WO2020258525A1 - 电致发光材料、电致发光材料的制备方法及发光器件 - Google Patents

电致发光材料、电致发光材料的制备方法及发光器件 Download PDF

Info

Publication number
WO2020258525A1
WO2020258525A1 PCT/CN2019/105453 CN2019105453W WO2020258525A1 WO 2020258525 A1 WO2020258525 A1 WO 2020258525A1 CN 2019105453 W CN2019105453 W CN 2019105453W WO 2020258525 A1 WO2020258525 A1 WO 2020258525A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroluminescent material
reactant
structural formula
intermediate product
layer
Prior art date
Application number
PCT/CN2019/105453
Other languages
English (en)
French (fr)
Inventor
王彦杰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/611,299 priority Critical patent/US10995266B2/en
Publication of WO2020258525A1 publication Critical patent/WO2020258525A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Definitions

  • This application relates to the field of display, in particular to an electroluminescent material, a preparation method of the electroluminescent material, and a light-emitting device.
  • TADF thermally activated delayed fluorescent
  • PLQY high photoluminescence quantum yield
  • OLEDs organic lighting-emitting diodes
  • EQE external quantum efficiency
  • red and deep red TADF materials cannot achieve excellent device performance due to the energy gap law. Therefore, It is necessary to provide a high-efficiency electroluminescent material capable of emitting deep red light, a preparation method of the electroluminescent material, and a light-emitting device.
  • This application provides an electroluminescent material, a preparation method of the electroluminescent material, and a light emitting device, so as to realize the electroluminescent material and device with high quantum efficiency.
  • This application proposes an electroluminescent material, the structural formula of the electroluminescent material is R 2 -R 1 -R 2 , and the structural formula of R 1 is One of the structural formula of R 2 is One of them.
  • the structural formula of the electroluminescent material is The electroluminescent material The peak value is between 710nm-730nm.
  • the structural formula of the electroluminescent material is The electroluminescent material
  • the peak value is between 750nm-770nm.
  • This application also proposes a preparation method of electroluminescent material, including:
  • a first reactant and a second reactant are provided.
  • the first reactant and the second reactant react to form a first intermediate product, wherein the first reactant is a compound including an R 3 group, and
  • the structural formula of R 3 is One of the structural formula of the second reactant is
  • the first intermediate product is a compound including R 1 group, and the structural formula of R 1 is One of
  • a third reactant is provided, and the first intermediate product and the third reactant react to form the electroluminescent material, wherein the third reactant is a compound including an R 2 group, and the R 2
  • the structural formula is One of them.
  • the structural formula of the first reactant is Br-R 3 -Br
  • the structural formula of the first intermediate product is Br-R 1 -Br
  • the molar amount of the first reactant in the reaction between the first reactant and the second reactant to form the first intermediate product, is The corresponding relationship between the molar amount of the second reactant is that 10 millimoles of the first reactant corresponds to 5 millimoles to 20 millimoles of the second reactant.
  • the first reactant and the second reactant are reacted in a first solvent to form the first intermediate product
  • the first solvent includes acetic acid, formic acid One or more of, formaldehyde, hydroxypropionic acid, thioglycolic acid, indole-3-acetic acid, methyl formate, 2-hydroxyacetaldehyde, ethyl formate, methyl acetate, peroxypropionic acid and peroxyacetic acid The combination.
  • the third reactant is R 2 -X
  • the X is a boronic acid group or a boronic acid pinacol ester group.
  • the molar amount of the first intermediate product is The corresponding relationship of the molar amount of the third reactant is that 5 millimoles of the first intermediate product corresponds to 8 millimoles to 15 millimoles of the third reactant.
  • the first intermediate product and the third reactant are reacted in a second solvent to produce the electroluminescent material, and the second solvent is tetrahydrofuran and formaldehyde.
  • the second solvent has additives, and the additives include sodium carbonate, potassium carbonate, potassium carbonate aqueous solution, tetrakis(triphenylphosphorus) palladium, and n-butyl lithium , Potassium hydroxide, sodium hydroxide and sodium tert-butoxide or a combination of several.
  • the second solvent is tetrahydrofuran
  • the additives are sodium carbonate aqueous solution and tetrakis(triphenylphosphorus) palladium.
  • the structural formula of the electroluminescent material is R 2 -R 1 -R 2 .
  • This application also proposes a light emitting device, including:
  • a substrate layer the substrate layer includes a substrate and an anode layer, and the anode layer is disposed on the substrate;
  • a hole injection layer, the hole injection layer is disposed on the anode layer;
  • a hole transport layer, the hole transport layer is disposed on the hole injection layer;
  • a light-emitting layer, the light-emitting layer is disposed on the hole transport layer;
  • An electron transport layer, the electron transport layer is disposed on the light-emitting layer
  • a cathode layer, the cathode layer is disposed on the electron transport layer;
  • the light-emitting layer includes the electroluminescent material, the structural formula of the electroluminescent material is R 2 -R 1 -R 2 , and the structural formula of R 1 is One of the structural formula of R 2 is One of them.
  • the structural formula of the electroluminescent material is The electroluminescent material The peak value is between 710nm-730nm.
  • the structural formula of the electroluminescent material is The electroluminescent material
  • the peak value is between 750nm-770nm.
  • the thickness of the light emitting layer is 20 nanometers to 60 nanometers.
  • This application provides an electroluminescent material, a method for preparing an electroluminescent material, and a light-emitting device.
  • the first intermediate product is generated by reacting the first reactant and the second reactant, and the first intermediate product and the third reaction are used.
  • the pyrene nucleus's asymmetric monocyanopyrazine is used as the acceptor.
  • the pyrene nucleus has large flat and rigid P-type delayed fluorescence characteristics, which can effectively pass the triplet excitons through the triplet state.
  • the exciton-triplet state exciton fusion improves the utilization rate of excitons, thereby realizing a highly efficient electroluminescent material capable of emitting deep red light, a preparation method of the electroluminescent material, and a light-emitting device.
  • Figure 1 is the electroluminescent material provided by the application The theoretical simulation calculation distribution map of the highest occupied molecular orbital (HOMO).
  • Figure 2 is the electroluminescent material provided by the application The theoretical simulation calculation distribution map of the lowest unoccupied molecular orbital (LUMO).
  • LUMO lowest unoccupied molecular orbital
  • Figure 3 is the electroluminescent material provided by the application And the electroluminescent material Fluorescence emission spectra under pure film.
  • FIG. 4 is a schematic diagram of the structure of the light emitting device provided by this application.
  • This application provides an electroluminescent material.
  • the structural formula of the electroluminescent material is R 2 -R 1 -R 2 .
  • the structural formula of R 1 is One of them.
  • the structural formula of R 2 is One of them.
  • the electroluminescent material is a deep red photothermally activated delayed fluorescence (Thermally Activated Delayed Fluorescence, TADF) material. Through the permutation and combination of the R 1 and the R 2 , the electroluminescent material has 60 different structural formulas. In some embodiments, the structural formula of the electroluminescent material is Wait.
  • TADF Thermally Activated Delayed Fluorescence
  • This application also provides a preparation method of electroluminescent material, including:
  • A. Provide a first reactant and a second reactant, the first reactant and the second reactant react to form a first intermediate product, wherein the first reactant is a compound including an R 3 group , The structural formula of R 3 is One of the structural formula of the second reactant is The first intermediate product is a compound including R 1 group, and the structural formula of R 1 is One of them.
  • the structural formula of the first reactant may be Br-R 3 -Br.
  • the structural formula of the first intermediate product may be Br-R 1 -Br.
  • the molar amount of the first reactant and the molar amount of the second reactant are The quantity correspondence is that 10 millimoles of the first reactant corresponds to 5 millimoles to 20 millimoles of the second reactant.
  • the corresponding relationship between the molar amount of the first reactant and the molar amount of the second reactant may be 10 millimoles of the first reactant corresponding to 10 millimoles of the second reactant.
  • the corresponding relationship between the molar amount of the first reactant and the molar amount of the second reactant may also be that 1 mole of the first reactant corresponds to 1.5 moles of the second reactant.
  • the first reactant and the second reactant are reacted in a first solvent to form the first intermediate product.
  • the first solvent includes acetic acid, formic acid, formaldehyde, hydroxypropionic acid, thioglycolic acid, indole-3-acetic acid, methyl formate, 2-hydroxyacetaldehyde, ethyl formate, methyl acetate, peroxypropionic acid and peroxypropionic acid.
  • acetic acid formic acid, formaldehyde, hydroxypropionic acid, thioglycolic acid, indole-3-acetic acid, methyl formate, 2-hydroxyacetaldehyde, ethyl formate, methyl acetate, peroxypropionic acid and peroxypropionic acid.
  • acetic acid formic acid, formaldehyde, hydroxypropionic acid, thioglycolic acid, indole-3-acetic acid, methyl formate, 2-hydroxyacetaldehyde,
  • the first reactant may be The second reactant can be any reactant.
  • reaction formula for reacting the first reactant and the second reactant to form the first intermediate product may be:
  • 10 millimoles of the first reactant is added to a 100 milliliter Schlenk bottle And 10 millimoles of the second reactant Add 30 ml-60 ml of the first solvent acetic acid, heat and reflux for 24 hours under the protection of argon to obtain a first mixture including the first intermediate product, and then separate and purify the first mixture to obtain the First intermediate product
  • the first reactant may be The second reactant can be any reactant.
  • reaction formula for reacting the first reactant and the second reactant to generate the first intermediate product may also be:
  • 10 millimoles of the first reactant is added to a 100 milliliter Schlenk bottle And 10 millimoles of the second reactant Add 40ml-50ml of the first solvent acetic acid, heat and reflux for 12-36 hours under the protection of argon to obtain a first mixture including the first intermediate product, and then separate and purify the first mixture to obtain The first intermediate product
  • the first intermediate product is a yellow solid, and the yield of the first intermediate product is greater than 80%.
  • the structural formula of the electroluminescent material is R 2 -R 1 -R 2 .
  • the structural formula of R 1 is One of them.
  • the structural formula of R 2 is One of them.
  • the third reactant can be represented by R 2 -X, and the X can be a boronic acid group or a boronic acid pinacol ester group.
  • the general reaction formula of the reaction between the first intermediate product and the third reactant to generate the electroluminescent material may be:
  • R 2 -X is a compound including R 2 group.
  • the corresponding relationship between the molar amount of the first intermediate product and the molar amount of the third reactant is 5 millimoles of the first intermediate product corresponds to 8 millimoles to 15 millimoles of the third reactant.
  • the corresponding relationship between the molar amount of the first intermediate product and the molar amount of the third reactant may be 5 millimoles of the first intermediate product corresponding to 11 millimoles of the third reactant.
  • the corresponding relationship between the molar amount of the first intermediate product and the molar amount of the third reactant may also be that 1 mole of the first intermediate product corresponds to 2 moles of the third reactant.
  • the first intermediate product and the third reactant are reacted in a second solvent to generate the electroluminescent material
  • the second solvent is tetrahydrofuran, formaldehyde, ethyl ether, or vinyl ethyl ether.
  • the second solvent is tetrahydrofuran, formaldehyde, ethyl ether, or vinyl ethyl ether.
  • the second solvent has additives, and the additives include sodium carbonate, potassium carbonate, potassium carbonate aqueous solution, tetrakis(triphenylphosphorus) palladium, n-butyl lithium, potassium hydroxide, hydrogen One or a combination of sodium oxide and sodium tert-butoxide.
  • the first intermediate product may be The third reactant may be any reactant.
  • reaction formula of the first intermediate product and the third reactant to generate the second intermediate product may be:
  • 5 millimoles of the first intermediate product is added to a 250 mL three-necked bottle And 11 millimoles of the third reactant
  • Add the second solvent tetrahydrofuran add the additive sodium carbonate aqueous solution, pass in argon gas for ventilation, add the additive tetrakis(triphenylphosphorus) palladium, heat to 80 degrees Celsius, reflux for 24 hours to obtain
  • the second mixture including the electroluminescent material is separated and purified to obtain the electroluminescent material
  • the first intermediate product may be The third reactant may be any reactant.
  • reaction formula of the first intermediate product and the third reactant to generate the electroluminescent material may also be:
  • 5 millimoles of the first intermediate product is added to a 250 mL three-necked bottle And 11 millimoles of the third reactant
  • Add the second solvent tetrahydrofuran add the additive sodium carbonate aqueous solution, pass in argon gas for ventilation, add the additive tetrakis(triphenylphosphorus) palladium, heat to 80 degrees Celsius, reflux for 24 hours to obtain
  • the second mixture including the electroluminescent material is separated and purified to obtain the electroluminescent material
  • Figure 1 is the electroluminescent material provided by this application The theoretical simulation calculation distribution diagram of the highest occupied molecular orbital (HOMO).
  • Figure 2 is the electroluminescent material provided by this application The theoretical simulation calculation distribution map of the lowest unoccupied molecular orbital (LUMO).
  • the electroluminescent material The electron cloud distribution overlap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the molecule is small, the donor groups are all occupied by the highest occupied molecular orbital, and the acceptor groups are all occupied by the lowest unoccupied molecular orbital.
  • Table 1 shows the peak value, energy level and photoluminescence quantum yield of the fluorescence spectrum of the electroluminescent material.
  • PL Peak is the peak value of the fluorescence spectrum of the electroluminescent material
  • S 1 is the lowest singlet energy level value
  • T 1 is the lowest triplet energy level value
  • ⁇ E ST S 1 -T 1
  • PLQY It is the photoluminescence quantum yield.
  • FIG. 3 is the electroluminescent material provided by this application And the electroluminescent material Fluorescence emission spectra under pure film.
  • the electroluminescent material The peak value is between 710nm-730nm, the electroluminescent material The peak value is between 750nm-770nm.
  • the wavelength corresponding to the peak value is the wavelength of the red light. Therefore, the electroluminescent material provided in this application emits red light when excited.
  • the light emitting device 100 includes a substrate layer 11, a hole injection layer 12, a hole transport layer 13, a light emitting layer 14, an electron transport layer 15 and a cathode layer 16.
  • the substrate layer 11 includes a substrate 111 and an anode layer 112.
  • the substrate 111 may be a glass substrate or a transparent plastic substrate.
  • the anode layer 112 is disposed on the substrate 111.
  • the anode layer 112 may be indium tin oxide material.
  • the hole injection layer 12 is disposed on the anode layer 112.
  • the hole transport layer 13 is disposed on the hole injection layer 12.
  • the light-emitting layer 14 is disposed on the hole transport layer 13.
  • the light-emitting layer 14 includes the electroluminescent material, the structural formula of the electroluminescent material is R 2 -R 1 -R 2 , and the structural formula of R 1 is One of them.
  • the structural formula of R 2 is One of them.
  • the electron transport layer 15 is disposed on the light-emitting layer 14.
  • the cathode layer 16 is disposed on the electron transport layer 15.
  • the cathode layer 16 may be a lithium fluoride/aluminum material.
  • the thickness of the hole injection layer 12 may be 10 nm-50 nm.
  • the thickness of the hole transport layer 13 may be 20 nanometers to 60 nanometers.
  • the thickness of the light-emitting layer 14 may be 20 nanometers to 60 nanometers.
  • the thickness of the electron transport layer 15 may be 20 nanometers to 60 nanometers.
  • the thickness of the cathode layer 16 may be 80 nanometers to 120 nanometers.
  • the first electroluminescent device and the second device are fabricated according to methods known in the art, and the light-emitting layer of the first device includes The light-emitting layer of the second device includes
  • Table 2 is a performance data table of the light emitting device provided by this application.
  • This application provides an electroluminescent material, a method for preparing an electroluminescent material, and a light-emitting device.
  • the first intermediate product is generated by reacting the first reactant and the second reactant, and the first intermediate product and the third reaction are used.
  • the pyrene nucleus's asymmetric monocyanopyrazine is used as the acceptor.
  • the pyrene nucleus has large flat and rigid P-type delayed fluorescence characteristics, which can effectively pass the triplet excitons through the triplet state.
  • the exciton-triplet state exciton fusion improves the utilization rate of excitons, thereby realizing a highly efficient electroluminescent material capable of emitting deep red light, a preparation method of the electroluminescent material, and a light-emitting device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

在本申请提供了一种电致发光材料、电致发光材料的制备方法及发光器件,所述电致发光材料以芘核的不对称单氰基吡嗪作为受体,利用芘核具有大平面、刚性的P型延迟荧光特性,能够有效地将三重态激子通过三重态激子-三重态激子融合来提高激子的利用率,进而实现了一种的电致发光材料、电致发光材料的制备方法及发光器件。

Description

电致发光材料、电致发光材料的制备方法及发光器件 技术领域
本申请涉及显示领域,具体涉及一种电致发光材料、电致发光材料的制备方法及发光器件。
背景技术
在现有技术中,对于热活化延迟荧光(Thermal active delay fluorescent,TADF)材料,小的ΔEST以及高的光致发光量子产率(Photoluminescence quantum yield,PLQY)是制备高效率(organic lighting-emitting diodes,OLEDs)的必要条件。目前,绿光和天蓝光TADF材料已经获得超过30%的外量子效率(EQE),但是红光及深红光TADF材料由于能隙规则(Energy gap law),无法获得优异的器件性能,因此,有必要提供一种高效率的、能发出深红光的电致发光材料、电致发光材料的制备方法及发光器件。
技术问题
本申请提供一种电致发光材料、电致发光材料的制备方法及发光器件,以实现量子效率高的电致发光材料及器件。
技术解决方案
本申请提出一种电致发光材料,所述电致发光材料的结构式为R 2-R 1-R 2,所述R 1的结构式为
Figure PCTCN2019105453-appb-000001
Figure PCTCN2019105453-appb-000002
Figure PCTCN2019105453-appb-000003
中的一种,所述R 2的结构式为
Figure PCTCN2019105453-appb-000004
Figure PCTCN2019105453-appb-000005
Figure PCTCN2019105453-appb-000006
中的一种。
在所述的电致发光材料中,所述电致发光材料的结构式为
Figure PCTCN2019105453-appb-000007
所述电致发光材料
Figure PCTCN2019105453-appb-000008
的波峰值在710nm-730nm之间。
在所述的电致发光材料中,所述电致发光材料的结构式为
Figure PCTCN2019105453-appb-000009
所述电致发光材料
Figure PCTCN2019105453-appb-000010
的波峰值在750nm-770nm之间。
本申请还提出一种电致发光材料的制备方法,包括:
提供第一反应物和第二反应物,所述第一反应物和所述第二反应物进行反应生成第一中间产物,其中,所述第一反应物为包括R 3基团的化合物,所述R 3的结构式为
Figure PCTCN2019105453-appb-000011
中的一种,所述第二反应物的结构式为
Figure PCTCN2019105453-appb-000012
所述第一中间产物为包括R 1基团的化合物,所述R 1的结构式为
Figure PCTCN2019105453-appb-000013
Figure PCTCN2019105453-appb-000014
中的一种;
提供第三反应物,所述第一中间产物和所述第三反应物进行反应生成所述电致发光材料,其中,所述第三反应物为包括R 2基团的化合物,所述R 2的结构式为
Figure PCTCN2019105453-appb-000015
Figure PCTCN2019105453-appb-000016
中的一种。
在所述的电致发光材料的制备方法中,所述第一反应物的结构式为Br-R 3-Br,所述第一中间产物的结构式为Br-R 1-Br。
在所述的电致发光材料的制备方法中,在所述第一反应物和所述第二反应物进行反应生成所述第一中间产物中,所述第一反应物的摩尔量和所述第二反应物的摩尔量的对应关系为10毫摩的所述第一反应物对应5毫摩-20毫摩的所述第二反应物。
在所述的电致发光材料的制备方法中,所述第一反应物和所述第二反应物在第一溶剂中进行反应生成所述第一中间产物,所述第一溶剂包括乙酸、甲酸、甲醛、羟基丙酸、巯基乙酸、吲哚-3-乙酸、甲酸甲酯、2-羟基乙醛、甲酸乙酯、乙酸甲酯、过氧丙酸和过氧乙酸中的一种或几种的组合。
在所述的电致发光材料的制备方法中,所述第三反应物为R 2-X,所述X为硼酸基或硼酸频哪醇酯基。
在所述的电致发光材料的制备方法中,在所述第一中间产物和所述第三反应物进行反应生成所述电致发光材料中,所述第一中间产物的摩尔量和所述第三反应物的摩尔量的对应关系为5毫摩的所述第一中间产物对应8毫摩-15毫摩的所述第三反应物。
在所述的电致发光材料的制备方法中,所述第一中间产物和所述第三反应物在第二溶剂中进行反应生成所述电致发光材料,所述第二溶剂为四氢呋喃、甲醛、乙醚、乙烯基乙醚、异丙醚、全氯乙烯、三氯乙烯、丙酮、乙烯乙二醇醚和三乙醇胺中的一种或者几种的组合,
在所述的电致发光材料的制备方法中,所述第二溶剂中具有添加剂,所述添加剂包括碳酸钠、碳酸钾、碳酸钾水溶液、四(三苯基磷)合钯、正丁基锂、氢 氧化钾、氢氧化钠和叔丁醇钠的一种或几种的组合。
在所述的电致发光材料的制备方法中,所述第二溶剂为四氢呋喃,所述添加剂为碳酸钠水溶液和四(三苯基磷)合钯。
在所述的电致发光材料的制备方法中,所述电致发光材料的结构式为R 2-R 1-R 2
本申请还提出一种发光器件,包括:
衬底层,所述衬底层包括基板和阳极层,所述阳极层设置于所述基板上;
空穴注入层,所述空穴注入层设置于所述阳极层上;
空穴传输层,所述空穴传输层设置于所述空穴注入层上;
发光层,所述发光层设置于所述空穴传输层上;
电子传输层,所述电子传输层设置于所述发光层上;以及
阴极层,所述阴极层设置于所述电子传输层上;
所述发光层包括所述电致发光材料,所述电致发光材料的结构式为R 2-R 1-R 2,所述R 1的结构式为
Figure PCTCN2019105453-appb-000017
Figure PCTCN2019105453-appb-000018
中的一种,所述R 2的结构式为
Figure PCTCN2019105453-appb-000019
Figure PCTCN2019105453-appb-000020
Figure PCTCN2019105453-appb-000021
中的一种。
在所述的发光器件中,所述电致发光材料的结构式为
Figure PCTCN2019105453-appb-000022
所述电致发光材料
Figure PCTCN2019105453-appb-000023
的波峰值在710nm-730nm之间。
在所述的发光器件中,所述电致发光材料的结构式为
Figure PCTCN2019105453-appb-000024
所述电致发光材料
Figure PCTCN2019105453-appb-000025
的波峰值在750nm-770nm之间。
在所述的发光器件中,所述发光层的厚度为20纳米-60纳米。
有益效果
在本申请提供了一种电致发光材料、电致发光材料的制备方法及发光器件,通过采用第一反应物和第二反应物反应生成第一中间产物,采用第一中间产物和第三反应物反应生成电致发光材料,并以芘核的不对称单氰基吡嗪作为受体,利用芘核具有大平面、刚性的P型延迟荧光特性,能够有效地将三重态激子通过三重态激子-三重态激子融合来提高激子的利用率,进而实现了一种高效率的、能发出深红光的电致发光材料、电致发光材料的制备方法及发光器件。
附图说明
图1为本申请所提供的所述电致发光材料
Figure PCTCN2019105453-appb-000026
的最高占有分子轨道(HOMO)的理论模拟计算分布图。
图2为本申请所提供的所述电致发光材料
Figure PCTCN2019105453-appb-000027
的最低未占有分子轨道(LUMO)的理论模拟计算分布图。
图3为本申请所提供的所述电致发光材料
Figure PCTCN2019105453-appb-000028
和所述电致发光材料
Figure PCTCN2019105453-appb-000029
在纯膜下的荧光发射光谱图。
图4为本申请所提供的发光器件的结构示意图。
本发明的实施方式
本申请提供了一种电致发光材料。所述电致发光材料的结构式为R 2-R 1-R 2。所述R 1的结构式为
Figure PCTCN2019105453-appb-000030
Figure PCTCN2019105453-appb-000031
中的一种。所述R 2的结构式为
Figure PCTCN2019105453-appb-000032
Figure PCTCN2019105453-appb-000033
Figure PCTCN2019105453-appb-000034
中的一种。
所述电致发光材料为深红光热活化延迟荧光(Thermally Activated Delayed Fluorescence,TADF)材料。通过所述R 1和所述R 2的排列组合,所述电致发光材料具有60种不同的结构式,在一些实施例中,所述电致发光材料的结构式为
Figure PCTCN2019105453-appb-000035
等。
本申请还提供一种电致发光材料的制备方法,包括:
A、提供第一反应物和第二反应物,所述第一反应物和所述第二反应物进行反应生成第一中间产物,其中,所述第一反应物为包括R 3基团的化合物,所述R 3的结构式为
Figure PCTCN2019105453-appb-000036
中的一种,所述第二反应物的结构式为
Figure PCTCN2019105453-appb-000037
所述第一中间产物为包括R 1基团的化合物,所述R 1的结构式为
Figure PCTCN2019105453-appb-000038
Figure PCTCN2019105453-appb-000039
Figure PCTCN2019105453-appb-000040
中的一种。
所述第一反应物的结构式可以为Br-R 3-Br。所述第一中间产物的结构式可以为Br-R 1-Br。
当所述第二反应物为
Figure PCTCN2019105453-appb-000041
时,所述第一反应物和所述第二反应物进行反应生成所述第一中间产物的反应通式为:
Figure PCTCN2019105453-appb-000042
当所述第二反应物为
Figure PCTCN2019105453-appb-000043
时,所述第一反应物和所述第二反应物进行反应生成所述第一中间产物的反应通式为:
Figure PCTCN2019105453-appb-000044
在一种实施方式中,在所述第一反应物和所述第二反应物进行反应生成所述第一中间产物中,所述第一反应物的摩尔量和所述第二反应物的摩尔量的对应关系为10毫摩的所述第一反应物对应5毫摩-20毫摩的所述第二反应物。具体的,所述第一反应物的摩尔量和所述第二反应物的摩尔量的对应关系可以为10毫摩的所述第一反应物对应10毫摩的所述第二反应物。所述第一反应物的摩尔量和所述第二反应物的摩尔量的对应关系还可以为1摩尔的所述第一反应物对应1.5 摩尔的所述第二反应物。
在一种实施方式中,所述第一反应物和所述第二反应物在第一溶剂中进行反应生成所述第一中间产物。所述第一溶剂包括乙酸、甲酸、甲醛、羟基丙酸、巯基乙酸、吲哚-3-乙酸、甲酸甲酯、2-羟基乙醛、甲酸乙酯、乙酸甲酯、过氧丙酸和过氧乙酸中的一种或几种的组合。
在一种实施例中,所述第一反应物可以为
Figure PCTCN2019105453-appb-000045
所述第二反应物可以为
Figure PCTCN2019105453-appb-000046
在一种实施例中,所述第一反应物和所述第二反应物进行反应生成所述第一中间产物的反应式可以为:
Figure PCTCN2019105453-appb-000047
在一种实施方式中,向100毫升的施兰克(Schlenk)瓶中加入10毫摩的所述第一反应物
Figure PCTCN2019105453-appb-000048
和10毫摩的所述第二反应物
Figure PCTCN2019105453-appb-000049
加入30毫升-60毫升的所述第一溶剂乙酸,在氩气保护下加热回流进行反应24小时,得到包括第一中间产物的第一混合物,对所述第一混合物进行分离纯化,得到所述第一中间产物
Figure PCTCN2019105453-appb-000050
在一种实施例中,所述第一反应物可以为
Figure PCTCN2019105453-appb-000051
所述第二反应物可以为
Figure PCTCN2019105453-appb-000052
在一种实施例中,所述第一反应物和所述第二反应物进行反应生成所述第一中间产物的反应式还可以为:
Figure PCTCN2019105453-appb-000053
在一种实施方式中,向100毫升的施兰克(Schlenk)瓶中加入10毫摩的所述第一反应物
Figure PCTCN2019105453-appb-000054
和10毫摩的所述第二反应物
Figure PCTCN2019105453-appb-000055
加入40毫升-50毫升的所述第一溶剂乙酸,在氩气保护下加热回流进行反应12-36小时,得到包括第一中间产物的第一混合物,对所述第一混合物进行分离纯化,得到所述第一中间产物
Figure PCTCN2019105453-appb-000056
在一些实施例中,所述第一中间产物为黄色固体,所述第一中间产物的产率大于80%。
B、提供第三反应物,所述第一中间产物和所述第三反应物进行反应生成所述电致发光材料,其中,所述第三反应物为包括R 2基团的化合物,所述R 2的结构式为
Figure PCTCN2019105453-appb-000057
Figure PCTCN2019105453-appb-000058
中的一种。
所述电致发光材料的结构式为R 2-R 1-R 2。所述R 1的结构式为
Figure PCTCN2019105453-appb-000059
Figure PCTCN2019105453-appb-000060
中的一种。所述R 2的结构式为
Figure PCTCN2019105453-appb-000061
Figure PCTCN2019105453-appb-000062
中的一种。
所述第三反应物可以表示为R 2-X,所述X可为硼酸基或硼酸频哪醇酯基。
所述第一中间产物和所述第三反应物进行反应生成所述电致发光材料的反应通式可以为:
Br-R 1-Br+R 2-X→R 2-R 1-R 2
其中,R 2-X为包括R 2基团的化合物。
在所述第一中间产物和所述第三反应物进行反应生成所述电致发光材料的步骤中,所述第一中间产物的摩尔量和所述第三反应物的摩尔量的对应关系为5毫摩的所述第一中间产物对应8毫摩-15毫摩的所述第三反应物。具体的,所述第一中间产物的摩尔量和所述第三反应物的摩尔量的对应关系可以为5毫摩的所述第一中间产物对应11毫摩的所述第三反应物。所述第一中间产物的摩尔量和所述第三反应物的摩尔量的对应关系还可以为1摩尔的所述第一中间产物对应2摩尔的所述第三反应物。
在一种实施方式中,所述第一中间产物和所述第三反应物在第二溶剂中进行反应生成所述电致发光材料,所述第二溶剂为四氢呋喃、甲醛、乙醚、乙烯基乙醚、异丙醚、全氯乙烯、三氯乙烯、丙酮、乙烯乙二醇醚和三乙醇胺中的一种或者几种的组合,
在一种实施方式中,所述第二溶剂中具有添加剂,所述添加剂包括碳酸钠、 碳酸钾、碳酸钾水溶液、四(三苯基磷)合钯、正丁基锂、氢氧化钾、氢氧化钠和叔丁醇钠的一种或几种的组合。
在一种实施例中,所述第一中间产物可以为
Figure PCTCN2019105453-appb-000063
所述第三反应物可以为
Figure PCTCN2019105453-appb-000064
在一种实施方式中,所述第一中间产物和所述第三反应物进行反应生成第二中间产物的反应式可以为:
Figure PCTCN2019105453-appb-000065
在一些实施例中,向250mL三口瓶中加入5毫摩的所述第一中间产物
Figure PCTCN2019105453-appb-000066
和11毫摩的所述第三反应物
Figure PCTCN2019105453-appb-000067
加入所述第二溶剂四氢呋喃,加入所述添加剂碳酸钠水溶液,通入氩气进行抽换气,加入所述添加剂四(三苯基磷)合钯,加热至80摄氏度,回流反应24小时,得到包括所述电致发光材料的第二混合物,对所述第二混合物进行分离纯化,得到所述电致发光材料
Figure PCTCN2019105453-appb-000068
在一种实施例中,所述第一中间产物可以为
Figure PCTCN2019105453-appb-000069
所述第三反应物可以为
Figure PCTCN2019105453-appb-000070
在一种实施方式中,所述第一中间产物和所述第三反应物进行反应生成所述电致发光材料的反应式还可以为:
Figure PCTCN2019105453-appb-000071
在一些实施例中,向250mL三口瓶中加入5毫摩的所述第一中间产物
Figure PCTCN2019105453-appb-000072
和11毫摩的所述第三反应物
Figure PCTCN2019105453-appb-000073
加入所述第二溶剂四氢呋喃,加入所述添加剂碳酸钠水溶液,通入氩气进行抽换气,加入所述添加剂四(三苯基磷)合钯,加热至80摄氏度,回流反应24小时,得到包括所述电致发光材料的第二混合物,对所述第二混合物进行分离纯化,得到所述电致发光材料
Figure PCTCN2019105453-appb-000074
请参阅图1和图2,图1为本申请所提供的所述电致发光材料
Figure PCTCN2019105453-appb-000075
的最高占有分子轨道(HOMO)的理论模拟计算分布图,图2为本申请所提供的所述电致发光材料
Figure PCTCN2019105453-appb-000076
的最低未占有分子轨道(LUMO)的理论模拟计算分布图。所述电致发光材料
Figure PCTCN2019105453-appb-000077
分子的最高占有分子轨道和最低未占有分子轨道之间的电子云分布重叠程度小,给体基团全部被最高占有分子轨道占据,受体基团全部被最低未占有分子轨道占据。
请参阅表1,表1为所述电致发光材料的荧光光谱的波峰值、能级值及光致发光量子产率。
Figure PCTCN2019105453-appb-000078
Figure PCTCN2019105453-appb-000079
表1
其中,PL Peak为所述电致发光材料的荧光光谱的波峰值,S 1为最低单重态能级值,T 1为最低三重态能级值,△E ST=S 1-T 1,PLQY为光致发光量子产率。
请参阅图3,图3为本申请所提供的所述电致发光材料
Figure PCTCN2019105453-appb-000080
和所述电致发光材料
Figure PCTCN2019105453-appb-000081
在纯膜下的荧光发射光谱图。所述电致发光材料
Figure PCTCN2019105453-appb-000082
的波峰值在710nm-730nm之间,所述电致发光材料
Figure PCTCN2019105453-appb-000083
的波峰值在 750nm-770nm之间。所述波峰值对应的波长为红色光线的波长。因此,本申请所提供电致发光材料在受到激发时发出红色光。
请参阅图4,本申请提供一种发光器件100。所述发光器件100包括衬底层11、空穴注入层12、空穴传输层13、发光层14、电子传输层15和阴极层16。
所述衬底层11包括基板111和阳极层112。所述基板111可以是玻璃基板或透明塑料基板。所述阳极层112设置于所述基板111上。所述阳极层112可以是氧化铟锡材料。所述空穴注入层12设置于所述阳极层112上。所述空穴传输层13设置于所述空穴注入层12上。所述发光层14设置于所述空穴传输层13上。所述发光层14包括所述电致发光材料,所述电致发光材料的结构式为R 2-R 1-R 2,所述R 1的结构式为
Figure PCTCN2019105453-appb-000084
Figure PCTCN2019105453-appb-000085
Figure PCTCN2019105453-appb-000086
中的一种。所述R 2的结构式为
Figure PCTCN2019105453-appb-000087
Figure PCTCN2019105453-appb-000088
Figure PCTCN2019105453-appb-000089
中的一种。所述电子传输层15设置于所述发光层14上。所述阴极层16设置于所述电子传输层15上。所述阴极层16可以是氟化锂/铝材料。
在一些实施例中,所述空穴注入层12的厚度可以为10纳米-50纳米。空穴传输层13的厚度可以为20纳米-60纳米。所述发光层14的厚度可以为20纳米-60纳米。所述电子传输层15的厚度可以为20纳米-60纳米。所述阴极层16的厚度可以为80纳米-120纳米。
按本领域已知方法制作电致发光器件一和器件二,所述器件一的发光层包括
Figure PCTCN2019105453-appb-000090
所述器件二的发光层包括
Figure PCTCN2019105453-appb-000091
请参阅表2,表2为本申请所提供的发光器件的性能数据表。
Figure PCTCN2019105453-appb-000092
表2
在本申请提供了一种电致发光材料、电致发光材料的制备方法及发光器件,通过采用第一反应物和第二反应物反应生成第一中间产物,采用第一中间产物和第三反应物反应生成电致发光材料,并以芘核的不对称单氰基吡嗪作为受体,利用芘核具有大平面、刚性的P型延迟荧光特性,能够有效地将三重态激子通过三重态激子-三重态激子融合来提高激子的利用率,进而实现了一种高效率的、能发出深红光的电致发光材料、电致发光材料的制备方法及发光器件。
以上对本申请实施方式提供了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (17)

  1. 一种电致发光材料,其特征在于其中,所述电致发光材料的结构式为R 2-R 1-R 2,所述R 1的结构式为
    Figure PCTCN2019105453-appb-100001
    Figure PCTCN2019105453-appb-100002
    Figure PCTCN2019105453-appb-100003
    中的一种,所述R 2的结构式为
    Figure PCTCN2019105453-appb-100004
    Figure PCTCN2019105453-appb-100005
    Figure PCTCN2019105453-appb-100006
    中的一种。
  2. 如权利要求1所述的电致发光材料,其中,所述电致发光材料的结构式为
    Figure PCTCN2019105453-appb-100007
    所述电致发光材料
    Figure PCTCN2019105453-appb-100008
    的波峰值在710nm-730nm之间。
  3. 如权利要求1所述的电致发光材料,其中,所述电致发光材料的结构式为
    Figure PCTCN2019105453-appb-100009
    所述电致发光材料
    Figure PCTCN2019105453-appb-100010
    的波峰值在750nm-770nm之间。
  4. 一种电致发光材料的制备方法,其中,包括:
    提供第一反应物和第二反应物,所述第一反应物和所述第二反应物进行反应生成第一中间产物,其中,所述第一反应物为包括R 3基团的化合物,所述R 3的结构式为
    Figure PCTCN2019105453-appb-100011
    中的一种,所述第二反应物的结构式为
    Figure PCTCN2019105453-appb-100012
    所述第一中间产物为包括R 1基团的化合物,所述R 1的结构式为
    Figure PCTCN2019105453-appb-100013
    Figure PCTCN2019105453-appb-100014
    Figure PCTCN2019105453-appb-100015
    中的一种;
    提供第三反应物,所述第一中间产物和所述第三反应物进行反应生成所述电致发光材料,其中,所述第三反应物为包括R 2基团的化合物,所述R 2的结构式为
    Figure PCTCN2019105453-appb-100016
    Figure PCTCN2019105453-appb-100017
    Figure PCTCN2019105453-appb-100018
    中的一种。
  5. 如权利要求4所述的电致发光材料的制备方法,其中,所述第一反应物的结构式为Br-R 3-Br,所述第一中间产物的结构式为Br-R 1-Br。
  6. 如权利要求4所述的电致发光材料的制备方法,其中,在所述第一反应物和所述第二反应物进行反应生成所述第一中间产物中,所述第一反应物的摩尔量和所述第二反应物的摩尔量的对应关系为10毫摩的所述第一反应物对应5毫摩-20毫摩的所述第二反应物。
  7. 如权利要求4所述的电致发光材料的制备方法,其中,所述第一反应物和所述第二反应物在第一溶剂中进行反应生成所述第一中间产物,所述第一溶剂包括乙酸、甲酸、甲醛、羟基丙酸、巯基乙酸、吲哚-3-乙酸、甲酸甲酯、2-羟基乙醛、甲酸乙酯、乙酸甲酯、过氧丙酸和过氧乙酸中的一种或几种的组合。
  8. 如权利要求4所述的电致发光材料的制备方法,其中,所述第三反应物为R 2-X,所述X为硼酸基或硼酸频哪醇酯基。
  9. 如权利要求4所述的电致发光材料的制备方法,其中,在所述第一中间产物和所述第三反应物进行反应生成所述电致发光材料中,所述第一中间产物的摩尔量和所述第三反应物的摩尔量的对应关系为5毫摩的所述第一中间产物对 应8毫摩-15毫摩的所述第三反应物。
  10. 如权利要求4所述的电致发光材料的制备方法,其中,所述第一中间产物和所述第三反应物在第二溶剂中进行反应生成所述电致发光材料,所述第二溶剂为四氢呋喃、甲醛、乙醚、乙烯基乙醚、异丙醚、全氯乙烯、三氯乙烯、丙酮、乙烯乙二醇醚和三乙醇胺中的一种或者几种的组合,
  11. 如权利要求10所述的电致发光材料的制备方法,其中,所述第二溶剂中具有添加剂,所述添加剂包括碳酸钠、碳酸钾、碳酸钾水溶液、四(三苯基磷)合钯、正丁基锂、氢氧化钾、氢氧化钠和叔丁醇钠的一种或几种的组合。
  12. 如权利要求11所述的电致发光材料的制备方法,其中,所述第二溶剂为四氢呋喃,所述添加剂为碳酸钠水溶液和四(三苯基磷)合钯。
  13. 如权利要求4所述的电致发光材料的制备方法,其中,所述电致发光材料的结构式为R 2-R 1-R 2
  14. 一种发光器件,其中,包括:
    衬底层,所述衬底层包括基板和阳极层,所述阳极层设置于所述基板上;
    空穴注入层,所述空穴注入层设置于所述阳极层上;
    空穴传输层,所述空穴传输层设置于所述空穴注入层上;
    发光层,所述发光层设置于所述空穴传输层上;
    电子传输层,所述电子传输层设置于所述发光层上;以及
    阴极层,所述阴极层设置于所述电子传输层上;
    其中,所述发光层包括所述电致发光材料,所述电致发光材料的结构式为R 2-R 1-R 2,所述R 1的结构式为
    Figure PCTCN2019105453-appb-100019
    Figure PCTCN2019105453-appb-100020
    Figure PCTCN2019105453-appb-100021
    中的一种,所述R 2的结构式为
    Figure PCTCN2019105453-appb-100022
    Figure PCTCN2019105453-appb-100023
    Figure PCTCN2019105453-appb-100024
    中的一种。
  15. 如权利要求14所述的发光器件,其中,所述电致发光材料的结构式为
    Figure PCTCN2019105453-appb-100025
    所述电致发光材料
    Figure PCTCN2019105453-appb-100026
    的波峰值在710nm-730nm之间。
  16. 如权利要求14所述的发光器件,其中,所述电致发光材料的结构式为
    Figure PCTCN2019105453-appb-100027
    所述电致发光材料
    Figure PCTCN2019105453-appb-100028
    的波峰值在750nm-770nm之间。
  17. 如权利要求14所述的发光器件,其中,所述发光层的厚度为20纳米-60纳米。
PCT/CN2019/105453 2019-06-24 2019-09-11 电致发光材料、电致发光材料的制备方法及发光器件 WO2020258525A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/611,299 US10995266B2 (en) 2019-06-24 2019-09-11 Electroluminescent material, method for manufacturing same, and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910549064.X 2019-06-24
CN201910549064.XA CN110240574B (zh) 2019-06-24 2019-06-24 电致发光材料、电致发光材料的制备方法及发光器件

Publications (1)

Publication Number Publication Date
WO2020258525A1 true WO2020258525A1 (zh) 2020-12-30

Family

ID=67889109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105453 WO2020258525A1 (zh) 2019-06-24 2019-09-11 电致发光材料、电致发光材料的制备方法及发光器件

Country Status (2)

Country Link
CN (1) CN110240574B (zh)
WO (1) WO2020258525A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111087577B (zh) * 2019-12-10 2022-05-31 武汉华星光电半导体显示技术有限公司 衬底材料、衬底材料的制备方法及发光二极管器件
CN114605389B (zh) * 2022-03-25 2023-08-18 上海天马微电子有限公司 一种热活化延迟荧光材料及其器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101080478A (zh) * 2005-06-30 2007-11-28 Lg化学株式会社 芘衍生物和使用芘衍生物的有机电子器件
CN105503766A (zh) * 2015-12-18 2016-04-20 昆山国显光电有限公司 一种热活化延迟荧光材料及有机电致发光器件
CN107602540A (zh) * 2016-12-12 2018-01-19 吉林大学 基于二氰基吡嗪和二氰基苯并吡嗪衍生物的给‑受体化合物及用于制备的电致发光器件
CN109456276A (zh) * 2018-10-22 2019-03-12 武汉华星光电半导体显示技术有限公司 深红光热活化延迟荧光材料及其合成方法、电致发光器件
CN110028506A (zh) * 2019-04-30 2019-07-19 黑龙江大学 二吡啶并吩嗪基红/橙光热激发延迟荧光材料、合成方法及其应用
CN110129038A (zh) * 2019-06-10 2019-08-16 武汉华星光电半导体显示技术有限公司 深红色热活化延迟荧光材料和其制作方法、电致发光器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830320B (zh) * 2015-05-24 2017-03-22 吉林大学 菲并吡嗪衍生物发光材料及其在电致发光器件方面的应用
WO2017082246A1 (ja) * 2015-11-10 2017-05-18 国立大学法人九州大学 ジシアノピラジン化合物、発光材料、それを用いた発光素子、および2,5-ジシアノ-3,6-ジハロゲノピラジンの製造方法
TWI659029B (zh) * 2017-01-13 2019-05-11 國立大學法人九州大學 二氰基n-雜環化合物、發光材料及使用其之發光元件
CN109134550A (zh) * 2018-10-23 2019-01-04 常州大学 基于芳基并喹喔啉的d-a-d型环金属铱配合物近红外发光材料与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101080478A (zh) * 2005-06-30 2007-11-28 Lg化学株式会社 芘衍生物和使用芘衍生物的有机电子器件
CN105503766A (zh) * 2015-12-18 2016-04-20 昆山国显光电有限公司 一种热活化延迟荧光材料及有机电致发光器件
CN107602540A (zh) * 2016-12-12 2018-01-19 吉林大学 基于二氰基吡嗪和二氰基苯并吡嗪衍生物的给‑受体化合物及用于制备的电致发光器件
CN109456276A (zh) * 2018-10-22 2019-03-12 武汉华星光电半导体显示技术有限公司 深红光热活化延迟荧光材料及其合成方法、电致发光器件
CN110028506A (zh) * 2019-04-30 2019-07-19 黑龙江大学 二吡啶并吩嗪基红/橙光热激发延迟荧光材料、合成方法及其应用
CN110129038A (zh) * 2019-06-10 2019-08-16 武汉华星光电半导体显示技术有限公司 深红色热活化延迟荧光材料和其制作方法、电致发光器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAÚL GARCÍA, MELLE-FRANCO MANUEL, MATEO-ALONSO AURELIO: "A short pyrene-fused pyrazaacene with red to near-infrared photoluminescence", CHEMICAL COMMUNICATIONS (CAMBRIDGE, UNITED KINGDOM), vol. 51, no. 38, 6 April 2015 (2015-04-06), XP055767927, ISSN: 1359-7345, DOI: 10.1039/C5CC02459E *
TONG YANG, LIANG BAOYAN, CHENG ZONG, LI CHENGLONG, LU GEYU, WANG YUE: "Construction of Efficient Deep-Red/Near-Infrared Emitter Based on Large π-Conjugated Acceptor and Delayed Fluorescence OLEDs with External Quantum Efficiency of over 20%", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 123, no. 30, 9 July 2019 (2019-07-09), pages 18585 - 18592, XP055767868, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.9b05875 *

Also Published As

Publication number Publication date
CN110240574A (zh) 2019-09-17
CN110240574B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
TW201125953A (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
TW201105777A (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN110483528B (zh) 一种磷光主体化合物和使用该化合物的电致发光器件
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN109503481B (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
CN110305149B (zh) 一种热激活延迟荧光材料及其应用
CN102731406A (zh) 菲并咪唑衍生物及在制备电致发光器件方面的应用
WO2020124827A1 (zh) 热活化延迟荧光材料、其制备方法和电致发光器件
CN110003222B (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020258525A1 (zh) 电致发光材料、电致发光材料的制备方法及发光器件
CN110256409A (zh) 一种以2-氰基吡嗪为受体的热活性延迟荧光有机化合物及其制备和应用
WO2020191866A1 (zh) 热活化延迟荧光材料及其制备方法、有机发光器件
WO2020077831A1 (zh) 电致发光材料、电致发光材料的制备方法及发光器件
WO2020211140A1 (zh) 电致发光材料、电致发光材料的制备方法及发光器件
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
WO2021036140A1 (zh) 电致发光材料、电致发光材料的制备方法及发光器件
WO2020113643A1 (zh) 蓝光tadf材料及其制备方法和电致发光器件
US11081654B2 (en) Blue light TADF material, preparation method thereof and electroluminescent device
WO2021189528A1 (zh) 热活化延迟荧光材料及其合成方法、电致发光器件
US10995266B2 (en) Electroluminescent material, method for manufacturing same, and light emitting device
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN107188853B (zh) 含苯并咪唑单元的四苯乙烯基蓝光材料及制备方法和应用
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN109293562A (zh) 一种以丙二腈为受体的热活性延迟荧光有机化合物及其制备和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935411

Country of ref document: EP

Kind code of ref document: A1