WO2020155525A1 - 热激活延迟荧光材料、有机电致发光器件及显示面板 - Google Patents

热激活延迟荧光材料、有机电致发光器件及显示面板 Download PDF

Info

Publication number
WO2020155525A1
WO2020155525A1 PCT/CN2019/092074 CN2019092074W WO2020155525A1 WO 2020155525 A1 WO2020155525 A1 WO 2020155525A1 CN 2019092074 W CN2019092074 W CN 2019092074W WO 2020155525 A1 WO2020155525 A1 WO 2020155525A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally activated
fluorescent material
activated delayed
delayed fluorescent
electrode
Prior art date
Application number
PCT/CN2019/092074
Other languages
English (en)
French (fr)
Inventor
白亚梅
李先杰
黄金昌
顾宇
杨林
罗佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/488,599 priority Critical patent/US11283029B2/en
Publication of WO2020155525A1 publication Critical patent/WO2020155525A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen

Definitions

  • This application relates to the field of organic electroluminescence technology, and in particular to a thermally activated delayed fluorescent material, and an organic electroluminescent device and display panel using the thermally activated delayed fluorescent material.
  • OLEDs Organic light-emitting diodes
  • OLEDs do not require a backlight due to their active light emission, high luminous efficiency, large viewing angle, fast response speed, large temperature adaptation range, relatively simple production and processing technology, and driving voltage
  • the advantages of low energy consumption, lighter and thinner, flexible display and huge application prospects have attracted the attention of many researchers.
  • the dominant light-emitting guest material is very important.
  • the light-emitting guest materials used in early OLED devices were fluorescent materials. Since the ratio of singlet and triplet excitons in OLED devices is 1:3, the theoretical internal quantum efficiency (IQE) of OLED devices based on fluorescent materials can only be Reaching 25% greatly limits the application of fluorescent electroluminescent devices.
  • heavy metal complex phosphorescent materials Due to the spin-orbit coupling of heavy atoms, heavy metal complex phosphorescent materials can simultaneously utilize singlet and triplet excitons to achieve 100% IQE.
  • the commonly used heavy metals are all precious metals such as Ir and Pt, and the phosphorescent materials of heavy metal complexes still need a breakthrough in green light materials.
  • Pure organic thermally activated delayed fluorescence (or Thermally Activated Delayed Fluorescence, TADF) materials can be cleverly designed to make molecules have a small minimum single triplet energy difference ( ⁇ E ST ), so that triplet excitons can be Return to the singlet state through reverse intersystem crossing (RISC), and then radiate to the ground state to emit light, so that single and triplet excitons can be used at the same time, and 100% IQE can also be achieved.
  • RISC reverse intersystem crossing
  • TADF materials For TADF materials, fast reverse intersystem crossing constant (k RISC ) and high photoluminescence quantum yield (PLQY) are necessary conditions for preparing high-efficiency OLEDs. At present, TADF materials with the above conditions are still relatively scarce compared to heavy metal Ir complexes, and there are very few TADF materials in the green field of phosphorescent heavy metal materials to be broken through.
  • k RISC fast reverse intersystem crossing constant
  • PLQY photoluminescence quantum yield
  • the purpose of this application is to provide a thermally activated delayed fluorescent material, especially a green light thermally activated delayed fluorescent material.
  • a series of green light thermally activated delayed fluorescent materials with lower single triplet energy level difference, high luminous efficiency, and fast reverse inter-system crossing constant are synthesized through clever molecular design.
  • the green light thermally activated delayed fluorescent material is applied to the organic light-emitting layer of an organic electroluminescent device to obtain a series of high-performance OLEDs.
  • thermoly activated delayed fluorescent material comprising a compound having a structure represented by formula (I):
  • R 1 to R 6 are each independently a methyl group, an electron acceptor group having a structure represented by formula (Ai), or an electron donor group;
  • X is a halogen atom, and m and n each represent an integer from 1 to 4;
  • the electron donor group is a substituted or unsubstituted phenoxazine group; and, the compound has at least one electron acceptor group and at least one electron donor group.
  • the thermally activated delayed fluorescent material includes a compound having a structure represented by formulas (i-1) to (i-13):
  • D is an electron donor group
  • A is an electron acceptor group having a structure represented by formula (A-i).
  • the electron donor group has a structure represented by formula (D-i):
  • the electron acceptor group has a structure shown in (A-i-1) to (A-i-110):
  • X is a fluorine atom.
  • m and n are 4 respectively.
  • the thermally activated delayed fluorescent material comprises a compound having a structure represented by formula (I-1), (I-2) or (I-3):
  • an organic electroluminescent device including a first electrode, a second electrode, and at least one organic light-emitting layer disposed between the first electrode and the second electrode, wherein The organic light-emitting layer includes the thermally activated delayed fluorescent material described above.
  • the organic light-emitting layer includes a host material doped with the thermally activated delayed fluorescent material.
  • the doping concentration of the thermally activated delayed fluorescent material is 3% to 5%.
  • the host material is 3,3'-bis(N-carbazolyl)-1,1'-biphenyl.
  • the organic light emitting diode device further includes: a hole injection layer disposed between the first electrode and the organic light emitting layer, and disposed between the hole injection layer and the organic light emitting layer A hole transport layer in between, and an electron transport layer provided between the organic light-emitting layer and the second electrode.
  • the first electrode is an anode made of indium tin metal oxide; the second electrode is a cathode made of aluminum or silver-magnesium alloy.
  • the hole injection layer is made of molybdenum trioxide, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS), or polythiophene.
  • the hole transport layer is made of aromatic diamine compounds, triphenylamine compounds, or aromatic triamine compounds.
  • the electron transport layer is made of 1,3,5-tris(3-(3-pyridyl)phenyl)benzene.
  • the electron injection layer is made of LiF.
  • a display panel including the organic electroluminescence device as described above.
  • a green light thermally activated delayed fluorescent material with significant delayed fluorescence characteristics is designed. Moreover, in this application, the synthesis efficiency of these green light thermally activated delayed fluorescent materials is improved through a reasonably designed synthesis path.
  • the green light thermally activated delayed fluorescent material described in the present application can be included in an organic light-emitting layer, thereby making a series of high-performance and high-efficiency electrothermally activated delayed fluorescent devices, which can then be used in display panels.
  • Figure 1 is a diagram of the orbital distribution of compounds 1 to 3 of Examples 1 to 3 of the present application.
  • Figure 2 is the photoluminescence spectra of compounds 1 to 3 in toluene solution at room temperature
  • Fig. 3 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • the "above” or “below” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the thermally activated delayed fluorescent material described in the present application includes a compound having a structure represented by formula (I):
  • D is an electron donor group having a structure represented by formula (D-i)
  • A is an electron acceptor group having a structure represented by formula (A-i-52):
  • X is a fluorine atom.
  • a thermally activated delayed fluorescent material comprising compound 1 having a structure represented by formula (I-1):
  • the synthetic route of the compound 1 is as follows:
  • reaction solution After the reaction solution is cooled to room temperature, pour the reaction solution into 200 mL of ice water, and extract three times with dichloromethane. The organic phases obtained by the extraction were combined, spun into silica gel, and separated and purified by column chromatography (dichloromethane:n-hexane, v:v, 3:2) to obtain 2.0 g of green powder with a yield of 63%.
  • a thermally activated delayed fluorescent material comprising compound 2 having a structure represented by formula (I-2):
  • the synthetic route of the compound 2 is as follows:
  • a thermally activated delayed fluorescent material comprising compound 3 having a structure represented by formula (I-3):
  • the synthetic route of the compound 3 is as follows:
  • Figure 1 shows the orbital distribution diagrams of the above-mentioned compounds 1 to 3; respectively shows the highest electron occupied orbital (HOMO) and lowest electron unoccupied orbital (LUMO) electron cloud distributions of compounds 1 to 3.
  • HOMO highest electron occupied orbital
  • LUMO lowest electron unoccupied orbital
  • the photophysical properties of the above-mentioned compounds 1 to 3 were further verified by experiments, and the photoluminescence spectra of the compounds 1 to 3 in the toluene solution at room temperature as shown in FIG. 2 were obtained.
  • an organic electroluminescent device is provided.
  • the organic electroluminescent device 100 includes a first electrode 11, a hole injection layer 12, a hole transport layer 13, an organic light emitting layer 14, an electron transport layer 15, and a second electrode 16 in sequence.
  • the organic light-emitting layer 14 includes a dark green light thermally activated delayed fluorescent material, and the green light thermally activated delayed fluorescent material includes at least one of the compounds 1 to 3 described in Examples 2 to 4.
  • the organic electroluminescent device 100 shown in FIG. 3 is only an example, and those skilled in the art can add or reduce some functional layers according to actual process requirements, for example, in the electron transport
  • An electron injection layer 17 can also be provided between the layer 15 and the second electrode 16.
  • the above-mentioned layers are all made of conventional materials in the field through conventional processes in the field.
  • the first electrode 11 is an anode, which can be made of indium tin oxide (ITO).
  • ITO indium tin oxide
  • the hole injection layer 12 may be made of molybdenum trioxide (MoO 3 ), poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS) or polythiophene.
  • MoO 3 molybdenum trioxide
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid
  • polythiophene polythiophene
  • the hole transport layer 13 can be made of aromatic diamine compounds, triphenylamine compounds, or aromatic triamine compounds, such as 4,4',4"-tris(carbazol-9-yl) triamine.
  • Aniline (TCTA) is aniline (TCTA).
  • the organic light-emitting layer 14 includes a light-emitting host of 3,3'-bis(N-carbazolyl)-1,1'-biphenyl (mCBP), and is doped with a compound as a green light thermally activated delayed fluorescent material At least one of 1 to 3.
  • the doping concentration can be but not limited to 3%.
  • the electron transport layer 15 may be made of 1,3,5-tris(3-(3-pyridyl)phenyl)benzene (Tm3PyPB).
  • the second electrode 16 is a cathode, which can be made of Al or Mg/Ag.
  • the electron injection layer 17 may be made of LiF.
  • the specific manufacturing method of the organic electroluminescent device 100 is as follows: spin-coating PESOT:PSS on a cleaned ITO substrate, and then sequentially vapor-depositing TmPyPB, LiF and Al under high vacuum conditions.
  • the organic electroluminescent device containing the compound 1 in the organic light-emitting layer 14 is referred to as device A, and the organic electroluminescent device containing the compound 2 in the organic light-emitting layer 14 is referred to as device A. It is device B, and the organic electroluminescent device containing the compound 3 in the organic light-emitting layer 14 is referred to as device C.
  • the specific structures of the device A, the device B, and the device C are as follows:
  • the display panel 200 includes a substrate 21 on which a plurality of organic electroluminescent devices 100 are formed.
  • the organic electroluminescent device 100 may be the device A, the device B, or the device C in particular.
  • the substrate 21 may also be formed with a structure that has undergone several previous steps. For example, there may be an inorganic film layer, several film layers in a thin film transistor structure, or a complete thin film transistor and walkthrough may be formed. line.
  • the display panel 200 also includes other known structures such as a packaging cover, which will not be repeated here.
  • a green light thermally activated delayed fluorescent material with significant delayed fluorescence characteristics is designed. Moreover, in this application, the synthesis efficiency of these green light thermally activated delayed fluorescent materials is improved through a reasonably designed synthesis path.
  • the green light thermally activated delayed fluorescent material described in the present application can be included in an organic light-emitting layer, thereby making a series of high-performance and high-efficiency electrothermally activated delayed fluorescent devices, which can then be used in display panels.
  • the main body of this application can be manufactured and used in industry and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种热激活延迟荧光材料,包含具有式(I)结构的化合物;该热激活延迟荧光材料包含于有机发光层,从而制成有机电致发光器件;该有机电致发光器件可制成显示面板。

Description

热激活延迟荧光材料、有机电致发光器件及显示面板 技术领域
本申请涉及有机电致发光技术领域,特别涉及一种热激活延迟荧光材料,以及应用该热激活延迟荧光材料的有机电致发光器件及显示面板。
背景技术
有机电致发光二极管(organic light-emitting diodes,OLEDs)器件因其主动发光不需要背光源、发光效率高、可视角度大、响应速度快、温度适应范围大、生产加工工艺相对简单、驱动电压低,能耗小,更轻更薄,柔性显示等优点以及巨大的应用前景,吸引了众多研究者的关注。
在OLED器件中,起主导作用的发光客体材料至关重要。早期的OLED器件使用的发光客体材料为荧光材料,由于在OLED器件中单重态和三重态的激子比例为1:3,因此基于荧光材料的OLED器件的理论内量子效率(IQE)只能达到25%,极大的限制了荧光电致发光器件的应用。
重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子而实现100%的IQE。然而,通常使用的重金属都是Ir、Pt等贵重金属,并且重金属配合物磷光发光材料在绿光材料方面尚有待突破。
纯有机热活化延迟荧光(或热活化延迟荧光,Thermally Activated Delayed Fluorescence,TADF)材料可以通过巧妙的分子设计,使得分子具有较小的最低单三重能级差(ΔE ST),这样三重态激子可以通过反向系间窜越(RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,也可以实现100%的IQE。
技术问题
对于TADF材料,快速的反向系间窜越常数(k RISC)以及高的光致发光量子产率(PLQY)是制备高效率OLED的必要条件。目前,具备上述条件的TADF材料相对于重金属Ir配合物而言还是比较匮乏,在磷光重金属材料有待突破的绿光领域,TADF材料方面更是寥寥无几。
据此,需要开发新的荧光材料,以解决绿光领域的技术空白。
技术解决方案
本申请的目的在于提供一种热激活延迟荧光材料,尤其是绿光热激活延迟荧光材料。具体来说,在本申请中,通过巧妙的分子设计合成了一系列具有较低单三线态能级差、高 发光效率、快速的反向系间窜越常数的绿光热激活延迟荧光材料。并进而将所述绿光热激活延迟荧光材料应用于有机电致发光器件的有机发光层,以获得一系列高性能的OLED。
根据本申请的一方面,提供一种热激活延迟荧光材料,包含具有式(I)所示结构的化合物:
Figure PCTCN2019092074-appb-000001
其中,R 1~R 6分别独立地为甲基,具有式(A-i)所示结构的电子受体基团,或者电子给体基团;
Figure PCTCN2019092074-appb-000002
其中,X为卤素原子,m和n分别代表1~4中的整数;
所述电子给体基团为取代或未取代的吩噁嗪基;并且,所述化合物具有至少一个所述电子受体基团及至少一个所述电子给体基团。
在一较佳实施例中,热激活延迟荧光材料包含具有式(i-1)~(i-13)所示结构的化合物:
Figure PCTCN2019092074-appb-000003
其中,D为电子给体基团,A为具有式(A-i)所示结构的电子受体基团。在一实施例中,所述电子给体基团具有式(D-i)所示的结构:
Figure PCTCN2019092074-appb-000004
在一实施例中,所述电子受体基团具有(A-i-1)~(A-i-110)所示的结构:
Figure PCTCN2019092074-appb-000005
Figure PCTCN2019092074-appb-000006
Figure PCTCN2019092074-appb-000007
Figure PCTCN2019092074-appb-000008
在一较佳实施例中,X为氟原子。
在一较佳实施例中,m和n分别为4。
在一较佳实施例中,所述热激活延迟荧光材料包含具有式(I-1)、(I-2)或(I-3)所示结构的化合物:
Figure PCTCN2019092074-appb-000009
根据本申请的另一方面,提供一种有机电致发光器件,包括第一电极、第二电极及设置于所述第一电极与所述第二电极之间的至少一有机发光层,其中,所述有机发光层包含上所述的热激活延迟荧光材料。
本申请在一实施例中,所述有机发光层包含掺杂有所述热激活延迟荧光材料的主体材料。
在一实施例中,所述热激活延迟荧光材料的掺杂浓度为3%~5%。
在一实施例中,所述主体材料为3,3’-二(N-咔唑基)-1,1’-联苯。
在一实施例中,所述有机发光二极管器件还包括:设置于所述第一电极与所述有机发光层之间的一空穴注入层,设置于所述空穴注入层与所述有机发光层之间的一空穴传输层,以及,设置于所述有机发光层与所述第二电极之间的一电子传输层。
在一实施例中,所述第一电极为阳极,由铟锡金属氧化物制成;所述第二电极为阴极,由铝或银镁合金制成。
在一实施例中,所述空穴注入层由三氧化钼,聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),或者聚噻吩制成。
在一实施例中,所述空穴传输层由芳香族二胺类化合物,三苯胺化合物,或者芳香族三胺类化合物制成。
在一实施例中,所述电子传输层由1,3,5-三(3-(3-吡啶基)苯基)苯制成。
在一实施例中,所述电子注入层由LiF制成。
根据本申请的另一方面,提供一种显示面板,包括如上所述的有机电致发光器件。
有益效果
在本申请中,通过不同官能团的搭配,设计了具有显著延迟荧光特性的绿光热激活延迟荧光材料。并且,在本申请中通过合理设计的合成路径,提高了该些绿光热激活延迟荧光材料的合成效率。本申请所述的绿光热激活延迟荧光材料可以包含于有机发光层,从而制成一系列高性能、高效率的电致热激活延迟荧光器件,进而可以被用于显示面板中。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1~3的化合物1~3的轨道分布图;
图2是室温下甲苯溶液中化合物1~3的光致发光光谱;
图3是根据本申请一实施例的有机电致发光器件的结构示意图;
图4是根据本申请一实施例的显示面板的结构示意图。
本发明的实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
实施例1.式(I)化合物具体结构
在本实施例中,以表格形式描述式(I)化合物的具体结构。本申请所述的热激活延迟荧光材料包含具有式(I)所示结构的化合物:
Figure PCTCN2019092074-appb-000010
表1.式(I)所示的具体化合物
Figure PCTCN2019092074-appb-000011
其中,D为具有式(D-i)所示结构的电子给体基团,A为具有式(A-i-52)所示结构的电子受体基团:
Figure PCTCN2019092074-appb-000012
并且,X为氟原子。
实施例2.化合物1的制备
在本实施例中,提供一种热激活延迟荧光材料,包含具有式(I-1)所示结构的化合物1:
Figure PCTCN2019092074-appb-000013
所述化合物1的合成路线如下所示:
Figure PCTCN2019092074-appb-000014
具体合成步骤如下:
1.向100mL二口瓶中加入原料1(2.67g,5mmol)、吩噁嗪(1.1g,6mmol)、醋酸钯(45mg,0.2mmol)和三叔丁基膦四氟硼酸盐(0.17g,0.6mmol)。然后,将所述二口瓶移入密闭环境中,并加入NaOt-Bu(0.58g,6mmol)。接着,在氩气氛围下打入40mL事先除水除氧的甲苯,于120℃反应24小时;
2.待反应液冷却至室温后,将反应液倒入200mL冰水中,以二氯甲烷萃取三次。合并萃取获得的有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得绿色粉末2.0g,产率63%。 1H NMR(300MHz,CD 2Cl 2,δ):7.14(d,J=6.6Hz,2H),7.01-6.96(m,6H),2.60(s,6H),2.12(s,6H).MS(EI)m/z:[M] +calcd for C 35H 20F 8N 2O,636.14;found, 636.09。
实施例3.化合物2的制备
在本实施例中,提供一种热激活延迟荧光材料,包含具有式(I-2)所示结构的化合物2:
Figure PCTCN2019092074-appb-000015
所述化合物2的合成路线如下所示:
Figure PCTCN2019092074-appb-000016
具体合成步骤如下:
1.向100mL二口瓶中加入原料2(2.67g,5mmol)、吩噁嗪(1.1g,6mmol)、醋酸钯(45mg,0.2mmol)和三叔丁基膦四氟硼酸盐(0.17g,0.6mmol)。然后,将所述二口瓶移入密闭环境中,并加入NaOt-Bu(0.58g,6mmol)。接着,在氩气氛围下打入40mL事先除水除氧的甲苯,于120℃反应24小时;
2.待反应液冷却至室温后,将反应液倒入200mL冰水中,以二氯甲烷萃取三次。合并萃取获得的有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得绿色粉末1.6g,产率50%。 1H NMR(300MHz,CD 2Cl 2,δ):7.14(d,J=6.6Hz,2H),7.01-6.96(m,6H),2.60(s,3H),2.25(s,3H),2.18(s,3H),2.12(s,3H).MS(EI)m/z:[M] +calcd for C 35H 20F 8N 2O,636.14;found,636.12。
实施例4.化合物3的制备
在本实施例中,提供一种热激活延迟荧光材料,包含具有式(I-3)所示结构的化合物3:
Figure PCTCN2019092074-appb-000017
所述化合物3的合成路线如下所示:
Figure PCTCN2019092074-appb-000018
具体合成步骤如下:
1.向100mL二口瓶中加入原料3(2.67g,5mmol)、吩噁嗪(1.1g,6mmol)、醋酸钯(45mg,0.2mmol)和三叔丁基膦四氟硼酸盐(0.17g,0.6mmol)。然后,将所述二口瓶移入密闭环境中,并加入NaOt-Bu(0.58g,6mmol)。接着,在氩气氛围下打入40mL事先除水除氧的甲苯,于120℃反应24小时;
2.待反应液冷却至室温后,将反应液倒入200mL冰水中,以二氯甲烷萃取三次。合并萃取获得的有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得绿色粉末1.0g,产率33%。 1H NMR(300MHz,CD 2Cl 2,δ):7.14(d,J=6.6Hz,2H),7.01-6.96(m,6H),2.60(s,3H),2.18(s,6H),2.12(s,3H).MS(EI)m/z:[M] +calcd for C 35H 20F 8N 2O,636.14;found,636.12。
实施例5.化合物1~3的检测和实验验证
在本实施例中,对实施例2~4中获得的化合物1~3进行检测和实验验证。
请参见图1,图1所示的是上述化合物1~3的轨道分布图;分别显示了化合物1~3的最高电子占据轨道(HOMO)与最低电子未占据轨道(LUMO)电子云分布。
经理论模拟计算,获得表2所示的上述化合物1~3的最低单重态(S1)、最低三重态能级(T1)及电化学能级。
表2.化合物1~3的最低单重态(S1)、最低三重态能级(T1)及电化学能级
Figure PCTCN2019092074-appb-000019
Figure PCTCN2019092074-appb-000020
此外,在本实施例中,进一步对上述化合物1~3的光物理性质进行实验验证,获得如图2所示的室温下甲苯溶液中化合物1~3的光致发光光谱。
由上述实验数据表明:化合物1~3具有较低单三线态能级差,适合作为绿光热激活延迟荧光材料应用于OLED中。
实施例6.有机电致发光器件
在本实施例中,提供一有机电致发光器件。如图3所示,所述有机电致发光器件100依次包括:第一电极11、空穴注入层12、空穴传输层13、有机发光层14、电子传输层15,以及第二电极16。其中,所述有机发光层14中包含深绿光热激活延迟荧光材料,所述绿光热激活延迟荧光材料包含实施例2~4中记载的化合物1~3中的至少一种。
本领域技术人员可以理解的是,图3所示的所述有机电致发光器件100仅作为一范例,本领域技术人员可以根据实际工艺要求增加或减少部分功能层,例如,在所述电子传输层15与所述第二电极16之间还可以设置一电子注入层17。并且,上述各层均以本领域常规材料通过本领域常规工艺形。
例如,所述第一电极11为阳极,可以采用铟锡金属氧化物(ITO)制成。
例如,所述空穴注入层12可以采用三氧化钼(MoO 3)、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)或聚噻吩制成。
例如,所述空穴传输层13可以采用芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物制成,例如4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)。
例如,所述有机发光层14包括3,3’-二(N-咔唑基)-1,1’-联苯(mCBP)的发光主体,并掺杂作为绿光热激活延迟荧光材料的化合物1~3中的至少一种。掺杂浓度可以为但不限于3%。
例如,所述电子传输层15可以采用1,3,5-三(3-(3-吡啶基)苯基)苯(Tm3PyPB)制成。
例如,所述第二电极16为阴极,可以采用Al或Mg/Ag制成。
例如,所述电子注入层17可以采用LiF制成。
例如,所述有机电致发光器件100的具体制作方法为:在经过清洗的ITO衬底上旋涂PESOT:PSS,然后在高真空条件下依次蒸镀TmPyPB、LiF和Al。
在本实施例中,将所述有机发光层14中包含所述化合物1的有机电致发光器件记为 器件A,将所述有机发光层14中包含所述化合物2的有机电致发光器件记为器件B,并将所述有机发光层14中包含所述化合物3的有机电致发光器件记为器件C。
作为一具体实施例,所述器件A、器件B和器件C的具体结构如下:
器件A:ITO/MoO 3(2nm)/TCTA(35nm)/mCBP:化合物1(3%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm);
器件B:ITO/MoO 3(2nm)/TCTA(35nm)/mCBP:化合物2(3%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm);
器件C:ITO/MoO 3(2nm)/TCTA(35nm)/mCBP:化合物3(3%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。
以带有校正过的硅光电二极管的Keithley源测量系统(Keithley 2400Sourcemeter、Keithley 2000Currentmeter)对上述器件A、器件B和器件C的电流-亮度-电压特性进行检测,得如表3所示的性能数据。此外,以法国JY公司SPEX CCD3000光谱仪测量上述器件A、器件B和器件C的电致发光光谱。
表3.器件A~C的性能数据
器件编号 最高电流效率(cd/A) CIEx 最大外量子效率(%)
器件A 134.5 0.22 35.7
器件B 124.3 0.23 31.8
器件C 112.5 0.23 28.9
由上述数据显示,器件A、器件B和器件C的电致发光色度为绿色。
实施例7.显示面板
在本实施例中,提供一种显示面板。如图4所示,所述显示面板200包括:一基板21,所述基板21上形成复数个所述有机电致发光器件100。所述有机电致发光器件100尤其可以是所述器件A、器件B或器件C。本领域技术人员可以理解的是,所述基板21上还可以形成有经过前序若干工序的结构,例如可能有无机膜层、薄膜晶体管结构中的若干膜层或者已经形成完整的薄膜晶体管及走线。当然,所述显示面板200还包括其他诸如封装盖板之类的已知结构,在此不在赘述。
在本申请中,通过不同官能团的搭配,设计了具有显著延迟荧光特性的绿光热激活延迟荧光材料。并且,在本申请中通过合理设计的合成路径,提高了该些绿光热激活延迟荧光材料的合成效率。本申请所述的绿光热激活延迟荧光材料可以包含于有机发光层,从而 制成一系列高性能、高效率的电致热激活延迟荧光器件,进而可以被用于显示面板中。
本申请已由上述相关实施例加以描述,然而上述实施例仅为实施本申请的范例。必需指出的是,已公开的实施例并未限制本申请的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本申请的范围内。
工业实用性
本申请的主体可以在工业中制造和使用,具备工业实用性。

Claims (19)

  1. 一种热激活延迟荧光材料,包含具有式(I)所示结构的化合物:
    Figure PCTCN2019092074-appb-100001
    其中,R 1~R 6分别独立地为甲基,具有式(A-i)所示结构的电子受体基团,或者电子给体基团;
    Figure PCTCN2019092074-appb-100002
    X为卤素原子,m和n分别独立地代表1~4中的整数;
    所述电子给体基团为取代或未取代的吩噁嗪基;
    并且,所述化合物具有至少一个所述电子受体基团及至少一个所述电子给体基团。
  2. 如权利要求1所述的热激活延迟荧光材料,其中,所述热激活延迟荧光材料包含具有式(i-1)~(i-13)所示结构的化合物:
    Figure PCTCN2019092074-appb-100003
    并且其中,D为所述电子给体基团,A为所述电子受体基团。
  3. 如权利要求2所述的热激活延迟荧光材料,其中,所述电子受体基团具有式(A-i-1)~(A-i-110)所示的结构:
    Figure PCTCN2019092074-appb-100004
    Figure PCTCN2019092074-appb-100005
    Figure PCTCN2019092074-appb-100006
    Figure PCTCN2019092074-appb-100007
  4. 如权利要求2所述的热激活延迟荧光材料,其中,所述电子给体基团具有式(D-i)所示的结构:
    Figure PCTCN2019092074-appb-100008
  5. 如权利要求2所述的热激活延迟荧光材料,其中,X为氟原子。
  6. 如权利要求2所述的热激活延迟荧光材料,其中,所述电子受体基团具有式(A-i-52)所示的结构。
  7. 如权利要求2所述的热激活延迟荧光材料,其中,所述热激活延迟荧光材料包含具有式 (I-1)、(I-2)或(I-3)所示结构的化合物:
    Figure PCTCN2019092074-appb-100009
  8. 一种有机电致发光器件,包括第一电极、第二电极及设置于所述第一电极与所述第二电极之间的至少一有机发光层,其中,所述有机发光层包含如权利要求1所述的热激活延迟荧光材料。
  9. 如权利要求8所述的有机电致发光器件,其中,所述有机发光层包含掺杂有所述热激活延迟荧光材料的主体材料。
  10. 如权利要求9所述的有机电致发光器件,其中,所述热激活延迟荧光材料的掺杂浓度为3%~5%。
  11. 如权利要求9所述的有机电致发光器件,其中,所述主体材料为3,3’-二(N-咔唑基)-1,1’-联苯。
  12. 如权利要求8所述的有机电致发光器件,还包括:设置于所述第一电极与所述有机发光层之间的一空穴注入层,设置于所述空穴注入层与所述有机发光层之间的一空穴传输层,以及,设置于所述有机发光层与所述第二电极之间的一电子传输层。
  13. 如权利要求12所述的有机电致发光器件,其中,所述第一电极为阳极,由铟锡金属氧化物制成;所述第二电极为阴极,由铝或银镁合金制成。
  14. 如权利要求12所述的有机电致发光器件,其中,所述空穴注入层由三氧化钼,聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),或者聚噻吩制成。
  15. 如权利要求12所述的有机电致发光器件,其中,所述空穴传输层由芳香族二胺类化合物,三苯胺化合物,或者芳香族三胺类化合物制成。
  16. 如权利要求12所述的有机电致发光器件,其中,所述电子传输层由1,3,5-三(3-(3-吡啶基)苯基)苯制成。
  17. 如权利要求12所述的有机电致发光器件,其中,所述电子注入层由LiF制成。
  18. 一种显示面板,包括如权利要求8所述的有机电致发光器件。
  19. 如权利要求8所述的显示面板,其特征在于,所述显示面板还包括一基板,所述电致发 光器件形成于所述基板上。
PCT/CN2019/092074 2019-01-31 2019-06-20 热激活延迟荧光材料、有机电致发光器件及显示面板 WO2020155525A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/488,599 US11283029B2 (en) 2019-01-31 2019-06-20 Thermally activated delayed fluorescence material, organic electroluminescent device, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910098498.2 2019-01-31
CN201910098498.2A CN109678851B (zh) 2019-01-31 2019-01-31 热激活延迟荧光材料、有机电致发光器件及显示面板

Publications (1)

Publication Number Publication Date
WO2020155525A1 true WO2020155525A1 (zh) 2020-08-06

Family

ID=66194143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092074 WO2020155525A1 (zh) 2019-01-31 2019-06-20 热激活延迟荧光材料、有机电致发光器件及显示面板

Country Status (2)

Country Link
CN (1) CN109678851B (zh)
WO (1) WO2020155525A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678851B (zh) * 2019-01-31 2020-08-11 武汉华星光电半导体显示技术有限公司 热激活延迟荧光材料、有机电致发光器件及显示面板
CN111187260B (zh) 2020-01-03 2021-04-02 武汉华星光电半导体显示技术有限公司 高性能天蓝光热活化延迟荧光材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106749215A (zh) * 2016-12-09 2017-05-31 中节能万润股份有限公司 一种基于单取代基吖啶的化合物、制备方法及其应用
CN106831743A (zh) * 2016-12-30 2017-06-13 上海天马有机发光显示技术有限公司 一种有机电致发光材料以及有机光电装置
CN108997400A (zh) * 2018-07-27 2018-12-14 上海天马有机发光显示技术有限公司 一种芳香化合物以及有机发光显示装置
CN109678851A (zh) * 2019-01-31 2019-04-26 武汉华星光电半导体显示技术有限公司 热激活延迟荧光材料、有机电致发光器件及显示面板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016116504A1 (de) * 2015-01-20 2016-07-28 Cynora Gmbh Organische moleküle zur verwendung in optoelektronischen bauelementen
CN106328816B (zh) * 2015-06-16 2018-11-13 昆山国显光电有限公司 一种有机电致发光器件及其制备方法
CN106328828B (zh) * 2015-06-16 2018-04-17 清华大学 一种有机电致发光器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106749215A (zh) * 2016-12-09 2017-05-31 中节能万润股份有限公司 一种基于单取代基吖啶的化合物、制备方法及其应用
CN106831743A (zh) * 2016-12-30 2017-06-13 上海天马有机发光显示技术有限公司 一种有机电致发光材料以及有机光电装置
CN108997400A (zh) * 2018-07-27 2018-12-14 上海天马有机发光显示技术有限公司 一种芳香化合物以及有机发光显示装置
CN109678851A (zh) * 2019-01-31 2019-04-26 武汉华星光电半导体显示技术有限公司 热激活延迟荧光材料、有机电致发光器件及显示面板

Also Published As

Publication number Publication date
CN109678851A (zh) 2019-04-26
CN109678851B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
TW201038576A (en) Materials for organic electroluminescent devices
US10851292B2 (en) Dark blue light thermally activated delayed fluorescence (TADF) material and application thereof
TWI507403B (zh) 咔唑衍生物及有機電致發光裝置
CN111808085B (zh) 一种化合物及其应用、包含其的有机电致发光器件
US20220411452A1 (en) Metal complex and application thereof
CN111320612A (zh) 化合物及有机电致发光器件
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110615782A (zh) 有机化合物及含有其的有机电致发光器件
US11283029B2 (en) Thermally activated delayed fluorescence material, organic electroluminescent device, and display panel
WO2020155525A1 (zh) 热激活延迟荧光材料、有机电致发光器件及显示面板
WO2020082568A1 (zh) 吖啶衍生物及有机电致发光器件
WO2020220414A1 (zh) 热活化延迟荧光材料及其制备方法、显示装置
CN109535130B (zh) 二氢苯并吲唑类化合物、有机电致发光器件及显示装置
CN112979535A (zh) 一种化合物及其应用
TW201418217A (zh) 有機化合物及包含其之有機電激發光裝置
WO2023093094A1 (zh) 一种有机电致发光器件及显示装置
CN109535159B (zh) 红光热活化延迟荧光材料、其制备方法及有机发光二极管器件
CN111018874B (zh) 空穴传输材料、其制备方法及有机发光二极管器件
WO2021098050A1 (zh) 以二氢吩嗪为核的空穴传输材料及有机发光二极管
CN110003208B (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN111410657B (zh) 一种发光材料及其应用
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN113527302B (zh) 一种化合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913199

Country of ref document: EP

Kind code of ref document: A1