WO2020238094A1 - 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用 - Google Patents

一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020238094A1
WO2020238094A1 PCT/CN2019/120751 CN2019120751W WO2020238094A1 WO 2020238094 A1 WO2020238094 A1 WO 2020238094A1 CN 2019120751 W CN2019120751 W CN 2019120751W WO 2020238094 A1 WO2020238094 A1 WO 2020238094A1
Authority
WO
WIPO (PCT)
Prior art keywords
orange
green
red
activated delayed
delayed fluorescent
Prior art date
Application number
PCT/CN2019/120751
Other languages
English (en)
French (fr)
Inventor
罗佳佳
李先杰
黄金昌
顾宇
杨林
白亚梅
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/622,955 priority Critical patent/US11362284B2/en
Publication of WO2020238094A1 publication Critical patent/WO2020238094A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention belongs to the field of organic electroluminescent diodes, and specifically relates to a high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material, and its preparation method and application.
  • OLEDs Organic light-emitting diodes
  • OLEDs do not require a backlight for active light emission, have high luminous efficiency, large viewing angle, fast response speed, large temperature adaptation range, relatively simple production and processing technology, and low driving voltage.
  • Low energy consumption, lighter and thinner, flexible display and other advantages and huge application prospects have attracted the attention of many researchers.
  • the light-emitting guest materials used in early OLEDs were fluorescent materials. Since the ratio of singlet and triplet excitons in OLEDs is 1:3, the theoretical internal quantum efficiency (IQE) of OLEDs based on fluorescent materials can only reach 25%. , Which greatly limits the application of fluorescent electroluminescent devices.
  • heavy metal complex phosphorescent materials can simultaneously utilize singlet and triplet excitons to achieve 100% IQE.
  • the commonly used heavy metals are all precious metals such as Ir and Pt, and the phosphorescent materials of heavy metal complexes still need a breakthrough in blue light materials.
  • Pure organic thermally activated delayed fluorescence (TADF) materials through clever molecular design, make the molecules have a small minimum single triplet energy difference ( ⁇ EST), so that the triplet excitons can be returned through reverse intersystem crossing (RISC)
  • RISC reverse intersystem crossing
  • TADF materials For TADF materials, fast reverse intersystem crossing constant (kRISC) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency OLEDs. At present, TADF materials with the above conditions are still relatively scarce compared to heavy metal Ir complexes.
  • one of the objectives of the present invention is to provide a high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material, which realizes an ultrafast reverse inter-system crossing rate and high luminous efficiency.
  • the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material includes the compound represented by the following formula I:
  • the group R 2 is one of the following structures:
  • Another object of the present invention is to provide a method for preparing the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material, including:
  • the raw material 1 is 5-bromo-2,3-difluoro-8-phenylquine-6,7-dinitrile.
  • the raw material 2 is 9,10-dihydro-9,9-diphenyl acridine, phenoxazine or phenothiazine.
  • the molar ratio of the raw material 1 to the raw material 2 is 1:1 to 1:3, preferably 1:1.2.
  • the molar ratio of the palladium acetate, tri-tert-butylphosphine tetrafluoroborate and NaOt-Bu is 1:(3-6):(30-60), preferably 1:3:30.
  • the molar volume ratio of the raw material 1 to toluene is 1:5 to 1:20, preferably 1:8 (mmol:mL).
  • the reaction temperature is: 8 to 160°C, preferably 120°C.
  • reaction time is: 12 to 48 hours, preferably 24 hours.
  • the method for preparing the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material further comprises: cooling the obtained crude product of the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material, extracting with dichloromethane, and combining the organic It is spun into silica gel and purified by column chromatography to obtain high-efficiency blue-green to orange-red photothermal activated delayed fluorescent material products.
  • the method of cooling the crude product of high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material is: cooling the crude product to room temperature, and then pour it into ice water.
  • the number of times of dichloromethane extraction is 2 to 4 times, preferably 3 times.
  • the preparation method of the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material provided by the present invention includes: mixing raw material 1, raw material 2, palladium acetate and tri-tert-butylphosphine tetrafluoroborate, and then adding NaOt-Bu, and Toluene was added under an argon atmosphere, and the reaction obtained a crude product of high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material (ie the compound shown in the above formula I); the obtained crude product of high-efficiency blue-green to orange-red photothermal activated delayed fluorescent material was cooled to Pour into ice water at room temperature, extract with dichloromethane, combine the organic phases, spin into silica gel, and separate and purify by column chromatography to obtain high-efficiency blue-green to orange-red photothermal activated delayed fluorescent material products.
  • the raw material 1 is 5-bromo-2,3-difluoro-8-phenylquine-6,7-dinitrile.
  • the raw material 2 is 9,10-dihydro-9,9-diphenyl acridine, phenoxazine or phenothiazine.
  • the molar ratio of the raw material 1 to the raw material 2 is 1:1 to 1:3, preferably 1:1.2.
  • the molar ratio of the palladium acetate, tri-tert-butylphosphine tetrafluoroborate and NaOt-Bu is 1:(3-6):(30-60), preferably 1:3:30.
  • the molar volume ratio of the raw material 1 to toluene is 1:5 to 1:20, preferably 1:8 (mmol:mL).
  • the reaction temperature is: 8 to 160°C, preferably 120°C.
  • reaction time is: 12 to 48 hours, preferably 24 hours.
  • the number of times of dichloromethane extraction is 2 to 4 times, preferably 3 times.
  • the preparation method of the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material includes: mixing raw material 1, raw material 2, palladium acetate and tri-tert-butylphosphine tetrafluoroborate, and then adding NaOt-Bu, and Toluene was added in an argon atmosphere, and reacted at 120°C for 24 hours to obtain a high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material (that is, the compound represented by the above formula I); the obtained high-efficiency blue-green to orange-red photothermal activation
  • the crude delayed fluorescent material is cooled to room temperature, then poured into ice water, extracted with dichloromethane, and the organic phases are combined, spun into silica gel, and separated and purified by column chromatography to obtain a highly efficient blue-green to orange-red photothermally activated delayed fluorescent material product.
  • the raw material 1 is 5-bromo-2,3-difluoro-8-phenylquine-6,7-dinitrile.
  • the raw material 2 is 9,10-dihydro-9,9-diphenyl acridine, phenoxazine or phenothiazine.
  • the molar ratio of the raw material 1 to the raw material 2 is 1:1.2.
  • the molar ratio of the palladium acetate, tri-tert-butylphosphine tetrafluoroborate and NaOt-Bu is 1:3:30.
  • the molar volume ratio of the raw material 1 to toluene is 1:8 (mmol:mL).
  • Another object of the present invention is to provide the application of the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material.
  • the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material is used to prepare OLED, more specifically, to prepare the light-emitting layer of OLED.
  • Display devices and electronic devices based on the organic light-emitting material can be manufactured.
  • TADF material has a molecular structure combining electron donor (D) and electron acceptor (A), and the present invention adjusts the electron donating ability of the donor unit to achieve the coverage of light from sky blue to orange red light.
  • D electron donor
  • A electron acceptor
  • the present invention solves the problems of the prior art.
  • a series of thermally activated delayed fluorescent materials with low single triplet energy level difference, high luminous efficiency, and rapid reverse intersystem crossing constant are synthesized.
  • the structure is fine-tuned so that the spectrum covers the band from blue-green to orange-red light.
  • Their structures were confirmed by proton nuclear magnetic spectroscopy and mass spectrometry, and then their photophysical properties were studied in detail.
  • a series of high-performance OLEDs were prepared by applying these light-emitting TADF materials to the light-emitting layer. Application prospects and economic value.
  • Figure 1 is the distribution diagram of the highest electron occupied orbital (HOMO) and the lowest electron unoccupied orbital (LUMO) of the target molecule in Experimental Example 1.
  • the first row is HOMO, and the second row is LUMO.
  • Figure 2 is a photoluminescence spectrum of the target molecule in Experimental Example 1.
  • FIG. 3 is a schematic diagram of the electroluminescent device in Experimental Example 2.
  • FIG. 3 is a schematic diagram of the electroluminescent device in Experimental Example 2.
  • the operations not mentioned in the present invention are all conventional operations in the field, and the materials not mentioned in the specific source are all conventional materials that can be purchased from the market.
  • the raw material 1 (5-bromo-2,3-difluoro-8-phenylquin-6,7-dinitrile) used in the present invention can be purchased or synthesized through existing literature.
  • OLED Organic light-emitting display device
  • High Efficiency High Efficiency
  • long life Long Lifetime
  • the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material provided by the present invention includes the compound represented by the following formula I:
  • the group R 2 is one of the following structures:
  • the compound represented by formula I can be compound 1, compound 2, or compound 3:
  • the preparation method of the high-efficiency blue-green to orange-red photothermally activated delayed fluorescent material includes: raw material 1 (5-bromo-2,3-difluoro-8-phenylquine-6,7-dinitrile), Raw material 2 (raw material 2 is 9,10-dihydro-9,9-diphenyl acridine, phenoxazine or phenothiazine; the molar ratio of material 1 to material 2 is 1:1 to 1:3, preferably 1:1.2), mix palladium acetate and tri-tert-butylphosphine tetrafluoroborate, and then add NaOt-Bu (the molar ratio of palladium acetate, tri-tert-butylphosphine tetrafluoroborate and NaOt-Bu is 1:1: (3 ⁇ 6): (30 ⁇ 60), preferably 1:3:30), and adding toluene under an argon atmosphere (the molar volume ratio of raw material 1 to toluene is
  • the synthetic route of target compound 1 is as follows:
  • Synthesis steps Add raw material 1 (2.09g, 5mmol), 9,10-dihydro-9,9-diphenylacridine (2.00g, 6mmol), palladium acetate (45mg, 0.2mmol) into a 100mL two-neck flask And tri-tert-butyl phosphine tetrafluoroborate (0.17g, 0.6mmol), then add NaOt-Bu (0.58g, 6mmol) into the glove box, and inject 40mL of toluene that has been dewatered and deoxygenated in an argon atmosphere , React at 120°C for 24 hours.
  • the synthetic route of target compound 2 is as follows:
  • Synthesis step Add raw material 1 (2.09g, 5mmol), phenoxazine (1.10g, 6mmol), palladium acetate (45mg, 0.2mmol) and tri-tert-butylphosphine tetrafluoroborate (0.17 g, 0.6 mmol), then NaOt-Bu (0.58 g, 6 mmol) was added to the glove box, 40 mL of toluene that had been dewatered and deoxygenated was injected under an argon atmosphere, and reacted at 120°C for 24 hours.
  • the synthetic route of target compound 3 is as follows:
  • Synthesis step Add raw material 1 (2.09g, 5mmol), phenothiazine (1.19g, 6mmol), palladium acetate (45mg, 0.2mmol) and tri-tert-butylphosphine tetrafluoroborate (0.17 g, 0.6 mmol), then NaOt-Bu (0.58 g, 6 mmol) was added to the glove box, 40 mL of toluene that had been dewatered and deoxygenated was injected under an argon atmosphere, and reacted at 120°C for 24 hours.
  • Example 1 The distribution of the highest electron occupied orbital (HOMO) and lowest electron unoccupied orbital (LUMO) of the target molecules (i.e., compound 1, compound 2 and compound 3) obtained in Example 1, Example 2 and Example 3 of the present invention is shown in Figure 1. Shown.
  • HOMO highest electron occupied orbital
  • LUMO lowest electron unoccupied orbital
  • the lowest singlet (S1) and lowest triplet energy levels (T1) of the target molecules ie Compound 1, Compound 2 and Compound 3
  • the electrochemical energy levels are shown in the following table:
  • the photoluminescence spectrum of the target molecule in the toluene solution at room temperature is shown in Figure 2, where the horizontal axis is the wavelength and the vertical axis is the normalized intensity.
  • the three curves correspond to compound 1, compound 2, and compound 3 from left to right.
  • the electrothermally activated delayed fluorescent device using the thermally activated delayed fluorescent material of the present invention as the light-emitting layer may include glass and conductive glass (ITO) substrate layer 1, hole injection layer 2 (MoO3) and transport layer 3 (TCTA), Light-emitting layer 4 (mCBP: luminescent material with delayed fluorescence of the present invention), electron transport layer 5 (1,3,5-tris(3-(3-pyridyl)phenyl)benzene Tm3PyPB), cathode layer 6 (fluorinated Lithium/aluminum).
  • ITO glass and conductive glass
  • TCTA transport layer 3
  • mCBP luminescent material with delayed fluorescence of the present invention
  • electron transport layer 5 (1,3,5-tris(3-(3-pyridyl)phenyl)benzene
  • Tm3PyPB cathode layer 6 (fluorinated Lithium/aluminum).
  • the schematic diagram of the electroluminescent device is shown
  • the electroluminescent device can be manufactured according to methods known in the art, for example, according to the method disclosed in the reference (Adv. Mater. 2003, 15, 277.).
  • the specific method is as follows: MoO3, TCTA, mCBP+thermally activated delayed fluorescent material, TmPyPB, 1nm LiF and 100nm Al are sequentially evaporated on a cleaned conductive glass (ITO) substrate under high vacuum conditions.
  • ITO conductive glass
  • the current-brightness-voltage characteristics of the device are measured by the Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with a calibrated silicon photodiode.
  • the electroluminescence spectrum is measured by the French JY company SPEX CCD3000 spectrometer. All are done in the atmosphere at room temperature.
  • the performance data of the device is shown in the following table:
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种蓝绿到橙红光热活化延迟荧光材料,以及它的制备方法和应用。通过分子设计,合成了一系列具有较低单三线态能级差,高发光效率,快速的反向系间窜越常数的热活化延迟荧光材料,同时通过结构微调使得光谱从蓝绿光到橙红光的波段覆盖,并将TADF材料应用到发光层制备了一系列OLED。

Description

一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用 技术领域
本发明属于有机电致发光二极管领域,具体地,涉及一种高效蓝绿到橙红光热活化延迟荧光材料,以及它的制备方法和应用。
背景技术
有机电致发光二极管(organic light-emitting diodes,OLEDs)以其主动发光不需要背光源、发光效率高、可视角度大、响应速度快、温度适应范围大,生产加工工艺相对简单、驱动电压低,能耗小,更轻更薄,柔性显示等优点以及巨大的应用前景,吸引了众多研究者的关注。在OLED中,起主导作用的发光客体材料至关重要。早期的OLED使用的发光客体材料为荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,因此基于荧光材料的OLED的理论内量子效率(IQE)只能达到25%,极大的限制了荧光电致发光器件的应用。重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子而实现100%的IQE。然而,通常使用的重金属都是Ir、Pt等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待突破。纯有机热活化延迟荧光(TADF)材料,通过巧妙的分子设计,使得分子具有较小的最低单三重能级差(ΔEST),这样三重态激子可以通过反向系间窜越(RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,也可以实现100%的IQE。
技术问题
对于TADF材料,快速的反向系间窜越常数(kRISC)以及高的光致发光量子产率(PLQY)是制备高效率OLED的必要条件。目前,具备上述条件的TADF材料相对于重金属Ir配合物而言还是比较匮乏。
因此,若能开发出一种高效蓝绿到橙红光热活化延迟荧光材料,得到分子设计巧妙的荧光材料化合物,实现快速的反向系间窜越常数的热活化,同时使得光谱从蓝绿光到橙红光的波段覆盖,将会有巨大的应用前景和经济价值。
技术解决方案
为了解决上述技术问题,本发明的目的之一在于提供一种高效蓝绿到橙红光热活化延迟荧光材料,该材料实现了超快反向系间窜越速率、高发光效率。
为了实现上述目的,本发明提供的高效蓝绿到橙红光热活化延迟荧光材料,包括如下式Ⅰ所示的化合物:
Figure PCTCN2019120751-appb-000001
在式Ⅰ所示的化合物中,基团R 1为以下结构中的一种:
Figure PCTCN2019120751-appb-000002
基团R 2为以下结构中的一种:
Figure PCTCN2019120751-appb-000003
本发明的另一目的在于,提供一种所述高效蓝绿到橙红光热活化延迟荧光材料的制备方法,包括:
将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,反应得到高效蓝绿到橙红光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品。
其中,所述原料1为5-溴-2,3-二氟-8-苯基喹-6,7-二腈。
其中,所述原料2为9,10-二氢-9,9-二苯基吖啶,吩恶嗪或吩噻嗪。
其中,所述原料1和原料2的摩尔比为:1:1~1:3,优选1:1.2。
其中,所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:(3~6):(30~60),优选1:3:30。
其中,所述原料1与甲苯的摩尔体积比为:1:5~1:20,优选1:8(mmol:mL)。
其中,反应温度为:8~160℃,优选120℃。
其中,反应时间为:12~48小时,优选24小时。
本发明提供的高效蓝绿到橙红光热活化延迟荧光材料的制备方法,还包括:将得到的所述高效蓝绿到橙红光热活化延迟荧光材料粗品进行冷却,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高效蓝绿到橙红光热活化延迟荧光材料产品。
其中,将高效蓝绿到橙红光热活化延迟荧光材料粗品进行冷却的方式为:将粗品冷却至室温,再倒入冰水中。
其中,所述二氯甲烷萃取的次数为2~4次,优选3次。
本发明提供的高效蓝绿到橙红光热活化延迟荧光材料的制备方法,包括:将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,反应得到高效蓝绿到橙红光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品;将得到的高效蓝绿到橙红光热活化延迟荧光材料粗品冷却至室温,再倒入冰水中,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高效蓝绿到橙红光热活化延迟荧光材料产品。
其中,所述原料1为5-溴-2,3-二氟-8-苯基喹-6,7-二腈。
其中,所述原料2为9,10-二氢-9,9-二苯基吖啶,吩恶嗪或吩噻嗪。
其中,所述原料1和原料2的摩尔比为:1:1~1:3,优选1:1.2。
其中,所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:(3~6):(30~60),优选1:3:30。
其中,所述原料1与甲苯的摩尔体积比为:1:5~1:20,优选1:8(mmol:mL)。
其中,反应温度为:8~160℃,优选120℃。
其中,反应时间为:12~48小时,优选24小时。
其中,所述二氯甲烷萃取的次数为2~4次,优选3次。
本发明提供的高效蓝绿到橙红光热活化延迟荧光材料的制备方法,包括:将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,在120℃反应24小时,得到高效蓝绿到橙红光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品;将得到的高效蓝绿到橙红光热活化延迟荧光材料粗品冷却至室温,再倒入冰水中,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高效蓝绿到橙红光热活化延迟荧光材料产品。
其中,所述原料1为5-溴-2,3-二氟-8-苯基喹-6,7-二腈。
其中,所述原料2为9,10-二氢-9,9-二苯基吖啶,吩恶嗪或吩噻嗪。
其中,所述原料1和原料2的摩尔比为:1:1.2。
其中,所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:3:30。
其中,所述原料1与甲苯的摩尔体积比为1:8(mmol:mL)。
本发明的又一目的在于,提供所述高效蓝绿到橙红光热活化延迟荧光材料的应用。
其中,所述高效蓝绿到橙红光热活化延迟荧光材料用以制备OLED,更具体地,用以制备OLED的发光层。
本发明具有以下有益效果:
1)通过不同官能团的搭配,设计具有显著TADF特性的发光TADF材料;
2)合理的路线设计,材料提高合成效率;
3)实现高效率有机电致发光器件的制备;
4)基于该有机发光材料的显示设备和电子设备可以被制造。
TADF材料具有电子给体(D)和电子受体(A)相结合的分子结构,而本发明通过对给体单元给电子能力进行调节,实现了发光从天蓝光到橙红光的覆盖,在有效的增加材料的发光效率,与此同时,研究电子给体的给电子能力强弱对材料性能带来的影响。最后基于目标发光TADF材料的电致发光器件都取得了非常高的效率。
总之,本发明解决了现有技术的问题,通过巧妙的分子设计,合成了一系列具有较低单三线态能级差,高发光效率,快速的反向系间窜越常数的热活化延迟荧光材料,同时实现了结构微调使得光谱从蓝绿光到橙红光的波段覆盖。通过核磁氢谱、质谱分析对它们的结构进行确认,然后对它们的光物理性能进行了详细的研究,最后基将这些发光TADF材料应用到发光层制备了一系列高性能的OLED,具有巨大的应用前景和经济价值。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为实验例1中目标分子的最高电子占据轨道(HOMO)与最低电子未占据轨道(LUMO)分布图;第一排为HOMO,第二排为LUMO。
图2为实验例1中目标分子的光致发光光谱图。
图3为实验例2中电致发光器件的示意图。
本发明的实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明中未提及的操作均为本领域的常规操作,本发明中未提及具体出处的物料均为可以从市场上购买得到的常规物料。
原料出处:
本发明中使用到的原料1(5-溴-2,3-二氟-8-苯基喹-6,7-二腈)可以购买或者通过现有文献合成得到。
本发明中出现的英文术语解释如下:
有机发光显示装置(OLED)、高效率(High Efficiency)、长寿命(Long Lifetime)。
本发明提供的高效蓝绿到橙红光热活化延迟荧光材料,包括如下式Ⅰ所示的化合物:
Figure PCTCN2019120751-appb-000004
在式Ⅰ所示的化合物中,基团R 1为以下结构中的一种:
Figure PCTCN2019120751-appb-000005
基团R 2为以下结构中的一种:
Figure PCTCN2019120751-appb-000006
根据R 1和R 2的搭配组合,式Ⅰ所示的化合物会有72种具体结构。
具体地,式Ⅰ所示的化合物可以为化合物1、化合物2或化合物3:
Figure PCTCN2019120751-appb-000007
本发明提供的高效蓝绿到橙红光热活化延迟荧光材料的制备方法,包括:将原料1(5-溴-2,3-二氟-8-苯基喹-6,7-二腈),原料2(原料2为9,10-二氢-9,9-二苯基吖啶,吩恶嗪或吩噻嗪;原料1和原料2的摩尔比为:1:1~1:3,优选1:1.2),醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu(醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:(3~6):(30~60),优选1:3:30),以及在氩气氛围下加入甲苯(原料1与甲苯的摩尔体积比为:1:5~1:20,优选1:8,单位为mmol:mL),反应(反应温度为:8~160℃,优选120℃;反应时间为:12~48小时,优选24小时)得到高效蓝绿到橙红光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品;将得到的高效蓝绿到橙红光热活化延迟荧光材料粗品冷却至室温,再倒入冰水中,用二氯甲烷萃取(次数为2~4次,优选3次),合并有机相,旋成硅胶,柱层析分离纯化,得到高效蓝绿到橙红光热活化延迟荧光材料产品。
实施例1
目标化合物1的合成路线如下所示:
Figure PCTCN2019120751-appb-000008
合成步骤:向100mL二口瓶中加入原料1(2.09g,5mmol),9,10- 二氢-9,9-二苯基吖啶(2.00g,6mmol),醋酸钯(45mg,0.2mmol)和三叔丁基膦四氟硼酸盐(0.17g,0.6mmol),然后在手套箱中加入NaOt-Bu(0.58g,6mmol),在氩气氛围下打入40mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得天蓝色粉末(即化合物1)1.6g,产率64%。1H NMR(300MHz,CD 2Cl 2,δ):7.55-7.46(s,5H),7.19-7.08(m,6H),6.96-6.90(m,2H),1.69(s,6H).MS(EI)m/z:[M]+calcd for C 31H 19F 2N 5,499.16;found,499.12.
实施例2
目标化合物2的合成路线如下所示:
Figure PCTCN2019120751-appb-000009
合成步骤:向100mL二口瓶中加入原料1(2.09g,5mmol),吩恶嗪(1.10g,6mmol),醋酸钯(45mg,0.2mmol)和三叔丁基膦四氟硼酸盐(0.17g,0.6mmol),然后在手套箱中加入NaOt-Bu(0.58g,6mmol),在氩气氛围下打入40mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得绿色粉末1.5g,产率63%。1H NMR(300MHz,CD 2Cl 2,δ):7.55-7.46(s,5H),7.14-7.07(m,2H),7.01-6.90(m,6H).MS(EI)m/z:[M]+calcd for C 28H 13F 2N 5O,473.11;found,473.10.
实施例3
目标化合物3的合成路线如下所示:
Figure PCTCN2019120751-appb-000010
合成步骤:向100mL二口瓶中加入原料1(2.09g,5mmol),吩噻嗪(1.19g,6mmol),醋酸钯(45mg,0.2mmol)和三叔丁基膦四氟硼酸盐(0.17g,0.6mmol),然后在手套箱中加入NaOt-Bu(0.58g,6mmol),在氩气氛围下打入40mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得橙色粉末1.1g,产率45%。1H NMR(300MHz,CD2Cl2,δ):7.55-7.46(s,5H),7.26-7.14(m,6H),7.01-6.96(m,2H).MS(EI)m/z:[M]+calcd for C28H13F2N5S,489.09;found,489.10.
实验例1
本发明实施例1、实施例2和实施例3所得到的目标分子(即化合物1、化合物2和化合物3)的最高电子占据轨道(HOMO)与最低电子未占据轨道(LUMO)分布如图1所示。
目标分子(即化合物1、化合物2和化合物3)的最低单重态(S1)和最低三重态能级(T1),电化学能级如下表所示:
Figure PCTCN2019120751-appb-000011
目标分子(即化合物1、化合物2和化合物3)的光物理性质:
目标分子在室温下,甲苯溶液中的光致发光光谱如图2所示,其中横轴为波长,纵轴为归一化强度。三个曲线从左到右依次对应化合物1、化合物2和化合物3。
实验例2
使用本发明的热激活延迟荧光材料作为发光层的电致热激活延迟荧光器件,可包括玻璃和导电玻璃(ITO)衬底层1,空穴注入层2(MoO3)和传输层3(TCTA),发光层4(mCBP:本发明具有延迟荧光的发光材料),电子传输层5(1,3,5-三(3-(3-吡啶基)苯基)苯 Tm3PyPB),阴极层6(氟化锂/铝)。电致发光器件的示意图如图3所示。
电致发光器件可按本领域已知方法制作,如按参考文献(Adv.Mater.2003,15,277.)公开的方法制作。具体方法为:在经过清洗的导电玻璃(ITO)衬底上,高真空条件下依次蒸镀MoO3,TCTA,mCBP+热活化延迟荧光材料,TmPyPB,1nm的LiF和100nm的Al。用该方法制得如图3所示的器件,各种具体的器件结构如下:
器件1(A1):
ITO/MoO 3(2nm)/TCTA(35nm)/mCBP:化合物1(5%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。
器件2(A2):
ITO/MoO 3(2nm)/TCTA(35nm)/mCBP:化合物2(5%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)。
器件3(A3):
ITO/MoO 3(2nm)/TCTA(35nm)/mCBP:化合物3(5%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(10nm)。
器件的电流-亮度-电压特性是由带有校正过的硅光电二极管的Keithley源测量系统(Keithley 2400Sourcemeter、Keithley 2000Currentmeter)完成的,电致发光光谱是由法国JY公司SPEX CCD3000光谱仪测量的,所有测量均在室温大气中完成。
器件的性能数据见下表:
器件 最高电流效率(cd/A) CIEx 最大外量子效率(%)
器件1 58.9 0.22 22.4
器件2 61.3 0.24 24.6
器件3 43.9 0.58 19.8
本发明可应用的领域:
1)高效率的蓝绿到橙红光TADF材料;
2)长寿命的电致发光器件;
3)基于电致发光器件的显示。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (11)

  1. 一种高效蓝绿到橙红光热活化延迟荧光材料,包括如下式Ⅰ所示的化合物:
    Figure PCTCN2019120751-appb-100001
    在式Ⅰ所示的化合物中,基团R 1为以下结构中的一种:
    Figure PCTCN2019120751-appb-100002
    基团R 2为以下结构中的一种:
    Figure PCTCN2019120751-appb-100003
  2. 权利要求1所述高效蓝绿到橙红光热活化延迟荧光材料的制备方法,包括:将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,反应得到高效蓝绿到橙红光热活化延迟荧光材料粗品;
    其中,所述原料1为5-溴-2,3-二氟-8-苯基喹-6,7-二腈;
    其中,所述原料2为9,10-二氢-9,9-二苯基吖啶,吩恶嗪或吩噻嗪。
  3. 根据权利要求2所述高效蓝绿到橙红光热活化延迟荧光材料的制备方法,其中,所述原料1和原料2的摩尔比为:1:1~1:3。
  4. 根据权利要求2所述高效蓝绿到橙红光热活化延迟荧光材料的制备方法,其中,所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu 的摩尔比为:1:(3~6):(30~60)。
  5. 根据权利要求2所述高效蓝绿到橙红光热活化延迟荧光材料的制备方法,其中,所述原料1与甲苯的摩尔体积比为:1:5~1:20。
  6. 根据权利要求2任意一项所述高效蓝绿到橙红光热活化延迟荧光材料的制备方法,其中,反应温度为:80~160℃;反应时间为:12~48小时。
  7. 根据权利要求2任意一项所述高效蓝绿到橙红光热活化延迟荧光材料的制备方法,其中,该制备方法还包括:将得到的所述高效蓝绿到橙红光热活化延迟荧光材料粗品进行冷却,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高效蓝绿到橙红光热活化延迟荧光材料产品。
  8. 权利要求1所述高效蓝绿到橙红光热活化延迟荧光材料的制备方法,包括:将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,反应得到高效蓝绿到橙红光热活化延迟荧光材料粗品;将得到的高效蓝绿到橙红光热活化延迟荧光材料粗品冷却至室温,再倒入冰水中,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高效蓝绿到橙红光热活化延迟荧光材料产品;
    其中,所述原料1为5-溴-2,3-二氟-8-苯基喹-6,7-二腈;
    其中,所述原料2为9,10-二氢-9,9-二苯基吖啶,吩恶嗪或吩噻嗪;其中,所述原料1和原料2的摩尔比为:1:1~1:3;所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:(3~6):(30~60);所述原料1与甲苯的摩尔体积比为:1:5~1:20;
    其中,反应温度为:80~160℃;反应时间为:12~48小时;所述二氯甲烷萃取的次数为2~4。
  9. 一种依据权利要求1所述高效蓝绿到橙红光热活化延迟荧光材料的应用。
  10. 如权利要求9的所述应用,其中,所述高效蓝绿到橙红光热活化延迟荧光材料用以制备OLED。
  11. 如权利要求10的所述应用,其中,所述高效蓝绿到橙红光热活化延迟荧光材料用以制备OLED的发光层。
PCT/CN2019/120751 2019-05-31 2019-11-25 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用 WO2020238094A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/622,955 US11362284B2 (en) 2019-05-31 2019-11-25 Efficient blue-green to orange-red thermally activated delayed fluorescence material, manufacture method, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910473241.0A CN110105330B (zh) 2019-05-31 2019-05-31 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用
CN201910473241.0 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020238094A1 true WO2020238094A1 (zh) 2020-12-03

Family

ID=67493478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120751 WO2020238094A1 (zh) 2019-05-31 2019-11-25 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US11362284B2 (zh)
CN (1) CN110105330B (zh)
WO (1) WO2020238094A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105330B (zh) * 2019-05-31 2021-09-24 武汉华星光电半导体显示技术有限公司 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用
CN110526874A (zh) * 2019-08-28 2019-12-03 武汉华星光电半导体显示技术有限公司 芴并吩嗪衍生物及其制备方法与oled器件
CN110804047A (zh) 2019-11-06 2020-02-18 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料及其制备方法
US20210296586A1 (en) * 2020-03-23 2021-09-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thermally activated delayed flourescence (tadf) material, synthesizing method thereof, and electroluminescent device
CN114195781A (zh) * 2021-12-24 2022-03-18 安徽秀朗新材料科技有限公司 一种吡啶并吡嗪类化合物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830320A (zh) * 2015-05-24 2015-08-12 吉林大学 菲并吡嗪衍生物发光材料及其在电致发光器件方面的应用
KR20170057729A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 니트릴계 화합물 및 이를 포함하는 유기 발광 소자
KR20170109413A (ko) * 2016-03-21 2017-09-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN107602540A (zh) * 2016-12-12 2018-01-19 吉林大学 基于二氰基吡嗪和二氰基苯并吡嗪衍生物的给‑受体化合物及用于制备的电致发光器件
CN110105330A (zh) * 2019-05-31 2019-08-09 武汉华星光电半导体显示技术有限公司 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431568B1 (en) * 2014-11-12 2020-04-08 LG Display Co., Ltd. Delayed fluorescence compound
CN105541824B (zh) 2015-12-25 2019-07-05 上海天马有机发光显示技术有限公司 有机电致发光化合物及其有机光电装置
KR102577726B1 (ko) * 2016-04-29 2023-09-14 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830320A (zh) * 2015-05-24 2015-08-12 吉林大学 菲并吡嗪衍生物发光材料及其在电致发光器件方面的应用
KR20170057729A (ko) * 2015-11-17 2017-05-25 주식회사 엘지화학 니트릴계 화합물 및 이를 포함하는 유기 발광 소자
KR20170109413A (ko) * 2016-03-21 2017-09-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN107602540A (zh) * 2016-12-12 2018-01-19 吉林大学 基于二氰基吡嗪和二氰基苯并吡嗪衍生物的给‑受体化合物及用于制备的电致发光器件
CN110105330A (zh) * 2019-05-31 2019-08-09 武汉华星光电半导体显示技术有限公司 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110105330B (zh) 2021-09-24
US20210280797A1 (en) 2021-09-09
CN110105330A (zh) 2019-08-09
US11362284B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2020238094A1 (zh) 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用
CN110627822A (zh) 一种绿光窄光谱三配位硼发光化合物、发光组合物及其应用
WO2020098138A1 (zh) 一种深蓝光热活化延迟荧光材料及其应用
WO2020098146A1 (zh) 一种蓝光热活化延迟荧光材料及其应用
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020098114A1 (zh) 绿光热活化延迟荧光材料及其合成方法、电致发光器件
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN113336782A (zh) 含咔唑骨架的绿光窄光谱三配位硼发光化合物、制备方法及其应用
WO2021000434A1 (zh) 红绿蓝热活化延迟荧光材料,其合成方法及应用
Ho et al. Triphenylethene-carbazole-based molecules for the realization of blue and white aggregation-induced emission OLEDs with high luminance
CN110372701A (zh) 一种热活化延迟荧光分子及其制备方法、电致热激活延迟荧光器件
CN110183426A (zh) 一种热活化延迟荧光材料、制备方法及电致发光器件
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
WO2020237885A1 (zh) 深蓝色热活化延迟荧光材料和其制备方法、电致发光器件
CN109535159B (zh) 红光热活化延迟荧光材料、其制备方法及有机发光二极管器件
WO2021189528A1 (zh) 热活化延迟荧光材料及其合成方法、电致发光器件
US11678570B2 (en) Hole transport material, preparation method thereof, and electroluminescent device
WO2021135035A1 (zh) 一种高性能天蓝光热活化延迟荧光材料及其制备方法和应用
CN110256458B (zh) 一种热活化延迟荧光分子及其制备方法、电致热激活延迟荧光器件
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2021196274A1 (zh) 一种荧光材料及其合成方法
CN109897065B (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931039

Country of ref document: EP

Kind code of ref document: A1