WO2020211126A1 - 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件 - Google Patents

热活化延迟荧光材料及其制备方法与有机电致发光二极管器件 Download PDF

Info

Publication number
WO2020211126A1
WO2020211126A1 PCT/CN2019/085642 CN2019085642W WO2020211126A1 WO 2020211126 A1 WO2020211126 A1 WO 2020211126A1 CN 2019085642 W CN2019085642 W CN 2019085642W WO 2020211126 A1 WO2020211126 A1 WO 2020211126A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally activated
activated delayed
delayed fluorescent
fluorescent material
compound
Prior art date
Application number
PCT/CN2019/085642
Other languages
English (en)
French (fr)
Inventor
罗佳佳
李先杰
顾宇
黄金昌
王煦
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/489,454 priority Critical patent/US10954245B2/en
Publication of WO2020211126A1 publication Critical patent/WO2020211126A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms

Definitions

  • the invention belongs to the technical field of electroluminescent materials, and particularly relates to a thermally activated delayed fluorescent material, a preparation method thereof, and an organic electroluminescent diode device.
  • OLED display panels have active light emission without backlight, high luminous efficiency, large viewing angle, fast response speed, large temperature adaptation range, relatively simple production and processing technology, and drive
  • the advantages of low voltage, low energy consumption, lighter and thinner, flexible display and huge application prospects have attracted the attention of many researchers.
  • the principle of the OLED device is that under the action of an electric field, holes and electrons are injected from the anode and the cathode respectively, through the hole injection layer, the hole transport layer, the electron injection layer, and the electron transport layer, respectively, to form excitons in the light emitting layer.
  • Exciton radiation attenuates luminescence.
  • organic electroluminescent materials have a great impact on the performance of the devices.
  • the light-emitting layer of an OLED device generally contains a host material and a guest material, and the light-emitting guest material that plays a leading role is very important.
  • the light-emitting guest materials used in early OLED devices were fluorescent materials. Since the ratio of singlet and triplet excitons in OLED devices is 1:3, the theoretical internal quantum efficiency (IQE) of OLED devices based on fluorescent materials is only It can reach 25%, which greatly limits the application of fluorescent electroluminescent devices. Due to the spin-orbit coupling of heavy atoms, heavy metal complex phosphorescent materials can simultaneously use singlet and triplet excitons to achieve 100% IQE.
  • the pure organic thermally activated delayed fluorescence (TADF) material has a molecular structure combining electron donor (D) and electron acceptor (A).
  • D electron donor
  • A electron acceptor
  • the molecule has a small minimum single triplet energy difference ( ⁇ E) ST ), so that the triplet excitons can return to the singlet state through the reverse intersystem crossing (RISC), and then through the radiation transition to the ground state to emit light, so that the singlet and triplet excitons can be used at the same time, and 100% can also be achieved IQE.
  • TADF materials For TADF materials, fast reverse intersystem crossing constant (k RISC ) and high photoluminescence quantum yield (PLQY) are necessary conditions for the preparation of high-efficiency OLED devices.
  • k RISC fast reverse intersystem crossing constant
  • PLQY photoluminescence quantum yield
  • TADF materials with the above conditions are still relatively scarce compared to heavy metal Ir complexes, and heavy metal complex phosphorescent materials still need a breakthrough in the field of deep red light. Therefore, the development of high-performance deep red light TADF materials is particularly important Meaning.
  • the purpose of the present invention is to provide a thermally activated delayed fluorescent material, which has ultra-fast reverse inter-system crossing rate and high luminous efficiency, is a deep red TADF compound with significant TADF characteristics and low energy level, which can be used as organic electroluminescence
  • the light-emitting layer material of the diode is to provide a thermally activated delayed fluorescent material, which has ultra-fast reverse inter-system crossing rate and high luminous efficiency, is a deep red TADF compound with significant TADF characteristics and low energy level, which can be used as organic electroluminescence
  • the light-emitting layer material of the diode is to provide a thermally activated delayed fluorescent material, which has ultra-fast reverse inter-system crossing rate and high luminous efficiency
  • Another object of the present invention is to provide a method for preparing a thermally activated delayed fluorescent material, which is easy to operate and has a high yield of the target product.
  • Another object of the present invention is to provide an organic electroluminescent diode device, which uses the thermally activated delayed fluorescent material as the light-emitting layer material, thereby improving the light-emitting efficiency of the device.
  • the present invention provides a thermally activated delayed fluorescent material, which has a chemical structure shown in the following formula 1:
  • R represents a chemical group as an electron donor.
  • the chemical group R of the electron donor is selected from any one of the following groups:
  • the thermally activated delayed fluorescent material is compound 1, compound 2 or compound 3.
  • the structural formulas of compound 1, compound 2 and compound 3 are as follows:
  • the present invention also provides a method for preparing thermally activated delayed fluorescent material, the chemical reaction formula of which is as follows:
  • the general structural formula of the halogenated raw material is Wherein X is a halogen group
  • the general structural formula of the electron-donor-containing compound is R-H, where R represents a chemical group as an electron donor.
  • the chemical group R of the electron donor is selected from any one of the following groups:
  • the electron donor compound is 9,10-dihydro-9,9-dimethylacridine, phenoxazine or phenothiazine.
  • the present invention also provides an organic electroluminescent diode device, including a substrate, a first electrode provided on the substrate, an organic functional layer provided on the first electrode, and a second electrode provided on the organic functional layer ;
  • the organic functional layer includes one or more organic film layers, and at least one of the organic film layers is a light-emitting layer;
  • the light-emitting layer comprises the thermally activated delayed fluorescent material according to any one of claims 1-3.
  • the light-emitting layer is formed by vacuum evaporation or solution coating.
  • the material of the light-emitting layer is a mixture of a host material and a guest material, and the guest material is selected from one or more of the thermally activated delayed fluorescent materials according to any one of claims 1-3.
  • the substrate is a glass substrate, the material of the first electrode is indium tin oxide, and the second electrode is a double-layer composite structure composed of a lithium fluoride layer and an aluminum layer;
  • the organic functional layer includes a multilayer organic film layer, the multilayer organic film layer includes a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • the material of the hole injection layer is HATCN.
  • the material of the hole transport layer is TCTA, the material of the electron transport layer is TmPyPB, and the host material is mCBP.
  • the present invention has the following advantages and beneficial effects:
  • the present invention uses a strong electron-withdrawing group with a large conjugate plane as the electron acceptor, and by combining the electron acceptor with a strong electron donor, a deep red photothermal with significant TADF characteristics and low energy level is designed Activated delayed fluorescent material;
  • the thermally activated delayed fluorescent material of the present invention is a deep red TADF material with lower single triplet energy level difference, ultrafast reverse intersystem crossing rate and high luminous efficiency.
  • Organic electroluminescent diode devices can improve the luminous efficiency of organic light emitting display devices.
  • the organic electroluminescent diode devices based on the deep red light thermally activated delayed fluorescent material of the present invention have achieved very high device efficiency.
  • Figure 1 is a diagram of HOMO and LUMO energy levels of compounds 1-3 prepared in specific examples 1-3 of the present invention
  • Figure 2 is a photoluminescence spectrum of compound 1-3 prepared in specific examples 1-3 of the present invention in n-hexane solution at room temperature;
  • Fig. 3 is a schematic diagram of the structure of the organic electroluminescent diode device of the present invention.
  • the synthetic route of target compound 1 is as follows:
  • the synthetic route of target compound 2 is as follows:
  • Phenoxazine (2.20g, 12mmol) was added to a 100mL two-neck flask, and NaH (0.48g, 12mmol) was added to the glove box, and 40mL of tetrahydrofuran that had been dewatered and deoxygenated was injected under an argon atmosphere. React for 2 hours, then add raw material 1 (5mmol, 1.35g), and react at 60°C for 24 hours.
  • the synthetic route of target compound 3 is as follows:
  • Figure 1 shows the orbital arrangement of compound 1-3. It can be clearly seen from Figure 1 that the highest electron occupied orbital (HOMO) and lowest electron unoccupied orbital (LUMO) of compound 1-3 are arranged in In different units, complete separation is achieved, which helps to reduce the energy difference ⁇ EST between systems, thereby improving the ability of reverse intersystem crossing.
  • Figure 2 shows the photoluminescence spectra of Compound 1-3 in n-hexane solution at room temperature. For compounds 1-3, the lowest singlet energy level S1 and the lowest triplet energy level T1 of the molecule were simulated and calculated.
  • Examples 1-3 The relevant data of Examples 1-3 are shown in Table 1. It can be seen from Table 1 that the ⁇ Est of all the compounds is less than 0.3ev, which achieves a small singlet and triplet energy level difference, and has an obvious delayed fluorescence effect.
  • PL Peak represents the photoluminescence peak
  • S1 represents the singlet energy level
  • T1 represents the triplet energy level
  • ⁇ EST represents the difference between the singlet and triplet energy levels.
  • OLED organic electroluminescent diode
  • the organic electroluminescent diode device using the thermally activated delayed fluorescent material of the present invention as the guest material of the light-emitting layer may include a substrate 9, an anode layer 1, a hole injection layer 2, and a cavity which are sequentially arranged from bottom to top. Hole transport layer 3, light emitting layer 4, electron transport layer 5, and cathode layer 6.
  • the substrate 9 is a glass substrate
  • the material of the anode 1 is indium tin oxide (ITO)
  • the substrate 9 and the anode 1 together form ITO glass
  • the sheet resistance of the ITO glass is 10 ⁇ /cm 2 .
  • the material of the hole injection layer 2 is HATCN
  • the material of the hole transport layer 3 is TCTA
  • the material of the light-emitting layer is a mixture of the activated delayed fluorescent compound of the present invention and mCBP
  • the electron transport layer 5 is The material is TmPyPB.
  • the cathode has a double-layer structure composed of a lithium fluoride (LiF) layer and an aluminum (Al) layer.
  • HATCN refers to 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • TCTA refers to 4,4',4”-tri (Carbazol-9-yl) triphenylamine
  • mCBP refers to 3,3'-bis(N-carbazolyl)-1,1'-biphenyl
  • TmPyPB refers to 1,3,5-tris(3-(3- Pyridyl)phenyl)benzene.
  • the organic electroluminescent diode device can be fabricated according to a method known in the art.
  • the specific method is: sequentially vapor-depositing a 2nm thick HATCN film, a 35nm thick TCTA film, and mCBP on the cleaned ITO glass under high vacuum conditions.
  • Activation delayed fluorescence compound 40nm thick TmPyPB film, 1nm thick LiF film and 100nm thick Al film.
  • the device as shown in Figure 3 is made by this method, and the specific device structures are as follows:
  • ITO/HATCN(2nm)/TCTA(35nm)/mCBP Compound 1(5%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)
  • ITO/HATCN(2nm)/TCTA(35nm)/mCBP Compound 2(5%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)
  • ITO/HATCN(2nm)/TCTA(35nm)/mCBP Compound 3(5%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)
  • the current-brightness-voltage characteristics of devices 1-3 are completed by the Keithley source measurement system (Keithley 2400 Sourcemeter, Keithley 2000 Currentmeter) with a calibrated silicon photodiode, and the electroluminescence spectrum is performed by the French JY company SPEX CCD3000 spectrometer All measurements are done in room temperature atmosphere.
  • the performance data of devices 1-3 are shown in Table 2 below.
  • CIEy is the y coordinate value of the standard CIE color space.
  • the present invention uses a strong electron-withdrawing group with a large conjugate plane as an electron acceptor, and combines the electron acceptor with a strong electron donor to synthesize a deep red with significant TADF characteristics and a low energy level.
  • the photothermally activated delayed fluorescent material and the 100% internal quantum utilization efficiency of the TADF material are used.
  • the thermally activated delayed fluorescent material of the present invention is used as a luminescent material in an organic electroluminescent diode device, which can improve the luminous efficiency of the organic light emitting display device.
  • the organic electroluminescent diode devices based on the deep red light thermally activated delayed fluorescent material of the present invention have achieved very high device efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种热活化延迟荧光材料及其制备方法与有机电致发光二极管器件,所述热活化延迟荧光材料的结构通式如下式一所示:(I)以上式一中,R表示作为电子给体的化学基团。本发明采用大共轭平面的强吸电子基团作为电子受体,并通过将该电子受体与强的电子给体结合,设计出具有显著TADF特性且低能级的深红光热活化延迟荧光材料。本发明的热活化延迟荧光材料为具有较低单三线态能级差、超快反向系间窜越速率及高发光效率的深红光的TADF材料,当其作为发光材料应用于有机电致发光二极管器件时,可以有效提高有机电致发光二极管器件的发光效率,基于本发明的热活化延迟荧光材料的有机电致发光二极管器件具有非常高的器件效率。

Description

热活化延迟荧光材料及其制备方法与有机电致发光二极管器件 技术领域
本发明属于电致发光材料技术领域,特别涉及一种热活化延迟荧光材料及其制备方法和有机电致发光二极管器件。
背景技术
有机电致发光二极管(Organic Light-Emitting Diode,OLED)显示面板以其主动发光不需要背光源、发光效率高、可视角度大、响应速度快、温度适应范围大、生产加工工艺相对简单、驱动电压低、能耗小、更轻更薄、柔性显示等优点以及巨大的应用前景,吸引了众多研究者的关注。
OLED器件的原理在于,在电场作用下,空穴和电子分别从阳极和阴极注入,分别通过空穴注入层、空穴传输层和电子注入层、电子传输层,在发光层复合形成激子,激子辐射衰减发光。
有机电致发光材料作为OLED器件的核心组成部分,对器件的使用性能具有很大的影响。OLED器件的发光层一般含有主体材料和客体材料,其中,起主导作用的发光客体材料至关重要。早期的OLED器件使用的发光客体材料为荧光材料,由于其在OLED器件中单重态和三重态的激子比例为1:3,因此基于荧光材料的OLED器件的理论内量子效率(IQE)只能达到25%,极大的限制了荧光电致发光器件的应用。重金属配合物磷光材料由于重原子的自旋轨道耦合作用,使得它能够同时利用单重态和三重态激子而实现100%的IQE。然而,通常使用的重金属都是铱(Ir)、铂(Pt)等贵重金属,并且重金属配合物磷光发光材料在蓝光材料方面尚有待突破。纯有机热活化延迟荧光(TADF)材料,具有电子给体(D)和电子受体(A)相结合的分子结构,通过巧妙的分子设计,使得分子具有较小的最低单三重能级差(ΔE ST),这样三重态激子可以通过反向系间窜越(RISC)回到单重态,再通过辐射跃迁至基态而发光,从而能够同时利用单、三重态激子,也可以实现100%的IQE。
对于TADF材料,快速的反向系间窜越常数(k RISC)以及高的光致发光量子产率(PLQY)是制备高效率OLED器件的必要条件。目前,具备上述条件的TADF材料相对于重金属Ir配合物而言还是比较匮乏,且重金属配合物磷光材料在深红光领域尚有待突破,因此,开发具有高性能的深红光TADF材料具有特别重要的意义。
发明内容
本发明的目的在于提供一种热活化延迟荧光材料,具有超快反向系间窜越速率及高发光效率,为具有显著TADF特性且低能级的深红光TADF化合物,可作为有机电致发光二极管的发光层材料。
本发明另一目的在于提供一种热活化延迟荧光材料的制备方法,该方法易于操作,且获得目标产物的产率较高。
本发明又一目的在于提供一种有机电致发光二极管器件,采用上述热活化延迟荧光材料作为发光层材料,从而提高器件的发光效率。
为实现上述发明目的,本发明提供一种热活化延迟荧光材料,具有如下式一所示的化学结构:
式一
Figure PCTCN2019085642-appb-000001
以上式一中,R表示作为电子给体的化学基团。
所述电子给体的化学基团R选自以下基团中的任意一种:
Figure PCTCN2019085642-appb-000002
Figure PCTCN2019085642-appb-000003
所述的热活化延迟荧光材料为化合物1、化合物2或化合物3,所述化合物1、化合物2和化合物3的结构式分别如下:
Figure PCTCN2019085642-appb-000004
本发明还提供一种热活化延迟荧光材料的制备方法,其化学反应式如下:
Figure PCTCN2019085642-appb-000005
具体为:向反应瓶中加入含电子给体化合物,然后在无水无氧环境下加入氢化钠,在氩气氛围下打入除水除氧的四氢呋喃,在55-65℃反应1.5-2.5小时,然后再加入卤代原料,再在55-65℃反应20-30小时,其中,向反应瓶中加入卤代原料、含电子给体化合物及氢化钠的摩尔比为1:2-4:2-4;反应结束后,冷却至室温,将反应液倒入冰水中,萃取后合并有机相,旋成硅胶,柱层析分离纯化,得产物,计算收率;
其中,所述卤代原料的结构通式为
Figure PCTCN2019085642-appb-000006
其中X为卤素基团;
所述含电子给体化合物的结构通式为R-H,其中,R表示作为电子给体的化学基团。
所述卤代原料的结构式为
Figure PCTCN2019085642-appb-000007
所述电子给体的化学基团R选自以下基团中的任意一种:
Figure PCTCN2019085642-appb-000008
所述含电子给体化合物为9,10-二氢-9,9-二甲基吖啶、吩噁嗪或吩噻嗪。
本发明还提供一种有机电致发光二极管器件,包括基板、设置于所述基板上的第一电极、设置于第一电极上的有机功能层及设置于所述有机功能层上的第二电极;
所述有机功能层包括一层或多层有机膜层,且至少一层所述有机膜层为发光层;
所述发光层包含如权利要求1-3中任一项所述的热活化延迟荧光材料。
所述发光层采用真空蒸镀或者溶液涂覆的方法形成。
所述发光层的材料为主体材料与客体材料的混合物,所述客体材料选 自如权利要求1-3中任一项所述的热活化延迟荧光材料中的一种或多种。
所述基板为玻璃基板,所述第一电极的材料为氧化铟锡,所述第二电极为氟化锂层与铝层构成的双层复合结构;
所述有机功能层包括多层有机膜层,该多层有机膜层包括空穴注入层、空穴传输层、发光层、电子传输层,其中,所述空穴注入层的材料为HATCN,所述空穴传输层的材料为TCTA,所述电子传输层的材料为TmPyPB,所述主体材料为mCBP。
相比于已有材料和技术,本发明具有如下优点和有益效果:
(1)本发明采用大共轭平面的强吸电子基团作为电子受体,并通过将该电子受体与强的电子给体结合,设计出具有显著TADF特性且低能级的深红光热活化延迟荧光材料;
(2)本发明的热活化延迟荧光材料,为具有较低单三线态能级差、超快反向系间窜越速率及高发光效率的深红光的TADF材料,当其作为发光材料应用于有机电致发光二极管器件时,可以提高有机发光显示装置的发光效率,基于本发明的深红光的热活化延迟荧光材料的有机电致发光二极管器件都取得了非常高的器件效率。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明具体实施例1-3中所制备的化合物1-3的HOMO与LUMO能级分布图;
图2为本发明具体实施例1-3中所制备的化合物1-3在室温下正己烷溶液中的光致发光光谱图;
图3为本发明有机电致发光二极管器件的结构示意图。
具体实施方式
本发明中所用的未注明的一些原料均为市售商品。一些化合物的制备方法将在实施案例中描述。下面结合具体实施例对本发明作进一步具体详细描述,但本发明的实施方式不限于此。
实施例1:
目标化合物1的合成路线如下:
Figure PCTCN2019085642-appb-000009
向100mL二口瓶中加入9,10-二氢-9,9-二甲基吖啶(2.51g,12mmol),然后在手套箱中加入氢化钠NaH(0.48g,12mmol),在氩气氛围下打入40mL事先除水除氧的四氢呋喃(THF),在60℃反应2小时,然后再加入原料1(5mmol,1.35g),再在60℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得2.0g橙红色粉末的化合物1,产率62%。
1HNMR(300MHz,CD 2Cl 2,δ):8.74(s,4H),7.19-7.14(m,12H),6.98-6.93(m,4H),1.69(s,12H)。
MS(EI)m/z:[M] +calcd for C 42H 32N 8,648.27;found,648.18。
实施例2:
目标化合物2的合成路线如下:
Figure PCTCN2019085642-appb-000010
向100mL二口瓶中加入吩噁嗪(2.20g,12mmol),然后在手套箱中加入NaH(0.48g,12mmol),在氩气氛围下打入40mL事先除水除氧的四氢呋喃,在60℃反应2小时,然后再加入原料1(5mmol,1.35g),再在60℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得1.9g红色粉末的化合物2,产率64%。
1H NMR(300MHz,CD 2Cl 2,δ):8.74(s,4H),7.14-7.06(m,4H),7.01-6.95(m,12H)。
MS(EI)m/z:[M] +calcd for C 36H 20N 8O 2,596.17;found,596.16。
实施例3:
目标化合物3的合成路线如下所示:
Figure PCTCN2019085642-appb-000011
向100mL二口瓶中加入吩噻嗪(2.39g,12mmol),然后在手套箱中加入NaH(0.48g,12mmol),在氩气氛围下打入40mL事先除水除氧的四氢呋喃,在60℃反应2小时,然后再加入原料1(5mmol,1.35g),再在60℃反应24小时。冷却至室温,将反应液倒入200mL冰水中,二氯甲烷萃取三次,合并有机相,旋成硅胶,柱层析(二氯甲烷:正己烷,v:v,3:2)分离纯化,得1.5g深红色粉末的化合物3,产率48%。
1H NMR(300MHz,CD 2Cl 2,δ):8.74(s,4H),7.21-7.13(m,12H),6.97-6.88(m,4H)。
MS(EI)m/z:[M] +calcd for C 36H 20N 8S 2,628.13;found,628.10。
图1示出了化合物1-3的轨道排布情况,从图1中可以明显看出,化合物1-3的最高电子占据轨道(HOMO)与最低电子未占据轨道(LUMO)均分别排布在不同的单元上,实现了完全的分离,这有助于减小系间能差ΔEST,从而提高反向系间窜越能力。图2示出了化合物1-3在室温下正己烷溶液中的光致发光光谱。针对化合物1-3,模拟计算了分子的最低单线态能级S1和最低三线态能级T1。
实施例1-3的相关数据如表1所示。由表1可以看出,所有化合物的ΔEst均小于0.3ev,实现了较小的单线态和三线态能级差,具有明显的延迟荧光效应。
表1、化合物1-3的光物理性质结果
Figure PCTCN2019085642-appb-000012
表1中,PL Peak表示光致发光峰,S1表示单线态能级,T1表示三线 态能级,ΔEST表示单线态和三线态能级差。
实施例4:
有机电致发光二极管(OLED)器件的制备:
如图1所述,本发明的热活化延迟荧光材料作为发光层客体材料的有机电致发光二极管器件,可包括从下到上依次设置的基板9、阳极层1、空穴注入层2、空穴传输层3、发光层4、电子传输层5、及阴极层6。其中,所述基板9为玻璃基板,所述阳极1的材料为氧化铟锡(ITO),所述基板9与阳极1共同构成ITO玻璃,所述ITO玻璃的方块电阻为10Ω/cm 2。所述空穴注入层2的材料为HATCN,所述空穴传输层3的材料为TCTA,所述发光层的材料为本发明的活化延迟荧光化合物与mCBP的混合物,所述电子传输层5的材料为TmPyPB。所述阴极为氟化锂(LiF)层与铝(Al)层构成的双层结构。
其中,HATCN指2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲,TCTA指4,4',4”-三(咔唑-9-基)三苯胺,mCBP指3,3'-二(N-咔唑基)-1,1'-联苯,TmPyPB指1,3,5-三(3-(3-吡啶基)苯基)苯。
所述有机电致发光二极管器件可按本领域已知方法制作,具体方法为:在经过清洗的ITO玻璃上,高真空条件下依次蒸镀2nm厚的HATCN膜、35nm厚的TCTA膜、mCBP加活化延迟荧光化合物、40nm厚的TmPyPB膜、1nm厚的LiF膜和100nm厚的Al膜。用该方法制得如图3所示的器件,各种具体的器件结构如下:
器件1:
ITO/HATCN(2nm)/TCTA(35nm)/mCBP:化合物1(5%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)
器件2:
ITO/HATCN(2nm)/TCTA(35nm)/mCBP:化合物2(5%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)
器件3:
ITO/HATCN(2nm)/TCTA(35nm)/mCBP:化合物3(5%40nm)/TmPyPB(40nm)/LiF(1nm)/Al(100nm)
器件1-3的电流-亮度-电压特性是由带有校正过的硅光电二极管的Keithley源测量系统(Keithley 2400 Sourcemeter、Keithley 2000 Currentmeter)完成的,电致发光光谱是由法国JY公司SPEX CCD3000光谱仪测量的,所有测量均在室温大气中完成。器件1-3的性能数据见下表2。
表2、基于化合物1-3为发光层客体材料的器件的性能结果
Figure PCTCN2019085642-appb-000013
表2中,CIEy为标准CIE色彩空间的y坐标值。
综上所述,本发明采用大共轭平面的强吸电子基团作为电子受体,并通过将该电子受体与强的电子给体结合,合成出具有显著TADF特性且低能级的深红光热活化延迟荧光材料,并利用TADF材料的100%内量子利用效率,将本发明的热活化延迟荧光材料作为发光材料应用于有机电致发光二极管器件,可以提高有机发光显示装置的发光效率,基于本发明的深红光的热活化延迟荧光材料的有机电致发光二极管器件都取得了非常高的器件效率。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种热活化延迟荧光材料,具有如下式一所示的化学结构:
    式一
    Figure PCTCN2019085642-appb-100001
    以上式一中,R表示作为电子给体的化学基团。
  2. 如权利要求1所述的热活化延迟荧光材料,其中,所述电子给体的化学基团R选自以下基团中的任意一种:
    Figure PCTCN2019085642-appb-100002
  3. 如权利要求2所述的热活化延迟荧光材料,为化合物1、化合物2或化合物3,所述化合物1、化合物2和化合物3的结构式分别如下:
    Figure PCTCN2019085642-appb-100003
  4. 一种热活化延迟荧光材料的制备方法,化学反应式如下:
    Figure PCTCN2019085642-appb-100004
    具体为:向反应瓶中加入含电子给体化合物,然后在无水无氧环境下加入氢化钠,在氩气氛围下打入除水除氧的四氢呋喃,在55-65℃反应1.5-2.5小时,然后再加入卤代原料,再在55-65℃反应20-30小时,其中,向反应瓶中加入卤代原料、含电子给体化合物及氢化钠的摩尔比为1:2-4:2-4;反应结束后,冷却至室温,将反应液倒入冰水中,萃取后合并有机相,旋成硅胶,柱层析分离纯化,得产物,计算收率;
    其中,所述卤代原料的结构通式为
    Figure PCTCN2019085642-appb-100005
    其中X为卤素基团;
    所述含电子给体化合物的结构通式为R-H,其中,R表示作为电子给体的化学基团。
  5. 如权利要求4所述的热活化延迟荧光材料的制备方法,其中,所述卤代原料的结构式为
    Figure PCTCN2019085642-appb-100006
    所述电子给体的化学基团R选自以下基团中的任意一种:
    Figure PCTCN2019085642-appb-100007
  6. 如权利要求5所述的热活化延迟荧光材料的制备方法,其中,所述含电子给体化合物为9,10-二氢-9,9-二甲基吖啶、吩噁嗪或吩噻嗪。
  7. 一种有机电致发光二极管器件,包括基板、设置于所述基板上的第一电极、设置于第一电极上的有机功能层及设置于所述有机功能层上的第二电极;
    所述有机功能层包括一层或多层有机膜层,且至少一层所述有机膜层为发光层;
    所述发光层包含如权利要求1所述的热活化延迟荧光材料。
  8. 如权利要求7所述的有机电致发光二极管器件,其中,所述发光层采用真空蒸镀或者溶液涂覆的方法形成。
  9. 如权利要求7所述的有机电致发光二极管器件,其中,所述发光层的材料为主体材料与客体材料的混合物,所述客体材料选自如权利要求1所述的热活化延迟荧光材料中的一种或多种。
  10. 如权利要求9所述的有机电致发光二极管器件,其中,所述基板为玻璃基板,所述第一电极的材料为氧化铟锡,所述第二电极为氟化锂层 与铝层构成的双层复合结构;
    所述有机功能层包括多层有机膜层,该多层有机膜层包括空穴注入层、空穴传输层、发光层、电子传输层,其中,所述空穴注入层的材料为HATCN,所述空穴传输层的材料为TCTA,所述电子传输层的材料为TmPyPB,所述主体材料为mCBP。
PCT/CN2019/085642 2019-04-16 2019-05-06 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件 WO2020211126A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/489,454 US10954245B2 (en) 2019-04-16 2019-05-06 Thermal active delay fluorescent material, method for manufacturing same, and organic light-emitting diode device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910305494.7 2019-04-16
CN201910305494.7A CN110003222B (zh) 2019-04-16 2019-04-16 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Publications (1)

Publication Number Publication Date
WO2020211126A1 true WO2020211126A1 (zh) 2020-10-22

Family

ID=67172271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085642 WO2020211126A1 (zh) 2019-04-16 2019-05-06 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件

Country Status (2)

Country Link
CN (1) CN110003222B (zh)
WO (1) WO2020211126A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110563724B (zh) * 2019-08-15 2020-11-10 武汉华星光电半导体显示技术有限公司 空穴传输材料及其合成方法、显示面板
CN110526904A (zh) * 2019-08-28 2019-12-03 武汉华星光电半导体显示技术有限公司 绿光热活化延迟荧光材料及其制备方法、电致发光器件
CN115477612B (zh) * 2021-03-22 2024-05-28 深圳大学 一种螺环取代吖啶类化合物的合成方法及应用
CN113603628B (zh) * 2021-08-02 2023-11-21 华中师范大学 一种非共轭连接的空间电荷转移热活化延迟荧光材料及其电致发光应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358897A (zh) * 2018-01-25 2018-08-03 陕西师范大学 具有分子内电荷转移特性的d-a型热激活延迟荧光材料及应用
JP2018127424A (ja) * 2017-02-10 2018-08-16 国立大学法人山形大学 新規イミダゾール誘導体、及びそれを用いた有機el素子
CN108586441A (zh) * 2018-05-03 2018-09-28 上海天马有机发光显示技术有限公司 一种化合物、一种有机发光显示装置
KR20190021845A (ko) * 2017-08-24 2019-03-06 울산대학교 산학협력단 오르토 주개가 도입된 트리아릴보론 화합물 및 이를 이용한 유기 발광 소자
WO2019044542A1 (ja) * 2017-08-28 2019-03-07 東レ株式会社 化合物、それを用いた発光素子、表示装置および照明装置
WO2019046759A1 (en) * 2017-09-01 2019-03-07 Molecular Glasses, Inc. OLED EMITTING COMPOSITION WHICH CAN BE COATED WITH A SOLVENT CONTAINING NON-PLASMONIC MOLECULAR NOBLE METAL NANOPARTICLES AND EMITTING MATERIALS IN NON-CRYSTALLIZABLE MOLECULAR ORGANIC SEMICONDUCTORS
CN109599493A (zh) * 2017-09-30 2019-04-09 昆山国显光电有限公司 一种有机电致发光器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017011531A2 (en) * 2015-07-13 2017-01-19 President And Fellows Of Harvard College Organic light-emitting diode materials
KR102008896B1 (ko) * 2016-05-02 2019-08-08 삼성에스디아이 주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
WO2018033820A1 (en) * 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018127424A (ja) * 2017-02-10 2018-08-16 国立大学法人山形大学 新規イミダゾール誘導体、及びそれを用いた有機el素子
KR20190021845A (ko) * 2017-08-24 2019-03-06 울산대학교 산학협력단 오르토 주개가 도입된 트리아릴보론 화합물 및 이를 이용한 유기 발광 소자
WO2019044542A1 (ja) * 2017-08-28 2019-03-07 東レ株式会社 化合物、それを用いた発光素子、表示装置および照明装置
WO2019046759A1 (en) * 2017-09-01 2019-03-07 Molecular Glasses, Inc. OLED EMITTING COMPOSITION WHICH CAN BE COATED WITH A SOLVENT CONTAINING NON-PLASMONIC MOLECULAR NOBLE METAL NANOPARTICLES AND EMITTING MATERIALS IN NON-CRYSTALLIZABLE MOLECULAR ORGANIC SEMICONDUCTORS
CN109599493A (zh) * 2017-09-30 2019-04-09 昆山国显光电有限公司 一种有机电致发光器件
CN108358897A (zh) * 2018-01-25 2018-08-03 陕西师范大学 具有分子内电荷转移特性的d-a型热激活延迟荧光材料及应用
CN108586441A (zh) * 2018-05-03 2018-09-28 上海天马有机发光显示技术有限公司 一种化合物、一种有机发光显示装置

Also Published As

Publication number Publication date
CN110003222A (zh) 2019-07-12
CN110003222B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
Singh et al. Electroluminescent materials: Metal complexes of 8-hydroxyquinoline-A review
WO2020211126A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
EP2431445A2 (en) Compound for organic photoelectric device and organic photoelectric device comprising same
WO2020211122A1 (zh) 双极性热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
Liu et al. Novel bipolar host materials based on 1, 3, 5-triazine derivatives for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off
WO2020211125A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN102617477B (zh) 菲并咪唑衍生物及其作为电致发光材料的应用
WO2020124771A1 (zh) 热活化延迟荧光化合物及其制备方法与有机电致发光二极管器件
TWI507403B (zh) 咔唑衍生物及有機電致發光裝置
WO2020098146A1 (zh) 一种蓝光热活化延迟荧光材料及其应用
KR101765199B1 (ko) 이리듐 착화합물 및 이를 이용한 유기전계 발광소자
CN106749050B (zh) 一种以环状二酮为核心的热激活延迟荧光oled材料及其应用
US20200194682A1 (en) Thermally activated delayed fluorescence material and method for preparing thereof and organic electroluminescent diode device
CN106800526A (zh) 一种以环状二酮为核心的有机电致发光材料及其应用
CN106941133B (zh) 一种有机发光器件及其制备方法
CN116199723B (zh) 一种具有吡啶基氮杂二苯并呋喃配体的磷光掺杂材料及其应用
WO2020211123A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211121A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211128A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
CN110105231B (zh) 一种含薁环的化合物、其用途及包含其的有机光电装置
US10954245B2 (en) Thermal active delay fluorescent material, method for manufacturing same, and organic light-emitting diode device
CN105237501A (zh) 含有螺双芴和二苯并呋喃的有机发光材料及发光器件
WO2020211127A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
WO2020211124A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
US10749128B2 (en) Depositable ion organic function material and use thereof in organic electroluminescent device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925044

Country of ref document: EP

Kind code of ref document: A1