WO2020220611A1 - 热活化延迟荧光分子材料及其合成方法、有机电致发光器件 - Google Patents

热活化延迟荧光分子材料及其合成方法、有机电致发光器件 Download PDF

Info

Publication number
WO2020220611A1
WO2020220611A1 PCT/CN2019/112904 CN2019112904W WO2020220611A1 WO 2020220611 A1 WO2020220611 A1 WO 2020220611A1 CN 2019112904 W CN2019112904 W CN 2019112904W WO 2020220611 A1 WO2020220611 A1 WO 2020220611A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally activated
activated delayed
electron
donor
delayed fluorescent
Prior art date
Application number
PCT/CN2019/112904
Other languages
English (en)
French (fr)
Inventor
王彦杰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/629,972 priority Critical patent/US11613530B2/en
Publication of WO2020220611A1 publication Critical patent/WO2020220611A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/40Nitrogen atoms, not forming part of a nitro radical, e.g. isatin semicarbazone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Definitions

  • the invention relates to the technical field of organic photoelectric materials, in particular to a thermally activated delayed fluorescence single-molecule white light material, a synthesis method thereof, and an organic electroluminescence device.
  • OLEDs Organic light-emitting diodes
  • OLEDs due to active light emission, large viewing angle, fast response speed, wide temperature adaptation range, low driving voltage, low power consumption, high brightness, simple production process, light and thin, and can
  • the advantages of flexible display and other advantages have shown great application prospects in the field of OLED display and lighting, attracting the attention of scientific researchers and companies.
  • Samsung and LG have implemented OLEDs in mobile phones.
  • the usual luminescent layer material consists of host and guest luminescent materials, and the luminous efficiency and lifetime of luminescent materials are two important indicators of the quality of luminescent materials.
  • Early OLED light-emitting materials are traditional fluorescent materials.
  • TADF thermal activated delayed fluorescence
  • ⁇ EST triplet energy difference
  • the triplet excitons can return to the singlet state through the anti-system crossing (RISC), and then through the radiation transition to the ground state to emit light, so that the singlet and triplet excitons can be used at the same time, and 100% of the excitons can be used. Rate without the participation of heavy metals.
  • the TADF material has a rich structure design, and most of its physical properties are easily adjusted to obtain high-efficiency and long-life organic light-emitting materials that meet the requirements.
  • TADF molecular designs are D (donor)-A (acceptor) structure.
  • the donor is usually diphenylamine, carbazole and acridine or their derivative structure.
  • the torsion angle of carbazole and acceptor A is appropriate, but the electron donating ability of carbazole is too weak; the electron donating ability of diphenylamine is moderate, but the torsion angle of acceptor A is too small; the electron donating ability of acridine is very strong, but The torsion angle with the receiver is too large.
  • the technical problem to be solved by the present invention is to provide a thermally activated delayed fluorescent molecular material and its synthesis method, organic electroluminescent device, and replace the phenyl group in the diphenylamine or triphenylamine in the donor molecule with the indenyl group. It can increase the electron donating ability of the donor, can effectively inhibit the non-radiative transition rate, thereby increasing the molecular luminescence quantum yield (PLQY); it can also increase the torsion angle between the electron donor and the electron acceptor, and reduce the maximum occupancy The electron cloud between the molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) overlap, resulting in a smaller ⁇ EST.
  • HOMO molecular orbital
  • LUMO lowest occupied molecular orbital
  • the present invention provides a thermally activated delayed fluorescence molecular material, which includes an electron donor and an electron acceptor, wherein the electron acceptor contains an indenyl group.
  • the molecular structural formula of the electron donor is selected from one of the following structural formulas:
  • the molecular structural formula of the electron acceptor is selected from one of the following structural formulas:
  • the present invention also provides a method for synthesizing thermally activated delayed fluorescence molecular materials, which includes the following steps: placing indenyl group-containing donor group raw materials, acceptor group raw materials and solvents in a reaction vessel to fully dissolve the first mixture.
  • the raw material of the donor group is 6-bromo-1-methyl-N,N-bis(1-methylindol-3-yl)indole-3-amine;
  • the acceptor group The raw material is 6-bromo-1-methyl-N,N-bis(1-methylindol-3-yl)indole-3-amine;
  • the catalyst is palladium tetrakistriphenylphosphorus;
  • the donor The molar ratio of the group raw material, the acceptor group raw material, and the catalyst is 10:10:0.6 to 10:10:0.3.
  • the solvent is toluene and sodium carbonate aqueous solution; the volume ratio of the toluene to the sodium carbonate aqueous solution is 1:1 to 5:2; the eluent is petroleum ether; the reaction vessel is a three-necked flask The volume of the three-necked flask is 200-300ml.
  • the present invention also provides an organic electroluminescence device, which includes the thermally activated delayed fluorescent molecular material.
  • the organic electroluminescence device includes a first electrode; a hole injection layer provided on the first electrode; a hole transport layer provided on the hole injection layer; a light emitting layer provided on the On the hole transport layer, the material used for the light emitting layer includes the thermally activated delayed fluorescent molecular material; the electron transport layer is provided on the light emitting layer; and the second electrode is provided on the electron transport layer.
  • the first electrode is an anode, and the material used is indium tin oxide; the second electrode is a cathode, and the material used is one of lithium fluoride or aluminum.
  • the light-emitting layer also includes 1,3-bis(9H-carbazol-9-yl)benzene;
  • the material used for the hole injection layer is 2,3,6,7,10,11-hexacyano -1,4,5,8,9,12-hexaazatriphenylene;
  • the material used for the electron transport layer is 1,3,5-tris(3-(3-pyridyl)phenyl)benzene;
  • the material used for the hole transport layer is 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline].
  • the present invention provides a thermally activated delayed fluorescent molecular material, a synthesis method thereof, and an organic electroluminescence device.
  • the phenyl group in the donor molecule is replaced with an indenyl group, which can increase the electron donation of the donor.
  • the organic electroluminescent device of the present invention adopts the thermally activated delayed fluorescent molecular material prepared by the present invention, which has high luminous efficiency and long service life.
  • Figure 1 is a photoluminescence spectrum diagram of the target compound of the present invention.
  • Fig. 2 is a schematic diagram of the structure of the organic light emitting device of the present invention.
  • the present invention provides a thermally activated delayed fluorescent molecular material, which includes an electron donor and an electron acceptor, wherein the electron acceptor contains an indenyl group.
  • the general structural formula of the thermally activated delayed fluorescence molecular material is: D-A, D is an electron donor, and A is an electron acceptor.
  • the molecular structural formula of the electron donor is selected from one of the following structural formulas:
  • the molecular structural formula of the electron acceptor is selected from one of the following structural formulas:
  • thermally activated delayed fluorescent molecular material will be further explained below in conjunction with the thermally activated delayed fluorescent molecular material synthesis method of the present invention.
  • the preparation method of the thermally activated delayed fluorescent molecular material of the present invention is described in detail by taking the preparation of target compound 1 (a thermally activated delayed fluorescent molecular material of the present invention) as an example.
  • the general structure of the target compound is as follows:
  • the synthesis method of thermally activated delayed fluorescence molecular material of the present invention includes the following steps S1 to S4.
  • the raw material of the donor group is 6-bromo-1-methyl-N,N-bis(1-methylindol-3-yl)indole-3-amine; the raw material of the acceptor group is 6 -Bromo-1-methyl-N,N-bis(1-methylindol-3-yl)indol-3-amine.
  • the solvent is toluene and sodium carbonate aqueous solution; the volume ratio of the toluene to the sodium carbonate aqueous solution is 1:1 to 5:2;
  • the reaction container is a three-necked flask, and the volume of the three-necked flask is 200-300 ml.
  • the catalyst is palladium tetrakistriphenylphosphorus; the molar ratio of the donor group raw material, the acceptor group raw material and the catalyst is 10:10:0.6 to 10:10:0.3.
  • the thermally activated delayed fluorescent molecular material By preparing the thermally activated delayed fluorescent molecular material by the synthesis method of this embodiment, the thermally activated delayed fluorescent molecular material can be effectively synthesized, and the synthesis efficiency can be improved.
  • the thermally activated delayed fluorescent molecular material obtained by the preparation method of this embodiment is subjected to spectroscopic experiments and photophysical data detection . Obtain the fluorescence spectrum shown in Figure 1 and the photophysical data shown in Table 1.
  • Table 1 is the photophysical data of the thermally activated delayed fluorescence molecular material of the present invention
  • the effective wavelength range of the target compound of the present invention is between 570-750 nm, and therefore, the emission spectrum of the molecule can be adjusted within this range. It can be seen from Table 1 that the thermally activated delayed fluorescence molecular material of the present invention has a smaller minimum singlet state and triplet energy difference ( ⁇ EST).
  • the present invention also provides an organic electroluminescent device, including the thermally activated delayed fluorescent molecular material, which can emit red light from the organic electroluminescent device.
  • the organic electroluminescent device 10 includes a first electrode 11, a hole injection layer 12, a hole transport layer 13, a light emitting layer 14, an electron transport layer 15, and a second electrode 16.
  • the hole injection layer 12 is provided on the first electrode 11; the hole transport layer 13 is provided on the hole injection layer 12; the light-emitting layer 14 is provided on the hole transport layer 13 ,
  • the material used for the light-emitting layer 4 includes the thermally activated delayed fluorescent molecular material and 1,3-bis(9H-carbazol-9-yl)benzene as the host molecule, wherein the thermally activated delayed fluorescent molecular material is doped;
  • the electron transport layer 15 is provided on the light-emitting layer 14; the second electrode 16 is provided on the electron transport layer 15.
  • the first electrode 11 is an anode, and the material used is indium tin oxide; the second electrode 16 is a cathode, and the material used is one of lithium fluoride or aluminum.
  • the material used for the electron transport layer 15 is 1,3,5-tris(3-(3-pyridyl)phenyl)benzene; the material used for the hole transport layer 13 is 4,4'-cyclohexylbis[N ,N-bis(4-methylphenyl)aniline], the material used for the hole injection layer 12 is 2,3,6,7,10,11-hexacyano-1,4,5,8,9 ,12-hexaazatriphenylene.
  • Table 2 is a performance data table of the organic electroluminescent device 10 using the target compound.
  • the electroluminescent device 10 of the present invention adopts the thermally activated delayed fluorescent molecular material in the light-emitting layer 14 to effectively manufacture a red electroluminescent device and improve the luminous efficiency of the red electroluminescent device.
  • the present invention provides a thermally activated delayed fluorescent molecular material, a synthesis method thereof, and an organic electroluminescence device.
  • the phenyl group in the donor molecule is replaced with an indenyl group, which can increase the electron donation of the donor.
  • the organic electroluminescent device of the present invention adopts the thermally activated delayed fluorescent molecular material prepared by the present invention, which has high luminous efficiency and long service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

一种热活化延迟荧光分子材料及其合成方法、有机电致发光器件,包括电子给体和电子受体,其中,所述电子受体中含有茚基。通过将给体分子中的体二苯胺或三苯胺中苯基用茚基替代,既能够增加给体的给电子能力,能够有效抑制非辐射跃迁速率,从而提高分子的发光量子产率(PLQY);又能够增加电子给体和电子受体之间的扭转角,同时减小最高占有分子轨道(HOMO)和最低占有分子轨道(LUMO)之间的电子云重叠,从而获得较小的ΔEST。

Description

热活化延迟荧光分子材料及其合成方法、有机电致发光器件 技术领域
本发明涉及有机光电材料技术领域,特别是一种热活化延迟荧光单分子白光材料及其合成方法、有机电致发光器件。
背景技术
有机发光二极管(organic lighting-emitting diodes,OLEDs),由于主动发光、可视角度大、相应速度快、温度适应范围宽、驱动电压低、功耗小、亮度大、生产工艺简单、轻薄、且可以柔性显示等优点,在OLED显示和照明领域表现出巨大的应用前景,吸引了科研工作者和公司的关注。目前,三星、LG已经实现OLEDs应用在手机上。在OLED中,发光层材料的优劣是OLED能否产业化起决定作用。通常的发光层材料由主体和客体发光材料,而发光材料的发光效率和寿命是发光材料好坏的两个重要指标。早期的OLED发光材料为传统荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,而传统荧光材料只能利用单重态激子发光,因此,传统荧光材料的OLED理论内量子效率为25%。金属配合物磷光材料由于重原子的自旋轨道耦合效应,使得其能够实现单重态激子和三重态激子的100%利用率;并且现在也已经用在红光和绿光OLED显示上。但是,磷光材料通常要使用重金属Ir、Pt、Os等贵重金属,不仅成本高,而且毒性较大。此外,高 效、长寿命的磷光金属配合物材料仍旧是极大的挑战。2012年,Adachi等人提出了“热活化延迟荧光”(TADF)机理的纯有机发光分子,通过合理的D-A结构分子设计,使得分子具有较小的最低单重态和三重能级差(ΔEST),这样三重态激子可以通过反系间窜越(RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,可以实现激子的100%的利用率,同时不需要重金属的参与。并且TADF材料结构设计丰富,其材料大部分物理性质容易调节,以获得满足要求的高效、长寿命的有机发光材料。
技术问题
大部分的TADF分子设计都是D(给体)-A(受体)型结构。而且给体通常为二苯胺、咔唑和吖啶或其衍生物结构。咔唑和受体A的扭转角合适,但是咔唑的给电子能力太弱;二苯胺的给电子能力适中,但是和受体A的扭转角太小;吖啶的给电子能力很强,但是和受体的扭转角太大。扭转角大,虽然会使得RISC速率大,但是材料的光致发光量子效率(PLQY)会降低;给电子能力太弱,会使得D和A之间的电荷转移差,D和A之间的HOMO与LUMO重叠程度太大,导致ΔEST较大。
技术解决方案
本发明所要解决的技术问题是,提供一种热活化延迟荧光分子材料及其合成方法、有机电致发光器件,将给体 分子中的体二苯胺或三苯胺中苯基用茚基替代,既能够增加给体的给电子能力,能够有效抑制非辐射跃迁速率,从而提高分子的发光量子产率(PLQY);又能够增加电子给体和电子受体之间的扭转角,同时减小最高占有分子轨道(HOMO)和最低占有分子轨道(LUMO)之间的电子云重叠,从而获得较小的ΔEST。
为解决上述问题,本发明提供一种热活化延迟荧光分子材料,包括电子给体和电子受体,其中,所述电子受体中含有茚基。
进一步地,所述电子给体的分子结构式选自如下结构式的一种:
Figure PCTCN2019112904-appb-000001
Figure PCTCN2019112904-appb-000002
进一步地,所述电子受体的分子结构式选自如下结构式的一种:
Figure PCTCN2019112904-appb-000003
Figure PCTCN2019112904-appb-000004
本发明还提供一种热活化延迟荧光分子材料合成方法,包括如下步骤:将含有茚基基团的给体基团原料、受体基团原料以及溶剂置于反应容器中充分溶解得到第一混合溶液,使用氩气对所述反应容器进行抽换气;加入催化剂至所述反应容器中与所述第一混合溶液进行回流反应24h,冷却得到第二混合溶液;使用二氯甲烷对所述第二混合溶液进行3次萃取、3次水洗,并通过无水硫酸钠进行干燥、过滤以及旋干得到目标化合物;通过使用200-300目的硅胶对所述目标化合物溶液进行柱层析,并用淋洗液淋洗,最后分离纯化得到所述热活化延迟荧光分子材料。
进一步地,所述给体基团原料为6-溴-1-甲基-N,N-二(1-甲基吲哚-3-基)吲哚-3-胺;所述受体基团原料为 6-溴-1-甲基-N,N-二(1-甲基吲哚-3-基)吲哚-3-胺;所述催化剂为四三苯基磷钯;所述给体基团原料、所述受体基团原料以及所述催化剂的摩尔比为10:10:0.6~10:10:0.3。
进一步地,所述溶剂为甲苯和碳酸钠水溶液;所述甲苯与所述碳酸钠水溶液的体积比为1:1~5:2;所述淋洗液为石油醚;所述反应容器为三口烧瓶,所述三口烧瓶的容积为200~300ml。
本发明还提供一种有机电致发光器件,包括所述的热活化延迟荧光分子材料。
进一步地,所述有机电致发光器件包括第一电极;空穴注入层,设于所述第一电极上;空穴传输层,设于所述空穴注入层上;发光层,设于所述空穴传输层上,所述发光层所用材料包括所述热激活延迟荧光分子材料;电子传输层,设于发光层上;第二电极,设于所述电子传输层上。
进一步地,所述第一电极为阳极,其所用材料为氧化铟锡;所述第二电极为阴极,其所用材料为氟化锂或铝中的一种。
进一步地,所述发光层中还包括1,3-二(9H-咔唑-9-基)苯;所述空穴注入层所用材料为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲;所述电子传输层所用材料为1,3,5-三(3-(3-吡啶基)苯基)苯;所述空穴传输层所用材料为4,4'-环己基二[N,N-二(4-甲基 苯基)苯胺]。
有益效果
本发明提供一种热活化延迟荧光分子材料及其合成方法、有机电致发光器件,将给体分子中的体二苯胺或三苯胺中苯基用茚基替代,既能够增加给体的给电子能力,能够有效抑制非辐射跃迁速率,从而提高分子的发光量子产率(PLQY);又能够增加电子给体和电子受体之间的扭转角,同时减小最高占有分子轨道(HOMO)和最低占有分子轨道(LUMO)之间的电子云重叠,从而获得较小的ΔEST。本发明的有机电致发光器件,采用本发明制备的热活化延迟荧光分子材料,其发光效率高,而且使用寿命长。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的目标化合物光致发光光谱图;
图2为本发明的有机发光致电器的结构示意图。
本发明的实施方式
以下是各实施例的说明是参考附加的图式,用以例示本发明可以用实施的特定实施例。本发明所提到的方向用语,例如上、下、前、后、左、右、内、外、侧等,仅是 参考附图式的方向。本发明提到的元件名称,例如第一、第二等,仅是区分不同的元部件,可以更好的表达。在图中,结构相似的单元以相同标号表示。
本文将参照附图来详细描述本发明的实施例。本发明可以表现为许多不同形式,本发明不应仅被解释为本文阐述的具体实施例。本发明提供实施例是为了解释本发明的实际应用,从而使本领域其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改方案。
本发明提出一种热活化延迟荧光分子材料,包括电子给体和电子受体其中,所述电子受体中含有茚基。所述热活化延迟荧光分子材料结构通式为:D-A,D为电子给体,A为电子受体。
所述电子给体的分子结构式选自如下结构式的一种:
Figure PCTCN2019112904-appb-000005
Figure PCTCN2019112904-appb-000006
所述电子受体的分子结构式选自如下结构式的一种:
Figure PCTCN2019112904-appb-000007
Figure PCTCN2019112904-appb-000008
为了更加清楚的解释本发明,下面结合本发明的热活化延迟荧光分子材料合成方法对所述热活化延迟荧光分子材料进行进一步解释。
在本发明一实施例中,以制备目标化合物一(本发明的一种热活化延迟荧光分子材料)为例,详细说明本发明的热活化延迟荧光分子材料制备方法。其中目标化合物的结构通式如下:
Figure PCTCN2019112904-appb-000009
本发明的热活化延迟荧光分子材料合成方法包括以下 步骤S1~S4。
S1、将含有茚基基团的给体基团原料、受体基团原料以及溶剂置于反应容器中充分溶解得到第一混合溶液,使用氩气对所述反应容器进行抽换气。
所述给体基团原料为6-溴-1-甲基-N,N-二(1-甲基吲哚-3-基)吲哚-3-胺;所述受体基团原料为6-溴-1-甲基-N,N-二(1-甲基吲哚-3-基)吲哚-3-胺。
所述溶剂为甲苯和碳酸钠水溶液;所述甲苯与所述碳酸钠水溶液的体积比为1:1~5:2;
所述反应容器为三口烧瓶,所述三口烧瓶的容积为200~300ml。
S2、加入催化剂至所述反应容器中与所述第一混合溶液进行回流反应24h,冷却得到第二混合溶液。
所述催化剂为四三苯基磷钯;所述给体基团原料、所述受体基团原料以及所述催化剂的摩尔比为10:10:0.6~10:10:0.3。
S3、使用二氯甲烷对所述第二混合溶液进行3次萃取、3次水洗,并通过无水硫酸钠进行干燥、过滤以及旋干得到目标化合物。
S4、通过使用200-300目的硅胶对所述目标化合物溶液进行柱层析,并用淋洗液淋洗,最后分离纯化得到所述热活化延迟荧光分子材料。所述淋洗液为石油醚。
通过本实施例的制合成方法制备热活化延迟荧光分子材料,能够有效合成热活化延迟荧光分子材料,同时能够提高合成效率。
为了验证本发明的热活化延迟荧光分子材料的特性是否满足电致发光器件的要求,因此本实施例中将通过本实施例的制备方法得到的热活化延迟荧光分子材料进行光谱实验和光物理数据检测。得到如图1所示的荧光光谱图以及如表1所示的光物理数据。
表1 为本发明的热活化延迟荧光分子材料的光物理数据
Figure PCTCN2019112904-appb-000010
由图1可知,本发明的目标化合物的有效波长范围在570-750nm之间,因此,可以在此范围内调节分子的发光光谱。由表1可知,本发明的热活化延迟荧光分子材料具有较小的最低单重态和三重能级差(ΔEST)。
如图2所示,本发明还提供了一种有机电致发光器件,包括所述的热活化延迟荧光分子材料可以是所述有机电致发光器件发出红光。
具体的,所述有机电致发光器件10包括第一电极11、空穴注入层12、空穴传输层13、发光层14、电子传输层 15、第二电极16。
所述空穴注入层12设于所述第一电极11上;所述空穴传输层13设于所述空穴注入层12上;所述发光层14设于所述空穴传输层13上,所述发光层4所用材料包括所述热活化延迟荧光分子材料以及1,3-二(9H-咔唑-9-基)苯为主体分子,其中掺杂所述热活化延迟荧光分子材料;所述电子传输层15设于所述发光层14上;所述第二电极16设于所述电子传输层15上。
本实施例中,所述第一电极11为阳极,其所用材料为氧化铟锡;所述第二电极16为阴极,其所用材料为氟化锂或铝中的一种。所述电子传输层15所用材料为1,3,5-三(3-(3-吡啶基)苯基)苯;所述空穴传输层13所用材料为4,4'-环己基二[N,N-二(4-甲基苯基)苯胺],所述空穴注入层12所用材料为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲。
表2 为采用目标化合物的有机电致发光器件10的性能数据表。
Figure PCTCN2019112904-appb-000011
本发明的电致发光器件10,在发光层14采用所述的热 活化延迟荧光分子材料,有效的制作出红光电致发光器件,提高了红光电致发光器件的发光效率。
本发明提供一种热活化延迟荧光分子材料及其合成方法、有机电致发光器件,将给体分子中的体二苯胺或三苯胺中苯基用茚基替代,既能够增加给体的给电子能力,能够有效抑制非辐射跃迁速率,从而提高分子的发光量子产率(PLQY);又能够增加电子给体和电子受体之间的扭转角,同时减小最高占有分子轨道(HOMO)和最低占有分子轨道(LUMO)之间的电子云重叠,从而获得较小的ΔEST。本发明的有机电致发光器件,采用本发明制备的热活化延迟荧光分子材料,其发光效率高,而且使用寿命长。
本发明的技术范围不仅仅局限于所述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对所述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (10)

  1. 一种热活化延迟荧光分子材料,其中,包括电子给体和电子受体,其中,所述电子受体中含有茚基。
  2. 根据权利要求1所述的热活化延迟荧光分子,其中,
    所述电子给体的分子结构式选自如下结构式的一种:
    Figure PCTCN2019112904-appb-100001
    Figure PCTCN2019112904-appb-100002
  3. 根据权利要求1所述的热活化延迟荧光分子,其中,
    所述电子受体的分子结构式选自如下结构式的一种:
    Figure PCTCN2019112904-appb-100003
    Figure PCTCN2019112904-appb-100004
  4. 一种热活化延迟荧光分子材料合成方法,其中,包括如下步骤:
    将含有茚基基团的给体基团原料、受体基团原料以及溶剂置于反应容器中充分溶解得到第一混合溶液,使用氩气对所述反应容器进行抽换气;
    加入催化剂至所述反应容器中与所述第一混合溶液进行回流反应24h,冷却得到第二混合溶液;
    使用二氯甲烷对所述第二混合溶液进行3次萃取、3次水洗,并通过无水硫酸钠进行干燥、过滤以及旋干得到目标化合物;
    通过使用200-300目的硅胶对所述目标化合物溶液进行柱层析,并用淋洗液淋洗,最后分离纯化得到所述热活化延迟荧光分子材料。
  5. 根据权利要求4所述的热活化延迟荧光分子合成方法,其中,
    所述给体基团原料为6-溴-1-甲基-N,N-二(1-甲基吲哚-3-基)吲哚-3-胺;
    所述受体基团原料为6-溴-1-甲基-N,N-二(1-甲基吲哚-3-基)吲哚-3-胺;
    所述催化剂为四三苯基磷钯;
    所述给体基团原料、所述受体基团原料以及所述催化剂的摩尔比为10:10:0.6~10:10:0.3。
  6. 根据权利要求4所述的热活化延迟荧光分子合成方法,其中,
    所述溶剂为甲苯和碳酸钠水溶液;
    所述甲苯与所述碳酸钠水溶液的体积比为1:1~5:2;
    所述淋洗液为石油醚;
    所述反应容器为三口烧瓶,所述三口烧瓶的容积为200~300ml。
  7. 一种有机电致发光器件,其中,包括权利要求1所述的热活化延迟荧光分子材料。
  8. 根据权利要求7所述的有机电致发光器件,其中, 所述有机电致发光器件包括
    第一电极;
    空穴注入层,设于所述第一电极上;
    空穴传输层,设于所述空穴注入层上;
    发光层,设于所述空穴传输层上,所述发光层所用材料包括所述热激活延迟荧光分子材料;
    电子传输层,设于发光层上;
    第二电极,设于所述电子传输层上。
  9. 根据权利要求8所述的有机电致发光器件,其中,所述第一电极为阳极,其所用材料为氧化铟锡;所述第二电极为阴极,其所用材料为氟化锂或铝中的一种。
  10. 根据权利要求8所述的有机电致发光器件,其中,所述发光层中还包括1,3-二(9H-咔唑-9-基)苯;
    所述空穴注入层所用材料为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲;
    所述电子传输层所用材料为1,3,5-三(3-(3-吡啶基)苯基)苯;
    所述空穴传输层所用材料为4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]。
PCT/CN2019/112904 2019-04-29 2019-10-24 热活化延迟荧光分子材料及其合成方法、有机电致发光器件 WO2020220611A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/629,972 US11613530B2 (en) 2019-04-29 2019-10-24 Thermally activated delayed fluorescent molecular material, method for synthesizing the same, and organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910352671.7 2019-04-29
CN201910352671.7A CN110105262A (zh) 2019-04-29 2019-04-29 热活化延迟荧光分子材料及其合成方法、有机电致发光器件

Publications (1)

Publication Number Publication Date
WO2020220611A1 true WO2020220611A1 (zh) 2020-11-05

Family

ID=67487316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112904 WO2020220611A1 (zh) 2019-04-29 2019-10-24 热活化延迟荧光分子材料及其合成方法、有机电致发光器件

Country Status (2)

Country Link
CN (1) CN110105262A (zh)
WO (1) WO2020220611A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516876A (zh) * 2022-03-22 2022-05-20 安徽科技学院 一种基于吲哚[3,2-b]咔唑蓝色荧光材料及其合成方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015994A (zh) * 2019-04-29 2019-07-16 武汉华星光电半导体显示技术有限公司 热活化延迟荧光材料及其制备方法、显示装置
US11613530B2 (en) 2019-04-29 2023-03-28 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thermally activated delayed fluorescent molecular material, method for synthesizing the same, and organic electroluminescent device
CN110105262A (zh) * 2019-04-29 2019-08-09 武汉华星光电半导体显示技术有限公司 热活化延迟荧光分子材料及其合成方法、有机电致发光器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082461A (ja) * 2000-09-06 2002-03-22 Sharp Corp 電子写真感光体
WO2011136482A1 (en) * 2010-04-27 2011-11-03 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN102958906A (zh) * 2010-04-30 2013-03-06 罗门哈斯电子材料韩国有限公司 新颖有机电致发光化合物及使用该化合物的有机电致发光装置
CN106565720A (zh) * 2016-11-14 2017-04-19 长春海谱润斯科技有限公司 一种芳香族胺类衍生物及其制备方法和应用
CN108864068A (zh) * 2018-07-27 2018-11-23 上海天马有机发光显示技术有限公司 一种化合物以及有机发光显示装置
CN110105262A (zh) * 2019-04-29 2019-08-09 武汉华星光电半导体显示技术有限公司 热活化延迟荧光分子材料及其合成方法、有机电致发光器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709153B (zh) * 2012-09-29 2019-01-29 昆山维信诺显示技术有限公司 苯并噻吩类衍生物及其在有机电致发光领域中的应用
CN104725296B (zh) * 2013-12-24 2019-11-29 北京鼎材科技有限公司 吲哚类衍生物及其在有机电致发光领域中的应用
CN105968045B (zh) * 2016-07-20 2018-12-25 长春海谱润斯科技有限公司 一种含氮杂环类衍生物及其制备方法和应用
CN109134446B (zh) * 2018-09-30 2021-03-05 上海天马有机发光显示技术有限公司 一种热激活延迟荧光材料及包含其的有机发光显示装置
CN109651406B (zh) * 2019-01-23 2021-01-08 苏州久显新材料有限公司 热激活延迟荧光化合物、发光材料及有机电致发光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082461A (ja) * 2000-09-06 2002-03-22 Sharp Corp 電子写真感光体
WO2011136482A1 (en) * 2010-04-27 2011-11-03 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN102958906A (zh) * 2010-04-30 2013-03-06 罗门哈斯电子材料韩国有限公司 新颖有机电致发光化合物及使用该化合物的有机电致发光装置
CN106565720A (zh) * 2016-11-14 2017-04-19 长春海谱润斯科技有限公司 一种芳香族胺类衍生物及其制备方法和应用
CN108864068A (zh) * 2018-07-27 2018-11-23 上海天马有机发光显示技术有限公司 一种化合物以及有机发光显示装置
CN110105262A (zh) * 2019-04-29 2019-08-09 武汉华星光电半导体显示技术有限公司 热活化延迟荧光分子材料及其合成方法、有机电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516876A (zh) * 2022-03-22 2022-05-20 安徽科技学院 一种基于吲哚[3,2-b]咔唑蓝色荧光材料及其合成方法

Also Published As

Publication number Publication date
CN110105262A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020220611A1 (zh) 热活化延迟荧光分子材料及其合成方法、有机电致发光器件
CN102731406B (zh) 菲并咪唑衍生物及在制备电致发光器件方面的应用
WO2021017274A1 (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
WO2020237991A1 (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
WO2020215439A1 (zh) 红色热激活延迟荧光材料及其制备方法、电致发光器件
US20200224089A1 (en) Dark blue light thermally activated delayed fluorescence (tadf) material and application thereof
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020098146A1 (zh) 一种蓝光热活化延迟荧光材料及其应用
WO2020211126A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110526931A (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
CN110128443A (zh) 一种热活化延迟荧光化合物、其制备方法及其应用
US11613530B2 (en) Thermally activated delayed fluorescent molecular material, method for synthesizing the same, and organic electroluminescent device
CN108191847B (zh) 一类不对称给受体型有机红色荧光小分子材料及其在有机电致发光器件中的应用
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
WO2020199325A1 (zh) 热激活延迟荧光材料及其制备方法、电致发光器件
WO2020215388A1 (zh) 深红光热活化延迟荧光材料及其制备方法和电致发光器件
WO2020220414A1 (zh) 热活化延迟荧光材料及其制备方法、显示装置
WO2020155525A1 (zh) 热激活延迟荧光材料、有机电致发光器件及显示面板
CN114262328B (zh) 有机电致发光化合物及其制备方法和有机电致发光器件
US11552254B2 (en) Thermally activated delayed fluorescent molecular material, a synthesizing method therefor, and an electroluminescent device
WO2021189528A1 (zh) 热活化延迟荧光材料及其合成方法、电致发光器件
WO2021098050A1 (zh) 以二氢吩嗪为核的空穴传输材料及有机发光二极管
WO2021103058A1 (zh) 空穴传输材料及其制备方法和电致发光器件
CN110256458B (zh) 一种热活化延迟荧光分子及其制备方法、电致热激活延迟荧光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926829

Country of ref document: EP

Kind code of ref document: A1