of the component (iii) and the component (i), that is, per mol of the component (i) containing the crystalline PEs and the hydroxyl group-containing PAc (in other words, the isocyanate group 1 (Per mol), (iii) the compound having an alkoxysilyl group and an amino group or a mercapto group is preferably 0 mol or more, preferably 0.3 mol or less, more preferably 0.2 mol or less, It is more preferably 0.1 mol or less.
  • Component (i), component (ii), and compounding ratio of component (iii) The amount ratio (mixing ratio) of the component (i), the component (ii) and the component (iii) is 1 mol of the isocyanate group of the component (i) and the hydroxyl group (—OH) of the component (ii) and the component (i). It is preferable to adjust the total molar ratio of (iii) with the amino group (—NH) or the mercapto group (—SH) within the range of 1.2 mol or more and 4.0 mol or less.
  • the hydroxyl group-terminated urethane prepolymer (a-1) obtains a constant NCO value by mixing an excess polyol component and polyisocyanate with respect to the polyisocyanate. Up to (usually 30 minutes to 2 hours) by stirring the homogeneous mixture.
  • the reaction temperature is selected from 80°C to 150°C (preferably 100°C to 130°C).
  • the hydroxyl group-terminated urethane prepolymer can also be continuously prepared by using a cascade of a stirring tank or a predetermined mixing unit, for example, a high speed mixer based on the rotor-stator principle. ..
  • (a-1) a hydroxyl group-terminated urethane prepolymer is reacted with (a-2) an isocyanate silane.
  • the amount ratio of the component (a-1) to the component (a-2) was such that the isocyanate group contained in the component (a-2) was 0. It is preferable to adjust in the range of 5 mol or more and 1.1 mol or less.
  • Examples of the (a-2) isocyanate silane according to the present invention include silane compounds represented by the following general formula (VI).
  • R 7 is a divalent alkylene group having 3 to 10 carbon atoms
  • R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms or an alkyl group having 1 to 6 carbon atoms. It is an aryl group of 6 to 8 and x has a value of 0, 1, or 2. From the viewpoint of good reactivity, x is preferably 0, R 9 is preferably an alkyl group having 1 to 2 carbon atoms, and more preferably an alkyl group having 1 carbon atom.
  • R 7 is preferably a divalent alkylene group having 3 carbon atoms.
  • Examples of the (a-2) isocyanate silane include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatomethylpropyltrimethoxysilane, 3-isocyanatomethylpropyltriethoxysilane, Examples thereof include 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatopropyldimethylmethoxysilane, and 3-isocyanatomethylpropyldimethylmethoxysilane. From the viewpoint of good reactivity, 3-isocyanatopropyltrimethoxysilane and 3-isocyanatopropyltriethoxysilane are preferable.
  • the (A) alkoxysilyl group-containing urethane prepolymer according to the present invention obtained by reacting the (a-1) hydroxyl-terminated urethane prepolymer with the (a-2) isocyanate silane is a crystalline polyester that is solid at room temperature. It is a "(crystalline segment)-(amorphous segment)-(crystalline segment) type block polymer composed of a portion and an amorphous portion which is liquid at room temperature due to polyether. Based on both the segmental skeleton of the crystalline part and the non-crystalline part, a sufficient bondable time can be secured after application, and an instantaneous adhesive force is exhibited after the bonding.
  • the amorphous segment By arranging the amorphous segment in the central portion of the block polymer, it has both toughness and flexibility, and exhibits excellent initial adhesive strength. Although the crystalline polyester and the polyether have low compatibility, each of the above properties is exhibited by forming the block structure.
  • the compounding ratio of (a-1) hydroxyl-terminated urethane prepolymer to (a-2) isocyanate silane is preferably 0.3 mol or more, more preferably 0.5 mol or more, of isocyanate groups per 1 mol of hydroxyl groups. It is more preferable to be present, and it is further preferable to be 0.7 mol or more.
  • the component (a-2) may be added in excess with respect to the component (a-1). In this case, the excess component (a-2) functions as an adhesion promoter.
  • the isocyanate group when the isocyanate group is 1 mol or less, it is preferable to inactivate the unreacted hydroxyl group by reacting monoisocyanate.
  • the monoisocyanate include monoisocyanates having an isocyanate group bonded to a C6 to C18 alkyl group and a C6 to C18 aryl group.
  • stearyl isocyanate, phenyl isocyanate, and naphthyl isocyanate are preferable.
  • the moisture-curable hot melt adhesive according to the present invention may further contain (B) a silane-based adhesion promoter.
  • the silane-based adhesion-imparting agent (B) exerts an adhesion-imparting agent effect by moisture curing, and can improve final strength other than rising adhesion strength, water-resistant adhesion, and heat-resistant adhesion.
  • the alkoxysilyl group of the (B) silane-based adhesion imparting agent is preferably a methoxy group, an ethoxy group, or the like from the viewpoint of the hydrolysis rate.
  • the number of alkoxy groups in the silyl group is preferably 2 or more, and more preferably 3.
  • the functional group of the silane-based adhesion imparting agent (B) is preferably an amino group, an epoxy group or the like from the viewpoint of adhesiveness, and more preferably an amino group.
  • silane-based adhesion-imparting agent aminosilane, ketimine-based silane, epoxysilane, acrylsilane-based silane, vinylsilane-based coupling agent, mercaptosilane, urea silane-based coupling agent, isocyanurate silane, isocyanate silane, etc. are used. be able to.
  • aminosilane examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-( ⁇ -aminoethyl)-3-aminopropyltrimethoxysilane, N-( ⁇ -aminoethyl)-3- Aminopropyltriethoxysilane, N-( ⁇ -aminoethyl)-3-aminopropylmethyldiethoxysilane and other mono-silylaminosilanes, bis-(trimethoxysilylpropyl)amine, bis-(triethoxysilylpropyl)amine, Examples thereof include bis-(triethoxysilylpropyl)ethylenediamine, N-[2-(vinylbenzylamino)ethyl]-3-aminopropyltrimethoxysilane, and bis-silylaminosilane such as aminoethyl-aminopropyltrimethoxysi
  • Examples of ketimine silanes include N-(1,3-dimethylbutylidene)-3-(triethoxysilyl)-1-propanamine.
  • Examples of the epoxysilane include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and 3-glycidoxypropylmethyldiene.
  • Examples include ethoxysilane.
  • Examples of the acrylic silane-based silane include 3-methacryloxypropyltrimethoxysilane.
  • Examples of vinylsilane-based coupling agents include vinyltrimethoxysilane, methylvinyldimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, allyltri( ⁇ -methoxysilane), and the like.
  • Examples of the mercaptosilane include 3-mercaptopropyltrimethoxysilane and the like.
  • Examples of the urea silane coupling agent include 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane and the like.
  • Examples of the isocyanurate silane include tris-(trimethoxysilylpropyl) isocyanurate.
  • Examples of the isocyanate silane include 3-isocyanatopropyltriethoxysilane.
  • the (B) silane-based adhesion imparting agent a reaction product of the above aminosilane and epoxysilane, a reaction product of aminosilane and isocyanatesilane, a reaction product of aminosilane and a silane having a (meth)acryloyloxy group, aminosilane With an epoxy resin (bisphenol A diglycidyl ether, phenylglycidyl ether, etc.), a reaction product of an aminosilane and a polyisocyanate, a reaction product of an aminosilane and a polyacrylate, etc.; A condensed condensate (preferably an aminosilane condensate obtained by partially condensing the above-mentioned aminosilane, isocyanate silane, an aminosilane reactant, and a mixture of the reactants); an amino-modified silyl polymer or silylated amino which is a derivative thereof. Polymers, unsaturated aminosilane complexes, phenylg
  • the molecular weight of the (B) silane-based adhesion-imparting agent is preferably a compound having a molecular weight of 320 or more because it is difficult to volatilize during melting of the hot melt, more preferably 400 or more, and further preferably 450 or more.
  • a silane-based adhesive imparting agent having two or more silyl groups such as bis-silylaminosilane, isocyanurate silane, aminosilane reaction product, and aminosilane condensate is more preferable because the adhesiveness and the volatility of the hot-melt adhesive when they are melted are more preferable.
  • Aminosilane reactants and aminosilane condensates are more preferred, and aminosilane reactants are most preferred.
  • the aminosilane reactant may be reacted by separately adding a reaction material during the mixing process.
  • the (B) silane-based adhesion promoter may be used alone or in combination of two or more kinds.
  • the amount of the (B) silane-based adhesion promoter used is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and particularly preferably 1 part by mass or more, relative to 100 parts by mass of the component (A). Is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, particularly preferably 5 parts by mass or less. If it is less than 0.01 part by mass, the effect of imparting adhesiveness and the effect as a curing catalyst are insufficient, while if it exceeds 20 parts by mass, the effect as a catalyst depending on the added amount is not remarkable and it is economical. Not good for
  • the modified resin (C) is mixed to control the possible bonding time of the compounding system and to reduce the melt viscosity, and has the function of modifying and adjusting the physical properties.
  • the modified resin (C) can improve the bonding time and the stand-up adhesive strength.
  • the component (C) according to the present invention exhibits different functions depending on the type of the segment that constitutes the resin to which the component (C) is added. That is, the component (C) exerts a function of adjusting physical properties as a modified resin when added to a resin mainly composed of a hard segment, and as a tackifying resin when added to a resin mainly composed of a soft segment. Exert the function of. Since the skeleton of the component (A) according to the present invention is mainly composed of hard segments such as crystalline polyester, the resins exemplified below act as a modified resin.
  • modified resin (C) examples include terpene-based resins, aromatic-modified terpene resins and hydrogenated terpene resins obtained by hydrogenating the same, terpene-phenol resins obtained by copolymerizing terpenes and phenols, phenol resins, Modified phenol resin, xylene-phenol resin, cyclopentadiene-phenol resin, coumarone indene resin, rosin resin, rosin ester resin, hydrogenated rosin ester resin, xylene resin, low molecular weight polystyrene resin, styrene copolymer resin, styrene Block copolymers, hydrogenated products of styrene block copolymers, petroleum resins (for example, C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, etc. Can be mentioned. These may be used alone or in combination of two or more.
  • styrene block copolymers and hydrogenated products thereof include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-ethylenebutylene-styrene block copolymer.
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEBS polymer
  • SEPS styrene-ethylene propylene-styrene block copolymer
  • SIBS styrene-isobutylene-styrene block copolymer
  • the (C) modified resin is preferably a terpene phenol resin or an aromatic petroleum resin from the viewpoint of good compatibility with the organic polymer having a crosslinkable silicon group and good heat stability of the adhesive.
  • the aromatic petroleum resin is preferably an aromatic styrene resin or an aliphatic-aromatic copolymer styrene resin, more preferably a terpene phenol resin or an aliphatic-aromatic copolymer styrene resin. From the viewpoint of VOC and fogging, it is preferable to use an aliphatic-aromatic copolymer styrene resin.
  • the addition amount of 100 parts by mass of the component (A) of the modified resin (C) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, particularly preferably 30 parts by mass or more, and 200 parts by mass or less.
  • the amount is preferably 150 parts by mass or less, more preferably 120 parts by mass or less.
  • the (D) alkoxysilyl group-containing methyl methacrylate-based polymer is a (meth)acrylic ester polymer having methyl methacrylate as an essential monomer.
  • the (D) alkoxysilyl group-containing methyl methacrylate-based polymer can impart toughness to the moisture-curable hot melt adhesive and improve the rising strength and the final strength. Further, the heat resistance of the moisture-curable hot melt adhesive can be improved by the crosslinking reaction of the alkoxysilyl group.
  • the alkoxysilyl group of the (meth)acrylic ester polymer having an alkoxysilyl group as the component (D) and having a glass transition temperature of ⁇ 20° C. to 120° C. has an alkoxy group bonded to a silicon atom, and has a silanol group.
  • Examples of the alkoxysilyl group include groups represented by general formula (VII) shown below.
  • R 10 represents an alkyl group having 1 to 20 carbon atoms, a substituted alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a carbon atom.
  • the aralkyl groups of the formulas 7 to 20 are shown, and when two or more R 10 are present, they may be the same or different.
  • X represents an alkoxy group, and when two or more X are present, they may be the same or different.
  • a represents 0, 1, 2, or 3.
  • a is preferably 2 or 3. When a is 3, the curing speed is higher than when a is 2.
  • R 10 examples include an alkyl group such as a methyl group and an ethyl group, a substituted alkyl group such as a methoxymethyl group, and a cycloalkyl group such as a cyclohexyl group.
  • a methyl group is preferable, and a substituted alkyl group in which ⁇ carbon is substituted with a polar group is preferable from the viewpoint of increasing the curing rate.
  • the alkoxy group represented by X is not particularly limited and may be a conventionally known alkoxy group.
  • a group having a smaller number of carbon atoms has higher reactivity, and the reactivity becomes lower as the number of carbon atoms increases in the order of methoxy group>ethoxy group>propoxy group.
  • a methoxy group or an ethoxy group is usually used, though it can be selected according to the purpose or application.
  • a is preferably 2 or more in consideration of curability.
  • the alkoxysilyl group is preferably a trimethoxysilyl group or a triethoxysilyl group, and more preferably a trimethoxysilyl group, from the viewpoint of high reactivity. From the viewpoint of obtaining a cured product having flexibility, a methyldimethoxysilyl group and a methyldiethoxysilyl group are preferable.
  • alkoxysilyl groups can be used alone or in combination of two or more.
  • the alkoxysilyl group may be present on the main chain or the side chain, or both.
  • the number (average value) of the alkoxysilyl groups of the component (D) is preferably 0.3 or more, more preferably 0.5 or more, still more preferably 1 or more, and preferably 5 or less per molecule of the polymer. 3 or less are more preferable, and 2.5 or less are still more preferable. If the number of alkoxysilyl groups contained in the molecule is less than 0.3, the curability will be insufficient, and if it is too large, the network structure will be too dense and good mechanical properties will not be exhibited.
  • the method (1) of copolymerizing an unsaturated compound having an alkoxysilyl group is preferable from the viewpoint of easily introducing an alkoxysilyl group.
  • a method in which the method (1) and the method (2) are used in combination is also preferable.
  • a (meth)acrylic acid alkyl ester having an alkoxysilyl group or vinylsilane is preferable.
  • examples of such a compound include 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane and the like.
  • examples thereof include vinylalkoxysilanes such as roxypropylalkoxysilane and vinyltriethoxysilane.
  • alkyl (meth)acrylates having a substituted alkyl group in which the alkyl group having an alkoxysilyl group has 3 or less carbon atoms are preferable.
  • the compounding ratio of the unsaturated compound having an alkoxysilyl group is such that the alkoxysilyl group having an unsaturated bond having an alkoxysilyl group is 1.1 on average with respect to the alkoxysilyl group per molecule of the polymer of the component (D). It is preferable that the number is 5 or less, preferably 1.1 or more and 3 or less.
  • a repeating unit represented by the general formula (VIII) containing methyl methacrylate as an essential monomer component examples thereof include a random copolymer of methyl methacrylate.
  • R 11 represents a hydrogen atom or a methyl group
  • R 12 represents a hydrocarbon group which may have a substituent.
  • (meth)acrylic acid ester means acrylic acid ester and/or methacrylic acid alkyl ester.
  • (Meth)acrylic acid alkyl ester is preferable as a monomer that becomes another repeating unit of methyl methacrylate (MMA).
  • Examples of the (meth)acrylic acid alkyl ester compound include known compounds. Examples thereof include methyl acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, and stearyl (meth)acrylate. ..
  • n-butyl acrylate (Tg; -55°C), 2-ethylhexyl acrylate (Tg; -70°C), lauryl acrylate (Tg; -3°C)
  • (meth)acrylic acid alkyl ester having a glass transition temperature (Tg) of 0° C. or less.
  • the glass transition temperature in this paragraph is the glass transition temperature of the homopolymer.
  • the hydrocarbon group such as the alkyl group of the (meth)acrylic acid ester may have a substituent such as a hydroxyl group, an alkoxy group, a halogen atom and an epoxy group.
  • examples of such compounds include (meth)acrylic acid ester having a hydroxyl group such as hydroxyethyl (meth)acrylate, (meth)acrylic acid ester having an alkoxy group such as methoxyethyl (meth)acrylate, and glycidyl (meth).
  • examples thereof include (meth)acrylic acid ester having an epoxy group such as acrylate and (meth)acrylic acid ester having an amino group such as diethylaminoethyl (meth)acrylate.
  • An unsaturated compound (macromonomer or macromer) having a polymer chain such as an acrylic ester having a polystyrene chain can also be used.
  • a repeating unit derived from a compound having copolymerizability therewith may include units.
  • the compound having a copolymerizability with a (meth)acrylic acid ester compound include acrylic acid such as (meth)acrylic acid; amide compounds such as (meth)acrylamide; vinyl ether compounds such as alkyl vinyl ether; other acrylonitrile, styrene, Examples include ⁇ -methylstyrene, vinyl chloride, vinyl acetate and the like.
  • the amount of the monomer used in the polymer of the component (D) is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, 90% by mass in the polymer of the component (D). % Or more is particularly preferable, and 95% by mass or more is most preferable.
  • the amount of the macromonomer in the polymer of component (D) is preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass or less. Is particularly preferable.
  • the alkoxysilyl group-containing (meth)acrylic acid ester-based polymer of the component (D) has a glass transition temperature (Tg) of ⁇ 20° C. to 120° C.
  • the glass transition temperature is preferably ⁇ 20° C. or higher, more preferably 0° C. or higher, even more preferably 20° C. or higher, preferably 120° C. or lower, more preferably 100° C. or lower, still more preferably 80° C. or lower. If the glass transition temperature is lower than -20°C, the adhesive strength immediately after bonding tends to be poor.
  • the glass transition temperature can be easily estimated from the type and amount of the monomer component using the following Fox equation.
  • Tg is the glass transition temperature (K) of the acrylic resin
  • W 1 , W 2 ,..., W n are the weight fractions of the respective monomers
  • Tg 1 , Tg 2 , ⁇ ⁇ ⁇ , Tg n is the glass transition temperature of the homopolymer of each monomer.
  • the glass transition temperature of the homopolymer used in the Fox equation the value described in the literature can be used.
  • the molecular weight of the alkoxysilyl group-containing (meth)acrylic acid ester-based polymer of the component (D) is preferably a number average molecular weight (polystyrene-equivalent molecular weight measured by GPC method) of 3,000 or more, more preferably 4,000 or more. It is preferably 5,000 or more, more preferably 200,000 or less, more preferably 100,000 or less, still more preferably 50,000 or less. When the number average molecular weight is less than 3,000, the initial adhesive strength after coating is low, and when it exceeds 200,000, the viscosity during coating becomes too high and the workability deteriorates. Further, the polymer of the component (D) is preferably solid at room temperature.
  • a radical polymerization method can be used as the polymerization method of the component (D).
  • a radical polymerization method can be used as the polymerization method of the component (D).
  • a chain transfer agent such as lauryl mercaptan or 3-mercaptopropyltrimethoxysilane may be used to control the molecular weight.
  • a radical polymerization method using a thermal polymerization initiator can be used, and the polymer of the component (D) according to the present invention can be easily obtained by such a method.
  • Other polymerization methods such as the living radical polymerization method described in JP-A-2000-086998 may be used.
  • crosslinking catalyst (E) examples include a crosslinking catalyst (silanol catalyst) of an alkoxysilyl group-containing urethane prepolymer, and examples thereof include a titanate ester, a tetravalent organotin compound, and a divalent organotin compound such as tin octylate.
  • fluorinated polymer examples include organic polymers having a Si—F bond, and the organic polymers having a fluorosilyl group described in WO2015-088021 (hereinafter, also referred to as “fluorinated polymer”) and the like. Can be mentioned.
  • fluorinated polymer a polymer having a fluorosilyl group such as a difluoromethylsilyl group, a difluoromethoxysilyl group, a difluoroethoxysilyl group or a trifluorosilyl group at the end of the main chain or side chain is preferable.
  • the polymers described in the liquid polymer compound described later can be used, and among these polymers, a polyoxyalkylene polymer and/or (meth)acrylic acid can be used. Ester-based polymers are preferable because they are easy to handle and have a great effect of lengthening the possible bonding time.
  • the number average molecular weight of the fluorinated polymer is preferably 3,000 or more, more preferably 100,000 or less, more preferably 50,000 or less, and particularly preferably 30,000 or less in terms of polystyrene in GPC.
  • 0.01 part by mass or more is preferable, 0.05 part by mass or more is more preferable, and 0.1 part by mass or more is based on 100 parts by mass of the urethane prepolymer containing (A) alkoxysilyl group. Is more preferable, 80 parts by mass or less is preferable, 30 parts by mass or less is more preferable, and 20 parts by mass or less is further preferable.
  • crosslinking catalyst (E) a titanic acid ester, a tetravalent organotin compound, a divalent organotin compound, a tertiary amine compound, and an amidine are used because of their high catalytic effect and sufficient heat resistance.
  • a titanic acid ester a tetravalent organotin compound, a divalent organotin compound, a tertiary amine compound, and an amidine are used because of their high catalytic effect and sufficient heat resistance.
  • Compounds or their carboxylates, fluorinated polymers are preferred.
  • the addition amount of the other crosslinking catalyst is preferably 0.01 parts by mass or more based on 100 parts by mass of the (A) alkoxysilyl group-containing urethane prepolymer, and 0 0.05 parts by mass or more is more preferable, 0.2 parts by mass or more is further preferable, 10 parts by mass or less is preferable, 5 parts by mass or less is more preferable, and 3 parts by mass or less is further preferable.
  • the alkoxysilyl group-containing urethane prepolymer having a methyl methacrylate polymer skeleton (F) is a prepolymer obtained in the same manner as the component (D). For example, it has a structure in which PAc segments are bonded to both ends of a polyether skeleton.
  • the component (F) is obtained, for example, by reacting the component (i) with the component (ii-2).
  • the moisture-curable hot melt adhesive obtained by using the component (F) has a (PAc segment)-(PE segment)-(PAc segment) block, and such a block is tough as a moisture-curable hot melt adhesive.
  • the alkoxysilyl group improves the adhesive performance of the moisture-curable hot melt adhesive
  • the crosslinking reaction improves the heat resistance.
  • the PAc segment means a segment having a polyacrylate skeleton
  • the PE segment means a segment having a polyether skeleton.
  • the number average molecular weight of the polyether polyol used for preparing the isocyanate group-terminated urethane prepolymer having a polyether skeleton of component (i) used for component (F) is preferably 2,000 or more, and 3,000 or more. More preferably, it is more preferably 5,000 or more, still more preferably 30,000 or less, more preferably 25,000 or less, still more preferably 15,000 or less.
  • the photobase generator When irradiated with light, the photobase generator according to the present invention acts as a curing catalyst for the crosslinkable silicon-containing organic polymer such as the component (A).
  • the photobase generator is not particularly limited as long as it is a substance that generates a base by the action of active energy rays such as ultraviolet rays, electron beams, X-rays, infrared rays, and visible rays, and (1) ultraviolet rays, visible rays, infrared rays Salts of organic acids and bases that are decarboxylated and decomposed by irradiation with active energy rays, such as (2) compounds that decompose and release amines by intramolecular nucleophilic substitution reaction, rearrangement reaction, or the like, or (3) ultraviolet light -A known photobase generator such as a compound that releases a base by causing a predetermined chemical reaction upon irradiation with energy rays such as visible light and infrared rays can be used.
  • the photobase generator is preferably a photolatent amine compound that generates an amine compound by the action of active energy rays.
  • the photolatent amine compound include photolatent primary amines that generate an amine compound having a primary amino group by the action of active energy rays, and amine compounds having a secondary amino group by the action of active energy rays. Both the photolatent secondary amine generated and the photolatent tertiary amine generating an amine compound having a tertiary amino group by the action of active energy rays can be used.
  • a photolatent tertiary amine is more preferable from the viewpoint of high catalytic activity of the generated base, good generation efficiency of the base, and good storage stability as a composition. Therefore, benzylammonium salt derivatives, benzyl-substituted amine derivatives, ⁇ -aminoketone derivatives, and ⁇ -ammonium ketone derivatives are preferable. Particularly, when light is not radiated, a base is not generated, and when light is radiated, a base is efficiently generated. Therefore, a benzyl ammonium salt derivative and a benzyl-substituted amine derivative are more preferable.
  • various photobase generators described in International Publication No. WO2015/008709 can be used. These photobase generators may be used alone or in combination of two or more.
  • a crosslinkable silicon group-containing compound that generates an amino group by light can be used.
  • the crosslinkable silicon group-containing compound that produces an amino group by light include a crosslinkable silicon source compound that produces one or more amino groups selected from the group consisting of a primary amino group and a secondary amino group by light.
  • a crosslinkable silicon group-containing compound that produces one or more amino groups selected from the group consisting of primary amino groups and secondary amino groups by light is referred to as a photoaminosilane-generating compound.
  • a compound having a crosslinkable silicon group and a substituted or unsubstituted amino group is used as the aminosilane compound generated by light irradiation.
  • the substituent of the substituted amino group is not particularly limited, and examples thereof include an alkyl group, an aralkyl group, and an aryl group.
  • the crosslinkable silicon group is not particularly limited, and examples thereof include the crosslinkable silicon element, and a silicon-containing group having a hydrolyzable group bonded thereto is preferable.
  • an alkoxy group such as a methoxy group or an ethoxy group is preferable because it has mild hydrolyzability and is easy to handle.
  • the hydrolyzable group or hydroxyl group can be bonded to one silicon atom in the range of 1 to 3, preferably 2 or more, and particularly preferably 3.
  • the photoaminosilane generating compound is not particularly limited, and for example, various photoaminosilane generating agents described in International Publication No. WO2015/088021 can be used. These photo aminosilane generators may be used alone or in combination of two or more.
  • additives can be used in combination with the reactive hot melt adhesive according to the present invention.
  • additives include silylated polymers, liquid polymer compounds, fillers, diluents, stabilizers, flame retardants, curability modifiers, radical inhibitors, metal deactivators, and ozone deterioration inhibitors. , Phosphorus peroxide decomposers, lubricants, pigments, foaming agents, fungicides and the like. These additives may be used alone or in combination of two or more.
  • silylated polymer is mixed with the reactive hot melt adhesive for the purpose of controlling the sticking time of the reactive hot melt adhesive and reducing the melt viscosity, and modifies the physical properties of the reactive hot melt adhesive and/or Or, it has a function of adjusting.
  • the silylated polymer can improve coating workability and rising adhesive strength.
  • silylated polymer examples include silylated polyurethane (SPU) and silyl terminated polymer (STP), and examples of the silylated polyurethane include silylated polyurethane 1 (SPU1) and silylated polyurethane 2 (SPU2) described in detail below.
  • SPU1 silylated polyurethane 1
  • SPU2 silylated polyurethane 2
  • silylated polyurethane 2 is more preferable.
  • the silyl-terminated polymer and the silylated polyurethane 1 are preferable, and the silyl-terminated polymer is more preferable.
  • a silylated polyurethane that has a crystalline aliphatic polyester skeleton and/or a crystalline polycarbonate skeleton and is solid at room temperature is used.
  • a silylated polyurethane having a crystalline aliphatic polyester skeleton is more preferable, and a silylated polyurethane having a long-chain aliphatic polyester skeleton is more preferable.
  • a silylated polymer that has a polyoxyalkylene skeleton and is liquid at room temperature is preferable, and a silylated polymer that has a polyoxypropylene skeleton is preferable. More preferred is a silyl-terminated polyether having a polyoxypropylene skeleton.
  • a long-chain alkyl polyester having a number average molecular weight of 1,000 or more and 2,000 or less is particularly preferable.
  • silylated polyurethane having an aromatic polyester skeleton is preferable.
  • a silylated polyurethane having an aromatic polyester skeleton that is solid at room temperature is more preferable.
  • aromatic polyesters having a number average molecular weight of 1,000 or more and 2,000 or less are preferable from the viewpoint of reducing the melt viscosity.
  • the silylated polymer is an organic polymer having a crosslinkable silicon group.
  • the crosslinkable silicon group include groups represented by the general formula (VII) described in the section "(D) Alkoxysilyl group-containing methyl methacrylate polymer".
  • the silylated polymer has a plurality of crosslinkable silicon groups, the crosslinkable silicon group may be one type or two or more types may be used in combination.
  • the crosslinkable silicon group may be bonded to the main chain or side chain of the polymer, or both. From the viewpoint of excellent physical properties of the cured product such as tensile properties of the cured product, it is preferable that a crosslinkable silicon group is present at the terminal of the molecular chain.
  • the crosslinkable silicon group is preferably present in an average of 1.0 or more and 5 or less, and more preferably 1.1 or more and 3 or less in one molecule of the silylated polymer. If the number of crosslinkable silicon groups contained in the molecule is less than 1, the curability becomes insufficient, while if it is too large, the network structure becomes too dense and good mechanical properties are not exhibited.
  • the compounding ratio of the molecular chain terminal group-containing component and the crosslinkable silicon group-containing component is 0 mol of the crosslinkable silicon group to 1 mol of the molecular chain terminal group.
  • the amount is preferably 0.3 mol or more, more preferably 0.5 mol or more, still more preferably 0.7 mol or more.
  • the crosslinkable silicon group-containing component may be added in excess with respect to the molecular chain terminal group. In this case, the excess crosslinkable silicon group-containing component functions as an adhesion promoter.
  • the unreacted hydroxyl group remains, it is preferable to inactivate it by reacting the monoisocyanate described in the section “(a-2) Isocyanate silane” with the unreacted hydroxyl group.
  • Silylated polyurethane 1 can be prepared by reacting an isocyanate silane with a polymer having hydroxyl groups.
  • the silylated polyurethane 1 is prepared by reacting an isocyanate silane with a polyester polyol or a polycarbonate polyol or a polyoxyalkylene polyol as a polymer having a hydroxyl group, and a silylated polyester urethane 1 (SPEsU1) having a polyester skeleton, Examples thereof include silylated polycarbonate urethane 1 having a polycarbonate skeleton (SPCU1) and silylated polyether urethane 1 having a polyoxyalkylene skeleton 1 (SPEU1).
  • the polymer having a hydroxyl group may be a polymer having a hydroxyl group linked with diisocyanate.
  • Silylated polyurethane 2 is a compound obtained by reacting a silane having one group having reactivity with an isocyanate group, a polymer having a hydroxyl group with polyisocyanate, and an isocyanate group. It can be prepared by reacting with a polyurethane polymer containing.
  • the silylated polyurethane 2 include a silane having one group having reactivity with an isocyanate group, a polyurethane polymer having an isocyanate group, and a polyester polyol, a polycarbonate polyol, or a polyoxyalkylene as a polymer having a hydroxyl group.
  • SPEsU2 polyester skeleton
  • SPCU2 polycarbonate skeleton
  • SPEU2 silylated polyether urethane 2 having a polyoxyalkylene skeleton prepared by reacting with a polyol
  • the polymer having a hydroxyl group is preferably the polyester polyol described in the section of “polyester polyol”, the polycarbonate polyol described in the section of “polycarbonate polyol”, and polyoxyalkylene polyol.
  • the silyl-terminated polymer (STP) can be prepared by a hydrosilylation reaction of a polymer having a double bond at the terminal.
  • the polymer having a double bond at the end is a poly(meth)acrylate polymer or a polyether polymer, and a silyl-terminated polyether (STPE) having a polyoxyalkylene skeleton and a silyl-terminated polyacrylate (STPA) having a polyacrylate skeleton. And so on.
  • the silyl-terminated polyether can be obtained, for example, by reacting an unsaturated group-containing polyoxyalkylene polymer with a hydrosilane having a crosslinkable silicon group or a mercapto compound having a crosslinkable silicon group to hydrosilylate or mercapto.
  • This synthetic method is a method for obtaining a polyoxyalkylene polymer having a crosslinkable silicon group (silyl-terminated polyether), and for example, a hydrosilylation reaction of an allyl-terminated polyoxyalkylene polymer described in JP-A-2006-0777036. Can be mentioned as a synthesis example.
  • the unsaturated group-containing polyoxyalkylene polymer can be prepared by reacting an organic polymer having a functional group such as a hydroxyl group with an organic compound having an active group and an unsaturated group reactive with the functional group. ..
  • the silyl-terminated polyacrylate comprises at least one acrylate component and at least one silyl component.
  • Silyl-terminated polyacrylates are obtained, for example, by reaction of alkenyl-terminated acrylates by hydrosilylation. Further, the alkenyl-terminated acrylate can be obtained by a production method using atom transfer radical polymerization (ATRP) or a production method using a reaction between an alkyl-terminated acrylate and a monomer containing a silyl group. Then, the alkenyl-terminated acrylate is obtained by a production method by atom transfer radical polymerization (ATRP).
  • a silyl-terminated polyacrylate which is liquid at room temperature and has flexibility as a main component is preferably butyl acrylate.
  • Polyoxyalkylene polymer As a main skeleton of the polyoxyalkylene polyol and the unsaturated group-containing polyoxyalkylene polymer, a polyoxyalkylene polymer having a repeating unit represented by the following general formula (IX) is preferable.
  • R 13 represents a linear or branched alkylene group having 1 to 14 carbon atoms, and preferably 2 to 4 carbon atoms.
  • the main chain of the polyoxyalkylene polymer may be composed of only one kind of repeating unit or may be composed of two or more kinds of repeating units.
  • a polyoxypropylene polymer which is amorphous and has a relatively low viscosity is preferable.
  • Examples of the method for synthesizing the polyoxyalkylene polymer include a polymerization method using an alkali catalyst such as KOH and a polymerization method using a complex metal cyanide complex catalyst (for example, zinc hexacyanocobaltate glyme complex catalyst).
  • a polymerization method in which an alkylene oxide is reacted with an initiator in the presence of a double metal cyanide complex catalyst is preferable because a polymer having a narrow molecular weight distribution can be synthesized.
  • composite metal cyanide complex catalyst examples include Zn 3 [Co(CN) 6 ] 2 (zinc hexacyanocobaltate complex) and the like. Further, a catalyst in which alcohol and/or ether is coordinated as an organic ligand may be used.
  • the initiator a compound having at least two active hydrogen groups is preferable.
  • the active hydrogen-containing compound include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol and glycerin, and linear and/or branched polyether compounds having a number average molecular weight of 500 or more and 20,000 or less.
  • alkylene oxide examples include ethylene oxide, propylene oxide and isobutylene oxide.
  • Particularly preferred polyoxyalkylene polyols include polyoxyethylene polyols and polyoxypropylene polyols, among which polyoxyethylene diols, polyoxypropylene diols, polyoxyethylene triols, and polyoxypropylene triols.
  • Polyoxyethylene diol, polyoxyethylene triol, polyoxypropylene diol, and polyoxypropylene triol having a molecular weight in the range of 8,000 g/mol or less are preferable.
  • ethylene oxide-terminated polyoxypropylene polyols that is, "EO end-capped” compounds; “ethylene oxide end-capped” compounds
  • EO end-capped polyoxypropylene polyols are special polyoxypropylene polyoxyethylene polyols, such as pure polyoxypropylene polyols, especially polyoxypropylene diols and triols after completion of the polyoxypropylation reaction, with ethylene oxide. It is prepared by additional alkoxylation with and consequently has a primary hydroxyl group.
  • polypropylene glycol (PPG) has a secondary hydroxy group and is flexible, it is inferior in reactivity to a compound having a primary hydroxyl group.
  • Such polyols have an average molecular weight of 250 g/mol or more and 30,000 g/mol or less, especially 1,000 g/mol or more and 30,000 g/mol or less, and an average OH functionality in the range of 1.6 or more and 3 or less. It is preferable.
  • a polyether polyol is preferable, a polyoxyethylene polyol, a polyoxypropylene polyol, and a polyoxypropylene polyoxyethylene polyol are particularly preferable, and a polyoxyethylene diol, a polyoxypropylene diol, a polyoxyethylene triol, and a polyoxy are preferable. More preferred are propylene triol, polyoxypropylene polyoxyethylene diol, and polyoxypropylene polyoxyethylene triol.
  • the liquid polymer compound has an effect of lowering the viscosity of the hot melt adhesive at the time of melting. Further, the liquid polymer compound has an effect of prolonging the bonding possible time (the bonding time after hot melt application).
  • the liquid polymer compound has a viscosity (B-type viscometer) at room temperature of preferably 100 Pa ⁇ s or less, more preferably 75 Pa ⁇ s or less, particularly preferably 50 Pa ⁇ s or less.
  • Examples of the main chain skeleton of the liquid polymer compound include polyoxyalkylene polymers such as polyoxypropylene, polyoxytetramethylene, and polyoxyethylene-polyoxypropylene copolymers; ethylene-propylene polymers, polyisobutylene, poly Hydrocarbon-based polymers such as isoprene, polybutadiene, hydrogenated polyolefin-based polymers obtained by hydrogenating these polyolefin-based polymers; condensation of dibasic acids such as adipic acid with glycols, or opening of lactones Polyester-based polymer obtained by ring polymerization; (meth)acrylic acid ester-based polymer obtained by radical polymerization of monomers such as ethyl (meth)acrylate and butyl (meth)acrylate; (meth)acrylic acid ester-based monomer; Vinyl-based polymers obtained by radical polymerization of monomers such as vinyl acetate, acrylonitrile and styrene; graft polymers obtained
  • Two or more kinds of these skeletons may be contained in blocks or randomly.
  • polyoxyalkylene polymers and/or (meth)acrylic acid ester polymers are preferable because they are easy to handle and have a large effect of lengthening the bonding possible time.
  • the content of the liquid polymer compound is preferably 0 parts by mass or more, 100 parts by mass or less, more preferably 60 parts by mass or less, and further preferably 30 parts by mass or less with respect to 100 parts by mass of the component (A).
  • filler examples include calcium carbonate, magnesium carbonate, titanium oxide, carbon black, fused silica, precipitated silica, diatomaceous earth, clay, kaolin, clay, talc, wood powder, walnut shell powder, chaff powder, anhydrous.
  • Inorganic fillers such as silicic acid, quartz powder, aluminum powder, zinc powder, asbestos, glass fiber, carbon fiber, glass beads, alumina, glass balloon, shirasu balloon, silica balloon calcium oxide, magnesium oxide, and silicon oxide, and pulp, Examples thereof include wood fillers such as cotton chips, powder rubber, recycled rubber, fine powder of thermoplastic or thermosetting resin, and organic fillers such as hollow bodies such as polyethylene. Only one type of filler may be added, or a plurality of types may be added in combination.
  • a diluent By adding a diluent to the reactive hot melt adhesive according to the present invention, physical properties such as viscosity can be adjusted. Since the diluent is used at a high temperature (application, melting), it is preferable to use a solvent (diluent) having a boiling point of 150° C. or higher in consideration of safety (fire, health). .. The boiling point of the diluent is preferably 150°C or higher, more preferably 200°C or higher, still more preferably 300°C or higher.
  • diluent examples include phthalic acid esters such as dioctyl phthalate and diisodecyl phthalate; aliphatic dibasic acid esters such as dimethyl adipate and dioctyl adipate; polyethers such as polypropylene glycol and its derivatives; vinyl monomers. Polymers obtained by various methods, such as vinyl polymers, paraffinic process oils and naphthenic oils; Fischer-Tropsch wax, polyethylene wax, polypropylene wax, atactic polypropylene and other synthetic waxes; paraffin wax, micro Examples include petroleum waxes such as crystallin wax. These diluents can be used alone or in combination of two or more kinds.
  • Stabilizer examples include antioxidants, light stabilizers, and ultraviolet absorbers. If an antioxidant is used, the weather resistance and heat resistance of the cured product can be improved. Examples of the antioxidant include hindered phenol-based compounds, monophenol-based compounds, bisphenol-based compounds, and polyphenol-based compounds, and hindered phenol-based compounds are particularly preferable.
  • the use of a light stabilizer can prevent photo-oxidation deterioration of the cured product. Examples of the light stabilizer include benzotriazole-based compounds, hindered amine-based compounds, benzoate-based compounds, and the like, and hindered amine-based compounds are particularly preferable. When an ultraviolet absorber is used, the surface weather resistance of the cured product can be increased.
  • the ultraviolet absorber examples include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds, and the benzotriazole-based compound is particularly preferable. Further, it is preferable to use a phenol type or hindered phenol type antioxidant, a hindered amine type light stabilizer and a benzotriazole type ultraviolet absorber in combination.
  • flame retardants examples include linear phosphazene and cyclic phosphazene described in JP-A-2002-519463, and phenoxyphosphazene is preferable.
  • the flame retardant examples include organic halogen compounds such as decabromobisphenyl ether and tetrabromobisphenol; inorganic halogen compounds such as ammonium bromide; triarylphosphines, trialkylphosphines, bis(diarylphosphino)benzenes and tris.
  • Tertiary phosphines such as (diarylphosphino)benzene; metal organic phosphates such as tris(diethylphosphinic acid)aluminum; inorganic phosphorus-nitrogen compounds such as ammonium polyphosphate and melamine polyphosphate; melamine, melamine/formaldehyde resins, etc.
  • Inorganic hydroxides such as magnesium hydroxide and aluminum hydroxide; antimony oxide, barium metaborate, hydroxoantimonate, zirconium oxide, zirconium hydroxide, molybdenum oxide, ammonium molybdate, zinc borate, ammonium borate, meta Inorganic compounds such as barium borate, talc, silicates, silicon oxide, tin oxide, and siloxane compounds can be mentioned.
  • the reactive hot melt adhesive according to the present invention preferably contains the component (A) in the hot melt adhesive in an amount of 50% by mass or more, more preferably 60% by mass or more, and 70% by mass.
  • the inclusion of the above is particularly preferable from the viewpoint of the characteristics of the hot melt adhesive.
  • the reactive hot melt adhesive according to the present invention includes all compounding components (for example, component (A), component (B), component (C), component (D), component (E), component (F), and (Or other additives) may be previously compounded, sealed and stored, and prepared as a one-component type that is cured by moisture in the air after construction. Further, for example, the mixture of the component (A), the component (C), the component (D), the component (F), and/or other additives, and the mixture of the component (B) and the component (E) are used. It can also be prepared as a two-component type with premixing.
  • component (A), component (B), component (C), component (D), component (E), component (F), and (Or other additives may be previously compounded, sealed and stored, and prepared as a one-component type that is cured by moisture in the air after construction. Further, for example, the mixture of the component (A), the component (C), the component (D), the component (F), and/or other additives,
  • the method for preparing the reactive hot melt adhesive according to the present invention is not particularly limited, and, for example, the above components are mixed in a predetermined mixing ratio and kneaded at room temperature or under heating using a mixer, roll, kneader or the like. Alternatively, a usual method such as dissolving each component using a small amount of a predetermined solvent and mixing can be used.
  • the viscosity of the reactive hot melt adhesive according to the present invention at 120° C. is preferably 400 Pa ⁇ s or less, more preferably 200 Pa ⁇ s or less, further preferably 100 Pa ⁇ s or less, and particularly preferably 50 Pa ⁇ s or less.
  • the viscosity at 120° C. exceeds 400 Pa ⁇ s, the coatability and workability are deteriorated, or it becomes necessary to coat at a higher temperature in order to secure the coatability and workability. In that case, the range of use is limited, such as difficulty in using it for a substrate having low heat resistance.
  • the moisture-curable hot melt adhesive according to the present invention is excellent in drop impact resistance, waterproofness, flexibility, shape retention after coating, etc., and therefore includes metal, resin, paper, wood, stone, concrete Can be suitably used for adhesion to various base materials. Specifically, it can be preferably used in production lines for construction, building materials, automobiles, electric/electronic member applications (for example, optical member bonding), textile/leather/clothing applications, bookbinding, and the like. In addition, it can be suitably used in construction sites and the like, on-site construction, DIY, and other purposes other than the production line.
  • a sealant for example, mobile information terminals such as mobile phones and smartphones, information processing terminals such as personal computers and tablet terminals, game machines, televisions, car navigation systems, cameras, speakers, head mounted displays, etc.
  • the moisture-curable hot melt adhesive according to the present invention may be used as a sealing agent, a coating agent, or a potting agent.
  • the construction method includes a step of heating the moisture-curable silylated polyurethane adhesive according to the present invention to a predetermined temperature (heating step), and applying the heated adhesive to the adhesion region of the first adherend.
  • the method includes a step (application step) and a step (bonding step) of bonding the second adherend to the first adherend so as to sandwich the adhesive.
  • the adhesive according to the present invention may be applied not only to the first adherend but also to the bonding area of the second adherend.
  • a moisture-curable hot melt adhesive is used at 50°C to 130°C.
  • the material is heated and melted, and the melted adhesive is applied onto one base material, and then the other base material is bonded onto the melted adhesive and moisture-cured.
  • the moisture-curable hot melt adhesive it is possible to obtain a laminate in which one base material and the other base material are adhered by the moisture-curable hot melt adhesive.
  • the metal base material examples include simple metals such as iron, nickel, chromium, aluminum, magnesium, copper, and lead; alloys obtained from the above simple metals such as stainless steel and brass; zinc, nickel, Plated metals such as iron plated with metals such as chromium; the above-mentioned simple metals, alloys, or plated metals are subjected to chemical conversion treatment such as chromate treatment or phosphate treatment Examples include metals.
  • the resin base material examples include glass, polyamide resin, polyimide resin, polyamideimide resin, acrylic resin, urethane resin, silicone resin, epoxy resin, fluororesin, polystyrene resin, polyester resin, polysulfone resin, and polyethersulfone.
  • Resin polyarylate resin, polyvinyl chloride resin, polyvinylidene chloride, norbornene resin, polyolefin resin, alicyclic polyimide resin, cellulose resin, POM (polyacetal), PEEK (polyether ether ketone), PC (polycarbonate), PBT ( Polybutylene terephthalate), PPS (polyphenylene sulfide), POB (polyoxybenzoyl), modified PPE (polyphenylene ether), PEN (polyethylene naphthalate), PEI (polyetherimide), PET (polyethylene terephthalate), LCP (liquid crystal polyester)
  • the base material include lactic acid polymer, ABS resin, AS resin and the like. Further, the base material may be subjected to pretreatment such as corona treatment, plasma treatment, and primer treatment, if necessary.
  • Application method As a method for applying the moisture-curable hot melt adhesive to the substrate, for example, a method using a roll coater, a spray coater, a T-tie coater, a knife coater, a comma coater, etc.; a dispenser, inkjet printing, screen printing, offset printing And the like.
  • the moisture-curable hot melt adhesive can be formed into a dot shape, a linear shape, a broken line shape, a one-dot chain line shape, a polygonal shape such as a triangular shape or a quadrangular shape, a round shape, an elliptical shape, or a curved shape. It can be formed in various shapes on the substrate continuously or intermittently.
  • the thickness of the adhesive layer using the moisture-curable hot melt adhesive can be appropriately set according to the application used.
  • the thickness of the adhesive layer is in the range of 10 ⁇ m to 5 mm.
  • the maturing conditions for moisture curing after bonding are, for example, a temperature of 20° C. to 80° C., a humidity of 50% to 90%, and a range of about 0.5 to 5 days.
  • a laminate having a plurality of substrates and an adhesive layer made of an adhesive obtained by moisture-curing a moisture-curable hot melt adhesive can be obtained.
  • a method for peeling the adhesive layer from this laminate to recover the substrate a method of heating the laminate in the range of 40° C. to 150° C. can be used because it can be easily peeled by hand. preferable.
  • the moisture-curable hot melt adhesive according to the present invention is a reaction between a hydroxyl group-terminated urethane prepolymer prepared by using a crystalline aliphatic polyester polyol and an isocyanate group-terminated urethane prepolymer having a polyether skeleton, and an isocyanate silane. Since the reactive hot melt adhesive thus obtained contains a crystalline portion and an amorphous portion, it can contain a reactive group. As a result, the reactive hot melt adhesive according to the present invention can achieve both good rising strength and a sufficient length of time for bonding. Moreover, since the reactive hot melt adhesive according to the present invention has good rising strength, it can be publicly used for adherends having curved surfaces and the like.
  • the moisture-curable hot melt adhesive according to the present invention has an appropriate viscosity at the application temperature, and therefore has good application workability.
  • the moisture-curable silylated polyurethane adhesive according to the present invention is prepared so as not to substantially contain an isocyanate group, and therefore does not release free monomeric polyisocyanate upon heating, etc. Since polyurea is not substantially formed by the reaction, swelling of the adhesive surface due to release of carbon dioxide can be prevented, and a decrease in adhesive strength can be prevented.
  • the adherends are wood-based materials such as wood, plywood, or wood-based materials such as wood-based fiberboard or moisture-permeable materials such as paper
  • using urethane-based reactive hot-melt adhesives will improve the adhesive strength over time. Fall to. This tendency is particularly large in an atmosphere of high humidity.
  • the moisture-curable hot melt adhesive according to the present invention does not decrease in adhesive strength with time even when used in an atmosphere of high humidity with respect to an adherend made of a wood-based material, a moisture-permeable material or the like. Therefore, the reactive hot melt adhesive according to the present invention is particularly useful when a wood-based material or a moisture permeable material is used for an adherend.
  • the moisture-curable hot melt adhesive according to the present invention can be understood as a "normal temperature moisture-curable hot melt adhesive" by grasping each component as follows.
  • component (a-1) as the main chain of the polymer and each component as a segment of the polymer. That is, the component (i) is the segment (i), the component (ii) is the segment (ii), and the component (ii-1) is the segment (ii-1).
  • a composition containing an alkoxysilyl group-containing urethane prepolymer (A) having a structure in which an alkoxysilyl group of the general formula (II) is linked to the end of the main chain (a-1) is applied to a room temperature moisture-curable hot melt. Use as an adhesive.
  • the main chain (a-1) is a block polymer in which the segment (ii) is linked to the terminal of the segment (i) by a bonding group of the general formula (I).
  • the segment (i) is a segment having a polyether skeleton
  • the segment (ii) is a segment containing a segment (ii-1) having a crystalline aliphatic polyester skeleton.
  • segment (ii) is a segment corresponding to the component (ii-2), and is a segment (ii-2) of the methyl methacrylate polymer skeleton that is solid at room temperature and/or a component (ii-3).
  • the corresponding segment may further contain a segment (ii-3) having a polyether skeleton.
  • the room-temperature moisture-curable hot melt adhesive further contains an alkoxysilyl group-containing urethane prepolymer (F) in which the segment (ii-2) is linked to the terminal of the segment (i) by a bonding group of the general formula (I). You can also do it.
  • the segment (i) and the segment (ii-2) are the same as above.
  • the room temperature moisture-curable hot melt adhesive may contain the component (B), the component (C), the component (D), the component (E), and/or other additives.
  • a product containing a room temperature moisture-curable hot melt adhesive can be manufactured in the same manner as the moisture-curable hot melt adhesive according to the present invention.
  • the number average molecular weight was measured by gel permeation chromatography (GPC) under the following conditions. Specifically, the measurement target was measured by GPC under the following measurement conditions, and the maximum frequency molecular weight converted with standard polyethylene glycol was taken as the number average molecular weight.
  • the number average molecular weight can be measured, for example, using HLC-8220 (manufactured by Tosoh Corp.) and polystyrene as a standard substance under the following conditions. The same applies to the measurement of the number average molecular weight in the synthesis examples described below.
  • a crystalline aliphatic polyester polyol (ii-1) having a number average molecular weight of 5,000 (trade name: HS2H-500S: sebacic acid, 1,6-hexanediol, a crystalline aliphatic polyester polyol (number average molecular weight of 5 3,000, melting point (Tg) 70° C.), manufactured by Toyokuni Oil Co., Ltd.)
  • Tg melting point
  • component (A-1) also referred to as “SBPE-cPEs”. It was As a result of measuring the IR spectrum of the component (A-1), it was confirmed that the absorption of —NCO derived from the isocyanate group disappeared.
  • SBPE silylated block polyether
  • cPEs represents crystalline polyester.
  • FT-IR measuring device FT-IR460Plus manufactured by JASCO Corporation The same applies to the conditions for IR spectrum measurement in the synthesis example described later.
  • the obtained component (i-1) was added to the crystalline aliphatic polyester polyol (ii-1) having a number average molecular weight of 5,000 (trade name: HS2H-500S: sebacic acid, crystals of 1,6-hexanediol).
  • Aliphatic polyester polyol (number average molecular weight 5,000, melting point (Tg) 70° C., manufactured by Toyokuni Oil Co., Ltd.)) 44.6 g, alkoxysilyl group-containing methyl methacrylate polymer having a hydroxyl group obtained in Synthesis Example 1 97.9 g of (ii-2) and 2.0 g of polytetramethylene glycol (ii-3) (trade name: PTMG-1000, manufactured by Mitsubishi Chemical Corporation) were added, and the mixture was stirred at 85° C. for 3 hours. As a result of measuring the IR spectrum of the reaction product, it was confirmed that the absorption of —NCO derived from the isocyanate group had disappeared.
  • alkoxysilyl group-containing urethane prepolymer (also referred to as “SPU-PE, cPEs”) was obtained.
  • SPU-PE, cPEs alkoxysilyl group-containing urethane prepolymer
  • the synthesis of the component (A′-1) was different from Synthesis Example 2, except that the urethane prepolymer was not prepared in advance and diphenylmethane diisocyanate (trade name: Millionate MT, manufactured by Tosoh Corporation) was not used. It is a synthetic example prepared using the same components as in Example 2.
  • “SPU” represents silylated polyurethane and "PE” represents polyether.
  • a polypropylene glycol having a number average molecular weight of 3,000 (trade name: Actcor D3,000, manufactured by Mitsui Chemicals, Inc.), diphenylmethane diisocyanate (MDI) (trade name: Millionate MT, manufactured by Tosoh Corporation), 17.1 g, And 0.05 g of tin octylate (trade name: Neostan U-28, manufactured by Nitto Kasei Co., Ltd.) were placed in a reaction vessel and reacted at 85° C. for 3 hours in a nitrogen atmosphere while stirring to produce a urethane prepolymer (i-1).
  • MDI diphenylmethane diisocyanate
  • tin octylate trade name: Neostan U-28, manufactured by Nitto Kasei Co., Ltd.
  • A'-3 also referred to as "SPU-PE, cPEs, PAc, PTMG”
  • the synthesis of the component (A′-3) was different from Synthesis Example 4, except that the urethane prepolymer was not prepared in advance and diphenylmethane diisocyanate (trade name: Millionate MT, manufactured by Tosoh Corporation) was not used. It is a synthetic example prepared by mixing the same components as in Example 4.
  • Silane compound 1 was synthesized as a silane-based adhesion-imparting agent by reacting two kinds of silane compounds with each other. Specifically, 1 mol of 3-methacryloxypropyltrimethoxysilane (KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.) and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (KBM603, Shin-Etsu Chemical Co., Ltd. 1 mol.) was weighed.
  • KBM503 3-methacryloxypropyltrimethoxysilane
  • N-2-(aminoethyl)-3-aminopropyltrimethoxysilane KBM603, Shin-Etsu Chemical Co., Ltd. 1 mol.
  • Synthesis Example 11 Silane compound 2
  • two kinds of silane compounds were reacted with each other to synthesize silane compound 2 as a silane-based adhesion imparting agent.
  • 1 mol of 3-glycidoxypropyltrimethoxysilane (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.) and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (KBM603, Shin-Etsu Chemical Co., Ltd. (Manufactured by KK) and 1 mol were weighed.
  • silane compound 2 as a silane-based adhesion imparting agent was obtained.
  • the molecular weight of the silane compound 2 is 458.7 g/mol.
  • a butyl acetate solution of 2,2′-azobis(2-methylbutyronitrile) was added dropwise to cause a polymerization reaction.
  • the mixture was aged at 110° C. for 2 hours and then cooled to obtain a reaction product.
  • the solvent was distilled off to obtain a component (D-1) (also referred to as "SPAc").
  • the number average molecular weight of the component (D-1) measured by gel permeation chromatography is 10,000, the average number of crosslinkable silicon groups per molecule of the polymer is 1.5, and the glass transition temperature (measured by the DSC method). The glass transition temperature) was 5°C.
  • SPAc represents silylated polyacrylate.
  • Methyldimethoxysilane which is a silicon hydride compound, and a platinum vinylsiloxane complex isopropanol solution were added to this polymer and reacted to obtain a polyoxyalkylene polymer (J) having a methyldimethoxysilyl group at the terminal. ..
  • a polyoxyalkylene polymer (J) having a methyldimethoxysilyl group at the terminal J
  • the peak top molecular weight was 15,000 and the molecular weight distribution was 1.3.
  • Table 1 shows the main compounded substances in Synthesis Examples 2 to 9 and Synthesis Example 13.
  • Examples, comparative examples For each of Examples 1 to 14 and Comparative Examples 1 to 4, the component (A) or the component (A′), the component (C), the component (D), and/or the component (F) are shown in Table 2 and Table 3.
  • the mixture was mixed at the blending ratio shown in (1) and mixed under stirring in an environment of 120°C.
  • the component (B) and/or the component (E) was further added in the compounding ratios shown in Tables 2 and 3 and stirred.
  • defoaming was performed under reduced pressure, and a one-pack type moisture-curable reactive hot melt adhesive was filled in a metal container for each of the adhesives of Examples 1 to 14 and Comparative Examples 1 to 4.
  • the following evaluations were performed on the obtained adhesives of Examples 1 to 14 and Comparative Examples 1 to 4, respectively.
  • the results are shown in Tables 2 and 3.
  • the unit of the blended amount of each blended substance is "g".
  • Example 1 The one-pack type moisture-curable reactive hot melt adhesive according to Example 1 was heated and melted at 120° C., An EB olefin sheet (manufactured by Dai Nippon Printing Co., Ltd.) (25 mm ⁇ 150 mm ⁇ 0.1 mm) was applied to a thickness of 50 ⁇ m. Immediately after coating, an aluminum plate (75 mm ⁇ 150 mm ⁇ 2 mm, the adhesive surface was degreased with acetone) was attached to the EB olefin sheet so as to sandwich the adhesive. Thereby, the test body according to Example 1 was manufactured. Then, after the test body was cured in a 23° C.
  • the 180-degree peel adhesive strength (N/25 mm) was measured in minutes.
  • the 180-degree peel adhesive strength after 10 minutes from the bonding period is defined as “rise strength (in Table 2, immediately after bonding)”
  • the 180-degree peel adhesive strength after 1 week is defined as "final strength ( In Table 2, after curing for 1 week)”.
  • the one-pack type moisture-curable reactive hot melt adhesives according to other examples and comparative examples were also evaluated in the same manner.
  • the one-pack type moisture-curable reactive hot melt adhesive according to Example 1 was heated and melted at 120° C., and the thickness was set to 100 ⁇ m on the first aluminum plate (25 mm ⁇ 75 mm ⁇ 2 mm, the adhesive surface was degreased with acetone). It was applied so that Immediately after the application, the area of the region where the second aluminum plate (25 mm ⁇ 75 mm ⁇ 2 mm, the adhesive surface is degreased with acetone) is overlaid on the first aluminum plate so as to sandwich the adhesive is 25 mm ⁇ 25 mm from one end. The pieces were attached to each other to prepare a test piece. After curing the test piece in the environment of 23° C.
  • the one-pack type moisture-curable reactive hot melt adhesive according to Example 1 was heated and melted at 120° C., and the thickness was set to 100 ⁇ m on the first aluminum plate (25 mm ⁇ 75 mm ⁇ 2 mm, the adhesive surface was degreased with acetone). It was applied so that Immediately after the application, the area of the region where the second aluminum plate (25 mm ⁇ 75 mm ⁇ 2 mm, the adhesive surface is degreased with acetone) is overlaid on the first aluminum plate so as to sandwich the adhesive is 25 mm ⁇ 25 mm from one end. The pieces were attached to each other to prepare a test piece. After curing the test body in an environment of 85° C.
  • the wet heat shear adhesive strength (N/mm 2 ) was measured at a tensile speed of 50 mm/min according to JIS K6850. Further, the one-pack type moisture-curable reactive hot melt adhesives according to other examples and comparative examples were also evaluated in the same manner.
  • the one-pack type moisture-curable reactive hot melt adhesive according to Example 1 was heated and melted at 120° C., and was applied to a K liner cardboard (250 mm ⁇ 250 mm ⁇ 7 mm) with a thickness of 50 ⁇ m, at predetermined time intervals (1
  • the test piece K liner corrugated cardboard (25 mm ⁇ 50 mm ⁇ 7 mm)) was adhered to every 3 seconds until the minute and every 15 seconds after exceeding 1 minute without any gap. Then, after bonding each test piece in an environment of 23° C. and 50% RH and leaving it to stand for 10 minutes, the test piece is peeled by hand, and the time until the defect does not occur in the bonded portion can be bonded time (second).
  • the one-pack type moisture-curable reactive hot melt adhesives according to other examples and comparative examples were also evaluated in the same manner.
  • the one-pack type moisture-curable reactive hot melt adhesive according to Example 1 was heated and melted at 120° C., and applied to a K liner cardboard (25 mm ⁇ 100 mm ⁇ 7 mm) with a thickness of 50 ⁇ m, and after 5 seconds, a K liner cardboard (25 mm ⁇ 100 mm ⁇ 7 mm) were laminated so that the area of the overlapped portion was 25 mm ⁇ 25 mm from one end to obtain a test body. With respect to the obtained test body, the test body was peeled off by hand after 5 seconds in an environment of 23° C. and 50% RH.
  • the test body is peeled off by hand after a predetermined time has elapsed (every 3 seconds until 1 minute, and every 15 seconds after 1 minute), and a defect is generated in the adhesive portion.
  • the time until was set as the set time (seconds).
  • the one-pack type moisture-curable reactive hot melt adhesives according to other examples and comparative examples were also evaluated in the same manner.
  • the one-pack type moisture-curable reactive hot melt adhesive according to Example 1 was heated and melted at 120° C., and the thickness was set to 100 ⁇ m on the first aluminum plate (25 mm ⁇ 75 mm ⁇ 2 mm, the adhesive surface was degreased with acetone). It was applied so that Immediately after application, the second aluminum plate (25 mm x 75 mm x 2 mm, the adhesive surface is degreased with acetone) is placed on the first aluminum plate so as to sandwich the adhesive, and the area of the overlapping area is 25 mm x 25 mm from one end. Then, the test piece was prepared by pasting. Then, it was aged at 23° C.
  • the one-pack type moisture-curable reactive hot melt adhesive according to Example 1 was heated and melted at 120° C., coated on a PET sheet at a thickness of 100 ⁇ m, and cured at 23° C. and 50% RH for 24 hours, and then JIS Z0237 was applied.
  • J. Using a DOW ball tack tester, set the angle of the inclined plate to 30 degrees under the environment of temperature 23°C and 50% RH, and roll a predetermined steel ball toward the adhesive surface under the condition of running distance 10 cm, The ball No. stopped at a distance of 10 cm from the edge of the agent. Was evaluated. As a result, the ball tack was 5 or less.
  • the one-pack type moisture-curable reactive hot melt adhesives according to other examples were also evaluated in the same manner, and it was confirmed that the ball tack was 5 or less.
  • the bondable time was 10 seconds or more, which was a good bondable time, and the set time was also an appropriate length.
  • each of the adhesives according to the examples exhibited good rising strength.
  • the addition of the component (E) can also improve the wet heat shear bond strength.
  • the wet heat shear adhesive strength was improved in Example 11 and the wet heat shear adhesive strength was further improved in Examples 12 to 13.

Abstract

良好な立ち上がり強度と十分な長さの貼り合わせ可能時間とを両立することができる湿気硬化型ホットメルト接着剤を提供する。湿気硬化型ホットメルト接着剤は、下記成分(a-1)と下記成分(a-2)との反応物であるアルコキシシリル基含有ウレタンプレポリマー(A)を含む。 成分(a-1):下記成分(i)と成分(ii)との反応物である水酸基末端ウレタンプレポリマー 成分(i):ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマー 成分(ii):結晶性脂肪族ポリエステルポリオール(ii-1)を含有するポリオール 成分(a-2):イソシアネートシラン

Description

湿気硬化型ホットメルト接着剤
 本発明は、湿気硬化型ホットメルト接着剤に関する。
 従来、大気中の水分、又は互いに接着されている材料に含まれる水分の作用によって不可逆的に硬化するプレポリマーから調製されるイソシアネート官能基を含む反応性ポリウレタンホットメルト接着剤(以下、「PUホットメルト接着剤」と称する場合がある。)が知られている。例えば、特許文献1に記載されているようなプレポリマーは、ポリエステルポリオールと所望のポリエーテルポリオールにポリイソシアネートを反応させて得られる化合物との反応生成物であり、このような反応性のPUホットメルト接着剤は、例えば、プラスチック、ガラス、金属、皮革、及び木材等の様々な材料を接着させる接着剤として一般的に用いることができる。
 ここで、PUホットメルト接着剤の出発成分の相互反応を伴わない固化時間は、室温で結晶質若しくは非晶質の成分の配合割合を変化させることにより秒単位から分単位の範囲内で調整できる。この点に関し、PUホットメルト接着剤の結晶性の構造が、接着剤の溶融粘度を低下させて塗布性を向上させると共に、塗布後の短い固化時間及び低いガラス転移温度に起因する良好な低温弾性をもたらすことが知られている(例えば、特許文献2や特許文献3参照。)。
 反応性のPUホットメルト接着剤の成分相互間の架橋反応を伴う硬化は、イソシアネート基と水分との反応によって数日間で進行し、これにより熱硬化性ポリウレアが形成される。この後のPUホットメルト接着剤はもはや溶融せず、若しくは、例えば、溶剤に溶解しない性質を発揮する。このため、硬化した接着剤は良好な耐熱性を示すと共に、化学薬品、例えば、可塑剤、溶剤、オイル、及び燃料等に対して良好な耐性を示す。
 ところが、上記のような接着剤には、これら接着剤の調製法に起因して、高濃度の遊離のモノマー性ポリイソシアネート、例えば、4,4’-ジイソシアナトジフェニルメタン(4,4’-MDI)、2,4-ジイソシアナトトルエン、又は2,6-ジイソシアナトトルエン(TDI)が残存する。このようなモノマー性ポリイソシアネートは接着剤の塗布温度(約100℃~約180℃)においてモノマー性の成分が気体状態で周囲環境へ放出される蒸気圧を示すことから、所定の排気装置等の設備を設置することが要求される。
 また、上記のような接着剤においては、水分との反応によりポリウレアが形成される。そして、ポリウレアが形成される場合、接着剤から二酸化炭素が放出される。そのため、接着剤が接着している接着領域において発泡が生じる。この結果、接合が構成されている部材の表面の膨張や、接着強度の低下が発生する。
 また、反応性ホットメルト接着剤は加熱時の安定性(粘度増加しないこと、更には硬化しないこと。)と室温での硬化性のバランスが必要とされる。しかしながら、反応性のPUホットメルト接着剤は加熱時の安定性が十分でないという欠点があった。すなわち、反応性のPUホットメルト接着剤は塗工前に加熱溶融させる必要があるところ、その際に分子鎖末端イソシアネート基が分子鎖中のウレタン結合や尿素結合と反応して、アロファネート結合やビウレット結合を生成し、三次元架橋構造を形成し、組成物の粘度が上昇してしまうか、あるいはゲル化することがあった。
 係る問題点を解決するため、例えば、特許文献4~6に開示されるような、ポリエステルポリオールを基材とするシラン官能性の反応性ホットメルト接着剤が知られている。
 しかし、特許文献4に記載の接着剤組成物は感圧接着剤(粘着剤)であり、硬化後もタックが残存するため用途によってはべたつきが問題となる場合がある。また、特許文献5に記載の組成物は、立ち上がり強度が十分とはいえない場合があり、特許文献6に記載の湿気硬化性ホットメルト接着剤組成物においては、十分な貼り合わせ可能時間の確保と十分な立ち上がり強度との両立が困難である。
特開平4-227714号公報 特開平2-088686号公報 特開2014-205764号公報 特許第6027146号公報 特許第5738849号公報 特許第5254804号公報
 すなわち、上記各特許文献のような従来技術よりも、ホットメルト接着剤のより高い立ち上がり強度、及び十分な長さの貼り合わせ可能時間を確保することが求められている。そこで、本発明の目的は、良好な立ち上がり強度と十分な長さの貼り合わせ可能時間とを両立することができる湿気硬化型ホットメルト接着剤を提供することにある。
 本発明は、上記目的を達成するため、下記成分(a-1)と下記成分(a-2)との反応物であるアルコキシシリル基含有ウレタンプレポリマー(A)を含む湿気硬化型ホットメルト接着剤が提供される。
 成分(a-1):下記成分(i)と成分(ii)との反応物である水酸基末端ウレタンプレポリマー
  成分(i):ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマー
  成分(ii):結晶性脂肪族ポリエステルポリオール(ii-1)を含有するポリオール
 成分(a-2):イソシアネートシラン
 また、上記湿気硬化型ホットメルト接着剤において、成分(ii)が、室温で固体であり、水酸基を有するメタクリル酸メチル系重合体(ii-2)を更に含有してもよい。更に、上記湿気硬化型ホットメルト接着剤において、成分(ii)が、ポリエーテルポリオール(ii-3)を含有してもよい。
 また、上記湿気硬化型ホットメルト接着剤が、(B)シラン系接着付与剤を更に含有してもよく、(C)改質樹脂を更に含有してもよく、(D)アルコキシシリル基含有メタクリル酸メチル系重合体を更に含有してもよく、(E)アミン系化合物、2価の錫化合物、フッ素化ポリマーからなる群から少なくとも1つ選択される触媒を更に含有してもよく、下記成分(i)と成分(ii-2)との反応物であるアルコキシシリル基含有ウレタンプレポリマー(F)を更に含有してもよい。
  成分(i):ポリエーテル骨格のイソシアネート基末端ウレタンプレポリマー
  成分(ii-2):水酸基を有するメタクリル酸メチル系重合体
 また、本発明は、上記目的を達成するため、上記のいずれか1項に記載の湿気硬化型ホットメルト接着剤を含む製品が提供される。
 更に、本発明は、上記目的を達成するため、下記成分(a-1)と下記成分(a-2)とを反応させてアルコキシシリル基含有ウレタンプレポリマー(A)を調製し、成分(A)を含む湿気硬化型ホットメルト接着剤を製造する工程を含む湿気硬化型ホットメルト接着剤の製造方法が提供される。
 成分(a-1):下記成分(i)と成分(ii)との反応物である水酸基末端ウレタンプレポリマー
  成分(i):ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマー
  成分(ii):結晶性脂肪族ポリエステルポリオール(ii-1)を含有するポリオール
 成分(a-2):イソシアネートシラン
 また、上記湿気硬化型ホットメルト接着剤の製造方法は、成分(A)に(B)シラン系接着付与剤を添加する工程を更に含んでもよい。
 本発明の湿気硬化型ホットメルト接着剤によれば、良好な立ち上がり強度と十分な長さの貼り合わせ可能時間とを両立することができる湿気硬化型ホットメルト接着剤を提供することができる。
<数値、及び用語の定義・意義>
 本明細書において用いる数値、及び用語の定義・意義は以下のとおりである。
(室温の定義)
 本明細書における「室温」若しくは「常温」とは、23℃の温度である。
(用語の意義:室温で固体状)
 本明細書において、「室温で固体状」という用語は、対象となる物質(例えば、所定の組成物)が結晶性の物質、部分的に結晶性の物質、及び/又はガラス状非晶質であって、23℃よりも高い軟化点(環球法による測定値)、若しくは融点を有することを意味する。ここで融点は、例えば、動的示差熱量測定(示差走査型熱量測定[DSC])によって、加熱操作中に測定した曲線の最大値であって、対象の材料が固体状態から液体状態に転移する温度である。
(用語の意義:粘着剤)
 粘着剤とは、例えばJIS K6800に定義されているように、常温で粘着性を有し、低い圧力で被着材に接着する物質をいい、常温で圧力を加えるだけで接着する接着剤(感圧接着剤)が含まれる。特に限定しない限り、本明細書において「接着剤」には、感圧接着剤を含まないものとする。すなわち、本明細書において「接着剤」とは、感圧接着剤を除く接着剤を意味し、本発明に係る接着剤は、感圧接着剤ではない。
(用語の意義:粘着性)
 また、本明細書において、「常温で粘着性を有する」とは、JIS Z0237に準拠して、J.DOW法ボールタック試験器を用いて、温度23℃、50%RH環境下において傾斜板の角度を30度に設定し、助走距離10cmの条件で粘着面に向けて所定の鋼球を転がし、粘着剤の端から距離10cmの間で停止したボールNo.を評価した場合に、ボールタックが10以下であり6以下であることが好ましい。なお、感圧接着剤は、上記粘着性を長期間保持して常温で圧力を加えるだけで接着性を示す。
(用語の意義:貼り合わせ可能時間)
 本明細書における「貼り合わせ可能時間」とは、接着剤を被接着物に塗布してから他の被着物に貼り合わせるまでの貼り合わせ可能な時間である。「貼り合わせ可能時間」は、日本接着剤工業規格JAI7-1991に準じて測定することができる。
(用語の意義:セットタイム)
 本明細書における「セットタイム」とは、被着材に貼り合わせたホットメルト接着剤が冷却固化して初期接着力を示すまでの時間である。
<湿気硬化型ホットメルト接着剤の概要>
 ホットメルト接着剤においては、被着体に塗布した後の立ち上がり強度が十分に高く(換言すれば、固化による十分な接着強度を発揮するまでの時間が実用上、短く)、かつ、ホットメルト接着剤を塗布した被着体に他の被着体を接着させるまでに、当該ホットメルト接着剤と他の被着体とを適切に接着させることができなくなるまでの時間、つまり、貼り合わせ可能時間が十分な長さであることが要求される。なお、立ち上がり強度は、ホットメルト接着剤が固化することによって発揮される強度であり、固化とは、ホットメルト接着剤が加熱により溶融した後に冷却されて固体状になることをいう。そして、反応性ホットメルト接着剤は、固化した後、成分中のシリル基等に起因して、湿気硬化により架橋反応が進行することで硬化が進む。
 そこで、本発明者は、ホットメルト接着剤を構成する各種の化合物、組成物等を種々検討した結果、結晶組織を含みつつ、一部に無定形分子の領域を含ませ、特定の配合成分を選択すること等により、十分な立ち上がり強度と十分な長さの貼り合わせ可能時間とを両立させ得ることを見出した。更に、接着剤を構成するプレポリマー等に反応性基を含ませることで、主として接着剤が固化した後に架橋反応を進行させ、接着剤の最終強度を十分に向上させ得ることを見出した。つまり、ホットメルト接着剤を構成する材料に結晶性の化合物を含ませることで貼り合わせ可能時間を調整でき、例えば、ポリエーテルのエーテル結合等のような無定形分子に相当する領域を一部に含ませることで柔軟性を確保し、かつ、例えば、末端に反応性基を有するプレポリマー等を含有させることで接着剤を塗布した後から主として始まる架橋反応を時間の経過と共に進行させ、最終強度を十分に向上させ得ることを見出した。
 すなわち、本発明に係る湿気硬化型ホットメルト接着剤は、アルコキシシリル基含有ウレタンプレポリマー(A)(以下、成分(A)と称する。)を含んで構成され、成分(A)は、水酸基末端ウレタンプレポリマー(a-1)(以下、成分(a-1)と称する。)と、イソシアネートシラン(a-2)(以下、成分(a-2)と称する。)との反応物である。また、成分(a-1)は、ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマー(i)(以下、成分(i)と称する。)と、少なくとも結晶性脂肪族ポリエステルポリオールを含有するポリオール(ii)(以下、成分(ii)と称する。また、結晶性脂肪族ポリエステルポリオール(ii-1)を成分(ii-1)と称する。)との反応物である。
 また、成分(ii)は、成分(ii-1)に加え、若しくは成分(ii-1)の一部に代えて、室温で固体であり、水酸基を有するアルコキシシリル基含有メタクリル酸メチル系重合体(ii-2)(以下、成分(ii-2)と称する。)及び/又はポリエーテルポリオール(ii-3)(以下、成分(ii-3)と称する。)を更に含有することもできる。更に、成分(a-1)が、成分(i)及び成分(ii)に更にアルコキシシリル基とアミノ基若しくはメルカプト基とを有する化合物(iii)(以下、成分(iii)と称する)を反応させて得られる反応物であってもよい。なお、成分(iii)は、2級アミノシラン(iii-1)(以下、成分(iii-1)と称する。)であってもよい。そして、本発明に係る湿気硬化型ホットメルト接着剤は、上記成分に加え、シラン系接着付与剤(B)(以下、成分(B)と称する。)、改質樹脂(C)(以下、成分(C)と称する。)、アルコキシシリル基含有メタクリル酸メチル系重合体(D)(以下、成分(D)と称する。)、アミン系化合物、2価の錫化合物、及びフッ素化ポリマーからなる群から少なくとも1つ選択される触媒(架橋触媒)(E)(以下、成分(E)と称する。)、及び/又はメタクリル酸メチル系重合体骨格を有するアルコキシシリル基含有ウレタンプレポリマー(F)(以下、成分(F)と称する。)を更に含有してもよい。
 更に、本発明に係るホットメルト接着剤は、光硬化型の接着剤として構成してもよい。光硬化型の接着剤は、成分(A)、成分(B)、成分(C)、成分(D)、成分(E)、及び/又は成分(F)に、光塩基発生剤及び/又は光アミノシラン発生剤を添加して構成できる。
<湿気硬化型ホットメルト接着剤の詳細>
 本発明に係る湿気硬化型ホットメルト接着剤は、成分(i)と成分(ii)とを反応させて成分(a-1)を調製し、得られた成分(a-1)と成分(a-2)とを反応させて調製される成分(A)を含有して調製できる。また、成分(A)に、成分(a-1)、成分(B)、成分(C)、成分(D)、成分(E)、成分(F)、及び/又はその他の添加剤を添加して本発明に係る湿気硬化型ホットメルト接着剤を調製することもできる。そして、本発明に係るホットメルト接着剤は室温で固体状であり、加熱溶融させた状態で被着体に塗布される。以下、各構成要素を含めて詳細に説明する。なお、以下の説明において、本発明に係る湿気硬化型ホットメルト接着剤を、「反応性ホットメルト接着剤」若しくは「一液型湿気硬化型反応性ホットメルト接着剤」と称する場合がある。
<(A)アルコキシシリル基含有ウレタンプレポリマー>
 本発明に係るアルコキシシリル基含有ウレタンプレポリマー(A)は、アルコキシシリル基を有し、ポリエーテル(以下、「セグメントB」と称する場合がある。)及び結晶性脂肪族ポリエステルを必須とする重合体(以下、「セグメントA」と称する場合がある。)をウレタン結合で連結したポリブロックポリマー(以下、「シリル化ブロックポリエーテル[SBPE]」と称する場合がある。)である。このウレタン結合の連結は、上記セグメント(セグメントA及びセグメントB)の末端水酸基と連結剤(ジイソシアネート化合物)との反応で生じる下記一般式(I)の結合基による連結である。
  -OC(=O)NH-R-NHC(=O)O-     (I)
 式(I)中、Rは、炭素原子数が1~30の2価のジイソシアネートから二個のイソシアネート基を除去した後の残基を表す。
 セグメントBは常温で液体のポリエーテル(ソフトセグメント)が好ましく、セグメントAは(ii-1)常温で固体の結晶性脂肪族ポリエステル(ハードセグメント)の主鎖であることが好ましい。ソフトセグメントBにハードセグメントAが結合する構造により強靭性と柔軟性とを有する重合体を構成できる。
 また、接着性、強靭性、及び粘度等の物性調整の観点から、(ii-2)水酸基を有するメタクリル酸メチル系重合体の主鎖、及び/又は(ii-3)ポリエーテルポリオールの主鎖をセグメントBに結合させた化合物を更に含有していてもよい。
 結晶性脂肪族ポリエステルを必須のセグメントにすることにより、ハードセグメント(常温で固体の結晶部分)とソフトセグメント(常温で液体のポリエーテル)とを含んで構成されるブロックポリマーが形成され、結晶部分と非結晶部分との両セグメント骨格に基づき、塗布後に十分な貼り合せ可能時間を確保でき、かつ、貼り合せ後は瞬間的な接着力を発現させることができる。また、ハードセグメントの間にソフトセグメントを配置することにより、強靭性と柔軟性とを併せて有し、優れた初期接着力を発現させることができる。なお、結晶性脂肪族ポリエステルとポリエーテルとは相溶性が低いものの、ブロック構造にすることにより上記の各特性を発現させることができる。ここで、アルコキシシリル基含有ウレタンプレポリマー(A)は、セグメントAの末端に下記一般式(II)の「ウレタン結合で連結したアルコキシシリル基」を有する。
  -OC(=O)NH-R-Si(R(OR3-x    (II)
 一般式(II)中、Rは、炭素原子数が3~10の二価のアルキレン基であり、R及びRは、各々独立して炭素原子数が1~6のアルキル基若しくは炭素原子数が6~8のアリール基であり、xは、0、1、又は2の値である。なお、反応性が良好である観点からxは0が好ましく、Rは、炭素原子数が1~2のアルキル基が好ましく、炭素原子数が1のアルキル基が更に好ましい。Rは、炭素原子数が3の二価のアルキレン基が好ましい。
<(a-1)水酸基末端ウレタンプレポリマー>
 本発明に係る(a-1)水酸基末端ウレタンプレポリマーは、従来公知の方法によって調製できる。例えば、所定のポリエーテル骨格のポリウレタンプレポリマー(成分(i))を、所定のポリオール成分(成分(ii))に反応させることによって調製できる。
[(i)ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマー]
 本発明に係る(i)ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマーは、ジイソシアネートとポリエーテルポリオールとを、ジイソシアネートのイソシアネート基とポリエーテルポリオールの水酸基とのモル比(以下、イソシアネート基/水酸基モル比という)が1を超えるモル比にした状態、すなわち、イソシアネート基を水酸基に対して過剰の量にして反応させて得られる。ここで、イソシアネート基/水酸基モル比は、1.5以上が好ましく、1.8以上がより好ましく、1.9以上が更に好ましく、3.0以下が好ましく、2.5以下がより好ましく、2.1以下が更に好ましい。イソシアネート基/水酸基モル比が係る範囲であれば、良好な塗工性が得られる。
 また、(i)ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマーは、ポリエーテルポリオールの水酸基に対して不十分なモル比のイソシアネート基を有するジイソシアネート(例えば、1,6-ジイソシアナトヘキサン(HDI)、2,4-ジイソシアナトトルエン(TDI)、2,6-ジイソシアナトトルエン(TDI)、2,4’-ジイソシアナトジフェニルメタン(MDI)、4,4’-ジイソシアナトジフェニルメタン(MDI))を用い、ポリエーテルポリオール若しくはこれらの一部を変性させ、反応終了後、ウレタン基を有するポリオールに過剰のジイソシアネートを反応させて得ることもできる。
 また、ポリエーテルポリオールとジイソシアネートとは、5重量%までの量の、例えば、脂肪族ジイソシアネートのトリマー(例えば、ヘキサメチレン-ジイソシアネート等)の存在下で反応させてもよく、又はプレポリマー化反応が終了した後でこの種のトリマーを添加してもよい。
(ジイソシアネート)
 本発明で用いるジイソシアネートとしては、特に限定されるものではないが、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネートやヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンイソシアネート等の脂肪族若しくは脂環族ジイソシアネート等が挙げられる。これらの中で、溶融させて用いるホットメルト接着剤に用いる観点から、加熱時の蒸気圧が低いジフェニルメタンジイソシアネートを用いることが好ましい。
(ポリエーテルポリオール)
 ポリエーテルポリオールとしては、例えば、ポリプロピレングリコール(PPG)、ポリエチレングリコール(PEG)、ポリテトラメチレングリコール(PTMG)等が挙げられる。これらポリオールは、限定されないが、数平均分子量は500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましく、30,000以下が好ましく、20,000以下がより好ましく、15,000以下が更に好ましい。また、ポリエーテルポリオールはジオールであることが好ましい。
 また、ポリエーテルポリオールとして、2種以上のポリエーテルポリオールを共重合した化合物を用いてもよく、例えば、ポリオキシエチレン-オキシプロピレンブロック共重合ジオールが挙げられる。係るジオールは、末端基が1級水酸基で、イソシアネート基との反応性が良いことから好ましい。ポリオキシエチレン-オキシプロピレンブロック共重合ジオールは、エチレンオキサイドのコンテントが5重量%以上であることが好ましく、90重量%以下が好ましく、40重量%以下がより好ましく、20重量%以下が更に好ましい。
[(ii)ポリオール成分]
 本発明に係る(a-1)水酸基末端ウレタンプレポリマーは、(ii)ポリオール成分と(i)ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマーとを反応させて得られる。本発明において用いることができるポリオールとしては、例えば、ポリエステル系ポリオール、ポリエーテル系ポリオール、アクリルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール、ひまし油ポリオール等、又はこれらの混合物若しくは共重合物が挙げられる。そして、(ii)ポリオール成分は、本発明の必須成分として(ii-1)結晶性脂肪族ポリエステルポリオールを含有する。なお、成分(ii)は、成分(ii-2)や成分(ii-3)を含んでいてもよい。
 成分(a-1)は、成分(ii)と成分(i)とを、成分(ii)の水酸基と成分(i)のイソシアネート基とのモル比(以下、水酸基/イソシアネート基モル比という)が1を超えるモル比にした状態、すなわち、水酸基をイソシアネート基に対して過剰の量にして反応させて得られる。良好な塗工性が得られる観点から、水酸基/イソシアネート基モル比は、1.5以上が好ましく、1.8以上がより好ましく、1.9以上が更に好ましく、接着剤に強靭性を付与して接着強度を向上させる観点から、3.0以下が好ましく、2.5以下がより好ましく、2.1以下が更に好ましい。
(ポリエステルポリオール)
 (ii)ポリオール成分として用いるポリエステル系ポリオール(以下、単に「ポリエステルポリオール」と称する場合がある。)は、1個よりも多くのOH基(好ましくは、2個の末端OH基)を有するポリエステルを意味する。
 本発明に係る湿気硬化型ホットメルト接着剤は、(ii)ポリオール成分の中に、少なくとも2の官能価を有すると共に室温で固体状(好ましくは、少なくとも部分的に結晶性の固体状)である少なくとも1種のポリエステルポリオールを含有する。
 更に、湿気硬化型ホットメルト接着剤は、(ii)ポリオール成分の中に、少なくとも2の官能価を有すると共に少なくとも部分的に結晶性である1種若しくは複数種のポリエステルポリオール、少なくとも2の官能価を有する1種若しくは複数種の芳香族ポリエステルポリオール、脂環式ポリエステルポリオール、少なくとも2の官能価を有すると共に常温で液状である1種若しくは複数種のポリエステルポリオール、及び/又は少なくとも2の官能価を有する1種若しくは複数種のポリエーテルポリオールを含有していてもよい。
 ここで、「少なくとも部分的に結晶性」の意義について説明する。「少なくとも部分的に結晶性」であるポリエステルポリオールとは、当該ポリエステルポリオールが完全には結晶性ではなく、部分的若しくは付加的に一定の非晶質部を含有することを意味する。このようなポリエステルポリオールは結晶性の融点(Tm)とガラス転移温度(以下、「Tg」と称する場合がある。)とを有する。当該融点は、結晶性の部分が溶融する温度を示す。融点は、例えば、DSC測定による示差熱分析によって、主要な吸熱ピーク(結晶溶融ピーク)として決定できる。DSC測定(第2の加熱過程における加熱と冷却の速度は10K/分とする)によれば、少なくとも部分的に結晶性のポリエステルポリオールの融点は、約35℃~約120℃である。そして、少なくとも部分的に結晶性のポリエステルポリオールのガラス転移温度は一般に、例えば、室温よりもかなり低い。部分的に結晶性の適当なポリエステルポリオール(以下、「結晶性脂肪族ポリエステルポリオール」と称する。)は当業者には公知である。なお、ポリエステルポリオールは、ジイソシアネートで連結されたポリエステルポリオールであってもよい。
((ii-1)結晶性脂肪族ポリエステルポリオール)
 (ii-1)結晶性脂肪族ポリエステルポリオールとしては、例えば、水酸基を2個以上有する化合物と多塩基酸とを反応させた化合物を用いることができる。また、2官能性のスターター(starter)分子、例えば、1,6-ヘキサンジオール等に基づくポリカプロラクトン誘導体を用いることもできる。
 具体的に、水酸基を2個以上(好ましくは2~3個、より好ましくは2個)有する化合物としては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール等の炭素原子数が2~16個の直鎖脂肪族ジオール;トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセリン等の脂肪族トリオールが挙げられる。これらの中でも結晶性を高めることができる観点から、直鎖脂肪族ジオールの炭素原子数は4~14個が好ましく、6~12個がより好ましい。これらの化合物は単独で用いることも、2種以上を併用することもできる。
 多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、1,12-ドデカンジカルボン酸等の炭素原子数が2~16個の直鎖脂肪族ジカルボン酸を用いることができる。これらの中でも結晶性を高めることができる観点から、直鎖脂肪族ジカルボン酸の炭素原子数は6~14個が好ましく、8~12個がより好ましい。これらの多塩基酸は単独で用いることも、2種以上を併用することもできる。
 なお、結晶性脂肪族ポリエステルポリオールとしては、具体的には、下記一般式(III)で示される長鎖脂肪族ポリエステルポリオールが好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(III)中、R及びRは、それぞれ独立して炭素原子数が偶数である直鎖のアルキレン基を示し、かつ、R及びRが有する炭素原子数の合計は12以上である。また、nは3~40を示す。
 ここで、一般式(III)中のRとしては、炭素原子数が偶数である直鎖のアルキレン基が挙げられ、RとRとが有する炭素原子数の合計が12以上になる範囲で適宜選択することができる。そして、Rとしては、炭素数が4以上の偶数である直鎖のアルキレン基であることが好ましい。
 また、一般式(III)中のRは、Rとは独立して炭素数が偶数である直鎖のアルキレン基が挙げられ、RとRとが有する炭素原子数の合計が12以上になる範囲で適宜選択できる。そして、Rとしては、炭素原子数が10以上の偶数である直鎖のアルキレン基であることが好ましい。
 R及びRが、それぞれ上記範囲内の炭素原子数を有する直鎖のアルキレン基である長鎖脂肪族ポリエステルポリオールを用いることにより、得られるウレタンプレポリマーの結晶性を高めることができ、優れた初期接着強度と常態接着強度とを有する湿気硬化型ホットメルト接着剤を得ることができる。
 また、一般式(III)中のnは3~40であり、9~25の範囲内であることが好ましく、9~15の範囲内がより好ましい。係る範囲内のnを有する長鎖脂肪族ポリエステルポリオールを用いることにより、適度な溶融粘度を有すると共に塗装作業性に優れた湿気硬化型ホットメルト接着剤を得ることができる。
 具体的に、結晶性脂肪族ポリエステルポリオールとしては、ポリヘキサメチレンアジペート、ポリヘキサメチレンセバケート、ポリヘキサメチレンドデカネート、ポリドデカメチレンデカネート等が挙げられ、ポリヘキサメチレンセバケート、ポリヘキサメチレンドデカネート、ポリドデカメチレンデカネートが好ましい。
 ここで、結晶性脂肪族ポリエステルポリオールを用いた溶融メルト成分を含む組成物を用いた後、このメルト成分の結晶化によって十分な初期強度が得られるまでの時間を短くする観点から、結晶性脂肪族ポリエステルポリオールの結晶化温度は、結晶性脂肪族ポリエステルポリオールの融点より30℃以下、低い温度であることが好ましい。これにより、本発明に係る湿気硬化型ホットメルト接着剤を用いて被着体を互いに接着した場合、接着剤の初期強度が十分な強度を発揮し、被着体同士が互いにずれることがなくなるまで一方の被着体を他方の被着体に固定することを要さないか、若しくは短時間の固定のみで十分になる。これは、特に垂直接着の場合、例えば、自動車又は交通機関のフロントガラスや窓の接着をする場合に非常に好都合である。また、基材の反発(剥がれようとする力)に対する高い耐性を有し、短時間で固定できるので、合板、MDF(ミディアムデンシティファイバーボード)、パーチクルボード等の基材と、表面に装飾的な色や模様が施された化粧シート若しくはフィルム、化粧紙、突板、金属箔等とを貼り合わせて得られる化粧造作部材に用いることができる。
 結晶性脂肪族ポリエステルポリオールは、数平均分子量が1,500以上であることが好ましく、2,500以上がより好ましく、3,500以上が更に好ましく、10,000以下が好ましく、7,000以下がより好ましく、6,000以下が更に好ましい。結晶性脂肪族ポリエステルポリオールとして、ポリカプロラクトンポリオールを用いる場合には、数平均分子量が20,000以上200,000以下の範囲であることが好ましい。また、結晶性脂肪族ポリエステルポリオールの融点は、35℃以上が好ましく、45℃以上がより好ましく、55℃以上が更に好ましく、120℃以下が好ましく、100℃以下がより好ましく、80℃以下が更に好ましい。
(芳香族ポリエステルポリオール)
 芳香族ポリエステルポリオールとしては、例えば、芳香族ポリカルボン酸と低分子量の脂肪族ポリオールとの反応物を用いることができる。
 芳香族ポリカルボン酸としては、フタル酸(例えば、オルトフタル酸、無水フタル酸)、イソフタル酸、テレフタル酸を用いることができる。これらの芳香族ポリカルボン酸は単独で用いることも、2種以上を併用することもできる。
 芳香族ポリカルボン酸には、必要に応じ、その他の多塩基酸を併用することができる。その場合における芳香族ポリカルボン酸の含有量としては、全ての多塩基酸中60質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 その他の多塩基酸としては、例えば、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、1,12-ドデカンジカルボン酸等が挙げられる。これらの多塩基酸は、単独で用いることも、2種以上を併用することもできる。また、これらの多塩基酸の中では、アジピン酸、セバシン酸が好ましい。
 低分子量の脂肪族ポリオールとしては、例えば、炭素原子数が2~16個の直鎖脂肪族ジオールが挙げられ、直鎖脂肪族ジオールの中では、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましく、エチレングリコール、1,6-ヘキサンジオールがより好ましい。
 また、低分子量の脂肪族ポリオールとしては、ネオペンチルグリコール、1,3-ブタンジオール、2,2-ジエチル-1,3-プロパンジオール、2,2-ジエチルプロパンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2-メチル-1,8-オクタンジオール、2,4-ジエチル-1,5-ペンタンジオール等の分岐鎖脂肪族ジオールも挙げられ、分岐鎖脂肪族ジオールの中では、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオールが好ましく、ネオペンチルグリコールがより好ましい。
 更に、低分子量の脂肪族ポリオールとしては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等のエーテル結合を有する低分子量の脂肪族ポリオールも挙げられ、これらの中では、ジエチレングリコールが好ましい。そして、脂肪族ポリオールとしては、ビスフェノールAやビスフェノールF等に、エチレンオキシド、プロピレンオキシド、γ-ブチロラクトンやε-カプロラクトン等を開環付加反応させて得られる芳香族ポリオールを用いることもでき、これらの中では、ビスフェノールA、エチレンオキシドを開環付加反応させて得られる芳香族ポリオールが好ましい。
 これらの低分子量の脂肪族ポリオールは、単独で用いることも2種以上を併用することもできる。これらの中でも、アモルファス性を高めることができる観点から、ネオペンチルグリコール、及びジエチレングリコールを用いることが好ましい。
 ここで、芳香族ポリエステルポリオールの数平均分子量としては、900以上が好ましく、1,000以上がより好ましく、5,000以下が好ましく、3,000以下がより好ましい。
 なお、芳香族ポリエステルポリオールとしては、例えば、2,000以上5,000以下の数平均分子量を有し、かつ、30℃以上のガラス転移温度を有する芳香族ポリエステルポリオール(以下、「常温固体の芳香族ポリエステルポリオール」と称する。)と、例えば、400以上3,500以下の数平均分子量を有し、かつ、20℃以下のガラス転移温度を有する芳香族ポリエステルポリオール(以下、「常温液体の芳香族ポリエステルポリオール」と称する。)とが挙げられる。
(常温固体の芳香族ポリエステルポリオール)
 常温固体の芳香族ポリエステルポリオールは、例えば、芳香族ポリカルボン酸と低分子量の脂肪族ポリオールとを縮合反応させる方法によって製造できる。
 常温固体の芳香族ポリエステルポリオールとしては、低分子量の脂肪族ポリオールとしてのエチレングリコールやネオペンチルグリコールを、芳香族ポリカルボン酸としてのイソフタル酸やテレフタル酸を、ガラス転移温度が30℃以上になるように適宜組み合わせ、公知の方法により縮合反応させて得られる芳香族ポリエステルポリオールを用いることが好ましい。
 常温固体の芳香族ポリエステルポリオールは、30℃以上のガラス転移温度を有する化合物であり、なかでも30℃以上70℃以下の範囲内のガラス転移温度を有することがより好ましい。係る範囲内のガラス転移温度を有する常温固体の芳香族ポリエステルポリオールを用いることによって、ポリエチレンテレフタレート等の芳香族系樹脂に対する接着性をより一層向上でき、また、強靭性を付与して立ち上がり強度及び最終強度を向上させ、優れた接着強さを発現する湿気硬化型ホットメルト接着剤を得ることができる。
(常温液体の芳香族ポリエステルポリオール)
 常温液体の芳香族ポリエステルポリオールとしては、例えば、エーテル結合を有する低分子量の脂肪族ポリオール、分岐鎖脂肪族ジオール等と、芳香族ポリカルボン酸とを反応させて得られる芳香族ポリエステルポリオールを用いることができる。
 常温液体の芳香族ポリエステルポリオールは20℃以下のガラス転移温度を有する。また、常温液体の芳香族ポリエステルポリオールは、-30℃以上20℃以下の範囲内のガラス転移温度を有することが好ましい。この範囲内であれば、更に優れた常態接着強さを発現可能な湿気硬化型ホットメルト接着剤を得ることができる。
(脂環式ポリエステルポリオール)
 脂環式ポリエステルポリオールは、例えば、脂環式ポリオールと脂肪族ポリカルボン酸(又はその酸誘導体)とを用いて、若しくは、脂肪族ポリオールと脂環式ポリカルボン酸(又はその酸誘導体)とを用いて公知の反応方法により製造することができる。なお、係る製造方法は特に限定されない。
 脂環式ポリオールとしては、例えば、シクロペンタンジオール、シクロヘキサンジオール、シクロヘキサンジメタノール、水添ビスフェノールA等や、それらポリオールにエチレンオキサイド(EO)、プロピレンオキサイド(PO)等のアルキレンオキサイドを付加させた付加物も用いることができる。これらは単独で用いることも、2種以上を併用することもできる。
 脂肪族ポリオールとしては、例えば、炭素原子数が2~16個の直鎖脂肪族ジオール、ポリアルキレンオキシドオリゴマー、分岐鎖脂肪族ジオール、脂肪族トリオール等が挙げられ、これらの中でも、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、ネオペンチルグリコールが好ましく、ネオペンチルグリコールがより好ましい。
 脂環式ポリカルボン酸としては、例えば、シクロヘキサンジカルボン酸、シクロペンタンジカルボン酸等が挙げられ、これらの中でも、シクロヘキサンジアジペート(CHDA)が好ましい。
 脂肪族ポリカルボン酸としては、例えば、炭素原子数が2~16の直鎖脂肪族ジカルボン酸等が挙げられる。これらの中でも、アジピン酸、セバシン酸、デカン二酸、ドデカン二酸が好ましく、セバシン酸、ドデカン二酸がより好ましい。これらは単独で用いることも、2種以上を併用することもできる。
 なお、脂環式ポリカルボン酸及び脂肪族ポリカルボン酸は、例えば、メチルエステル等の低級アルキルエステル誘導体、酸無水物、酸ハロゲン化物等の対応する酸誘導体等を用いてもよい。
 脂環式ポリエステルポリオールの数平均分子量(Mn)は、500以上が好ましく、700以上がより好ましく、5,000以下が好ましく、3,000以下がより好ましく、2,000以下が更に好ましい。脂環式ポリエステルポリオールのMnが係る範囲内であれば、湿気硬化型ポリウレタンホットメルト接着剤が適度な溶融粘度になり、塗装作業性(粘度適性)、接着強度に優れ、基材と表面部材(シート、フィルム、金属箔、紙等)とを貼り合わせた後の、基材の複雑な形状部位における表面部材の剥離を防止することができる。
(常温で液状の脂肪族ポリエステルポリオール)
 常温で液状の脂肪族ポリエステルポリオールとしては、数平均分子量が4,000以上7,000以下であり、かつ、分岐鎖脂肪族基を有する常温で液状の脂肪族ポリエステルポリオールが挙げられる。
 常温で液状の脂肪族ポリエステルポリオールは、得られる接着剤の低温雰囲気下における良好な濡れ性と高い初期接着強度との両立を維持する観点から、4,000以上7,000以下の範囲内の数平均分子量を有することが必須である。常温で液状の脂肪族ポリエステルポリオールの数平均分子量が4,000未満の場合、得られる接着剤の低温雰囲気下における基材に対する濡れ性が低下し、かつ、常態接着強度が著しく低下する場合がある。一方、数平均分子量が7,000を超える場合、得られる接着剤からなる硬化物の架橋密度が大きくなることから、耐熱水接着強度が低下する場合がある。
 また、常温で液状の脂肪族ポリエステルポリオールは、難付着性基材に対する常態接着強度を向上させる観点から、分岐鎖脂肪族基を有することが必須である。
 分岐鎖脂肪族基としては、2,2-ジメチル-1,3-プロピレン基、2-メチル-1,3-プロピレン基、1,2-ジエチル-1,3-プロピレン基、3,2-ジエチル-1,3-プロピレン基、3-メチル-1,5-ペンタン基、2-エチル-2-ブチル-プロピレン基、2-メチル-1,8-オクタン基、2,4-ジエチル-1,5-ペンタン基等の分岐鎖脂肪族ジオール基等が挙げられる。これらの中では、2,2-ジメチル-1,3-プロピレン基、3-メチル-1,5-ペンタン基が好ましく、2,2-ジメチル-1,3-プロピレン基がより好ましい。
 常温で液状の脂肪族ポリエステルポリオールは、分岐鎖脂肪族ジオールとポリカルボン酸とを縮合反応させる方法や、分岐鎖脂肪族ジオールを開始剤としてカプロラクトンやγ-ブチルラクトン等を開環重合する方法等によって製造できる。なかでも、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール(なお、両者のうち、ネオペンチルグリコールがより好ましい。)と炭素原子を2~12個有する直鎖脂肪族ジオールと炭素原子を4~10個有する直鎖脂肪族ジカルボン酸とを反応させて得られる脂肪族ポリエステルポリオールを用いることが、低温環境下で良好な濡れ性を有する湿気硬化型ポリウレタンホットメルト接着剤が得られる観点からより好ましい。
 常温で液状の脂肪族ポリエステルポリオールを製造する場合には、必要に応じて、上記説明に挙げた化合物を除く低分子量の脂肪族ポリオールや脂肪族ポリカルボン酸を併用することができる。
 その他の低分子量の脂肪族ポリオールとしては、その他の脂肪族ポリオール等を用いることができる。これらの中では、炭素原子数が2~12個の直鎖脂肪族ジオールを用いることが好ましい。
 脂肪族ポリカルボン酸としては、例えば、アジピン酸、セバシン酸、アゼライン酸、デカメチレンジカルボン酸等を併用することができる。これらのなかでは、炭素原子数が4~10個の直鎖脂肪族ジカルボン酸を用いることが好ましい。
(ポリカーボネートポリオール)
 本発明においては、(ii)ポリオール成分に、ポリカーボネートポリオールを含有させてもよい。ポリカーボネートポリオールを用いることで本発明に係る湿気硬化型ホットメルト接着剤の耐加水分解性、及び耐湿接着性を向上させることができる。
 ポリカーボネートポリオールとしては、例えば、炭酸エステル及び/又はホスゲンと、ジオールとを反応させて得られる化合物を用いることができる。
 炭酸エステルとしては、例えば、ジメチルカーボネート、ジフェニルカーボネート等を用いることができる。これらの化合物は単独で用いることも、2種以上を併用することもできる。
 ジオールとしては、例えば、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール等の直鎖脂肪族ジオール;ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオール等の分岐鎖脂肪族ジオール;1,4-シクロヘキサンジメタノール、ビスフェノールA等を用いることができる。これらの化合物は単独で用いることも、2種以上を併用することもできる。
 ここで、1種類の直鎖脂肪族ジオールのみを有するポリカーボネートポリオールは、常温で固体であり、結晶性を有する。本発明においては、1,6-ヘキサンジオールのみを有するポリカーボネートポリオールを用いることが好ましい。
 また、少なくとも2種類のジオールを共重合して得られるポリカーボネートポリオールとしては、例えば、グリコール成分が、3-メチル-1,5-ペンタンジオールと1,6-ヘキサンジオールとからなる共重合ポリカーボネートジオール、1,5-ペンタンジオールと1,6-ヘキサンジオールとからなる共重合ポリカーボネートジオール、2-メチル-1,8-オクタンジオールと1,9-ノナンジオールとからなる共重合ポリカーボネートジオール等が挙げられる。これら常温で液体のポリカーボネートポリオールを用いることで、本発明に係る湿気硬化型ホットメルト接着剤の硬化被膜の可撓性を向上させることができる。
 ポリカーボネートポリオールの数平均分子量としては、本発明に係る湿気硬化型ホットメルト接着剤の接着性をより一層向上できる点から、500以上が好ましく、1,000以上がより好ましく、5,000以下が好ましく、4,000以下がより好ましい。
 ポリカーボネートポリオールのガラス転移温度(Tg)としては、耐落下衝撃性及び接着性をより一層向上できる観点から、-30~20℃の範囲であることが好ましい。
(ガラス転移温度:Tg)
 上記各種のポリエステルポリオール及びポリカーボネートポリオールは室温において液状(ガラス転移温度Tg<20℃)又は固体状である。そして、室温で固体状のポリエステルポリオール及びポリカーボネートポリオールは非晶質(Tg>20℃)であるか、又は少なくとも部分的に結晶性である。
[(ii-2)水酸基を有するメタクリル酸メチル系重合体]
 本発明に係る湿気硬化型ホットメルト接着剤は、(ii)ポリオール成分として、(ii-2)水酸基を有する(メタ)アクリル酸エステル系重合体を更に含有することができる。なお、成分(ii-2)は、シリル基を含んでいなくてもよい。成分(ii-2)としての重合体は室温で固体である。成分(ii-2)はアルコキシシリル基を有することが好ましく、例えば、水酸基を有するアルコキシシリル基含有メタクリル酸メチル系重合体であってよい。水酸基を有するアルコキシシリル基含有メタクリル酸メチル系重合体は、アルコキシシリル基含有(メタ)アクリル酸エステル重合体(例えば、後述の成分(D))に水酸基を導入して合成できる。
 なお、本発明に係る(A)アルコキシシリル基含有ウレタンプレポリマーは、結晶性ポリエステルによる常温で固体の結晶部分(以下、「PEsセグメント」とも称する。)とポリエーテル(以下、「PEセグメント」とも称する。)とによる常温で液体の非結晶部分により構成された「(結晶セグメント)―(非結晶セグメント)―(結晶セグメント)型」のウレタン結合で連結されたブロックポリマーに、常温で固体の非結晶性のメタクリル酸メチル系共重合体セグメント(以下、「PAcセグメント」とも称する。)を導入することにより得られ、湿気硬化型ホットメルト接着剤に強靭性を付与し、立ち上がり強度を向上させることができる。
 また、PAcセグメントが更にアルコキシシリル基を含有する場合、アルコキシシリル基の架橋反応により接着性や耐熱性を更に向上させることができる。
 なお、PAcセグメントを導入することにより、(PEsセグメント)―(PEセグメント)―(PEsセグメント)型、(PAcセグメント)―(PEセグメント)―(PAcセグメント)型、(PEsセグメント)―(PEセグメント)―(PAcセグメント)型のブロックポリマーが得られる。(PEsセグメント)―(PEセグメント)―(PAcセグメント)ブロックを有することで、結晶性ポリエステル、メタクリル酸メチル系共重合体の相溶化剤になり、非相溶の結晶性ポリエステル、メタクリル酸メチル系共重合体を相溶し、接着強度を向上させることができる。
 アルコキシシリル基含有メタクリル酸メチル系重合体には水酸基を1つ導入することが好ましい。アルコキシシリル基含有メタクリル酸メチル系重合体が水酸基を1つのみ有することで、ゲル化を抑制できる。ここで、アルコキシシリル基含有メタクリル酸メチル系重合体への水酸基の導入は公知の種々の方法を用いることができる。水酸基の導入方法の例として次の方法を挙げることができる。
(1)水酸基を有する不飽和化合物を共重合する。
(2)水酸基を有する開始剤や連鎖移動剤を用いて重合する。
(3)水酸基を有するチオール化合物を用いた反応や、水酸基を有するチオール化合物、及びメタロセン化合物を用いて重合する。
 なお、(3)の方法は、特許第5222467号に記載の方法が利用できる。
 水酸基の導入方法としては水酸基を一個導入できる観点からは、水酸基を有するチオール化合物、及びメタロセン化合物を用いて重合する方法が好ましい。水酸基を有するチオール化合物としては、例えば、2-メルカプトエタノール等が挙げられる。
 成分(ii-2)の水酸基の数(平均値)は、成分(ii-2)の重合体一分子あたり0.3個以上が好ましく、0.5個以上がより好ましく、0.8個以上が更に好ましく、3個以下が好ましく、2個以下がより好ましく、1.5個以下が更に好ましい。また、成分(ii-2)の数平均分子量は、1,000以上が好ましく、2,000以上がより好ましく、3,000以上が更に好ましく、50,000以下が好ましく、30,000以下がより好ましく、15,000以下が更に好ましい。
(各セグメントの重量比)
 成分(ii)において、PEセグメントとPEsセグメントとPAcセグメントとの重量比は、PEセグメント、PEsセグメント、及びPAcセグメントの合計を100重量部とした場合に、PEセグメントが15重量部以上55重量部以下であることが好ましく、PEsセグメントが15重量部以上50重量部以下であることが好ましく、PAcセグメントが10重量部以上45重量部以下であることが好ましい。
(水酸基を有する不飽和化合物の共重合)
 なお、水酸基を有する不飽和化合物としては、水酸基を有する(メタ)アクリル酸アルキルエステルが好ましい。そのような化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチルアクリレート等のモノヒドロキシアクリレート;グリセリンモノ(メタ)アクリレート等のポリヒドロキシアクリレート等が挙げられる。これらの中では、モノヒドロキシアクリレートが好ましい。また、水酸基を有する不飽和化合物の配合比は、成分(ii-2)の重合体一分子あたりの水酸基に対し、水酸基を有する不飽和化合物の水酸基が平均して0.5個以上3個以下になる比が好ましく、1.1個以上2個以下になる比がより好ましい。
((ii-3)ポリエーテルポリオール)
 本発明に係る湿気硬化型ホットメルト接着剤は、(ii)ポリオール成分として、(ii-3)ポリエーテルポリオールを更に含有することができる。(ii-3)ポリエーテルポリオールとしては、「(i)ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマー」において説明したポリエーテルポリオールが挙げられる。
[(iii)アルコキシシリル基とアミノ基若しくはメルカプト基とを有する化合物]
 本発明に係る(a-1)水酸基末端ウレタンプレポリマーは、成分(i)ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマーを、成分(ii)ポリオール成分に反応させることによって調製される。ここで、成分(i)及び成分(ii)に、活性水素を含む化合物、すなわち、下記一般式(IV)で表される成分(iii)アルコキシシリル基とアミノ基若しくはメルカプト基とを有する化合物を更に追加して反応させて成分(a-1)を調製することもできる。
Figure JPOXMLDOC01-appb-C000002
 式(IV)において、X、Y、及びZは同一若しくは異なる直鎖状若しくは分枝鎖状の(C1~C8)アルキル基、環状の(C3~C8)アルキル基又は(C1~C8)アルコキシ基を示し(但し、これらの基の少なくとも1つは(C1~C8)アルコキシ基を示す)、Rは炭素原子数が1~8の直鎖状若しくは分枝鎖状のアルキレン基又は炭素原子数が3~8の環状のアルキレン基を示し、Wは-SH、又は-NH-R’を示す(この場合、R’は水素原子、炭素原子数が1~8の直鎖状若しくは分枝鎖状のアルキル基、炭素原子数が3~8の環状アルキル基、アリール基又は次の一般式(V)で表される基を示す。)。
Figure JPOXMLDOC01-appb-C000003
 一般式(V)中、R’’及びR’’’は同一若しくは異なる炭素原子数が1~8の直鎖状若しくは分枝鎖状のアルキル基又は炭素原子数が3~8の環状アルキル基を示す。
 一般式(IV)で表される化合物(成分(iii))としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-ブチル-3-アミノプロピルトリメトキシシラン、N-プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、4-アミノ-3,3-ジメチル-ブチル-トリメトキシシラン、4-アミノ-3,3-ジメチル-ブチル-メチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、及び3-メルカプトプロピルトリエトキシシラン等が挙げられる。
 成分(a-1)の調製において、アルコキシシラン基とアミノ基とを有する一般式(IV)で表される化合物(すなわち、一般式(IV)の残基Wが-NHR’基に相当する化合物)を用いることが好ましい。また、アルコキシシラン基と2級アミノ基とを有する一般式(IV)で表される化合物(iii-1)(すなわち、一般式(IV)の残基Wが-NR’2基(R’はそれぞれ異なってもよい)に相当し、残基R’が好ましくは一般式(V)に相当する化合物)を用いることがより好ましい。これらの化合物は、例えば、特許第3342552号に記載の方法によって調製することができる。
 (iii)アルコキシシリル基とアミノ基若しくはメルカプト基とを有する化合物としては、例えば、N-(3-トリエトキシシリルプロピル)アスパラギン酸ジエチルエステル、N-(3-トリエトキシシリルプロピル)アスパラギン酸ジメチルエステル、N-(3-トリエトキシシリルプロピル)アスパラギン酸ジ-n-ブチルエステル、N-(3-トリメトキシシリルプロピル)アスパラギン酸ジメチルエステル、及びN-(3-トリメトキシシリルプロピル)アスパラギン酸ジエチルエステル等が挙げられる。
(環化縮合)
 ここで、アルコキシシリル基とアミノ基を有する一般式(IV)で表される化合物としてアスパラギン酸エステルを用いる場合、特許第3342552号に記載の方法に則って比較的高い反応温度を採用すると、環化縮合(cyclocondensation)反応が起こる可能性がある。しかしながら、係る反応の発生は本発明においては全く問題にはならず、反応条件を調製することにより、得られる化合物の粘度を所定の粘度まで低下させることができる場合もある。
(成分(i)と成分(iii)との配合比)
 本発明においては、一般式(IV)で表される成分(iii)アルコキシシリル基とアミノ基若しくはメルカプト基とを有する化合物と、イソシアネート基含有プレポリマー(すなわち、成分(i))とを、例えば、60℃以上、好ましくは80℃以上、150℃以下、好ましくは130℃以下の温度範囲で反応させる。ここで、成分(i)は、結晶性ポリエステル(以下、「結晶性PEs」と称する場合がある。)及び/又は水酸基含有ポリメタクリル酸メチル系重合体(以下、「水酸基含有PAc」と称する場合がある。)を含有してよく、イソシアネート基を含有する。この場合、成分(iii)と成分(i)との量比(配合比)、すなわち、結晶性PEs及び水酸基含有PAcを含有してなる成分(i)1モルあたり(換言すれば、イソシアネート基1モルあたり)、(iii)アルコキシシリル基とアミノ基若しくはメルカプト基とを有する化合物が0モル以上であることが好ましく、0.3モル以下であることが好ましく、0.2モル以下がより好ましく、0.1モル以下が更に好ましい。
(成分(i)、成分(ii)、及び成分(iii)の配合比)
 なお、成分(i)と成分(ii)と成分(iii)との量比(配合比)は、成分(i)のイソシアネート基1モルに対し、成分(ii)の水酸基(-OH)と成分(iii)のアミノ基(-NH)若しくはメルカプト基(-SH)との合計のモル比が1.2モル以上4.0モル以下の範囲で調整することが好ましい。
((a-1)の合成方法)
 (a-1)水酸基末端ウレタンプレポリマーは、例えば、反応温度において液状のポリオールを用いる場合には、ポリイソシアネートに対して過剰のポリオール成分とポリイソシアネートとを混合し、一定のNCO値が得られるまで(通常は30分間~2時間)均一混合物を撹拌することによって得られる。反応温度としては、80℃~150℃(好ましくは100℃~130℃)が選択される。(a-1)水酸基末端ウレタンプレポリマーは、撹拌タンクのカスケード(cascade)、又は所定の混合ユニット、例えば、回転子-固定子原理による高速ミキサー等を利用して連続的に調製することもできる。
 続いて、本発明においては、(A)アルコキシシリル基含有ウレタンプレポリマーを調製するために、(a-1)水酸基末端ウレタンプレポリマーと(a-2)イソシアネートシランとを反応させる。なお、成分(a-1)と成分(a-2)との量比は、成分(a-1)に含まれる水酸基1モルに対し、成分(a-2)に含まれるイソシアネート基が0.5モル以上1.1モル以下の範囲で調整することが好ましい。
<(a-2)イソシアネートシラン>
 本発明に係る(a-2)イソシアネートシランとしては、下記一般式(VI)で表されるシラン化合物が挙げられる。成分(a-1)と成分(a-2)とを反応させることで、(a-1)水酸基末端ウレタンプレポリマーの末端にアルコキシシリル基が導入され、アルコキシシリル基の架橋反応により耐熱性が向上する。
Figure JPOXMLDOC01-appb-C000004
 一般式(VI)中、Rは、炭素数が3~10の二価のアルキレン基であり、R及びRは、各々独立して炭素数が1~6のアルキル基若しくは炭素数が6~8のアリール基であり、xは、0、1、又は2の値である。なお、反応性が良好である観点からxは0が好ましく、Rは、炭素数が1~2のアルキル基が好ましく、炭素数が1のアルキル基が更に好ましい。Rは、炭素数が3の二価のアルキレン基が好ましい。
 (a-2)イソシアネートシランとしては、例えば、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-イソシアナトメチルプロピルトリメトキシシラン、3-イソシアナトメチルプロピルトリエトキシシラン、3-イソシアナトプロピルメチルジメトキシシラン、3-イソシアナトプロピルジメチルメトキシシラン、及び3-イソシアナトメチルプロピルジメチルメトキシシラン等が挙げられる。なお、反応性が良好である観点から、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシランが好ましい。
 (a-1)水酸基末端ウレタンプレポリマーと(a-2)イソシアネートシランとを反応させて得られる本発明に係る(A)アルコキシシリル基含有ウレタンプレポリマーは、結晶性ポリエステルによる常温で固体の結晶部分とポリエーテルによる常温で液体の非結晶部分とを含んで構成される「(結晶セグメント)―(非結晶セグメント)―(結晶セグメント)型」のブロックポリマーである。結晶部分と非結晶部分との両セグメント骨格に基づき、塗布後に十分な貼り合せ可能時間を確保でき、かつ、貼り合せ後は瞬間的な接着力を発現する。ブロックポリマーの中央部分に非結晶セグメントが配置することにより、強靭性と柔軟性とを併せて有し、優れた初期接着力が発現する。なお、結晶性ポリエステルとポリエーテルとは相溶性が低いものの、ブロック構造にすることにより上記の各特性が発現する。
 (a-1)水酸基末端ウレタンプレポリマーと(a-2)イソシアネートシランとの配合比は、水酸基1モルに対し、イソシアネート基が0.3モル以上であることが好ましく、0.5モル以上であることがより好ましく、0.7モル以上であることが更に好ましい。なお、成分(a-2)を成分(a-1)に対して過剰に添加してもよい。この場合、過剰の成分(a-2)は、接着付与剤として機能する。
 ここで、イソシアネート基が1モル以下の場合は未反応の水酸基にモノイソシアネートを反応させて不活化することが好ましい。モノイソシアネートとしては、C6~C18のアルキル基、C6~C18のアリール基に結合したイソシアネート基を有するモノイソシアネートが挙げられ、例えば、ステアリルイソシアネート、フェニルイソシアネート、及びナフチルイソシアネート等が好ましい。
<(B)シラン系接着付与剤>
 本発明に係る湿気硬化型ホットメルト接着剤は、(B)シラン系接着付与剤を更に含有できる。(B)シラン系接着付与剤は、湿気硬化により、接着付与剤効果を発現し、立ち上がり接着強度以外の最終強度、耐水接着性、及び耐熱接着性を向上させることができる。
 ここで、(B)シラン系接着付与剤のアルコキシシリル基は、メトキシ基、エトキシ基等であることが加水分解速度の観点から好ましい。そして、シリル基のアルコキシ基の個数は、2個以上が好ましく、3個がより好ましい。また、(B)シラン系接着付与剤の官能基は、アミノ基、エポキシ基等が接着性の観点から好ましく、アミノ基がより好ましい。(B)シラン系接着付与剤としては、アミノシラン、ケチミン系シラン、エポキシシラン、アクリルシラン系シラン、ビニルシラン系カップリング剤、メルカプトシラン、尿素シラン系カップリング剤、イソシアヌレートシラン、イソシアネートシラン等を用いることができる。
 アミノシランとしては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-3-アミノプロピルメチルジエトキシシラン等のモノ-シリルアミノシラン、ビス-(トリメトキシシリルプロピル)アミン、ビス-(トリエトキシシリルプロピル)アミン、ビス-(トリエトキシシリルプロピル)エチレンジアミン、N-[2-(ビニルベンジルアミノ)エチル]-3-アミノプロピルトリメトキシシラン、及びアミノエチル-アミノプロピルトリメトキシシラン等のビス-シリルアミノシランが挙げられる。ケチミン系シランとしては、例えば、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等が挙げられる。エポキシシランとしては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。アクリルシラン系シランとしては、例えば、3-メタクリロキシプロピルトリメトキシシラン等が挙げられる。ビニルシラン系カップリング剤としては、例えば、ビニルトリメトキシシラン、メチルビニルジメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリ(β-メトキシシラン)等が挙げられる。メルカプトシランとしては、例えば、3-メルカプトプロピルトリメトキシシラン等が挙げられる。尿素シラン系カップリング剤としては、例えば、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン等が挙げられる。イソシアヌレートシランとしては、トリス-(トリメトキシシリルプロピル)イソシアヌレート等が挙げられる。イソシアネートシランとしては、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。
 更に、(B)シラン系接着付与剤としては、上記のアミノシランとエポキシシランとの反応物、アミノシランとイソシアネートシランとの反応物、アミノシランと(メタ)アクリロイルオキシ基を有するシランとの反応物、アミノシランとエポキシ樹脂(ビスフェノールAジグリシジルエーテル、フェニルグリシジルエーテル等)との反応物、アミノシランとポリイソシアネートとの反応物、アミノシランとポリアクリレートとの反応物等のアミノシラン反応物;上記シラン類を部分的に縮合した縮合体(好ましくは上記のアミノシラン、イソシアネートシラン、アミノシラン反応物、及び反応物の混合物を部分的に縮合したアミノシラン縮合体);これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等も挙げられる。
 (B)シラン系接着付与剤の分子量としては、分子量が320以上である化合物がホットメルトの溶融時に揮散しにくいため好ましく、400以上がより好ましく、450以上が更に好ましい。接着性及びホットメルト接着剤の溶融時に揮散しにくいことより、ビス-シリルアミノシラン、イソシアヌレートシラン、アミノシラン反応物、アミノシラン縮合体等のシリル基を2個以上有するシラン系接着付与剤がより好ましく、アミノシラン反応物、アミノシラン縮合体が更に好ましく、アミノシラン反応物が最も好ましい。なお、アミノシラン反応物は混合工程時に反応材料を別途添加して反応させてもよい。
 (B)シラン系接着付与剤は単独で用いても、2種類以上を併用してもよい。(B)シラン系接着付与剤の使用量は、成分(A)100質量部に対して、0.01質量部以上が好ましく、0.1質量部以上がより好ましく、1質量部以上が特に好ましく、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下が特に好ましい。0.01質量部未満であると、接着性付与効果や硬化触媒としての効果が不十分であり、一方、20質量部を超えると、添加量に応じた触媒としての作用が顕著でなく経済的に好ましくない。
<(C)改質樹脂>
 (C)改質樹脂は、その配合系の貼り合わせ可能時間の制御や溶融粘度の低減のために混合され、物性を変性・調整する機能を有する。(C)改質樹脂は、貼り合せ可能時間、及び立ち上がり接着強度を向上させることができる。
 なお、本発明に係る成分(C)は、成分(C)が添加される対象の樹脂を構成するセグメントの種類によって異なる機能を発揮する。すなわち、成分(C)は、主としてハードセグメントで構成される樹脂に添加されると改質樹脂として物性調整の機能を発揮し、主としてソフトセグメントで構成される樹脂に添加されると粘着付与樹脂としての機能を発揮する。本発明に係る成分(A)の骨格は主として結晶性ポリエステル等のハードセグメントで構成されているので、下記に例示する樹脂は改質樹脂として作用する。
 (C)改質樹脂としては、例えば、テルペン系樹脂、芳香族変性テルペン樹脂及びこれに水素添加した水素添加テルペン樹脂、テルペン類とフェノール類とを共重合させたテルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体、スチレン系ブロック共重合体の水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いることも、2種以上を併用することもできる。
 スチレン系ブロック共重合体及びその水素添加物の例としては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレンブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレンプロピレ-スチレンブロック共重合体(SEPS)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)等が挙げられる。
 (C)改質樹脂としては、架橋性ケイ素基を有する有機重合体との相溶性がよく、接着剤の加熱安定性がよい観点からテルペンフェノール樹脂や芳香族系石油樹脂が好ましい。芳香族系石油樹脂としては、芳香族系スチレン樹脂、脂肪族-芳香族共重合体系スチレン樹脂が好ましく、テルペンフェノール樹脂、脂肪族-芳香族共重合体系スチレン樹脂がより好ましい。また、VOC及びフォギングの観点からは、脂肪族-芳香族共重合体系スチレン樹脂を用いることが好ましい。
 (C)改質樹脂の成分(A)100質量部に対する添加量は、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上であることが特に好ましく、200質量部以下が好ましく、150質量部以下がより好ましく、120質量部以下が特に好ましい。
<(D)アルコキシシリル基含有メタクリル酸メチル系重合体>
 (D)アルコキシシリル基含有メタクリル酸メチル系重合体は、メタクリル酸メチルを必須モノマーとした(メタ)アクリルエステル重合体である。(D)アルコキシシリル基含有メタクリル酸メチル系重合体は、湿気硬化型ホットメルト接着剤に強靭性を付与し、立ち上がり強度、及び最終強度を向上させることができる。また、アルコキシシリル基の架橋反応により湿気硬化型ホットメルト接着剤の耐熱性を向上させることができる。
 成分(D)であるアルコキシシリル基を有しガラス転移温度がマイナス20℃~120℃である(メタ)アクリルエステル系重合体のアルコキシシリル基は、ケイ素原子に結合したアルコキシ基を有し、シラノール縮合反応により架橋することができる基である。アルコキシシリル基としては、下記一般式(VII)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 一般式(VII)中、R10は、炭素数1~20のアルキル基、炭素数1~20の置換アルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基を示し、R10が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Xはアルコキシ基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0、1、2、又は3を示す。一般式(VII)のアルコキシシリル基においてaが2又は3である場合が好ましい。aが3の場合、aが2の場合よりも硬化速度が大きくなる。
 R10の具体例としては、例えば、メチル基、エチル基等のアルキル基、メトキシメチル基等の置換アルキル基、シクロヘキシル基等のシクロアルキル基等が挙げられる。これらの中ではメチル基が好ましく、硬化速度が大きくなる観点ではα炭素が極性基で置換された置換アルキル基が好ましい。
 Xで示されるアルコキシ基としては、特に限定されず、従来公知のアルコキシ基であればよい。アルコキシ基の中では炭素数の少ない基の方が反応性は高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなる程に反応性が低くなる。目的や用途に応じて選択できるが、通常、メトキシ基やエトキシ基が用いられる。一般式(VII)で示されるアルコキシシリル基の場合、硬化性を考慮するとaは2以上が好ましい。
 具体的に、アルコキシシリル基としては、反応性が高い点からトリメトキシシリル基、トリエトキシシリル基が好ましく、トリメトキシシリル基が更に好ましい。柔軟性を有する硬化物を得る観点からメチルジメトキシシリル基、メチルジエトキシシリル基が好ましい。
 また、アルコキシシリル基は単独で用いることも、2種以上を併用することもできる。アルコキシシリル基は、主鎖若しくは側鎖、又はいずれにも存在していてよい。
 成分(D)のアルコキシシリル基の数(平均値)は、重合体一分子あたり0.3個以上が好ましく、0.5個以上がより好ましく、1個以上が更に好ましく、5個以下が好ましく、3個以下がより好ましく、2.5個以下が更に好ましい。分子中に含まれるアルコキシシリル基の数が0.3個未満になると硬化性が不充分になり、また多すぎると網目構造があまりに密になることから良好な機械特性を示さなくなる。
 成分(D)の調製において、(メタ)アクリル酸エステル重合体へのアルコキシシリル基の導入は公知の種々の方法を用いることができる。例えば、アルコキシシリル基の導入方法の例として次の方法を挙げることができる。
(1)アルコキシシリル基を有する不飽和化合物を共重合する。
(2)アルコキシシリル基を有する開始剤や連鎖移動剤を用いて重合する。
(3)水酸基等の官能基を有する(メタ)アクリル酸エステル重合体にエポキシシラン等の当該官能基と反応し得る他の官能基とアルコキシシリル基とを有する化合物を反応させる。
 これらのアルコキシシリル基の導入方法のうち、アルコキシシリル基を容易に導入できる観点から、(1)アルコキシシリル基を有する不飽和化合物を共重合する方法が好ましい。また、(1)の方法と(2)の方法とを併用する方法も好ましい。例えば、メチルメタクリレート、2-エチルヘキシルメタクリレート、3-メタクリロキシプロピルトリメトキシシラン、金属触媒としてのチタノセンジクライド、3-メルカプトプロピルトリメトキシシラン(チタノセンジクライドの作用により開始剤として作用し、連鎖移動剤としても作用する。)、及び重合停止剤としてのベンゾキノン溶液を用い、WO2015-088021の合成例4に準じた合成方法を用いることで、アルコキシシリル基含有メタクリル酸メチル系重合体としてのトリメトキシシリル基含有(メタ)アクリル系重合体が得られる。
(アルコキシシリル基を有する不飽和化合物)
 共重合に用いるアルコキシシリル基を有する不飽和化合物としてはアルコキシシリル基を有する(メタ)アクリル酸アルキルエステルやビニルシランが好ましい。係る化合物としては、例えば、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等の3-(メタ)アクリロキシプロピルアルコキシシラン、ビニルトリエトキシシラン等のビニルアルコキシシラン等が挙げられる。これらの中ではアルコキシシリル基を有するアルキル基の炭素数が3以下の置換アルキル基を有する(メタ)アクリル酸アルキルエステルが好ましい。アルコキシシリル基を有する不飽和化合物の配合比は、成分(D)の重合体一分子あたりのアルコキシシリル基に対し、アルコキシシリル基を有する不飽和結合のアルコキシシリル基が平均して1.1個以上5個以下、好ましくは1.1個以上3個以下になるようにすることが好ましい。
(成分(D)に用いるアルコキシシリル基を有する単量体を除く他の単量体)
 本発明に係る(D)成分に用いるアルコキシシリル基を有する単量体を除く他の単量体としては、メタクリル酸メチルを必須のモノマー成分とする、一般式(VIII)で示される繰り返し単位を有するメタクリル酸メチル系ランダム共重合体が挙げられる。
 -CHC(R11)(COOR12)-    (VIII)
 一般式(VIII)中、R11は水素原子若しくはメチル基、R12は置換基を有してもよい炭化水素基を示す。なお、(メタ)アクリル酸エステルとは、アクリル酸エステル、及び/又は、メタクリル酸アルキルエステルを示す。
 メタクリル酸メチル(MMA)の他の繰り返し単位となる単量体としては、(メタ)アクリル酸アルキルエステルが好ましい。(メタ)アクリル酸アルキルエステル化合物の例としては、公知の化合物が挙げられる。例えば、アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等を挙げることができる。
 (i)ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマーのポリエーテル骨格(つまり、成分(A)の骨格の一部)との相溶性が良い観点から、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等の炭素数が8以上のエステル結合を有する(メタ)アクリル酸アルキルエステルが好ましい。メタクリル酸メチル系重合体を柔軟にする観点からは、アクリル酸n-ブチル(Tg;-55℃)、アクリル酸2-エチルヘキシル(Tg;-70℃)、アクリル酸ラウリル(Tg;-3℃)等のガラス転移温度(Tg)が0℃以下の(メタ)アクリル酸アルキルエステルを用いることが好ましい。なお、この段落におけるガラス転移温度はホモポリマーのガラス転移温度である。
 (メタ)アクリル酸エステルのアルキル基等の炭化水素基は水酸基、アルコキシ基、ハロゲン原子、エポキシ基等の置換基を有していてもよい。このような化合物の例としては、ヒドロキシエチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル酸エステル、メトキシエチル(メタ)アクリレート等のアルコキシ基を有する(メタ)アクリル酸エステル、グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリル酸エステル、ジエチルアミノエチル(メタ)アクリレート等のアミノ基を有する(メタ)アクリル酸エステルを挙げることができる。なお、ポリスチレン鎖を有するアクリル酸エステル等の高分子鎖を有する不飽和化合物(マクロモノマー若しくはマクロマー)を用いることもできる。
 更に、成分(D)のアルコキシシリル基含有(メタ)アクリル酸エステル系重合体中には、(メタ)アクリル酸エステル化合物由来の繰り返し単位に加えて、これらと共重合性を有する化合物由来の繰り返し単位を含んでもよい。(メタ)アクリル酸エステル化合物と共重合性を有する化合物の例としては、(メタ)アクリル酸等のアクリル酸;(メタ)アクリルアミド等のアミド化合物、アルキルビニルエーテル等のビニルエーテル化合物;その他アクリロニトリル、スチレン、α-メチルスチレン、塩化ビニル、酢酸ビニル等が挙げられる。
(単量体の使用比率)
 成分(D)の重合体に用いる単量体の量は、成分(D)の重合体中に50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上が特に好ましく、95質量%以上が最も好ましい。特に、メタクリル酸メチルとアクリル酸ブチルのようなアルキル基の炭素数2~30の置換基を有しないアクリル酸アルキルエステルを上記の量で用いることが好ましい。また、成分(D)の重合体に用いる単量体としてマクロモノマーを用いてもよい。ただし、マクロモノマーを用いる場合、マクロモノマーの量が成分(D)の重合体中に10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることが特に好ましい。
(ガラス転移温度)
 成分(D)のアルコキシシリル基含有(メタ)アクリル酸エステル系重合体は-20℃~120℃のガラス転移温度(Tg)を有する。ガラス転移温度は、-20℃以上が好ましく、0℃以上がより好ましく、20℃以上が更に好ましく、120℃以下が好ましく、100℃以下がより好ましく、80℃以下が更に好ましい。ガラス転移温度が-20℃未満であると接着直後の接着強度が劣る傾向にある。また、ガラス転移温度が120℃を超えると溶融粘度が高くなり、ホットメルト接着剤の被着体への塗布が困難になる傾向にある。ガラス転移温度は単量体成分の種類や量から下記Fox式を用いて容易に推定することができる。
 1/Tg=W/Tg+W/Tg+・・・+W/Tg  (Fox式)
 上記Fox式中、Tgは、アクリル系樹脂のガラス転移温度(K)であり、W、W、・・・、Wは、各モノマーの重量分率であり、Tg、Tg、・・・、Tgは、各モノマーのホモポリマーのガラス転移温度である。なお、上記Fox式に用いるホモポリマーのガラス転移温度は、文献に記載されている値を用いることができ、例えば、三菱レイヨン株式会社のアクリルエステルカタログ(1997年度版)や北岡協三著、「新高分子文庫7 塗料用合成樹脂入門」、高分子刊行会、p168~p169等に記載されている。
 成分(D)のアルコキシシリル基含有(メタ)アクリル酸エステル系重合体の分子量は、数平均分子量(GPC法で測定したポリスチレン換算分子量)で、3,000以上が好ましく、4,000以上がより好ましく、5,000以上が更に好ましく、200,000以下が好ましく、100,000以下がより好ましく、50,000以下が更に好ましい。数平均分子量が3,000未満では、塗布後の初期接着力が低く、200,000を超えると、塗布作業時の粘度が高くなり過ぎ、作業性が低下する。また、成分(D)の重合体は室温では固体であることが好ましい。
(成分(D)の重合法)
 成分(D)の重合法としては、ラジカル重合方法を用いることができる。例えば、ベンゾイルパーオキサイド、アゾビスイソブチロニトリル等の熱重合開始剤を用いる通常の溶液重合方法や塊状重合方法を用いることができる。また、光重合開始剤を用い、光又は放射線を照射して重合する方法も用いることができる。ラジカル共重合においては、分子量を調節するために、例えば、ラウリルメルカプタンや3-メルカプトプロピルトリメトキシシラン等の連鎖移動剤を用いてもよい。また、熱重合開始剤を用いるラジカル重合方法を用いることができ、係る方法で本発明に係る成分(D)の重合体を容易に得ることができる。なお、特開2000-086998公報に記載されているようなリビングラジカル重合法等、他の重合方法を用いてもよい。
<(E)架橋触媒>
 (E)架橋触媒としては、アルコキシシリル基含有ウレタンプレポリマーの架橋触媒(シラノール触媒)が挙げられ、例えば、チタン酸エステル、4価の有機錫化合物、オクチル酸錫等の2価の有機錫化合物、ジルコニウム化合物、アルミニウム化合物、ビスマス化合物、一級・二級アミン系化合物、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、ジモルホリノジエチルエーテル、N,N-ジメチルドデシルアミン、ビス-(N,N’-ジメチルアミノエチル)エーテル等の三級アミン系化合物、1,3-ジアザビシクロ(5,4,6)ウンデセン-7等のアミジン化合物若しくはそれらのカルボン酸塩、フッ素化ポリマー等が挙げられる。これらの(E)架橋触媒は、単独で、若しくは2種以上を併用して用いることができる。
 フッ素化ポリマーとしては、例えば、Si-F結合を有する有機重合体が挙げられ、WO2015-088021号公報に記載のフルオロシリル基を有する有機重合体(以下、「フッ素化ポリマー」とも称する)等が挙げられる。フッ素化ポリマーとしては、主鎖又は側鎖の末端にジフルオロメチルシリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基、トリフルオロシリル基等のフルオロシリル基を有する重合体が好ましい。
 フッ素化ポリマーの主鎖骨格としては、後述する液状高分子化合物において説明する重合体を用いることができ、これらの重合体の中では、ポリオキシアルキレン系重合体、及び/又は(メタ)アクリル酸エステル系重合体が取り扱い易く、貼り合わせ可能時間を長くする効果が大きいため好ましい。フッ素化ポリマーの数平均分子量は、GPCにおけるポリスチレン換算において3,000以上が好ましく、100,000以下が好ましく、50,000以下がより好ましく、30,000以下が特に好ましい。
 フッ素化ポリマーを用いる場合は、(A)アルコキシシリル基含有ウレタンプレポリマー100質量部に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、0.1質量部以上が更に好ましく、80質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下が更に好ましい。
 また、(E)架橋触媒としては、触媒効果が高く、十分な耐熱強度が得られる観点から、チタン酸エステル、4価の有機錫化合物、2価の有機錫化合物、三級アミン系化合物、アミジン化合物若しくはそれらのカルボン酸塩、フッ素化ポリマーが好ましい。
 そして、成分(A)や成分(a-1)等のプレポリマー中に存在するポリエステル単位及びアルコキシ末端基の分解に起因する低分子量アルコール(例えば、メタノール又はエタノール)のエステル交換反応が起きにくい観点から(なお、ホットメルト接着剤は、塗布前に加熱オーブン中で溶融されて比較的長時間にわたって(一般的には、少なくとも1日の作業日)、液体状態に維持されるので、工業的な用途にとっては、高温での十分な安定性が必ず要求される。)、2価の有機錫化合物、三級アミン系化合物、フッ素化ポリマーが好ましい。また、フッ素化ポリマーを用いる場合は、アミノシラン、ビス-(N,N’-ジメチルアミノエチル)エーテル等のアミン系化合物と併用すると架橋反応がより促進される。
 フッ素化ポリマーを除く他の架橋触媒を用いる場合、当該他の架橋触媒の添加量は、(A)アルコキシシリル基含有ウレタンプレポリマー100質量部に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、0.2質量部以上が更に好ましく、10質量部以下が好ましく、5質量部以下がより好ましく、3質量部以下が更に好ましい。
<(F)メタクリル酸メチル系重合体骨格を有するアルコキシシリル基含有ウレタンプレポリマー>
 (F)メタクリル酸メチル系重合体骨格を有するアルコキシシリル基含有ウレタンプレポリマーは、成分(D)と同様にして得られるプレポリマーである。例えば、ポリエーテル骨格の両端にPAcセグメントが結合した構造を有する。成分(F)は、例えば、成分(i)と成分(ii-2)とを反応させて得られる。成分(F)を用いて得られる湿気硬化型ホットメルト接着剤は、(PAcセグメント)―(PEセグメント)―(PAcセグメント)ブロックを有し、係るブロックは湿気硬化型ホットメルト接着剤に強靭性を付与し、立ち上がり強度、及び最終強度を向上させる。また、アルコキシシリル基により、湿気硬化型ホットメルト接着剤の接着性能が向上し、架橋反応により耐熱性が向上する。なお、PAcセグメントとはポリアクリレート骨格のセグメントを指し、PEセグメントとはポリエーテル骨格のセグメントを指す。
 成分(F)に用いる成分(i)ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマーの調製に用いるポリエーテルポリオールは、その数平均分子量が2,000以上であることが好ましく、3,000以上がより好ましく、5,000以上が更に好ましく、30,000以下が好ましく、25,000以下がより好ましく、15,000以下が更に好ましい。
<光塩基発生剤>
 本発明に係る光塩基発生剤は、光を照射すると成分(A)等の架橋性ケイ素元含有有機重合体の硬化触媒として作用する。光塩基発生剤とは、紫外線、電子線、X線、赤外線、及び可視光線等の活性エネルギー線の作用により塩基を発生する物質であれば特に限定されず、(1)紫外線・可視光・赤外線等の活性エネルギー線の照射により脱炭酸して分解する有機酸と塩基の塩、(2)分子内求核置換反応や転位反応等により分解してアミン類を放出する化合物、若しくは(3)紫外線・可視光・赤外線等のエネルギー線の照射により所定の化学反応を起こして塩基を放出する化合物等の公知の光塩基発生剤を用いることができる。
 光塩基発生剤としては、公知の様々な光塩基発生剤を用いることができる。例えば、光塩基発生剤としては、活性エネルギー線の作用によりアミン化合物を発生する光潜在性アミン化合物が好ましい。光潜在性アミン化合物としては、活性エネルギー線の作用により第1級アミノ基を有するアミン化合物を発生する光潜在性第1級アミン、活性エネルギー線の作用により第2級アミノ基を有するアミン化合物を発生する光潜在性第2級アミン、及び活性エネルギー線の作用により第3級アミノ基を有するアミン化合物を発生する光潜在性第3級アミンのいずれも使用可能である。これらの中でも、光塩基発生剤としては、発生塩基が高い触媒活性を示す観点から光潜在性第3級アミンがより好ましく、塩基の発生効率が良いこと及び組成物としての貯蔵安定性が良いこと等から、ベンジルアンモニウム塩誘導体、ベンジル置換アミン誘導体、α-アミノケトン誘導体、α-アンモニウムケトン誘導体が好ましく、特に、光が当たっていない時は塩基が発生せず、光が当たると塩基が効率よく発生することから、ベンジルアンモニウム塩誘導体、ベンジル置換アミン誘導体がより好ましい。具体的には、国際公開番号WO2015/008709号に記載の各種の光塩基発生剤を用いることができる。なお、これら光塩基発生剤は単独で用いてもよく、2種以上組み合わせて用いてもよい。
<光アミノシラン発生剤>
 本発明に係る光アミノシラン発生剤としては、光によりアミノ基を生成する架橋性ケイ素基含有化合物を用いることができる。光によりアミノ基を生成する架橋性ケイ素基含有化合物としては、光により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性ケイ素元含有化合物であり、光照射により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基と、架橋性ケイ素基とを有するアミノシラン化合物を発生する化合物であればいかなる化合物でも使用可能である。本明細書において、光により、第一級アミノ基及び第二級アミノ基からなる群から選択される1種以上のアミノ基を生成する架橋性ケイ素基含有化合物を光アミノシラン発生化合物と称する。
 光照射により発生する、アミノシラン化合物としては、架橋性ケイ素基、及び置換若しくは非置換のアミノ基を有する化合物が用いられる。置換アミノ基の置換基としては、特に限定されず、例えば、アルキル基、アラルキル基、アリール基等が挙げられる。また、架橋性ケイ素基としては、特に限定されず、前記架橋性ケイ素元を挙げることでき、加水分解性基が結合したケイ素含有基が好ましい。この中でも、メトキシ基、エトキシ基等のアルコキシ基が、加水分解性が穏やかで取扱いやすいことから好ましい。アミノシラン化合物中、加水分解性基や水酸基は1個のケイ素原子に1~3個の範囲で結合することができ、2個以上が好ましく、特に3個が好ましい。
 光アミノシラン発生化合物としては特に限定されず、例えば、国際公開番号WO2015/088021号に記載の各種の光アミノシラン発生剤を用いることができる。なお、これら光アミノシラン発生剤は単独で用いてもよく、2種以上組み合わせて用いてもよい。
<他の添加剤>
 本発明に係る反応性ホットメルト接着剤には必要に応じて他の添加剤を併用することができる。このような添加剤としては、例えば、シリル化ポリマー、液状高分子化合物、充填剤、希釈剤、安定剤、難燃剤、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、防かび剤等が挙げられる。これらの添加剤は単独で用いてもよく、2種類以上を併用してもよい。
(シリル化ポリマー)
 シリル化ポリマーは、反応性ホットメルト接着剤の貼り合わせ可能時間の制御や溶融粘度を低減させることを目的として反応性ホットメルト接着剤に混合され、反応性ホットメルト接着剤の物性を変性及び/又は調整する機能を有する。シリル化ポリマーは、塗布作業性、及び立ち上がり接着強度を向上させることができる。
 シリル化ポリマーとしては、シリル化ポリウレタン(SPU)、シリル末端ポリマー(STP)が挙げられ、シリル化ポリウレタンとしては、以下に詳細を述べるシリル化ポリウレタン1(SPU1)、及びシリル化ポリウレタン2(SPU2)が挙げられる。硬化物が強靭になり、反応性が良好である観点からは、シリル化ポリウレタンが好ましく、中でもシリル化ポリウレタン2がより好ましい。また、接着剤の溶融粘度を低下させて塗布作業性を向上させる観点からは、シリル末端ポリマー及びシリル化ポリウレタン1が好ましく、シリル末端ポリマーがより好ましい。
 また、接着剤の塗布作業性、貼り合わせ可能時間、立ち上がり強度、及び最終強度を向上させる観点からは、結晶性脂肪族ポリエステル骨格及び/又は結晶性ポリカーボネート骨格を有する常温で固体のシリル化ポリウレタンが好ましく、結晶性脂肪族ポリエステル骨格を有するシリル化ポリウレタンがより好ましく、長鎖脂肪族ポリエステル骨格を有するシリル化ポリウレタンが更に好ましい。
 そして、接着剤の溶融粘度を低減し、硬化被膜の可撓性を向上させる観点からは、ポリオキシアルキレン骨格を有する常温で液状のシリル化ポリマーが好ましく、ポリオキシプロピレン骨格を有するシリル化ポリマーがより好ましく、ポリオキシプロピレン骨格を有するシリル末端ポリエーテルが更に好ましい。ここで、接着剤の溶融粘度の低減効果を大きくする観点から、数平均分子量が1,000以上2,000以下の長鎖アルキルポリエステルが特に好ましい。また、ポリエチレンテレフタレート等の芳香族系樹脂に対する接着剤の接着性をより一層向上させ、また、強靭性を付与して最終強度を向上させる観点からは、芳香族ポリエステル骨格を有するシリル化ポリウレタンが好ましく、常温で固体の芳香族ポリエステル骨格を有するシリル化ポリウレタンがより好ましい。中でも溶融粘度を低くできる観点から、数平均分子量が1,000以上2,000以下の芳香族ポリエステルが好ましい。
 具体的に、シリル化ポリマーは、架橋性ケイ素基を有する有機重合体である。架橋性ケイ素基としては、「(D)アルコキシシリル基含有メタクリル酸メチル系重合体」の項で説明した一般式(VII)で示される基が挙げられる。また、シリル化ポリマーが架橋性ケイ素基を複数有する場合、架橋性ケイ素基は1種であっても、2種以上を併用してもよい。架橋性ケイ素基は、ポリマーの主鎖若しくは側鎖、又は双方に結合していてもよい。硬化物の引張特性等の硬化物の物性が優れる観点からは、架橋性ケイ素基が分子鎖末端に存在することが好ましい。
 架橋性ケイ素基は、シリル化ポリマー1分子中に平均して1.0個以上5個以下存在することが好ましく、1.1個以上3個以下存在することがより好ましい。分子中に含まれる架橋性ケイ素基の数が1個未満になると硬化性が不十分になり、一方、多すぎると網目構造があまりに密になるため良好な機械特性を示さなくなる。
 また、架橋性ケイ素基が分子鎖末端に存在する場合は、分子鎖末端基含有成分と架橋性ケイ素基含有成分との配合比は、分子鎖末端基1モルに対し、架橋性ケイ素基が0.3モル以上であることが好ましく、0.5モル以上であることがより好ましく、0.7モル以上であることが更に好ましい。なお、架橋性ケイ素基含有成分を分子鎖末端基に対して過剰に添加してもよい。この場合、過剰の架橋性ケイ素基含有成分は、接着付与剤として機能する。なお、未反応の水酸基が残る場合は、例えば、「(a-2)イソシアネートシラン」の項で説明したモノイソシアネートを未反応の水酸基に反応させて不活化することが好ましい。
〔シリル化ポリウレタン1〕
 シリル化ポリウレタン1(SPU1)は、イソシアナートシランとヒドロキシル基を有するポリマーとを反応させることによって調製できる。シリル化ポリウレタン1としては、イソシアナートシランとヒドロキシル基を有するポリマーとしてポリエステルポリオール又はポリカーボネートポリオール若しくはポリオキシアルキレンポリオールとを反応させることによって調製され、ポリエステル骨格を有するシリル化ポリエステルウレタン1(SPEsU1)と、ポリカーボネート骨格を有するシリル化ポリカルボネートウレタン1(SPCU1)と、ポリオキシアルキレン骨格を有するシリル化ポリエーテルウレタン1(SPEU1)とが挙げられる。なお、ヒドロキシル基を有するポリマーは、ジイソシアネートで連結されたヒドロキシル基を有するポリマーであってもよい。
〔シリル化ポリウレタン2〕
 シリル化ポリウレタン2(SPU2)は、イソシアナート基に対して反応性を有する1個の基を有するシランと、ヒドロキシル基を有するポリマーをポリイソシアナートに反応させて得られる化合物と、イソシアナート基を含むポリウレタンポリマーとを反応させることによって調製できる。シリル化ポリウレタン2としては、イソシアナート基に対して反応性を有する1個の基を有するシランと、イソシアナート基を含むポリウレタンポリマーと、ヒドロキシル基を有するポリマーとしてポリエステルポリオール又はポリカーボネートポリオール若しくはポリオキシアルキレンポリオールとを反応させることによって調製され、ポリエステル骨格を有するシリル化ポリエステルウレタン2(SPEsU2)と、ポリカーボネート骨格を有するシリル化ポリカーボネートウレタン2(SPCU2)と、ポリオキシアルキレン骨格を有するシリル化ポリエーテルウレタン2(SPEU2)とが挙げられる。
 ここで、ヒドロキシル基を有するポリマーは、「ポリエステルポリオール」の項で説明したポリエステルポリオール、「ポリカーボネートポリオール」の項で説明したポリカーボネートポリオール、及びポリオキシアルキレンポリオールが好ましい。
〔シリル末端ポリマー〕
 シリル末端ポリマー(STP)は、末端に二重結合を有するポリマーのヒドロシリル化反応等によって調製できる。末端に二重結合を有するポリマーは、ポリ(メタ)アクリレートポリマー若しくはポリエーテルポリマーであり、ポリオキシアルキレン骨格を有するシリル末端ポリエーテル(STPE)と、ポリアクリレート骨格を有するシリル末端ポリアクリレート(STPA)とが挙げられる。
[シリル末端ポリエーテル]
 シリル末端ポリエーテルは、例えば、不飽和基含有ポリオキシアルキレン系重合体に架橋性ケイ素基を有するヒドロシランや架橋性ケイ素基を有するメルカプト化合物を反応させてヒドロシリル化やメルカプト化することで得られる。この合成法は、架橋性ケイ素基を有するポリオキシアルキレン系重合体(シリル末端ポリエーテル)を得る方法であり、例えば、特開2006-077036号公報記載のアリル末端ポリオキシアルキレンポリマーのヒドロシリル化反応による調製を合成例として挙げることができる。不飽和基含有ポリオキシアルキレン系重合体は、水酸基等の官能基を有する有機重合体に、この官能基に対して反応性を有する活性基及び不飽和基を有する有機化合物を反応させて調製できる。
[シリル末端ポリアクリレート]
 シリル末端ポリアクリレートは、少なくとも1種のアクリレート成分及び少なくとも1種のシリル成分を含んで構成される。シリル末端ポリアクリレートは、例えば、ヒドロシリル化によるアルケニル末端アクリレートの反応により得られる。また、アルケニル末端アクリレートは、原子移動ラジカル重合(ATRP)を用いた製造方法、又はアルキル末端アクリレートとシリル基を含むモノマーとの反応を利用した製造方法により得られる。そして、アルケニル末端アクリレートは、原子移動ラジカル重合(ATRP)による製造方法により得られる。シリル末端ポリアクリレートとしては、常温で液状であり、柔軟性を有するブチルアクリレートを主成分とするシリル末端ポリアクリレートが好ましい。
〔ポリオキシアルキレン系重合体〕
 ポリオキシアルキレンポリオール及び不飽和基含有ポリオキシアルキレン系重合体の主骨格としては、下記一般式(IX)で示される繰り返し単位を有するポリオキシアルキレン系重合体が好ましい。
 -R13-O-     (IX)
 ここで、一般式(IX)において、R13は炭素数が1~14の直鎖状又は分岐状アルキレン基を示し、炭素数は2~4であることが好ましい。
 ポリオキシアルキレン系重合体の主鎖は、1種類だけの繰り返し単位から構成されていても、2種類以上の繰り返し単位から構成されていてもよい。特に、本発明においては、非晶質かつ比較的低粘度であるポリオキシプロピレン系重合体であることが好ましい。
 ポリオキシアルキレン系重合体の合成法としては、例えば、KOH等のアルカリ触媒による重合法、複合金属シアン化物錯体触媒(例えば、亜鉛ヘキサシアノコバルテートグライム錯体触媒)による重合法等を挙げることがきる。これらの中では、複合金属シアン化物錯体触媒の存在下、開始剤にアルキレンオキシドを反応させる重合法が、分子量分布が狭い重合体を合成できることから好ましい。
 複合金属シアン化物錯体触媒としては、Zn[Co(CN)(亜鉛ヘキサシアノコバルテート錯体)等を挙げることができる。また、これらにアルコール及び/又はエーテルが有機配位子として配位した触媒を用いてもよい。
 開始剤としては、少なくとも2個の活性水素基を有する化合物が好ましい。活性水素含有化合物は、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等の多価アルコール、数平均分子量が500以上20,000以下の直鎖及び/又は分岐ポリエーテル化合物等が挙げられる。
 アルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、イソブチレンオキシド等が挙げられる。
 ポリオキシアルキレンポリオールとして特に好ましくは、ポリオキシエチレンポリオール及びポリオキシプロピレンポリオールが挙げられ、中でも、ポリオキシエチレンジオール、ポリオキシプロピレンジオール、ポリオキシエチレントリオール、及びポリオキシプロピレントリオールが挙げられる。
 更にこれらの中でも、0.02mEq/g未満の不飽和度、及び1,000g/mol以上30,000g/mol以下の範囲の分子量を有するポリオキシアルキレンジオール又はポリオキシアルキレントリオール、並びに400g/mol以上8,000g/mol以下の範囲の分子量のポリオキシエチレンジオール、ポリオキシエチレントリオール、ポリオキシプロピレンジオール、及びポリオキシプロピレントリオールが好ましい。
 ここで、いわゆる、エチレンオキシドで末端化されたポリオキシプロピレンポリオール(つまり、「EO末端キャップされた」化合物;「ethylene oxide end-capped」された化合物)が特に好ましい。EO末端キャップポリオキシプロピレンポリオールは、特殊なポリオキシプロピレンポリオキシエチレンポリオールであり、例えば、ポリオキシプロピル化反応の完了後の純粋なポリオキシプロピレンポリオール、特に、ポリオキシプロピレンジオール及びトリオールをエチレンオキシドを用いて追加的にアルコキシル化することによって調製され、その結果、1級ヒドロキシル基を有する。なお、ポリプロピレングリコール(PPG)は2級ヒドロキシ基を有し、柔軟性を有するものの、反応性が1級ヒドロキシル基を有する化合物より劣る。そこで、本発明においては、1級ヒドロキシル基を有するEO末端キャップされた化合物を用いることで、反応性を向上させることが好ましい。この場合、ポリオキシプロピレンポリオキシエチレンジオール、及び/又はポリオキシプロピレンポリオキシエチレントリオールを用いることが好ましい。
 このようなポリオールは、250g/mol以上30,000g/mol以下、特に1,000g/mol以上30,000g/mol以下の平均分子量、及び1.6以上3以下の範囲の平均OH官能価を有することが好ましい。
 ポリオールとしては、ポリエーテルポリオールが好ましく、特にポリオキシエチレンポリオール、ポリオキシプロピレンポリオール、及びポリオキシプロピレンポリオキシエチレンポリオールがより好ましく、ポリオキシエチレンジオール、ポリオキシプロピレンジオール、ポリオキシエチレントリオール、ポリオキシプロピレントリオール、ポリオキシプロピレンポリオキシエチレンジオール、及びポリオキシプロピレンポリオキシエチレントリオールが更に好ましい。
(液状高分子化合物)
 液状高分子化合物はホットメルト接着剤の溶融時の粘度を低下させる効果がある。更に、液状高分子化合物は貼り合わせ可能時間(ホットメルト塗布後、貼り合わせることができる時間)を長くさせる効果を有する。液状高分子化合物は室温における粘度(B型粘度計)が100Pa・s以下が好ましく、75Pa・s以下が更に好ましく、50Pa・s以下が特に好ましい。
 液状高分子化合物の主鎖骨格としては、ポリオキシプロピレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系重合体、ポリイソブチレン、ポリイソプレン、ポリブタジエン、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、又は、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体等が挙げられる。これらの骨格は、2種類以上がブロック若しくはランダムに含まれていてもよい。これらの重合体の中では、ポリオキシアルキレン系重合体及び/又は(メタ)アクリル酸エステル系重合体が取り扱い易く、貼り合わせ可能時間を長くする効果が大きいため好ましい。
 液状高分子化合物をあまり多く用いると耐熱性等のホットメルト接着剤としての特性を損なう場合がある。このため、液状高分子化合物の含量は成分(A)100質量部に対し、0質量部以上が好ましく、100質量部以下が好ましく、60質量部以下がより好ましく、30質量部以下が更に好ましい。
(充填剤)
 充填剤としては、例えば、炭酸カルシウム、炭酸マグネシウム、酸化チタン、カーボンブラック、溶融シリカ、沈降性シリカ、けいそう土、白土、カオリン、クレー、タルク、木粉、クルミ殻粉、もみ殻粉、無水ケイ酸、石英粉末、アルミニウム粉末、亜鉛粉末、アスベスト、ガラス繊維、炭素繊維、ガラスビーズ、アルミナ、ガラスバルーン、シラスバルーン、シリカバルーン酸化カルシウム、酸化マグネシウム、酸化ケイ素等の無機充填剤や、パルプ、木綿チップ等の木質充填剤、粉末ゴム、再生ゴム、熱可塑性若しくは熱硬化性樹脂の微粉末、ポリエチレン等の中空体等の有機充填剤が挙げられる。充填剤は、1種類のみを添加してもよく、複数種を組み合わせて添加してもよい。
(希釈剤)
 希釈剤を本発明に係る反応性ホットメルト接着剤に添加することにより、粘度等の物性を調製できる。希釈剤は、接着剤の使用温度(塗布、溶融)が高温であることから、安全性(火災、健康)の観点を考慮し、沸点が150℃以上の溶剤(希釈剤)を用いることが好ましい。希釈剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、300℃以上が更に好ましい。
 希釈剤としては、例えば、ジオクチルフタレート、ジイソデシルフタレート等のフタル酸エステル類;アジピン酸ジメチル、アジピン酸ジオクチル等の脂肪族二塩基酸エステル類;ポリプロピレングリコールやその誘導体等のポリエーテル類;ビニル系モノマーを種々の方法で重合して得られるビニル系重合体、パラフィン系プロセスオイル、ナフテン系オイル等のオイル;フィッシャー・トロプシュワックス、ポリエチレンワックス、ポリプロピレンワックス、アタクチックポリプロピレン等の合成ワックス;パラフィンワックス、マイクロクリスタリンワックス等の石油ワックス等が挙げられる。これらの希釈剤は単独で用いることも、2種類以上を併用することもできる。
 本発明に係る反応性ホットメルト接着剤には沸点が120℃以下、若しくは150℃以下、又は200℃以下の溶剤を添加することは避けることが好ましい。
(安定剤)
 安定剤としては、例えば、酸化防止剤、光安定剤、紫外線吸収剤等が挙げられる。酸化防止剤を用いると硬化物の耐候性、耐熱性を高めることができる。酸化防止剤としては、ヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系の化合物が挙げられ、特にヒンダードフェノール系の化合物が好ましい。光安定剤を用いると硬化物の光酸化劣化を防止することができる。光安定剤としては、ベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等の化合物が挙げられ、特にヒンダードアミン系の化合物が好ましい。紫外線吸収剤を用いると硬化物の表面耐候性を高めることができる。紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換トリル系及び金属キレート系化合物等が挙げられ、特にベンゾトリアゾール系化合物が好ましい。また、フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤とを併用することが好ましい。
(難燃剤)
 難燃剤としては、例えば、特表2002-519463号公報記載の直鎖ホスファゼン及び環状ホスファゼンが挙げられ、フェノキシホスファゼンが好ましい。
 また、難燃剤としては、例えば、デカブロモビスフェニルエーテル、テトラブロモビスフェノール等の有機ハロゲン化合物;臭化アンモニウム等の無機ハロゲン化合物;トリアリールホスフィン、トリアルキルホスフィン、ビス(ジアリールホスフィノ)ベンゼン、トリス(ジアリールホスフィノ)ベンゼン等の三級ホスフィン類;トリス(ジエチルホスフィン酸)アルミニウム等の有機リン酸金属塩;ポリリン酸アンモニウム、ポリリン酸メラミン等の無機リン-窒素化合物;メラミン、メラミン/ホルムアルデヒド樹脂等の窒素化合物;水酸化マグネシウム、水酸化アルミニウム等の無機水酸化物;酸化アンチモン、メタ硼酸バリウム、ヒドロキソアンチモネート、酸化ジルコニウム、水酸化ジルコニウム、酸化モリブデン、モリブデン酸アンモニウム、硼酸亜鉛、硼酸アンモニウム、メタ硼酸バリウム、タルク、ケイ酸塩、酸化ケイ素、酸化錫、シロキサン化合物等の無機化合物が挙げられる。
<成分(A)の含有量>
 本発明に係る反応性ホットメルト接着剤は成分(A)がホットメルト接着剤中に50質量%以上含まれていることが好ましく、60質量%以上含まれていることがより好ましく、70質量%以上含まれていることがホットメルト接着剤の特性の観点から特に好ましい。
<湿気硬化型ホットメルト接着剤の調製法>
 本発明に係る反応性ホットメルト接着剤は、すべての配合成分(例えば、成分(A)、成分(B)、成分(C)、成分(D)、成分(E)、成分(F)、及び/又はその他の添加物)を予め配合密封保存し、施工後に空気中の湿気により硬化する1成分型として調製することができる。また、例えば、成分(A)、成分(C)、成分(D)、成分(F)、及び/又はその他の添加物との混合物と、成分(B)及び成分(E)の混合物とを使用前に混合する2成分型として調製することもできる。
 本発明に係る反応性ホットメルト接着剤の調製法には特に限定はなく、例えば、上記した成分を所定の配合比で配合し、ミキサー、ロール、ニーダー等を用いて常温又は加熱下で混練することや、所定の溶剤を少量用いて各成分を溶解させ、混合する等の通常の方法を用いることができる。
 本発明に係る反応性ホットメルト接着剤の120℃における粘度は、400Pa・s以下が好ましく、200Pa・s以下がより好ましく、100Pa・s以下が更に好ましく、50Pa・s以下が特に好ましい。120℃における粘度が400Pa・sを超えると塗出性や作業性が低下し、若しくは塗出性や作業性を確保するためにより高い温度で塗布する必要が生じる。その場合、耐熱性の低い基材等への使用が困難になる等、使用範囲が限定される。
<用途>
 本発明に係る湿気硬化型ホットメルト接着剤は、耐落下衝撃性、防水性、柔軟性、塗布後の保型性等にも優れるため、金属、樹脂、紙類、木材、石材、コンクリートを始めとする各種基材への接着に好適に用いることができる。具体的には、建築、建材、自動車、電気・電子部材用途(例えば、光学部材の貼り合わせ)、繊維・皮革・衣料用途・製本等の生産ラインで好適に用いることができる。また、建築現場等での現場施工、DIY等、生産ライン以外の用途においても好適に用いることができる。
 光学部材の貼り合せに用いられる態様としては、一例として、携帯電話やスマートフォン等の携帯情報端末、パソコンやタブレット端末等の情報処理端末、ゲーム機、テレビ、カーナビ、カメラ、スピーカー、ヘッドマウントディスプレイ等のシール剤への応用が挙げられる。なお、本発明に係る湿気硬化型ホットメルト接着剤は、シーリング剤やコーティング剤、ポッティング剤として用いても良い。
<湿気硬化型ホットメルト接着剤の施工方法>
 本発明に係る湿気硬化型シリル化ポリウレタン接着剤の施工方法としては、公知の各種の反応性ホットメルト接着剤と同様の施工方法を採用できる。例えば、施工方法は、本発明に係る湿気硬化型シリル化ポリウレタン接着剤を所定の温度に加熱する工程(加熱工程)と、加熱した当該接着剤を第1の被着体の接着領域に塗布する工程(塗布工程)と、当該接着剤を挟むように第2の被着体を第1の被着体に貼り合わせる工程(貼り合わせ工程)とを備える。なお、塗布工程においては、第1の被着体だけでなく、第2の被着体の接着領域に本発明に係る接着剤を塗布してもよい。
 具体的に、本発明に係る湿気硬化型ホットメルト接着剤を用いて一方の基材と他方の基材とを貼り合せる場合には、例えば、湿気硬化型ホットメルト接着剤を50℃~130℃の範囲で加熱溶融し、溶融した接着剤を一方の基材の上に塗布し、続いて、溶融した接着剤の上に他方の基材を貼り合せて湿気硬化させる。これにより、一方の基材と他方の基材とが湿気硬化型ホットメルト接着剤により接着された積層体を得ることができる。
 なお、金属の基材としては、例えば、鉄、ニッケル、クロム、アルミニウム、マグネシウム、銅、鉛等の金属単体類;ステンレススチール、真鍮等の前記金属単体類から得られる合金類;亜鉛、ニッケル、クロム等の金属でメッキした鉄等のメッキ処理を施した金属類;前記金属単体類、合金類、若しくはメッキ処理を施した金属等にクロム酸塩処理や燐酸塩処理等の化成処理を施した金属類が挙げられる。
 また、樹脂の基材としては、例えば、ガラス、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂、ウレタン樹脂、シリコン樹脂、エポキシ樹脂、フッ素樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン、ノルボルネン樹脂、ポリオレフィン樹脂、脂環式ポリイミド樹脂、セルロース樹脂、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PC(ポリカーボネート)、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニレンスルフィド)、POB(ポリオキシベンゾイル)、変性PPE(ポリフェニレンエーテル)、PEN(ポリエチレンナフタレート)、PEI(ポリエーテルイミド)、PET(ポリエチレンテレフタレート)、LCP(液晶ポリエステル)、乳酸ポリマー、ABS樹脂、AS樹脂等を用いて構成される基材が挙げられる。また、基材に対し、必要に応じ、コロナ処理、プラズマ処理、プライマー処理等の前処理を施してもよい。
(塗布方法)
 湿気硬化型ホットメルト接着剤を基材に塗布する方法としては、例えば、ロールコーター、スプレーコーター、T-タイコーター、ナイフコーター、コンマコーター等を用いる方法;ディスペンサー、インクジェット印刷、スクリーン印刷、オフセット印刷等の方式により塗布する方法等が挙げられる。
 ディスペンサー等の後者の塗布方式を採用する場合、基材上の塗布を所望する箇所に湿気硬化型ホットメルト接着剤を精密に少量塗布することができるので、打ち抜き加工等のロスを生じることがなく好ましい。特に、室温での硬化性が高い組成物を取り扱うディスペンサー等の塗布方法においても、密閉加熱槽(液送タンク)内での加熱安定性に優れるため好適に用いることができる。また、この塗布方式によれば、湿気硬化型ホットメルト接着剤を、点状、線状、破線状、一点鎖線状、三角状や四角状等の多角形状、丸状、楕円状、曲線等の様々な形状で、連続的又は断続的に基材上に形成することができる。
 湿気硬化型ホットメルト接着剤を用いた接着剤層の厚さは、用いられる用途に応じて適宜設定できる。一例として、当該接着層の厚さは、10μm~5mm程度の範囲の厚さである。
 また、貼り合せ後の湿気硬化の熟成条件としては、例えば、温度20℃~80℃、湿度50%~90%、0.5~5日間程度の範囲である。
 以上の方法により、複数の基材と湿気硬化型ホットメルト接着剤を湿気硬化させて得られる接着剤からなる接着剤層とを有する積層体が得られる。この積層体から接着剤層を剥離して基材を回収する方法としては、手で容易に剥離することができることから、積層体を40℃~150℃の範囲で加温する方法を用いることが好ましい。
<実施の形態の効果>
 本発明に係る湿気硬化型ホットメルト接着剤は、結晶性脂肪族ポリエステルポリオールとポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマーとを用いて調製される水酸基末端ウレタンプレポリマーと、イソシアネートシランとの反応物を含んで構成されるので、得られる反応性ホットメルト接着剤中に結晶性の部分と非晶質の部分とを含有させると共に、反応性基を含ませることができる。これにより、本発明に係る反応性ホットメルト接着剤によれば、良好な立ち上がり強度と十分な長さの貼り合わせ可能時間とを両立させることができる。また、本発明に係る反応性ホットメルト接着剤は、良好な立ち上がり強度を有していることから、曲面等を有する被着体に対しても公的に用いることができる。
 また、本発明に係る湿気硬化型ホットメルト接着剤は、塗布温度において適切な粘度を示すことから塗布作業性も良好である。そして、本発明に係る湿気硬化型シリル化ポリウレタン接着剤は、イソシアネート基を実質的に含まないように調製されているので、加熱時等に遊離のモノマー性ポリイソシアネートの放出がなく、水分との反応によってポリウレアが形成されることも実質的にないことから二酸化炭素の放出による接着剤表面の膨れも防止でき、接着強度の低下を防止できる。
 被着体の一方若しくは双方が木材、合板、若しくは木質系繊維板等の木質系の材料や紙等の透湿性材料である場合、ウレタン系反応性ホットメルト接着剤を用いると接着強度が経時的に低下する。特に、湿度の高い雰囲気下ではこの傾向が大きい。一方、本発明に係る湿気硬化型ホットメルト接着剤は、木質系の材料や透湿性材料等からなる被着体に対し、湿度の高い雰囲気下で用いても接着強度が経時的に低下しない。したがって、本発明に係る反応性ホットメルト接着剤は、木質系の材料や透湿性材料を被着体に用いる場合、特に有用である。
<常温湿気硬化型ホットメルト接着剤>
 本発明に係る湿気硬化型ホットメルト接着剤は、以下のように各成分を把握することで、「常温湿気硬化型ホットメルト接着剤」として捉えることもできる。
 まず、成分(a-1)を高分子の主鎖とし、各成分を高分子のセグメントとしてとらえる。すなわち、成分(i)をセグメント(i)、成分(ii)をセグメント(ii)、成分(ii-1)をセグメント(ii-1)とする。この場合に、主鎖(a-1)の末端に一般式(II)のアルコキシシリル基を連結した構造のアルコキシシリル基含有ウレタンプレポリマー(A)を含む組成物を、常温湿気硬化型ホットメルト接着剤とする。主鎖(a-1)は、セグメント(i)の末端にセグメント(ii)を一般式(I)の結合基で連結したブロックポリマーである。ここで、セグメント(i)はポリエーテル骨格を有するセグメントであり、セグメント(ii)は結晶性脂肪族ポリエステル骨格を有するセグメント(ii-1)を含有するセグメントである。
 また、セグメント(ii)は、成分(ii-2)に対応するセグメントであり、室温で固体のメタクリル酸メチル系重合体骨格のセグメント(ii-2)、及び/又は成分(ii-3)に対応するセグメントであり、ポリエーテル骨格のセグメント(ii-3)を更に含有することもできる。
 また、常温湿気硬化型ホットメルト接着剤は、セグメント(i)の末端にセグメント(ii-2)を一般式(I)の結合基で連結したアルコキシシリル基含有ウレタンプレポリマー(F)を更に含有することもできる。ここで、セグメント(i)及びセグメント(ii-2)は上記と同じである。更に、常温湿気硬化型ホットメルト接着剤は、成分(B)、成分(C)、成分(D)、成分(E)、及び/又はその他の添加剤を含有することもできる。なお、常温湿気硬化型ホットメルト接着剤を含む製品も本発明に係る湿気硬化型ホットメルト接着剤と同様に製造できる。
 以下に実施例を挙げて更に具体的に説明する。なお、これらの実施例は例示であり、限定的に解釈されるべきでないことはいうまでもない。
(合成例1:水酸基を有するアルコキシシリル基含有メタクリル酸メチル系重合体(ii-2)の合成)
 メチルメタクリレート70g、2-エチルヘキシルメタクリレート30g、3-メタクリロキシプロピルトリメトキシシラン8g、金属触媒としてチタノセンジクロライド0.1g、及び有機溶剤として酢酸エチル40gを反応容器に入れ、窒素雰囲気下、攪拌しながら80℃に加熱した。次いで、メルカプトエタノール0.85gを添加し、反応容器内の温度を80℃に維持できるように加熱及び/又は冷却により温度調整しつつ16時間反応させた。16時間反応後、反応物の温度を室温に戻し、重合を終了させ、水酸基を有するアルコキシシリル基含有メタクリル酸メチル系重合体(ii-2)を得た。成分(ii-2)についてゲルパーミッションクロマトグラフィーにより測定した数平均分子量は4,755であり、不揮発分は66%であった。
(数平均分子量の測定)
 数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定した。具体的には、測定対象物を下記測定条件でGPCにより測定し、標準ポリエチレングリコールで換算した最大頻度の分子量を数平均分子量とした。
 数平均分子量は、例えば、HLC-8220(東ソー(株)製)を用い、ポリスチレンを標準物質として、下記の条件で測定することができる。なお、後述の合成例における数平均分子量の測定も同様である。
 使用カラム:G7000HXL×1本、GMHXL×2本、G2000HXL×1本
 溶媒:THF
 流速:1.0ml/min
 測定温度:40℃
(合成例2:アルコキシシリル基含有ウレタンプレポリマー(A-1:SBPE-cPEs)の合成)
 数平均分子量3,000のポリプロピレングリコール(商品名:アクトコールD3,000、三井化学社製)100g、ジフェニルメタンジイソシアネート(MDI)(商品名:ミリオネートMT、東ソー社製)17.1g、及びオクチル酸錫(商品名:ネオスタンU-28,日東化成社製)0.05gを反応容器に入れ、窒素雰囲気下、攪拌しながら85℃で3時間反応させてウレタンプレポリマー(i-1)を得た。その後、数平均分子量5,000の結晶性脂肪族ポリエステルポリオール(ii-1)(商品名:HS2H-500S:セバシン酸、1,6-ヘキサンジオールからなる結晶性脂肪族ポリエステルポリオール(数平均分子量5,000、融点(Tg)70℃)、豊国製油社製))369.3gを加え、更に、3時間85℃で攪拌した。続いて、3-イソシアネートプロピルトリエトキシシラン(商品名:KBE9007、信越化学工業社製)6.7gを加え、1時間攪拌し、成分(A-1)(「SBPE-cPEs」とも称する)を得た。成分(A-1)のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。なお、「SBPE」はシリル化ブロックポリエーテルを表し、「cPEs」は結晶性ポリエステルを表す。
(IRスペクトルの測定)
 IRスペクトルの測定には、下記測定装置を用いた。
 FT-IR測定装置:日本分光(株)製FT-IR460Plus
 なお、後述の合成例におけるIRスペクトル測定の条件も同様である。
(合成例3:アルコキシシリル基含有ウレタンプレポリマー(A-2:SBPE-cPEs、PAc)の合成)
 数平均分子量3,000のポリプロピレングリコール(商品名:アクトコールD-3,000、三井化学社製)20g、数平均分子量10,000のポリプロピレングリコール(商品名:DL-10,000、三井化学社製)30g、ジフェニルメタンジイソシアネート(MDI)(商品名:ミリオネートMT、東ソー社製)5.1g、及びオクチル酸錫(商品名:ネオスタンU-28,日東化成社製)0.15gを反応容器に入れ、窒素雰囲気下、攪拌しながら85℃で3時間反応させてイソシアネート基末端ウレタンプレポリマー(i)を得た。その後、得られた成分(i)に数平均分子量5,000の結晶性脂肪族ポリエステルポリオール(ii-1)(商品名:HS2H-500S:セバシン酸、1,6-ヘキサンジオールからなる結晶性脂肪族ポリエステルポリオール(数平均分子量5,000、融点(Tg)70℃)、豊国製油社製))51.8gと合成例1で得た水酸基を有するアルコキシシリル基含有メタクリル酸メチル系重合体(ii-2)71.7gとを加え、3時間85℃で攪拌した。反応物のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。更に、得られた反応物に3-イソシアネートプロピルトリエトキシシラン(商品名:KBE9007、信越化学工業社製)1.9gを加え、95℃で2時間攪拌した。反応はIRスペクトル測定により、イソシアネート基由来の-NCOの吸収が消失した時点で反応終了とした。反応終了後、溶剤を留去し、成分(A-2)(「SBPE-cPEs、PAc」とも称する)を得た。なお、「PAc」はポリアクリレートを表す。
(合成例4:アルコキシシリル基含有ウレタンプレポリマー(A-3:SBPE-cPEs、PAc、PTMG)の合成)
 数平均分子量3,000のポリプロピレングリコール(商品名:アクトコールD-3,000、三井化学社製)20g、数平均分子量10,000のポリプロピレングリコール(商品名:DL-10,000、三井化学社製)30g、ジフェニルメタンジイソシアネート(MDI)(商品名:ミリオネートMT、東ソー社製)5.1g、及びオクチル酸錫(ネオスタンU-28,日東化成社製)0.15gを反応容器に入れ、窒素雰囲気下、攪拌しながら85℃で3時間反応させてイソシアネート基末端ウレタンプレポリマー(i-1)を得た。
 その後、得られた成分(i-1)に数平均分子量5,000の結晶性脂肪族ポリエステルポリオール(ii-1)(商品名:HS2H-500S:セバシン酸、1,6-ヘキサンジオールからなる結晶性脂肪族ポリエステルポリオール(数平均分子量5,000、融点(Tg)70℃)、豊国製油社製))44.6g、合成例1で得た水酸基を有するアルコキシシリル基含有メタクリル酸メチル系重合体(ii-2)97.9g、及びポリテトラメチレングリコール(ii-3)(商品名:PTMG-1000、三菱化学社製)2.0gを加え、85℃で3時間攪拌した。反応物のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。更に、得られた反応物に3-イソシアネートプロピルトリエトキシシラン(商品名:KBE9007、信越化学工業社製)1.9gを加え、95℃で2時間攪拌した。反応はIRスペクトル測定により、イソシアネート基由来の-NCOの吸収が消失した時点で終了とした。反応終了後、溶剤を留去し、成分(A-3)(「SBPE-cPEs、PAc、PTMG」とも称する)を得た。なお、「PTMG」はポリテトラメチレングリコールを表す。
(合成例5:アルコキシシリル基含有ウレタンプレポリマー(A-4:SBPE-cPEs、ASi)の合成)
 数平均分子量3,000のポリプロピレングリコール(商品名:アクトコールD-3,000、三井化学社製)20g、数平均分子量10,000のポリプロピレングリコール(商品名:DL-10,000、三井化学社製)30g、ジフェニルメタンジイソシアネート(商品名:ミリオネートMT、東ソー社製)5.1g、及びオクチル酸錫(商品名:ネオスタンU-28,日東化成社製)0.15gを反応容器に入れ、窒素雰囲気下、攪拌しながら85℃で3時間反応させてイソシアネート基末端ウレタンプレポリマー(i)を得た。その後、数平均分子量5,000の結晶性脂肪族ポリエステルポリオール(ii-1)(商品名:HS2H-500S:セバシン酸、1,6-ヘキサンジオールからなる結晶性脂肪族ポリエステルポリオール(数平均分子量5,000、融点(Tg)70℃)、豊国製油社製))79.0gとN-フェニル-3-アミノプロピルトリメトキシシラン(iii-1)1.0gとを加え、85℃で3時間攪拌した。反応物のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。更に、得られた反応物に3-イソシアネートプロピルトリエトキシシラン(商品名:KBE9007、信越化学工業社製)2.9gを加え、95℃で2時間攪拌した。反応はIRスペクトル測定により、イソシアネート基由来の-NCOの吸収が消失していた時点で終了とした。反応終了後、溶剤を留去し、成分(A-4)(「SBPE-cPEs、ASi」とも称する)を得た。なお、「ASi」はアミノシランを表す。
(合成例6:アルコキシシリル基含有ウレタンプレポリマー(A’-1:SPU-PE、cPEs)の合成)
 数平均分子量3,000のポリプロピレングリコール(商品名:アクトコールD3,000、三井化学社製)100g、数平均分子量5,000の結晶性脂肪族ポリエステルポリオール(ii-1)(商品名:HS2H-500S:セバシン酸、1,6-ヘキサンジオールからなる結晶性脂肪族ポリエステルポリオール(数平均分子量5,000、融点(Tg)70℃)、豊国製油社製))369.3g、3-イソシアネートプロピルトリエトキシシラン(商品名:KBE9007、信越化学工業社製)6.7g、及びオクチル酸錫(商品名:ネオスタンU-28,日東化成社製)0.05gを反応容器に入れ、窒素雰囲気下、攪拌しながら85℃で3時間反応させてアルコキシシリル基含有ウレタンプレポリマー(A’-1)(「SPU-PE、cPEs」とも称する)を得た。成分(A’-1)のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。なお、成分(A’-1)の合成は合成例2と異なり、ウレタンプレポリマーを事前に調製せず、ジフェニルメタンジイソシアネート(商品名:ミリオネートMT、東ソー社製)を用いていない点を除き、合成例2と同様の成分を用いて調製する合成例である。なお、「SPU」はシリル化ポリウレタンを表し、「PE」はポリエーテルを表す。
(合成例7:アルコキシシリル基含有ウレタンプレポリマー(A’-2:SBPE-aPEs)の合成)
 合成例4の結晶性脂肪族ポリエステルポリオールの代わりに芳香族ポリエステルを用いてアルコキシシリル基含有ウレタンプレポリマーを合成した。具体的に、数平均分子量3,000のポリプロピレングリコール(商品名:アクトコールD3,000、三井化学社製)100g、ジフェニルメタンジイソシアネート(MDI)(商品名:ミリオネートMT、東ソー社製)17.1g、及びオクチル酸錫(商品名:ネオスタンU-28,日東化成社製)0.05gを反応容器に入れ、窒素雰囲気下、攪拌しながら85℃で3時間反応させてウレタンプレポリマー(i-1)を得た。得られた成分(i-1)に、数平均分子量3,000の芳香族ポリエステル(商品名:DYNACOLL(登録商標)7130、エボニック インダストリーズAG社製)201gを加え、更に、3時間85℃で攪拌した。反応物のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。更に、得られた反応物に3-イソシアネートプロピルトリエトキシシラン(商品名:KBE9007、信越化学工業社製)12.4gを加え、95℃で2時間攪拌し、成分(A’-2)(「SBPE-aPEs」とも称する)を得た。成分(A’-2)のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。なお、「aPEs」は非晶性ポリエステルを表す。
(合成例8:アルコキシシリル基含有ウレタンプレポリマー(A’-3:SPU-PE、cPEs、PAc、PTMG)の合成)
 数平均分子量5,000の結晶性脂肪族ポリエステルポリオール(ii-1)(商品名:HS2H-500S:セバシン酸、1,6-ヘキサンジオールからなる結晶性脂肪族ポリエステルポリオール(数平均分子量5,000、融点(Tg)70℃)、豊国製油社製))44.6g、合成例1で得た水酸基を有するアルコキシシリル基含有メタクリル酸メチル系重合体(ii-2)97.9g、数平均分子量3,000のポリプロピレングリコール(商品名:アクトコールD-3,000、三井化学社製)20g、数平均分子量10,000のポリプロピレングリコール(商品名:DL-10,000、三井化学社製)30g、ポリテトラメチレングリコール(ii-3)(商品名:PTMG-1000、三菱化学社製)2.0g、3-イソシアネートプロピルトリエトキシシラン(商品名:KBE9007、信越化学工業社製)3.3g、及びオクチル酸錫(商品名:ネオスタンU-28,日東化成社製)0.05gを加え、95℃で2時間攪拌した。反応はIRスペクトル測定により、イソシアネート基由来の-NCOの吸収が消失していた時点で終了とした。反応終了後、溶剤を留去し、成分(A’-3)(「SPU-PE、cPEs、PAc、PTMG」とも称する)を得た。なお、成分(A’-3)の合成は合成例4と異なり、ウレタンプレポリマーを事前に調製せず、ジフェニルメタンジイソシアネート(商品名:ミリオネートMT、東ソー社製)を用いていない点を除き、合成例4と同様の成分を混合して調製する合成例である。
(合成例9:結晶性ポリエステルのシリル化(A’-4:SPU-cPEs))
 数平均分子量5,000の結晶性脂肪族ポリエステルポリオール(ii-1)(商品名:HS2H-500S:セバシン酸、1,6-ヘキサンジオールからなる結晶性脂肪族ポリエステルポリオール(数平均分子量5,000、融点(Tg)70℃)、豊国製油社製))100g、3-イソシアネートプロピルトリエトキシシラン(商品名KBE9007、信越化学工業社製)7.4g、及びオクチル酸錫(商品名:ネオスタンU-28,日東化成社製)0.05gを加え、95℃で2時間攪拌し、成分(A’-4)(「SPU-cPEs」とも称する)を得た。成分(A’-4)のIRスペクトル測定の結果、イソシアネート基由来の-NCOの吸収が消失していることを確認した。
(合成例10:シラン化合物1)
 2種類のシラン化合物を互いに反応させることで、シラン系接着付与剤としてシラン化合物1を合成した。具体的に、3-メタクリロキシプロピルトリメトキシシラン(KBM503、信越化学工業(株)製)1モルと、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(KBM603、信越化学工業(株)製)1モルとを秤量した。そして、1モルの3-メタクリロキシプロピルトリメトキシシランと、1モルのN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランとを混合し、80℃で3日間加熱することでマイケル付加反応を進行させた。これにより、シラン系接着付与剤としてのシラン化合物1を得た。シラン化合物1の分子量は470.7g/molである。
(合成例11:シラン化合物2)
 まず、2種類のシラン化合物を互いに反応させることで、シラン系接着付与剤としてシラン化合物2を合成した。具体的に、3-グリシドキシプロピルトリメトキシシラン(KBM403、信越化学工業(株)製)1モルと、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(KBM603、信越化学工業(株)製)1モルとを秤量した。そして、1モルの3-グリシドキシプロピルトリメトキシシランと、1モルのN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランとを混合し、80℃で3日間加熱することで反応を進行させた。これにより、シラン系接着付与剤としてのシラン化合物2を得た。シラン化合物2の分子量は458.7g/molである。
(合成例12:アルコキシシリル基含有メタクリル酸メチル系重合体(D-1:SPAc)の合成)
 撹拌機、温度計、還流冷却器、窒素ガス導入管、及び滴下ロートを備えた反応容器に溶媒として酢酸ブチルを仕込み、窒素ガスを導入しつつ110℃に昇温した。その後、3-メタクリロキシプロピルトリメトキシシラン3.7g、メチルメタクリレート50.0g、n-ブチルアクリレート35.0g、及びステアリルメタクリレート13.0gを仕込んだ。次に、2,2’-アゾビス(2-メチルブチロニトリル)の酢酸ブチル溶液を滴下して重合反応させた。滴下終了後、110℃で2時間熟成してから冷却し、反応物を得た。反応終了後、溶剤を留去し、成分(D-1)(「SPAc」とも称する)を得た。成分(D-1)のゲルパーミッションクロマトグラフィーにより測定した数平均分子量は10,000、重合体一分子あたりの架橋性ケイ素基は平均して1.5個、ガラス転移温度(DSC法で測定したガラス転移温度)は5℃であった。なお、「SPAc」はシリル化ポリアクリレートを表す。
(合成例13:成分(i)と成分(ii-2)との反応物(F-1:SBPE-PAc)の合成)
 数平均分子量10,000のポリプロピレングリコール(商品名:DL-10,000、三井化学社製)100g、ジフェニルメタンジイソシアネート(MDI)(商品名:ミリオネートMT、東ソー社製)5.1g、及びオクチル酸錫(商品名:ネオスタンU-28,日東化成社製)0.05gを反応容器に入れ、窒素雰囲気下、攪拌しながら85℃で3時間反応させてウレタンプレポリマー(i-2)を得た。その後、成分(i-2)に合成例1で得た水酸基を有するアルコキシシリル基含有メタクリル酸メチル共重合体(ii-2)373.2gを加え、更に85℃で3時間攪拌した。反応はIRスペクトル測定により、イソシアネート基由来の-NCOの吸収が消失している時点で終了とした。反応終了後、溶剤を留去し、成分(F-1)(「SBPE-PAc」とも称する)を得た。
(合成例14:フッ素化ポリマーの合成)
 分子量約2,000のポリプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させてポリプロピレングリコールを得た。WO2015-088021の合成例2の方法に準じ、得られたポリプロピレングリコールの末端にアリル基を有するポリオキシアルキレン系重合体を得た。この重合体に対し、水素化ケイ素化合物であるメチルジメトキシシランと白金ビニルシロキサン錯体イソプロパノール溶液とを添加して反応させ、末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体(J)を得た。得られた末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体の分子量をGPCにより測定した結果、ピークトップ分子量は15,000、分子量分布は1.3であった。H-NMR測定(島津製作所社製のNMR400を用いて、CDCl溶媒中で測定)により、末端のメチルジメトキシシリル基は1分子あたり1.7個であった。次に、BFジエチルエーテル錯体2.4g、脱水メタノール1.6g、重合体(J)100g、トルエン5gを用い、WO2015-088021の合成例4の方法に準じ、末端にフルオロシリル基を有するポリオキシアルキレン系重合体(以下、「フッ素化ポリマー」と称する)を得た。得られたフッ素化ポリマーのH-NMRスペクトルを測定したところ、原料である重合体のシリルメチレン(-CH-Si)に対応するピーク(m,0.63ppm)が消失し、低磁場側(0.7ppm~)にブロードピークが現れることを確認した。
 合成例2~9、及び合成例13における主な配合物質について表1に示す。
Figure JPOXMLDOC01-appb-T000006
(実施例、比較例)
 実施例1~14、及び比較例1~4のそれぞれについて、成分(A)又は成分(A’)、成分(C)、成分(D)、及び/又は成分(F)を表2及び表3に示す配合割合にて混合し、120℃環境下で撹拌混合した。その後、成分(B)及び/又は成分(E)を表2及び表3に示す配合割合にて更に添加し、攪拌した。最後に減圧脱泡し、実施例1~14、及び比較例1~4の接着剤それぞれについて、一液型湿気硬化型反応性ホットメルト接着剤を金属容器に充填した。得られた実施例1~14、及び比較例1~4の接着剤それぞれについて、下記の各評価を実施した。結果を表2及び表3に示す。なお、表2及び表3において、各配合物質の配合量の単位は「g」である。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表2及び表3に示す「SBPE」等の略称は、上記で説明した合成例における略称を示す。また、表2中、「セットタイム」の行における「*」マークは、材料破壊なし(材破なし)であることを示す。そして「180度はく離接着強さ」の行における「*」マークは、貼り合わせ可能時間が極端に短く測定できなかったことを示す。また、表2中、「貼り合わせ可能時間」の行における「粘着※」は、Kライナーダンボールに一液型湿気硬化型反応性ホットメルト接着剤を塗布後、10分間経過後も粘着性を有していることを示す。更に、表2及び表3に示す材料のうち、合成例で示していない材料の詳細は以下のとおりである。
・商品名:FTR6100(スチレン系モノマー/脂肪族系モノマー共重合系:三井化学株式会社製)
・商品名:カオーライザー No.1(N,N,N’,N’‐テトラメチルヘキサンジアミン:花王株式会社製)
・商品名:ネオスタン U-28(オクチル酸錫:日東化成株式会社製)
・商品名:ネオスタン U-830(ジオクチル錫ジバーサテート:日東化成株式会社製)
(評価方法:粘度)
 120℃での一液型湿気硬化型反応性ホットメルト接着剤の溶融状態の粘度は、コーンプレート粘度計CV-1(東亜工業株式会社製、コーン直径:14.5mm、コーン角度:2.0°回転数:20rpm)を用いて測定した(Pa・s)。
(評価方法:180度剥離接着強さ)
 実施例1に係る一液型湿気硬化型反応性ホットメルト接着剤を120℃で加熱溶融し、
EBオレフィンシート(大日本印刷(株)製)(25mm×150mm×0.1mm)に厚さが50μmになるように塗布した。塗布直後、アルミ板(75mm×150mm×2mm、接着面をアセトンで脱脂)を、接着剤を挟むようにEBオレフィンシートに貼り合せた。これにより、実施例1に係る試験体を作製した。そして、試験体を、23℃50%RH環境下で所定の時間養生した後(養生時間:貼り合わせから10分後、及び貼り合わせから1週間後)、JIS K6854に準じて、引張速度200mm/分で180度剥離接着強さ(N/25mm)を測定した。ここで、養生期間が貼り合わせから10分後における180度剥離接着強さを「立ち上がり強度(表2中、貼り合わせ直後)」とし、1週間後における180度剥離接着強さを「最終強度(表2中、1週間養生後)」とした。また、他の実施例、及び比較例に係る一液型湿気硬化型反応性ホットメルト接着剤についても同様に評価した。
(評価方法:せん断接着強さ)
 実施例1に係る一液型湿気硬化型反応性ホットメルト接着剤を120℃で加熱溶融し、第1のアルミ板(25mm×75mm×2mm、接着面をアセトンで脱脂)に厚さが100μmになるように塗布した。塗布直後、接着剤を挟むように第1のアルミ板に第2のアルミ板(25mm×75mm×2mm、接着面をアセトンで脱脂)を重ね合わせる領域の面積が一端から25mm×25mmとなるように貼り合せ、試験体を作製した。試験体を23℃50%RH環境下で所定の時間養生した後(養生時間:貼り合わせから10分後、及び貼り合わせから1週間後)、JIS K6850に準じて、引張速度50mm/分でせん断接着強さ(N/mm)を測定した。ここで、養生期間が貼り合わせから10分後におけるせん断接着強さを「初期強度(表2中、貼り合わせ直後)」とし、1週間後におけるせん断接着強さを「最終強度(表2中、1週間養生後)」とした。また、他の実施例、及び比較例に係る一液型湿気硬化型反応性ホットメルト接着剤についても同様に評価した。
(評価方法:耐湿熱せん断接着強さ)
 実施例1に係る一液型湿気硬化型反応性ホットメルト接着剤を120℃で加熱溶融し、第1のアルミ板(25mm×75mm×2mm、接着面をアセトンで脱脂)に厚さが100μmになるように塗布した。塗布直後、接着剤を挟むように第1のアルミ板に第2のアルミ板(25mm×75mm×2mm、接着面をアセトンで脱脂)を重ね合わせる領域の面積が一端から25mm×25mmとなるように貼り合せ、試験体を作製した。試験体を85℃85%RH環境下で500時間養生した後、JIS K6850に準じて、引張速度50mm/分で耐湿熱せん断接着強さ(N/mm)を測定した。また、他の実施例、及び比較例に係る一液型湿気硬化型反応性ホットメルト接着剤についても同様に評価した。
(評価方法:貼り合わせ可能時間)
 実施例1に係る一液型湿気硬化型反応性ホットメルト接着剤を120℃で加熱溶融し、Kライナーダンボール(250mm×250mm×7mm)に50μmの厚さで塗布し、所定の時間毎(1分までは3秒毎、1分を超えてからは15秒毎)に試験片(Kライナーダンボール(25mm×50mm×7mm))を実質的に隙間なく貼り合わせた。その後、23℃50%RH環境下で各試験片を貼り合わせてから10分間静置した後に、手で試験片を剥離し、接着部に欠損が生じなくなるまでの時間を貼り合せ可能時間(秒)とした。また、他の実施例、及び比較例に係る一液型湿気硬化型反応性ホットメルト接着剤についても同様に評価した。
(評価方法:セットタイム)
 実施例1に係る一液型湿気硬化型反応性ホットメルト接着剤を120℃で加熱溶融し、Kライナーダンボール(25mm×100mm×7mm)に50μmの厚さで塗布し、5秒後にKライナーダンボール(25mm×100mm×7mm)を重ね合わせ部の面積が一端から25mm×25mmとなるように貼り合わせ、試験体を得た。得られた試験体について、23℃50%RH環境下で5秒経過後に手で試験体を剥離した。更に、同様に作製した試験体について、所定の時間経過後(1分までは3秒毎、1分を超えてからは15秒毎)に手で試験体を剥離し、接着部に欠損が生じるまでの時間をセットタイム(秒)とした。また、他の実施例、及び比較例に係る一液型湿気硬化型反応性ホットメルト接着剤についても同様に評価した。
(評価方法:熱間せん断クリープ試験)
 実施例1に係る一液型湿気硬化型反応性ホットメルト接着剤を120℃で加熱溶融し、第1のアルミ板(25mm×75mm×2mm、接着面をアセトンで脱脂)に厚さが100μmになるように塗布した。塗布直後、接着剤を挟むように第1のアルミ板に第2のアルミ板(25mm×75mm×2mm、接着面をアセトンで脱脂)を、重ね合わせる領域の面積が一端から25mm×25mmとなるように貼り合せ、試験体を作製した。その後、23℃50%RH環境下で1週間養生し、熱間せん断クリープ試験片を得た。続いて、80℃に設定した恒温器中において、試験片の片側に500gの荷重をかけ、24時間後のせん断方向のズレを確認した。ズレが0mmの場合を「◎」、1mm未満の場合を「○」、1mm以上の場合を「×」と評価した。また、他の実施例、及び比較例に係る一液型湿気硬化型反応性ホットメルト接着剤についても同様に評価した。
(評価方法:ボールタック)
 実施例1に係る一液型湿気硬化型反応性ホットメルト接着剤を120℃で加熱溶融し、PETシートに厚み100μmで塗布し、23℃50%RH環境下で24時間養生後、JIS Z0237に準拠して、J.DOW法ボールタック試験器を用いて、温度23℃、50%RH環境下において傾斜板の角度を30度に設定し、助走距離10cmの条件で粘着面に向けて所定の鋼球を転がし、粘着剤の端から距離10cmの間で停止したボールNo.を評価した。結果、ボールタックは5以下だった。また、他の実施例に係る一液型湿気硬化型反応性ホットメルト接着剤についても同様に評価し、ボールタックは5以下であることが確認された。
 表2を参照すると分かるように、実施例に係る接着剤においてはいずれも、貼り合わせ可能時間が10秒以上と良好な貼り合わせ可能時間を示すと共に、セットタイムも適切な長さを示した。また、実施例に係る接着剤においてはいずれも、良好な立ち上がり強度を示すことが確認された。更に、表3を参照すると分かるように、(E)成分を更に添加することにより、耐湿熱せん断接着強さも向上させ得ることが示された。特に、実施例11において耐湿熱せん断接着強さが向上し、実施例12~13において耐湿熱せん断接着強さが更に向上することが示された。
 一方、表2を参照すると分かるように、比較例に係る接着剤においてはいずれも貼り合わせ可能時間が極端に短く、他の被着体を接着させることができないことから、立ち上がり強度等を測定できないほどであった。また、比較例3においては塗布後から粘着性を10分以上維持するという好ましくない状態が続くと共にセットタイムが45秒と長く、貼り合わせ直後のせん断接着強さも弱い結果を示した。
 以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せのすべてが発明の課題を解決するための手段に必須であるとは限らない点、及び本発明の技術思想から逸脱しない限り種々の変形が可能である点に留意すべきである。

Claims (11)

  1.  下記成分(a-1)と下記成分(a-2)との反応物であるアルコキシシリル基含有ウレタンプレポリマー(A)を含む湿気硬化型ホットメルト接着剤。
     成分(a-1):下記成分(i)と成分(ii)との反応物である水酸基末端ウレタンプレポリマー
      成分(i):ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマー
      成分(ii):結晶性脂肪族ポリエステルポリオール(ii-1)を含有するポリオール
     成分(a-2):イソシアネートシラン
  2.  前記成分(ii)が、室温で固体であり、水酸基を有するメタクリル酸メチル系重合体(ii-2)を更に含有する請求項1に記載の湿気硬化型ホットメルト接着剤。
  3.  前記成分(ii)が、ポリエーテルポリオール(ii-3)を更に含有する請求項1又は2に記載の湿気硬化型ホットメルト接着剤。
  4.  (B)シラン系接着付与剤
    を更に含有する請求項1~3のいずれか1項に記載の湿気硬化型ホットメルト接着剤。
  5.  (C)改質樹脂
    を更に含有する請求項1~4のいずれか1項に記載の湿気硬化型ホットメルト接着剤。
  6.  (D)アルコキシシリル基含有メタクリル酸メチル系重合体
    を更に含有する請求項1~5のいずれか1項に記載の湿気硬化型ホットメルト接着剤。
  7.  (E)アミン系化合物、2価の錫化合物、フッ素化ポリマーからなる群から少なくとも1つ選択される触媒
    を更に含有する請求項1~6のいずれか1項に記載の湿気硬化型ホットメルト接着剤。
  8.  下記成分(i)と成分(ii-2)との反応物であるアルコキシシリル基含有ウレタンプレポリマー(F)
    を更に含有する請求項1~7のいずれか1項に記載の湿気硬化型シリル化ポリウレタン接着剤。
      成分(i):ポリエーテル骨格のイソシアネート基末端ウレタンプレポリマー
      成分(ii-2):水酸基を有するメタクリル酸メチル系重合体
  9.  請求項1~8のいずれか1項に記載の湿気硬化型ホットメルト接着剤を含む製品。
  10.  下記成分(a-1)と下記成分(a-2)とを反応させてアルコキシシリル基含有ウレタンプレポリマー(A)を調製し、前記成分(A)を含む湿気硬化型ホットメルト接着剤を製造する工程を含む湿気硬化型ホットメルト接着剤の製造方法。
     成分(a-1):下記成分(i)と成分(ii)との反応物である水酸基末端ウレタンプレポリマー
      成分(i):ポリエーテル骨格を有するイソシアネート基末端ウレタンプレポリマー
      成分(ii):結晶性脂肪族ポリエステルポリオール(ii-1)を含有するポリオール
     成分(a-2):イソシアネートシラン
  11.  前記成分(A)に(B)シラン系接着付与剤を添加する工程を更に含む請求項10に記載の湿気硬化型ホットメルト接着剤の製造方法。
PCT/JP2019/049324 2018-12-21 2019-12-17 湿気硬化型ホットメルト接着剤 WO2020129955A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217017276A KR20210105885A (ko) 2018-12-21 2019-12-17 습기 경화형 핫멜트 접착제
JP2020561449A JP7380592B2 (ja) 2018-12-21 2019-12-17 湿気硬化型ホットメルト接着剤
CN201980084613.9A CN113195666B (zh) 2018-12-21 2019-12-17 湿气固化型热熔接着剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018239665 2018-12-21
JP2018-239665 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020129955A1 true WO2020129955A1 (ja) 2020-06-25

Family

ID=71101951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049324 WO2020129955A1 (ja) 2018-12-21 2019-12-17 湿気硬化型ホットメルト接着剤

Country Status (5)

Country Link
JP (1) JP7380592B2 (ja)
KR (1) KR20210105885A (ja)
CN (1) CN113195666B (ja)
TW (1) TW202033720A (ja)
WO (1) WO2020129955A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337246A (zh) * 2021-06-01 2021-09-03 深圳市东升塑胶制品有限公司 一种用于难附着基材的光固化热熔胶及其制备方法
CN115710481A (zh) * 2022-11-28 2023-02-24 山东北方现代化学工业有限公司 一种单组分环保型、耐湿热改性密封胶及其制备方法
CN115806795A (zh) * 2022-12-29 2023-03-17 韦尔通(厦门)科技股份有限公司 一种初始粘接强度高且游离异氰酸酯含量低的uv延迟固化反应型聚氨酯热熔胶及制备方法
JP7463851B2 (ja) 2020-05-29 2024-04-09 artience株式会社 湿気硬化型接着剤、硬化物、及び積層体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102526375B1 (ko) * 2022-08-23 2023-04-26 이동철 우수한 내오염성을 갖는 1액형 유성 발수제 조성물 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829818A (ja) * 1981-07-17 1983-02-22 エセツクス・ケミカル・コ−ポレ−シヨン ケイ素末端ポリウレタン重合体
JPH0232186A (ja) * 1988-07-21 1990-02-01 Kuraray Co Ltd 接着剤
JP2008297545A (ja) * 2007-05-22 2008-12-11 Bayer Materialscience Ag ポリエステルプレポリマー
JP2013513678A (ja) * 2009-12-09 2013-04-22 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ポリウレタンプレポリマー
JP2015526547A (ja) * 2012-07-06 2015-09-10 ボスティク エス.アー. 湿った環境中での結合のための接着剤組成物の使用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254804Y2 (ja) 1972-08-29 1977-12-12
JPS5738849B2 (ja) 1973-11-09 1982-08-18
JPS6027146B2 (ja) 1978-02-01 1985-06-27 株式会社日立製作所 非水電解液電池用正極活物質の製造法
DE3827224C3 (de) 1988-08-11 2003-09-25 Degussa Schmelzklebeverfahren
CA2039964A1 (en) 1990-04-27 1991-10-28 Charles W. Stobbie, Iv Mixture of isocyanate-terminated polyurethane prepolymers
EP1882711A1 (en) * 2005-05-16 2008-01-30 Asahi Glass Company, Limited Hardenable composition
JP5829818B2 (ja) 2011-02-21 2015-12-09 株式会社平和 遊技機の基板ケース
JP5787141B2 (ja) * 2011-06-17 2015-09-30 Dic株式会社 湿気硬化型ポリウレタンホットメルト接着剤、及び造作部材
JP6101548B2 (ja) 2013-04-12 2017-03-22 アイカ工業株式会社 ホットメルト接着剤組成物
WO2018173768A1 (ja) * 2017-03-24 2018-09-27 Dic株式会社 湿気硬化型ポリウレタンホットメルト樹脂組成物、及び、積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829818A (ja) * 1981-07-17 1983-02-22 エセツクス・ケミカル・コ−ポレ−シヨン ケイ素末端ポリウレタン重合体
JPH0232186A (ja) * 1988-07-21 1990-02-01 Kuraray Co Ltd 接着剤
JP2008297545A (ja) * 2007-05-22 2008-12-11 Bayer Materialscience Ag ポリエステルプレポリマー
JP2013513678A (ja) * 2009-12-09 2013-04-22 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ポリウレタンプレポリマー
JP2015526547A (ja) * 2012-07-06 2015-09-10 ボスティク エス.アー. 湿った環境中での結合のための接着剤組成物の使用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463851B2 (ja) 2020-05-29 2024-04-09 artience株式会社 湿気硬化型接着剤、硬化物、及び積層体
CN113337246A (zh) * 2021-06-01 2021-09-03 深圳市东升塑胶制品有限公司 一种用于难附着基材的光固化热熔胶及其制备方法
CN113337246B (zh) * 2021-06-01 2022-03-25 深圳市东升塑胶制品有限公司 一种用于难附着基材的光固化热熔胶及其制备方法
CN115710481A (zh) * 2022-11-28 2023-02-24 山东北方现代化学工业有限公司 一种单组分环保型、耐湿热改性密封胶及其制备方法
CN115806795A (zh) * 2022-12-29 2023-03-17 韦尔通(厦门)科技股份有限公司 一种初始粘接强度高且游离异氰酸酯含量低的uv延迟固化反应型聚氨酯热熔胶及制备方法
CN115806795B (zh) * 2022-12-29 2023-08-29 韦尔通科技股份有限公司 一种初始粘接强度高且游离异氰酸酯含量低的uv延迟固化反应型聚氨酯热熔胶及制备方法

Also Published As

Publication number Publication date
TW202033720A (zh) 2020-09-16
CN113195666B (zh) 2023-05-12
KR20210105885A (ko) 2021-08-27
CN113195666A (zh) 2021-07-30
JP7380592B2 (ja) 2023-11-15
JPWO2020129955A1 (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
JP7380592B2 (ja) 湿気硬化型ホットメルト接着剤
JP5700040B2 (ja) 粘着積層体および表面保護シート
JP6556128B2 (ja) 少なくとも2つの環式カルボナート基と1つのシロキサン基とを有する化合物を含む被覆材料
WO2006035828A1 (ja) ウレタン樹脂の製造方法および粘着剤
JP6572747B2 (ja) 表面保護用感圧式接着剤、及びそれを用いてなる積層体
JP6492092B2 (ja) 改善された接着性を有する反応性ホットメルト接着剤
US20210269685A1 (en) High strength, silane-modified polymer adhesive composition
JP2012197390A (ja) 感圧式接着剤組成物、及びそれを用いてなる積層体
JP2007023117A (ja) ウレタンウレア組成物、ウレタンウレア樹脂およびそれを用いた接着剤
JP2018030989A (ja) 光硬化性組成物、硬化組成物含有製品、貼り合せ方法、及び製品の製造方法
TWI782914B (zh) 脫模膜
JP5890737B2 (ja) 粘着剤前駆体組成物及び粘着テープ又はシートの製造方法
JPWO2019073980A1 (ja) 光硬化性粘着剤組成物、及び接着方法
WO2019073978A1 (ja) 接着方法、及び光硬化性粘着剤組成物
JP2008285538A (ja) 硬化性樹脂組成物及びそれを用いた接着剤組成物
WO2021230095A1 (ja) 湿気硬化型ホットメルト接着剤
WO2021230094A1 (ja) 湿気硬化型ホットメルト接着剤
JP5544990B2 (ja) 粘着積層体
WO2019073979A1 (ja) 光硬化性粘着剤組成物、及び接着方法
JP7484730B2 (ja) 反応性ホットメルト接着剤組成物、並びに接着体及びその製造方法
WO2020166414A1 (ja) 反応性ホットメルト接着剤組成物、並びに接着体及びその製造方法
JP2005281495A (ja) 硬化性組成物
CN113966360A (zh) 包含甲硅烷基化聚合物的组合物
JP2023017595A (ja) 離型フィルム及び半導体パッケージの製造方法
JP2010111861A (ja) 耐熱粘着積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898203

Country of ref document: EP

Kind code of ref document: A1