WO2021135035A1 - 一种高性能天蓝光热活化延迟荧光材料及其制备方法和应用 - Google Patents

一种高性能天蓝光热活化延迟荧光材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021135035A1
WO2021135035A1 PCT/CN2020/090216 CN2020090216W WO2021135035A1 WO 2021135035 A1 WO2021135035 A1 WO 2021135035A1 CN 2020090216 W CN2020090216 W CN 2020090216W WO 2021135035 A1 WO2021135035 A1 WO 2021135035A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally activated
activated delayed
delayed fluorescent
blue light
fluorescent material
Prior art date
Application number
PCT/CN2020/090216
Other languages
English (en)
French (fr)
Inventor
罗佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/979,847 priority Critical patent/US11926772B2/en
Publication of WO2021135035A1 publication Critical patent/WO2021135035A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention belongs to the field of organic electroluminescent diodes, and specifically relates to a high-performance sky blue thermally activated delayed fluorescent material, as well as its preparation method and application.
  • Organic light-emitting diodes do not require a backlight for active light emission, have high luminous efficiency, large viewing angle, fast response speed, large temperature adaptation range, relatively simple production and processing technology, and low driving voltage , Low energy consumption, lighter and thinner, flexible display and other advantages, as well as huge application prospects, have attracted the attention of many researchers.
  • OLED the light-emitting guest material that plays a leading role is very important.
  • the light-emitting guest materials used in early OLEDs were fluorescent materials. Since the ratio of singlet and triplet excitons in OLEDs is 1:3, the theoretical internal quantum efficiency (IQE) of OLEDs based on fluorescent materials can only reach 25%.
  • heavy metal complex phosphorescent materials can simultaneously utilize singlet and triplet excitons to achieve 100% IQE.
  • the commonly used heavy metals are all precious metals such as Ir and Pt, and heavy metal complex phosphorescent materials still need a breakthrough in blue light materials.
  • TADF organic thermally activated delayed fluorescence
  • TADF materials For TADF materials, fast reverse intersystem crossing constant (kRISC) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency OLEDs. At present, TADF materials with the above conditions are still relatively scarce compared to heavy metal Ir complexes.
  • One of the objectives of the present invention is to provide a high-performance sky blue thermally activated delayed fluorescent material, which realizes the ultra-fast reverse inter-system crossing rate and high luminous efficiency.
  • the high-performance blue light thermally activated delayed fluorescent material provided by the present invention includes the compound represented by the following formula I:
  • Group D is one of the following structures:
  • Another object of the present invention is to provide a method for preparing the high-performance sky blue thermally activated delayed fluorescent material, including:
  • the raw material 1 is 7-(4-bromophenyl)-3,4-difluorothiamine-1,2-dinitrile.
  • the raw material 2 is phenoxazine, 1,8,9,9'-tetramethylacridine or 1,3,6,8,9,9'-hexamethylacridine.
  • the molar ratio of the raw material 1 to the raw material 2 is between 1:1 and 1:3, preferably 1:1.2.
  • the molar ratio of the palladium acetate, tri-tert-butylphosphine tetrafluoroborate and NaOt-Bu is 1:(3-6):(30-60), preferably 1:3:30.
  • the molar volume ratio of the raw material 1 to toluene is between 1:5 and 1:20, preferably 1:12 (mmol:mL).
  • the reaction temperature is between 80 and 160°C, preferably 120°C.
  • reaction time is between 12 and 48 hours, preferably 24 hours.
  • the preparation method of the high-performance blue light thermally activated delayed fluorescent material provided by the present invention further comprises: cooling the obtained crude high-performance blue light thermally activated delayed fluorescent material, extracting with dichloromethane, merging the organic phases, and spinning Silica gel, column chromatography separation and purification, to obtain high-performance blue light thermally activated delayed fluorescence material products.
  • the method of cooling the crude product of high-performance sky blue thermally activated delayed fluorescent material is: cooling the crude product to room temperature, and then pour it into ice water.
  • the number of times of dichloromethane extraction is between 2 to 4 times, preferably 3 times.
  • the method for preparing the high-performance sky blue thermally activated delayed fluorescent material includes: mixing raw material 1, raw material 2, palladium acetate and tri-tert-butylphosphine tetrafluoroborate, and then adding NaOt-Bu, and adding NaOt-Bu, and adding NaOt-Bu in argon.
  • Toluene was added in an air atmosphere to react to obtain the crude high-performance blue light thermally activated delayed fluorescent material (ie the compound shown in the above formula I); the obtained crude high-performance blue light thermally activated delayed fluorescent material was cooled to room temperature, and then poured into ice Extract the water with dichloromethane, combine the organic phases, spin into silica gel, and separate and purify by column chromatography to obtain high-performance blue light thermally activated delayed fluorescence material products.
  • the crude high-performance blue light thermally activated delayed fluorescent material ie the compound shown in the above formula I
  • the obtained crude high-performance blue light thermally activated delayed fluorescent material was cooled to room temperature, and then poured into ice Extract the water with dichloromethane, combine the organic phases, spin into silica gel, and separate and purify by column chromatography to obtain high-performance blue light thermally activated delayed fluorescence material products.
  • the raw material 1 is 7-(4-bromophenyl)-3,4-difluorothiamine-1,2-dinitrile.
  • the raw material 2 is: phenoxazine, 1,8,9,9'-tetramethylacridine or 1,3,6,8,9,9'-hexamethylacridine.
  • the molar ratio of the raw material 1 to the raw material 2 is between 1:1 and 1:3, preferably 1:1.2.
  • the molar ratio of the palladium acetate, tri-tert-butylphosphine tetrafluoroborate and NaOt-Bu is 1:(3-6):(30-60), preferably 1:3:30.
  • the molar volume ratio of the raw material 1 to toluene is between 1:5 and 1:20, preferably 1:12 (mmol:mL).
  • the reaction temperature is between 80 and 160°C, preferably 120°C.
  • reaction time is between 12 and 48 hours, preferably 24 hours.
  • the number of times of dichloromethane extraction is between 2 to 4 times, preferably 3 times.
  • the method for preparing the high-performance sky blue thermally activated delayed fluorescent material includes: mixing raw material 1, raw material 2, palladium acetate and tri-tert-butylphosphine tetrafluoroborate, and then adding NaOt-Bu, and adding NaOt-Bu, and adding NaOt-Bu in argon.
  • Toluene was added in an atmosphere and reacted at 120°C for 24 hours to obtain a crude high-performance blue light thermally activated delayed fluorescent material (ie the compound shown in the above formula I); the obtained crude high-performance blue light thermally activated delayed fluorescent material was cooled to At room temperature, pour into ice water, extract with dichloromethane, combine the organic phases, spin into silica gel, and separate and purify by column chromatography to obtain high-performance blue light thermally activated delayed fluorescent material products.
  • a crude high-performance blue light thermally activated delayed fluorescent material ie the compound shown in the above formula I
  • the obtained crude high-performance blue light thermally activated delayed fluorescent material was cooled to At room temperature, pour into ice water, extract with dichloromethane, combine the organic phases, spin into silica gel, and separate and purify by column chromatography to obtain high-performance blue light thermally activated delayed fluorescent material products.
  • the raw material 1 is 7-(4-bromophenyl)-3,4-difluorothiamine-1,2-dinitrile.
  • the raw material 2 is: phenoxazine, 1,8,9,9'-tetramethylacridine or 1,3,6,8,9,9'-hexamethylacridine.
  • the molar ratio of the raw material 1 to the raw material 2 is 1:1.2.
  • the molar ratio of the palladium acetate, tri-tert-butylphosphine tetrafluoroborate and NaOt-Bu is 1:3:30.
  • the molar volume ratio of the raw material 1 to toluene is 1:12 (mmol:mL).
  • Another object of the present invention is to provide an application of the high-performance sky blue thermally activated delayed fluorescent material.
  • the high-performance blue light thermally activated delayed fluorescent material is used to prepare an OLED, more specifically, to prepare a light-emitting layer of the OLED.
  • Display devices and electronic devices based on the organic light-emitting material can be manufactured.
  • the TADF material has a molecular structure combining electron donor (D) and electron acceptor (A).
  • the present invention modulates the structure of the donor/acceptor unit to change its electron donating/receiving ability, thereby effectively increasing the material
  • the effect of the strength of the charge transfer state on the performance of the material is studied.
  • the electroluminescent devices based on the target sky blue TADF material have achieved very high efficiency.
  • the present invention solves the problems of the prior art.
  • a series of sky blue thermal activation delays with low single triplet energy level difference, high luminous efficiency, and rapid reverse inter-system transition constant are synthesized.
  • Fluorescent materials while achieving fine-tuning of the structure and fine-tuning of the spectrum. Their structure was confirmed by mass spectrometry, and then their photophysical properties were studied in detail.
  • a series of high-performance OLEDs were prepared by applying these blue-light TADF materials to the light-emitting layer, which has huge application prospects and Economic Value.
  • Figure 1 is a photoluminescence spectrum of the target molecule in Experimental Example 1.
  • FIG. 2 is a schematic diagram of the electroluminescent device in Experimental Example 2.
  • FIG. 2 is a schematic diagram of the electroluminescent device in Experimental Example 2.
  • the operations not mentioned in the present invention are all conventional operations in the field, and the materials not mentioned in the specific source in the present invention are all conventional materials that can be purchased from the market.
  • the raw material used in the present invention is 1:7-(4-bromophenyl)-3,4-difluorothiam-1,2-dinitrile, and the intermediate is self-synthesized.
  • OLED Organic light emitting display device
  • High Efficiency High Efficiency
  • long life Long Lifetime
  • the preparation method of the high-performance sky blue thermally activated delayed fluorescent material includes: raw material 17-(4-bromophenyl)-3,4-difluorothionin-1,2-dinitrile), raw material 2 (Raw material 2 is: phenoxazine, 1,8,9,9'-tetramethyl acridine or 1,3,6,8,9,9'-hexamethyl acridine; moles of raw material 1 and raw material 2 The ratio is between 1:1 ⁇ 1:3, preferably 1:1.2), palladium acetate and tri-tert-butylphosphine tetrafluoroborate are mixed, and then NaOt-Bu (palladium acetate, tri-tert-butylphosphine tetrafluoroborate) is added.
  • the molar ratio of borate to NaOt-Bu is between 1:3 ⁇ 6:30 ⁇ 60, preferably 1:3:30), and toluene is added under argon atmosphere (the molar volume ratio of raw material 1 to toluene is :1:5 ⁇ 1:20, preferably 1:12, unit is mmol:mL), reaction (reaction temperature: 80 ⁇ 160°C, preferably 120°C; reaction time: 12 ⁇ 48 hours , Preferably 24 hours) to obtain the crude high-performance blue light thermally activated delayed fluorescent material (ie the compound shown in the above formula I); cool the obtained crude high-performance blue light thermally activated delayed fluorescent material to room temperature, and then pour it into ice water, Extraction with dichloromethane (between 2 and 4 times, preferably 3 times), combine the organic phases, spin into silica gel, and separate and purify by column chromatography to obtain a high-performance blue light thermally activated delayed fluorescent material product.
  • the synthetic route of target compound 1 is as follows:
  • Synthesis steps Add raw material 1 (2.3g, 5mmol), phenoxazine (1.1g, 6mmol), palladium acetate (45mg, 0.2mmol) and tri-tert-butylphosphine tetrafluoroborate (0.17 g, 0.6 mmol), and then NaOt-Bu (0.58 g, 6 mmol) was added to the glove box, 60 mL of toluene that had been dewatered and deoxygenated was injected under an argon atmosphere, and reacted at 120° C. for 24 hours.
  • the synthetic route of target compound 2 is as follows:
  • Synthesis steps Add raw material 1 (2.3g, 5mmol), 1,8,9,9'-tetramethylacridine (1.4g, 6mmol), palladium acetate (45mg, 0.2mmol) and three into a 100mL two-neck flask. Tert-butyl phosphine tetrafluoroborate (0.17g, 0.6mmol), then add NaOt-Bu (0.58g, 6mmol) in the glove box, in an argon atmosphere, inject 60mL of toluene that has been dewatered and deoxygenated beforehand. React at 120°C for 24 hours.
  • Synthesis steps Add raw material 1 (2.3g, 5mmol), 1,3,6,8,9,9'-hexamethylacridine (1.6g, 6mmol), palladium acetate (45mg, 0.2 mmol) and tri-tert-butyl phosphine tetrafluoroborate (0.17g, 0.6mmol), then add NaOt-Bu (0.58g, 6mmol) in the glove box, and inject 60mL under argon atmosphere to remove water and oxygen beforehand Toluene, react at 120°C for 24 hours.
  • the photoluminescence spectrum of the target molecule in the toluene solution at room temperature is shown in Figure 1, where the horizontal axis is the wavelength and the vertical axis is the normalized intensity.
  • the electrothermally activated delayed fluorescent device using the thermally activated delayed fluorescent material of the present invention as the light-emitting layer may include glass and conductive glass (ITO) substrate layer 1, hole injection layer 2 (MoO 3 ) and transport layer 3 (TCTA) , Luminescent layer 4 (DPERO: sky blue material with delayed fluorescence of the present invention), electron transport layer 5 (1,3,5-tris(3-(3-pyridyl)phenyl)benzene Tm3PyPB), cathode layer 6 ( Lithium fluoride/aluminum).
  • ITO glass and conductive glass
  • TCTA transport layer 3
  • Luminescent layer 4 DPERO: sky blue material with delayed fluorescence of the present invention
  • electron transport layer 5 (1,3,5-tris(3-(3-pyridyl)phenyl)benzene Tm3PyPB
  • cathode layer 6 Lithium fluoride/aluminum
  • the electroluminescent device can be manufactured according to methods known in the art, for example, according to the method disclosed in the reference (Adv. Mater. 2003, 15, 277.).
  • the specific method is as follows: MoO 3 , TCTA, DPERO + thermally activated delayed fluorescent material, TmPyPB, 1nm LiF and 100nm Al are sequentially evaporated on a cleaned conductive glass (ITO) substrate under high vacuum conditions.
  • ITO conductive glass
  • ITO/MoO 3 (2nm)/TCTA (35nm)/DPEPO Compound 1 (10% 20nm)/Tm3PyPB (40nm)/LiF (1nm)/Al (100nm).
  • ITO/MoO 3 (2nm)/TCTA (35nm)/DPEPO Compound 2 (10% 20nm)/Tm3PyPB (40nm)/LiF (1nm)/Al (100nm).
  • ITO/MoO3(2nm)/TCTA(35nm)/DPEPO Compound 3(10% 20nm)/Tm3PyPB(40nm)/LiF(1nm)/Al(100nm).
  • the current-brightness-voltage characteristics of the device are measured by the Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with a calibrated silicon photodiode.
  • the electroluminescence spectrum is measured by the SPEX CCD3000 spectrometer from JY, France. All measurements are done in the atmosphere at room temperature.
  • the performance data of the device is shown in the following table:
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

本发明涉及一种高性能天蓝光热活化延迟荧光材料,以及它的制备方法和应用。本发明解决了现有技术的问题,通过巧妙的分子设计,合成了一系列具有较低单三线态能级差,高发光效率,快速的反向系间窜越常数的天蓝光热活化延迟荧光材料,同时实现了结构微调使得光谱微调。

Description

一种高性能天蓝光热活化延迟荧光材料及其制备方法和应用 技术领域
本发明属于有机电致发光二极管领域,具体地,涉及一种高性能天蓝光热活化延迟荧光材料,以及它的制备方法和应用。
背景技术
有机电致发光二极管(organic light-emitting diodes,OLEDs)以其主动发光不需要背光源、发光效率高、可视角度大、响应速度快、温度适应范围大、生产加工工艺相对简单、驱动电压低,能耗小,更轻更薄,柔性显示等优点以及巨大的应用前景,吸引了众多研究者的关注。在OLED中,起主导作用的发光客体材料至关重要。早期的OLED使用的发光客体材料为荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,因此基于荧光材料的OLED的理论内量子效率(IQE)只能达到25%,极大的限制了荧光电致发光器件的应用。重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子而实现100%的IQE。然而,通常使用的重金属都是Ir、Pt等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待突破。纯有机热活化延迟荧光(TADF)材料,通过巧妙的分子设计,使得分子具有较小的最低单三重能级差(ΔEST),这样三重态激子可以通过反向系间窜越(RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,也可以实现100%的IQE。
对于TADF材料,快速的反向系间窜越常数(kRISC)以及高的光致发光量子产率(PLQY)是制备高效率OLED的必要条件。目前,具 备上述条件的TADF材料相对于重金属Ir配合物而言还是比较匮乏。
因此,若能开发出一种高性能天蓝光热活化延迟荧光材料,得到分子设计巧妙的荧光材料化合物,实现较低单三线态能级差,高发光效率,快速的反向系间窜越常数,同时能够实现结构微调使得光谱微调,将会有巨大的应用前景和经济价值。
发明内容
技术问题
本发明的目的之一在于提供一种高性能天蓝光热活化延迟荧光材料,该材料实现了超快反向系间窜越速率、高发光效率。
技术解决方案
为了实现上述目的,本发明提供的高性能天蓝光热活化延迟荧光材料,包括如下式Ⅰ所示的化合物:
Figure PCTCN2020090216-appb-000001
在式Ⅰ所示的化合物中,基团A为以下结构中的一种:
Figure PCTCN2020090216-appb-000002
基团D为以下结构中的一种:
Figure PCTCN2020090216-appb-000003
本发明的另一目的在于,提供一种所述高性能天蓝光热活化延迟荧光材料的制备方法,包括:
将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,反应得到高性能天蓝光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品。
其中,所述原料1为7-(4-溴苯基)-3,4-二氟噻嗯-1,2-二腈。
其中,所述原料2为吩噁嗪,1,8,9,9’-四甲基吖啶或1,3,6,8,9,9’-六甲基吖啶。
其中,所述原料1和原料2的摩尔比为:1:1~1:3之间,优选1:1.2。
其中,所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:(3~6):(30~60)之间,优选1:3:30。
其中,所述原料1与甲苯的摩尔体积比为:1:5~1:20之间,优选1:12(mmol:mL)。
其中,反应温度为:80~160℃之间,优选120℃。
其中,反应时间为:12~48小时之间,优选24小时。
本发明提供的高性能天蓝光热活化延迟荧光材料的制备方法,还包括:将得到的所述高性能天蓝光热活化延迟荧光材料粗品进行冷却,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高性能天蓝光热活化延迟荧光材料产品。
其中,将高性能天蓝光热活化延迟荧光材料粗品进行冷却的方式 为:将粗品冷却至室温,再倒入冰水中。
其中,所述二氯甲烷萃取的次数为2~4次之间,优选3次。
本发明提供的高性能天蓝光热活化延迟荧光材料的制备方法,包括:将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,反应得到高性能天蓝光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品;将得到的高性能天蓝光热活化延迟荧光材料粗品冷却至室温,再倒入冰水中,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高性能天蓝光热活化延迟荧光材料产品。
其中,所述原料1为7-(4-溴苯基)-3,4-二氟噻嗯-1,2-二腈。
其中,所述原料2为:吩噁嗪,1,8,9,9’-四甲基吖啶或1,3,6,8,9,9’-六甲基吖啶。
其中,所述原料1和原料2的摩尔比为:1:1~1:3之间,优选1:1.2。
其中,所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:(3~6):(30~60)之间,优选1:3:30。
其中,所述原料1与甲苯的摩尔体积比为:1:5~1:20之间,优选1:12(mmol:mL)。
其中,反应温度为:80~160℃之间,优选120℃。
其中,反应时间为:12~48小时之间,优选24小时。
其中,所述二氯甲烷萃取的次数为2~4次之间,优选3次。
本发明提供的高性能天蓝光热活化延迟荧光材料的制备方法,包括:将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,在120℃反应24小时,得到高性能天蓝光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品;将得到的高性能天蓝光热活化延迟荧光材料粗品冷却至室温,再倒入冰水中,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高性能天蓝光热活化延迟荧光材料产品。
其中,所述原料1为7-(4-溴苯基)-3,4-二氟噻嗯-1,2-二腈。
其中,所述原料2为:吩噁嗪,1,8,9,9’-四甲基吖啶或1,3,6,8,9,9’-六甲基吖啶。
其中,所述原料1和原料2的摩尔比为:1:1.2。
其中,所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:3:30。
其中,所述原料1与甲苯的摩尔体积比为1:12(mmol:mL)。
本发明的又一目的在于,提供所述高性能天蓝光热活化延迟荧光材料的应用。
其中,所述高性能天蓝光热活化延迟荧光材料用以制备OLED,更具体地,用以制备OLED的发光层。
本发明具有以下有益效果:
1)通过不同官能团的搭配,设计具有显著TADF特性的天蓝光TADF材料;
2)合理的路线设计,材料提高合成效率;
3)实现高效率有机电致发光器件的制备;
4)基于该有机发光材料的显示设备和电子设备可以被制造。
TADF材料具有电子给体(D)和电子受体(A)相结合的分子结构,本发明通过对给/受体单元的的结构进行调控,改变其给/受电子能力,在有效的增加材料的发光效率,与此同时,研究电荷转移态的强弱对材料性能带来的影响。最后基于目标天蓝光TADF材料的电致发光器件都取得了非常高的效率。
有益效果
总之,本发明解决了现有技术的问题,通过巧妙的分子设计,合成了一系列具有较低单三线态能级差,高发光效率,快速的反向系间窜越常数的天蓝光热活化延迟荧光材料,同时实现了结构微调使得光 谱微调。通过质谱分析对它们的结构进行确认,然后对它们的光物理性能进行了详细的研究,最后基将这些天蓝光TADF材料应用到发光层制备了一系列高性能的OLED,具有巨大的应用前景和经济价值。
附图说明
图1为实验例1中目标分子的光致发光光谱图。
图2为实验例2中电致发光器件的示意图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明中未提及的操作均为本领域的常规操作,本发明中未提及具体出处的物料均为可以从市场上购买得到的常规物料。
原料出处:
本发明中使用到的原料1:7-(4-溴苯基)-3,4-二氟噻嗯-1,2-二腈,中间体为自行合成。
本发明中出现的英文术语解释如下:
有机发光显示装置(OLED)、高效率(High Efficiency)、长寿命(Long Lifetime)。
本发明提供的高性能天蓝光热活化延迟荧光材料,如说明书中式Ⅰ所示的化合物中基团A和D进行组合,可以得到以下三个化合物:
Figure PCTCN2020090216-appb-000004
本发明提供的高性能天蓝光热活化延迟荧光材料的制备方法,包括:将原料17-(4-溴苯基)-3,4-二氟噻嗯-1,2-二腈),原料2(原料2为:吩噁嗪,1,8,9,9’-四甲基吖啶或1,3,6,8,9,9’-六甲基吖啶;原料1和原料2的摩尔比为:1:1~1:3之间,优选1:1.2),醋酸钯和三叔丁基膦 四氟硼酸盐混合,再加入NaOt-Bu(醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:3~6:30~60之间,优选1:3:30),以及在氩气氛围下加入甲苯(原料1与甲苯的摩尔体积比为:1:5~1:20之间,优选1:12,单位为mmol:mL),反应(反应温度为:80~160℃之间,优选120℃;反应时间为:12~48小时之间,优选24小时)得到高性能天蓝光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品;将得到的高性能天蓝光热活化延迟荧光材料粗品冷却至室温,再倒入冰水中,用二氯甲烷萃取(次数为2~4次之间,优选3次),合并有机相,旋成硅胶,柱层析分离纯化,得到高性能天蓝光热活化延迟荧光材料产品。
实施例1
目标化合物1的合成路线如下所示:
Figure PCTCN2020090216-appb-000005
合成步骤:向100mL二口瓶中加入原料1(2.3g,5mmol),吩噁嗪(1.1g,6mmol),醋酸钯(45mg,0.2mmol)和三叔丁基膦四氟硼酸盐(0.17g,0.6mmol),然后在手套箱中加入NaOt-Bu(0.58g,6mmol),在氩气氛围下打入60mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,1:2)分离纯化,得淡蓝色粉末1.3g,产率47%。MS(EI)m/z:559.01.
实施例2
目标化合物2的合成路线如下所示:
Figure PCTCN2020090216-appb-000006
合成步骤:向100mL二口瓶中加入原料1(2.3g,5mmol),1,8,9,9’-四甲基吖啶(1.4g,6mmol),醋酸钯(45mg,0.2mmol)和三叔丁基膦四氟硼酸盐(0.17g,0.6mmol),然后在手套箱中加入NaOt-Bu(0.58g,6mmol),在氩气氛围下打入60mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得淡蓝色粉末1.1g,产率34%。MS(EI)m/z:613.08.
实施例3
目标化合物3的合成路线如下所示:
Figure PCTCN2020090216-appb-000007
合成步骤:向100mL二口瓶中加入原料1(2.3g,5mmol),1,3,6,8,9,9’-六甲基吖啶(1.6g,6mmol),醋酸钯(45mg,0.2mmol)和三叔丁基膦四氟硼酸盐(0.17g,0.6mmol),然后在手套箱中加入NaOt-Bu(0.58g,6mmol),在氩气氛围下打入60mL事先除水除氧的甲苯,在120℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得淡蓝色粉末1.2g,产率37%。MS(EI)m/z:641.00.
实验例1
目标分子(即化合物1、化合物2和化合物3)的最低单重态(S1)和最低三重态能级(T1),电化学能级如下表所示:
  PL Peak(nm) S 1(eV) T 1(eV) □△E ST(eV) HOMO(eV) LUMO(eV)
化合物1 486 2.55 2.43 0.12 -5.43 -2.64
化合物2 482 2.57 2.40 0.17 -5.61 -2.61
化合物3 476 2.61 2.41 0.20 -5.64 -2.62
目标分子(即化合物1、化合物2和化合物3)的光物理性质:
目标分子在室温下,甲苯溶液中的光致发光光谱如图1所示,其中横轴为波长,纵轴为归一化强度。
实验例2
使用本发明的热激活延迟荧光材料作为发光层的电致热激活延迟荧光器件,可包括玻璃和导电玻璃(ITO)衬底层1,空穴注入层2(MoO 3)和传输层3(TCTA),发光层4(DPERO:本发明具有延迟荧光的天蓝光材料),电子传输层5(1,3,5-三(3-(3-吡啶基)苯基)苯Tm3PyPB),阴极层6(氟化锂/铝)。电致发光器件的示意图如图2所示。
电致发光器件可按本领域已知方法制作,如按参考文献(Adv.Mater.2003,15,277.)公开的方法制作。具体方法为:在经过清洗的导电玻璃(ITO)衬底上,高真空条件下依次蒸镀MoO 3,TCTA,DPERO+热活化延迟荧光材料,TmPyPB,1nm的LiF和100nm的Al。用该方法制得如图2所示的器件,各种具体的器件结构如下:
器件1(A1):
ITO/MoO 3(2nm)/TCTA(35nm)/DPEPO:化合物1(10%20nm)/Tm3PyPB(40nm)/LiF(1nm)/Al(100nm)。
器件2(A2):
ITO/MoO 3(2nm)/TCTA(35nm)/DPEPO:化合物2(10%20nm)/Tm3PyPB(40nm)/LiF(1nm)/Al(100nm)。
器件3(A3):
ITO/MoO3(2nm)/TCTA(35nm)/DPEPO:化合物3(10%20nm)/Tm3PyPB(40nm)/LiF(1nm)/Al(100nm)。
器件的电流-亮度-电压特性是由带有校正过的硅光电二极管的Keithley源测量系统(Keithley 2400 Sourcemeter、Keithley 2000 Currentmeter)完成的,电致发光光谱是由法国JY公司SPEX CCD3000 光谱仪测量的,所有测量均在室温大气中完成。
器件的性能数据见下表:
器件 最高电流效率(cd/A) CIEx,CIEy 最大外量子效率(%)
器件1 25.7 (0.15,0.28) 17.1
器件2 23.8 (0.15,0.25) 16.9
器件3 19.5 (0.15,0.20) 15.8
本发明可应用的领域:
1)高效率的天蓝光TADF材料;
2)长寿命的天蓝光电致发光器件;
3)基于电致发光器件的显示。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (14)

  1. 一种高性能天蓝光热活化延迟荧光材料,包括如下式Ⅰ所示的化合物:
    Figure PCTCN2020090216-appb-100001
    在式Ⅰ所示的化合物中,基团A为以下结构中的一种:
    Figure PCTCN2020090216-appb-100002
    基团D为以下结构中的一种:
    Figure PCTCN2020090216-appb-100003
  2. 一种权利要求1所述高性能天蓝光热活化延迟荧光材料的制备方法,包括:将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,反应得到高性能天蓝光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品;
    所述原料1为7-(4-溴苯基)-3,4-二氟噻嗯-1,2-二腈;
    所述原料2为吩噁嗪,1,8,9,9’-四甲基吖啶或1,3,6,8,9,9’-六甲基吖啶。
  3. 根据权利要求2所述高性能天蓝光热活化延迟荧光材料的制备方法,其中,所述原料1和原料2的摩尔比为:1:1~1:3。
  4. 根据权利要求2所述高性能天蓝光热活化延迟荧光材料的制备方法,其中,所述原料1和原料2的摩尔比为:1:1.2。
  5. 根据权利要求2所述高性能天蓝光热活化延迟荧光材料的制备方法,其中,所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:3~6:30~60。
  6. 根据权利要求2所述高性能天蓝光热活化延迟荧光材料的制备方法,其中,所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:3:30。
  7. 根据权利要求2所述高性能天蓝光热活化延迟荧光材料的制备方法,其中,所述原料1与甲苯的摩尔体积比为:1:5~1:20。
  8. 根据权利要求2所述高性能天蓝光热活化延迟荧光材料的制备方法,其中,所述原料1与甲苯的摩尔体积比为:1:12。
  9. 根据权利要求2任意一项所述高性能天蓝光热活化延迟荧光材料的制备方法,其中,反应温度为:80~160℃;反应时间为:12~48小时。
  10. 根据权利要求2任意一项所述高性能天蓝光热活化延迟荧光材料的制备方法,其中,反应温度为:120℃;反应时间为:24小时。
  11. 根据权利要求2任意一项所述高性能天蓝光热活化延迟荧光材料的制备方法,其中,该制备方法还包括:将得到的所述高性能天蓝光热活化延迟荧光材料粗品进行冷却,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高性能天蓝光热活化延迟荧光材料产品。
  12. 一种权利要求1所述高性能天蓝光热活化延迟荧光材料的制 备方法,包括:将原料1,原料2,醋酸钯和三叔丁基膦四氟硼酸盐混合,再加入NaOt-Bu,以及在氩气氛围下加入甲苯,反应得到高性能天蓝光热活化延迟荧光材料(即上述式Ⅰ所示的化合物)粗品;将得到的高性能天蓝光热活化延迟荧光材料粗品冷却至室温,再倒入冰水中,用二氯甲烷萃取,合并有机相,旋成硅胶,柱层析分离纯化,得到高性能天蓝光热活化延迟荧光材料产品;
    所述原料1为7-(4-溴苯基)-3,4-二氟噻嗯-1,2-二腈;
    所述原料2为:吩噁嗪,1,8,9,9’-四甲基吖啶或1,3,6,8,9,9’-六甲基吖啶;
    所述原料1和原料2的摩尔比为:1:1~1:3;所述醋酸钯、三叔丁基膦四氟硼酸盐和NaOt-Bu的摩尔比为:1:3~6:30~60;所述原料1与甲苯的摩尔体积比为:1:5~1:20;
    所述反应温度为:80~160℃;所述反应时间为:12~48小时;
    所述二氯甲烷萃取的次数为2~4次。
  13. 一种权利要求1所述高性能天蓝光热活化延迟荧光材料的应用。
  14. 根据权利要求13所述高性能天蓝光热活化延迟荧光材料的应用,其中,所述高性能天蓝光热活化延迟荧光材料用以制备OLED。
PCT/CN2020/090216 2020-01-03 2020-05-14 一种高性能天蓝光热活化延迟荧光材料及其制备方法和应用 WO2021135035A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/979,847 US11926772B2 (en) 2020-01-03 2020-05-14 High-performance sky blue thermally activated delayed fluorescent material, manufacturing method thereof, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010004429.3 2020-01-03
CN202010004429.3A CN111187260B (zh) 2020-01-03 2020-01-03 高性能天蓝光热活化延迟荧光材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021135035A1 true WO2021135035A1 (zh) 2021-07-08

Family

ID=70704634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090216 WO2021135035A1 (zh) 2020-01-03 2020-05-14 一种高性能天蓝光热活化延迟荧光材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US11926772B2 (zh)
CN (1) CN111187260B (zh)
WO (1) WO2021135035A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592194A (zh) * 2015-01-04 2015-05-06 华南理工大学 一种噻蒽氧化物-芳香胺有机发光小分子及制备与应用
CN106831744A (zh) * 2016-12-30 2017-06-13 上海天马有机发光显示技术有限公司 一种有机电致发光材料以及有机光电装置
US20180159050A1 (en) * 2016-12-07 2018-06-07 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
CN108794533A (zh) * 2017-04-27 2018-11-13 三星显示有限公司 杂环化合物和包括该杂环化合物的有机发光器件
CN109678851A (zh) * 2019-01-31 2019-04-26 武汉华星光电半导体显示技术有限公司 热激活延迟荧光材料、有机电致发光器件及显示面板
CN109776490A (zh) * 2019-01-29 2019-05-21 华南理工大学 一种非芳香胺类小分子光电材料及制备与应用
CN109970642A (zh) * 2019-04-16 2019-07-05 武汉华星光电半导体显示技术有限公司 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592194A (zh) * 2015-01-04 2015-05-06 华南理工大学 一种噻蒽氧化物-芳香胺有机发光小分子及制备与应用
US20180159050A1 (en) * 2016-12-07 2018-06-07 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
CN106831744A (zh) * 2016-12-30 2017-06-13 上海天马有机发光显示技术有限公司 一种有机电致发光材料以及有机光电装置
CN108794533A (zh) * 2017-04-27 2018-11-13 三星显示有限公司 杂环化合物和包括该杂环化合物的有机发光器件
CN109776490A (zh) * 2019-01-29 2019-05-21 华南理工大学 一种非芳香胺类小分子光电材料及制备与应用
CN109678851A (zh) * 2019-01-31 2019-04-26 武汉华星光电半导体显示技术有限公司 热激活延迟荧光材料、有机电致发光器件及显示面板
CN109970642A (zh) * 2019-04-16 2019-07-05 武汉华星光电半导体显示技术有限公司 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAI XINYI, QIAO ZHENYANG, LI MENGKE, WU XIAO, HE YANMEI, JIANG XIAOFANG, CAO YONG, SU SHI‐JIAN: "Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, DE, vol. 58, no. 38, 16 September 2019 (2019-09-16), DE, pages 13522 - 13531, XP055826086, ISSN: 1433-7851, DOI: 10.1002/anie.201906371 *
XIE GAOZHAN, LI XIANGLONG, CHEN DONGJUN, WANG ZHIHENG, CAI XINYI, CHEN DONGCHENG, LI YUNCHUAN, LIU KUNKUN, CAO YONG, SU SHI-JIAN: "Evaporation- and Solution-Process-Feasible Highly Efficient Thianthrene-9,9′,10,10′-Tetraoxide-Based Thermally Activated Delayed Fluorescence Emitters with Reduced Efficiency Roll-Off", ADVANCED MATERIALS, VCH PUBLISHERS, vol. 28, no. 1, 1 January 2016 (2016-01-01), pages 181 - 187, XP055826084, ISSN: 0935-9648, DOI: 10.1002/adma.201503225 *

Also Published As

Publication number Publication date
US11926772B2 (en) 2024-03-12
CN111187260B (zh) 2021-04-02
US20230096584A1 (en) 2023-03-30
CN111187260A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2020238094A1 (zh) 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用
WO2020098138A1 (zh) 一种深蓝光热活化延迟荧光材料及其应用
WO2020098114A1 (zh) 绿光热活化延迟荧光材料及其合成方法、电致发光器件
CN112645968A (zh) 一种含有两个硼原子和两个氧族原子的稠环化合物及有机电致发光器件
CN109369652B (zh) 一种蓝光热活化延迟荧光材料及其应用
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
CN113336782A (zh) 含咔唑骨架的绿光窄光谱三配位硼发光化合物、制备方法及其应用
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110183426B (zh) 一种热活化延迟荧光材料、制备方法及电致发光器件
WO2021000434A1 (zh) 红绿蓝热活化延迟荧光材料,其合成方法及应用
Ho et al. Triphenylethene-carbazole-based molecules for the realization of blue and white aggregation-induced emission OLEDs with high luminance
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
WO2020237885A1 (zh) 深蓝色热活化延迟荧光材料和其制备方法、电致发光器件
WO2020220414A1 (zh) 热活化延迟荧光材料及其制备方法、显示装置
WO2020113643A1 (zh) 蓝光tadf材料及其制备方法和电致发光器件
WO2020082568A1 (zh) 吖啶衍生物及有机电致发光器件
WO2021135035A1 (zh) 一种高性能天蓝光热活化延迟荧光材料及其制备方法和应用
CN110240550B (zh) 一种热活化延迟荧光材料、制备方法及电致发光器件
WO2020124764A1 (zh) 红光热活化延迟荧光材料、其制备方法及有机发光二极管器件
US10826007B2 (en) Blue thermally activated delayed fluorescence material and application thereof
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2021103058A1 (zh) 空穴传输材料及其制备方法和电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908756

Country of ref document: EP

Kind code of ref document: A1