WO2021103058A1 - 空穴传输材料及其制备方法和电致发光器件 - Google Patents

空穴传输材料及其制备方法和电致发光器件 Download PDF

Info

Publication number
WO2021103058A1
WO2021103058A1 PCT/CN2019/122714 CN2019122714W WO2021103058A1 WO 2021103058 A1 WO2021103058 A1 WO 2021103058A1 CN 2019122714 W CN2019122714 W CN 2019122714W WO 2021103058 A1 WO2021103058 A1 WO 2021103058A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole transport
layer
transport material
compound
bmn
Prior art date
Application number
PCT/CN2019/122714
Other languages
English (en)
French (fr)
Inventor
罗佳佳
李们在
李先杰
王煦
吴凯龙
张曲
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/755,571 priority Critical patent/US11678570B2/en
Publication of WO2021103058A1 publication Critical patent/WO2021103058A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/42Selective adsorption, e.g. chromatography characterised by the development mode, e.g. by displacement or by elution
    • B01D15/424Elution mode
    • B01D15/426Specific type of solvent
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/361Temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings

Definitions

  • the invention relates to the field of display technology, in particular to a hole transport material, a preparation method thereof, and an electroluminescent device.
  • OLED display devices require no backlight source for active light emission, high luminous efficiency, large viewing angle, fast response speed, large temperature adaptation range, relatively simple production and processing technology, and drive
  • the advantages of low voltage, low energy consumption, lighter and thinner, flexible display and huge application prospects have attracted the attention of many researchers.
  • the light-emitting guest materials used in early OLEDs were fluorescent materials. Since the ratio of singlet and triplet excitons in OLEDs is 1:3, the theoretical internal quantum efficiency (IQE) of OLEDs based on fluorescent materials is only It can reach 25%, which greatly limits the application of fluorescent electroluminescent devices. Due to the spin-orbit coupling of heavy atoms, heavy metal complex phosphorescent materials can simultaneously utilize singlet and triplet excitons to achieve 100% IQE. However, the commonly used heavy metals are precious metals such as Ir, Pt, etc., which are costly, and the heavy metal complex phosphorescent light-emitting materials still need a breakthrough in blue light materials.
  • the hole transport material is the thickest layer, and its energy level and hole mobility have always been contradictory. Therefore, it is urgent to develop a matching energy level and high mobility. Of hole transport materials.
  • the purpose of the present invention is to provide a hole transport material and its preparation method and electroluminescence device.
  • a series of Suitable hole transport materials with the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels are prepared by using the hole transport materials provided by the present invention.
  • Series of high-performance display devices are prepared by using the hole transport materials provided by the present invention.
  • the present invention provides a hole transport material, which includes a compound composed of a donor AN and an acceptor B, and the compound has the general structural formula shown in Formula 1:
  • the donor AN is selected from any of the following structural formulae:
  • the receptor BMN is selected from any of the following structural formulas:
  • the compound AN-BMN has any one of the following structural formulas:
  • the present invention also provides a method for preparing a hole transport material, which includes the following steps:
  • Step S1 the acceptor compound BMN-X, the donor compound AN-H, and the catalyst are added to an alkali-containing organic solvent under an inert gas environment, and reacted at a first temperature for a first time to obtain a first reaction liquid,
  • X is a halogen
  • the donor AN is selected from any of the following structural formulae:
  • receptor BMN is selected from any of the following structural formulas:
  • Step S2 cooling the reaction liquid to a second temperature to obtain a mixture
  • Step S3 separating the hole transport material from the mixture, and the hole transport material includes a compound having the general structural formula shown in Formula 1:
  • the first temperature is 80° C. to 150° C.
  • the first time period is 12 hours to 36 hours.
  • the second temperature is room temperature.
  • the solution is toluene
  • the base is sodium tert-pentoxide
  • the catalyst includes a palladium catalyst and a phosphine ligand catalyst.
  • the step S3 further includes subjecting the reaction solution to extraction, water washing, dehydration, filtration, and centrifugal drying to obtain the mixture.
  • the step S3 uses column chromatography for separation, and the eluent used in the column chromatography is dichloromethane:n-hexane with a volume ratio of 1:3.
  • the catalyst in the step S1, includes palladium acetate and tri-tert-butylphosphine tetrafluoroborate, and the compound AN-BMN has any one of the following structural formulas:
  • the present invention further provides an electroluminescent device, including: a base layer; a hole injection layer located on the base layer; a hole transport layer located on the injection layer; The electron blocking layer is located on the hole transport layer; the light emitting layer is located on the electron blocking layer; the hole blocking layer is located on the light emitting layer; the electron transport layer is located on the hole blocking layer; electrons The injection layer is located on the electron transport layer; the electrode layer is located on the electron injection layer; and the light outcoupling layer is located on the electrode layer, wherein the hole transport layer includes the above hole transport material.
  • the purpose of the present invention is to provide a hole transport material and its preparation method and electroluminescence device.
  • a series of Suitable hole transport materials with the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels are prepared by using the hole transport materials provided by the present invention.
  • Series of high-performance display devices are prepared by using the hole transport materials provided by the present invention.
  • FIG. 1 is a schematic diagram of the structure of an electroluminescent device according to an embodiment of the present invention.
  • the embodiment of the present invention provides a hole transport material, a preparation method thereof, and an electroluminescent device.
  • a series of different electron-donating groups are combined to synthesize a series of Suitable hole transport materials with the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels are prepared by using the hole transport materials provided by the present invention.
  • Series of high-performance display devices are possible.
  • the embodiment of the present invention provides a hole transport material, which includes a compound composed of a donor AN and an acceptor B, and the compound has the general structural formula shown in Formula 1:
  • the donor AN is selected from any of the following structural formulae:
  • the receptor BMN is selected from any of the following structural formulas:
  • the compound AN-BMN has any one of the following structural formulas:
  • the present invention also provides a method for preparing a hole transport material, which includes the following steps:
  • Step S1 the acceptor compound BMN-X, the donor compound AN-H, and the catalyst are added to an alkali-containing organic solvent under an inert gas environment, and reacted at a first temperature for a first time to obtain a first reaction liquid,
  • X is a halogen
  • the donor AN is selected from any of the following structural formulae:
  • receptor BMN is selected from any of the following structural formulas:
  • Step S2 cooling the reaction liquid to a second temperature to obtain a mixture
  • Step S3 Separate the hole transport material from the mixture, and the hole transport material includes a compound having the general structural formula shown in Formula 1:
  • the first temperature is 80° C. to 150° C.
  • the first time period is 12 hours to 36 hours.
  • the second temperature is room temperature.
  • the solution is toluene
  • the base is sodium tert-pentoxide
  • the catalyst includes a palladium catalyst and a phosphine ligand catalyst.
  • the step S3 further includes subjecting the reaction solution to extraction, water washing, dehydration, filtration, and centrifugal drying to obtain the mixture.
  • the step S3 uses column chromatography for separation, and the eluent used in the column chromatography is dichloromethane:n-hexane with a volume ratio of 1:3.
  • the catalyst in the step S1, includes palladium acetate and tri-tert-butylphosphine tetrafluoroborate, and the compound AN-BMN has any one of the following structural formulas:
  • the target hole transport material to be synthesized includes compound 1 of the following structural formula 2:
  • raw material 1 (2.54g, 5mmol), raw material 2 (2.35g, 6mmol), palladium acetate (0.09g, 0.4mmol) and tri-tert-butylphosphine tetrafluoroborate (0.34g, 1.2 mmol), and then add sodium tert-pentoxide (NaOt-Bu, 0.58 g, 6 mmol) into the glove box, drive in 100 mL of toluene that has been dewatered and deoxygenated in an argon atmosphere, and react at 120° C. for 24 hours.
  • NaOt-Bu sodium tert-pentoxide
  • the target hole transport material to be synthesized includes compound 2 of the following structural formula 3:
  • raw material 3 (2.05g, 5mmol), raw material 2 (2.35g, 6mmol), palladium acetate (0.09g, 0.4mmol) and tri-tert-butylphosphine tetrafluoroborate (0.34g, 1.2 mmol), and then add sodium tert-pentoxide (NaOt-Bu, 0.58 g, 6 mmol) into the glove box, drive in 100 mL of toluene that has been dewatered and deoxygenated in an argon atmosphere, and react at 120° C. for 24 hours.
  • NaOt-Bu sodium tert-pentoxide
  • the target hole transport material to be synthesized includes compound 3 of the following structural formula 4:
  • compound 1, compound 2, and compound 3 have the structures shown in formula 2, formula 3, and formula 4, respectively.
  • the compound 1, compound 2, and compound 3 are tested, and the compound 1, compound 2.
  • the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of compound 3 are shown in Table 1 below:
  • the hole transport material prepared by using the compound 1, compound 2, and compound 2 of the present invention can meet the requirements of an electroluminescent device for a hole transport layer.
  • an embodiment of the present invention also provides an electroluminescent device, which includes the above-mentioned hole transport material.
  • the electroluminescent device 100 includes a base layer 1; a hole injection layer 2 located on the base layer 1; a hole transport layer 3 located on the injection layer 2; electrons
  • the blocking layer 4 is located on the hole transport layer 3; the light emitting layer 5 is located on the electron blocking layer 4; the hole blocking layer 6 is located on the light emitting layer 5; the electron transport layer 7 is located on the void On the hole blocking layer 6; the electron injection layer 8 is located on the electron transport layer 7; the electrode layer 9 is located on the electron injection layer 8; and the light outcoupling layer 10 is located on the electrode layer 9, wherein
  • the hole transport layer 3 includes the hole transport material described in the above embodiments.
  • compound 1, compound 2, and compound 3 are used as the hole transport layer 3 to fabricate the device 100, the device 200, and the device 300, and the performance of the device 100, the device 200, and the device 300 are measured.
  • the current-brightness-voltage characteristics of the device 100, the device 200, and the device 300 are completed by a Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with a calibrated silicon photodiode, electroluminescence
  • the spectrum was measured by the SPEX CCD3000 spectrometer from JY, France, and all measurements were done in the atmosphere at room temperature.
  • the measured performances of the device 100, the device 200, and the device 300 are shown in Table 2. It can be seen that the performance of the device 100, the device 200, and the device 300 meets the requirements.
  • the embodiments of the present invention provide a hole transport material, a preparation method thereof, and an electroluminescent device.
  • a hole transport material Through clever molecular design, on the basis of the structure of xanthenes, different electron-donating groups are combined to synthesize A series of hole transport materials with suitable highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels are developed, using the hole transport provided by the present invention. Materials to prepare a series of high-performance display devices.
  • HOMO highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种空穴传输材料及其制备方法和电致发光器件,通过巧妙的分子设计,在氧杂蒽的结构基础上,搭配不同的给电子基团,合成了一系列具有合适最高占据分子轨域和最低未占分子轨域能级的空穴传输材料,利用所提供的空穴传输材料来制备一系列高性能的显示器件。

Description

空穴传输材料及其制备方法和电致发光器件 技术领域
本发明涉及显示技术领域,尤其涉及一种空穴传输材料及其制备方法和电致发光器件。
背景技术
有机电致发光二极管(organic light-emitting diodes,OLED)显示装置以其主动发光不需要背光源、发光效率高、可视角度大、响应速度快、温度适应范围大、生产加工工艺相对简单、驱动电压低,能耗小,更轻更薄,柔性显示等优点以及巨大的应用前景,吸引了众多研究者的关注。
早期的OLED使用的发光客体材料为荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,因此基于荧光材料的OLED的理论内量子效率(internal quantum efficiency,IQE)只能达到25%,极大的限制了荧光电致发光器件的应用。重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子而实现100%的IQE。然而,通常使用的重金属都是Ir、Pt等贵重金属,成本很高,并且重金属配合物磷光发光材料在蓝光材料方面尚有待突破。
技术问题
对于目前使用的顶发射OLED器件中,空穴传输材料作为最厚的一层,其能级以及空穴迁移率一直存在矛盾的 关系,据此,亟需开发一种匹配能级以及高迁移率的空穴传输材料。
技术解决方案
本发明的目的在于提供一种空穴传输材料及其制备方法和电致发光器件,通过巧妙的分子设计,在氧杂蒽的结构基础上,搭配不同的给电子基团,合成了一系列具有合适最高占据分子轨域(highest occupied molecular orbital,HOMO)和最低未占分子轨域(lowest unoccupied molecular orbital,LUMO)能级的空穴传输材料,利用本发明所提供的空穴传输材料来制备一系列高性能的显示器件。
为实现上述目的,本发明提供了一种空穴传输材料,包括由给体AN及受体B所组成之化合物,所述化合物具有如式1所示的结构通式:
AN-BMN  式1
其中所述给体AN系择自下列结构式中任一者:
Figure PCTCN2019122714-appb-000001
;以及
所述受体BMN系择自下列结构式中任一者:
Figure PCTCN2019122714-appb-000002
依据本发明的一实施例,所述化合物AN-BMN具有下列结构式中任一者:
Figure PCTCN2019122714-appb-000003
依据本发明的另一实施例,本发明还提供了一种空穴传输材料的制备方法,包括如下步骤:
步骤S1、将受体化合物BMN-X、给体化合物AN-H、以及催化剂,在惰性气体的环境下,加入含碱的有机溶剂中,于第一温度反应第一时长得到第一反应液,其中X为卤素,所述给体AN系择自下列结构式中任一者:
Figure PCTCN2019122714-appb-000004
以及所述受体BMN择自下列结构式中任一者:
Figure PCTCN2019122714-appb-000005
Figure PCTCN2019122714-appb-000006
步骤S2、将所述反应液冷却至第二温度,得到一混合物;以及
步骤S3、自所述混合物分离出所述空穴传输材料,所述空穴传输材料包括具有如式1所示的结构通式的化合物:
AN-BMN  式1。
依据本发明的一实施例,所述第一温度为80℃至150℃,所述第一时长为12小时至36小时。
依据本发明的一实施例,所述第二温度为室温。
依据本发明的一实施例,在所述步骤S1中,所述溶液为甲苯、所述碱为叔戊氧基钠、以及所述催化剂包括钯催化剂及膦配体催化剂。
依据本发明的一实施例,在所述步骤S3更包括将所 述反应液经过萃取、水洗、脱水、过滤、以及离心干燥处理以得到所述混合物。
依据本发明的一实施例,所述步骤S3系使用管柱层析进行分离,所述管柱层析所采用的淋洗液为体积比1:3的二氯甲烷:正己烷。
依据本发明的一实施例,在所述步骤S1中,所述所述催化剂包括醋酸钯及三叔丁基膦四氟硼酸盐,以及所述化合物AN-BMN具有下列结构式中任一者:
Figure PCTCN2019122714-appb-000007
依据本发明的又一实施例,本发明更提供了一种电致发光器件,包括:基底层;空穴注入层,位于所述基底层上;空穴传输层,位于所述注入层上;电子阻挡层,位于所述空穴传输层上;发光层,位于所述电子阻挡层上;空穴阻挡层,位于所述发光层上;电子传输层,位于所述空穴阻挡层上;电子注入层,位于所述电子传输层上;电极层,位于所述电子注入层上;以及光耦合输出层,位于所述电极层上,其中所述空穴传输层包括上述的空穴传输材料。
有益效果
本发明的目的在于提供一种空穴传输材料及其制备方法和电致发光器件,通过巧妙的分子设计,在氧杂蒽的结构基础上,搭配不同的给电子基团,合成了一系列具有合适最高占据分子轨域(highest occupied molecular orbital,HOMO)和最低未占分子轨域(lowest unoccupied molecular orbital,LUMO)能级的空穴传输材料,利用本发明所提供的空穴传输材料来制备一系列高性能的显示器件。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的电致发光器件的结构示意图。
本发明的最佳实施方式
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式作详细说明。
本发明实施例提供了一种空穴传输材料及其制备方法和电致发光器件,通过巧妙的分子设计,在氧杂蒽的结构基础上,搭配不同的给电子基团,合成了一系列具有合 适最高占据分子轨域(highest occupied molecular orbital,HOMO)和最低未占分子轨域(lowest unoccupied molecular orbital,LUMO)能级的空穴传输材料,利用本发明所提供的空穴传输材料来制备一系列高性能的显示器件。
为实现上述目的,本发明实施例提供了空穴传输材料,包括由给体AN及受体B所组成之化合物,所述化合物具有如式1所示的结构通式:
AN-BMN  式1
其中所述给体AN系择自下列结构式中任一者:
Figure PCTCN2019122714-appb-000008
以及
所述受体BMN系择自下列结构式中任一者:
Figure PCTCN2019122714-appb-000009
Figure PCTCN2019122714-appb-000010
依据本发明的一实施例,所述化合物AN-BMN具有下列结构式中任一者:
Figure PCTCN2019122714-appb-000011
依据本发明的另一实施例,本发明还提供了一种空穴传输材料的制备方法,包括如下步骤:
步骤S1、将受体化合物BMN-X、给体化合物AN-H、以及催化剂,在惰性气体的环境下,加入含碱的有机溶剂中,于第一温度反应第一时长得到第一反应液,其中X为卤素,所述给体AN系择自下列结构式中任一者:
Figure PCTCN2019122714-appb-000012
以及所述受体BMN择自下列结构式中任一者:
Figure PCTCN2019122714-appb-000013
步骤S2、将所述反应液冷却至第二温度,得到一混合物;以及
步骤S3、自所述混合物分离出所述空穴传输材料,所述空穴传输材料包括具有如式1所示的结构通式的化 合物:
AN-BMN  式1。
依据本发明的一实施例,所述第一温度为80℃至150℃,所述第一时长为12小时至36小时。
依据本发明的一实施例,所述第二温度为室温。
依据本发明的一实施例,在所述步骤S1中,所述溶液为甲苯、所述碱为叔戊氧基钠、以及所述催化剂包括钯催化剂及膦配体催化剂。
依据本发明的一实施例,在所述步骤S3更包括将所述反应液经过萃取、水洗、脱水、过滤、以及离心干燥处理以得到所述混合物。
依据本发明的一实施例,所述步骤S3系使用管柱层析进行分离,所述管柱层析所采用的淋洗液为体积比1:3的二氯甲烷:正己烷。
依据本发明的一实施例,在所述步骤S1中,所述所述催化剂包括醋酸钯及三叔丁基膦四氟硼酸盐,以及所述化合物AN-BMN具有下列结构式中任一者:
Figure PCTCN2019122714-appb-000014
实施例1
在本发明的具体实施例1中,欲合成的目标空穴传输材料包括下列结构式2的化合物1:
Figure PCTCN2019122714-appb-000015
结构式2的化合物1的合成路线如下反应式1所示:
Figure PCTCN2019122714-appb-000016
化合物1的详细合成步骤如下:
向250mL二口瓶中加入原料1(2.54g,5mmol)、原料2(2.35g,6mmol)、醋酸钯(0.09g,0.4mmol)和三叔丁基膦四氟硼酸盐(0.34g,1.2mmol),然后在手套箱中加入叔戊氧基钠(NaOt-Bu,0.58g,6mmol),在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:3)分离纯化,得白色粉末3.0g,产率79%。 MS(EI)m/z:[M]+:819.40.
实施例2
在本发明的具体实施例2中,欲合成的目标空穴传输材料包括下列结构式3的化合物2:
Figure PCTCN2019122714-appb-000017
结构式3的化合物2的合成路线如下反应式2所示:
Figure PCTCN2019122714-appb-000018
化合物2的详细合成步骤如下:
向250mL二口瓶中加入原料3(2.05g,5mmol)、原料2(2.35g,6mmol)、醋酸钯(0.09g,0.4mmol)和三叔丁基膦四氟硼酸盐(0.34g,1.2mmol),然后在手套箱中加入叔戊氧基钠(NaOt-Bu,0.58g,6mmol),在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲 烷:正己烷,v:v,1:3)分离纯化,得白色粉末2.5g,产率69%。MS(EI)m/z:[M]+:721.10.
实施例3
在本发明的具体实施例3中,欲合成的目标空穴传输材料包括下列结构式4的化合物3:
Figure PCTCN2019122714-appb-000019
结构式4的化合物3的合成路线如下反应式3所示:
Figure PCTCN2019122714-appb-000020
化合物3的详细合成步骤如下:
向250mL二口瓶中加入原料4(2.18g,5mmol)、原料2(2.35g,6mmol)、醋酸钯(0.09g,0.4mmol)和三叔丁基膦四氟硼酸盐(0.34g,1.2mmol),然后在手套箱中加入叔戊氧基钠(NaOt-Bu,0.58g,6mmol),在氩气氛围下打入100mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯 甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:3)分离纯化,得白色粉末2.7g,产率72%。MS(EI)m/z:[M]+:747.20.
具体地,定义化合物1、化合物2、及化合物3分别具有式2、式3、及式4所示的结构,对所述化合物1、化合物2、及化合物3进行检验,所述化合物1、化合物2、及化合物3的最高占据分子轨域(highest occupied molecular orbital,HOMO)和最低未占分子轨域(lowest unoccupied molecular orbital,LUMO)能级如下表1所示:
表1
  HOMO(eV) LUMO(eV)
化合物1 -5.56 -2.53
化合物2 -5.57 -2.51
化合物3 -5.56 -2.55
由表1可知,利用本发明的所述化合物1、化合物2、及化合物2所制备的空穴传输材料能符合电致发光器件对于空穴传输层的要求。
此外,本发明实施例还提供一种电致发光器件,包括上述的空穴传输材料。
请参阅图1,具体而言,所述电致发光器件100包括基底层1;空穴注入层2,位于所述基底层1上;空穴传输层3,位于所述注入层2上;电子阻挡层4,位于所述 空穴传输层3上;发光层5,位于所述电子阻挡层4上;空穴阻挡层6,位于所述发光层5上;电子传输层7,位于所述空穴阻挡层6上;电子注入层8,位于所述电子传输层7上;电极层9,位于所述电子注入层8上;以及光耦合输出层10,位于所述电极层9上,其中所述空穴传输层3包括上述实施例所述的空穴传输材料。
具体地,分别采用化合物1、化合物2、及化合物3作为空穴传输层3制作器件100、器件200、以及器件300,并对所述器件100、器件200、以及器件300进行性能进行测量。其中,所述器件100、器件200、以及器件300的电流-亮度-电压特性,由带有校正过的硅光电二极管的Keithley源测量系统(Keithley 2400 Sourcemeter、Keithley 2000 Currentmeter)所完成,电致发光光谱是由法国JY公司SPEX CCD3000光谱仪测量的,所有测量均在室温大气中完成。测得的器件100、器件200、以及器件300的性能如表2所示,可知器件100、器件200、以及器件300的性能符合要求。
表2
Figure PCTCN2019122714-appb-000021
Figure PCTCN2019122714-appb-000022
据此,本发明实施例提供了一种空穴传输材料及其制备方法和电致发光器件,通过巧妙的分子设计,在氧杂蒽的结构基础上,搭配不同的给给电子基团,合成了一系列具有合适最高占据分子轨域(highest occupied molecular orbital,HOMO)和最低未占分子轨域(lowest unoccupied molecular orbital,LUMO)能级的空穴传输材料,利用本发明所提供的空穴传输材料来制备一系列高性能的显示器件。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种空穴传输材料,包括由给体AN及受体B所组成之化合物,所述化合物具有如式1所示的结构通式:
    AN-BMN 式1
    其中所述给体AN系择自下列结构式中任一者:
    Figure PCTCN2019122714-appb-100001
    以及
    所述受体BMN系择自下列结构式中任一者:
    Figure PCTCN2019122714-appb-100002
    Figure PCTCN2019122714-appb-100003
  2. 如权利要求1所述的空穴传输材料,其中所述化合物AN-BMN具有下列结构式中任一者:
    Figure PCTCN2019122714-appb-100004
  3. 一种空穴传输材料的制备方法,包括如下步骤:
    步骤S1、将受体化合物BMN-X、给体化合物AN-H、以及催化剂,在惰性气体的环境下,加入含碱的有机溶剂中,于第一温度反应第一时长得到第一反应液,其中X为卤素,所述给体AN系择自下列结构式中任一者:
    Figure PCTCN2019122714-appb-100005
    以及所述受体BMN择自下列结构式中任一者:
    Figure PCTCN2019122714-appb-100006
    步骤S2、将所述反应液冷却至第二温度,得到一混合物;以及
    步骤S3、自所述混合物分离出所述空穴传输材料,所述空穴传输材料包括具有如式1所示的结构通式的化合物:
    AN-BMN 式1。
  4. 如权利要求3所述的空穴传输材料的制备方法,其中,所述第一温度为80℃至150℃,所述第一时长为12小时至36小时。
  5. 如权利要求2所述的空穴传输材料的制备方法,其中,所述第二温度为室温。
  6. 如权利要求3所述的空穴传输材料的制备方法,其中,在所述步骤S1中,所述溶液为甲苯、所述碱为叔戊氧基钠、以及所述催化剂包括钯催化剂及膦配体催化剂。
  7. 如权利要求3所述的空穴传输材料的制备方法,其中,在所述步骤S3更包括将所述反应液经过萃取、水洗、脱水、过滤、以及离心干燥处理以得到所述混合物。
  8. 如权利要求3所述的空穴传输材料的制备方法,其中,所述步骤S3系使用管柱层析进行分离,所述管柱层析所采用的淋洗液为体积比1:3的二氯甲烷:正己烷。
  9. 如权利要求3所述的空穴传输材料的制备方法,其中在所述步骤S1中,所述所述催化剂包括醋酸钯及三叔丁基膦四氟硼酸盐,以及所述化合物AN-BMN具有下列结构式中任一者:
    Figure PCTCN2019122714-appb-100007
  10. 一种电致发光器件,包括:
    基底层;
    空穴注入层,位于所述基底层上;
    空穴传输层,位于所述注入层上;
    电子阻挡层,位于所述空穴传输层上;
    发光层,位于所述电子阻挡层上;
    空穴阻挡层,位于所述发光层上;
    电子传输层,位于所述空穴阻挡层上;
    电子注入层,位于所述电子传输层上;
    电极层,位于所述电子注入层上;以及
    光耦合输出层,位于所述电极层上,
    其中所述空穴传输层包括如权利要求1所述的空穴传输材料。
PCT/CN2019/122714 2019-11-25 2019-12-03 空穴传输材料及其制备方法和电致发光器件 WO2021103058A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/755,571 US11678570B2 (en) 2019-11-25 2019-12-03 Hole transport material, preparation method thereof, and electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911163611.7 2019-11-25
CN201911163611.7A CN110885321A (zh) 2019-11-25 2019-11-25 空穴传输材料及其制备方法和电致发光器件

Publications (1)

Publication Number Publication Date
WO2021103058A1 true WO2021103058A1 (zh) 2021-06-03

Family

ID=69748676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122714 WO2021103058A1 (zh) 2019-11-25 2019-12-03 空穴传输材料及其制备方法和电致发光器件

Country Status (3)

Country Link
US (1) US11678570B2 (zh)
CN (1) CN110885321A (zh)
WO (1) WO2021103058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11545638B2 (en) * 2019-06-04 2023-01-03 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic compound and manufacturing method thereof, and organic light emitting diode electroluminescent device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164265A1 (ja) * 2017-03-10 2018-09-13 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
KR20180136218A (ko) * 2017-06-14 2018-12-24 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN109314189A (zh) * 2016-06-02 2019-02-05 株式会社Lg化学 有机发光元件
CN109400486A (zh) * 2017-08-18 2019-03-01 三星显示有限公司 胺类化合物和包括该胺类化合物的有机发光器件
KR20190044974A (ko) * 2017-10-23 2019-05-02 주식회사 엘지화학 신규한 고리 화합물 및 이를 이용한 유기발광 소자
WO2019088517A1 (ko) * 2017-11-03 2019-05-09 (주)씨엠디엘 2,3-치환된 나프틸아민 유도체 유기발광 화합물 및 유기 전계 발광 소자
CN109867652A (zh) * 2017-12-04 2019-06-11 Cmdl有限公司 新型有机化合物及包含其的有机电致发光器件
CN110382457A (zh) * 2017-05-22 2019-10-25 株式会社Lg化学 新的化合物和使用其的有机发光器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102139456B1 (ko) * 2012-03-23 2020-07-30 메르크 파텐트 게엠베하 전계발광 소자용 9,9'-스피로바이잔텐 유도체
TWI560171B (en) * 2015-10-16 2016-12-01 Tetrahedron Technology Corp Organic electroluminescent devices and material thereof
CN109574858B (zh) * 2017-09-28 2021-04-30 中节能万润股份有限公司 一种螺二甲基蒽芴类有机化合物及其在有机电致发光器件上的应用
KR102244792B1 (ko) * 2018-03-30 2021-04-26 주식회사 엘지화학 스피로화합물 및 이를 포함하는 유기 발광 소자
CN110416422B (zh) * 2018-04-28 2021-06-15 江苏三月科技股份有限公司 有机电致发光器件及包括其的显示器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314189A (zh) * 2016-06-02 2019-02-05 株式会社Lg化学 有机发光元件
WO2018164265A1 (ja) * 2017-03-10 2018-09-13 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
CN110382457A (zh) * 2017-05-22 2019-10-25 株式会社Lg化学 新的化合物和使用其的有机发光器件
KR20180136218A (ko) * 2017-06-14 2018-12-24 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN109400486A (zh) * 2017-08-18 2019-03-01 三星显示有限公司 胺类化合物和包括该胺类化合物的有机发光器件
KR20190044974A (ko) * 2017-10-23 2019-05-02 주식회사 엘지화학 신규한 고리 화합물 및 이를 이용한 유기발광 소자
WO2019088517A1 (ko) * 2017-11-03 2019-05-09 (주)씨엠디엘 2,3-치환된 나프틸아민 유도체 유기발광 화합물 및 유기 전계 발광 소자
CN109867652A (zh) * 2017-12-04 2019-06-11 Cmdl有限公司 新型有机化合物及包含其的有机电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11545638B2 (en) * 2019-06-04 2023-01-03 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic compound and manufacturing method thereof, and organic light emitting diode electroluminescent device

Also Published As

Publication number Publication date
CN110885321A (zh) 2020-03-17
US20210408389A1 (en) 2021-12-30
US11678570B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2020098114A1 (zh) 绿光热活化延迟荧光材料及其合成方法、电致发光器件
US10851292B2 (en) Dark blue light thermally activated delayed fluorescence (TADF) material and application thereof
WO2020113789A1 (zh) 绿光热活化延迟荧光材料及其合成方法、电致发光器件
CN105461611A (zh) 螺芴苄基荧光材料
WO2020238094A1 (zh) 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用
WO2020220611A1 (zh) 热活化延迟荧光分子材料及其合成方法、有机电致发光器件
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
WO2020098146A1 (zh) 一种蓝光热活化延迟荧光材料及其应用
WO2021000434A1 (zh) 红绿蓝热活化延迟荧光材料,其合成方法及应用
WO2020237991A1 (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
CN110183426A (zh) 一种热活化延迟荧光材料、制备方法及电致发光器件
WO2021103058A1 (zh) 空穴传输材料及其制备方法和电致发光器件
WO2020215388A1 (zh) 深红光热活化延迟荧光材料及其制备方法和电致发光器件
CN110511223B (zh) 空穴传输材料及其制备方法、有机电致发光器件
WO2020220414A1 (zh) 热活化延迟荧光材料及其制备方法、显示装置
WO2020155525A1 (zh) 热激活延迟荧光材料、有机电致发光器件及显示面板
WO2020082568A1 (zh) 吖啶衍生物及有机电致发光器件
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
CN111018874B (zh) 空穴传输材料、其制备方法及有机发光二极管器件
CN109535159B (zh) 红光热活化延迟荧光材料、其制备方法及有机发光二极管器件
WO2021098050A1 (zh) 以二氢吩嗪为核的空穴传输材料及有机发光二极管
CN110724105B (zh) 一种三亚菲含氮七元环化合物及其制备方法和应用
WO2020211181A1 (zh) 热活化延迟荧光材料及有机发光二极管显示设备
WO2021000455A1 (zh) 空穴传输材料及其制备方法、电致发光器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954474

Country of ref document: EP

Kind code of ref document: A1