WO2020124827A1 - 热活化延迟荧光材料、其制备方法和电致发光器件 - Google Patents

热活化延迟荧光材料、其制备方法和电致发光器件 Download PDF

Info

Publication number
WO2020124827A1
WO2020124827A1 PCT/CN2019/078591 CN2019078591W WO2020124827A1 WO 2020124827 A1 WO2020124827 A1 WO 2020124827A1 CN 2019078591 W CN2019078591 W CN 2019078591W WO 2020124827 A1 WO2020124827 A1 WO 2020124827A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent material
thermally activated
activated delayed
delayed fluorescent
solid
Prior art date
Application number
PCT/CN2019/078591
Other languages
English (en)
French (fr)
Inventor
罗佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/463,043 priority Critical patent/US11271176B2/en
Publication of WO2020124827A1 publication Critical patent/WO2020124827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the invention relates to the technical field of display, in particular to a thermally activated delayed fluorescent material, a method for preparing the thermally activated delayed fluorescent material, and an electroluminescent device.
  • OLED Organic Light Emitting Diode, active matrix organic light-emitting diode
  • OLED Organic Light Emitting Diode, active matrix organic light-emitting diode
  • a light-emitting layer is provided in the OLED.
  • the light-emitting layer is made of a light-emitting material with light-emitting properties, such as: fluorescent material (Fluorescence), phosphorescence (Phosphorescence) material, and thermally activated delayed fluorescence (Thermally Activated Delayed Fluorescence, TADF) material.
  • fluorescent material Fluorescence
  • Phosphorescence phosphorescence
  • TADF thermally activated delayed fluorescence
  • the electron donor (Electron Donor) and the electron acceptor (Electron Acceptor) in the TADF material are connected by a single bond, and the single bond is easy to rotate, causing the TADF material spectrum to be too broad.
  • An object of the present invention is to provide a thermally activated delayed fluorescent material, a method for preparing the thermally activated delayed fluorescent material, and an electroluminescent device, which improve the luminous efficiency of the thermally activated delayed fluorescent material.
  • An embodiment of the present invention provides a thermally activated delayed fluorescent material.
  • the molecular structure of the thermally activated delayed fluorescent material is: The electron donor and the electron acceptor in the thermally activated delayed fluorescent material are connected by a six-membered ring, where D is the electron acceptor and the D is For the electron donor.
  • the molecular structure of the thermally activated delayed fluorescent material is:
  • the electron donor and the electron acceptor in the thermally activated delayed fluorescent material are connected by a six-membered ring, where D is the electron acceptor and the D is It is an electron donor, X is C(CH 3 ) 2 , 2H, S or O.
  • An embodiment of the present invention also provides a method for preparing a thermally activated delayed fluorescent material, which includes:
  • a palladium-carbon catalyst is used to catalyze the first solid to obtain a second reaction liquid
  • the step of purifying the first reaction liquid to obtain a first solid includes:
  • the second solid is dissolved in dichloromethane, and silica gel and toluene are added for purification to obtain the first solid.
  • the first solid is The thermally activated delayed fluorescent material is
  • the preset temperature range is between -75°C and -80°C.
  • An embodiment of the present invention also provides a method for preparing a thermally activated delayed fluorescent material, which includes:
  • a palladium-carbon catalyst is used to catalyze the third solid to obtain a fourth reaction liquid
  • the reactant is m-chloroperoxybenzoic acid
  • the third solid is The thermally activated delayed fluorescent material
  • the reactant is sulfur powder
  • the third solid is The thermally activated delayed fluorescent material
  • the preset temperature range is between -75°C and -80°C.
  • An embodiment of the present invention also provides an electroluminescent device, including a substrate, an anode layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode layer that are sequentially stacked;
  • the anode layer is used to provide holes
  • the hole transport layer is used to transport the hole to the light emitting layer
  • the cathode layer is used to provide electrons
  • the electron transport layer is used to transport the electrons to the light emitting layer
  • the light-emitting layer includes the thermally activated delayed fluorescent material as described above.
  • the light-emitting layer is used to recombine the holes and electrons to generate excitons, so that the thermally activated delayed fluorescent material emits light under the action of the excitons.
  • the thermally activated delayed fluorescent material, the preparation method of the thermally activated delayed fluorescent material, and the electroluminescent device of the embodiment of the present invention connect the electron donor and the electron acceptor through a six-membered ring, thereby improving the luminous efficiency.
  • FIG. 1 is a schematic flowchart of a method for preparing a thermally activated delayed fluorescent material according to an embodiment of the present invention.
  • FIG. 2 is another schematic flowchart of a method for preparing a thermally activated delayed fluorescent material according to an embodiment of the present invention.
  • FIG. 3 is a photoluminescence spectrum diagram of a thermally activated delayed fluorescent material in a toluene solution provided by an embodiment of the present invention.
  • FIG. 4 is a transient photoluminescence spectrum diagram of a thermally activated delayed fluorescent material in a toluene solution provided by an embodiment of the present invention.
  • FIG. 5 is a distribution diagram of HOMO and LOMO of a thermally activated delayed fluorescent material provided by an embodiment of the present invention.
  • FIG. 6 is a distribution diagram of HOMO and LOMO of another thermally activated delayed fluorescent material provided by an embodiment of the present invention.
  • FIG. 7 is a distribution diagram of HOMO and LOMO of yet another thermally activated delayed fluorescent material provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an electroluminescent device provided by an embodiment of the present invention.
  • An embodiment of the present invention provides a thermally activated delayed fluorescent material.
  • the molecular structure of the thermally activated delayed fluorescent material is: Electron donor in the thermally activated delayed fluorescent material It is connected to the electron acceptor D through a six-membered ring.
  • electron donors refer to substances that supply electrons and substances that receive oxidation during electron transfer.
  • the electron acceptor refers to the substance that accepts electrons during electron transfer and the reduced substance.
  • D is That is, the thermally activated delayed fluorescent material includes
  • An embodiment of the present invention also provides a thermally activated delayed fluorescent material.
  • the molecular structure of the thermally activated delayed fluorescent material is: Electron donor in the thermally activated delayed fluorescent material It is connected to the electron acceptor D through a six-membered ring.
  • D is X is C(CH 3 ) 2 , 2H, S or O. That is, the thermally activated delayed fluorescent material includes
  • the electron donor and the electron acceptor in the existing thermally activated delayed fluorescent material are combined by a single bond, and the single bond connection has poor stability and is easy to rotate, resulting in an excessively broad spectrum of the existing thermally activated delayed fluorescent material.
  • the rigid six-membered ring is used to connect the electron donor and the electron acceptor, which can effectively control the spectral width of the thermally activated delayed fluorescent material and improve the luminous efficiency of the thermally activated delayed fluorescent material.
  • the thermally activated delayed fluorescent material of the embodiment of the present invention connects the electron donor and the electron acceptor through a six-membered ring, which effectively controls the spectral width of the thermally activated delayed fluorescent material and improves the luminous efficiency of the thermally activated delayed fluorescent material.
  • Embodiments of the present invention also provide a method for preparing a thermally activated delayed fluorescent material, which is used to prepare the aforementioned thermally activated delayed fluorescent material. Please refer to FIG. 1.
  • FIG. 1 is a schematic flowchart of a method for preparing a thermally activated delayed fluorescent material according to an embodiment of the present invention. The preparation method includes the following steps:
  • Step S101 in In, add THF, N-butyl lithium, and boron bromide in ether sequentially, and perform the reaction at a preset temperature range to obtain the first reaction solution.
  • the preset temperature range is between -75°C and -80°C. In one embodiment, it can be set to -78°C. Specifically, add it to a 100ml two-necked bottle first (6.85g, 10mmol), pumped through three times. Further 60 ml of anhydrous anaerobic oxytetrahydrofuran (THF) was added. Then, 15 ml of n-BuLi (molar concentration of 2 mol/L) was added, and the reaction was carried out at a preset temperature range for 2 hours. Finally, 5 ml of an ether solution of boron bromide (BBr 3 ) with a molar concentration of 2 mol/L is added, and the reaction is performed at a preset temperature range for 2 hours to obtain a first reaction solution.
  • BBr 3 boron bromide
  • Step S102 Purify the first reaction liquid to obtain a first solid.
  • the step of purifying the first reaction liquid to obtain a first solid includes:
  • A1 Mix the first reaction liquid with water in a preset temperature range to obtain a second solid.
  • the first reaction liquid is naturally warmed to room temperature, it is poured into 200 ml of water in a preset temperature range to precipitate the second solid.
  • the water in the preset temperature range may be water below 0°C to increase the precipitation amount of the second solid.
  • the mixed solution of the first reaction liquid and water is subjected to a suction filtration operation to obtain a second solid.
  • the second solid is an off-white solid.
  • volume ratio of toluene to dichloromethane can be set to 1:2, and 200-300 mesh powdered silica gel particles can be added as a stationary phase to disperse the second solid in silica gel for subsequent chromatography column separation .
  • Step S103 In methane, a palladium-carbon catalyst is used to perform a catalytic reaction on the first solid to obtain a second reaction liquid.
  • the above-mentioned first solid is added to a 100 ml reaction kettle, and then the catalyst palladium carbon is added, and the reaction is carried out under a methane environment at room temperature for 2 hours to obtain a second reaction liquid.
  • Step S104 filtering the second reaction liquid to obtain a thermally activated delayed fluorescent material.
  • the above second reaction solution is poured into 50 ml of water below 0° C., and the compound in the aqueous phase is extracted three times with dichloromethane, and the three extracted dichloromethanes are combined. Then, silica gel and toluene are added to carry out column chromatography separation and purification to obtain thermally activated delayed fluorescent material.
  • thermally activated delayed fluorescent materials The electron acceptor is The electron donor is The two are connected by a rigid six-membered ring, which can effectively control the spectral width of the thermally activated delayed fluorescent material and improve the luminous efficiency of the thermally activated delayed fluorescent material.
  • the thermally activated delayed fluorescent material of the embodiment of the present invention connects the electron donor and the electron acceptor through a six-membered ring, which effectively controls the spectral width of the thermally activated delayed fluorescent material and improves the luminous efficiency of the thermally activated delayed fluorescent material.
  • Embodiments of the present invention also provide a method for preparing a thermally activated delayed fluorescent material, which is used to prepare the aforementioned thermally activated delayed fluorescent material.
  • FIG. 2 is a schematic flowchart of a method for preparing a thermally activated delayed fluorescent material according to an embodiment of the present invention. The preparation method includes the following steps:
  • Step S201 in In, add THF, N-butyl lithium, and boron bromide in ether sequentially, and perform the reaction at a preset temperature range to obtain the first reaction solution.
  • the preset temperature range is between -75°C and -80°C. In one embodiment, it can be set to -78°C. Specifically, add it to a 100ml two-necked bottle first (6.85g, 10mmol), pumped through three times. Further 60 ml of anhydrous anaerobic oxytetrahydrofuran (THF) was added. Then, 15 ml of n-BuLi (molar concentration of 2 mol/L) was added, and the reaction was carried out at a preset temperature range for 2 hours. Finally, 5 ml of an ether solution of boron bromide (BBr 3 ) with a molar concentration of 2 mol/L is added, and the reaction is performed at a preset temperature range for 2 hours to obtain a first reaction solution.
  • BBr 3 boron bromide
  • Step S202 adding a reactant to the first reaction liquid to obtain a third reaction liquid.
  • the reactant may be m-chloroperoxybenzoic acid MCPBA or sulfur powder.
  • excess MCPBA or sulfur powder may be added to complete the reaction of the first reaction liquid with MCPBA, or to complete the reaction of the first reaction liquid with sulfur to obtain a third reaction liquid.
  • Step S203 Purify the third reaction liquid to obtain a third solid.
  • the third reaction liquid After the third reaction liquid is naturally warmed to room temperature, it is poured into 200 ml of water in a preset temperature range to precipitate the third solid.
  • the water in the preset temperature range may be water below 0°C to increase the precipitation amount of the third solid.
  • the mixed solution of the third reaction liquid and water is subjected to a suction filtration operation to obtain a third solid.
  • the third solid is an off-white solid.
  • the third solid was dissolved in dichloromethane, and then silica gel and toluene were added for column chromatography separation and purification.
  • Mass spectrometry is MS(EI)m/z:[M] + calcd for C 42 H 30 N 3 PS,639.19; found,639.12.Anal.Calcd for C 42 H 30 N 3 PS:C 78.85,H 4.73,N 6.57; found: C 78.76, H 4.70, N 6.39. It should be noted that the volume ratio of toluene and dichloromethane can be set to 1:2, and 200-300 mesh powdered silica gel particles can be added as a stationary phase to disperse the third solid in silica gel for subsequent chromatography column separation .
  • Step S204 in methane, a palladium-carbon catalyst is used to catalyze the third solid to obtain a fourth reaction liquid.
  • the above third solid is added to the 100 ml reaction kettle, and then the catalyst palladium carbon is added, and the reaction is performed under a methane environment at room temperature for 2 hours to obtain a fourth reaction liquid.
  • Step S205 filtering the fourth reaction liquid to obtain a thermally activated delayed fluorescent material.
  • the above fourth reaction solution is poured into 50 ml of water below 0° C., and the compound in the aqueous phase is extracted three times with dichloromethane, and then the three extracted dichloromethanes are combined. Then, silica gel and toluene are added to carry out column chromatography separation and purification to obtain thermally activated delayed fluorescent material.
  • thermally activated delayed fluorescent material when the third solid is At the time, 1.6g of blue-white powder thermally activated delayed fluorescent material was obtained The yield is 60%.
  • Mass spectrometry is MS(EI)m/z:[M] + calcd for C 45 H 36 N 3 OP,665.26; found,665.21.Anal.Calcd for C 45 H 36 N 3 OP:C 81.18,H 5.45,N 6.31; found: C 81.01, H 5.37, N 6.19.
  • the thermally activated delayed fluorescent material of the embodiment of the present invention connects the electron donor and the electron acceptor through a six-membered ring, which effectively controls the spectral width of the thermally activated delayed fluorescent material and improves the luminous efficiency of the thermally activated delayed fluorescent material.
  • FIG. 3 is a photoluminescence spectrum diagram of the thermally activated delayed fluorescent material in a toluene solution provided by this embodiment.
  • FIG. 4 is a transient photoluminescence spectrum diagram of a thermally activated delayed fluorescent material in a toluene solution provided by this embodiment.
  • 5-7 are distribution diagrams of the highest occupied orbit (Highest Occupied Molecular Orbital, HOMO) and the lowest occupied orbit (Lowest Unoccupied Molecular Orbital, LOMO) of the thermally activated delayed fluorescent material provided by an embodiment of the present invention.
  • curve 1 is the thermally activated delayed fluorescent material Photoluminescence spectrum in toluene solution. It can be seen from Table 1 and Figure 3 that the thermally activated delayed fluorescent material The normalized intensity of fluorescence at the 420nm peak PL Peak is the largest. As shown in Figure 4, curve 4 is the thermally activated delayed fluorescent material Photoluminescence spectrum in toluene solution. Thermally activated delayed fluorescent material at 2.5us The fluorescence normalization intensity is the largest. It can be seen from FIGS. 5 and 3 that the thermally activated delayed fluorescent material The HOMO is -5.31eV and the LUMO is -2.13eV. As shown in Table 1, the thermally activated delayed fluorescent material The lowest singlet energy level S 1 is 2.95 eV, the lowest triplet energy level T 1 is 2.81, and the difference between the two is 0.14.
  • curve 2 is the thermally activated delayed fluorescent material Photoluminescence spectrum in toluene solution. It can be seen from Table 1 and Figure 3 that thermally activated delayed fluorescent materials The normalized intensity of fluorescence at the 422 nm peak PL Peak is the largest.
  • curve 5 is the thermally activated delayed fluorescent material Transient photoluminescence spectra in toluene solution. Thermally activated delayed fluorescent material at 2.5us The fluorescence normalization intensity is the largest. 6 and 3, the thermally activated delayed fluorescent material The HOMO is -5.42eV and the LUMO is -2.14eV. As shown in Table 1, the thermally activated delayed fluorescent material The lowest singlet energy level S 1 is 2.94 eV, the lowest triplet energy level T 1 is 2.80, and the difference between the two is 0.14.
  • curve 3 is the thermally activated delayed fluorescent material Photoluminescence spectrum in toluene solution. It can be seen from Table 1 and Figure 3 that the thermally activated delayed fluorescent material The normalized intensity of fluorescence at the peak PL Peak at 423 nm is the largest. As shown in Figure 4, curve 6 is the thermally activated delayed fluorescent material Photoluminescence spectrum in toluene solution. Thermally activated delayed fluorescent material at 2.5us The fluorescence normalization intensity is the largest. It can be seen from FIGS. 7 and 3 that the thermally activated delayed fluorescent material The HOMO is -5.42eV and the LUMO is -2.13eV. As shown in Table 1, the thermally activated delayed fluorescent material The lowest singlet energy level S 1 is 2.93 eV, the lowest triplet energy level T 1 is 2.77, and the difference between the two is 0.16.
  • the electron donor and electron acceptor in the thermally activated delayed fluorescent material are connected by a rigid six-membered ring, which has good stability, can effectively control the spectral width, and realize a narrow spectrum.
  • An embodiment of the present invention further provides an electroluminescent device.
  • FIG. 8 is a schematic structural diagram of an electroluminescent device provided by an embodiment of the present invention.
  • the electroluminescent device 10 includes a substrate 11, an anode layer 12, a hole transport layer 13, a light-emitting layer 14, an electron transport layer 15 and a cathode layer 16 that are sequentially stacked.
  • the substrate 11 may be made of flexible material or rigid material. Specifically, the substrate 11 includes a glass substrate.
  • the anode layer 12 can be prepared by coating an indium tin oxide layer on the substrate 11.
  • the anode layer 12 is used to provide holes.
  • the hole transport layer 13 is used to transport holes provided by the anode layer 12 to the light emitting layer 14.
  • the hole transport layer 13 can be prepared by using poly 3,4-ethylenedioxythiophene: polystyrene sulfonate, PEDOT:PSS.
  • the thickness of the hole transport layer 13 may be set to 40-60 nm. In an embodiment, the hole transport layer 13 may be set to 50 nm.
  • the cathode layer 16 is used to provide electrons.
  • the cathode layer 16 may be made of a low work function metal material, such as one or more of lithium, magnesium, calcium, aluminum, lithium fluoride, and the like.
  • the thickness of the cathode layer 16 may be set between 80-120 nm. In an embodiment, the thickness of the cathode layer 16 may be set to 100 nm.
  • the electron transport layer 15 is used to transport the electrons provided by the cathode layer 16 to the light emitting layer 14.
  • the electron transport layer 15 can be prepared from 1,3,5-tris(3-(3-pyridyl)phenyl)benzene Tm3PyPB.
  • the thickness of the electron transport layer 15 can be set between 30-50 nm. In an embodiment, the thickness of the electron transport layer 15 can be set to 40 nm.
  • the light-emitting layer 14 includes the aforementioned thermally activated delayed fluorescent material, and the electron donor and electron acceptor of the thermally activated delayed fluorescent material are connected through a six-membered ring, which can effectively control the spectral width of the thermally activated delayed fluorescent material and improve the thermally activated delayed fluorescent material Luminous efficiency.
  • the molecular structure of the thermally activated delayed fluorescent material is: Electron donor in the thermally activated delayed fluorescent material It is connected to the electron acceptor D through a six-membered ring. Where D is That is, the thermally activated delayed fluorescent material includes
  • the molecular structure of the thermally activated delayed fluorescent material is: Electron donor in the thermally activated delayed fluorescent material It is connected to the electron acceptor D through a six-membered ring. Where D is X is C(CH 3 ) 2 , 2H, S or O. That is, the thermally activated delayed fluorescent material includes
  • the light-emitting layer 14 may contain DPEPO and the aforementioned thermally activated delayed fluorescent material.
  • the proportion of the thermally activated delayed fluorescent material in the light emitting layer 14 may be between 3% and 7%. In an embodiment, the proportion of the thermally activated delayed fluorescent material may be 5%.
  • the thickness of the light-emitting layer 14 can be set between 30-50 nm. In an embodiment, the thickness of the light-emitting layer 14 can be set to 40 nm.
  • the holes and electrons recombine in the light-emitting layer 14 to generate excitons.
  • Thermally activated delayed fluorescent materials emit light under the action of excitons.
  • the thermally activated delayed fluorescent material when the thermally activated delayed fluorescent material is used When the electroluminescent device 1 is prepared, the highest brightness of the device 1 is 1567 cd/m 2 , the highest current efficiency is 17.4 cd/A, the human eye response CIEy to brightness is 0.08, and the maximum external quantum efficiency is 16.3%.
  • the highest brightness of the device 2 is 1354cd/m 2
  • the highest current efficiency is 18.3cd/A
  • the human eye response CIEy to brightness is 0.09
  • the maximum external quantum efficiency is 17.1%.
  • the maximum brightness of the device 3 is 1087 cd/m 2
  • the maximum current efficiency is 16.5 cd/A
  • the human eye response CIEy to brightness is 0.09
  • the maximum external quantum efficiency is 15.5%.
  • the thermally activated delayed fluorescent material in the light emitting layer is connected to the electron donor and the electron acceptor through a rigid six-membered ring, which can effectively control the spectral width of the thermally activated delayed fluorescent material and improve thermal activation Delay the luminous efficiency of fluorescent materials.

Abstract

本发明提供一种热活化延迟荧光材料、热活化延迟荧光材料的制备方法和电致发光器件,该热活化延迟荧光材中的电子给体和电子受体通过六元环连接。该方案可以提高热活化延迟荧光材料的发光效率。

Description

热活化延迟荧光材料、其制备方法和电致发光器件 技术领域
本发明涉及显示技术领域,特别是涉及一种热活化延迟荧光材料、热活化延迟荧光材料的制备方法和电致发光器件。
背景技术
OLED(Organic Light Emitting Diode,有源矩阵有机发光二极体)具有自发光、响应快、可视角度大和可柔性显示等优点,在显示领域占主导地位。
OLED中设有发光层。发光层采用具有发光特性的发光材料制成,例如:荧光材料(Fluorescence)、磷光(Phosphorescence)材料以及热活化延迟荧光(Thermally Activated Delayed Fluorescence,TADF)材料等。
其中,TADF材料中电子给体(Electron Donor)和电子受体(Electron Accepter)通过单键连接,其中单键易发生旋转,造成TADF材料光谱过宽。
技术问题
本发明的目的在于提供一种热活化延迟荧光材料、热活化延迟荧光材料的制备方法和电致发光器件,提高了热活化延迟荧光材料的发光效率。
技术解决方案
本发明实施例提供了一种热活化延迟荧光材料,所述热活化延迟荧光材料的分子结构式为:
Figure PCTCN2019078591-appb-000001
所述热活化延迟荧光材料中的电子给体和电子受体通过六元环连接其中,D为电子受体,所述D为
Figure PCTCN2019078591-appb-000002
Figure PCTCN2019078591-appb-000003
Figure PCTCN2019078591-appb-000004
为电子给体。
在一实施例中,所述热活化延迟荧光材料的分子结构式为:
Figure PCTCN2019078591-appb-000005
所述热活化延迟荧光材料中的电子给体和电子受体通过六元环连接其中,D为电子受体,所述D为
Figure PCTCN2019078591-appb-000006
Figure PCTCN2019078591-appb-000007
为电 子给体,X为C(CH 3) 2、2H、S或O。
本发明实施例还提供了一种热活化延迟荧光材料的制备方法,其包括:
Figure PCTCN2019078591-appb-000008
中,依次加入氧四氢呋喃、正丁基锂,以及溴化硼的乙醚溶液,在预设温度范围下进行反应,得到第一反应液;
对所述第一反应液进行提纯,得到第一固体;
在甲烷中,采用钯碳催化剂对所述第一固体进行催化反应,得到第二反应液;
过滤所述第二反应液,得到所述热活化延迟荧光材料。
在一实施例中,所述对所述第一反应液进行提纯,得到第一固体步骤包括:
将所述第一反应液与处于预设温度范围的水混合,得到第二固体;
将所述第二固体溶解在二氯甲烷中,并加入硅胶和甲苯进行提纯,得到所述第一固体。
在一实施例中,所述第一固体为
Figure PCTCN2019078591-appb-000009
所述热活化延迟荧光材料为
Figure PCTCN2019078591-appb-000010
在一实施例中,所述预设温度范围为-75℃至-80℃之间。
本发明实施例还提供了一种热活化延迟荧光材料的制备方法,其包括:
Figure PCTCN2019078591-appb-000011
中,依次加入氧四氢呋喃、正丁基锂,以及溴化硼的乙醚溶液,在预设温度范围下进行反应,得到第一反应液;
在所述第一反应液中加入反应物,得到第三反应液;
对所述第三反应液进行提纯,得到第三固体;
在甲烷中,采用钯碳催化剂对所述第三固体进行催化反应,得到第四反应液;
过滤所述第四反应液,得到所述热活化延迟荧光材料。
在一实施例中,所述反应物为间氯过氧苯甲酸,所述第三固体为
Figure PCTCN2019078591-appb-000012
所述热活化延迟荧光材料为
Figure PCTCN2019078591-appb-000013
在一实施例中,所述反应物为硫粉,所述第三固体为
Figure PCTCN2019078591-appb-000014
所述热活化延迟荧光材料为
Figure PCTCN2019078591-appb-000015
在一实施例中,所述预设温度范围为-75℃至-80℃之间。
本发明实施例还提供了一种电致发光器件,包括依次层叠设置的基板、阳极层、空穴传输层、发光层、电子传输层以及阴极层;
所述阳极层用于提供空穴;
所述空穴传输层用于将所述空穴传输给所述发光层;
阴极层用于提供电子;
所述电子传输层用于将所述电子传输给所述发光层;
所述发光层包括如上所述的热活化延迟荧光材料,所述发光层用于将所述空穴和电子复合产生激子,使所述热活化延迟荧光材料在激子的作用下发光。
有益效果
本发明实施例的热活化延迟荧光材料、热活化延迟荧光材料的制备方法和电致发光器件,将电子给体和电子受体通过六元环连接,提高了发光效率。
附图说明
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
图1为本发明实施例提供的热活化延迟荧光材料的制备方法的流程示意图。
图2为本发明实施例提供的热活化延迟荧光材料的制备方法的另一流程示意图。
图3为本发明实施例提供的热活化延迟荧光材料在甲苯溶液中的光致发光光谱图。
图4为本发明实施例提供的热活化延迟荧光材料在甲苯溶液中的瞬态光致发光光谱图。
图5为本发明实施例提供的一种热活化延迟荧光材料的HOMO和LOMO的分布图。
图6为本发明实施例提供的另一热活化延迟荧光材料的HOMO和LOMO的分布图。
图7为本发明实施例提供的又一热活化延迟荧光材料的HOMO和LOMO的分布图。
图8为本发明实施例提供的电致发光器件的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文 所描述的实施例可以与其它实施例相结合。
本发明实施例提供了一种热活化延迟荧光材料,该热活化延迟荧光材料的分子结构式为:
Figure PCTCN2019078591-appb-000016
该热活化延迟荧光材料中的电子给体
Figure PCTCN2019078591-appb-000017
和电子受体D通过六元环连接。其中,电子给体是指电子传递中供给电子的物质和接受氧化的物质。电子受体是指在电子传递中接受电子的物质和被还原的物质。
在一实施例中,D为
Figure PCTCN2019078591-appb-000018
即该热活化延迟荧光材料包括
Figure PCTCN2019078591-appb-000019
Figure PCTCN2019078591-appb-000020
本发明实施例中还提供了一种热活化延迟荧光材料, 该热活化延迟荧光材料的分子结构式为:
Figure PCTCN2019078591-appb-000021
该热活化延迟荧光材料中的电子给体
Figure PCTCN2019078591-appb-000022
和电子受体D通过六元环连接。
在一实施例中,D为
Figure PCTCN2019078591-appb-000023
X为C(CH 3) 2、2H、S或O。即该热活化延迟荧光材料包括
Figure PCTCN2019078591-appb-000024
Figure PCTCN2019078591-appb-000025
现有的热活化延迟荧光材料中的电子给体和电子受体通过单键结合,单键连接稳定性较差,易旋转,造成现有热活化延迟荧光材料光谱过宽。在本发明实施例中,采用刚性的六元环连接电子给体和电子受体,可以有效控制热活化延迟荧光材料的光谱宽度,提高热活化延迟荧光材料的发光效率。
本发明实施例的热活化延迟荧光材料通过六元环连接电子给体和电子受体,有效控制了热活化延迟荧光材料的光谱宽度,提高了热活化延迟荧光材料的发光效率。
本发明实施例还提供了一种热活化延迟荧光材料的制备方法,该制备方法用于制备上述的热活化延迟荧光材料。请参照图1,图1为本发明实施例提供的热活化延迟荧光材料的制备方法的流程示意图。该制备方法包括如下步骤:
步骤S101,在
Figure PCTCN2019078591-appb-000026
中,依次加入氧四氢呋喃、正丁基锂,以及溴化硼的乙醚溶液,在预设温度范围下进行反应,得到第一反应液。
其中,预设温度范围为-75℃至-80℃之间。在一实施例中,可以设置为-78℃。具体的,先在100毫升二口瓶中加入
Figure PCTCN2019078591-appb-000027
(6.85g,10mmol),抽通三次。再加入60ml无水无氧的氧四氢呋喃(THF)。然后加入15ml摩尔浓度为2mol/L的正丁基锂(n-BuLi),在预设温度范围下反应2小时。最后加入5ml摩尔浓度为2mol/L的溴化硼(BBr 3)的乙醚溶液,在预设温度范围下反应2小时,得到第一反应液。
步骤S102,对第一反应液进行提纯,得到第一固体。
在一实施例中,对所述第一反应液进行提纯,得到第一固体步骤包括:
A1,将第一反应液与处于预设温度范围的水混合,得到第二固体。
A2,将第二固体溶解在二氯甲烷中,并加入硅胶和甲苯进行提纯,得到第一固体。
具体的,等该第一反应液自然升温至室温后,将其倒入至200ml处于预设温度范围的水中,以使第二固体析出。在一实施例中,处于预设温度范围的水可以为低于0℃的水,以提高第二固体的析出量。
再对第一反应液和水的混合溶液进行抽滤操作,得到第二固体。其中,第二固体为灰白色固体。
最后将第二固体溶解在二氯甲烷,再加入硅胶和甲苯,进行柱层析分离提纯,得到3.6g第一固体
Figure PCTCN2019078591-appb-000028
产率为61%。该第一固体
Figure PCTCN2019078591-appb-000029
的核磁氢谱表征为 1H NMR(300MHz,CD 2Cl 2,δ):7.37(d,J=6.3Hz,3H),7.30-7.17(m,9H),7.13-7.03(m,6H),6.84(d,J=6.6Hz,6H),5.72(d,J=6.0Hz,3H),5.60(d,J=6.0Hz,3H),质谱表征为MS(EI)m/z:[M] +calcd for C 42H 30BN 3,587.25;found,587.21.Anal.Calcd for C 42H 30BN 3:C 85.86,H 5.15,N 7.15;found:C 85.76,H 5.0 7,N 7.09。需要说明的是,可以将甲苯和二氯甲烷的体积比设置为1:2,可加入200-300目粉末状硅胶颗粒作为固定相,使第二固体分散在硅胶里,便于后续层析柱分离。
步骤S103,在甲烷中,采用钯碳催化剂对第一固体进行催化反应,得到第二反应液。
具体的,向100ml反应釜中加入上述第一固体,再加入催化剂钯碳,在甲烷环境下,室温温度下,反应2小时,得到第二反应液。
步骤S104,过滤第二反应液,得到热活化延迟荧光材料。
具体的,将上述第二反应液倒入50ml低于0℃的水中,并使用二氯甲烷三次萃取水相中的化合物,再将三次萃取的二氯甲烷合并。再加入硅胶和甲苯,进行柱层析分离提纯,得到热活化延迟荧光材料。
可以得到1.8g蓝白色粉末状的热活化延迟荧光材料
Figure PCTCN2019078591-appb-000030
产率为72%。该热活化延迟荧光材料
Figure PCTCN2019078591-appb-000031
的核磁氢谱表征为 1H NMR(300MHz,CD 2Cl 2,δ):7.43(d,J=6.0Hz,3H),7.27(d,J=6.3Hz,3H),7.17-7.03(m,6H),6.84(d,J=6.6Hz,6H),1.59(s,18H)。质谱表征为MS(EI)m/z:[M] +calcd for C 45H 36BN 3,629.30;found,629.21.Anal.Calcd for C 45H 36BN 3:C 85.85,H 5.76,N 6.67;found:C 85.76,H 5.67,N 6.59。
其中,热活化延迟荧光材料
Figure PCTCN2019078591-appb-000032
的电子受体为
Figure PCTCN2019078591-appb-000033
电子给体为
Figure PCTCN2019078591-appb-000034
二者通过刚性的六元环连接,可以有效控制热活化延迟荧光材料的光谱宽度,提高热活化延迟荧光材料的发光效率。
本发明实施例的热活化延迟荧光材料通过六元环连接电子给体和电子受体,有效控制了热活化延迟荧光材料的光谱宽度,提高了热活化延迟荧光材料的发光效率。
本发明实施例还提供了一种热活化延迟荧光材料的 制备方法,该制备方法用于制备上述的热活化延迟荧光材料。请参照图2,图2为本发明实施例提供的热活化延迟荧光材料的制备方法的流程示意图。该制备方法包括如下步骤:
步骤S201,在
Figure PCTCN2019078591-appb-000035
中,依次加入氧四氢呋喃、正丁基锂,以及溴化硼的乙醚溶液,在预设温度范围下进行反应,得到第一反应液。
其中,预设温度范围为-75℃至-80℃之间。在一实施例中,可以设置为-78℃。具体的,先在100毫升二口瓶中加入
Figure PCTCN2019078591-appb-000036
(6.85g,10mmol),抽通三次。再加入60ml无水无氧的氧四氢呋喃(THF)。然后加入15ml摩尔浓度为2mol/L的正丁基锂(n-BuLi),在预设温度范围下反应2小时。最后加入5ml摩尔浓度为2mol/L的溴化硼(BBr 3)的乙醚溶液,在预设温度范围下反应2小时,得到第一反应液。
步骤S202,在第一反应液中加入反应物,得到第三反应液。
其中,该反应物可以为间氯过氧苯甲酸MCPBA,也可以为硫粉。具体的,可以加入过量的MCPBA或硫粉,使第一反应液与MCPBA反应完全,或使第一反应液与硫反应完全,得到第三反应液。
步骤S203,对第三反应液进行提纯,得到第三固体。
等该第三反应液自然升温至室温后,将其倒入至200ml处于预设温度范围的水中,以使第三固体析出。在一实施例中,处于预设温度范围的水可以为低于0℃的水,以提高第三固体的析出量。再对第三反应液和水的混合溶液进行抽滤操作,得到第三固体。其中,第三固体为灰白色固体。最后将第三固体溶解在二氯甲烷,再加入硅胶和甲苯,进行柱层析分离提纯。
当反应物为间氯过氧苯甲酸时,得到3.8g第三固体
Figure PCTCN2019078591-appb-000037
产率为61%。该第三固体
Figure PCTCN2019078591-appb-000038
的核磁氢谱表征为 1H NMR(300MHz,CD 2Cl 2,δ):7.26(d,J=6.3Hz,3H),7.20-7.10(m,9H),7.07-7.00(m,6H),6.84(d,J=6.6Hz,6H),5.72(d,J=6.0Hz,3H),5.60(d,J=6.0Hz,3H), 质谱表征为MS(EI)m/z:[M] +calcd for C 42H 30ON 3P,623.21;found,623.19.Anal.Calcd for C 42H 30ON 3P:C 80.88,H 4.85,N 6.74;found:C 80.76,H 4.77,N 6.69。需要说明的是,可以将甲苯和二氯甲烷的体积比设置为1:2,可加入200-300目粉末状硅胶颗粒作为固定相,使第三固体分散在硅胶里,便于后续层析柱分离。
当反应物为硫粉时,得到3.2g第三固体
Figure PCTCN2019078591-appb-000039
产率为50%。该第三固体
Figure PCTCN2019078591-appb-000040
的核磁氢谱表征为 1H NMR(300MHz,CD 2Cl 2,δ):7.26(d,J=6.3Hz,3H),7.20-7.10(m,9H),7.07-7.00(m,6H),6.84(d,J=6.6Hz,6H),5.72(d,J=6.0Hz,3H),5.60(d,J=6.0Hz,3H)。质谱表征为MS(EI)m/z:[M] +calcd for C 42H 30N 3PS,639.19;found,639.12.Anal.Calcd for C 42H 30N 3PS:C 78.85,H 4.73,N 6.57;found:C 78.76,H 4.70,N 6.39。需要说明的是,可以将甲苯和二氯甲烷的体积比设置为1:2,可加入200-300目粉末状硅胶颗粒作为固定相,使第三固体分散在硅胶里,便于后续层析柱分离。
步骤S204,在甲烷中,采用钯碳催化剂对第三固体进行催化反应,得到第四反应液。
具体的,向100ml反应釜中加入上述第三固体,再加入催化剂钯碳,在甲烷环境下,室温温度下,反应2小时,得到第四反应液。
步骤S205,过滤第四反应液,得到热活化延迟荧光材料。
具体的,将上述第四反应液倒入50ml低于0℃的水中,并使用二氯甲烷三次萃取水相中的化合物,再将三次萃取的二氯甲烷合并。再加入硅胶和甲苯,进行柱层析分离提纯,得到热活化延迟荧光材料。
在一实施例中,当第三固体为
Figure PCTCN2019078591-appb-000041
时,得到1.6g蓝白色粉末状的热活化延迟荧光材料
Figure PCTCN2019078591-appb-000042
产率为60%。该热活化延迟荧光材料
Figure PCTCN2019078591-appb-000043
的核磁氢谱表征为 1H NMR(300MHz,CD 2Cl 2,δ):7.40(d,J=6.0Hz,3H),7.30(d,J=6.3Hz,3H),7.20-7.06(m,6H),6.84(d,J=6.6Hz,6H),1.59(s,18H).。质谱表征为MS(EI)m/z:[M] +calcd for C 45H 36N 3OP,665.26;found,665.21.Anal.Calcd for C 45H 36N 3OP:C 81.18,H 5.45,N 6.31;found:C 81.01,H 5.37,N 6.19。
在一实施例中,当第三固体为
Figure PCTCN2019078591-appb-000044
时,得到1.3g蓝白色粉末状的热活化延迟荧光材料
Figure PCTCN2019078591-appb-000045
产率为48%。该热活化延迟荧光材料
Figure PCTCN2019078591-appb-000046
的核磁氢谱表征为 1H NMR(300MHz,CD 2Cl 2, δ):7.40(d,J=6.0Hz,3H),7.30(d,J=6.3Hz,3H),7.20-7.06(m,6H),6.84(d,J=6.6Hz,6H),1.59(s,18H),质谱表征为MS(EI)m/z:[M] +calcd for C 45H 36N 3PS,681.24;found,681.21.Anal.Calcd for C 45H 36N 3PS:C 79.27,H 5.32,N 6.16;found:C 79.01,H 5.17,N 6.03。
本发明实施例的热活化延迟荧光材料通过六元环连接电子给体和电子受体,有效控制了热活化延迟荧光材料的光谱宽度,提高了热活化延迟荧光材料的发光效率。
请参照图3-图7,对本发明实施例提供的热活化延迟荧光材料相关性能进行进一步分析。其中图3为本实施例提供的热活化延迟荧光材料在甲苯溶液中的光致发光光谱图。图4为本实施例提供的热活化延迟荧光材料在甲苯溶液中的瞬态光致发光光谱图。图5-图7为本发明实施例提供的热活化延迟荧光材料的最高已占轨道(Highest Occupied Molecular Orbital,HOMO)和最低已占轨道(Lowest Unoccupied Molecular Orbital,LOMO)分布图。
如图3所示,曲线1为热活化延迟荧光材料
Figure PCTCN2019078591-appb-000047
在甲苯溶液中的光致发光光谱。结合表1 和图3可知,热活化延迟荧光材料
Figure PCTCN2019078591-appb-000048
在420nm波峰PL Peak处的荧光归一化强度最大。如图4所示,曲线4为热活化延迟荧光材料
Figure PCTCN2019078591-appb-000049
在甲苯溶液中的光致发光光谱。在2.5us时热活化延迟荧光材料
Figure PCTCN2019078591-appb-000050
的荧光归一化强度最大。结合图5和图3可知,该热活化延迟荧光材料
Figure PCTCN2019078591-appb-000051
的HOMO为-5.31eV,LUMO为-2.13eV。如表1所示,该热活化延迟 荧光材料
Figure PCTCN2019078591-appb-000052
最低单重态能级S 1为2.95eV,最低三重态能级T 1为2.81,二者的差值为0.14。
如图3所示,曲线2为热活化延迟荧光材料
Figure PCTCN2019078591-appb-000053
在甲苯溶液中的光致发光光谱。结合表1和图3可知,热活化延迟荧光材料
Figure PCTCN2019078591-appb-000054
在422nm波峰PL Peak处的荧光归一化强度最大。如图4所示,曲线5为热活化延迟荧光材料
Figure PCTCN2019078591-appb-000055
在甲苯溶液中的瞬态光致发光光谱。在2.5us时热活化延迟荧光 材料
Figure PCTCN2019078591-appb-000056
的荧光归一化强度最大。结合图6和图3可知,该热活化延迟荧光材料
Figure PCTCN2019078591-appb-000057
的HOMO为-5.42eV,LUMO为-2.14eV。如表1所示,该热活化延迟荧光材料
Figure PCTCN2019078591-appb-000058
最低单重态能级S 1为2.94eV,最低三重态能级T 1为2.80,二者的差值为0.14。
如图3所示,曲线3为热活化延迟荧光材料
Figure PCTCN2019078591-appb-000059
在甲苯溶液中的光致发光光谱。结合表1 和图3可知,热活化延迟荧光材料
Figure PCTCN2019078591-appb-000060
在423nm波峰PL Peak处的荧光归一化强度最大。如图4所示,曲线6为热活化延迟荧光材料
Figure PCTCN2019078591-appb-000061
在甲苯溶液中的光致发光光谱。在2.5us时热活化延迟荧光材料
Figure PCTCN2019078591-appb-000062
的荧光归一化强度最大。结合图7和图3可知,该热活化延迟荧光材料
Figure PCTCN2019078591-appb-000063
的HOMO为-5.42eV,LUMO为-2.13eV。如表1所示,该热 活化延迟荧光材料
Figure PCTCN2019078591-appb-000064
最低单重态能级S 1为2.93eV,最低三重态能级T 1为2.77,二者的差值为0.16。
表1
Figure PCTCN2019078591-appb-000065
上述热活化延迟荧光材料中的电子给体和电子受体均通过刚性的六元环连接,稳定性较好,可以有效控制光谱宽度,实现窄光谱。
本发明实施例还提供了一种电致发光器件,请参照图8,图8为本发明实施例提供的电致发光器件的结构示意 图。该电致发光器件10包括依次层叠设置的基板11、阳极层12、空穴传输层13、发光层14、电子传输层15以及阴极层16。
基板11可以采用柔性材料制成,也可以采用刚性材料制成。具体的,基板11包括玻璃基板。
阳极层12可以通过在基板11上涂布氧化铟锡层制备。该阳极层12用于提供空穴。
空穴传输层13用于将阳极层12提供的空穴传输给发光层14。该空穴传输层13可以采用聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐,PEDOT:PSS制备。空穴传输层13厚度可以设置为40-60nm,在一实施例中,空穴传输层13可以设置为50nm。
阴极层16用于提供电子。该阴极层16可以采用低功函金属材料制备,比如锂、镁、钙、铝、氟化锂等的一种或多种。该阴极层16的厚度可以设置为80-120nm之间,在一实施例中,该阴极层16的厚度可以设置为100nm。
电子传输层15用于将阴极层16提供的电子传输给发光层14。该电子传输层15可以由1,3,5-三(3-(3-吡啶基)苯基)苯Tm3PyPB制备。该电子传输层15的厚度可以设置为30-50nm之间,在一实施例中,该电子传输层15的厚度可以设置为40nm。
发光层14包括上述的热活化延迟荧光材料,该热活 化延迟荧光材料的电子给体和电子受体通过六元环连接,可以有效控制热活化延迟荧光材料的光谱宽度,提高热活化延迟荧光材料的发光效率。
在一些实施例中,该热活化延迟荧光材料的分子结构式为:
Figure PCTCN2019078591-appb-000066
该热活化延迟荧光材料中的电子给体
Figure PCTCN2019078591-appb-000067
和电子受体D通过六元环连接。其中,D为
Figure PCTCN2019078591-appb-000068
即该热活化延迟荧光材料包括
Figure PCTCN2019078591-appb-000069
在一实施例中,该热活化延迟荧光材料的分子结构式为:
Figure PCTCN2019078591-appb-000070
该热活化延迟荧光材料中的电子给体
Figure PCTCN2019078591-appb-000071
和电子受体D通过六元环连接。其中,D为
Figure PCTCN2019078591-appb-000072
X为C(CH 3) 2、2H、S或O。即该热活化延迟荧光材料包括
Figure PCTCN2019078591-appb-000073
Figure PCTCN2019078591-appb-000074
Figure PCTCN2019078591-appb-000075
具体的,发光层14中可以包含DPEPO和上述热活化延迟荧光材料。发光层14中的热活化延迟荧光材料的占比可以为3%-7%之间,在一实施例中,热活化延迟荧光材料的占比可以为5%。发光层14厚度可以设置为30-50nm之间,在一实施例中,该发光层14的厚度可以设置为40nm。
空穴和电子在发光层14复合产生激子。热活化延迟荧光材料在激子的作用下发光。
如下表2所示,当采用述热活化延迟荧光材料
Figure PCTCN2019078591-appb-000076
制备成电致发光器件1时,器件1的最高亮度为1567cd/m 2,最高电流效率为17.4cd/A,人眼对亮度的响应CIEy为0.08,最大外量子效率为16.3%。
当采用述热活化延迟荧光材料
Figure PCTCN2019078591-appb-000077
制备 成电致发光器件2时,器件2的最高亮度为1354cd/m 2,最高电流效率为18.3cd/A,人眼对亮度的响应CIEy为0.09,最大外量子效率为17.1%。
当采用述热活化延迟荧光材料
Figure PCTCN2019078591-appb-000078
制备成电致发光器件3时,器件3的最高亮度为1087cd/m 2,最高电流效率为16.5cd/A,人眼对亮度的响应CIEy为0.09,最大外量子效率为15.5%。
表2
Figure PCTCN2019078591-appb-000079
本发明实施例的电致发光器件中,发光层中的热活化延迟荧光材料通过刚性的六元环连接电子给体和电子受体,可以有效控制热活化延迟荧光材料的光谱宽度,提高热活化延迟荧光材料的发光效率。
综上所述,虽然本发明已以优选实施例揭露如上,但 上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (11)

  1. 一种热活化延迟荧光材料,其中,所述热活化延迟荧光材料的分子结构式为:
    Figure PCTCN2019078591-appb-100001
    所述热活化延迟荧光材料中的电子给体和电子受体通过六元环连接其中,D为电子受体,所述D为
    Figure PCTCN2019078591-appb-100002
    Figure PCTCN2019078591-appb-100003
    为电子给体。
  2. 一种热活化延迟荧光材料,其中,所述热活化延迟荧光材料的分子结构式为:
    Figure PCTCN2019078591-appb-100004
    所述热活化延迟荧光材料中的电子给体和电子受体通过六元环连接其中,D为电子受体,所述D为
    Figure PCTCN2019078591-appb-100005
    Figure PCTCN2019078591-appb-100006
    为电子给体,X为C(CH 3) 2、2H、S或O。
  3. 一种热活化延迟荧光材料的制备方法,其中,包括:
    Figure PCTCN2019078591-appb-100007
    中,依次加入氧四氢呋喃、正丁基锂,以及溴化硼的乙醚溶液,在预设温度范围下进行反应,得到第一反应液;
    对所述第一反应液进行提纯,得到第一固体;
    在甲烷中,采用钯碳催化剂对所述第一固体进行催化反应,得到第二反应液;
    过滤所述第二反应液,得到所述热活化延迟荧光材料。
  4. 根据权利要求3所述的热活化延迟荧光材料的制备方法,其中,所述对所述第一反应液进行提纯,得到第一固体步骤包括:
    将所述第一反应液与处于预设温度范围的水混合,得到第二固体;
    将所述第二固体溶解在二氯甲烷中,并加入硅胶和甲苯进行提纯,得到所述第一固体。
  5. 根据权利要求4所述的热活化延迟荧光材料的制备方法,其中,所述第一固体为
    Figure PCTCN2019078591-appb-100008
    所述热活化延迟荧光材料为
    Figure PCTCN2019078591-appb-100009
  6. 根据权利要求3所述的热活化延迟荧光材料的制备方法,其中,所述预设温度范围为-75℃至-80℃之间。
  7. 一种热活化延迟荧光材料的制备方法,其中,包括:
    Figure PCTCN2019078591-appb-100010
    中,依次加入氧四氢呋喃、正丁基锂,以及溴化硼的乙醚溶液,在预设温度范围下进行反应,得到第一反应液;
    在所述第一反应液中加入反应物,得到第三反应液;
    对所述第三反应液进行提纯,得到第三固体;
    在甲烷中,采用钯碳催化剂对所述第三固体进行催化反应,得到第四反应液;
    过滤所述第四反应液,得到所述热活化延迟荧光材料。
  8. 根据权利要求7所述的热活化延迟荧光材料的制备方法,其中,所述反应物为间氯过氧苯甲酸,所述第三固体为
    Figure PCTCN2019078591-appb-100011
    所述热活化延迟荧光材料为
    Figure PCTCN2019078591-appb-100012
  9. 根据权利要求7所述的热活化延迟荧光材料的制备方法,其中,所述反应物为硫粉,所述第三固体为
    Figure PCTCN2019078591-appb-100013
    所述热活化延迟荧光材料为
    Figure PCTCN2019078591-appb-100014
  10. 根据权利要求7所述的热活化延迟荧光材料的制备方法,其中,所述预设温度范围为-75℃至-80℃之间。
  11. 一种电致发光器件,其中,包括依次层叠设置的基板、阳极层、空穴传输层、发光层、电子传输层以及阴极层;
    所述阳极层用于提供空穴;
    所述空穴传输层用于将所述空穴传输给所述发光层;
    阴极层用于提供电子;
    所述电子传输层用于将所述电子传输给所述发光层;
    所述发光层包括如权利要求1所述的热活化延迟荧光材料,所述发光层用于将所述空穴和电子复合产生激子,使所述热活化延迟荧光材料在激子的作用下发光。
PCT/CN2019/078591 2018-12-19 2019-03-19 热活化延迟荧光材料、其制备方法和电致发光器件 WO2020124827A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/463,043 US11271176B2 (en) 2018-12-19 2019-03-19 Thermally activated delayed fluorescent material, method of fabricating same, and electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811559197.7 2018-12-19
CN201811559197.7A CN109575059A (zh) 2018-12-19 2018-12-19 热活化延迟荧光材料、其制备方法和电致发光器件

Publications (1)

Publication Number Publication Date
WO2020124827A1 true WO2020124827A1 (zh) 2020-06-25

Family

ID=65931111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078591 WO2020124827A1 (zh) 2018-12-19 2019-03-19 热活化延迟荧光材料、其制备方法和电致发光器件

Country Status (3)

Country Link
US (1) US11271176B2 (zh)
CN (1) CN109575059A (zh)
WO (1) WO2020124827A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210149047A (ko) * 2019-04-26 2021-12-08 이데미쓰 고산 가부시키가이샤 다환식 화합물 및 다환식 화합물 또는 조성물을 포함하는 유기 일렉트로루미네센스 소자
US11430959B2 (en) * 2019-11-22 2022-08-30 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thermally activated delayed fluorescence material and organic light-emitting diode prepared using same
CN112028918B (zh) * 2019-12-31 2023-04-28 陕西莱特光电材料股份有限公司 一种有机化合物、其应用以及有机电致发光器件
US20210296586A1 (en) * 2020-03-23 2021-09-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thermally activated delayed flourescence (tadf) material, synthesizing method thereof, and electroluminescent device
WO2022078431A1 (zh) * 2020-10-14 2022-04-21 浙江光昊光电科技有限公司 有机化合物及其在光电领域的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126606A (ja) * 2016-01-12 2017-07-20 コニカミノルタ株式会社 電子デバイス材料、有機エレクトロルミネッセンス素子、表示装置、及び、照明装置
CN107266484A (zh) * 2017-07-14 2017-10-20 瑞声科技(南京)有限公司 有机电致发光材料及其发光器件
CN107793441A (zh) * 2016-09-07 2018-03-13 学校法人关西学院 多环芳香族化合物
CN109155370A (zh) * 2016-05-13 2019-01-04 柯尼卡美能达株式会社 有机电致发光元件用材料、有机电致发光元件、显示装置及照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3579293A1 (en) * 2017-02-03 2019-12-11 Hitachi Chemical Company, Ltd. Organic electronics material and use thereof
KR20220003140A (ko) * 2017-05-19 2022-01-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전자 디바이스, 발광 장치, 전자 기기, 및 조명 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126606A (ja) * 2016-01-12 2017-07-20 コニカミノルタ株式会社 電子デバイス材料、有機エレクトロルミネッセンス素子、表示装置、及び、照明装置
CN109155370A (zh) * 2016-05-13 2019-01-04 柯尼卡美能达株式会社 有机电致发光元件用材料、有机电致发光元件、显示装置及照明装置
CN107793441A (zh) * 2016-09-07 2018-03-13 学校法人关西学院 多环芳香族化合物
CN107266484A (zh) * 2017-07-14 2017-10-20 瑞声科技(南京)有限公司 有机电致发光材料及其发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKATSUKA, S. ET AL.: "Divergent Synthesis of Heteroatom-Centered 4, 8, 12-Triazatriangulenes", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 56, no. 18, 24 April 2017 (2017-04-24), pages 5087 - 5090, XP055561731, DOI: 20190820151612X *

Also Published As

Publication number Publication date
US20210359208A1 (en) 2021-11-18
US11271176B2 (en) 2022-03-08
CN109575059A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2020124827A1 (zh) 热活化延迟荧光材料、其制备方法和电致发光器件
CN102731406B (zh) 菲并咪唑衍生物及在制备电致发光器件方面的应用
WO2020082601A1 (zh) 深红光热活化延迟荧光材料及其合成方法、电致发光器件
CN104497013B (zh) 氮杂咔唑类oled材料及其制备方法与应用
WO2020015245A1 (zh) 热活化延迟荧光材料及其合成方法
CN110305150B (zh) 一种热激活延迟荧光材料及其应用
CN103865526B (zh) 基于菲并咪唑衍生物的主体材料及电致发光器件
CN103936653A (zh) 苯并咔唑类oled材料及其制备方法与应用
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN104447880A (zh) 氮杂咔唑类oled磷光材料及其制备方法与应用
WO2020220611A1 (zh) 热活化延迟荧光分子材料及其合成方法、有机电致发光器件
CN102653546B (zh) 双极性蓝光主体材料及其制备方法与有机电致发光器件
CN1785943A (zh) 9-苯基-9-芘基芴取代的芘的共轭衍生物材料及其制备方法和应用
CN101875674A (zh) 一种铱金属配合物及其应用
CN110092800B (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
WO2020191866A1 (zh) 热活化延迟荧光材料及其制备方法、有机发光器件
CN106220571A (zh) 一种含氮杂环衍生物及其在有机电致发光器件中的应用
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
CN102898469B (zh) 双功能化双膦氧取代芴基光电功能材料及其制备方法和应用
WO2020258525A1 (zh) 电致发光材料、电致发光材料的制备方法及发光器件
WO2021036140A1 (zh) 电致发光材料、电致发光材料的制备方法及发光器件
WO2020199325A1 (zh) 热激活延迟荧光材料及其制备方法、电致发光器件
WO2020215388A1 (zh) 深红光热活化延迟荧光材料及其制备方法和电致发光器件
WO2014121569A1 (zh) 双环铱配合物及其制备方法、有机电致发光器件及其制备方法
CN102653677A (zh) 双极性蓝光主体材料及其制备方法与有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899758

Country of ref document: EP

Kind code of ref document: A1