WO2021017274A1 - 热活化延迟荧光分子材料及其合成方法、电致发光器件 - Google Patents

热活化延迟荧光分子材料及其合成方法、电致发光器件 Download PDF

Info

Publication number
WO2021017274A1
WO2021017274A1 PCT/CN2019/117023 CN2019117023W WO2021017274A1 WO 2021017274 A1 WO2021017274 A1 WO 2021017274A1 CN 2019117023 W CN2019117023 W CN 2019117023W WO 2021017274 A1 WO2021017274 A1 WO 2021017274A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally activated
activated delayed
mixed solution
delayed fluorescent
electroluminescent device
Prior art date
Application number
PCT/CN2019/117023
Other languages
English (en)
French (fr)
Inventor
王彦杰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2021017274A1 publication Critical patent/WO2021017274A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the invention relates to the technical field of organic photoelectric materials, in particular to a thermally activated delayed fluorescent single-molecule white light material, a synthesis method thereof, and an electroluminescent device.
  • OLEDs Organic light-emitting diodes
  • OLEDs due to active light emission, large viewing angle, fast response speed, wide temperature adaptation range, low driving voltage, low power consumption, high brightness, simple production process, light and thin, and can
  • the advantages of flexible display and other advantages have shown great application prospects in the field of OLED display and lighting, attracting the attention of scientific researchers and companies.
  • Samsung and LG have implemented OLEDs in mobile phones.
  • the usual luminescent layer material consists of host and guest luminescent materials, and the luminous efficiency and lifetime of luminescent materials are two important indicators of the quality of luminescent materials.
  • Early OLED light-emitting materials are traditional fluorescent materials.
  • TADF thermal activated delayed fluorescence
  • ⁇ EST triplet energy difference
  • the triplet excitons can return to the singlet state through the anti-system crossing (RISC), and then through the radiation transition to the ground state to emit light, so that the singlet and triplet excitons can be used at the same time, and 100% of the excitons can be used. Rate without the participation of heavy metals.
  • the TADF material has a rich structure design, and most of its physical properties are easily adjusted to obtain high-efficiency and long-life organic light-emitting materials that meet the requirements.
  • TADF materials small ⁇ EST and high photoluminescence quantum yield (PLQY) are necessary conditions for preparing high-efficiency OLEDs.
  • PLQY photoluminescence quantum yield
  • TADF materials have a relatively wide emission spectrum at half maximum width (FWHM), which is not conducive to improving the efficiency of top-emitting devices.
  • the present invention provides a thermally activated delayed fluorescent molecular material, a method for synthesizing the same, and an organic electroluminescent device, which synthesize a series of boron-nitrogen-containing thermally activated delayed fluorescent molecules.
  • this kind of molecule can narrow the luminescence spectrum well because of the multiple resonance effect in the molecule.
  • this kind of molecule has a super large plane and exhibits great rigidity, so that the molecule has a high inter-system crossing rate constant and anti-inter-system crossing rate constant, which can effectively inhibit the reduction of the radiation transition rate caused by the energy gap rule, thereby Obtain high PLQY; at the same time increase the stability of the TADF material, which can improve the life of the device.
  • the technical solution to solve the above problems is to provide a thermally activated delayed fluorescence molecular material, which has the following general structural formula:
  • X includes carbon, oxygen, and sulfur; R groups include aryl, alkylaryl and nitrogen-containing aryl.
  • the molecular structural formula of the thermally activated delayed fluorescence molecular material includes one of the following:
  • the present invention also provides a method for synthesizing thermally activated delayed fluorescent molecular materials, including the following steps:
  • the compound includes n-butyl lithium; the organic solvent includes tetrahydrofuran; and the eluent is petroleum ether.
  • the present invention also provides an electroluminescent device, which includes the thermally activated delayed fluorescent molecular material.
  • the electroluminescent device includes: a first electrode; a hole injection layer provided on the first electrode; a hole transport layer provided on the electron injection layer; a light emitting layer provided on the On the hole transport layer, the material used for the light emitting layer includes the thermally activated delayed fluorescent molecular material; the electron transport layer is arranged on the light emitting layer; and the second electrode is arranged on the electron transport layer.
  • the light-emitting layer also includes 4,4'-N,N'-dicarbazole biphenyl.
  • the first electrode is an anode, and the material used is indium tin oxide; the second electrode is a cathode, and the material used is one of lithium fluoride or aluminum.
  • the material used for the hole injection layer is 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene; the electron
  • the material used in the transport layer is 1,3,5-tris(3-(3-pyridyl)phenyl)benzene; the material used in the hole transport layer is 4,4'-cyclohexyl-bis[N,N-two (4-Methylphenyl)aniline].
  • the invention provides a thermally activated delayed fluorescent molecular material, a synthesis method thereof, and an organic electroluminescent device, which synthesize a series of thermally activated delayed fluorescent molecules containing boron-nitrogen.
  • this kind of molecule can narrow the luminescence spectrum well because of the multiple resonance effect in the molecule.
  • this kind of molecule has a super large plane and exhibits great rigidity, so that the molecule has a high inter-system crossing rate constant and anti-inter-system crossing rate constant, which can effectively inhibit the reduction of the radiation transition rate caused by the energy gap rule, thereby Obtain high PLQY; at the same time increase the stability of the TADF material, which can improve the life of the device.
  • Fig. 1 is a fluorescence spectrum diagram of a thermally activated delayed fluorescent molecular material prepared by the preparation method in an embodiment of the present invention.
  • Fig. 2 is a structural diagram of an electroluminescent device in an embodiment of the present invention.
  • Electron transport layer 6 Second electrode.
  • the present invention provides a thermally activated delayed fluorescence molecular material, which has the following general structural formula:
  • X includes carbon, oxygen, and sulfur; R groups include aryl, alkylaryl and nitrogen-containing aryl.
  • the molecular structural formula of the thermally activated delayed fluorescence molecular material includes one of the following:
  • thermally activated delayed fluorescent molecular material will be further explained below in conjunction with the synthesis method of the thermally activated delayed fluorescent molecular material of the present invention.
  • the preparation method of the thermally activated delayed fluorescent molecular material of the present invention is described in detail by taking the preparation of target compound 1 (a thermally activated delayed fluorescent molecular material of the present invention) as an example.
  • target compound 1 a thermally activated delayed fluorescent molecular material of the present invention
  • the general structure of target compound one is as follows:
  • the preparation method of thermally activated delayed fluorescence molecular material of the present invention includes the following steps:
  • the 4,5-dibromo-9,9-dimethyl-10-phenyl-9,10-dihydroacridine needs to be reacted with n-butyllithium to remove the active hydrogen attached to the nitrogen on the acridine to form Active anion-like intermediate.
  • the thermally activated delayed fluorescent molecular material By preparing the thermally activated delayed fluorescent molecular material by the preparation method of this embodiment, the thermally activated delayed fluorescent molecular material can be effectively synthesized, and the synthesis efficiency can be improved.
  • the thermally activated delayed fluorescent molecular material obtained by the preparation method of this embodiment is subjected to spectroscopic experiments and photophysical data detection . Obtain the fluorescence spectrum shown in Figure 1 and the photophysical data shown in Table 1.
  • Table 1 shows the photophysical data of the thermally activated delayed fluorescent molecular material of the present invention.
  • Fig. 1 shows that the effective wavelength range of the target compound 1 of the present invention is between 400-700 nm, and therefore, the emission spectrum of the molecule can be adjusted within this range. It can be seen from Table 1 that the thermally activated delayed fluorescence molecular material of the present invention has a smaller lowest singlet state and triplet energy difference ( ⁇ EST).
  • the present invention also provides an electroluminescent device 10, which includes the thermally activated delayed fluorescent molecular material.
  • the electronic light emitting device 10 is a blue-green light emitting device.
  • the electroluminescent device includes a first electrode 1, a hole injection layer 2, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a second electrode 6.
  • the hole injection layer 2 is provided on the first electrode 1;
  • the hole transport layer 3 is provided on the electron injection layer 2;
  • the light-emitting layer 4 is provided on the hole transport layer 3
  • the material used for the light-emitting layer 4 includes the thermally activated delayed fluorescent molecular material and 4,4'-N,N'-dicarbazole biphenyl, 4,4'-N,N'-dicarbazole biphenyl Is a host molecule in which the thermally activated delayed fluorescent molecular material is doped;
  • the electron transport layer 5 is provided on the light-emitting layer 4;
  • the second electrode 6 is provided on the electron transport layer 5.
  • the first electrode 1 is an anode, and the material used is indium tin oxide; the second electrode 6 is a cathode, and the material used is one of lithium fluoride or aluminum.
  • the material used for the electron transport layer 5 is 1,3,5-tris(3-(3-pyridyl)phenyl)benzene; the material used for the hole transport layer 3 is 4,4'-cyclohexyl-bis[ N,N-bis(4-methylphenyl)aniline], the material used for the hole injection layer 2 is 2,3,6,7,10,11-hexacyano-1,4,5,8, 9,12-hexaazatriphenylene.
  • Table 2 is a performance data table of the electroluminescent device 10 using the target compound.
  • the electroluminescent device 10 of the present invention uses the thermally activated delayed fluorescent molecular material in the light-emitting layer 4 to effectively fabricate the electroluminescent device and improve the luminous efficiency of the electroluminescent device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种热活化延迟荧光分子材料及其合成方法、有机电致发光器件,合成含硼-氮类热活化延迟荧光分子。这类分子具有分子内多重共振效应,很好地窄化发光光谱。此类分子具有超大平面,表现出大的刚性,使分子具有高的系间窜越速率常数和反系间窜越速率常数,可有效抑制能隙规则导致的辐射跃迁速率的降低,获得高的PLQY。

Description

热活化延迟荧光分子材料及其合成方法、电致发光器件 技术领域
本发明涉及有机光电材料技术领域,特别是一种热活化延迟荧光单分子白光材料及其合成方法、电致发光器件。
背景技术
有机发光二极管(organic lighting-emitting diodes,OLEDs),由于主动发光、可视角度大、相应速度快、温度适应范围宽、驱动电压低、功耗小、亮度大、生产工艺简单、轻薄、且可以柔性显示等优点,在OLED显示和照明领域表现出巨大的应用前景,吸引了科研工作者和公司的关注。目前,三星、LG已经实现OLEDs应用在手机上。在OLED中,发光层材料的优劣是OLED能否产业化起决定作用。通常的发光层材料由主体和客体发光材料,而发光材料的发光效率和寿命是发光材料好坏的两个重要指标。早期的OLED发光材料为传统荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,而传统荧光材料只能利用单重态激子发光,因此,传统荧光材料的OLED理论内量子效率为25%。金属配合物磷光材料由于重原子的自旋轨道耦合效应,使得其能够实现单重态激子和三重态激子的100%利用率;并且现在也已经用在红光和绿光OLED显示上。但是,磷光材料通常要使用重金属Ir、Pt、Os等贵重金属,不仅成本高,而且毒性较大。此外,高效、长寿命的磷光金属配合物材料仍旧是极大的挑战。 2012年,Adachi等人提出了“热活化延迟荧光”(TADF)机理的纯有机发光分子,通过合理的D-A结构分子设计,使得分子具有较小的最低单重态和三重能级差(ΔEST),这样三重态激子可以通过反系间窜越(RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,可以实现激子的100%的利用率,同时不需要重金属的参与。并且TADF材料结构设计丰富,其材料大部分物理性质容易调节,以获得满足要求的高效、长寿命的有机发光材料。
技术问题
对于TADF材料,小的ΔEST以及高的光致发光量子产率(PLQY)是制备高效率OLED的必要条件。但是目前,TADF材料的发光谱半峰宽(FWHM)比较宽,不利于顶发射器件效率的提高。
技术解决方案
为解决上述技术问题:本发明提供一种热活化延迟荧光分子材料及其合成方法、有机电致发光器件,合成一系列含硼-氮类热活化延迟荧光分子。而这类分子由于具有分子内多重共振效应,能够很好地窄化发光光谱。而且此类分子具有超大平面,表现出大的刚性,使得分子具有高的系间窜越速率常数和反系间窜越速率常数,能够有效抑制由于能隙规则导致的辐射跃迁速率的降低,从而获得高的PLQY;同时增加了TADF材料的稳定性,能够提高器件的寿命。
解决上述问题的技术方案是:提供一种热活化延迟荧光分子材料,具有如下结构通式:
Figure PCTCN2019117023-appb-000001
其中,X包括碳、氧、硫;R基团包括芳基、烷基芳基及含氮芳基。
进一步地,所述热活化延迟荧光分子材料的分子结构式包括如下的一种:
Figure PCTCN2019117023-appb-000002
Figure PCTCN2019117023-appb-000003
Figure PCTCN2019117023-appb-000004
本发明还提供一种热活化延迟荧光分子材料的合成方法,包括以下步骤:
将4,5-二溴-9,9-二甲基-10-苯基-9,10-二氢吖啶以及有机溶剂置于第一反应容器中,并将所述第一反应容器置于干冰丙酮浴中半个小时;加入具有强碱性的化合物至所述第一反应容器中反应2h,冷却得到第一混合溶液;将2,4,6-(三甲基苯基)-二氯硼烷以及有机溶剂置于第二反应容器中形成第二混合溶液,并将所述第二反应容器置于干冰丙酮浴中;将所述第二混合溶液倒入所述第一反应容器中充分与所述第一混合溶液反应4h并冷却至室温得到第三混合溶液;加入5ml的水至所述第一反应容器中进行淬灭反应得到第四混合溶液;使用二氯甲烷对所述第四混合溶液进行3 次萃取、3次水洗,并通过无水硫酸钠进行干燥、过滤以及浓缩得到目标化合物;通过使用200-300目的硅胶对所述目标化合物溶液进行柱层析,并用淋洗液淋洗,最后分离纯化得到所述热活化延迟荧光分子材料。
进一步地,所述化合物包括正丁基锂;所述有机溶剂包括四氢呋喃;所述淋洗液为石油醚。
进一步地,所述4,5-二溴-9,9-二甲基-10-苯基-9,10-二氢吖啶与所述2,4,6-(三甲基苯基)-二氯硼烷的摩尔比为2:5。
本发明还提供一种电致发光器件,包括所述的热活化延迟荧光分子材料。
进一步地,所述电致发光器件包括:第一电极;空穴注入层,设于所述第一电极上;空穴传输层,设于所述电子注入层上;发光层,设于所述空穴传输层上,所述发光层所用材料包括所述热活化延迟荧光分子材料;电子传输层,设于发光层上;第二电极,设于所述电子传输层上。
进一步地,所述发光层中还包括4,4’-N,N’-二咔唑联苯。
进一步地,所述第一电极为阳极,其所用材料为氧化铟锡;所述第二电极为阴极,其所用材料为氟化锂或铝中的一种。
进一步地,所述空穴注入层所用材料为 2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲;所述电子传输层所用材料为1,3,5-三(3-(3-吡啶基)苯基)苯;所述空穴传输层所用材料为4,4’-环己基-二[N,N-二(4-甲基苯基)苯胺]。
有益效果
本发明提供一种热活化延迟荧光分子材料及其合成方法、有机电致发光器件,合成一系列含硼-氮类热活化延迟荧光分子。而这类分子由于具有分子内多重共振效应,能够很好地窄化发光光谱。而且此类分子具有超大平面,表现出大的刚性,使得分子具有高的系间窜越速率常数和反系间窜越速率常数,能够有效抑制由于能隙规则导致的辐射跃迁速率的降低,从而获得高的PLQY;同时增加了TADF材料的稳定性,能够提高器件的寿命。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是通过本发明实施例中的制备方法制得的热活化延迟荧光分子材料的荧光光谱图。
图2是本发明实施例中电致发光器件结构图。
附图标记:
10电致发光器件;
1第一电极;2空穴注入层;
3空穴传输层;   4发光层;
5电子传输层;   6第二电极。
本发明的实施方式
以下是各实施例的说明是参考附加的图式,用以例示本发明可以用实施的特定实施例。
本文将参照附图来详细描述本发明的实施例。本发明可以表现为许多不同形式,本发明不应仅被解释为本文阐述的具体实施例。本发明提供实施例是为了解释本发明的实际应用,从而使本领域其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改方案。
本发明提供一种热活化延迟荧光分子材料,具有如下结构通式:
Figure PCTCN2019117023-appb-000005
其中,X包括碳、氧、硫;R基团包括芳基、烷基芳基及含氮芳基。
进一步地,所述热活化延迟荧光分子材料的分子结构式包括如下的一种:
Figure PCTCN2019117023-appb-000006
Figure PCTCN2019117023-appb-000007
Figure PCTCN2019117023-appb-000008
为了更加清楚的解释本发明,下面结合本发明的热活化延迟荧光分子材料的合成方法对所述热活化延迟荧光分子材料进行进一步解释。
在本发明一实施例中,以制备目标化合物一(本发明的一种热活化延迟荧光分子材料)为例,详细说明本发明的热活化延迟荧光分子材料的制备方法。其中目标化合物一的结构通式如下:
Figure PCTCN2019117023-appb-000009
本发明的热活化延迟荧光分子材料制备方法包括以下步骤:
S1)将4,5-二溴-9,9-二甲基-10-苯基-9,10-二氢吖啶以及有机溶剂置于第一反应容器中,并将所述第一反应容器置于干冰丙酮浴中半个小时。
S2)加入具有强碱性的化合物至所述第一反应容器中反应2h,冷却得到第一混合溶液;所述化合物包括正丁 基锂。干冰丙酮浴室提供一个低温环境(-78℃),以降低正丁基锂的反应活性,防止形成副产物。
所述4,5-二溴-9,9-二甲基-10-苯基-9,10-二氢吖啶需要先和正丁基锂反应,拔掉吖啶上氮连接的活泼氢,形成活性的类负离子中间体。
S3)将2,4,6-(三甲基苯基)-二氯硼烷以及有机溶剂置于第二反应容器中形成第二混合溶液,并将所述第二反应容器置于干冰丙酮浴中;所述有机溶剂包括四氢呋喃。
S4)将所述第二混合溶液倒入所述第一反应容器中充分与所述第一混合溶液反应4h并冷却至室温得到第三混合溶液。
然后所述中间体和2,4,6-(三甲基苯基)-二氯硼烷进行反应,通过吖啶上的氮负离子拔掉2,4,6-(三甲基苯基)-二氯硼烷中的氯离子,进而形成产物。
S5)加入5ml的水至所述第一反应容器中进行淬灭反应得到第四混合溶液。
S6)使用二氯甲烷对所述第四混合溶液进行3次萃取、3次水洗,并通过无水硫酸钠进行干燥、过滤以及浓缩得到目标化合物。
S7)通过使用200-300目的硅胶对所述目标化合物溶液进行柱层析,并用淋洗液淋洗,最后分离纯化得到所述热活化延迟荧光分子材料。所述淋洗液为石油醚。
具体地,所述4,5-二溴-9,9-二甲基-10-苯基-9,10-二氢吖啶与所述2,4,6-(三甲基苯基)-二氯硼烷的摩尔比为2:5。
经过本实施例的制备方法,具体化学反应方程式如下:
Figure PCTCN2019117023-appb-000010
经过所述化学反应方程式最后得到4.44g白色固体,产率82%。
通过本实施例的制备方法制备热活化延迟荧光分子材料,能够有效合成热活化延迟荧光分子材料,同时能够提高合成效率。
为了验证本发明的热活化延迟荧光分子材料的特性是否满足电致发光器件的要求,因此本实施例中将通过本实施例的制备方法得到的热活化延迟荧光分子材料进行光谱实验和光物理数据检测。得到如图1所示的荧光光谱图以及如表1所示的光物理数据。
表1为本发明的热活化延迟荧光分子材料的光物理数据。
Figure PCTCN2019117023-appb-000011
图1可知,本发明的目标化合物一的有效波长范围在400-700nm之间,因此,可以在此范围内调节分子的发光光谱。由表1可知,本发明的热活化延迟荧光分子材料具 有较小的最低单重态和三重能级差(ΔEST)。
如图2所示,本发明还提供了一种电致发光器件10,包括所述的热活化延迟荧光分子材料。所述电子发光器件10为蓝光-绿光电子发光器件。
具体的,所述的电致发光器件包括第一电极1、空穴注入层2、空穴传输层3、发光层4、电子传输层5、第二电极6。其中,所述空穴注入层2设于所述第一电极1上;所述空穴传输层3设于所述电子注入层2上;所述发光层4设于所述空穴传输层3上,所述发光层4所用材料包括所述热活化延迟荧光分子材料以及4,4’-N,N’-二咔唑联苯,4,4’-N,N’-二咔唑联苯为主体分子,其中掺杂所述热活化延迟荧光分子材料;所述电子传输层5设于所述发光层4上;所述第二电极6设于所述电子传输层5上。
本实施例中,所述第一电极1为阳极,其所用材料为氧化铟锡;所述第二电极6为阴极,其所用材料为氟化锂或铝中的一种。所述电子传输层5所用材料为1,3,5-三(3-(3-吡啶基)苯基)苯;所述空穴传输层3所用材料为4,4’-环己基-二[N,N-二(4-甲基苯基)苯胺],所述空穴注入层2所用材料为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲。
表2为采用目标化合物的电致发光器件10的性能数据表。
Figure PCTCN2019117023-appb-000012
由表2可知,本发明的电致发光器件10,在发光层4采用所述的热活化延迟荧光分子材料,有效的制作出电致发光器件,并提高了电致发光器件的发光效率。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
本发明的技术范围不仅仅局限于所述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对所述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (10)

  1. 一种热活化延迟荧光分子材料,其中,具有如下结构通式:
    Figure PCTCN2019117023-appb-100001
    其中,X包括碳、氧、硫;R基团包括芳基、烷基芳基及含氮芳基。
  2. 根据权利要求1所述的热活化延迟荧光分子材料,其中,所述热活化延迟荧光分子材料的分子结构式包括如下的一种:
    Figure PCTCN2019117023-appb-100002
    Figure PCTCN2019117023-appb-100003
    Figure PCTCN2019117023-appb-100004
  3. 一种热活化延迟荧光分子材料的合成方法,其中,包括以下步骤:
    将4,5-二溴-9,9-二甲基-10-苯基-9,10-二氢吖啶以及有机溶剂置于第一反应容器中,并将所述第一反应容器置于干冰丙酮浴中半个小时;
    加入具有强碱性的化合物至所述第一反应容器中反应2h,冷却得到第一混合溶液;
    将2,4,6-(三甲基苯基)-二氯硼烷以及有机溶剂置于第二反应容器中形成第二混合溶液,并将所述第二反应容器置于干冰丙酮浴中;
    将所述第二混合溶液倒入所述第一反应容器中充分与所述第一混合溶液反应4h并冷却至室温得到第三混合 溶液;
    加入5ml的水至所述第一反应容器中进行淬灭反应得到第四混合溶液;
    使用二氯甲烷对所述第四混合溶液进行3次萃取、3次水洗,并通过无水硫酸钠进行干燥、过滤以及浓缩得到目标化合物;
    通过使用200-300目的硅胶对所述目标化合物溶液进行柱层析,并用淋洗液淋洗,最后分离纯化得到所述热活化延迟荧光分子材料。
  4. 根据权利要求4所述的热活化延迟荧光分子材料的合成方法,其中,
    所述化合物包括正丁基锂;
    所述有机溶剂包括四氢呋喃;
    所述淋洗液为石油醚。
  5. 根据权利要求5所述的热活化延迟荧光分子材料的合成方法,其中,
    所述4,5-二溴-9,9-二甲基-10-苯基-9,10-二氢吖啶与所述2,4,6-(三甲基苯基)-二氯硼烷的摩尔比为2:5。
  6. 一种电致发光器件,其特征在于,包括为权利要求1所述的热活化延迟荧光分子材料。
  7. 根据权利要求6所述的电致发光器件,其中,包括
    第一电极;
    空穴注入层,设于所述第一电极上;
    空穴传输层,设于所述电子注入层上;
    发光层,设于所述空穴传输层上,所述发光层所用材料包括所述热活化延迟荧光分子材料;
    电子传输层,设于发光层上;
    第二电极,设于所述电子传输层上。
  8. 根据权利要求7所述的电致发光器件,其中,
    所述发光层中还包括4,4’-N,N’-二咔唑联苯。
  9. 根据权利要求7所述的电致发光器件,其中,
    所述第一电极为阳极,其所用材料为氧化铟锡;所述第二电极为阴极,其所用材料为氟化锂或铝中的一种。
  10. 根据权利要求7所述的电致发光器件,其中,
    所述空穴注入层所用材料为2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲;
    所述电子传输层所用材料为1,3,5-三(3-(3-吡啶基)苯基)苯;
    所述空穴传输层所用材料为4,4’-环己基-二[N,N-二(4-甲基苯基)苯胺]。
PCT/CN2019/117023 2019-07-30 2019-11-11 热活化延迟荧光分子材料及其合成方法、电致发光器件 WO2021017274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910695416.2 2019-07-30
CN201910695416.2A CN110407862A (zh) 2019-07-30 2019-07-30 热活化延迟荧光分子材料及其合成方法、电致发光器件

Publications (1)

Publication Number Publication Date
WO2021017274A1 true WO2021017274A1 (zh) 2021-02-04

Family

ID=68364267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117023 WO2021017274A1 (zh) 2019-07-30 2019-11-11 热活化延迟荧光分子材料及其合成方法、电致发光器件

Country Status (2)

Country Link
CN (1) CN110407862A (zh)
WO (1) WO2021017274A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716479A (zh) * 2022-05-05 2022-07-08 广州青苗新材料科技有限公司 一种具有热活化延迟荧光性质的膦氧类化合物及其制备与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2593675B (en) * 2020-03-24 2024-02-21 Sumitomo Chemical Co Light emitting marker and assay
CN114539287A (zh) * 2020-11-25 2022-05-27 清华大学 一种多环芳香族化合物及其在电致发光器件中的应用
CN114149458B (zh) * 2021-11-29 2023-01-06 苏州大学 一种b/n类有机电致发光材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266484A (zh) * 2017-07-14 2017-10-20 瑞声科技(南京)有限公司 有机电致发光材料及其发光器件
CN109192874A (zh) * 2018-08-31 2019-01-11 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109411634A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件和显示装置
WO2019052939A1 (en) * 2017-09-12 2019-03-21 Cynora Gmbh ORGANIC MOLECULES, IN PARTICULAR FOR USE IN OPTOELECTRONIC DEVICES
WO2019164340A1 (ko) * 2018-02-23 2019-08-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266484A (zh) * 2017-07-14 2017-10-20 瑞声科技(南京)有限公司 有机电致发光材料及其发光器件
WO2019052939A1 (en) * 2017-09-12 2019-03-21 Cynora Gmbh ORGANIC MOLECULES, IN PARTICULAR FOR USE IN OPTOELECTRONIC DEVICES
WO2019164340A1 (ko) * 2018-02-23 2019-08-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN109192874A (zh) * 2018-08-31 2019-01-11 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109411634A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716479A (zh) * 2022-05-05 2022-07-08 广州青苗新材料科技有限公司 一种具有热活化延迟荧光性质的膦氧类化合物及其制备与应用
CN114716479B (zh) * 2022-05-05 2024-01-05 广州青苗新材料科技有限公司 一种具有热活化延迟荧光性质的膦氧类化合物及其制备与应用

Also Published As

Publication number Publication date
CN110407862A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2021017274A1 (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
CN110028459B (zh) 化合物、显示面板以及显示装置
WO2020220611A1 (zh) 热活化延迟荧光分子材料及其合成方法、有机电致发光器件
CN113072571B (zh) 一种七元环热激活延迟荧光材料及其制备方法、有机发光器件
CN111675718B (zh) 一种化合物及包含其的有机发光器件、显示面板和显示装置
CN109337676B (zh) 一种深蓝光热活化延迟荧光材料及其应用
WO2020238094A1 (zh) 一种高效蓝绿到橙红光热活化延迟荧光材料及其制备方法和应用
CN110437229A (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
CN110526931A (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
WO2020215439A1 (zh) 红色热激活延迟荧光材料及其制备方法、电致发光器件
JP7402979B2 (ja) 白金金属錯体及び有機エレクトロルミネセンスデバイスにおけるその用途
WO2020237991A1 (zh) 热活化延迟荧光分子材料及其合成方法、电致发光器件
CN107056807B (zh) 一种以均苯为核心的化合物及其在有机电致发光器件中的应用
US11613530B2 (en) Thermally activated delayed fluorescent molecular material, method for synthesizing the same, and organic electroluminescent device
WO2021000434A1 (zh) 红绿蓝热活化延迟荧光材料,其合成方法及应用
CN110684524A (zh) 一种电致发光化合物、热激活延迟荧光材料及其应用
CN106684254A (zh) 一种含有以二苯并环庚烯为核心的化合物的有机电致发光器件及其应用
WO2021120450A1 (zh) 一种热活化延迟荧光绿光高分子材料及其制备方法
WO2021189528A1 (zh) 热活化延迟荧光材料及其合成方法、电致发光器件
CN117143030A (zh) 萘基取代吸电片段化合物、电子传输材料及应用
CN110540507A (zh) 芘类蓝光发光材料及其合成方法、电致发光器件
CN113831343B (zh) 一种基于咪唑并吡嗪受体材料的热活性延迟荧光材料、制备方法及其应用
CN102898471A (zh) 多功能化修饰二苯并呋喃基单膦氧化合物及其制备方法和应用
CN111909188B (zh) 一种化合物、发光材料和有机电致发光器件
CN102191042A (zh) 三芳胺类空穴传输材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939573

Country of ref document: EP

Kind code of ref document: A1