WO2021120450A1 - 一种热活化延迟荧光绿光高分子材料及其制备方法 - Google Patents

一种热活化延迟荧光绿光高分子材料及其制备方法 Download PDF

Info

Publication number
WO2021120450A1
WO2021120450A1 PCT/CN2020/083246 CN2020083246W WO2021120450A1 WO 2021120450 A1 WO2021120450 A1 WO 2021120450A1 CN 2020083246 W CN2020083246 W CN 2020083246W WO 2021120450 A1 WO2021120450 A1 WO 2021120450A1
Authority
WO
WIPO (PCT)
Prior art keywords
green light
polymer material
activated delayed
thermally activated
light polymer
Prior art date
Application number
PCT/CN2020/083246
Other languages
English (en)
French (fr)
Inventor
罗佳佳
严舒星
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/968,923 priority Critical patent/US11882757B2/en
Priority to EP20859656.9A priority patent/EP4079736A4/en
Publication of WO2021120450A1 publication Critical patent/WO2021120450A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms

Definitions

  • the invention belongs to the technical field of organic photoelectric materials, and particularly relates to a thermally activated delayed fluorescent green light polymer material and a preparation method thereof.
  • Organic light emitting diode (Organic Light Emitting Diode, referred to as OLED) for its active light emission does not require a backlight, high luminous efficiency, large viewing angle, fast response speed, wide temperature adaptation range, relatively simple production and processing technology, low driving voltage, energy
  • OLED Organic Light Emitting Diode
  • OLED the light-emitting guest material that plays a leading role is very important.
  • the light-emitting subject materials used in early OLEDs were fluorescent materials. Since the ratio of singlet and triplet excitons in OLEDs is 1:3, the theoretical internal quantum efficiency (IQE) of OLEDs based on fluorescent materials can only reach 25%. , Which greatly limits the application of fluorescent electroluminescent devices.
  • heavy metal complex phosphorescent materials Due to the spin-orbit coupling of heavy atoms, heavy metal complex phosphorescent materials can simultaneously utilize singlet and triplet excitons to achieve 100% IQE.
  • the commonly used heavy metals are precious metals such as iridium (Ir) and platinum, and the phosphorescent materials of heavy metal complexes have yet to be broken through in the aspect of blue light materials.
  • TADF organic thermally activated delayed fluorescence
  • TADF materials For TADF materials, fast reverse intersystem crossing constant (kRISC) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency OLEDs. At present, TADF materials with the above conditions are still relatively scarce compared to heavy metal Ir complexes.
  • the purpose of the present invention is to provide a thermally activated delayed fluorescence deep red light polymer material and a preparation method and application thereof, so as to solve the problem of low luminous efficiency of organic light emitting diodes in the prior art.
  • the present invention provides a thermally activated delayed fluorescence deep red light polymer material, the structural formula of which is as follows:
  • the R is a benzene compound with a nitrogen-containing ring structure.
  • the chemical structural formula of the thermally activated delayed fluorescent green light polymer material is:
  • the chemical structural formula of the thermally activated delayed fluorescent green light polymer material is:
  • the present invention also provides a preparation method for preparing the thermally activated delayed fluorescent green light polymer material of the present invention, which includes the following steps:
  • the mixed solution was poured into ice water, the organic phase in the mixed solution was extracted multiple times with dichloromethane, the organic phases extracted multiple times were combined, and separated and purified by silica gel chromatography to obtain the thermally activated delayed fluorescent green Optical polymer materials.
  • the benzene compound with a nitrogen-containing ring structure is one of the following structural formulas:
  • the chemical structural formula of the carbazole is
  • the chemical structural formula of the thermally activated delayed fluorescent green light polymer material is:
  • the chemical structural formula of the thermally activated delayed fluorescent green light polymer material is:
  • the chemical structural formula of the thermally activated delayed fluorescent green light polymer material is:
  • the organic electroluminescent device includes a glass and conductive glass (ITO) substrate layer, a hole transport and injection layer, the light emitting layer, an electron transport layer, and a cathode layer.
  • ITO glass and conductive glass
  • the beneficial effect of the present invention is: the thermally activated delayed fluorescent green light polymer material of the present invention is based on boron as the structure, and the overall charge transfer strength is adjusted through different electron donating units. , Synthesized a series of green light thermally activated delayed fluorescent materials with low single triplet energy level difference, high luminous efficiency, and rapid reverse inter-system transition constant, and at the same time realized the fine-tuning of the electron-donating ability of the electronic unit and the fine-tuning of the spectrum .
  • the present invention also provides an organic electroluminescent device, which uses the thermally activated delayed fluorescent green light polymer material as a light-emitting layer, which can improve the light-emitting efficiency of the device and make the performance of the light-emitting device more stable.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device provided by an embodiment of the present invention.
  • the present invention provides a thermally activated delayed fluorescence deep red light polymer material, the structural formula of which is as follows:
  • the electrochemical energy levels are shown in Table 1.
  • the present invention also provides a preparation method for preparing the thermally activated delayed fluorescent green light polymer material of the present invention, which includes the following steps:
  • the benzene compound with a nitrogen-containing ring structure is carbazole, and the chemical structural formula of the carbazole is
  • the chemical structural formula of the thermally activated delayed fluorescent green light polymer material is:
  • the synthetic route is as follows:
  • the preparation method of the thermally activated delayed fluorescent green light polymer material includes the following steps:
  • the benzene compound with a nitrogen-containing ring structure is phenoxazine, and the chemical structural formula of the phenoxazine is
  • the synthetic route is as follows:
  • the preparation method of the thermally activated delayed fluorescent green light polymer material includes the following steps:
  • the benzene compound with a nitrogen-containing ring structure is 9,9'-dimethylacridine, and the chemical structural formula of the 9,9'-dimethylacridine is
  • the chemical structural formula of the thermally activated delayed fluorescent green light polymer material is:
  • the synthetic route is as follows:
  • the preparation method of the thermally activated delayed fluorescent green light polymer material includes the following steps:
  • the present invention also provides an organic electroluminescent device, which includes a light-emitting layer containing the thermally activated delayed fluorescent green light polymer material of the present invention.
  • Figure 1 is a schematic structural diagram of an organic electroluminescent device provided by the present invention.
  • the organic electroluminescent device includes a glass and conductive glass (ITO) substrate layer 1, a hole transport and injection layer 2, and the The light emitting layer 3, the electron transport layer 4, and the cathode layer 5.
  • ITO glass and conductive glass
  • the organic electroluminescent devices are device 1, device 2, and device 3, respectively.
  • the performance data of device 1, device 2, and device 3 are shown in Table 2 below:
  • the beneficial effect of the present invention is that: the thermally activated delayed fluorescent green light polymer material of the present invention is based on boron as the structure and adjusts the overall charge transfer strength through different electron donating units. , Synthesized a series of green light thermally activated delayed fluorescent materials with low single triplet energy level difference, high luminous efficiency, fast reverse inter-system transition constant, and realized the fine-tuning of the electron-donating ability of the electronic unit and the fine-tuning of the spectrum .
  • the present invention also provides an organic electroluminescent device, which uses the thermally activated delayed fluorescent green light polymer material as a light-emitting layer, which can improve the light-emitting efficiency of the device and make the performance of the light-emitting device more stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种热活化延迟荧光绿光高分子材料及其有机电致发光器件,热活化延迟荧光绿光高分子材料以硼为结构基础上,通过不同给电子单元来调节整体的电荷转移强弱,合成了一系列具有较低单三线态能级差,高发光效率,快速的反向系间窜越常数的绿光热活化延迟荧光材料,同时实现了给电子单元的给电子能力微调使得光谱微调。

Description

一种热活化延迟荧光绿光高分子材料及其制备方法 技术领域
本发明属于有机光电材料技术领域,特别涉及一种热活化延迟荧光绿光高分子材料及其制备方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)以其主动发光不需要背光源、发光效率高、可视角度大,响应速度快、温度适应范围大、生产加工工艺相对简单、驱动电压低、能耗小、更轻更薄、柔性显示等优点以及巨大的应用前景,吸引了众多研究者的关注。在OLED中,起主导作用的发光客体材料至关重要。早期的OLED使用的发光课题材料为荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,因此基于荧光材料的OLED的理论内量子效率(IQE)只能达到25%,极大地限制了荧光电致发光器件的应用。
重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子而实现100%的IQE。然而,通常使用的重金属都是铱(Ir)、铂等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待突破。纯有机热活化延迟荧光(TADF)材料,通过巧妙的分子设计,使得分子具有较小的最低单三重能级差(ΔEST),这样三重态激子可以通过反向系间窜越(RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,也可以实现100%的IQE。
对于TADF材料,快速的反向系间窜越常数(kRISC)以及高的光致发光量子产率(PLQY)是制备高效率OLED的必要条件。目前,具备上述条件的TADF材料相对于重金属Ir配合物而言还是比较匮乏。
因此确有必要来开发一种TADF聚合物,以克服现有技术的缺陷。
技术问题
本发明的目的是提供一种热活化延迟荧光深红光高分子材料及其制备方法与应用,以解决现有技术中存在的有机发光二极管的发光效率低的问题。
技术解决方案
为实现上述目的,本发明提供一种热活化延迟荧光深红光高分子材料,其结构式如下:
Figure PCTCN2020083246-appb-000001
式中,所述R为含氮环结构的苯类化合物。
进一步的,在不同实施方式中,其中所述含氮环结构的苯类化合物为以下结构式的一种:
Figure PCTCN2020083246-appb-000002
进一步的,在不同实施方式中,其中当所述R为
Figure PCTCN2020083246-appb-000003
时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000004
进一步的,在不同实施方式中,其中当所述R为
Figure PCTCN2020083246-appb-000005
时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000006
进一步的,在不同实施方式中,其中当所述R为
Figure PCTCN2020083246-appb-000007
时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000008
本发明的还提供了一种制备方法,用以制备本发明涉及的所述的热活化延迟荧光绿光高分子材料,其包括以下步骤:
向反应瓶中加入含有硼环结构的苯类化合物、含氮环结构的苯类化合物、醋酸钯和三叔丁基膦四氟硼酸盐,所述含氮环结构的苯类化合物中,所述氮环结构形成有一氨基;所述含有硼环结构的笨类化合物的化学结构式如下:
Figure PCTCN2020083246-appb-000009
将所述反应瓶置于手套箱中,并在手套箱中加入NaOt-Bu,在氩气氛围下打入甲苯,在100~140℃,反应20~30小时后,冷却至室温,得到混合溶液;
将所述混合溶液倒入冰水中,通过二氯甲烷多次萃取所述混合溶液中的有机相,合并多次萃取的有机相,并通过硅胶层析分离纯化,得到所述热活化延迟荧光绿光高分子材料。
进一步的,在不同实施方式中,其中所述含氮环结构的苯类化合物为以下结构式的一种:
Figure PCTCN2020083246-appb-000010
进一步的,在不同实施方式中,其中当所述含氮环结构的苯类化合物为咔唑时,所述咔唑的化学结构式为
Figure PCTCN2020083246-appb-000011
所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000012
当所述含氮环结构的苯类化合物为吩噁嗪时,所述吩噁嗪的化学结构式为
Figure PCTCN2020083246-appb-000013
所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000014
当所述含氮环结构的苯类化合物为9,9’-二甲基吖啶时,所述9,9’-二甲基吖啶的化学结构式为
Figure PCTCN2020083246-appb-000015
所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000016
进一步的,在不同实施方式中,其中所述含有硼环结构的苯类化合物、所述含氮环结构的苯类化合物、醋酸钯和三叔丁基膦四氟硼酸盐的摩尔质量比为:(12~15):(15~20):(1~1.5):(3~4)。
本发明还提供了一种有机电致发光器件,其包括发光层,所述发光层含有本发明涉及的所述热活化延迟荧光绿光高分子材料。
其中,所述有机电致发光器件包括玻璃和导电玻璃(ITO)衬底层,空穴传输和注入层、所述发光层、电子传输层以及阴极层。
有益效果
相对于现有技术,本发明的有益效果在于:本发明涉及的一种热活化延迟荧光绿光高分子材料,以硼为结构的基础上,通过不同给电子单元来调节整体的电荷转移强弱,合成了一系列具有较低单三线态能级差,高发光效率,快速的反向系间窜越常数的绿光热活化延迟荧光材料,同时实现了给电子单元的给电子能力微调使得光谱微调。
进一步的,本发明还提供的一种有机电致发光器件,采用所述热活化延迟荧光绿光高分子材料作为发光层,能够提高器件的发光效率,发光器件性能更稳定。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本发明涉及的一个实施方式提供的一种有机电致发光器件的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种热活化延迟荧光深红光高分子材料,其结构式如下:
Figure PCTCN2020083246-appb-000017
式中,R为含氮环结构的苯类化合物,其中所述含氮环结构的苯类化合物为以下结构式的一种:
Figure PCTCN2020083246-appb-000018
Figure PCTCN2020083246-appb-000019
当所述R为
Figure PCTCN2020083246-appb-000020
时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000021
其为化合物A;当所述R为
Figure PCTCN2020083246-appb-000022
时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000023
其为化合物B;当所述R为
Figure PCTCN2020083246-appb-000024
时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000025
其为化合物C。
化合物A、化合物B、化合物C的最低单重态(S1)和最低三重态能级(T1),电化学能级如下表1所示,
  PL Peak(nm) S 1(eV) T 1(eV) ΔE ST(eV) HOMO(eV) LUMO(eV)
化合物A 520 2.39 2.30 0.09 -5.46 -2.87
化合物B 543 2.29 2.18 0.11 -5.48 -2.87
化合物C 529 2.34 2.28 0.06 -5.41 -2.87
表1。
本发明的还提供了一种制备方法,用以制备本发明涉及的所述的热活化延迟荧光绿光高分子材料,其包括以下步骤:
向反应瓶中加入含有硼环结构的苯类化合物、含氮环结构的苯类化合物、醋酸钯和三叔丁基膦四氟硼酸盐,所述含氮环结构的苯类化合物中,所述氮环结构形成有一氨基;所述含有硼环结构的笨类化合物的化学结构式如下:
Figure PCTCN2020083246-appb-000026
将所述反应瓶置于手套箱中,并在手套箱中加入NaOt-Bu,在氩气氛围下打入甲苯,在100~140℃,反应20~30小时后,冷却至室温,得到混合溶液;将所述混合溶液倒入冰水中,通过二氯甲烷多次萃取所述混合溶液中的有机相,合并多次萃取的有机相,并通过硅胶层析分离纯化,得到所述热活化延迟荧光绿光高分子材料。
方法实施例1
本实施例中,所述含氮环结构的苯类化合物为咔唑,所述咔唑的化学结构式为
Figure PCTCN2020083246-appb-000027
所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000028
其合成路线如下:
Figure PCTCN2020083246-appb-000029
所述热活化延迟荧光绿光高分子材料的制备方法包括以下步骤:
向反应瓶中加入5mmol含有硼环结构的苯类化合物、6mmol咔唑、0.4mmol醋酸钯和1.2mmol三叔丁基膦四氟硼酸盐,将所述反应瓶置于手套箱中,并在手套箱中加入12mmolNaOt-Bu,在氩气氛围下打入120mL事先除水除氧的甲苯,在100~140℃,反应20~30小时后,冷却至室温,得到混合溶液;将所述混合溶液倒入300mL冰水中,通过二氯甲烷多次萃取所述混合溶液中的有机相,合并多次萃取的有机相,并通过硅胶层析分离纯化,得到2.0g所述热活化延迟荧光绿光高分子材料,产率67%。
方法实施例2
本实施例中,所述含氮环结构的苯类化合物为吩噁嗪,所述吩噁嗪的化学结构式为
Figure PCTCN2020083246-appb-000030
所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000031
其合成路线如下:
Figure PCTCN2020083246-appb-000032
所述热活化延迟荧光绿光高分子材料的制备方法包括以下步骤:
向反应瓶中加入5mmol含有硼环结构的苯类化合物、6mmol吩噁嗪、0.4mmol醋酸钯和1.2mmol三叔丁基膦四氟硼酸盐,将所述反应瓶置于手套箱中,并在手套箱中加入12mmolNaOt-Bu,在氩气氛围下打入120mL事先除水除氧的甲苯,在100~140℃,反应20~30小时后,冷却至室温,得到混合溶液;将所述混合溶液倒入300mL冰水中,通过二氯甲烷多次萃取所述混合溶液中的有机相,合并多次萃取的有机相,并通过硅胶层析分离纯化,得到2.2g所述热活化延迟荧光绿光高分子材料,产率71%。
方法实施例3
本实施例中,所述含氮环结构的苯类化合物为9,9’-二甲基吖啶,所述9,9’-二甲基吖啶的化学结构式为
Figure PCTCN2020083246-appb-000033
所述热活化延迟荧光绿光高分子材料的化学结构式为:
Figure PCTCN2020083246-appb-000034
其合成路线如下:
Figure PCTCN2020083246-appb-000035
所述热活化延迟荧光绿光高分子材料的制备方法包括以下步骤:
向反应瓶中加入5mmol含有硼环结构的苯类化合物、6mmol9,9’-二甲基吖啶、0.4mmol醋酸钯和1.2mmol三叔丁基膦四氟硼酸盐,将所述反应瓶置于手套箱中,并在手套箱中加入12mmolNaOt-Bu,在氩气氛围下打入120mL事先除水除氧的甲苯,在100~140℃,反应20~30小时后,冷却至室温,得到混合溶液;将所述混合溶液倒入300mL冰水中,通过二氯甲烷多次萃取所述混合溶液中的有机相,合并多次萃取的有机相,并通过硅胶层析分离纯化,得到2.3g所述热活化延迟荧光绿光高分子材料,产率72%。
本发明还提供了一种有机电致发光器件,其包括发光层,所述发光层含有本发明涉及的所述热活化延迟荧光绿光高分子材料。
请参阅图1,图1为本发明提供的有机电致发光器件的结构示意图,所述有机电致发光器件包括玻璃和导电玻璃(ITO)衬底层1,空穴传输和注入层2、所述发光层3、电子传输层4以及阴极层5。
当发光层3中分别含有化合物A、化合物B、化合物C时,有机电致发光器件分别为器件1、器件2、器件3,器件1、器件2、器件3的性能数据见下表2:
器件 最高电流效率(cd/A) EL peak(nm) 最大外量子效率(%)
器件1 71.3 520 24.9
器件2 66.3 543 22.1
器件3 68.6 529 23.3
表2。
相对于现有技术,本发明的有益效果在于:本发明涉及的一种热活化延迟荧光绿光高分子材料,以硼为结构的基础上,通过不同给电子单元来调节整体的电荷转移强弱,合成了一系列具有较低单三线态能级差,高发光效率,快速的反向系间窜越常数的绿光热活化 延迟荧光材料,同时实现了给电子单元的给电子能力微调使得光谱微调。
进一步的,本发明还提供的一种有机电致发光器件,采用所述热活化延迟荧光绿光高分子材料作为发光层,能够提高器件的发光效率,发光器件性能更稳定。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明。

Claims (14)

  1. 一种热活化延迟荧光绿光高分子材料,其中,其结构式如下:
    Figure PCTCN2020083246-appb-100001
    式中,所述R为含氮环结构的苯类化合物。
  2. 根据权利要求1所述的一种热活化延迟荧光绿光高分子材料,其中,所述含氮环结构的苯类化合物为以下结构式的一种:
    Figure PCTCN2020083246-appb-100002
  3. 根据权利要求2所述的一种热活化延迟荧光绿光高分子材料,其中,当所述R为
    Figure PCTCN2020083246-appb-100003
    时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
    Figure PCTCN2020083246-appb-100004
  4. 根据权利要求2所述的一种热活化延迟荧光绿光高分子材料,其中,当所述R为
    Figure PCTCN2020083246-appb-100005
    时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
    Figure PCTCN2020083246-appb-100006
  5. 根据权利要求2所述的一种热活化延迟荧光绿光高分子材料,其中,当所述R为
    Figure PCTCN2020083246-appb-100007
    时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
    Figure PCTCN2020083246-appb-100008
  6. 一种制备方法,用以制备如权利要求1所述的热活化延迟荧光绿光高分子材料,其中,包括以下步骤:
    向反应瓶中加入含有硼环结构的苯类化合物、含氮环结构的苯类化合物、醋酸钯和三 叔丁基膦四氟硼酸盐,所述含氮环结构的苯类化合物中,所述氮环结构形成有一氨基;所述含有硼环结构的笨类化合物的化学结构式如下:
    Figure PCTCN2020083246-appb-100009
    将所述反应瓶置于手套箱中,并在手套箱中加入NaOt-Bu,在氩气氛围下打入甲苯,在100~140℃,反应20~30小时后,冷却至室温,得到混合溶液;
    将所述混合溶液倒入冰水中,通过二氯甲烷多次萃取所述混合溶液中的有机相,合并多次萃取的有机相,并通过硅胶层析分离纯化,得到所述热活化延迟荧光绿光高分子材料。
  7. 如权利要求6所述的热活化延迟荧光绿光高分子材料的制备方法,其中,
    所述含氮环结构的苯类化合物为以下结构式的一种:
    Figure PCTCN2020083246-appb-100010
    Figure PCTCN2020083246-appb-100011
  8. 如权利要求7所述的热活化延迟荧光绿光高分子材料的制备方法,其中,当所述含氮环结构的苯类化合物为咔唑时,所述咔唑的化学结构式为
    Figure PCTCN2020083246-appb-100012
    所述热活化延迟荧光绿光高分子材料的化学结构式为:
    Figure PCTCN2020083246-appb-100013
    当所述含氮环结构的苯类化合物为吩噁嗪时,所述吩噁嗪的化学结构式为
    Figure PCTCN2020083246-appb-100014
    所述热活化延迟荧光绿光高分子材料的化学结构式为:
    Figure PCTCN2020083246-appb-100015
    当所述含氮环结构的苯类化合物为9,9’-二甲基吖啶时,所述9,9’-二甲基吖啶的化学结构式为
    Figure PCTCN2020083246-appb-100016
    所述热活化延迟荧光绿光高分子材料的化学结构式为:
    Figure PCTCN2020083246-appb-100017
  9. 如权利要求7所述的热活化延迟荧光绿光高分子材料的制备方法,其中,所述含有硼环结构的苯类化合物、所述含氮环结构的苯类化合物、醋酸钯和三叔丁基膦四氟硼酸盐的摩尔质量比为:(12~15):(15~20):(1~1.5):(3~4)。
  10. 一种有机电致发光器件,其中,其包括发光层,所述发光层含有权利要1所述的热活化延迟荧光绿光高分子材料。
  11. 根据权利要求10所述的有机电致发光器件,其中,所述含氮环结构的苯类化合物为以下结构式的一种:
    Figure PCTCN2020083246-appb-100018
  12. 根据权利要求11所述的有机电致发光器件,其中,当所述R为
    Figure PCTCN2020083246-appb-100019
    时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
    Figure PCTCN2020083246-appb-100020
  13. 根据权利要求11所述的有机电致发光器件,其中,当所述R为
    Figure PCTCN2020083246-appb-100021
    时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
    Figure PCTCN2020083246-appb-100022
  14. 根据权利要求11所述的有机电致发光器件,其中,当所述R为
    Figure PCTCN2020083246-appb-100023
    时,所述热活化延迟荧光绿光高分子材料的化学结构式为:
    Figure PCTCN2020083246-appb-100024
PCT/CN2020/083246 2019-12-18 2020-04-03 一种热活化延迟荧光绿光高分子材料及其制备方法 WO2021120450A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/968,923 US11882757B2 (en) 2019-12-18 2020-04-03 Thermally activated delayed fluorescence green polymer material and preparation method thereof
EP20859656.9A EP4079736A4 (en) 2019-12-18 2020-04-03 THERMALLY ACTIVATED GREEN LIGHT POLYMER MATERIAL WITH DELAYED FLUORESCENCE AND METHOD FOR PRODUCING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911309897.5 2019-12-18
CN201911309897.5A CN111116623B (zh) 2019-12-18 2019-12-18 一种热活化延迟荧光绿光高分子材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021120450A1 true WO2021120450A1 (zh) 2021-06-24

Family

ID=70499665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083246 WO2021120450A1 (zh) 2019-12-18 2020-04-03 一种热活化延迟荧光绿光高分子材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111116623B (zh)
WO (1) WO2021120450A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778343B (zh) * 2020-12-31 2023-07-07 武汉尚赛光电科技有限公司 一种硼基有机电致发光材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (ja) * 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
US20180069182A1 (en) * 2016-09-07 2018-03-08 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
WO2019009052A1 (ja) * 2017-07-07 2019-01-10 学校法人関西学院 多環芳香族化合物
CN110003260A (zh) * 2019-04-30 2019-07-12 武汉天马微电子有限公司 硼杂环化合物、显示面板以及显示装置
WO2019206288A1 (zh) * 2018-04-27 2019-10-31 中国石油化工股份有限公司 极性单体接枝聚丙烯树脂及其制备方法和应用
WO2019235452A1 (ja) * 2018-06-06 2019-12-12 学校法人関西学院 ターシャリーアルキル置換多環芳香族化合物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201831468A (zh) * 2016-12-05 2018-09-01 德商麥克專利有限公司 含氮的雜環化合物
TW201843143A (zh) * 2017-03-13 2018-12-16 德商麥克專利有限公司 含有芳基胺結構之化合物
CN108358905B (zh) * 2018-03-28 2021-06-18 上海天马有机发光显示技术有限公司 一种化合物、发光材料及器件、显示装置
CN108586441B (zh) * 2018-05-03 2020-12-29 上海天马有机发光显示技术有限公司 一种化合物、一种有机发光显示装置
CN110143960B (zh) * 2019-05-30 2021-06-01 武汉华星光电半导体显示技术有限公司 绿光热活化延迟荧光材料及其制备方法、有机电致发光器件
CN110305149B (zh) * 2019-06-28 2022-03-15 武汉天马微电子有限公司 一种热激活延迟荧光材料及其应用
CN110526904A (zh) * 2019-08-28 2019-12-03 武汉华星光电半导体显示技术有限公司 绿光热活化延迟荧光材料及其制备方法、电致发光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102118A1 (ja) * 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
US20180069182A1 (en) * 2016-09-07 2018-03-08 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
WO2019009052A1 (ja) * 2017-07-07 2019-01-10 学校法人関西学院 多環芳香族化合物
WO2019206288A1 (zh) * 2018-04-27 2019-10-31 中国石油化工股份有限公司 极性单体接枝聚丙烯树脂及其制备方法和应用
WO2019235452A1 (ja) * 2018-06-06 2019-12-12 学校法人関西学院 ターシャリーアルキル置換多環芳香族化合物
CN110003260A (zh) * 2019-04-30 2019-07-12 武汉天马微电子有限公司 硼杂环化合物、显示面板以及显示装置

Also Published As

Publication number Publication date
CN111116623B (zh) 2021-04-27
CN111116623A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
CN112174992B (zh) 一种发光材料及其应用以及包含其的有机电致发光器件
CN110452226B (zh) 一种基于吡咯衍生物的有机蓝光荧光材料与蓝光器件
US10851292B2 (en) Dark blue light thermally activated delayed fluorescence (TADF) material and application thereof
CN110105330B (zh) 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
WO2020098146A1 (zh) 一种蓝光热活化延迟荧光材料及其应用
WO2020220611A1 (zh) 热活化延迟荧光分子材料及其合成方法、有机电致发光器件
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110143960B (zh) 绿光热活化延迟荧光材料及其制备方法、有机电致发光器件
CN110183426B (zh) 一种热活化延迟荧光材料、制备方法及电致发光器件
WO2020237991A1 (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
WO2021000434A1 (zh) 红绿蓝热活化延迟荧光材料,其合成方法及应用
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
WO2020113643A1 (zh) 蓝光tadf材料及其制备方法和电致发光器件
WO2020258525A1 (zh) 电致发光材料、电致发光材料的制备方法及发光器件
WO2020155525A1 (zh) 热激活延迟荧光材料、有机电致发光器件及显示面板
WO2020082568A1 (zh) 吖啶衍生物及有机电致发光器件
WO2021189528A1 (zh) 热活化延迟荧光材料及其合成方法、电致发光器件
CN109535159B (zh) 红光热活化延迟荧光材料、其制备方法及有机发光二极管器件
WO2021103058A1 (zh) 空穴传输材料及其制备方法和电致发光器件
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
EP4079736A1 (en) Thermally-activated delayed fluorescence green light polymer material and preparation method therefor
CN106495975B (zh) 9,9′-联蒽类蓝光多功能材料及其应用
CN111018874A (zh) 空穴传输材料、其制备方法及有机发光二极管器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020859656

Country of ref document: EP

Effective date: 20220718